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Summary

Climate change has become a serious concern nowadays. The main reason is believed

to be the high emission of greenhouse gases, namely CO2 which is mainly produced

from the combustion of fossil fuels. At the same time, energy demand has increased

exponentially while the energy supply mainly depends on fossil fuels, especially for

transportation. The practical strategy to address such problems in medium term is to

increase the efficiency of combustion-propelled energy-production systems, as well as

to reduce the net release of CO2 and other harmful pollutants, likely by using non-

conventional fuels.

Modern internal combustion engines such as Homogeneous Charge Compression

Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conven-

tional engines, making opportunities to reduce the release of greenhouse and other

polluting gases to the environment. Combustion temperature in modern engines, gas

turbines, and industrial burners has been reduced to prevent nitrogen oxides (NOx)

formation. Besides that, the pressure has commonly been elevated to promote the ef-

ficiency of the systems. Under such conditions, ignition and pollutant formation are

determined by reaction kinetic.

Alternative fuels may be produced from different sources. If biomass feedstock

is used in their production, they have the potential to reduce the net CO2 release to

the environment. However, the oxidation chemistry of alternative fuels is less known

compared to the conventional fuels. In design/optimization of modern combustion-

propelled systems reliable chemical kinetic models are vital while such models are

rare for alternative fuels. This knowledge gap has been a challenging factor in utilizing

alternative fuels in large scale.

This thesis is dedicated to provide characteristic data for fuel oxidation at high

pressure and intermediate temperature. Such data provide a detailed insight into the

oxidation chemistry and are vital tools in developing chemical kinetic models. Selected

iii



fuels for this study, hydrogen, methane, ethane, ethanol, and dimethyl ether (DME),

all can be produced from bio-sources. Their reaction kinetics are essential in modeling

more complicated bio-derived fuels. Moreover, hydrogen, ethanol, andDME have been

considered as additives to improve combustion properties of other fuels. In this work,

experiments were carried out in a laminar flow reactor at the temperatures of 450–

900 K and pressures of 20–100 bar. The results provided information about the onset

temperature of reaction and the gas composition upon reaction initiation. A wide

range of stoichiometry was tested, from very fuel-lean to strong fuel-rich mixtures.

For ethanol and DME, further pyrolysis experiments were carried out. The results

indicated that the onset temperature of reaction varied considerably among the fuels.

DME highly diluted in nitrogen ignited at 525 K, independent of the stoichiometry

and much lower compared to the other fuels. Ethane, ethanol, methane, and hydrogen

ignited at higher temperatures, subsequently. The effect of doping methane by DME

was also investigated and it was found that even small amount of DME can promote

the methane oxidation considerably.

The flow reactor data have been interpreted in terms of a detailed chemical kinetic

model, drawn mostly from earlier work from the same laboratory. The modeling pre-

dictions have been in good agreement with the measurements in the flow reactor. The

model was further evaluated against high-pressure ignition delays as well as flame

speed measurements in literature, and it successfully predicted most of the data. The

reaction pathway of different fuels have been discussed, and sensitive reactions have

been identified. A few reactions with high sensitivity but with poorly determined rate

constants have been identified for further studies. The model was also used to analyze

the complex behavior of the ignition of selected fuels against temperature and pres-

sure. This mechanism can be utilized for further studies involving oxidation at high

pressures and intermediate temperatures.
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Dansk Resumé (Summary in Danish)

Klimaforandringer tages nu meget alvorligt, og hovedårsagen til disse forandringer

menes at være udledningen af drivhusgasser, særligt CO2, fra afbrændingen af fos-

sile brændsler. Samtidigt stiger det globale energiforbrug eksponentielt, og denne en-

ergi stammer hovedsageligt fra fossile brændsler-specielt i transportsektoren. I den

nære tidshorisont forsøger man i praksis at mindske problemerne ved at øge effek-

tiviteten af forbrændings-drevne, energiproducerende systemer og ved at nedbringe

netto-udledningen af CO2 og andre skadelige komponenter - f.eks. ved at benytte ikke-

konventionelle brændsler.

Moderne forbrændingsmotorer såsom Homogeneous Charge Compression Igni-

tion (HCCI) motorer er mere effektive og fleksible mht. brændslet ift. konventionelle

forbrændingsmotorer, hvilket skaber muligheder for at reducere udledningen af

drivhusgasser og andre forurenende gasser til miljøet.

I moderne motorer, gasturbiner og industrielle brændere er forbrændingstemper-

aturen blevet nedbragt for at sænke dannelsen af nitrogenoxider (NOx). Derudover er

trykket blevet øget for at øge effektiviteten af disse forbrændingsbaserede systemer.

Under sådanne forhold med forholdsvis lave temperaturer og forholdsvis høje tryk

bestemmes dannelsen af forurenende komponenter af reaktionskinetikken - hastighe-

den af de reaktioner der foregår.

Alternative brændsler kan produceres fra forskellige ressourcer, og hvis disse

brændsler produceres ud fra biomasse har de potentialet til at mindske CO2-

udledningen fra forbrændingssystemerne. Oxidationskemien for alternative brænd-

sler er imidlertid ikke lige så velbeskrevet som den tilsvarende kemi for konventionelle

brændsler. Til design og optimering af moderne forbrændingssystemer er det af vital

betydning at have detaljerede kinetiske modeller for brændslet (modeller for de

kemiske elementarreaktioner, der styrer oxidationskemien), men for de alternative

brændsler er sådanne detaljerede og troværdige modeller stadig relativt sjældne.
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Denne mangel i den eksisterende viden har været en udfordring for udnyttelsen af

alternative brændsler i stor skala.

Denne afhandling fokuserer på gennem nye målinger at bidrage til forståelsen af

oxidationen af brændsler ved højt tryk og moderat temperatur. Sådanne data giver

en detaljeret indsigt i oxidationskemien og er af afgørende betydning for udviklin-

gen af troværdige, detaljerede modeller for reaktionskinetikken. De brændsler, der er

udvalgt i dette studium, er brint, methan, ethan, ethanol og dimethyl ether (DME).

Disse brændsler kan alle kan fremstilles fra vedvarende ressourcer. Desuden er en

forståelse for reaktionskinetikken for disse brændsler af essentiel betydning i beskriv-

elsen af mere komplicerede vedvarende brændsler. Desuden overvejes brugen af brint,

ethanol og DME som additiver til andre brændsler for at forbedre forbrændingsegen-

skaberne. I dette studium blev der udført forsøg i en laminar flow-reaktor i temper-

aturområdet 450–900 K og trykområdet 20–100 bar. Resultaterne har givet informa-

tioner om antændingstemperaturer og om sammensætningen af produktgassen. Der

er blevet udført forsøg i et vidt span af støkiometrier fra ilt-rige til ilt-fattige fødeb-

landinger. For ethanol og DME blev der desuden udført pyrolyseeksperimenter under

ilt-frie forhold. Resultaterne indikerer, at reaktionens antændingstemperatur varier

kraftigt for de forskellige brændsler. For DME stærkt fortyndet i nitrogen sker an-

tændingen ved 525 K uafhængigt af støkiometrien – en temperatur der er meget la-

vere end for de øvrige undersøgte brændsler. Antændingstemperaturen for de øvrige

brændsler stiger i følgende rækkefølge: ethan, ethanol, methan og brint. Effekten af at

tilsætte små mængder DME til methan blev også undersøgt, og undersøgelserne viser,

at selv småmængder af DME kan fremme oxidationen af methan betragteligt.

Flow-reaktor resultaterne er blevet fortolket med en detaljeret kinetisk model.

Modellen er baseret på tidligere arbejde fra denne forskningsgruppe og er blevet ud-

videt for at give en forbedret beskrivelse og forståelse af oxidationen af de undersøgte

brændsler. Forudsigelseren fra modellen er generelt i god overensstemmelse med de

eksperimentelle resultater fra målingerne i flow-reaktoren. Den kinetiske model blev

desuden evalueret mod højtryks tændingsforsinkelses- og flammehastighedsmålinger

i den videnskabelige litteratur, og modellen viser sig i stand til at forudsige hoved-

parten af de eksperimentelt bestemte resultater. Reaktionsvejene i oxidationen af de

forskellige brændsler er blevet diskuteret, og de elementarreaktioner, som har den

største effekt påden overordnede reaktionshastighed, er blevet identificeret. Dette

arbejde har udpeget enkelte elementarreaktioner, som ikke har velbeskrevne reaktion-
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shastigheder, men som har stor betydning for oxidationsreaktionerne. Bestemmelsen

af de præcise hastigheder for disse reaktioner vil være en oplagt videreførelse af

dette arbejde. Den udviklede kinetiske model blev også anvendt til at analysere den

komplicerede sammenhæng mellem antændingen af udvalgte brændsler og faktorer

som temperatur og tryk. Den i projektet udviklede og verificerede kinetiske model vil

kunne anvendes i fremtidige studer af oxidationsreaktioner ved højt tryk og moderate

temperaturer.
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Outline

A short description of the contents of each chapter is given below.

– Chapter 1 briefly introduces the energy supply challenges to the reader. Proper-

ties and common production methods of the investigated fuels are also discussed

shortly.

– Chapter 2 describes the experimental facility, the high-pressure laminar-flow

reactor.

– Chapter 3 gives the equations describing the plug-flow model used for simula-

tions. The calculations of reaction rate and thermochemical properties are dis-

cussed concisely.

– Chapter 4 introduces different methods of characterizing combustion and dis-

cuses their applications in evaluating chemical kinetic models.

– Chapter 5 presents the hydrogen oxidation results. This chapter is a slightly

modified reprint of a paper published in Proc. Combust. Inst. 35 (2015) 553–560

[1].

– Chapter 6 presents the results of methane oxidation which includes the flow

reactor measurements at 600–900 K and 100 bar as well as a developed detailed

chemical kinetic model.

– Chapter 7 describes the outcome of ethane oxidation experiments and simula-

tions which includes flow-reactor measurements at 600–900 K and 20–100 bar.

– Chapter 8 presents the results of ethanol oxidation measured at 600–900 K and

50 bar as well as the developed chemical kinetic model.

xv



– Chapter 9 provides the results of the dimethyl ether (DME) oxidation. Further-

more, the effect of adding DME to methane on the oxidation properties of their

mixture is investigated.

– Chapter 10 summarizes all the species profiles measured in the flow reactor and

compares the chemical reactivity across investigated fuels with the help of the

validated model.

xvi



Chapter 1

Introduction

Climate change has become a serious concern nowadays. The main reason of the dev-

astating changes in the climate is believed to be the high emission of greenhouse gases

mainly from human activities. The energy demand has increased exponentially (fig 1.1)

and even though the fuel efficiency improved globally, the CO2 emission has increased

considerably (fig 1.2). The steady increase in the global energy demand as well as

the release of carbon dioxide and other harmful pollutants from the combustion of

most fossil fuels are the major motivations to seek alternative sources of energy. CO2–

neutral sources of energy which do not involve combustion have a long way ahead to

mature and the combustion of fossil fuels will thus remain the major source of energy

for decades [2, 3]. Consequently, the focus should be on how to reduce the pollutants

from combustion. In medium term, fossil-derived fuels which produce less pollutants

and have a higher energy efficiency may relieve the environmental problems to some

extent.

Natural gas is expected to have the highest growth rate among the fuels. For an

equivalent amount of heat, burning of natural gas produces less carbon dioxide and

other harmful pollutants than burning petroleum or coal (see table 1.1). In addition to

its environmental benefit, natural gas will be cheaper and widely accessible [4]. As a

result, natural gas is expected to partly replace coal and liquid petroleum fuels in power

generation for electricity and industrial processes [3]. However, the consumption of

liquid petroleum fuels will grow. These fuels remain as the major source of the energy

for decades although their share in the worldwide energy supply will decrease [2, 3].

The growth in the consumption of liquid fuels will be mainly in the transportation and

industrial sectors. Despite initially promising, the environmental aspects of liquid bio-

fuels limit their widespread production. Other alternative fuels, in the gaseous phase

1



Chapter 1. Introduction

Figure 1.1: Worldwide total primary energy supply [8].

Figure 1.2: Worldwide total CO2 emissions from fossil fuel combustion [8].

at ambient conditions, have not been widely adopted by the transport industry. En-

gines using liquid fuels and being highly developed over years provide higher power

to weight and/or power to volume ratios compared to the competitor engines using

gaseous fuels. The alternative fuels may also have strikingly different ignition prop-

erties. Moreover, some alternative fuels require modifications in combustion devices

or maintenance methods. The lack of supply infrastructure has also been a prohibitive

factor in adopting alternative fuels.

In compression-ignition (CI) engines, also known as diesel engines, the air is first

2



Table 1.1: Higher heating values (HHV) and carbon release of selected fuels (from ref [9],
unless stated). The carbon release does not include the production processes.

HHV a C release
[MJ / Kg] [MJ / Kmol] [g / MJ]

Hydrogen 141.8 286 0
Methane 55.5 891 13.5
Natural gas 54 - 13.9
Ethane 51.9 1561 15.4
Dimethyl ether (DME) 31.7 1460 16.5 b

Heptane 48.1 4817 17.5
Ethanol 29.7 1367 17.6
Octane 47.9 5470 17.6
Gasoline 46.5 - 17.6
Decane 47.6 6778 17.7 b

Hexadecane 47.3 10699 18.0 b

Kerosene 46.4 - 18.5
Coal, high bituminous 36.3 - 23.5
Coal, low bituminous 28.9 - 26.3
Coal, anthracite 34.6 - 27.3

a higher heating value (liquid water in products)
b calculated here

compressed by the piston movement and then fuel is injected to the cylinder at a suit-

able time. Due to high pressure and temperature of the gases at themoment of injection

, the mixture ignites without help of any external flame or spark. The cetane number

is used to characterize diesel fuels and is an inverse function of ignition delay time (see

section 4.2.2 for definition), so the higher cetane number means faster ignition of the

fuel. If the fuel ignites faster in CI engines, there will be more time to complete the

oxidation so the emission of unburned hydrocarbons will decrease and the efficiency

will improve. Conventional diesel fuels usually have a cetane number of 40–50 [5]

while fuels with higher cetane numbers are always preferred.

The octane number is used for the fuels of spark-ignited (SI) engines. In SI engines,

fuel and air are premixed and then compressed by pistonmovement. At a suitable time,

the spark ignites the mixture so a flame is formed and progresses inside the cylinder.

Contrary to the CI engines, autoignition is not desired in SI engines. If the mixture

ignites before the advent of the flame front, it leads to what is known as ”knock” in

engines which deteriorates efficiency and stability of engines. The octane number
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shows the resistance of the fuel to autoignition, so it is an inverse function of cetane

number. In SI engines, fuels with high octane numbers are preferred. E85 gasoline, a

common fuel for SI engines, consists of 15% ethanol mixed with gasoline and its octane

number is around 102–105.

While most vehicles use either SI or CI engines, there are emerging technologies

to improve the engines, e.g. the concept of homogeneous charge compression ignition

(HCCI) engines. HCCI is a promising technology for internal combustion engines in

which the fuel and air are premixed and then the mixture enters the cylinder, similar

to SI engines, but the oxidation starts with the autoignition of the mixture, instead

of a spark used in SI engines. A fuel-rich zone found in CI engines is avoided here

as the mixture is homogeneously premixed, so the formation of soot and particulate

matter (PM) is inhibited. The mixture is also highly diluted by air so the maximum

temperature of the cycle decreases considerably. Lower temperatures inhibit the ther-

mal formation of NOx while the thermal efficiency of the engines is preserved close to

that of CI engines [6]. The major challenge in the design and operation of HCCI en-

gines is controlling the moment of autoignition, which is largely governed by chemical

kinetics [7]. Therefore reliable detailed chemical kinetic models are vital in the design

of such engines.

Low-temperature combustion is not limited to HCCI engines and can be found

in many modern devices, in order to inhibit the thermal formation of NOx. At low

temperatures, the effect of chemical kinetic on the overall process is enhanced. Modern

combustion devices are expected to have some degree of fuel flexibility while keeping

high efficiency. As ignition properties of fuels may differ noticeably, predictive tools

are vital in design and even operation of combustion devices.

In this work, combustion and reaction kinetic of hydrogen, methane, ethane,

ethanol, and dimethyl ether were investigated at conditions relevant for engines

and industrial applications. Tables 1.1 and 1.2 give some combustion properties

of these fuels. An overview of the experiments conducted in this project can be

found in table 1.3. In addition to stoichiometric conditions which are relevant in

many applications, some experiments were conducted at very reducing and oxidizing

conditions. In this way, models are evaluated at extreme cases.

In the following sections, the properties of individual fuels and the methods com-

monly used for their production will be discussed briefly.
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Table 1.2: Combustion and physical properties of selected fuels (from ref [9], unless stated).

Fuel Formula Boil. T a Flam. limits b Ignit. T c SL
d

[K] % [K] [cm / s]

Hydrogen H2 20 4.0–74.0 – 210 [10]
Methane CH4 112 5.0–15.0 810 36 [11]
Ethane C2H6 185 3.0–12.5 745 40 [12]
Ethanol CH3CH2OH 351 3.3–19.0 636 40 [10]
DME CH3OCH3 248 3.4–27.0 623 42 [13]
Heptane e C7H16 372 1.05–6.7 477 37 [14]
Decane f C10H22 447 0.8–5.4 483
Octane e C8H18 399 1.0–6.5 479 33 [14]
Hexadecane f C16H34 560 – 475

a boiling temperature at atmospheric pressure
b flammability limits in volume percentage in air (at ambient temper-
ature and pressure)
c autoignition temperature
d laminar flame speed measured at ambient initial conditions for stoi-
chiometric fuel/air mixtures.
e surrogates for gasoline
f surrogates for diesel fuel
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Table 1.3: Overview of experiments conducted in the flow reactor.

Fuel Φ a P T N2
[bar] [K] [molar %]

H2 12 50 700–900 99.01
1.03 50 700–900 99.54
0.05 50 700–900 98.24
0.0009 50 700–900 5.92 b

CH4 19.7 100 700–900 98.03
1 100 700–900 99.53

0.06 100 700–900 95.93

C2H6 37.2 20 650–900 98.79
39.7 50 600–900 98.79
46.6 100 600–900 98.81
0.82 20 675–900 99.73
0.81 50 600–900 99.71
0.91 100 600–900 99.72
0.035 20 675–900 94.54
0.034 50 650–900 94.47
0.038 100 600–900 94.71

Ethanol ∞ c 50 600–900 99.31
43 50 600–900 99.44
1 50 600–900 98.65
0.1 50 600–900 89.86

DME ∞ c 50 450–900 99.89
20.2 50 450–900 99.91
1 50 450–900 99.90

0.04 50 450–900 98.91

DME + CH4
d 20.2 100 450–900 98.03

1 100 450–900 99.52
0.04 100 450–900 96.21

a fuel-air equivalence ratio
b diluted in oxygen instead of nitrogen
c pyrolysis experiments
d with the DME to CH4 ratios of 1.8–3.2%
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1.1. Hydrogen

1.1 Hydrogen

Contrary to fossil fuels, hydrogen cannot be found naturally, so it is considered more

as an energy carrier. In industrial scale, hydrogen is produced from steam reforming

of methane which is an endothermic reaction,

CH4 + H2O = CO + 3H2 (R 1.1)

and is followed by the water-gas shift reaction

CO +H2O = CO2 +H2 (R 1.2)

On the whole, this process gives four moles of hydrogen per each consumed mole

of methane. Alternatively, hydrogen can be produced from the partial oxidation of

methane or other hydrocarbons:

2CH4 +O2 = 4H2 + 2CO (R 1.3)

The gasification of coal can also be another source of hydrogen. To produce CO2–

neutral hydrogen, energy and chemical feedstock should be provided from sources

other than the fossil fuels. It has been a controversial issue whether CO2 release is de-

creased by producing hydrogen and burning it in engines or not. A study byMcCarthy

and Yang [15] showed that if hydrogen was produced by the electrolysis of water and

was used in car engines, the overall CO2 efficiency might even be worse than the con-

ventional petroleum fuels. An alternative source of hydrogen production is syngas

(H2 + CO) from biomass and waste gasification which can potentially cut down CO2

release.

