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Abstract This article compiles results from 4 independent laboratory studies. In each 

study, the same type of concrete is tested at least 10 times, the air void structure being the only 

variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost 

scaling test are conducted. Results were not originally presented in a way, which made comparison 

possible. Here the amount of scaled material is depicted as function of air voids parameters: total 

air content, specific surface, spacing factor, and total surface area of air voids. The total surface 

area of air voids is proportional to the product of total air content and specific surface. 

In all 4 cases, the conclusion is concurrent that the parameter of total surface area of air voids 

performs equally well or better than the spacing factor when linking air void characteristics to frost 

resistance (salt frost scaling). This observation is interesting as the parameter of total surface area 

of air voids normally is not included in air void analysis. 

The following reason for the finding is suggested: In the air voids conditions are favourable for ice 

nucleation. When a capillary pore is connected to an air void, ice formation will take place in the 

air void, being feed from the capillary, but without pressure build-up in the capillary. If the 

capillary is not connected to an air void, ice formation will take place in the capillary pore, where 

it can generate substantial pressure. Like this, frost resistance depends on that capillary pores are 

connected to air voids. The chance that a capillary pore is connected to an air void depends on the 

total surface area of air voids in the system, not the spacing factor. 

 

Keywords: Air void structure – spacing factor – salt frost scaling – frost 

resistance 
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1. Introduction 

In 1975, Powers (1975) summarized 40 years of research related to concrete frost 

resistance. He emphasised the importance of entrained air; concrete needs a 

“sufficient concentration of air bubbles” to be immune to frost damage. Today, 

this statement is generally accepted and it is very well documented, see for 

example the reference list in the book “Durability of concrete in cold climates” by 

Pigeon and Pleau (1995). However, it is still a challenge to translate “sufficient 

concentration of air bubbles” into a quantitative requirement in a concrete 

specification. The problem is to identify a measurable air void parameter, which 

has a definite relation to degree of damage during freeze/thaw action, and where a 

limit value can be identified. 

 

When an engineer encounters a problem, no matter the field of engineering, the 

first choice of method to solve it is normally a deductive method: The engineer 

goes through a series of forward-looking actions to recognise the problem, 

identify basic variables, and develop ways to perform measurements. Finally, 

after planning and carrying out measurements, it is possible to evaluate the results 

(Vincenti, 1990). Hopefully the investigation has lead to new insight, based on 

which it is possible to solve the problem. A historian would do just the opposite. 

He or she looks backward in time and gain new insight by identifying general 

trends in isolated incidents in the past. Like this, the work method of a historian is 

inductive. 

 

The scope of the present work is to approach the difficulty in relating frost 

resistance to characteristics of the air void structure with an inductive method. No 

new experiments are designed and executed in this work. Instead, already existing 

data from the literature on salt frost scaling and air void structure is reviewed to 

identify trends with general validity.  
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2 Theory 

Traditionally, it is assumed that the spacing factor proposed by T.C. Powers 

(1949) is an appropriate way to describe the air void structure, so demands are 

formulated as limits for the maximum spacing factor, possibly in combination 

with limits for minimum total air content. 

 

Powers spacing factor was put forth as a logical result of the hypothesis about 

hydraulic pressure as the cause of damage during frost action, which also has 

Powers as progenitor (Powers 1945): When liquid water transforms to ice, its 

volume increases, and therefore unfrozen water is expelled from the place of ice 

formation. This liquid flow generates hydraulic pressure in the pores, which can 

damage the concrete. The pressure build-up among other things depends on the 

flow length to a free surface. If all points in the cement paste are adequately close 

to a free air void surface, then damage cannot occur. Powers’ spacing factor L is 

an estimate of the longest distance to an air void surface. It is calculated in the 

following way (Powers 1949): 

 

1/3

1  4.342
 

 
3  1.4 1 1  4.342

p pfor
A S A

L
p pfor

S A A

 (1) 

 

Where 

 

 p is the paste content [% of concrete volume] 

 A is the air content [% of concrete volume] 

 S is the specific surface [mm-1] 

 

The hydraulic pressure hypothesis is only one among several theories on what 

happens during frost action, and several researchers have questioned its validity. 

