Conversion of lignin into chemicals with heterogeneous catalysis
Current and future technologies

Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren; Riisager, Anders

Publication date:
2015

Citation (APA):
Conversion of lignin into chemicals with heterogeneous catalysis - Current and future technologies

M. Melián-Rodríguez, S. Saravanamurugan, S. Kegnæs, A. Riisager*

Introduction

The research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature, giving special attention to the conversion of lignocellulosic biomass, which does not compete with food resources and is widely available as a low cost feedstock.

Lignocellulose biomass is a complex material composed of three main fractions: cellulose (40-50%), hemicellulose (25-35%), and lignin (20-30%).

Lignin constitutes up to 30% of the weight and 40% of the heating value of lignocellulosic biomass. It is the most complex fraction and is harder to process compared to the sugar fractions. The complexity has led lignin to be treated as a waste stream, and typically burned to produce energy. However, lignin is a significant portion of the total carbon in biomass, and better use of this fraction is a requirement to improve the economic balance of any bio-refinery. For this reason, research on upgrading lignin has become of recent interest, as many interesting products, mainly aromatics, can potentially be produced from lignin. Here we will present an overview conversion of lignin into chemicals with heterogeneous catalysts.

Lignin structure

Lignin is a three-dimensional amorphous polymer consisting of methoxylated and phenylpropane molecules. The exact structure of the lignin found in plants is variable but the biosynthesis of lignin is thought to involve the polymerization of three monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Despite the variability, lignins have different structural linkages in common with the b-O-4 linkages being the most dominants.

Catalysts in lignin conversion

Catalysis has been considered an important technology in biomass and lignin conversion. Catalysts usually are required to assist selective bond cleavage, leading to high selectivity values for a particular compound in the product stream. Various catalysts have been tested for different processes and substrates including both model compounds and lignin extracts.

Future of lignin utilization

Lignin valorization constitutes an important component of the modern biorefinery scheme, and the structure and composition of lignin offer unique routes to produce several fine and bulk chemicals. Macromolecular lignin is utilized as raw material in many industrial processes as a substitute for phenol in phenol-formaldehyde resins and fillers in polymers, carbon fibers, binders, polyurethane foams, epoxy resins and biodispersants.

However, the most prominent lignin utilization so far appears to be its depolymerization into lower molecular weight compound. Considerable effort has already been devoted to developing a wide variety of catalytic routes specifically for lignin cleavage and reduction.

References

- Melián-Rodríguez, M.; Saravanamurugan, S.; Kegnæs, S.; Riisager, A. Catalysis for Biorefineries. September 22 – 25, 2013, Dalian, China
- Melián-Rodríguez, M.; Saravanamurugan, S.; Kegnæs, S.; Riisager, A. Advanced Catalysis for Biorefineries. September 22 – 25, 2013, Dalian, China

Acknowledgement

The authors acknowledge financial support granted to the International Network Programme (12-132649) from The Danish Agency for Science, Technology and Innovation, Haldor Topsoe A/S and Technical University of Denmark.

Address: Centre for Catalysis and Sustainable Chemistry, Technical University of Denmark, Kemitorvet Building 207, 2800 Kgs. Lyngby, Denmark
E-mail: mayro@kemi.dtu.dk
Phone: +45 4525 2432

Figure captions

- Fig. 1: View of the role of lignin, cellulose and hemicellulose in a typical plant.
- Fig. 2: Cracking and upgrading lignin-pyrolysis and organosolv process.
- Fig. 3: View of the role of lignin, cellulose and hemicellulose in a typical plant.
- Fig. 4: View of the role of lignin, cellulose and hemicellulose in a typical plant.

Table captions

- Table 1: Linkage type, Dimer structure, Softwood lignin Total linkages (%), Hardwood lignin Total linkages (%)

- Table 2: Catalysts in lignin conversion

- Table 3: Pretreatment methods

- Table 4: Future of lignin utilization