Regardless of its production method, using hydrogen fuel introduces some chal-

lenges. A wider flammability range raises safety concerns (see table 1.1). The flame

speed of hydrogen is much faster than other fuels, so modifying the combustion sys-

tems may be vital. Moreover, hydrogen even in the liquefied form offers an energy to

volume ratio considerably smaller than petroleum fuels.

Strong motivations exist to study the hydrogen oxidation. The ignition properties

of syngas are determined by hydrogen chemistry [16]. Hydrogen, as an energy carrier,

may be produced commercially from renewable sources such as sun light and wind.

The interesting sensitivity of hydrogen flammability limits to pressure and temper-
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ature has been the topic of many studies (e.g.[17]). The hydrogen chemistry highly

influences the oxidation of other fuels. Due to the significant contribution of H2/O2

reactions to the radical pool, these steps are among the most important reactions in

ignition under many conditions. Chemical kinetic models for the combustion of hy-

drocarbon fuels all need an accurate hydrogen sub-mechanism [18].

Many practical combustion systems are designed to work at high pressure to in-

crease efficiency. The gas temperature in modern devices has been also reduced com-

pared to the earlier systems to minimize the thermal formation of nitrogen oxides. Yet

combustion at high pressure and intermediate temperatures has been rarely studied,

somewhat due to difficulties in conducting experiments at these conditions. As shown

in figure 1.3, data from this study cover conditions which have not been studied before.

Figure 1.3: Temperature- and pressure-coverage of earlier experiments of hydrogen and the
present ones.

1.2 Methane

Natural gas (NG) will have the fastest growth among all fuels in following decades and

replace partly coal and liquid fuels in power generation for electricity and industrial

processes [3]. A larger availability and less emission of pollutants from combustion are

among the major reasons to replace other fossil fuels with natural gas. Due to recent

successes in excavation of shale gas, natural gas will be cheaper, at least locally [4].

For an equivalent amount of heat, burning of natural gas produces around 20 and 45

percent less carbon dioxide than burning of gasoline and coal, respectively (see table
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1.2. Methane

1.1). In addition to fossil reservoirs, natural gas can be produced from the anaerobic

decay of biomass, e.g., agricultural waste and sewage sludge. More restrictive regu-

lation of the release of greenhouse gases can increase the share of natural gas in the

energy market even more.

Natural gas consists mainly of methane and to a lesser extent ethane and propane.

Table 1.4 shows the typical composition of wellhead natural gas in north America. If

commercially attractive, heaver hydrocarbons are separated from natural gas in refin-

ery. Other major components as N2, CO2, and H2S are usually removed by refinery

processes before transportation to avoid their adverse effects on combustion or be-

cause of corrosion problems. Table 1.5 shows the average composition of liquefied

natural gas (LNG) from selected LNG plants. As can be seen, the composition of natu-

ral gas varies noticeably due to the reservoir composition or different refinery process.

Studies showed that variations in gas composition can affect the ignition properties

considerably [19–21].

Table 1.4: Wellhead compositions of north American natural gases [23].

Component Rio Arriba Terrell Stanton San Juan Olds Field
mol % N. Mex. Tex. Kans. N. Mex. Alberta, Canada

CH4 96.91 45.64 67.56 77.28 52.34
C2H6 1.33 0.21 6.23 11.18 0.41
C3H8 0.19 3.18 5.83 0.14
C4H10 0.05 1.42 2.34 0.16
Heavier HC 0.02 0.04 1.18 0.41
CO2 0.82 53.93 0.07 0.8 8.22
H2S 0.01 35.79
N2 0.68 0.21 21.14 1.39 2.53

The biggest challenge in using natural gas has been its transportation. Due to its

low energy to volume ratio, bulk quantities of natural gas should be transported. The

economical way thus is to use pipeline. However, constructing pipeline requires a huge

capital investment and may not be feasible or economical due to natural earth terrain

or political reasons. An alternative solution is to liquefy natural gas and transport it as

liquefied natural gas (LNG). To produce LNG, the temperature of the gas is decreased

below the boiling temperature of pure methane, 111 K, so most components of natural

gas become liquid. Other components of natural gas which become frozen around

111 K should be removed by refinery process beforehand. LNG can be transferred
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Table 1.5: The average composition (molar percentage) of LNG from selected plants [24].

Origin Methane Ethane Propane Other components

Australia - NWS 87.33 8.33 3.33 1.01
Australia - Darwin 87.64 9.97 1.96 0.43
Algeria - Skikda 91.40 7.35 0.57 0.68
Algeria - Bethioua 89.55 8.20 1.30 0.95
Algeria - Arzew 88.93 8.42 1.59 1.06
Brunei 90.12 5.34 3.02 1.52
Egypt - Idku 95.31 3.58 0.74 0.37
Eqypt - Damietta 97.25 2.49 0.12 0.14
Equatorial Guinea 93.41 6.52 0.07 0.00
Indonesia - Arun 91.86 5.66 1.60 0.88
Indonesia - Badak 90.14 5.46 2.98 1.42
Indonesia - Tangguh 96.91 2.37 0.44 0.28
Libya 82.57 12.62 3.56 1.25
Malaysia 91.69 4.64 2.60 1.07
Nigeria 91.70 5.52 2.17 0.61
Norway 92.03 5.75 1.31 0.91
Oman 90.68 5.75 2.12 1.45
Peru 89.07 10.26 0.10 0.57
Qatar 90.91 6.43 1.66 1.00
Russia - Sakhalin 92.53 4.47 1.97 1.03
Trinidad 96.78 2.78 0.37 0.07
USA - Alaska 99.71 0.09 0.03 0.17
Yemen 93.17 5.93 0.77 0.13

with refrigerated tanker ships to destinations and unloaded in regasification terminals.

After expansion to gas phase, it can be transported via pipeline to final customers.

Another solution to overcome transportation problem of natural gas is to produce

liquid fuels from it. In Fischer-Tropsch process, methane is first converted to syngas

by steam reforming,

CH4 +H2O = CO + 3H2 (R 1.4)

then the gases are converted to synthetic liquid fuels using the Fischer-Tropsch cataly-

sis. This process has been commercialized but needs capital investment [22]. Alterna-

tively, methane can be partially oxidized which gives methanol in the absence of any

catalyst. This process necessitates improved understanding of methane oxidation in

design and operation. This process has been investigated (e.g. [22]) but has not been
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commercialized yet.

Natural gas has been used as a fuel for internal combustion engines to a limited

extent around the world. The lack of necessary infrastructure has been a prohibitive

factor in using NG extensively. Conventional engines should be modified to allow

efficient consumption of NG. In vehicles, natural gas is generally stored as CNG (Com-

pressed Natural Gas) or LNG, both require bulky and heavy on board storage facilities.

Short fueling intervals compared to the conventional gasoline/diesel engines are prob-

lematic in cars running with natural gas.

Figure 1.4 shows the pressure- and temperature-coverage of earlier studies. To

study combustion of methane at high pressures and intermediate temperatures, rel-

atively long residence time is required which is accessible in flow reactors and rapid

compression machines.
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Figure 1.4: Temperature- and pressure-coverage of earlier experiments of methane and the
present ones. Dashed lines correspond to earlier experiments in [21, 25–35] and solid red lines
mark the present experiments.

1.3 Ethane

Ethane is mainly produced from refining natural gas. Due to its higher value as a chem-

ical feedstock, ethane is separated from natural gas via distillation if its concentration

is high enough to make the process commercially attractive. However, natural gas de-

livered to customers may consist of considerable amounts of ethane, e.g. up to 12% as

shown in table 1.5. Compared to methane, neat ethane ignites at a lower temperature
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and has a slightly faster flame speed (table 1.1). Disparity in the ethane ratio in NG

may change the ignition properties of the fuel considerably [36]. The oxidation mech-

anism of ethane plays an important role in the hierarchical structure of the chemical

mechanisms of hydrocarbons. Moreover, the chemical interaction between ethane and

potential additives for natural gas is necessary in chemical kinetic modeling of ignition

and pollutant formation.

Figure 1.5 represents available data focused on high-pressure combustion of ethane.

As shown, the experiments in this project provide data at a range which has not been

investigated to date.
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Figure 1.5: Temperature- and pressure-coverage of earlier experiments of ethane and the
present ones. Dashed lines: the previous measurements in ref [37–46], red solid lines: the
present measurement of species profile in the flow reactor.

1.4 Ethanol

Ethanol is produced at industrial scale from the catalyzed hydration of ethene.

C2H4 + H2O = CH3CH2OH (R 1.5)

Alternatively, ethanol can be produced from biomass through the fermentation pro-

cess. In the fermentation process, different sugars are converted biologically to ethanol.

Both methods give a mixture of ethanol and water which is separated by distillation. It

has been demonstrated that ethanol-water mixtures can be used directly in HCCI en-

gines, removing the energy deficiency of water removal step and thus promoting the
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overall energy efficiency [47, 48]. Ethanol biofuel can potentially reduce the carbon

footprint. Nevertheless, studies showed that not all methods of biofuel production are

environmentally acceptable and the carbon efficiency of biofuels can be even worse

compared to fossil fuels [49]. Among the liquid fuels, biofuels will have the fastest

growth in consumption, but they will maintain a minor share of the liquid fuels sup-

ply for decades [3].

Ethanol fuel, either neat or in a blend, is used mainly in internal combustion en-

gines. Ethanol addition to gasoline promotes the overall octane number of the fuel

while it potentially reduces the emission of particulate matter [50] and CO [51]. Gaso-

line doped by ethanol is widely used in SI engines [49] in many places, e.g. Brazil and

the United States. The addition of ethanol to diesel fuel has also been studied [52, 53]

and it was found that adding ethanol can reduce the fuel consumption [52]. The rela-

tively high energy density of ethanol makes it interesting to be used as a neat fuel too.

However, widespread usage of ethanol fuel may give rise in the emission of aldehydes

[49, 51, 54] which can cause serious health risks.

The combustion of hydrocarbon fuels has been studied over decades. In contrast,

the oxidation chemistry of oxygenated fuels is recent and still many links in interme-

diate steps may be missing. The combustion mechanism of ethanol is a crucial part in

models for heavier alcohols often found in complicated biofuels [49].

Figure 1.6 shows a selection of available data for the oxidation and pyrolysis of

ethanol. The experiments in this project enrich the earlier data by providing species

profile of the most stable components.

1.5 DME

Dimethyl ether (DME) is an isomer of ethanol but with different structure and dis-

tinct thermodynamic and ignition properties [49]. In general, DME can be produced

from different feedstocks, e.g. oil, natural gas, coal, waste products, and biomass. The

current commercial production method is the dehydration of methanol:

CH3OH + CH3OH = CH3OCH3 + H2O (R 1.6)

DME from biomass-derived methanol can potentially reduce the CO2 release to the

environment.

Higher cetane number and lower boiling temperature of DME make it an attrac-

tive alternative to conventional diesel fuels for use in CI or HCCI engines. Historically,
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Figure 1.6: Temperature- and pressure-coverage of earlier experiments of ethanol and the
present ones. Dashed lines correspond to earlier experiments in [34, 55–65], and solid red lines
mark the present experiments.

DME application as an engine fuel has been demonstrated by the Haldor Topsøe com-

pany and DTU at the beginning of 1990’s. Replacing diesel fuel by DME reduces the

emission of particulate matter (PM) and nitrogen oxides (NOx) from slightly modified

CI engines [66–71]. The absence of a C−C bond in the molecular structure of DME

as well as its high oxygen content are believed to suppress soot formation [69]. DME

can also be used for household purposes as well as power generation in gas turbines

[72]. Nevertheless, around 40% lower energy density (per unit volume) of liquefied

DME and potentially higher emission of aldehydes and CO, compared to diesel fuel,

may challenge widespread usage of DME [69]. Poor lubricity and incompatibility with

common sealing materials in injection systems are further challenges ahead of DME

applications in engines [69].

DME has also been considered as an additive to control the ignition of different

fuels. DME addition to natural gas accelerated ignition [73–76] by forming CH3 and

HO2 radicals [74]. DME addition also accelerated the propagation of methane flame

[74, 77] and its addition to LPG reducedNOx emissions [78]. DMEwas also an effective

additive in ethanol-fueled CI and SI engines [79, 80]. DME was considered as an addi-

tive to methanol for use in CI engines in early studies [81–83]. Whereas DME addition

acceleratesmethane ignition, its effect on ethane oxidation was more complicated [84].

Therefore it is vital to understand interactions between DME and the components of

natural gas, especially since local variations in the composition of natural gas can be
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noticeable. Figure 1.7 shows selected available data for the oxidation and pyrolysis of

DME at high pressure. The experiments conducted in this work provide data at higher

pressures which are more relevant for industrial and engine applications, compared to

earlier studies.
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Figure 1.7: Temperature- and pressure-coverage of earlier experiments of DME oxidation and
pyrolysis and the present ones. Dashed lines correspond to earlier experiments in [75, 76, 85–
101] and solid red lines mark the present experiments.
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Chapter 2

Experimental Methodology

2.1 Laminar flow reactor

Figure 2.1 shows a schematic diagram of the laboratory-scale high-pressure laminar-

flow reactor used in this project. The reactor was designed to approximate plug flow.

The setup was described in detail elsewhere [22, 102] and only a brief description is

provided here. The reactions took place in a tubular quartz reactor (inner diameter of

8 mm) to minimize the effects of surface reactions. The quartz reactor was enclosed

in a stainless steel tube (i.d. 22 mm, o.d. 38 mm) that acted as a pressure shell. The

system was pressurized from the feed gas cylinders and the reactor pressure was mon-

itored upstream of the reactor by a differential pressure transducer and controlled by

a pneumatically operated pressure-control valve positioned after the reactor. A pres-

sure control system consisting of two thermal mass flow/ pressure controllers (MFPC)

automatically delivered nitrogen to the shell-side of the reactor. The pressure in the

shell-side of the reactor was retained close to that inside the reactor in order to inhibit

devastating pressure gradients across the fragile quartz glass. The pressure fluctua-

tions of the reactor were as low as ±0.2%.
The steel tube was placed in a tube oven with three individually controlled electri-

cal heating elements that produced an isothermal reaction zone (±6 K) of ∼35–48 cm
in the middle of the reactor. A moving thermocouple was used to measure the temper-

ature profile inside the pressure shell at the external surface of the quartz tube after

stabilizing the system.

The flow rates were regulated by high-pressure digital mass-flow controllers

(MFC). The gases were mixed at ambient temperature well before entering the reactor

so a complete mixing was expected before the high temperature zone of the reactor.

The liquid feeding system was described in detail in [103]. The liquid was pres-
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surized by an HPLC pump. The pressure in the feeding section was controlled by a

back-pressure valve that directed part of the liquid flow back into the feed reservoir.

The liquid flow to the reactor was controlled by a liquid mass-flow controller. The

liquid then evaporated in a custom-made evaporator at a temperature around 520 K

and mixed with the incoming gaseous feed before entering the reactor. To avoid con-

densation of the fed liquid, the connecting tubes were wrapped in heat-tracing tapes.

The stability of the liquid feed to the system was the major restriction in feeding low

quantities of liquids. A long stabilization period before each test was employed to limit

the fluctuations of the liquid feeding system to maximally ±5%.
Downstream of the reactor, the system pressure was reduced to atmospheric level

prior to product analysis, which was conducted by an on-line 6890N Agilent Gas Chro-

matograph (GC-TCD/FID from Agilent Technologies). All connecting tubes down-

stream of the reactor and before GC were wrapped in heat tracing tapes to avoid con-

densation of products.

For each set of experiment, the concentration of reactants as well as the pressure of

the system were constrained while temperature of the isothermal zone was gradually

increased in small steps around 25 K. By increasing the temperature, the gas velocity

increased so the residence time of the gas in the hot zone of the reactor decreased

accordingly. After increasing the temperature, around 45 minutes was dedicated for

system stabilization and then the GC measurements started.

All GC sampling and measurements were repeated at least two times to improve

the accuracy of measurements. The total flow rate was also measured by a bubble flow

meter downstream of the reactor. Using a quartz tube and conducting experiments at

high pressures were expected to minimize the contribution from heterogeneous reac-

tions at the reactor wall.

Figure 2.2 shows an example of fuel conversion in the flow reactor. In some reactor

designs, it is possible to conduct the measurements by using a moving probe inside the

reactor and obtain data versus distance (time), e.g. see [91]. However the probe might

intrude in the flow field and increase the uncertainty due to the risk of heterogeneous

reactions on probe surface. Using a probe could also be operationally difficult at high

pressures of this study. To avoid such difficulties, measurements were conducted at

the exhaust of the reactor in this work.

In this project, the system was used to study oxidation of hydrogen, methane,

ethane, ethanol, DME andDME/methanemixtures at pressures between 20 and 100 bar
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and temperatures between 450 and 900 K. The flow rate was varied between 3 and

4.8 Nliter/min (STP: 1 atm and 273.15 K).
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Figure 2.1: Schematic diagram of the experimental setup. BFM, bubble flow meter; GC, gas
chromatograph; L-MFC, mass flow controller for liquids; MF(P)C, mass flow (pressure) con-
troller; OWV, one-way valve; P, manometer. Heat tracing tubing is indicated by sinusoidal
curves. The diagram is a modified version of that in [103].

2.1.1 Temperature profile

Figure 2.3 shows an example of temperature measurements conducted at 100 bar. The

objective was to establish a temperature profile resembling a step function, as much

as possible, by adjusting the nominal temperatures of heating elements. The temper-

ature profiles were measured at a few isotherms and then the nominal temperatures

of the heating elements (input to the heating system) and temperature profiles were

interpolated for intermediate temperatures. The interpretation and simulation of the

results would be facilitated if the heating and cooling zones were short enough to be
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Figure 2.2: Simulated oxidation of stoichiometricmethane/oxygenmixture in the laminar flow
reactor. Isothermal temperaturewas 850 K covering x=59–98 cm and pressure was 100 bar. The
gas mixture was 3104/1553 ppm of O2/CH4 in N2.

Figure 2.3: Temperature profile measured at the external surface of the quartz reactor at dif-
ferent isotherms. The flow was pure nitrogen at 3.23 NL/min (STP: 1 atm and 273 K) and at
pressure of 100 bar.
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negligible against the isothermal length. However, even for short cooling and heating

zones, the residence time of the gases at heating and cooling zones were consider-

able due to lower gas velocity. For DME, a very reactive fuel at low temperatures, it

was found necessary in the calculations of this project to include the full temperature

profile and not only the isothermal part. In ethane experiments, we noticed that the

heating zone at high pressures was longer than what was expected. As a result, the

gases experienced a considerable time at temperatures high enough to react but below

the isothermal temperature. Therefore the full temperature profile should be utilized in

the simulation there. In general, including the temperature profiles could promote the

accuracy of simulations, so the profiles were implemented in most of the simulations

in this project despite being computationally more demanding.

In earlier studies in the same reactor [22, 32], it was presumed that the temperature

profile was changed only by input to the heating system and the total flow rate. Over

the present experiments, it was found that the temperature profile was sensitive to

pressure too. Figure 2.4 shows temperature profiles at three different pressures while

the other controlling parameters of the system were fixed. The isothermal zone of the

reactor (±6 K) shrunk considerably at higher pressures, from 42 cm to 28 cm and then

24 cm when pressure increased from 30 bar to 50 and then 100 bar.