Powers himself, several years after he put forth the hypothesis, ended up 

supporting another theory: the hypothesis about microscopic ice lens growth, 
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where unfrozen water moves to the freezing site instead of away from it (Powers 

1975). Despite of this, the spacing factor is still a very popular evaluation 

criterion. Though it may be without sound theoretical foundation, the spacing 

factor is one of few attempts to quantify the air void structures ability to provide 

protection against frost deterioration, and in many cases, it points in the right 

direction. If for example trial casting reveals inadequate frost resistance, then frost 

resistance can be improved by decreasing the spacing factor, typically by 

increasing the dosage of air entraining agent. However, there may be better ways 

to benchmark the air void structure, which are yet to be discovered. For example, 

results published by Lindmark (2000; 2010) and Hasholt and Clemmensen (2010) 

have independently of each other indicated that the amount of surface scaling in 

an accelerated freeze/thaw test depends on the total surface area of air voids. The 

total area of air voids [m²/m³ concrete] is proportional to the product S·A, where S 

is the specific surface and A is the total air content as explained in equation 1. 

 

3. Experimental results from literature 

This paper presents 4 different experimental studies, which include air void 

analysis on hardened concrete as well as freeze-thaw testing (salt frost scaling). 

Originally, the studies had different objectives. Therefore they varied the air void 

structure by other means than just changing the dosage of air entraining agent. 

The air void structure was changed by: 

 

 applying different procedures when vibrating the concrete (Backstrom et 

al. 1958b) 

 using different commercial air entraining agents without or in combination 

with other chemical admixtures (Siebel 1989; Petersson 1989) 

 applying pressure during hardening (Jensen 2005) 

 

This article examines the relation between salt frost scaling resistance and the 

classical air void parameters: total air content A, specific surface S and spacing 

factor L. It also examines the relation between salt frost scaling resistance and 

total surface area of air voids. The later is also an air void parameter, but it is 

seldom registered. However, as mentioned in section 2, observations indicate that 
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it may be relevant for the concrete frost resistance, and therefore this air void 

parameter is also examined.  

 

3.1 Study 1: Effect of compaction (1958) 

Background 

In the 1950’s, the use of air entraining admixtures was relatively new, and there 

were still many questions on how to obtain an adequate air void structure, which 

can ensure frost resistance. In 1958 Mielenz and colleagues published a series of 4 

papers, dedicated to explaining how air entraining agents function. Part 1 focuses 

on how air voids are created during mixing, and how the air void structure can 

change in the fresh concrete up to the point of setting (Mielenz et al. 1958a). Part 

2 demonstrates how different air entraining agents leads to air void systems with 

different characteristics such as total air content and different air void size 

distribution (Backstrom et al. 1958a). Part 3 illustrates how other factors can 

influence the resulting air void structure and frost resistance of air entrained 

concrete, e.g w/c, compaction, sand grading, and temperature (Backstrom et al. 

1958b). In part 1-3, all concrete mixes are prepared in the laboratory. In part 4, the 

findings in the previous parts are confirmed for concrete in real structures 

(Mielenz et al. 1958b). This series of papers has become classical and newer 

literature often uses them as references, as this is a very thorough study. 

 

Content of experimental work 

In the study by Mielenz and colleagues, expansion test was the preferred method 

for freeze/thaw testing. For this purposes, specimens were cast with inserts for 

length change measurements. However, for a reason not mentioned, test 

specimens made with different compaction regimes were cut from cast cylinders, 

and they were therefore missing inserts. Instead, a kind of scaling test was 

performed, where specimens were exposed to cycles of freezing and thawing until 

they had lost 25% of their mass (Backstrom et al. 1958b). 

 

Tests were carried out for 3 concrete mixes. The mixes were similar (same type of 

aggregates, same w/c = 0.50), but they had different dosages of air entraining 

agent, leading to different air contents in the fresh concrete (3.0%, 6.5%, and 
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8.8% measured with a pressure method). The fresh concrete was cast in cylinders, 

2 cylinders for each of the following vibration times: 2, 6, 12, 20, 30, and 50 

seconds. Like this, 18 different air void systems were tested. 