The causes of the heating zone extension with increasing pressure was not totally

clear. It could be due to a larger flow at higher pressures. The flow rate of the reacting

mixture was accurately controlled by the mass flow controllers and checked by the

bubble flow measurements, but a larger flow of nitrogen in the pressure-shell could

occur. The MFPC (mass flow/ pressure controllers) controlled the pressure and flow

in the void between the quartz tube and the shell. If outside the quartz tube pressure

was larger than the inside, the inlet MFPC allowed high pressure nitrogen to enter the

void to compensate for it. On the other hand, if pressure outside the quartz tube was

too high, the outlet MFPC evacuated nitrogen to the purge system. Consequently, a

zigzag pattern was usually seen in the pressure of gases in the shell. It seemed that the

fluctuating pattern was intensified at higher pressures, so larger amounts of nitrogen

might enter and leave the shell. A higher flow of nitrogen required more energy for

heating up, so the temperature dropped. Regardless of the involved factors, for all

experiments except the ethane tests, the isothermal zone was extended by increasing

the nominal temperature of the upstream heating element.

A potential source of uncertainty in the interpretation of data from the flow re-
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Figure 2.4: Effect of pressure on temperature profile. The flow was pure nitrogen at
3.1 NL/min (STP: 1 atm and 273 K) and inputs of the heating system were fixed.

actor was the temperature rise due to exothermic reactions. Presently, the reactants

were strongly diluted in inert gases to limit the undesired temperature rise. When the

mixture has the highest exothermicity, measuring the temperature profile indicated a

marginal difference compared to the flow of pure nitrogen. The narrow quartz tube

used here also accelerated the thermal equilibrium between the reactive gas inside the

reactor and the heating bath gas surrounding it. Consequently, the temperature rise

due to exothermicity was estimated to be a limited effect under most conditions.

2.2 Gas chromatograph (GC)

The products of reactions were analyzed using a 6890N Agilent Gas Chromatograph

(GC-TCD/FID from Agilent Technologies). The GC had three operational columns

(DB1, Porapak N, and Molesieve 13x). To detect H2, argon was used as carrier gas

in the GC. To detect other components as O2, N2, CH4, CO, CO2, C2H4, C2H6, C3H8,

CH2O, dimethyl ether (CH3OCH3), methanol (CH3OH), ethanol (CH3CH2OH), and ac-

etaldehyde (CH3CHO), helium was used as carrier gas.

For gaseous compounds the integral of GC peaks were related to molar fractions

by calibration against certified gas mixtures (± 2 % from AGA A/S). For liquid com-

pounds, the calibration was typically based on gas mixtures prepared by injecting a

known quantity of the liquid component into a known volume of nitrogen in a Ted-

lar bag and allowing the liquid to evaporate. The calibration points obtained by this
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2.2. Gas chromatograph (GC)

method had larger uncertainties. To avoid difficulties in handling formaldehyde, its

calibration was produced by correlating TCD response factors for other components

to calculated thermal conductivities estimated from the Chapman-Enskog kinetic the-

ory [104]. The TCD response factor for formaldehyde was then determined by using a

calculated thermal conductivity with this correlation. In the calculation of the thermal

conductivity of formaldehyde, the employed Lennard-Jones force constants (σ = 3.65

Å, ε/K = 313.9 K) were in turn estimated from the critical properties (Lide [105]) using

the method of Satterfield [106].

In general, the uncertainty of the GC measurements was estimated to be around

6%. Nevertheless, the signal to noise ratio of formaldehyde in the TCD detector was

relatively small, so a larger uncertainty in the reported formaldehyde was estimated

especially at ppm levels. Moreover, distinguishing methanol from acetaldehyde was

not possible due to signal overlapping under the GC configuration used. The signal

areas corresponding to the sum of these components were measured and quantified

by using the response factor of methanol, but the reported quantity were less accurate

especially when a considerable yield of acetaldehyde was expected.
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Modeling

The results from experiments in the flow reactor should be translated into a chemical

kinetic model for extrapolation to other conditions. To avoid difficult interpretation of

data from complex flows, the reactor was designed to approximate a plug flow pattern.

In this chapter, the equations governing flow and chemistry in plug flows are discussed

and derived.

3.1 Plug flow reactor

The interpretation and simulation of the results are easier if the flow in the reactor

can be approximated by a steady-state plug flow. In plug flows, the fluid is perfectly

mixed in the radial direction and each ”plug” or lateral slice of the fluid in the reactor

has uniform fluid properties, e.g., temperature, pressure, velocity, and composition. If

all the fluid elements of a plug move only in the direction of the reactor main axis,

then a flat velocity profile is formed, and all fluid elements have the same residence

time in the reactor. In plug flows it is required that the fluid has a negligible diffusive

transport in the direction of the bulk flow, so plugs are not mixed together. To evaluate

the flow pattern in our reactor, we need to characterize its flow regime first, whether

it is laminar or turbulent. The dimensionless quantity of Reynolds number, Re, is used

to characterize laminar and turbulent flows. Re shows the ratio of inertial forces to

viscous forces and is defined for the flow in circular tubes as:

Re =
ρuD
μ

(3.1)

where ρ is the gas density, u is the gas velocity, D is the diameter of the tubular reac-

tor, and μ is the gas dynamic viscosity. Re should be smaller than ∼2100 for laminar

flows in tubes [107]. For the flows investigated in this project, the calculated Reynolds
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number was ∼700 at maximum, far below the upper limit of the laminar flows.

In principle, the laminar flows in tubes have a parabolic velocity profile. On the

other hand, if the tube is long enough, the molecular diffusion in lateral direction have

enough time to smooth the lateral gradients of fluid properties [108] which makes

the flow pattern resembling the plug flow. A useful concept to describe diffusion in

flows is ”dispersion”. Dispersion characterizes the spreading of fluid elements as a

result of different local flow velocities and molecular diffusion [22, 102] and is shown

by dispersion coefficient, Ddisp
[
m2/s

]
. The dimensionless number of ”intensity of

dispersion” is defined as:

Ddisp

uL
=

spreading by dispersion

spreading by bulk flow
(3.2)

where L shows the length of the reactor. A small value of
Ddisp

uL indicates that the fluid

elements are spread in the reactor by the main flow and plugs are not mixed together,

so plug flow is a good approximation.

Another dimensionless number to characterize the laminar flow is the Bodenstein

number, Bo, defined as the product of Reynolds and Schmidt numbers:

Bo = Re × Sc =
ρuD
μ
× μ

ρuDAB
=

mass transfer by convection

mass transfer by diffusion
(3.3)

where DAB is the molecular diffusion coefficient. For the flow reactor used here, Ras-

mussen [22] calculated Bo number and
Ddisp

uL for representative mixtures of gases (N2

/O2 / CH4) at 600–900 K, 10–100 bar, and flow rates from 1 to 5 N L/min. According to

his calculations, the deviation of the flow pattern from the plug flow is relatively small

at flow rates below 3 N L/min but it grows slightly at higher flow rates.

3.1.1 Mass and energy conservation

The plug flow reactor is modeled as a closed system without any mass transfer across

the boundaries. All plugs entering the reactor experience a similar residence time and

react isolated from the preceding and following ones. Moreover, there is no variation in

any direction except the flow direction, here x, and the axial diffusion of any quantity

is assumed to be negligible compared to the corresponding convective term [109]. The
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3.1. Plug flow reactor

mass balance equation then can be written as:

ρ u A = constant⇒
ρ u

dA
dx
+ ρ A

du
dx
+ A u

dρ
dx
= 0 (3.4)

where ρ, u, and A are mass density, gas velocity, and cross sectional area of the reactor,

respectively. For a reactor with constant A, it becomes:

ρ A
du
dx
+ A u

dρ
dx
= 0 (3.5)

Although the total mass of every plug is constant, the mass fraction of individual

species can change due to the reactions. The mass balance for the ith species:

ρ u A
dYi

dx
= MWi ω̇i A (3.6)

whereYi and MWi are the the mass fraction and the molecular weight of the ith species,

respectively. ω̇i (x) is the chemical production rate of the ith species due to gas-phase

reactions which will be shown in section 3.2.1 to be a function of mixture composition,

temperature, and pressure. Consequently:

dYi

dx
=

MWi ω̇i

ρ u
= f (T, P, u, Y1, ...Yi) (3.7)

There is no need to solve the energy equation for systems with constrained tem-

perature. For an adiabatic reactor, the energy equation can be written as:

ρuA ���c̄P
dT
dx
+ u

du
dx
+

Nsp∑
i=1

dYi hi

dx
��	 = 0 (3.8)

where hi is the specific enthalpy of the ith species and c̄P is the mean heat capacity at

constant pressure per unit mass of gas. Adding a gas equation of state, the system of

equations can be solved now. The residence time of the gas in the reactor, τ, can be

calculated by integrating

dτ
dx
=

1

u
(3.9)
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3.2 Detailed kinetic modeling

To solve the presented system of equations, it is necessary to calculate the production/

consumption rate as well as thermodynamic properties for both stable and non-stable

species. In following sections we briefly describe the formulation used to calculate

reaction rates and thermodynamic properties.

3.2.1 Chemical reaction rates

As an example of a chemical reaction, a simple bimolecular elementary reaction in

which species C and D react to form E and F is considered:

C +D→E + F (R 3.1)

The rate of the depletion of the reactant C is given by:

d[C]

dt
= −k (T ) × [C] × [D] (3.10)

[C] shows the concentration of the component C in mole per unit volume and k (T )
is called the reaction rate constant although it depends on temperature. The reaction

rate can be defined as:

R.R. = k (T ) × [C] × [D] (3.11)

The temperature-dependent rate constant for a reaction proceeding in forward direc-

tion is commonly simulated by a modified Arrhenius form equation:

k = A × Tn × exp(
−E
RuT

) (3.12)

A is pre-exponential factor, n is temperature exponent, E is activation energy, and Ru

is universal gas constant. It is common in combustion communities to use the units

of s, cal, cm3, K , and mol to describe parameters in equation (3.12). The units of rate

constant (k) in equation (3.12) depend on the reaction order and are s−1, cm3mol−1 s−1,
and cm6 mol−2 s−1 for the first, second, and third order reactions, respectively. The

units for A are thus determined by the temperature exponent, n, and the units of k .

The term
( −E

RuT

)
is dimensionless, so the activation energy of E is in cal mol−1 if Ru

and T are given in cal mol−1 K−1 and K , respectively.
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3.2. Detailed kinetic modeling

For reversible reactions, two sets of rate constants are used to represent the reac-

tions in both forward and reverse directions. The total rate of formation/ depletion of

component C in the reversible version of reaction R 3.1 is then given by:

d[C]

dt
= −k f (T ) [C] [D] + kr (T ) [E] [F] (3.13)

k f and kr are the rate constants for the forward and the reverse reactions, respectively.

When a reversible reaction reaches to equilibrium, the total rate of formation/ de-

pletion of each component should be zero, so,

d[C]

dt
= 0⇒

k f (T )
kr (T )

=
[E][F]
[C][D]

(3.14)

which by definition is equal to thermodynamic equilibrium constant based on concen-

trations, KC ,

KC =
[E] [F]
[C] [D]

=
k f (T )
kr (T )

(3.15)

We can calculate the equilibrium constant based on partial pressures by using the

changes of standard state Gibb’s function
(
−ΔG0

T

)
in the reaction:

KP = exp(
−ΔG0

T

RuT
) (3.16)

Gibb’s function is defined as:

G = H − T S (3.17)

where H and S are enthalpy and entropy, respectively. Substituting equation (3.17) in

(3.16):

KP = exp

(
ΔS0

R
− ΔH0

RuT

)
(3.18)

where ΔS0 and ΔH0 refer to the changes of entropy and enthalpy while passing com-

pletely from reactants to the products. The standard state thermodynamic properties
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can be assumed to be functions of only temperature, so

KP = f (T ) (3.19)

Using the ideal gas law, KC can be found from KP and the total pressure of the system.

Therefore the reaction rate constants for the forward and the reverse directions are

related via the thermodynamic state of components involved in the reaction:

KC = f (T, P) =
k f (T )
kr (T )

(3.20)

In reality, for many reactions the rate constants cannot be accurately reproduced by

a simple Arrhenius equation. To overcome this problem, a combination of Arrhenius

equations is used where the rate constant at each temperature is given by the sum of

all Arrhenius equations. Moreover, the rate constant in some reactions is a function

of both temperature and pressure. The methods to treat pressure-dependent reactions

will be discussed later.

For a mixture with Nsp number of species (reactants), the jth reaction can be rep-

resented in the general form as [109]:

Nsp∑
i=1

v′i j χi =

Nsp∑
i=1

v′′i j χi (3.21)

where vi j are the stoichiometric coefficients and χi is the chemical symbol for the ith

species. The superscripts ′ and ′′ indicate forward and reverse stoichiometric coeffi-

cients, respectively. The net rate of jth reaction, q j , is calculated as:

qj = k f j

Nsp∏
i=1

[χi]
v′i j − kr j

Nsp∏
i=1

[χi]
v′′i j (3.22)

where [χi] is the molar concentration of the ith species and k f j and kr j are the forward

and reverse rate constants of the jth reaction. The production rate of the ith species can

be given as [109]:

ω̇i =
d[χi]

dt
=

J∑
j=1

vi jqi (3.23)
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where J is the total number of reactions and vi j is defined as:

vi j = v′′i j − v′i j (3.24)

In other words:

ω̇i = f
(
P, T, Y1, ... ,YNsp

)
(3.25)

3.2.2 Pressure dependent reaction rate constant

A classical example of pressure-dependent reaction is the recombination of methyl

radicals:

CH3 + CH3 = C2H6 (R 3.2)

This reaction proceeds as written in (R 3.2) at its high-pressure limit, but it needs a

collision partner (M) to receive energy to proceed at its low-pressure limit:

CH3 + CH3 +M = C2H6 +M (R 3.3)

This reaction in general is shown by

CH3 + CH3( +M) = C2H6( +M) (R 3.4)

At the pressures between the low- and high-pressure limits, called ”fall-off” region, the

reaction has a more complicated dependency. To describe the rate constant at the fall-

off region, two sets of Arrhenius rate parameters are needed for low and high pressure

limits:

k0 = A0 Tn0 exp

(−E0

R T

)
(3.26)

k∞ = A∞ Tn∞ exp

(−E∞
R T

)
(3.27)

where 0 and ∞ subscripts show parameters corresponding to the low- and high-

pressure limits, respectively. The rate constant at any given pressure is then calculated

by

k =
k0 k∞ [M]

k∞ + k0 [M]
F (3.28)
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where [M] is the total concentration of the mixture, in mole per unit volume. If F is

assumed to be unity, the equation (3.28) gives the Lindermann [110] expression. A

better accuracy of k in the fall-off region is given by the more complicated Troe [111]

format for F , in which F is a function of k0, k∞, [M], and T . The formula for the

calculation of F in Troe format can be found in [111] or [109].

Recently, another method to describe pressure-dependent rate constants by using

logarithmic interpolation has widely been used. For a given reaction in this method,

the rate constants are provided at different pressures, e.g. at pressure of Pi:

ki = Ai × Tni × exp(
−Ei

RuT
) (3.29)

Then for every desired pressure at which the parameters are not provided directly, a

logarithmic interpolation is used to estimate the rate constant from those at lower and

upper pressures, e.g. for pressure of P between Pi and Pi+1 the rate constant is given

by [109]:

ln(k) = ln ki + (ln ki+l − ln ki)
ln P − ln Pi

ln Pi+1 − ln Pi
(3.30)

This method provides a simple way to model complicated sensitivities of rate constants

to pressure and temperature, but the rate parameters should be provided at a sufficient

number of pressures to obtain a good accuracy in the interpolation.

3.2.3 Thermodynamic data

An equation of state to establish the relations between density, temperature, pressure,

and species mass fractions is needed to close the system of equations. At high pressure

and low temperature, interaction between gas molecules is relatively high, so ideal gas

law should be used with caution. To evaluate ideal gas law at specific conditions, the

compressibility factor of gases (Z) is used as an measure of the extent of nonideal-

ity [112]:

Z =
P V

N Ru T
(3.31)

For ideal gases, Z is unity. Rasmussen [22] calculated the compressibility factor (Z)

for representative gas mixtures at the operational conditions of the current reactor

and found it to be close to unity, within ±4%, so the ideal gas law can be used safely in
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the conditions of the flow reactor.

The reference state thermodynamic properties are assumed to be only a function

of temperature [109]. For a perfect gas mixture, the standard-state specific heats and

enthalpies are also the actual values [109], i.e. Hi = H0
i and CPi = C0

Pi .

To solve the energy equation (3.8), the values of c̄p and hi should be known for

every temperature. The mean specific heat capacity at constant pressure for a mixture

of ideal gases can be calculated as:

c̄P =

Nsp∑
i=1

Yi cP,i (3.32)

Yi and cP,i show mass fraction and specific heat capacity (per unit mass) of the ith

species. The specific heat per unit mass can be converted to the corresponding molar

value via:

c̄P =
CP

MW
(3.33)

where CP and MW are the mean specific heat per mole and mean molecular weight of

the mixture, respectively. The specific enthalpy of the ith species (in energy per unit

mass), hi, can be calculated from the molar enthalpy of the ith species, Hi:

hi =
Hi

MWi
(3.34)

The molar enthalpy of the ith species at standard state can be calculated if CPi and

Hi (0) are known:

Hi =

T∫
0

CPi dT + Hi (0) (3.35)

where Hi (0) is the molar enthalpy at zero Kelvin. The molar entropy at standard state

is also calculated by knowing CPi and Si (0):

Si =

T∫
0

CPi

T
dT + Si (0) (3.36)
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The sensitivity of CP to temperature is non-linear and can be determined by using

theoretical or experimental methods for every component. For computation, it is con-

venient to fit polynomial equations to CP of each species over the entire temperature

range of interest. For easier handling of the fitted equation, the non-dimensional value

of CP

Ru
is approximated by a polynomial equation:

CPi

Ru
=

M∑
m=1

amiTm−1 (3.37)

where ami are the coefficients of the polynomial fit and M is the total number of co-

efficients of the polynomial. Consequently, the enthalpy can be found from equation

(3.35) as:

Hi

RuT
=

M∑
m=1

amiTm−1

m
+

aM+1,i

T
(3.38)

where aM+1,i is the standard heat of formation at zero K divided by the universal gas

constant , Hi (0)
Ru

. From equation (3.36) and by defining aM+2,i equal to
Si (0)

Ru
,

Si

Ru
= a1i lnT +

M∑
m=2

amiTm−1

m − 1 + aM+2,i (3.39)

Now, to calculate enthalpy, entropy, and specific heat at desired temperatures, M+2

number of ai coefficients is needed. Such fitting coefficients are available through

extensive thermodynamic database as [113, 114].

3.3 Solver (Chemkin)

The ODE system described in equations of (3.5), (3.7) and (3.8) is generally stiff, as there

is a large difference between time scales of evolution of different species [109]. To solve

the equations, Chemkin software package [109] is used which is able to calculate the

rate constants of reactions and their thermodynamic properties as well. The Arrhenius

parameters as well as polynomial coefficients for thermodynamic fitting are inputted

to the program as text files. Chemkin [109] utilizes a modified version of software

package Daspk [115, 116] using backward-differencing methods for time integration

to solve the stiff equations as well as the first order sensitivity coefficients. The first

order sensitivity coefficients are calculated for species mole fractions and temperature
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respect to the changes in pre-exponential factors (A’s) in rate constants. The coefficient

then are normalized according to the methods described in [109].
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Chapter 4

Combustion characteristics and
reaction mechanisms

Detailed chemical kinetic models are vital to predict ignition, extinction, heat release,

and pollutants formation in combustion. Historically, it is believed that Semenov’s the-

ory of chain mechanisms and thermal explosions [117] was the starting point for the

modern science of detailed combustion reactions [118]. To develop chemical kinetic

models, a systematic method advocated by Westbrook and Dryer [18] has widely been

used over years. In this approach, the hierarchical structure of combustion system was

emphasized in which every subset of the mechanism relies on the subsets of simpler

molecules, as shown in figure 4.1. To develop a mechanism systematically, it is neces-

sary to adopt subsets of the simpler molecules or develop them first and then step by

step adding species and reactions relevant for more complex molecules. After addition

of each subset, the mechanism should be validated by comparison of the mechanism

predictions with measured combustion characteristics. It should be noted that addi-

tion of a subset for a more complex molecule may change the prediction of the model

for simpler molecules too. Especially adding steps acting as a sink of radicals can in-

troduce new reaction paths affecting simpler molecules models considerably. To avoid

such problems, the developing mechanism should be reevaluated frequently against

combustion characteristics of simpler molecules.

4.1 Reaction mechanism at low temperatures

Over years, some guidelines have been developed to predict the combustion mecha-

nisms of different class of fuels, e.g. alkanes, alcohols, etc. As will be demonstrated

later for ethane, these general mechanisms are not always indisputable but they are a
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Figure 4.1: Hierarchical structure of oxidation mechanisms for simple hydrocarbon fuels and
selected oxygenated fuels [112].

good starting point in developing chemical kinetic models.

Figure 4.2 shows a suggestedmechanism for oxidation of alkanes [118, 119] at low-

intermediate temperatures. The oxidation of an alkane (called ’RH’ here) is usually

initiated with hydrogen abstraction by O2 [118, 119]:

RH +O2 = R + HO2 (R 4.1)

Later, the conversion is mainly governed by H-abstraction by OH

RH +OH = R +H2O (R 4.2)

The R resembles an alkyl radical here. At low temperatures, the alkyl radical adds to

O2 to give alkylperoxyl radicals, ROO.

R +O2 = ROO (R 4.3)

The ROO radical may undergo an internal isomerization to form the hydroperoxyalkyl

radical, QOOH.

ROO = QOOH (R 4.4)

Alternatively, the ROO radical may dissociate to an alkene (Q) and a hydroperoxyl

radical.

ROO = Q + HO2 (R 4.5)

38



4.2. Combustion characteristics

At temperatures low enough, the QOOH radical can add to another molecular oxygen

giving OOQOOH. The formed OOQOOH then isomerizes to HOOUOOHwhich finally

dissociates to give two hydroxyl radicals per consumed fuel molecule [118, 119], as

shown in figure 4.2.

As temperature increases, the ROO radical becomes unstable, i.e. the reaction of

R 4.3 reaches to equilibrium [118, 119]. The reaction path then changes and the disso-

ciation of the alkylperoxyl radical is more favored:

ROO = Q +HO2 (R 4.6)

Hydroperoxyl radicals usually combine to form hydrogen peroxide at intermediate

temperatures,

HO2 + HO2 = H2O2 +O2 (R 4.7)

or abstract a hydrogen atom from the fuel molecule,

RH + HO2 = R + H2O2 (R 4.8)

As the dissociation of hydrogen peroxide to hydroxyl radicals is only favored at rela-

tively high temperatures, the branch to Q + HO2 is almost a chain-terminating path

at low temperatures. These changes in the reaction pathways, namely preference of

(R 4.6) over (R 4.4), is the main reason for negative temperature coefficient (NTC) be-

havior, which is observed for many alkanes. At NTC temperatures, the fuel oxidation

is inhibited by increasing temperature, in contrast to the trend common at other tem-

peratures. In general, if the chemical kinetic model is developed for low-intermediate

temperatures (below 1000 K) applications, the reactions following oxygen addition to

alkyl radicals (R 4.3) should be included in the model. For high temperatures applica-

tion, removing this pathway results in marginal errors [118].

4.2 Combustion characteristics

To evaluate chemical kinetic models, it is necessary to compare their predictions of

combustion parameters with experimental measurements. The evaluating parameters,

combustion characteristics, should be independent from device and configurations, as

much as possible. To better reveal the chemical details, it is desirable to avoid turbulent

combustion and to simplify the flowfield as possible [49]. Here, we briefly discuss three

combustion characteristics widely used in this project to evaluate models: species pro-
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Figure 4.2: The general reaction pathway for low temperature oxidation of alkanes.

file, ignition delay time, and laminar burning velocity. Samples of such characteristics

can be found in Chapter 10.

4.2.1 Species profile

The species conversion profiles from combustion are very useful tools in studying ox-

idation and pollutant formation processes. If the thermodynamic state of a mixture is

well known, and in the absence of heterogeneous reactions, variations in the compo-

sition can be solely related to gas phase reactions. A few devices have been designed

to obtain the species conversion profiles, e.g. flow reactors, shock tubes, jet-stirred
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reactors, and different burners. In this project, a laminar flow reactor is used to obtain

the conversion profiles of different species. Gas residence time in flow reactors may

reach a few seconds, so flow reactors are convenient to study combustion chemistry at

low–intermediate temperatures, where the reactions are relatively slow and reaction

kinetic plays a crucial role in many process. A drawback of flow reactors is the large ra-

tio of wall surface area to gas volume, which makes measurements conducted in them

sensitive to heterogeneous reactions. In the device used in this work, this problem has

mainly been solved as discussed in details in Chapter 2. In this work measurements

are conducted at the end of the reactor as explained in section 2.1. By increasing tem-

perature in small intervals and repeating measurements, conversion profiles against

temperature are generated.

Shock tubes can also be used to measure the species profiles under controlled con-

ditions. In shock tubes, the tube is divided by a diaphragm into two sections of the

”deriving gas” which is filled by a gas at high pressure and the ”test section” which

contains the test mixture at lower pressure. After bursting the diagram, a shock wave

(incident shock) is formed and travels through the tube, and increases the temperature

and pressure of the mixture almost instantaneously. In a usual design, the shock wave

is reflected from the end-wall, again increasing the temperature and pressure, whereas

in the design of single-pulse shock tubes the reflected wave is avoided by adding a

”dump tank” (see Yasunaga and Tranter [120] for details). The main restriction in

shock tubes is the limited residence time available, usually around few milliseconds

at maximum. Due to the reflection of the expansion fan from the other side of the tube

(the deriving section), pressure and temperature drop soon. Furthermore, measuring

species profiles in shock tubes may be challenging as intrusive methods disturb the

flow field while non-intrusive methods can provide relatively limited data. Over long

residence times and before the advent of the expansion fan, pressure and temperature

increase gradually behind the shock wave. Such pressure/temperature variations have

been observed even in non-reactive mixtures and are believed to be results of fluid dy-

namic nonidealities which are generally device-dependent [121]. The methods to treat

this problem will be discussed in the next section (4.2.2).

4.2.2 Ignition delay time

Ignition is usually accompanied by a rapid increase in temperature (and pressure for

constant volume systems) and in the concentration of intermediate radicals. If the tem-

perature of a combustible mixture is increased sufficiently, the mixture ”auto-ignites”,
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which means ignition without any external source of flame or high energy. Even after

an instantaneous increment in temperature, there is a time interval before autoignition.

This time interval is called the ”ignition delay time” and is a fundamental characteristic

of a given combustible mixture at specific temperature and pressure.

To identify ignition experimentally, it is common to use one of these criteria: the

maximum of pressure or its gradient ( dP
dt ), or the maximum of CH3 or OH concentra-

tions or their gradients (
d[CH3]

dt and
d[OH]

dt ). Figure 4.3 shows the profiles of pressure and

the OH radical for a stoichiometric hydrogen-air mixture in which ignition delay was

around 2.3 millisecond. During the ignition delay period, the radical-pool population

increases exponentially and some important chain-branching reactions take place at

this time whereas the amounts of consumed fuel and released heat are negligible and

temperature remains almost constant [122]. The ignition starts when a huge consump-

tion of fuel is possible due to the expansion of the radical pool. The ignition delay time

is highly sensitive to temperature as the reaction rates are. Moreover, mixture compo-

sition and pressure also affect the ignition delay time. In practice, when the ignition

delay is needed over a limited range of conditions, a simple equation in the Arrhenius

form is fitted to the available data,

τ = A exp (B/T ) (4.1)

where A and B can be a function of mixture composition, pressure, and temperature.

Figure 4.3: The ignition of stoichiometric hydrogen-air mixture at 50 bar and 1000 K. The
simulations were conducted using a model with constant internal energy (u) and volume (V).
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There are a fewmethods to measure the ignition delay time of gases. Due to almost

instantaneous increase of temperature and pressure in shock tubes, they are conve-

nient devices to study ignition delay time. Despite that, as discussed earlier (section

4.2.1), their major limitation is in their relatively short residence time, hardly enough

for the ignition delays of most fuels at intermediate temperatures which are in order

of milliseconds. The discussed gradual increase of temperature and pressure behind

the shock wave can influence the interpretation of measured values considerably. To

simulate ignition delay times from shock tubes, commonly a model with constant vol-

ume and internal energy (adiabatic) is used. For long ignition delays when the gradual

pressure rise behind the shock wave becomes important, the model should be modified

to include such variations. Chaos and Dryer [121] suggested a method to compensate

for the pressure variations in which pressure history is recorded for a non-reactive

mixture and then the specific volume of the mixture, which is kept constant usually, is

varied according to the isentropic equation:

v(t) =
1

ρ0

[
P(t)
P0

]−1/γ
(4.2)

where v is the specific volume, P the measured pressure, γ the specific heat ratios, and

P0 and ρ0 are the pressure and density just after the shock wave. Whenever feasible

in this work, the modified model is used for the simulations, despite its computational

cost.

Another device to measure ignition delay time is the rapid compression machine

(RCM). RCM’s are designed based on the concept of internal combustion engines in

which a piston is used to compress the gasmixture inside the cylinder. Due to the com-

pression, temperature and pressure increase rapidly and the gas mixture may ignite.

RCM’s typically can deliver pressures of 1–80 bar and temperatures of 600–1200 K. The

compression time is usually around 10–70 ms and the test time is between 2 and 500 ms

[123]. A key criteria in the design of RCM’s is to make the compression stroke as short

as possible. Another limiting factor is the heat transferred from the hot gases to the

cylinder wall and surroundings. In reality, the heat transfer from the gases is not negli-

gible. This causes a gradual temperature dropwhich is reflected in a pressure drop after

the compression stroke. To include the heat transfer and other complicated aspects of

fluid dynamics in simulations, it is a common practice to repeat the experiments with

non-reactive mixtures and input the measured pressure-profile in simulating ignition
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delay time, similar to what is conducted for long residence time in shock tubes.

4.2.3 Laminar burning velocity

The adiabatic laminar burning velocity, also known as the laminar flame speed, is an-

other fundamental character of combustible mixtures. The laminar burning velocity is

defined as the velocity of a steady one-dimensional adiabatic free flame propagating in

the doubly infinite domain [124]. Figure 4.4 shows simulated profiles of temperature

and axial velocity of a freely propagating flame. The flame can be identified by a large

gradient of temperature over a narrow zone. The flame speed is corresponding to the

axial velocity of gases upstream of the flame (at x = −∞), which is around 35 cm/s

here. The flame speed is affected by temperature, pressure, and gas composition and

can bemeasured in different configurations: Bunsen (and other similar burners) flames,

spherically expanding flames, and counterflow flames. The advantages and drawbacks

of different configurations will not be discussed here (for details see texts, e.g. [124]).

As shown in figure 4.4, the gas temperature behind the flame can exceed 2000 K and

the flame speed is more affected by high temperature chemistry. It will been shown

later in this work that the calculation of flame speed is highly sensitive to the combus-

tion chemistry of hydrogen. Particularly, hydrogen atoms play an important role as

they can diffuse from the hottest parts of the flame to the cooler parts and initiate the

reactions there [6].

Figure 4.4: The axial velocity and temperature of a freely propagating premixed flame of a
stoichiometric methane/air mixture. The initial conditions were 300 K and 1 atm.
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Abstract

Hydrogen oxidation at 50 bar and temperatures of 700–900 Kwas investigated in a high

pressure laminar flow reactor under highly diluted conditions. The experiments pro-

vided information about H2 oxidation at pressures above the third explosion limit. The

fuel–air equivalence ratio of the reactants was varied from very oxidizing to strongly

reducing conditions. The results supplement high-pressure data from RCM (900-1100

K) and shock tubes (900-2200 K). At the reducing conditions (Φ = 12), oxidation started

at 748–775 K while it was shifted to 798–823 K for stoichiometric and oxidizing con-

ditions (Φ = 1.03 and 0.05). At very oxidizing conditions (O2 atmosphere, Φ = 0.0009),

the temperature for onset of reaction was reduced to 775–798 K. The data were inter-

preted in terms of a detailed chemical kinetic model, drawnmostly fromwork of Burke

and coworkers. In the present study, the rate constants for the reactions HO2 + OH,

OH + OH, and HO2 + HO2 were updated based on recent determinations. The mod-

eling predictions were in good agreement with the measurements in the flow reactor.

The predicted H2 oxidation rate was sensitive to the rate of the HO2 + OH reaction,

particularly at lean conditions, and the present data support recent values for the rate

constant. In addition to the current experiments, the mechanismwas evaluated against

ignition delay time measurements from rapid compression machines and shock tubes.

The model was used to analyze the complex dependence of the ignition delay for H2

on temperature and pressure.
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5.1 Introduction

Chemical kinetic models for combustion of hydrocarbon fuels all rely on an accurate

hydrogen sub-mechanism [18]. Due to the significant contribution of H2/O2 reactions

to the radical pool, these steps are among the most important in many ignition prob-

lems. Additionally, syngas (H2+CO) produced from bio-sources attracts attention as an

alternative way of using biofuels in conventional energy plants while hydrogen itself

has been considered as an energy carrier to be used in conventional engines. Conse-

quently the H2/O2 reaction mechanism has been studied extensively. In recent years,

several comprehensive studies of hydrogen oxidation have been published [125–128]

and rate constants for several key reactions have been refined [129–135]. In particular

for reactions of HO2 and H2O2, the novel findings in some cases deviate consider-

ably from previously accepted recommendations [136]. Since this has implications for

our understanding of the high-pressure chemistry, a continuous re-examination of the

H2/O2 chemistry is required.

With the current tendency in designing practical combustion systems to work at

high pressure to increase efficiency, reliable benchmark data for validation of the mod-

els in this regime become vital. Data for ignition at intermediate to high temperature

and high pressure can be achieved in shock tubes and rapid compression machines

(RCM). Hydrogen ignition has been investigated in shock tubes more than in any other

device, and reported data cover a wide range of temperature and pressure. Recent data

include those of Davidson and Hanson [33] at 1190–1930 K and 33–87 atm, Herzler

and Naumann [137] at 920–1700 K and 0.9–19.3 bar, Pang et al. [138] at 908–1118 K

and 3.0–3.7 atm, Zhang et al. [139] at 1010–1270 K and 5–20 bar, Zhang et al. [35] at

900–1750 K and 18 bar, and Keromnes et al. [128] at 935–2130 K and 1–34 bar. Inves-

tigations of hydrogen oxidation at high pressures in RCM, conducted at temperatures

of 900–1100 K, include the work of Lee and Hochgreb [140] at 6–40 bar, Mittal et al.

[16] at 15–50 bar, Das et al. [141] at 10-70 bar, and Gersen et al. [142] at 20–80 bar. To

extend the high-pressure range to even lower temperatures, it is required to use flow

reactors since this type of reactor allows for longer reaction times. However, studies

of hydrogen oxidation at increased pressure in flow reactors are scarce. The reported

work, i.e., Mueller et al. [143] (0.3–15.7 atm, 850–1040 K) and Beerer and McDonell

[144] (5.0–6.4 atm, 700–950 K), were conducted at pressures below those of high pres-

sure industrial applications.

The present work aims to extend the experimental characterization of H2 oxidation
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to conditions above the third explosion limit. Experiments are conducted in a laminar

flow reactor, with a pressure of 50 bar and temperatures of 700–900 K. The present

data, as well as selected data from the literature, are interpreted in terms of a detailed

reaction mechanism, based on the comprehensive work of Burke et al. [127] but mod-

ified according to recent data on specific reactions. Finally, the complex dependency

of ignition times for H2 on pressure and temperature is discussed.

5.2 Experimental

The experimental setup was a laboratory-scale high-pressure laminar flow reactor de-

signed to approximate plug flow. The plug flow assumption was shown by Rasmussen

et al. [102] to be a good approximation for the present operating conditions. The setup

is described in detail elsewhere [102] and only a brief description is provided here.

The system was used here for investigation of hydrogen oxidation at 50 bar pressure

and temperatures up to 900 K. The reactant gases were premixed before entering the

reactor. The reactions took place in a tubular quartz reactor with an inner diameter of

8 mm and a total length of 154.5 cm. By using a quartz tube and conducting the exper-

iments at high pressure, we expect the contribution from heterogeneous reactions at

the reactor wall to be minimal, and we did not see any indications of surface reactions.

The temperature profile in the flow reactor was measured inside the outer wall of the

quartz tube. An isothermal reaction zone (±5 K under inert conditions) of 42–43.5 cm

was achieved in the reactor. The residence time in the isothermal zone was 8.0–6.3 s

(τ [s]=5661/T[K]) with the current flow rate of 3.1 liter/min (STP) and temperatures in

the range of 700–900 K. The adiabatic temperature rise due to heat of reaction was cal-

culated to be 22 K. However, due to heat transfer from the hot gas to the surroundings,

the actual temperature rise is presuamble much less; measurements for reactive mix-

tures showed a negligible change (∼ 1–2 K). All gases used in the present experiments

were high purity gases or mixtures with certified concentrations (±2% uncertainty).

The product analysis was conducted by an on-line 6890N Agilent Gas Chromatograph

(GC-TCD/FID from Agilent Technologies). For most species, the relative measuring

uncertainty of the GC was in the range of ±6%. However, a higher uncertainty was

estimated for measurement of oxygen at the lowest concentrations employed.
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5.3 Chemical kinetic model

In a previous study from the current laboratory, measurements and kinetic modeling

have been conducted for a mixture of H2/CO/NOx at high pressure [102]. The model

was evaluated against data for syngas oxidation, but pure hydrogen combustion were

not investigated. Considering the recent advances in hydrogen chemistry, a thorough

update of the model seemed necessary. The mechanism presented here was based on

the recent comprehensive study on high-pressure hydrogen oxidation by Burke et al.

[127], but selected reactions were modified according to the discussion below. The full

mechanism is available in tabular form, as well as in Chemkin format, as supplemental

material, and the reaction numbering below refers to this listing.

5.3.1 R4) OH + OH=O +H2O

The hydroxyl radical plays an important role both in the atmosphere and in combus-

tion, and self reactions of OH, forming O+H2O (R4) or H2O2 (R15b), are important both

in the forward and reverse directions. Because of interference between the two reac-

tions, measuring their rates can be challenging. We have adopted the rate constant for

(R13) from Sangwan and Krasnoperov [133] who used a novel approach to distinguish

between the two channels and minimize probable effects of surface reactions. They

performed measurements in a temperature range of 295–414 K and pressures of 3 and

10 bar. By combining their own results with published data [132, 145, 146], they ob-

tained a rate constant for this reaction for the temperature range of 223–2380 K. Their

value is slightly lower than the recommendation of Baulch et al. [136] which was used

by Burke et al. [127]. However, it should be noted that recent experimental [147, 148]

and theoretical [135, 149] results indicate that the rate constant for (R13) may be faster

than recommended by Sangwan and Krasnoperov [133] and more work on this step is

desirable.