 

Results 

The results are shown in Fig. 1: 
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a 

 
 

b 

 
 

c 

 
 

d 

 
Fig. 1 Salt frost scaling resistance (number of freeze/thaw cycles to 25% weight loss) shown as 

function of (a) total air content, (b) specific surface, (c) spacing factor, and (d) total surface area of 

air voids. Data were originally published by Backstrom et al. (1958b). The study comprised 3 

different concrete mixes with 3.0%, 6.5%, and 8.8% air in the fresh concrete, and for each mix 6 

different compaction regimes were applied. 
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When studying the relation between scaling and spacing factor in Fig. 1c, the data 

points related to the 3 basic mixes looks like 3 distinct populations. In the mixes 

with initial air contents of 6.5% and 8.8%, vibration does not change the spacing 

factor very much. For the 6.5% mix, the difference between maximum and 

minimum spacing factor is 0.03 mm, and for the 8.8% mix, the difference 

between maximum and minimum spacing factor is only 0.02 mm, which is 

comparable to the uncertainty of the test method. But despite the almost 

unchanged spacing factor, the rate of scaling is changed for different vibration 

regimes. For example for the 6.5% mix, the most freeze/thaw resistant specimens 

withstand 60% more freeze/thaw cycles before 25% mass loss is reached than the 

specimen with poorest freeze/thaw resistance. The specimens with poorest 

freeze/thaw resistance have been vibrated for the longest time, but they only have 

the third largest spacing factor in this group. It is also noted in the original paper 

that the relation between spacing factor and scaling is not consistent. 

 

When studying the relation between scaling and total surface area of air voids in 

Fig. 1d, all 18 data points from the 3 basic mixes look like they belong to the 

same population. The specimens are prepared under laboratory conditions where 

mix proportions can be very well controlled, so it is unlikely that e.g. 

unintentional variations in w/c can cause differences between mixes. Presumably, 

the only difference between specimens is their air void structure. Therefore, when 

plotting a measure of freeze/thaw resistance against the decisive air void 

parameter, it is reasonable to expect a continuous curve. Therefore the results of 

Mielenz and colleagues indicate that total surface area of air voids is a better 

parameter to describe how well an air void system protects the concrete against 

freeze/thaw attack. 

 

3.2 Study 2: Combination of different admixtures (1989) 

Background 

In the 1980’s, superplasticizers for concrete were an emerging technology. In 

West Germany, concrete for freezing environments was approved from data on 

mix composition and air content measured in the fresh concrete. The air void 

structure in the hardened concrete only had to be examined in cases of doubt. The 
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early research on concrete with superplasticizing admixtures and frost resistance 

was contradictory, but some of the reports indicated that superplasticized concrete 

had coarser air void structure and therefore larger spacing factor than concrete 

without superplasticizing admixtures with similar air content. This would imply a 

risk that the limits for minimum air content in fresh concrete based on experience 

with concrete without superplasticizing admixtures would be too low for concrete 

containing superplasticizers. For this reason, the Research Centre of the German 

Cement Industry (VDZ) commenced a research project on frost resistance of 

superplastized air-entrained concrete (Siebel 1989). 

 

Contents of experimental work 

The work presented by Siebel (1989) comprised 4 different test series. Within 

each series, cement type, cement content, w/c, and type of aggregates were 

unchanged, but the mix was produced with varying dosages of air entraining agent 

and with varying dosages of superplasticizing agents. In 2 of the test series (w/c = 

0.45), both air content in fresh concrete, air void structure in hardened concrete 

(according to ASTM C 457), and freeze-thaw resistance in a standardised test 

were investigated. The freeze-thaw test was a method developed at the research 

centre carrying out the investigation; 10 cm cubes were immersed in 3% NaCl, 

where they were frozen to -15°C and thawed in repeated cycles, and after 100 

cycles, the mass loss was registered (if the mass loss was less than 5%, the 

concrete mix was considered frost resistant). 

 

Results 

In the paper by Siebel (1989), results are only presented graphically. According to 

personal communication with E. Siebel, retired head of Department for Material 

Technology at VDZ, and Christoph Müller, present head of Concrete Technology 

Department at VDZ, the original laboratory records unfortunately no longer exist. 

Therefore, the results presented in Fig. 2 are based on manual readings from 

graphs in Siebel’s original paper, where individual data points are plotted for each 

mix. The accuracies on readings are: 
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10 

 total air content A: ±0.1% 

 spacing factor L: ±0.01 mm 

 scaling (mass loss in %): ±0.2% 

 

The specific surface S is calculated by using the paste content (mix design stated 

in the original paper) together with the manual readings of total air content A and 

spacing factor L as input parameters. 
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A 

 
 

B 

 
 

C 

 
 

D 

 
Fig. 2 Salt frost scaling as function of (a) total air content, (b) specific surface, (c) spacing factor, 

and (d) total surface area of air voids. Data were originally published by Siebel (1989). The 4 test 

series represent different combinations of admixtures (air entraining agent type 1 or type 2, with or 

without a superplasticizing agent). In each series, the dosage of air entraining agent is varied. 
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It can be seen that for non-frost resistant concrete mixes, where mass loss after 

100 freeze/thaw cycles exceeds 5%, there is a large scatter in Fig. 2c, where mass 

loss is plotted vs. spacing factor. The scatter is smaller in Fig. 2d, where mass loss 

is plotted vs. total surface area of voids. The same mass loss of approximately 

10% is obtained for 3 mixes with spacing factors varying from 0.28 to 0.48 mm. 

Here the spacing factors indicate that there should be a difference in frost 

resistance, but this is not confirmed by the measurements of mass loss.  

 

3.3 Study 3: Mix optimisation (1989) 

Background 

The study of Petersson (1989) was based on trial mixes aimed at finding a good 

mix design, which at the same time produced: 

 

 concrete with high compressive strength (a minimum cube strength of 45 

MPa) 

 concrete with cement content not exceeding 400 kg/m³ concrete 

 concrete with good salt-frost resistance 

 concrete with good workability (slump 75-85 mm) 

 

Like this, the starting point of the study of Petersson was a classical dilemma in 

concrete technology: High strength demands low w/c. If cement is the only 

powder, low w/c leads to high cement content or to poor workability, if the 

cement content is fixed at a certain, acceptable level. Introducing a 

superplasticizing admixture can be the answer on how to achieve high strength 

with minimum cement content. However, addition of a superplasticizer may have 

negative side effects: It may make air voids coarser, so the concrete becomes 

more prone to show salt frost scaling, and it may increase the total air content, so 

the strength is reduced.  

 

The study by Petersson (1989) was performed, when superplasticizers were 

relatively new, and therefore documentation was needed on how these 

contradictory demands could be met. As the study also addressed the 
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compatibility between different concrete admixtures, the study of Petersson had 

common features with the study by Siebel presented in the previous section. 

 

Contents of experimental work 

The study comprised 3 test series: 

 

 AEA1: Air entraining agent 1 (mixture of neutralized vinsol resin and 

synthetic tenside) used as only additive 

 AEA2: Air entraining agent 2 (neutralized vinsol resin) used as only 

additive 

 AEA1 + PL: Air entraining agent 1 used in combination with a melamine 

based plasticizing agent 

 

In each test series, w/c and slump was kept constant (0.45 and 75-85 mm, 

respectively). Mixes were prepared with target air content in fresh concrete of 3, 

4, 5 and 6 %. The air content was varied by varying the dosage of air entraining 

agent. To keep the slump constant, the paste content was varied. When using a 

plasticizing agent, the amount relative to cement mass was constant 

(recommended dosage). 

 

The air void structure in the hardened concrete was studied using microscopic 

analysis of thin sections. Freeze-thaw testing was carried out according to SS 13 

72 44 (1988). 

 

Results 

Results are shown in Fig. 3. 
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a 

 
 

b 

 
 

c 

 
 

d 

 
Fig. 3 Salt frost scaling as function of (a) total air content, (b) specific surface, (c) spacing factor, 

and (d) total surface area of air voids. Data were originally published by Petersson (1989). The test 

series represent different combinations of admixtures. Note: the specific surface is not stated in the 

original paper, so here it is calculated from the spacing factor. 
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According to the test method, the frost resistance is acceptable, if the amount of 

scaling after 56 cycles does not exceed 1 kg/m². Only 3 of the tested mixes do no 

exhibit acceptable scaling results. 

 

In Fig. 3a some dependence between total air content and scaling is observed, but 

for the same air content, the scaling is significantly higher for the series with 

superplasticizer, AEA1+SP, than for the other 2 series. In Fig. 3b there seems to 

be no relation between scaling and specific surface.  

 

The correlation between on one hand scaling and spacing factor and on the other 

hand scaling and total area of voids seems equally good (qualitative judgement). 

However, the 3 points in the upper tail of the spacing factor curve in Fig. 3c are 

not in a logical order. It is expected that the highest spacing factor induces the 

highest amount of scaling, but this is not the case. In Fig. 3d, where scaling is 

mapped as function of total area of voids, the same 3 points are placed in expected 

order, where scaling decreases when the surface area of voids increases. 

 

3.4 Study 4: Effect of pressure during hardening 

Background 

With the good workability of self-compacting concrete, castings can be performed 

very fast. When casting for example tall walls, a high pressure will be generated at 

the bottom of the wall resulting in compressed air voids. Therefore it can be 

difficult to meet demands on e.g. a total air content of 5%, and changes of the air 

void structure can be an unpleasant surprise if all pre-testing has been performed 

on unloaded concrete such as cast cylinders. 