5.3.2 R13) HO2 +OH=H2O +O2

The rate constant for this reaction, which is one of the termination paths for the OH

radical, has been in discussion. Low-temperature results are in good agreement [150],

but shock tube data [151] indicated a very unusual temperature dependence with a

narrow minimum in the rate constant in the 1000–1200 K range. While these data, to-

gether with early high-temperature measurements [152–154], were impressively fitted

to Arrhenius format by Rasmussen et al. [102], later studies indicate that the unusual
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behavior wasmost likely an artifact of the experimental interpretation. The shock tube

work at intermediate and high temperatures by Hong et al. [129, 131] did not support

the early work, indicating that the rate constant was a more smooth function of tem-

perature. This was confirmed recently by Burke et al. [135], who re-interpreted the

published experimental data for the rate of R13, considering carefully uncertainties.

Their recommended rate constant, obtained from a combination of ab initio calcula-

tions and analysis of the experimental data, was adopted in the present work. It is in

average 50% lower in the 700-900 K range than the value suggested by Keyser [150]

and used in the reference model [127].

5.3.3 R14) HO2 +HO2=H2O2 +O2

Recombination of HO2 plays a critical role in the ignition process. Burke et al. [127]

discussed the rate of this reaction, noting that available data at combustion tempera-

tures [151, 155] exhibited significant differences. Recently, Zhou et al. [134] calculated

rate coefficients for reaction R14 using statistical rate theory in conjunction with high

level ab initio calculations. Their value shows a good agreement with experimental

results at temperatures below 500 K [156] and also above 1000 K [151], but in general

it is higher (around 50 % at 700 K) than that from Hippler et al. [155], which was used

in the reference model [127]. Considering the large discrepancy in the reported mea-

surements, we consider the theoretical value more reliable and use it in the present

work.

5.4 Results and Discussion

5.4.1 Oxidation in the laminar flow reactor

The experimental results, obtained at a pressure of 50 bar, temperatures in the range

of 700-900 K, and stoichiometries ranging from very fuel-rich to very fuel-lean, were

interpreted in terms of a plug-flow model with constant P and T, corresponding to the

isothermal part of the reactor. The simulations were conducted with Chemkin [109].

Comparison to results calculated using the full measured temperature profiles con-

firmed that the heating and cooling regions of the reactor did not contribute signifi-

cantly to the reaction.

Figure 5.1 compares experimental and calculated concentrations of hydrogen and

oxygen for reducing conditions (Φ = 11.9). Hydrogen oxidation is initiated at 748–

775 K and reaction is completed at a temperature of 825 K. Simulations are shown for
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both the present mechanism and the reference scheme by Burke et al. [127]. For both

models, predictions agreewell with the measurements. The experimental data indicate

that a few ppm of oxygen remains at high temperatures, but this is attributed to the

uncertainty in measuring oxygen at low concentrations in the current configuration

of the GC with argon as the carrier gas.

Figure 5.1: Results of experiments under reducing conditions (0.95% H2 and 0.04% O2 in N2,
Φ=11.9) at 50 bar pressure. The isothermal zone residence time is given by τ [s]=5661/T[K].
Symbols mark experimental results and lines denote predictions of the present model and the
model by Burke et al. [127].

Figure 5.2 shows results for stoichiometric conditions (Φ = 1.03). Here, the onset of

reaction is shifted to slightly higher temperatures, 798–823 K. The present mechanism

predicts a slightly faster consumption rate for H2 than the model of Burke et al., but

both sets of predictions are in agreement with the experimental results within the

uncertainty.

Results for oxidizing conditions can be found in Fig. 5.3. Two sets of experiments

are shown, with equivalence ratios ofΦ = 0.05 andΦ = 0.0009 (oxygen atmosphere), re-

spectively. Similar to the stoichiometric experiment, reaction is initiated at 798–823 K

atΦ = 0.05, but at φ = 0.0009 onset of reaction is shifted to slightly lower temperatures

(775–798 K). Furthermore, the oxygen atmosphere leads to amore complete conversion

of hydrogen at the maximum temperature. Under the conditions of Fig. 5.3, the differ-

ences in predictions between the two mechanisms are more pronounced. For both sets

of data the modifications in the mechanism made in the present work result in an im-

proved prediction of the hydrogen concentration, especially at the high temperatures.

However, bothmodels tend to underpredict theH2 consumption at temperatures above
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Figure 5.2: Results of experiments under stoichiometric conditions (0.31% H2 and 0.15% O2 in
N2,Φ=1.03) at 50 bar pressure. The isothermal zone residence time is given by τ [s]=5661/T[K].
Symbols mark experimental results and lines denote predictions of the present model and the
model by Burke et al. [127].

800 K.

Based on a rate of production analysis, the reaction pathways for consumption of

hydrogen are determined. Independent of stoichiometry, the consumption paths are

generally similar. Hydrogen is mainly consumed via reaction R3 (H2 + OH = H2O +

H). The atomic hydrogen formed mostly recombines with O2, H + O2 (+M) = HO2

(+M) (R9). Self-reaction of HO2, HO2 + HO2 = H2O2 + O2 (R14), then yields hydrogen

peroxide, which subsequently dissociates thermally to form the OH radicals required

for chain branching, H2O2 (+M) = OH + OH (+M) (R15). Reaction R17b (H2 + HO2 =

H2O2 + H) is important for initiation at all stoichiometries, but only under reducing

conditions does it consume a considerable fraction of H2.

It is known that competition between reactions R1 (H + O2 = O + OH) and R9 (H +

O2 (+M) = HO2 (+M)) largely determines the generation of chain carriers in combus-

tion of hydrogen as well as most hydrocarbons [139]. R1 is a chain branching reaction

while R9 yields HO2, a less active radical. For this reason, dominance of R1 over R9

leads to a fast ignition and a higher fuel consumption rate. However, under the con-

ditions of the present study with a high pressure and comparatively low temperatures

R1 is not competitive, and the dominance of R9 leads to long ignition delays and a low

conversion rate of H2.
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Figure 5.3: Results of experiments under oxidizing conditions (0.16% H2 and 1.60% O2 in N2,
Φ=0.05) and experiments in oxygen atmosphere (0.17 % H2 and 93.92 % O2 in N2, Φ=0.0009)
at 50 bar pressure. The isothermal zone residence time is given by τ [s]=5661/T[K]. Symbols
mark experimental results and lines denote predictions of the present model and the model by
Burke et al. [127].

Figure 5.4 shows the results of a sensitivity analysis. For reducing conditions the

rate-controlling reactions for H2 consumption are R17b, R15, and R14, respectively.

Oxidation is promoted by the chain branching sequence H2 + HO2 = H2O2 + H (R17b),

H2O2 (+M) = OH + OH (+M) (R15), while it is inhibited by the terminating step HO2 +

HO2 = H2O2 + O2 (R14). Therefore, for reducing conditions the competition between

R17b and R14 is quite important for the hydrogen conversion rate. The rate constant

for R14 was modified in the present work, but the value is close to that used in the

reference mechanism of Burke et al. and modeling predictions are very similar under

reducing conditions.

For stoichiometric conditions and at a higher temperature, the most sensitive reac-

tions are R17b, R15, R14, and R3. R17b remains themost sensitive step since it promotes

initiation; however, it is no longer important for consumption of hydrogen. Predictions

now become sensitive to R3, which is the main hydrogen consumption step. Other re-

actions exhibit small positive (R13, R16, R19) or negative (R1) sensitivity coefficients.

Under oxidizing conditions, R15 and R17b continue to be important for promoting

reaction. However, as the oxygen concentration increases, the sensitivity towards re-

actions involving O2 increases. Modeling predictions now become more sensitive to

the competition between R1 and R9, but due to the dominance of R9 compared to R1 the
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coefficients never attain large values. Notably, the chain terminating step HO2 + OH =

H2O + O2 (R13) increases in importance and exhibits the largest sensitivity coefficient

at 900 K for the conditions of the oxygen atmosphere experiment (Fig. 5.4). While it is

not very important for initiation, it plays a significant role for the H2 consumption rate

once reaction is initiated. The difference in modeling predictions between the present

mechanism and that of Burke et al. can largely be attributed to the change in the value

of k13. The present data support a value of k13 at 800-900 K within the range proposed

by Hong et al. [129] and Burke et al. [135].

Figure 5.4: Normalized sensitivity coefficients for hydrogen at four investigated stoichiome-
tries in the flow reactor, calculated at the end of the nominal reactor residence time. The sen-

sitivity coefficient is defined as SH2, i =
(ΔH2/H2)
(Δki/ki ) . The Si’s are normalized to have

N∑
i=1

S2i = 1 (N

is the total number of reactions).

For the present results at pressure of 50 bar and temperatures of 700–900 K, few

comparable measurements are available. Pang et al. [138] reported ignition delay times

for stoichiometric H2/O2 highly diluted in Ar at a pressure of 3.5 atm and temperature

above 923 K. Mueller et al. [143] investigated ignition of hydrogen at 880-890 K at

6.5 atm pressure andΦ = 0.3. In the present work ignition has been detected at a lower

temperature while the pressure is much higher, above the third explosion limit. On

the other hand, Beerer and McDonell [144] reported ignition for H2/air at pressure,
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temperature, and Φ of 5.8 atm, 753 K, and 0.28, respectively. However, every attempt

to reproduce their results with the current model and a few other models failed.

For sub-atmospheric pressure and a temperature of 880 K, Mueller et al. [143] found

that R1–R3 and R9–R11 were the most sensitive reactions for hydrogen consumption.

The controlling reactions under the conditions of the present work are quite different,

with H2O2 and HO2 chemistry being dominant. The generation of chain carriers, as

well as the oxidation paths once initiation has occurred, is dominated by reactions

involving HO2 and H2O2. Reaction of H with O2 yields HO2 (R9), and the sequence

R15, R17 controls the reaction rate. This is consistent with the finding of Dryer and

Chaos [125] that ignition of hydrogen at high pressure is controlledmainly by reactions

R15 and R17. Recombination of HO2 (R14) and reactions OHwith HO2 (R13) and H2O2

(R19) are among the important inhibition steps.

5.4.2 Ignition delay times in shock tubes and RCM

The present model is further evaluated by comparing predictions to available data for

ignition delay times of hydrogen in shock tubes and RCM reactors. Here comparisons

are limited to shock tube data published by Herzler and Naumann [137] and Keromnes

et al. [128], respectively, and RCM data from Gersen et al. [142]. Further evaluation

of the model by comparison to other published data can be found in the supplemental

material.

Figure 5.5 comparesmodeling predictionswith the data from shock tubes and RCM.

Overall, the agreement between the current model and the experimental results is

good, especially away from the low temperature cases where the uncertainty of the

measurements (due to pressure rise prior to ignition) is also increased considerably.

Herzler and Naumann [137] reported hydrogen ignition delay time at pressures of 1,

4, and 16 bar and intermediate temperatures. They found that for observation times

less than 4.5 ms, pressure changes were negligible so that gas dynamic effects could

be neglected and a constant u and v model was suitable for use. The prediction for

ignition delay at low temperatures and especially high pressures is overestimated by

the constant u, v model. However, as temperature increases, the agreement between

the model and the experiments is improved considerably.

In a more recent measurement in the same shock tube device [128], it was found

that changing the bath gas from argon to nitrogen increased the ignition delay time

considerably. It can be explained partly by considering the difference between argon

and nitrogen specific heats; the lower heat capacity of Ar results in a faster temperature
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rise from pre-ignition heat release. From the modeling point of view, the rate constant

for R9 in argon is lower than that in nitrogen, and as discussed above, promotion of

R9 inhibits ignition. Interestingly, changing the bath gas has a larger impact at 4 atm

compared to the other pressures.

Gersen et al. [142] measured autoignition delay times for H2/O2/N2/Ar mixtures in

an RCM reactor at pressures resembling those of the present work. Figure 5.5 includes

data obtained as a function of temperature at a constant pressure of Pc ∼ 40 bar at stoi-
chiometric conditions and Pc ∼ 50 bar at fuel–lean conditions. The ignition delay time

decreased with increase in temperature and a similar sensitivity toward temperature

is observed for both stoichiometric mixtures.

Figure 5.5: Ignition delay time of hydrogen. Symbols mark experimental results obtained
by Herzler and Naumann [137] (φ=0.5, in 93% Ar) and by Keromnes et al. [128] (φ=0.5, in 93%
N2) in shock tubes and by Gersen et al. [142] in a RCM. Lines denote predictions of the present
model. The maximum of OH concentration has been used in determination of ignition.

5.4.3 The pressure and temperature dependence of ignition de-

lay times for H2

The shock tube results of Herzler and Naumann [137] show that the ignition delay for

H2 is a complicated function of pressure and temperature. For fuel–lean mixtures and

temperatures below 1060 K, the ignition delay increased as the pressure rose. On the

other hand, at temperatures in the range of 1060–1175 K, the ignition delay decreased

by pressure rise to 4 bar but increased by a further pressure rise to 16 bar. For tem-

peratures as high as 1250 K, the ignition delay decreased with increasing pressure, as
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expected in general for most fuels.

To our knowledge, this complex behavior has not previously been discussed in de-

tail. For this reason we have used the present reaction mechanism to simulate ignition

delay times of hydrogen at different temperatures and pressures. The gas composition

is selected similar to the experiments by Zhang et al. [139]. As can be seen from Fig. 5.6,

three regions and two corresponding inflection points can be recognized for the igni-

tion delay profile versus pressure. When the pressure increases from sub-atmospheric

to the first inflection point, the ignition delay decreases gradually. In contrast, between

the two inflection points, the ignition delay grows rapidly with an increase in pressure.

Finally at pressures above the second inflection point, the ignition delay decreases as

pressure rises. The inflection points are very sensitive to temperature; e.g., the first

inflection pressure increases from 0.8 atm to 50 atm when the temperature rises from

900 K to 1400 K.

Figure 5.6: Ignition delay times of H2/O2/Ar at φ = 0.5. Lines denote model predictions using
the constant u, v model. In determination of ignition, the maximum of OH concentration has
been used. The investigated gas consists of 3.47% H2 and 3.47% O2 in Argon.

The observed variations of ignition delay time with pressure and temperature is

in agreement with the existing experimental results. The RCM experiments of Gersen

et al. [142] showed that the ignition delay decreases with increase of pressure at tem-

peratures around 1000 K and pressures above 20 atm. Zhang et al. [139] found ignition

delay to increase with pressure at temperature and pressure ranges of 1093–1170 K and

5–20 bar, respectively. The results are also consistent with the data in temperature of
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1100–1200 K reported by Herzler and Naumann [137]. Moreover, Brower et al. [157]

observed the non-monotonic effect of pressure on ignition delay of hydrogen in their

simulations.

Based on the rate of production analysis, consumption pathways for hydrogenwere

determined at pressures of 2, 5, 10, and 40 atm and a typical temperature of 1100 K.

Contrary to the situation in the flow reactor, the H + O2 reaction is not governed

solely by R9; R1 plays a significant role and can overcome R9 at low pressures. As a

consequence R2 (H2 + O = H + OH) is able to compete with R3 (H2 + OH = H2O + O) as

a major consumption step for H2. While HO2 conversion to OH was mainly through

R14, R15, and R17 at the high-pressure low-temperature conditions, the mechanism

becomes more complicated here, and other reactions, such as R11 (HO2 + H = OH +

OH), contribute significantly at some pressures.

It is clear that as the pressure rises, the concentration of the reactants also increases.

From a kinetics point of view, it is of interest to separate the effect of the concentration

rise from the effect of the pressure increase. To do that, the mole fractions of reactants

are reduced as the pressure rises, so the reactant concentrations are kept constant.

Furthermore, it is beneficial to test the impact of an increasing concentration while

keeping the pressure constant. As displayed in Fig. 5.7, while increasing pressure in

general cause a non-monotonic behavior in ignition delay, increasing the pressure but

fixing the concentration prolongs the ignition delay. In contrast, concentration growth

facilitates ignition at a constant pressure. Therefore, when the pressure of the system

increases, the ignition delay time is determined by the balance of these two opposite

effects.

In summary it seems that the most important parameters in controlling ignition

of hydrogen at the conditions investigated here (900–1400 K and 1–100 atm) are the

competition between R1 and R9 for H atom consumption and competition between R2,

R3, and R17b for H2. However, also competition between R10, R11, R12, R14, and R17

in consumption of HO2 has an impact on the ignition time.
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Figure 5.7: Effect of pressure and concentration on ignition delay time of 3.47% H2 + 3.47%
O2 in Argon at 1100 K. ’X fixed’ denotes calculations with constant inlet mole fractions but
varying pressure. ’[X] fixed’ denotes calculations with varying pressure but constant inlet
reactant concentrations (mole/m3), obtained by adjusting inlet mole fractions. ’P fixed’ denotes
calculations with constant pressure, but varying inlet mole fraction and consequently inlet
reactant concentrations. The maximum of temperature gradient is used to detect ignition.

5.5 Conclusion

Hydrogen oxidation was investigated in a laminar flow reactor at 50 bar pressure and

temperatures of 700–900 K. Results provided information about the onset temperature

for reaction and the H2 consumption rate upon initiation at conditions above the third

explosion limit. Onset of reaction happened at lower temperatures at reducing condi-

tions, compared to stoichiometric and oxidizing conditions. The data were interpreted

in terms of a detailed chemical kinetic model. The reaction mechanism was based on

recent work of Burke and coworkers, updating the rate constants for OH + OH, HO2

+ OH, and HO2 + HO2. Modeling predictions were in good agreement with the mea-

surements in the flow reactor, as well as with selected shock tube and RCM ignition

delay data from literature. From the calculations, it was possible to explain H2 oxida-

tion behavior under conditions dominated by reactions involving HO2 and H2O2 (high

pressure, 700-900 K), as well as the complex behavior of hydrogen ignition delays as a

function of pressure and temperature in the ranges of 1–100 bar and 900–1400 K.
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5.6 Supplementary materials

5.6.1 Reaction mechanism

Table 5.1: Present reaction mechanism for H2/O2. k = ATnexp(−E/(RT )), units are mol,
cm3, K , seconds, and Cal/mol.