 

This was the starting point for a M.Sc. thesis work (Jensen 2005). The primary 

objective of the project was to study the influence of increased hydrostatic 

pressure during hardening on the air void structure. The experimental data were 

used to test if it was possible to predict the air void size distribution in concrete 

hardened under pressure, when using the air void size distribution in unloaded 

concrete as input for calculations. Calculations were based on Boyle-Mariottes 

law (saying that for an ideal gas at constant temperature the product of pressure 
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and volume is constant). These results were published by Jensen et al. (2005). A 

secondary objective of the project was to get an indication on how pressure 

related changes of the air void structure would change the frost resistance. Results 

related to the secondary objective are here published for the first time. 

 

Contents of experimental work 

The concrete used for testing was a self-compacting concrete with w/c = 0.35 

(CEM I cement and no additional powders). 

 

Fresh concrete was placed in plastic bags (because of the flow properties of the 

concrete, placement was possible without vibration). Sealed plastic bags were 

immediately placed in water in containers, where pressure then was applied for 24 

hours. 

 

Concrete mixes were prepared with 2 different dosages of air entraining agent. 

The low dosage equalled 0.10% and the high dosage equalled 0.25% of cement 

mass. Each mix was placed in 4 different containers with pressures of 1, 1½, 2, 

and 2½ bar. Castings with each dosage of air entraining agent were repeated 3 

times (mix 1, mix 2 and mix 3), resulting in a total of 24 specimens with different 

air void structures. 

 

Air void analysis was performed according to DS/EN 480-11 (1999) using an 

automatic camera system. Freeze-thaw testing was performed according to the 

reference method of prENV 12390-9 (2003). However, the size of each test 

specimen was limited, and the investigation of actual frost resistance was given 

lower priority than the investigation of pressure related changes of the air void 

structure. Therefore, the test area for the scaling test was only 8000 mm² per 

specimen. 

 

Results 

Though the triplet mixes of each dosage of air entraining agent in principle were 

identical, they showed some variability. For example for the low dosage, the total 

air content in fresh concrete varied from 3.3-5.7%. Results from air void analysis 

are available for each specimen exposed to freeze/thaw testing. Therefore, results 
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are here treated separately for each specimen, not as an average of 3 specimens 

with the same dosage of air entraining agent. As a consequence, the test area for 

the scaling test is relatively small, only about one tenth of the area prescribed in 

the test standard. The uncertainty of the results is therefore larger than what can 

normally be expected when using this standard. 

 

Mixes were prepared with either a high or a low dosage of air entraining agent. 

For specimens with a low dosage of air entrainment, results are shown in Fig. 4. 

Specimens with a high dosage of air entraining agent all had spacing factors lower 

than 0.20 mm. This in combination with the low w/c resulted in very good frost 

resistance. These specimens showed virtually no scaling, making the results less 

useful for analysis as no difference in frost resistance can be detected despite 

differences in air void structure. Therefore these results are omitted here. 
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a 

 
 

b 

 
 

c 

 
 

d 

 
Fig. 4 Salt frost scaling as function of (a) total air content, (b) specific surface, (c) spacing factor, 

and (d) total surface area of air voids. Data are from Jensen (2005). Mix 1, 2, and 3 denote 

different mixes with same dosage of air entraining agent. For each mix, the resulting air void 

structure varies due to different external pressure applied during early hydration. 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



19 

The results in Fig. 4 draw the same picture as is seen in previous sections: Neither 

total air content or specific surface can be used as sole evaluation criterion, see 

Fig. 4a and 4b. The same total air content or specific surface can result in very 

different scaling. For the spacing factor, the results in Fig. 4c hint to a trend line 

(the higher the spacing factor, the more scaling can be expected). However, the 

total area of air voids is the parameter, which seems to give the best correlation to 

salt frost scaling resistance. In Fig. 4d all 12 points look like they can be part of 

the same curve, and the 4 points of mix 2 appear in a consistent way, which is not 

the case in Fig. 4c. 

 

3.5 Summary 

When evaluating different characteristics of the air void system and their relation 

to results of a salt frost scaling test, this is done in a purely qualitative way (which 

curve looks “the best”), as no theory predicts the shape of the curve. However, all 

4 laboratory studies depict the same tendency: when trying to describe the air void 

system of concrete with only one parameter and linking this parameter to salt frost 

scaling resistance, then the parameter of total surface area of air voids is as good 

or superior to the well-known spacing factor (which again performs better than 

specific surface and total air content). It is most obvious in the studies by 

Backstrom et al. (1958b) and Jensen (2005), whereas the difference is marginal in 

the studies by Siebel (1989) and Petersson (1989). The difference between 

spacing factor and total surface area is especially distinct when comparing results 

from concrete, where the amount of surface scaling is high. 

 

4. Discussion 

The assumption that frost resistance including resistance to salt frost scaling is 

related to Powers’ spacing factor has been accepted as a premise in concrete 

technology for more than 50 years. Alternative parameters have been suggested, 

for example: 
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 Philleo factor (Philleo 1983) 

 Mean spacing (Attiogbe 1993) 

 Flow length (Pleau and Pigeon 1996) 

 

However, all the above mentioned alternatives focus on distance to nearest air 

void, so basically they follow the same tradition as Powers. Compared to this, 

using total surface area of air voids as evaluation criterion is fundamentally 

different. 

 

4.1 Validity of observation 

The method applied in this paper is inductive. The inductive proof is based on a 

number of observations. The proof becomes more convincing, the higher the 

number of observations pointing in the same direction, but there is always the 

possibility that a new observation will contradict the conclusion. It is therefore 

relevant to reflect on if the number of observations is sufficient to reach a 

trustworthy conclusion. 

 

4 studies is not a very large number of observations for an inductive proof. 

However, the conclusion that salt frost scaling depends more on total surface area 

than on the spacing factor seems to be fairly robust. The pattern is consistent in all 

4 studies, which have been performed on different types of concrete (e.g. w/c 

from 0.35-0.50) and with different test standards (different temperature cycles and 

different ways of registering scaling). 

 

In concrete production, the air void system is normally established by a chemical 

air entraining agent, which stabilises air voids in the fresh concrete. However, for 

research purposes aimed at linking characteristics of air void structure to frost 

resistance, air entraining agents imply some difficulties. When the dosage of air 

entraining agent is increased, it influences both the number of air voids and their 

size: when the dosage is increased, it generally increases total air content and 

specific surface of the air voids, whereas it decreases the spacing factor. Like this, 

total air content, specific surface of air voids, and spacing factor become coupled 

variables, and it is not possible to vary only one and keep the other constant. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



21 

Therefore it is hard to evaluate which parameter has the most significant effect on 

frost resistance. 

 

In the 4 presented studies, the air void parameters are not coupled in the same way 

as when only varying the dosage of air entraining agent. It is also varied by 

applying different compaction regimes, by applying pressure, and by letting the 

air entraining agent interact with other chemical admixtures. This increases the 

likelihood that the total surface area is actually the decisive parameter, and not 

just a secondary effect of the dosage of air entraining agent or another parameter 

that is the real decisive parameter. 

 

All this indicates that the finding of the present investigation has general validity 

for salt frost scaling, though the number of observations is only 4. However, more 

experimental evidence will of course strengthen confidence in the conclusion. At 

present, it is a preliminary conclusion, and more research is needed, before a final 

conclusion can be drawn on if total surface area of air voids should replace the 

spacing factor as evaluation criterion. In our laboratory at Technical University of 

Denmark, we intend to launch a research project, which can provide more 

experimental data. 

 

4.2 Explanation for the findings 

As explained in section 1, the preferred work method of engineers is a deductive 

method. One of the advantages of using a deductive method is that it has its 

starting point in a hypothesis or causal relation, and therefore it also has a built-in 

explanation for what is observed. This is not the case when applying inductive 

methods. In the present case, there seems to be a relation between salt frost 

scaling and total surface area of air voids, but the study itself gives no explanation 

why this may be the case. 

 

4.2.1 A possible mathematical explanation 

The total air content and the specific surface, measured by modified point 

counting or chord counting, are exact physical characteristics of the air void 
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system in hardened concrete. Therefore their product, the total surface area of air 

voids, is also an exact measure. The spacing factor is not in the same way an exact 

measure, it is an approximation to describe the distance to a free surface. 

 

For the paste/air volume ratio p/A < 4.342, calculation of the spacing factor is 

based on the total surface area, so when the total surface area increases, then the 

distance to a free surface will decrease. However, when p/A < 4.342, the air 

content is high, and normally it is not under this circumstance problems with frost 

resistance are observed. 