Arrhenius data

Reactions A n E Reference

R1 H+O2 = O+OH 1.04E+14 0.00 15286 see [127]

R2 O+H2 = H+OH 3.82E+12 0.00 7948 see [127]

duplicate reaction 8.79E+14 0.00 19170

R3 H2+OH = H2O+H 2.16E+08 1.51 3430 see [127]

R4 OH+OH = O+H2O 1.35E+07 1.69 -1166 [133], p.w.

duplicate reaction -2.67E+10 0.57 0.0

R5 H2+M = H+H+M 4.58E+19 -1.40 104380 see [127]

Enhanced third-body efficiencies: H2=2.5/ H2O=12/CO=1.9/

CO2=3.8/ AR=0.0/ HE=0.0/

H2+AR = H+H+AR 5.84E+18 -1.10 104380

H2+HE = H+H+HE 5.84E+18 -1.10 104380

R6 O+O+M = O2+M 6.17E+15 -0.50 0 see [127]

Enhanced third-body efficiencies: H2=2.5/ H2O=12/ CO=1.9/

AR=0.0/ HE=0.0 / CO2=3.8/

O+O+AR = O2+AR 1.89E+13 0.0 -1788

O+O+HE = O2+HE 1.89E+13 0.0 -1788

R7 O+H+M = OH+M 4.71E+18 -1.0 0 see [127]

Enhanced third-body efficiencies: H2=2.5/ H2O=12/ CO=1.9/

CO2=3.8/ AR=0.75/ HE=0.75/

R8 H2O+M = H+OH+M 6.06E+27 -3.32 120790 see [127]

Enhanced third-body efficiencies: H2=3.0/ H2O=0/CO=1.9/

N2=2.0/ O2=1.5/ HE=1.1/ CO2=3.8/

H2O+H2O = H+OH+H2O 1.01E+26 -2.44 120180

R9 H+O2(+M) = HO2(+M)a 4.65E+12 0.44 0 see [127]

Continued on next page
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Table 5.1 – continued from previous page

Arrhenius data

Reactions A n E Reference

Low-pressure limit: 6.37E+20 -1.72 525

Troe parameters: /0.5 1.00E-30 1.00E+30/

Enhanced third-body efficiencies: H2=2.0/ H2O=14/ CO=1.9/

Ar=0.67/ O2=0.78/ HE=0.8/CO2=3.8/

H+O2(+M) = HO2(+M)b 4.65E+12 0.44 0

Low-pressure limit: 9.04E+19 -1.50 492

Troe parameters: /0.5 1.00E-30 1.00E+30/

Enhanced third-body efficiencies: H2=3.0/ H2O=21/ CO=2.7/

N2=1.5/ O2=1.1/ HE=1.2/CO2=5.4/

R10 HO2+H = H2+O2 2.75E+06 2.09 -1451 see [127]

R11 HO2+H = OH+OH 7.08E+13 0.00 295 see [127]

R12 HO2+O = O2+OH 2.85E+10 1.00 -723 see [127]

R13 HO2+OH = H2O+O2 1.93E+20 -2.49 584 [135]

duplicate reaction 1.21E+09 1.24 -1310

R14 HO2+HO2 = H2O2+O2 1.179E+9 0.77 -1825 [134]

duplicate reaction 1.251E+12 0.30 7397

R15 H2O2(+M) = OH+OH(+M) 2.00E+12 0.90 48749 see [127]

Low-pressure limit: 2.49E+24 -2.30 48749

Troe parameters: /0.43 1E-30 1E+30/

Enhanced third-body efficiencies: H2=3.7/ H2O=7.5/CO=2.8/

O2=1.2/ HE=0.65/ CO2=1.6/ N2=1.5/ H2O2=7.7/

R16 H2O2 +H = H2O+OH 2.41E+13 0.00 3970 see [127]

R17 H2O2 +H = HO2+H2 4.82E+13 0.00 7950 see [127]

R18 H2O2 +O = OH+HO2 9.55E+06 2.00 3970 see [127]

R19 H2O2 +OH = HO2+H2O 1.74E+12 0.00 318 see [127]

7.59E+13 0.00 7270
a For N2 as the bath gas
b For Ar or He as the bath gas
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5.6.2 Tabulated data from the flow reactor

Table 5.2: Conditions and results of reducing experiments (0.952% H2 and 0.039% O2 in N2,
Φ=12.07) at 50 bar pressure.

Exp-ID T τ H2 O2

[K] [s] [ppm] [ppm]
RD1 702.45 7.964 9532 395
RD2 723.15 7.804 9510 378
RD3 748.15 7.623 9497 375
RD4 774.55 7.445 9377 319
RD5 798.15 7.146 8887 96
RD6 823.15 6.846 8728 37
RD7 847.95 6.566 8721 29
RD8 873.15 6.451 8716 30
RD9 899.35 6.339 8744 15

Table 5.3: Conditions and results of stoichiometric experiments (0.310% H2 and 0.151% O2 in
N2, Φ=1.03) at 50 bar pressure.

Exp-ID T τ H2 O2

[K] [s] [ppm] [ppm]
ST1 702.5 7.964 3104 1508
ST2 723.2 7.804 3082 1502
ST3 748.2 7.623 3072 1492
ST4 774.6 7.445 3065 1490
ST5 798.2 7.146 2975 1466
ST6 823.2 6.846 2494 1216
ST7 848.0 6.566 1428 699
ST8 873.2 6.451 738 387
ST9 899.4 6.339 452 253
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Table 5.4: Conditions and results of oxidizing experiments (0.1610 % H2 and 1.6039% O2 in N2,
Φ=0.05) at 50 bar pressure.

Exp-ID T τ H2

[K] [s] [ppm]
OX1 702.5 7.964 3104
OX2 723.2 7.804 3079
OX3 748.2 7.623 3062
OX4 774.6 7.445 3067
OX5 798.2 7.146 2991
OX6 823.2 6.846 2497
OX7 848.0 6.566 1433
OX8 873.2 6.451 746
OX9 899.4 6.339 455

Table 5.5: Conditions and results of experiments in oxygen atmosphere (0.1656 % H2 and
93.9171% O2 in N2, Φ=0.0009) at 50 bar pressure.

Exp-ID T τ H2

[K] [s] [ppm]
VX1 702.5 7.964 1656
VX2 723.2 7.804 1662
VX3 748.2 7.623 1652
VX4 774.6 7.445 1645
VX5 798.2 7.146 1502
VX6 823.2 6.846 920
VX7 848.0 6.566 392
VX8 873.2 6.451 165
VX9 899.4 6.339 71

5.6.3 Comparison of rate constants for selected reactions

Discussion of rate constants for reactions R4, R13, and R14 can be found in the main

body of the present paper. Here, rates of these reactions are shown in figures 5.8, 5.9,

and 5.10.

The rate suggested by Sangwan and Krasnoperov [133] for reaction R4 has been

expressed in a non-Arrhenius form:

k = (3.071 × exp(−T/190K ) + 0.181(T/300K )1.73) × 1012 cm3mole−1s−1

In the present work, we introduced a modified Arrhenius-form equation for the Sang-
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wan and Krasnoperov [133] suggestion to be used in Chemkin [109]:

k = 1.350 × 107 × T1.689 × exp(1166.8/(RT )) − 2.697 × 1010 × T0.567 cm3mole−1s−1

The Arrhenius-form rate shows at most 4% deviation from the original curve at tem-

perature above 400 K.

Figure 5.8: Rate constant of reaction R4 (OH+OH=O+H2O) as a function of temperature. Sym-
bols mark experimental data fromWooldridge et al. [146], Bedjanian et al. [145], Sangwan et al.
[132], Sangwan and Krasnoperov [133], Altinay and Macdonald [148], Bahng and Macdonald
[147], Sun and Li [158], and Sutherland et al. [159]. Lines denote suggestions by Baulch et al.
[136], Burke et al. [135], Sangwan and Krasnoperov [133], Altinay and Macdonald [148], and
Nguyen and Stanton [149].
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Figure 5.9: Rate constant of reaction R13 (HO2+OH=H2O+O2) as a function of temperature.
Symbols mark experimental data from Keyser [150], Kappel et al. [151], and Hong et al. [129,
131]. Lines denote suggested curves from Burke et al. [135], Hong et al. [131], Keyser [150],
and Rasmussen et al. [102].

Figure 5.10: Rate constant of reactionR14 (HO2+HO2=H2O2+O2) as a function of temperature.
Symbols mark experimental data from Patrick and Pilling [156], Kappel et al. [151], Hippler et
al. [155], and Lightfoot et al. [160]. Lines denote suggested curves from Kappel et al. [151],
Hippler et al. [155], and Zhou et al. [134].
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5.6.4 Modeling of the flow reactor

5.6.4.1 Reactor temperature

Temperature profile of the laminar flow reactormeasured at the outerwall of the quartz

tube is displayed in figure 5.11. Linear interpolation was used to estimate temperature

profile for temperatures between the measured ones.

Figure 5.11: Temperature profile measured inside the pressure shell wall of the flow reactor
at different isothermal temperatures. The flow was pure nitrogen at 3.06 NL/min at 50 bar
pressure.

5.6.4.2 Reaction path analysis

Reaction pathway for consumption of hydrogen under the flow reactor conditions was

determined and is shown in figure 5.12. For all stoichiometries and for most of the

time, the consumption path is similar. Reaction R17 (the dashed path) became active

at the time of ignition but then disappeared from reactions controlling post-ignition

consumption of H2.

H2 +OH = H2O + H (R3)

H +O2( +M) = HO2( +M) (R9)

HO2 +HO2 = H2O2 +O2 (R14)

H2O2( +M) = OH +OH( +M) (R15)

H2O2 + H = HO2 + H2 (R17)
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Figure 5.12: Major consumption path of hydrogen for all investigated stoichiometries under
the flow reactor conditions. Calculation was done at 773 K for reducing and 823 K for other
stoichiometires.

5.6.5 Ignition in the rapid compression machine

To further evaluate the present model at high pressure andmoderate temperatures, the

mechanism was tested against experimental autoignition delay times of H2/O2/N2/Ar

mixtures measured in an RCM (rapid compressionmachine) by Gersen et al. [142]. The

measurements have been done for stoichiometric and fuel–lean mixtures at tempera-

tures and pressures of 940–1050 K and 20–70 bar, respectively. To take into account the

effects of heat loss and variable specific volume during the RCM experiments, the spe-

cific volume history of the adiabatic core was used as input into the simulations. The

specific volume of the adiabatic core was derived from the measured pressure trace

up to the point were significant heat release occurs, and extrapolated exponentially

thereafter. This method faithfully reproduces the pressure history during compression
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and during the post compression stage as shown in ref [161]. Figure 5.13 presents the

experimental and calculated pressure trace at fuel–lean conditions. As can be seen, ex-

cellent agreement is found between the measured and calculated pressure traces. For

calculations, a modified version of the SENKIN code [162] is used. For more details

about this simulation procedure, we refer to ref [161].

Figure 5.13: Measured (solid line) and computed (dotted line) pressure traces for a fuel lean
(φ=0.5) H2/O2/N2/Ar mixture in the RCM at Pc=30 bar and Tc=1010 K [142].

Figures 5.14 and 5.15 show the comparison between the measured (points) and cal-

culated (lines) autoignition delay times. In figure 5.14 the autoignition delay times

are presented as a function of pressure at a constant temperature; Tc ∼995 K at stoi-

chiometric conditions and Tc ∼1010 K at fuel–lean conditions. For both oxidizing and

stoichiometric conditions, ignition delay time decreases as pressure increases in the

investigated range. Although ignition delays at both stoichiometries are very close at

the lowest pressure, the difference between them increases at higher pressures. The

stoichiometric mixture is more sensitive to increase in pressure manifesting itself in a

sharper slope in the figure. An excellent agreement between the measurements and

computations can be seen for the fuel–lean conditions (see figure 5.14) while for the

stoichiometric conditions ignition delay is slightly underestimated.

Figure 5.15 shows the ignition delays versus temperature measured at a constant

pressure of Pc ∼40 bar at stoichiometric conditions and Pc ∼50 bar at fuel–lean condi-

tions. Ignition delay time decreaseswith increase in temperature and a similar sensitiv-

ity toward temperature is observed for both stoichiometric mixtures. From figure 5.15

it can be seen that computations agree very well with the measurements.
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Figure 5.14: Ignition delay time of H2/O2/Ar/N2 versus pressure for two different stoichiome-
tries and temperatures. Symbols mark experimental results by Gersen et al. [142] and lines
denote the model predictions. φ = 0.5 corresponds to 16.7/16.7/36.7/30.0 of H2/O2/Ar/N2 and
φ = 1.0 corresponds to 28.6/14.3/27.1/30.0 of H2/O2/Ar/N2, respectively.

Figure 5.15: Ignition delay time of H2/O2/Ar/N2 versus temperature for two different stoi-
chiometries and pressures. Symbols mark experimental results by Gersen et al. [142] and lines
denote the model predictions. φ = 0.5 corresponds to 16.7/16.7/36.7/30.0 of H2/O2/Ar/N2 and
φ = 1.0 corresponds to 28.6/14.3/27.1/30.0 of H2/O2/Ar/N2, respectively.
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Figure 5.16 represents the sensitivity of H2 in the RCMmodeling. As for ignition in

the flow reactor, R17 is the most sensitive reaction. However, R1 and R14 show much

stronger influence on ignition delay time compared to the flow reactor conditions. R1

gains more control with increasing temperature. The difference in controlling reac-

tions in the RCM and the flow reactor can be explained by the fact that while the

pressure in the RCM is close to the flow reactor, temperature has increased signifi-

cantly.

Figure 5.16: Normalized sensitivity of ignition delay time in the RCM at different stoichiome-
tries and temperatures. Pressure was fixed at 40 bar.

5.6.6 Ignition delay time in shock tubes

Ignition delay time of hydrogen at high pressures and intermediate to high tempera-

tures has been measured by Davidson and Hanson [33]. As shown in figure 5.17, at

different pressures and gas compositions the ignition delay time decreases as temper-

ature increases, similar to observation for the experiments in the RCM. A temperature

range of 1340–1360 K (at 64 bar) was covered by both experimental sets of E and F.

Both cases represent similar pressure, temperature, and equivalence ratio but case E is

more diluted by nitrogen. As can be seen, ignition delay in case E is higher than case

F. Here, increasing the concentrations of reactants while the equivalence ratio is fixed,

reduces ignition delay.

Cases B and F overlapped in temperature around 1300 K. From case F to B, com-

bination of an increase in reactant concentration and a drop in pressure shortens the

ignition delay considerably. It is in agreement with the discussed non-monotonic sen-
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Figure 5.17: Ignition delay time of H2/O2/N2 at stoichiometric conditions. Symbols mark
experimental results obtained in a shock tube by Davidson and Hanson [33] and lines denote
model predictions using the constant u, v model. In determination of ignition, maximum of
[OH] gradient has been used. ”A”,”C”,”F”, and ”G” denote experiments on 0.5% H2 + 0.25% O2

at 33, 57, 64, and 87 atm pressures, respectively. ”B” represents results of experiments at 33 atm
pressure and 2% H2 + 1% O2. ”E” shows results at 64 atm pressure and 0.1% H2 + 0.05% O2.

sitivity of hydrogen ignition delay to pressure.

In general, the present model can follow the ignition delay time variations fairly

well, while usually the delay time is over-predicted. However, at higher pressures

agreement between themodel and themeasurements improves; e.g. for case G (87 atm)

the model prediction is in the range of uncertainty of the measurements.

In a recent work by Dryer and Chaos [125], the large differences between mea-

surements and chemical kinetic prediction of ignition delay time at low temperatures

has been discussed. They have found that in this regime, compressible flow, mixing,
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and surface reactions are the main sources of the reported large difference between

models prediction and measurements. In a more recent work by Chaos and Dryer

[121], they have found that the ignition delay time measurements in shock tubes, es-

pecially at the low temperature range of its operation, can be affected significantly

by slight pressure (and associated temperature) increases before ignition. Such pre-

ignition pressure variations can result in measurement of ignition delay at a higher

pressure thanwhat was sought. This pressure/temperature increase has been observed

even for non-reactive mixtures, and it is not related to consumption of reactants. In-

stead, it is believed to be a result of fluid dynamic nonidealities [121].

To compensate for this effect in the simulation, a model suggested in [121] is used.

There, instead of the conventional constant u and v model, volume is variable and is

changed by pressure according to the isentropic equation,

v(t) =
1

ρ0

[
P(t)
P0

]−1/γ
where v is the specific volume, P the measured pressure, γ the specific heat ratios,

and P0 and ρ0 are the pressure and density just after the shock wave. In this way,

the pressure profile for a non-reactive mixture in the shock tube is used for calcula-

tion of specific volume according to the isentropic equation of state for ideal gas. The

calculated volume profile then is used as an input to Chemkin [109].

Nevertheless, such a correction for the data by Davidson and Hanson [33] is not

possible due to lack of the relevant pressure history. Absence of such necessary cor-

rection can partly explain the deviation of the model from measured data at low tem-

peratures.

Zhang et al. [139] have investigated hydrogen ignition delay in a shock tube at

pressures of 5, 10, and 20 bar. In figure 5.18 their measurements as well as the results

of simulations with the present model are shown. All experiments were conducted in

a fuel–lean mixture and with the reactants concentration higher than the experiments

by Davidson and Hanson [33]. According to their measurements in a non–reactive

mixture, pressure was constant until 1.5 ms after the shock and then increased with a

slope of 4% per ms. This pressure profile is used as an input to the model as outlined

earlier.

As expected, the ignition delay time decreases considerably as the temperature

rises at all investigated pressures. However, the stated non–monotonic sensitivity of
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Figure 5.18: Ignition delay time of H2/O2/Ar at φ = 0.5. Symbols mark experimental results
obtained in shock tube by Zhang et al. [139] and lines denote the current model predictions. In
determination of ignition, maximum of OH concentration has been used. Gas composition in
all experiments is 3.47% H2 and 3.47% O2 in Argon.

ignition delay to pressure is more evident at low temperatures. Although the effect

of pressure on ignition delay was negligible for temperatures above 1170 K, ignition

delay increased with pressure rise at lower temperatures.

In a recent measurement by Keromnes et al. [128] using the same shock tube as

in ref [137], it was found that changing the bath gas from argon to nitrogen affected

the ignition delay time of the mixture considerably (see figures 5.19 and 5.20). Shorter

ignition delay in argon atmosphere can be explained partly by considering large dif-

ferences between their specific heats. Lower heat capacity of Ar results in a faster

temperature rise because of pre-ignition heat release. Moreover, rate of R9 is lower

in argon atmosphere especially at the low pressure limit. The lower rate of R9 means

more activation of the chain branching competitor, R1, which leads to a faster ignition.

Interestingly, changing the bath gas showed a more dominant effect at 4 atm compared

to the other pressures.

Data for fuel–richer and –leaner mixtures were also provided in the same study

by Keromnes et al. [128]. As can be seen in figure 5.21, ignition delay for the lean case

is longer than for the rich case and it seems that effect of stoichiometry became more

evident at lower temperatures.

All in all, agreement between the current model and the experimental results is

good especially far from extreme low temperature situations, where the uncertainty
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Figure 5.19: Ignition delay time of hydrogen. Symbols mark experimental results at φ=1 (in
Ar) from Herzler and Naumann [137]. Lines denote model predictions using the constant u, v
model. Maximum of OH concentration has been used in determination of ignition.

of the measurements also increases considerably.

Figure 5.20: Ignition delay time of hydrogen. Symbols mark experimental results at φ=0.5
(in N2) from Keromnes et al. [128] and (in Ar) from Herzler and Naumann [137]. Lines denote
model predictions using the constant u, v model. Maximum of OH concentration has been used
in determination of ignition.

5.6.6.1 Sensitivity analysis for shock tube

For a better understanding of the ignition chemistry, a temperature of 1100 K was se-

lected as a typical case for sensitivity analysis. Here at higher temperatures comparing

to the flow reactor, competition between reactions R1 and R9 largely determines the

branching ratio of the combustion system as reported previously in ref [127]. Espe-
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Figure 5.21: Ignition delay time of H2/O2/Ar at φ = 0.1 and φ = 4.0. Symbols mark ex-
perimental results obtained in shock tube by Keromnes et al. [128] and lines denote model
predictions using the current. In determination of ignition, maximum of OH concentration has
been used. Composition of the gas mixture for fuel rich and lean conditions are 12.5/1.6/85.9
and 0.8/4.0/95.2 H2/O2/Ar respectively. Simulations have been done in the average pressures
of 15.1 and 16.5 bar.

cially at 2 atm and 40 atm pressures, competition between R1 and R9 controls the igni-

tion while R9 governs the overall rate at 5 and 10 atm. Additionally, R2 (O+H2=H+OH)

was an influential chain–branching reaction at low pressures, while it lost its impor-

tance at higher pressures. At pressures as high as 40 atm, reactions R15 and R17 also

play important roles in ignition of hydrogen at the investigated temperature of 1100 K.

Figure 5.22: Normalized sensitivity of ignition delay time for temperature of 1100 K and gas
composition of 3.47% H2 and 3.47% O2 in Argon.
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5.6.6.2 Reaction path analysis for shock tube

To recognize initial steps in ignition of hydrogen, reaction path analysis was performed

at the time of 0.01% consumption of initial hydrogen. The analysis was repeated for

pressures of 2, 5, 10, and 40 atm, all for an initial temperature of 1100 K. As can bee

seen from figure 5.23, the first step in ignition of hydrogen is similar to consumption

of hydrogen of lower temperature in the flow reactor; H2 + OH = H2O + H. However,

while at the flow reactor conditions reaction R9 was dominant in the consumption of

H radical, here R1 is dominant at low pressures but it is overtaken by R9 at higher pres-

sures. The formed hydroperoxyl radical is generally converted via R11 at low pressures

while it is required to proceed via R17 and then R15 at higher pressures.

H2
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+OH

HO2

+ O2

H2O2

OH

+ H2

-H

-OH

+O2

-O

H2O
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Figure 5.23: Reaction path for hydrogen at time of 0.01% consumption of H2 for pressures
of 2, 5, 10, and 40 atm. Initial temperature was 1100 K. Dashed line were major paths in low
pressures. The gas mixture consisted of 3.47% H2 and 3.47% O2 in argon.
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5.6.6.3 Effect of stoichiometry on ignition delay time

Variation of ignition delay time with fuel equivalence ratio can be interesting.

Keromnes et al. [128] have found noticeable differences between ignition delays

measured in φ = 0.1 and φ = 4.0. To further investigate effect of stoichiometries,

the recent reaction mechanism was used to simulate ignition delay time of hydrogen

at different stoichiometries and pressures while temperature was kept constant and

equal to 1100 K. The inert gas (argon) concentration was kept constant and equal

to 95% to avoid too large concentrations of hydrogen or oxygen. As can be seen in

figure 5.24 the effect of stoichiometry is different at various pressures. At 2 and 5 atm,

ignition delay time grows with increase in fuel to oxidizer ratio. However, for higher

pressures the trend is not linear; the delay time initially decreases and later increases

with rise of equivalence ratio for 10 and 40 atm pressures. The minimum of ignition

delay time can be found in the fuel–lean side for 10 atm while interestingly it shifts to

fuel–rich side for 40 atm pressure.

Figure 5.24: Ignition delay time of H2/O2/Ar at 1100 K temperature and different stoichiome-
tries. Lines denote model predictions using the constant u, v model. In determination of igni-
tion, maximum of OH concentration has been used. The mixture always consists 95% argon.

5.6.7 Laminar burning velocity

Measuring laminar burning velocity of hydrogen has attracted lots of interest during

the years. Most of studies have been dedicated to hydrogen/air mixtures at low initial

temperatures and atmospheric pressure [10, 19, 163–170]. To evaluate the models for

their predictive ability, the unstretched burning velocity of hydrogen/air mixture was

calculated with Chemkin [109]. By adjusting values of Grad and Curv parameters,
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a suitable resolution verified by grid independency tests has been achieved. Further-

more, it was found that considering multi-component transport model and thermal

diffusion (Soret effect) improved the results considerably. A selection of published

measurements of atmospheric flame speed is plotted in figure 5.25. Most of the mea-

surements have reported the maximum of burning velocity at φ � 1.8 while the re-

ported velocity at this point varied from 261 to 298 cm/s, showing discrepancies up to

15%. Generally, divergence of data increased with rise of equivalence ratio.

The present model shows a good agreement under fuel–lean conditions whereas it

lies in the uncertainty range of measurements under fuel–rich conditions. As a general

trend, the most recent measurements reported higher burning velocity for fuel–rich

side which improves the agreement between the model and the experiments. Differ-

ence between the present model and the base model by Burke et al. [127] in prediction

of flame speed is negligible under tested conditions.

Figure 5.25: Unstretched laminar burning velocity of H2/Air at initial conditions of 298 K and
1 atm. Lines denote model predictions and symbols mark experimental results from literature;
Aung et al. [163], Egolfopoulos and Law [10], Hu et al. [164], Huang et al. [19], Kwon and Faeth
[165], Lamoureux et al. [166], Tang et al. [167], Tse et al. [168], Vagelopoulos et al. [169], and
Verhelst et al. [170].
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Abstract

Methane oxidation at the high pressure of 100 bar and intermediate temperatures of

700–900 K was investigated in a laminar flow reactor at fuel-air equivalence ratios (Φ)

of 0.06, 1.0, and 19.7. It was found that under the investigated conditions, the conver-

sion of methane started at 723 K under reducing conditions (Φ=19.7) and at 750 K under

stoichiometric (Φ=1) and oxidizing (Φ=0.06) conditions. A chemical kinetic model for

methane oxidation was developed and evaluated against the present data as well as

data from literature. The modeling yielded satisfactory predictions for the onset tem-

perature of the fuel conversion in the flow reactor as well as the mixture composition

upon ignition. Furthermore, the model compared well with measured ignition delay

times and flame speeds from literature, so its applicability under a wider range of con-

ditions was demonstrated.

6.1 Introduction

The contribution of natural gas to the global energy supply is increasing, at least in

the short term [171]. A large availability and a low emission of pollutants in com-

bustion are among the major reasons to replace other fossil fuels by natural gas. For

an equivalent amount of heat, burning of natural gas produces around 20 and 45 per-

cent less carbon dioxide than burning gasoline and coal, respectively. This reduction

in the emission of green–house gases can reduce the climate change problem signifi-

cantly. Due to recent successes in excavation of shale gas, natural gas will be cheaper

according to some scenarios [4].

While the combustion of natural gas has been studied for years, it remains as a
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challenging area [21, 29, 32, 35, 75, 139]. Some of the challenges in using natural gas

are higher ignition temperature, longer ignition delay time, and lower burning velocity

of natural gas compared to conventional petroleum–based fuels. Depending on the

application, these variations can have adverse consequences if appropriate measures

are not taken.

Experimental methods to study the effects of changing fuel in practical conditions

are not always economic or even feasible. Ignition, as a potentially challenging issue in

the combustion of natural gas, is mainly governed by chemical kinetics. Thus a reliable

chemical kinetic model for methane as the major component of natural gas is vital

in the design and optimization of combustion devices. The oxidation mechanism of

methane, as the simplest practical fuel, has been extensively studied (e.g. see [32, 172–

175]). However, with the recent advances in determining reaction rates, values in some

cases deviate considerably from previously accepted recommendations. Therefore, the

re-examination of the oxidation chemistry of methane is required.

Combustion at high pressures and intermediate temperatures plays a key role in

many applications, e.g. internal combustion engines. Even at higher temperatures,

autoignition depends not only on chemical processes and thermokinetic interactions

at the time of ignition, but also on the earlier, lower temperature chemistry creating

the necessary conditions [176]. Detailed chemical kinetic models are essentially de-

veloped by comparing calculated combustion characteristics with the measured ones,

e.g., ignition delay time, flame speed, and species evolution profiles. However, data

for natural gas at high pressures and intermediate temperatures are scarce. Figure 6.1

shows the pressure and temperature range covered by earlier studies.

The relatively long resident time which is required to study combustion at high

pressures and intermediate temperatures can be realized in flow reactors and rapid

compression machines. Rytz and Baiker [26] investigated the partial oxidation of

methane to methanol in a flow reactor at 698–773 K and 20–50 bar. Melvin [25] mea-

sured the ignition delay time of methane in the pressures of 58–110 atm and temper-

atures around 623 K inside a steel static reactor. Dagaut et al. [27] conducted experi-

ments in a jet-stirred reactor at 900–1300 K and 1–10 atm. Hunter et al. [28] carried out

experiments on CH4/O2 mixtures in a flow reactor at 930–1000 K and 3–10 atm and

found the reaction pathways of methane independent of pressure and temperature for

those conditions. Rasmussen et al. [32] measured methane conversion in a laminar

flow reactor at 50–100 bar and 700–900 K. Based on their results, they called for fur-
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ther investigation of reactions involving alkylperoxyl radicals (e.g. CH3OO). Further

measurements at different conditions can extend the benchmark data on methane con-

version at high pressures and intermediate temperatures.

The major aim of this work was to investigate methane oxidation at high pressures

and intermediate temperatures by conducting experiments in a laminar flow reactor

at 700–900 K and 100 bar. A detailed chemical kinetic model was developed by updat-

ing previous models from the same laboratory [32, 102, 177–179] and was compared

with the measured data and other available combustion characteristics at the highest

pressures reported.
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Figure 6.1: Temperature- and pressure-coverage of earlier experiments and the present ones.
Dashed lines correspond to earlier experiments in [21, 25–35] and solid lines mark the present
experiments.

6.2 Experimental

The experimental setup was a laboratory–scale high–pressure laminar flow reactor

designed to approximate plug flow. The setup was described in detail elsewhere [102]

and only a brief description is provided here. The system was used here to investigate

methane oxidation chemistry at 100 bar pressure, temperatures up to 900 K, and a flow

rate of 3.23 Nliter/min (STP; 1 atm and 273.15 K).

The reactions took place in a tubular quartz reactor (inner diameter of 8 mm), en-

closed in a stainless steel tube that acted as a pressure shell. Using a quartz tube and

conducting experiments at high pressure are expected to minimize the contribution
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from heterogeneous reactions at the reactor wall. The steel tube was placed in a tube

oven with three individually controlled electrical heating elements that produced an

isothermal reaction zone (±6 K) of 37–39 cm. A moving thermocouple was used to

measure the temperature profile inside the pressure shell wall after stabilizing the sys-

tem. The systemwas pressurized from the feed gas cylinders. The reactor pressure was

monitored upstream of the reactor by a differential pressure transducer and controlled

by a pneumatic pressure valve positioned after the reactor. The pressure fluctuations

were less than 0.2 % during the experiments. The reactant gases were premixed before

entering the reactor. All gases used in the present experiments were high purity gases

or mixtures with certified concentrations (±2% uncertainty). Downstream of the re-

actor, the system pressure was reduced to atmospheric level prior to product analysis,

which was conducted by an on-line 6890N Agilent Gas Chromatograph (GC-TCD/FID

fromAgilent Technologies). All GC sampling andmeasurementswere repeated at least

two times to reduce uncertainties of measurements.

For gaseous compounds the GC peak areas were related to concentrations by cal-

ibration against certified gas mixtures (± 2 % from AGA A/S). For liquid compounds,

usually the calibration was based on gasmixtures prepared by injecting a known quan-

tity of the liquid component into a known volume of nitrogen in a Tedlar bag and

allowing the liquid to evaporate. To avoid difficulties in handling formaldehyde, its

calibration was provided by correlating TCD response factors for other components

to calculated thermal conductivities estimated from the Chapman-Enskog kinetic the-

ory [104]. The TCD response factor for formaldehyde was then determined by using

a calculated thermal conductivity with this correlation. In the calculation of the ther-

mal conductivity of formaldehyde, the employed Lennard-Jones force constants (σ =

3.65 Å, ε/K = 313.9 K) were in turn estimated from the critical properties (Lide [105])

using the method of Satterfield [106].

The plug flow assumption was shown by Rasmussen et al. [102] to be a good ap-

proximation for the present operating conditions. Figure 6.2 shows the measured tem-

perature profiles for different isotherms with the flow of pure nitrogen. The residence

time of gases in the isothermal zone of the reactor can be estimated as τ [s]=9557/T[K].

However, it was found that inputting the temperature profile improves the accuracy

of simulation. Therefore, a plug flow reactor with fixed temperature profile and con-

strained pressure was used for modeling in Chemkin [109]. A source of uncertainty in

determining the gas temperature was the effect of heat released from combustion. Due
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to the high level of dilution, this effect was limited. Simulations in Chemkin [109] with

a constant pressure and enthalpy (adiabatic) model lead to maximum 21 K tempera-

ture rise. However, because of the fast heat transfer from the hot gases to the pressure

shell, especially in such a narrow reactor, the deviation of the gas temperature from

the measured temperature should be even smaller.

Figure 6.2: Temperature profile measured inside the pressure shell wall of the reactor at differ-
ent isothermal temperatures. The flow was pure nitrogen at 3.23 NL/min and 100 bar pressure.

6.3 Chemical kinetic model

A chemical kinetic model developed in [32, 102, 178–180] has been the base of the

present model. Recently we updated and evaluated the hydrogen subset of the model

[1]. The reactions which are important under conditions investigated here and belong

to C1 subset are reviewed in this work and more accurate rate constants are imple-

mented when possible.

The dissociation of the formyl radical (R3) as well as its reaction with molecular

oxygen (R4) are the major sources of CO in the combustion of hydrocarbons [181].

HCO( +M) =H + CO( +M) (R3)

HCO +O2 =CO +HO2 (R4)

Namely, the calculation of flame speed is affected by these reactions [181]. Colberg and

Friedrichs [182] measured the rate of R4 and fitted a rate constant for the temperatures
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of 739–1108 K. As shown in figure 6.3, this reaction showed a slight dependency on

temperature. The suggested rate constant by Colberg and Friedrichs [182] deviates

considerably from other measurements at low temperatures, outside its fitting range.

More recently, data from measurements at higher temperatures became available by

Fassheber et al. [183]. In addition to their measurements, Fassheber et al. [183] used

earlier experimental results to fit a rate constant covering awide range of temperatures,

so their suggested rate constant is adopted here.

Figure 6.3: Reaction rate constant for (R4) HCO + O2=CO + HO2. Symbols mark measure-
ments from Colberg and Friedrichs [182], Fassheber et al. [183], Nesbitt et al. [184], Veyret and
Lesclaux [185], and Timonen et al. [186], and DeSain et al. [187]. Lines denote suggested rate
constants from Baulch et al. [136] and Colberg and Friedrichs [182], and Fassheber et al. [183].

The dissociation of the formyl radical (R3) has been more controversial. Hippler

et al. [188] measured the rate of this reaction at 1–140 bar and 590–800 K and derived

a pressure-dependent rate constant with the help of earlier measurements. Simultane-

ously, Krasnoperov et al. [189] measured the rate of HCO dissociation at 0.8–100 bar

and 498–769 K. The measured rate by Krasnoperov et al. [189] was considerably slower

than that by Hippler et al. [188] for a wide range of temperatures and pressures related

to combustion. More recently, Yang et al. [190] studied theoretically the rate of HCO

dissociation over the temperatures of 300–2700 K and the pressures of 0.01–1000 atm.

At atmospheric pressure and medium temperatures, their determined rate is within

the earlier suggestions by Hippler et al. [188] and Krasnoperov et al. [189]. At high

temperatures, where this reaction is sensitive in calculating flame speed, the rate by

Yang et al. [190] agrees better with the one by Krasnoperov et al. [189]. Here we adopt
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the rate constant from Yang et al. [190] while further study of this reaction is crucial.

The formaldehyde chemistry plays a key role in methane combustion [28]. Under

conditions of this work, formaldehyde is mainly converted via either thermal decom-

position (R5 and R6) or reactions with OH (R8) or HO2 (R9). While one channel for

dissociation of formaldehyde is a chain-branching reaction:

CH2O( +M) = HCO + H( +M) (R5)

the other channel produces stable products:

CH2O( +M) = CO + H2( +M) (R6)

The rate constants of both reactions are taken from a recent theoretical study by Troe

[191]. For the reaction between formaldehyde and a hydrogen radical,

CH2O +H = HCO + H2 (R7)

the rate constant is taken from a recent study by Wang et al. [192] who conducted

measurements at 1300–2000 K and extended the rate constant to 200–3000 K by using

TST calculations. The reaction between formaldehyde and the hydroxyl radical,

CH2O +OH = HCO + H2O (R8)

is taken from a work by Wang et al. [193] who investigated this reaction behind a

reflected shock over 950–1400 K. By adding low-temperature data from literature, they

fitted a rate constant over 200–1400 K. For the reaction between formaldehyde and

HO2,

CH2O + HO2 = HCO + H2O2 (R9)

we adopt the rate constant from Eiteneer et al. [194].

At high temperatures, the recombination of the methyl and hydrogen radicals,

CH3 + H( +M)−−CH4( +M) (R10)

is an important terminating reaction [195]. This reaction is especially sensitive in cal-
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culating flame speed [77, 196, 197]. The preferred rate constant is from a recent theoret-

ical study by Troe and Ushakov [198] which compares well with earlier measurements.

The autoignition of alkanes is driven by reactions forming the hydroxyl radical

[199]. The first step in the reaction pathways of methane oxidation at medium tem-

peratures and high pressures is the H-abstraction by an OH radical, R13 [32].

CH4 +OH = CH3 + H2O (R13)

The rate of this reaction is taken from a study by Srinivasan et al. [200].

An important chain-terminating reaction in the combustion of hydrocarbons is the

reaction between a methyl and a hydroxyl radical. This multi-channel reaction can

proceed to different products:

CH3 +OH( +M) = CH2 + H2O( +M) (R15)

= CH2(S) +H2O( +M) (R16)

= CH3OH( +M) (R17)

= CH2OH + H( +M) (R18)

= CH3O + H( +M) (R19)

= H2 +HCOH( +M) (R20)

= H2 + CH2O( +M) (R21)

Jasper et al. [201] investigated theoretically the reaction of CH3 + OH and derived

pressure-dependent rate constants consistent with earlier measurements. The branch

to CH3OHwas themajor channel at high pressures and intermediate temperatures, but

the CH2(S) and CH2OH channels were promoted by increasing temperature. At atmo-

spheric pressure and temperatures ∼2000 K, which is relevant in flame calculations,

the branches to CH2OH, CH2(S), and HCOH were dominant. The HCOH radical iso-

merizes rapidly to formaldehyde [201], so the reactions R20 and R21 can be combined

into a single reaction producing formaldehyde and molecular hydrogen.

More recent measurements by Sangwan et al. [202] at 294–714 K and 1–100 bar

threw doubt on the pressure dependency of this reaction. At high pressures and 700–

1000 K, the total conversion rate of CH3+OHmeasured by Sangwan et al. [202] agreed

well with that by Jasper et al. [201]. However, Jasper et al. [201] predicted a stronger

pressure dependency; the total rate decreased twofold when the pressure was reduced
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from 100 bar to 1 bar (at 700 k) while the results of Sangwan et al. [202] indicated

an almost pressure–independent rate constant. The measurements by Sangwan et al.

[202] could not give the branching ratios, so the rate constants in Jasper et al. [201] are

adopted here while further study of this reaction is warranted.

The combustion chemistry of hydrocarbons is generally more complicated at in-

termediate temperatures (500–1000 K) compared to that at higher temperatures, partly

due to the behavior of peroxyl radicals [176]. The hydroperoxyl (HO2) and methyl

(CH3) radicals are among the major intermediate species during the oxidation of natu-

ral gas at intermediate temperatures and high pressures [203], so their association can

be an important reaction [204]. The reaction can proceed as either a chain–branching

step,

CH3 + HO2 = CH3O +OH (R22)

or as a chain–terminating step,

CH3 +HO2 = CH4 +O2 (R23b)

The chain-branching reaction (R22) was studied theoretically by Jasper et al. [205]. At

700 K, their results agree well with an earlier theoretical study by Zhu and Lin [206],

but deviate at higher temperatures. Jasper et al. [205] predicted a weaker sensitivity

to temperature, compared to Zhu and Lin [206]. More recently, the rate of R22 was

measured by Hong et al. [203] at 1054–1249 K (3.5 atm) as well as by Sangwan and

Krasnoperov [207] at 295 K (1 bar). Both measurements agree well with the results of

Jasper et al. [205], so the rate constant in Jasper et al. [205] is adopted here.