 

For p/A > 4.342, where most frost problems are observed, calculation of the 

spacing factor is based on the assumption that all air voids have the same size and 

are placed like nodes in a 3D lattice. These assumptions are tricky. The specific 

surface is used as input parameter for the calculation. In the real system, a few 

large air voids will not change the distance to a free surface very much. But in the 

calculation of the spacing factor, a few large air voids will lower the specific 

surface and thereby increase the spacing factor substantially. Therefore, when 

some points in the scaling versus spacing factor mapping in section 3.1-3.4 are 

placed differently from what is expected (viz. higher scaling follows higher 

spacing factor), it may be the presence of a few large air voids that makes the 

calculation uncertain. It is not trivial that different concrete mixes with the same 

spacing factor also have the same distance to a free surface. In fact, concrete 

mixes with the same spacing factor may in reality present very different distances 

to free surfaces, and therefore also show differences in frost resistance.  

 

The starting point of the work of Phillio (1983), Attiogbe (1993), and Pleau and 

Pigeon (1996) is that Powers’ spacing factor is a too rough estimate, and they 

refine it in different ways. For example, Philleo assumes that the uniform sized air 

voids are placed randomly, and the Philleo factor is a distance, where only a small 

proportion of the cement paste (usually 10%) lies further away from the nearest 

air void. And when calculating the flow length distribution, Pleau and Pigeon uses 

the actual air void size distribution as measured by air void analysis, combined 

with random placement. So if the problem in linking frost resistance to Powers’ 

spacing factor is due to insufficiencies in the mathematical formulation of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



23 

distance to the nearest air void, this should be overcome by the flow length 

concept. However, the flow length has not yet proven to be a better measure than 

the spacing factor in predicting frost resistance from air void data. This indicates 

that the reason why the total surface area of air voids performs better than the 

spacing factor is not purely mathematical. 

 

4.2.2 A physical explanation for the findings 

Chatterji (1985) has proposed a theory, which points out total surface area of air 

voids (product of air content and specific surface area) as a relevant parameter for 

frost resistance: According to this theory, ice formation starts in the air voids, and 

a layer of ice will form on the air void’s surface. Ice formation attracts capillary 

water to the ice layer, and less water will be left to form ice in the capillaries. 

However, ice layers will also act as barriers between empty spaces and freezing 

solution in capillaries. A big air void with large surface area can withdraw 

relatively much liquid from capillaries, and the ice layer will still be thin and 

weak, so if ice formation propagates to the capillaries and starts to build up 

pressure, the thin ice layer will burst and relieve the capillaries. In a smaller air 

void, less water will be removed from capillaries during formation of the ice 

layer, and the ice layer will be thicker and stronger. Further freezing will take 

place in the remaining liquid in capillaries, and the generated pressure here may 

exceed strength of the pore walls, before it breaks the ice layer. 

 

Corr et al. (2002) have studied ice formation in entrained air voids in hardened 

cement paste in the following way: They used small specimens (8 x 7 x 2 mm) 

and froze sealed samples at -7°C for 24 h. Then samples were put in liquid 

nitrogen. In this way all unfrozen liquid froze almost instantly, thereby 

immobilizing water molecules. While maintaining the low temperature, specimens 

were fractured to open up air voids, which were then studied in a low-temperature 

scanning electron microscope (LTSEM)1. The results of Corr et al. do not agree 

with Chatterji’s theory, as they show that ice forms in discrete crystals, not in 

layers on the inner surface of air voids. Ice crystals in air voids were roughly 5-20 
                                                
1 Images similar to those presented in the paper can be found on the internet:  
http://www.ce.berkeley.edu/~paulmont/ice_formation_LTSEM.htm 
(link registered October 2012) 
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μm in diameter. The larger crystals had a hemispherical shape, whereas the shape 

of smaller crystals was more irregular. When heating samples under the 

microscope, ice crystals disappeared. Every location of crystals in the frozen 

picture corresponded to a shell discontinuity. The SEM photos alone could not 

disclose the reason for the discontinuities. Corr et al. suggested that it was either a 

location, where water could penetrate the air void shell from the bulk cement 

paste or the outlet of a capillary pore.  

 

Detrimental ice formation happens in capillary pores, where pressure can build 

up. This is true, no matter if the damaging mechanism is hydraulic pressure or 

microscopic ice lens growth. For both theories it is not important, if a capillary 

pore is close to an air void; the important issue is that the capillary pore is 

connected to the air void, as transport only to a very limited degree takes place 

through the solid gel phase. In the case of microscopic ice lens growth, ice 

formation will take place in the air void without pressure build-up, being feed 

from the capillary, rather than in the capillary pore, where it can generate 

substantial pressure.  

 

One can imagine all capillary pores placed in an ordered way, where they 

systematically reach out for the nearest air void, and where capillaries connected 

to air voids radiate from the air void peripheries. In this system the probability 

that a capillary pore is connected to an air void is closely related to the number of 

air voids, and not very much to their size. However, this is not a realistic system. 

Instead, the capillary pores are distributed totally at random in the cement paste. 

When a capillary pore connects to an air void, it is because it happens to be 

intersected by the air void surface. In this system of randomly placed capillary 

pores, the probability that a capillary pore is connected to an air void is related to 

the surface area of air voids, not to the number of air voids. This is illustrated in 

Fig. 5. 
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a 
 

b 

  

Fig. 5 Schematic models of paste structure (color definition: gel solid: grey; capillary pores: black; 

air void periphery: white rim). The structure of gel solid and winding capillary pores is identical 

for (a) and (b). The large air void in (a) intersects more capillaries than the relatively smaller air 

void in (b). 

 

If the above explanation for the good correlation between salt frost scaling 

resistance and surface area of air voids holds, then it is more correct to use total 

surface area relative to paste volume as evaluation criterion than total surface area 

relative to concrete volume. However, it will only lead to minor changes of the 

trend shown in figures 1d, 2d, 3d and 4d, as within each of the 4 laboratory 

studies, the paste content is almost constant for all mixes. 

 

It is also important to note that the relation between total surface area of air voids 

and probability that capillary pores are connected to air voids only is valid for 

spherical air voids. It is generally not true for air voids with more complex 

geometries. If one for example imagines that it is possible to create air voids with 

wrinkled surfaces instead of smooth surfaces, then the surface area of an air void 

can be varied by varying the wrinkle density and depth, without changing the 

likelihood that capillary pores in the vicinity will connect to it. 

 

4.3 Total surface area of air voids and internal frost damage 

In the presented investigation, focus has solely been on outer frost damage in the 

form of salt frost scaling. There has been no attempt to systematically investigate 
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if the total surface area of air voids also correlates better than the spacing factor to 

measures related to internal frost damage.  

 

The look at just one study by Litvan (1983) indicates that the conclusion for 

internal damage may be the same: The study by Litvan and the study by Siebel 

(1989) have much in common, as the objective of both studies was to investigate 

how the presence of superplasticizers effects the frost resistance. Mortar 

specimens (w/c = 0.65) were prepared without superplasticizer and with different 

dosages of 3 commercial superplasticizers (A, B, and C). Each dosage of 

superplasticizer was tested with and without a fixed amount of air entraining 

agent. In total 16 different mortar mixes were prepared. For each mix, the air void 

structure in the hardened mortar was registered, and 2 specimens were tested 

according to ASTM C 666 (1977), procedure B, so specimens were frozen in air 

and thawed in water, and then the length change for each specimen was measured 

after 100 freeze/thaw cycles. Results are shown in Fig. 6. 

 

a 

 
 

b 

 
 

Fig. 6 Expansion during freeze/thaw action according to ASTM C 666 method B as function of (a) 

spacing factor, and (b) total surface area of air voids. Data were originally published by Litvan 

(1983). 
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Like for salt frost scaling, the relation between expansion and total surface area 

seems to be more consistent than the relation between expansion and spacing 

factor. 

 

The relation between internal frost damage and total surface area of air voids is 

therefore also an obvious subject for further research. 

 

5. Conclusion 

4 studies on the relation between air void structure and salt frost scaling have been 

reviewed. It is concluded that the total surface area of air voids is a better measure 

than the well-known spacing factor, when characterizing the air void structures 

ability to protect concrete against salt frost scaling. 

 

Mathematically, the spacing factor and the total surface area of air voids express 

different things. The spacing factor expresses the likelihood that a capillary pore 

is located in the vicinity of an air void. The total surface area expresses the 

likelihood that the capillary pore is connected to an air void. This difference may 

be the key to explain the finding of the review: In a capillary pore not connected 

to an air void, ice formation can take place in the capillary, where it may result in 

detrimental pressure. If the capillary pore is connected to an air void, ice 

formation will instead take place in the air void, where it is feed by liquid from 

the capillary pore, and in this way pressure build-up in the capillary pore is 

mitigated. Like this, the decisive factor for salt frost scaling resistance, and 

possibly also resistance to internal frost damage, is that capillary pores are 

connected to air voids. 
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