The chain-terminating path (R23b) affects considerably the ignition-delay calcula-

tions of methane [208]. Srinivasan et al. [208] measured the rate of this reaction at

1655–1822 K and extrapolated the rate constant to the temperatures of 200–2000 K via

theoretical calculations. Their suggested rate constant is 20–40% lower (at 700–2000 K)

compared to the earlier theoretical study by Zhu and Lin [206]. More recently, Hong

et al. [203] measured the rate of this reaction at temperatures of 1000–1200 K. Both the

suggested rates by Zhu and Lin [206] and Srinivasan et al. [208] are in the uncertainty

range of the experimental data by Hong et al. [203]. Jasper et al. [205] calculated the

rate of the chain-branching reaction (R22) by using the the rate constant advocated

by Srinivasan et al. [208] for R23b. Therefore, the suggested rate constant in [208] is
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adopted here to keep consistency.

The reaction between a methyl radical and molecular oxygen is among the most

important propagation reactions in the combustion of methane [209]. This reaction

can proceed to different products, depending on conditions:

CH3 +O2( +M) = CH3OO( +M) (R24)

CH3 +O2 = CH3O +O (R25)

= CH2O +OH (R26)

The branch to CH3OO (R24) is expected to be the dominant path at low temperatures

whereas due to the growth of the reverse reaction, this path reaches to equilibrium at

high temperatures [32, 119]. For R24, the pressure-dependent rate constants are taken

from a study by Fernandes et al. [210]. The rate constants for two other branches (R25

and R26) are adopted from shock-tube measurements by Srinivasan et al. [211].

For most alkanes, the isomerization of the alkylperoxyl radicals to the hydroperox-

ide radicals (ROO −−−→ QOOH) is expected to be an important step in fuel conversion.

For the isomerization of the methylperoxyl radical,

CH3OO( +M) =CH2OOH( +M)

an energy barrier of ∼160 kJ/mol [212] should be prevailed. This reaction competes

with the dissociation of methylperoxyl radical,

CH3OO( +M) =CH3 +O2( +M) (R24b)

The reaction R24 is believed to be a barrierless exothermic reaction [210]. To proceed

in the reverse direction (R24b), an energy difference of ∼135 kJ/mol [114] should be

surmounted. Consequently, the isomerization to hydroperoxide is not expected at low-

medium temperatures as CH3OO dissociation is more favored.

The methylperoxyl (CH3OO) reactions are quite important for modeling methane

oxidation at low temperatures [32], but our understanding of these reactions is far

from perfect. Only a few of CH3OO reactions have been studied experimentally and

even the measured reactions have suffered from high uncertainties in measurements

or in extrapolation to combustion related temperatures [213]. For the reaction between
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methylperoxyl and hydrogen radicals,

CH3OO + H =CH3O +OH (R27)

we accept the suggested rate in [213]. Data have not been available for the reaction

between a methylperoxyl radical and an oxygen atom,

CH3OO +O = CH3O +O2 (R28)

so the rate of this reaction is estimated by analogy to HO2 + O reaction.

For the reaction between methylperoxyl and hydroxyl radicals,

CH3OO +OH = CH3OH +O2 (R29)

Tsang and Hampson [213] estimated the temperature-independent rate constant in

the order of 6×1013 (mol cm−3 s−1), in the absence of any experimental or theoretical

determination up to that point. More recently, experimental measurements by Bosso-

lasco et al. [214] at sub-atmospheric pressures and at 294 K gave a rate faster than

the estimated one by Tsang and Hampson [213]. Here, the reaction is presumed to be

pressure- and temperature-independent and the rate constant from Bossolasco et al.

[214] is extrapolated for the conditions of this study.

For the reaction of methylperoxyl with HO2 and CH3,

CH3OO +HO2 =CH3OOH +O2 (R30)

CH3OO + CH3 =CH3O + CH3O (R31)

we rely on the suggestions by Tyndall et al. [215] and Keiffer et al. [216], respectively.

Another sink of the methylperoxyl radicals is its self-reaction giving either methoxy

radicals,

CH3OO + CH3OO =CH3O + CH3O +O2 (R32)

or formaldehyde.

CH3OO + CH3OO =CH3OH + CH2O +O2 (R33)
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The rate constants for these reactions are taken from Tyndall et al. [215] who evaluated

existing low-temperature data.

The methylperoxyl radical can also abstract hydrogen from stable molecules such

as CH4 (R34) and CH2O (R35),

CH3OO + CH4 =CH3OOH + CH3 (R34)

CH3OO + CH2O =CH3OOH +HCO (R35)

to form CH3OOH [32]. The rate constants for these reactions are estimated by analogy

to HO2 reactions. The most important reaction of CH3OOH at the temperatures of

interest is its dissociation [206].

CH3OOH( +M) = CH3O +OH( +M) (R36)

The preferred rate constant for this reaction is taken from a theoretical calculation by

Zhu and Lin [206].

The major removal mechanisms of the methoxy radical at combustion tempera-

tures are dissociation (R37), isomerization (R38), and reactions with other stable com-

ponents such as oxygen (R39).

CH3O( +M) =CH2O + H( +M) (R37)

CH3O( +M) =CH2OH( +M) (R38)

CH3O +O2 =CH2O + HO2 (R39)

The rate constants of these reactions are given by a theoretical study by Aranda et al.

[179].

Methanol is an important by-products of the partial oxidation of methane at inter-

mediate temperatures [32]. At the conditions of this work, methanol is mainly formed

in fuel-rich mixtures via R40.

CH3O + CH4 = CH3OH + CH3 (R40)

For this reaction we rely on the results of Wantuck et al. [217] who combined mea-

surements and RRKM calculations to derive the rate constant.
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Table 6.1: Selected reactions from the chemical kinetic model. The rate constants are in the
form of k = ATn exp(−E/(RT )). Units are mol, cm, K , s, and cal.

Reaction A n E Note/Ref.

R1 H + O2=O + OH 1.04E+14 0.00 15286 [127]

R2 HO2 + HO2=H2O2 + O2 1.18E+9 0.77 -1825 [134]

duplicate rate constant 1.25E+12 0.295 7397

R3 HCO( +M)=H + CO( +M) 4.93E+16 -0.93 19724 a , [190]

Low-pressure limit: 7.43E+21 -2.36 19383

Troe parameters: 0.103 139.0 10900.0 4550.0

R4 HCO + O2=CO + HO2 6.92E+6 1.90 -1369 [183]

R5 CH2O( +M)=HCO + H( +M) 8.00E+15 0.00 87726 [191]

Low-pressure limit: 1.26E+36 -5.50 93932

R6 CH2O( +M)=CO + H2( +M) 3.70E+13 0.00 71969 [191]

Low-pressure limit: 4.40E+38 -6.10 93932

R7 CH2O + H=HCO + H2 5.86E+03 3.13 1510 [192]

R8 CH2O + OH=HCO + H2O 2.39E+07 1.83 -1116 [193]

R9 CH2O + HO2=HCO + H2O2 4.10E+04 2.50 10206 [194]

R10 CH3 + H( +M)=CH4( +M) 2.26E+14 0.03 144 a , [198]

Low-pressure limit: 2.74E+35 -5.35 3380

Troe parameters: 0.395 163.5 4250.3 1253676.0

R11 CH4 + H=CH3 + H2 4.10E+03 3.16 8755 [32]

R12 CH4 + O=CH3 + OH 4.40E+05 2.50 6577 [136]

R13 CH4 + OH=CH3 + H2O 1.00E+06 2.18 2506 [200]

R14 CH4 + HO2=CH3 + H2O2 4.70E+04 2.50 21000 [136]

R15 CH3 + OH=CH2 + H2O 4.30E+04 2.57 3997 [201]

R16 CH3 + OH=CH2(S) + H2O 6.09E+10 0.60 2923 b , [201]

R17 CH3 + OH=CH3OH 1.30E+22 -2.66 2451 b , [201]

R18 CH3 + OH=CH2OH + H 2.53E+10 0.91 6402 b , [201]

R19 CH3 + OH=CH3O + H 3.07E+09 0.92 12981 b , [201]

R20 CH3 + OH=H2 + HCOH
c , [201]

R21 CH3 + OH=H2 + CH2O 2.36E+09 0.45 3791 b , [201]

duplicate rate constant 9.40E+07 1.29 2424

R22 CH3 + HO2=CH3O + OH 1.00E+12 0.27 -687 [205]

R23 CH4 + O2=CH3 + HO2 2.03E+05 2.75 51714 [208]

R24 CH3 + O2=CH3OO 1.05E+19 -2.30 1800 d , [210]

duplicate rate constant 4.10E+30 -5.70 8750

R25 CH3 + O2=CH3O + O 7.50E+12 0.00 28297 [211]

R26 CH3 + O2=CH2O + OH 1.90E+11 0.00 9842 [211]

R27 CH3OO + H=CH3O + OH 1.00E+14 0.00 0 [213]

Continued on next page
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Table 6.1 – continued from previous page

Arrhenius data

R28 CH3OO + O=CH3O + O2 2.85E+10 1.00 -724 HO2 + O

R29 CH3OO + OH=CH3OH + O2 1.70E+14 0.00 0 [214]

R30 CH3OO + HO2=CH3OOH + O2 2.50E+11 0.00 -1490 [215]

R31 CH3OO + CH3=CH3O + CH3O 5.10E+12 0.00 -1411 [216]

R32 CH3OO + CH3OO=CH3O + CH3O + O2 1.10E+18 -2.40 1800 [215]

duplicate rate constant 7.00E+10 0.00 800

R33 CH3OO + CH3OO=CH3OH + CH2O + O2 2.00E+11 -0.55 -1600 [215]

R34 CH3OO + CH4=CH3OOH + CH3 4.70E+04 2.50 21000 HO2 + CH4

R35 CH3OO + CH2O=CH3OOH + HCO 4.10E+04 2.50 10206 HO2 + CH2O

R36 CH3OOH=CH3O + OH 2.22E+17 -0.42 44622 d , [206]

R37 CH3O=CH2O + H 4.70E+93 -24.61 57200 d , [179]

R38 CH3O=CH2OH 3.60E+89 -23.64 57920 d , [179]

R39 CH3O + O2=CH2O + HO2 4.80E-01 3.60 -1055 [179]

R40 CH3O + CH4=CH3OH + CH3 1.30E+14 0.00 15073 [217]

R41 CH3OH + OH=CH2OH + H2O 1.50E+08 1.44 113 [180]

R42 CH2OH + O2=CH2O + HO2 7.20E+13 0.00 3736 [136]

duplicate rate constant 2.90E+16 -1.50 0
a : for enhanced third-body efficiencies see the mechanism file in the supplementary materials.
b : at 132 atm pressure, for other pressures see the mechanism file in the supplementary materials.
c : combined in R21
d : at 100 atm pressure, for other pressures see the mechanism file in the supplementary materials.

6.3.1 Thermodynamic and transport data

Thermodynamic and transport data are mainly taken from the earlier model in ref [32].

Important components were checked for any refinement in renowned databases (e.g.

Burcat et al. [113]).

6.4 Results and discussion

6.4.1 Methane oxidation in the flow reactor

As outlined in the introduction, the major aim of this work was to provide novel data

from methane oxidation at high pressures and intermediate temperatures. In this sec-

tion, the results from the laminar flow reactor at 100 bar and 700–900 K are presented.

For the simulations, a plug flow reactor with constrained temperature and pressure is

used in Chemkin [109].

92



6.4. Results and discussion

Figure 6.4 presents the gas composition at the reactor outlet under reducing con-

ditions (Φ=19.7) at different isotherms. The consumption of reactants starts at 725 K

and the major product of the partial oxidation of methane is CO at all investigated

temperatures. Upon ignition, considerable amounts of formaldehyde and methanol

are formed but their fractions decline gradually at higher temperatures. Instead, C2H6

and C2H4 are produced to greater extents at higher temperatures. At 900 K, the major

products are CO and C2H6.

The model can predict the onset of reaction as well as the concentrations of CH4,

O2, CO, C2H6 and C2H4 very well. Although CO2 and CH3OH are underpredicted and

CH2O is overpredicted, the model can reproduce well the trends of their changes and

also the temperatures of their maximum yield.

Under stoichiometric conditions, the fuel conversion starts at a slightly higher tem-

perature of 750 K (see figure 6.5). The major products are CO and CO2 and trace

amounts of C2H4 and C2H6 are formed too. Above 800 K, further conversion of fuel is

retarded and the methane conversion is limited to 88% at 900 K.

For the stoichiometric mixture, the model reproduces accurately the onset of reac-

tion as well as the relative changes in the fractions of stable components. However,

the model predicts a slightly lower conversion for methane and oxygen at high tem-

peratures which is accompanied by the underprediction of CO2.

The methane oxidation under very oxidizing conditions (Φ=0.06) starts at 750 K.

The major detected products are CO and CO2 (see figure 6.6). The CO fraction peaks at

775 K but declines gradually at higher temperatures, likely due to oxidation to CO2. The

model predicts well the onset of reaction and the methane consumption upon ignition.

The CO fraction is slightly overpredictedwhile CO2 fraction is slightly underestimated

at medium temperatures.

In an earlier work from the same laboratory by Rasmussen et al. [32], the onset of

methane reaction under reducing conditions was reported to be 725–775 K (Φ=25–99,

P=90–100 bar). They found the onset temperature of reaction at 775–800 K under stoi-

chiometric (P=90–100 bar) and oxidizing (Φ=0.04, P=90–100 bar) conditions, while we

detected the ignition at slightly lower temperatures of 723–750 K. This small difference

can be due to the shorter gas residence time in [32].

The reaction pathways of methane are analyzed and the results are shown in fig-

ure 6.7. The analysis at a very early stage of reaction shows that methane conversion
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Figure 6.4: Results of experiments under reducing conditions (0.18% O2 and 1.75% CH4 in
N2, Φ=19.7) at 100 bar pressure. Symbols mark the experimental results and lines denote the
predictions of the present model.
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Figure 6.5: Results of experiments under stoichiometric conditions (0.31% O2 and 0.16% CH4

in N2, Φ=1.0) at 100 bar pressure. Symbols mark the experimental results and lines denote the
predictions of the present model.

95



Chapter 6. Methane

Figure 6.6: Results of experiments under oxidizing conditions (3.96% O2 and 0.11% CH4 in
N2, Φ=0.06) at 100 bar pressure. Symbols mark the experimental results and lines denote the
predictions of the present model.

is initiated by its reaction with molecular oxygen,

CH4 +O2 = CH3 + HO2 (R23)

The formed methyl radical then combines with molecular oxygen to give either

CH3OO (R24) or CH2O + OH (R26). The branch to CH3OO (R24) is dominant at the

initiation stage of methane oxidation, which results in the accumulation of CH3OO

radicals. The branch to CH2O + OH (R26) retains a small but important share of CH3

consumption, since it is the main source of OH radicals for a while. The formed OH

radicals attack methane molecules,

CH4 +OH = CH3 + H2O (R13)

and starts the main path of the fuel oxidation. In later stages, the required OH radicals

are provided by the dissociations of H2O2 (R45) and CH3OOH (R36).

H2O2( +M) = OH +OH( +M) (R45)

CH3OOH( +M) = CH3O +OH( +M) (R36)
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6.4. Results and discussion

Around 900 K, the reaction between the methyl and hydroperoxyl radicals,

CH3 + HO2 = CH3O +OH (R22)

also plays an important role in the production of OH.

The hydroperoxyl radical, the other product of the initiation reaction (R23), attacks

methane molecules (R14) to produce H2O2.

CH4 +HO2 = CH3 +H2O2 (R14)

In a later stage of oxidation, reactions R9 and R2 become the major sources of H2O2.

CH2O + HO2 = H2O2 + HCO (R9)

HO2 + HO2 = H2O2 +O2 (R2)

When a sufficient number of radicals is produced, the methane consumption pro-

ceeds by its reaction with the OH radical (R13) which gives CH3 + H2O. At low tem-

peratures (∼775 K), the methyl radical mainly reacts with oxygen to form CH3OO.

CH3 +O2( +M) = CH3OO( +M) (R24)

The stability of the methylperoxyl radical (CH3OO) is enhanced with increasing pres-

sure whereas its thermal dissociation accelerates at elevated temperatures [218]. At

high temperatures (∼900 K) the reaction R22 becomes the dominant path in removing

methyl radicals.

CH3 + HO2 = CH3O +OH (R22)

In fact, shifting from the low-temperature pathways to the high-temperature ones is

mainly controlled by the competition between reactions R22 and R24 over methyl rad-

icals.

The methylperoxyl radical can combine with HO2 (R30) or CH3 (R31) radicals. De-

pending on stoichiometry and temperature, the reaction between CH3OO and CH2O
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(R35) can also plays a role in removing CH3OO.

CH3OO + HO2 =CH3OOH +O2 (R30)

CH3OO + CH3 =CH3O + CH3O (R31)

CH3OO + CH2O =CH3OOH +HCO (R35)

The CH3O radical mainly decomposes to formaldehyde and hydrogen atom (R37).

The major sink of formaldehyde under stoichiometric conditions is its reaction by OH

(R8).

Under reducing conditions, considerable amounts of methanol is formed via R40.

CH3O + CH4 = CH3OH + CH3 (R40)

The reactions R41 and R42 make the main removing mechanism of methanol for all

investigated conditions, in line with previous findings by Aranda et al. [179] in a study

dedicated to the oxidation of methanol.

CH3OH +OH = CH2OH + H2O (R41)

CH2OH +O2 = CH2O + HO2 (R42)

For methane oxidation at medium temperatures (∼775 K), the reactions involving
methylperoxyl radicals (CH3OO) are found to be important which is in agreementwith

findings in [32, 119, 218, 219].
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Figure 6.7: Major consumption path for methane at conditions investigated in the flow reactor.
The dashed lines are active only under specific conditions. See the text for more details.

The sensitivity of selected reactions in predicting methane conversion as well as

methanol formation is analyzed using a brute-force method in which the sensitivity

coefficients are calculated as

SX,i =
ΔX/X
Δki/ki

The results of the analysis is shown in figure 6.8. Among the tested reactions, the
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reaction R23,

CH4 +O2 = CH3 + HO2 (R23)

inhibits the fuel conversion considerably, especially at higher temperatures. Although

this reaction initiates the oxidation process, in the later stages of oxidation when the

radical concentrations increases, it proceeds in the reverse direction and becomes a

major terminating path of the radicals. R22, a competitor for R23, promotes the ignition

by propagating the radical chain.

CH3 + HO2 = CH3O +OH (R22)

The reaction between methane and hydroxyl radicals,

CH4 +OH = CH3 + H2O (R13)

also plays a key role in methane oxidation.

The formaldehyde chemistry is important in the methane oxidation. While the

H-abstraction by the HO2 radical from formaldehyde (R9),

CH2O + HO2 = HCO + H2O (R9)

promotes the ignition, the abstraction reactions by hydroxyl (R8) and methyl radicals

(R43),

CH2O +OH = HCO +H2O (R8)

CH2O + CH3 = HCO + CH4 (R43)

inhibit the fuel conversion as the later reactions take out the demanded OH and CH3

radicals.

Methanol is underpredicted by the model at 723 K under reducing conditions. Ac-

cording to the sensitivity analysis (figure 6.8), its prediction is highly sensitive to the

rate of

CH3O + CH4 = CH3OH + CH3 (R40)
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which is the main path of methanol formation. The methanol yield is also sensitive to

the reactions of the methylperoxyl radicals with CH4 (R34), CH3 (R31), CH2O (R35),

and HO2 (R30), in agreement with the results of Arutyunov et al. [219]. Considering

the large uncertainty in the rate constants of CH3OO reactions, the model prediction

may improve by the advent of more reliable data for methylperoxyl chemistry.

Figure 6.8: Sensitivity of CH4 (under stoichiometric conditions) andmethanol (under reducing
conditions) mole fractions to the rate constants of selected reactions under the flow-reactor
conditions. Pressure was 100 bar and only the isothermal part of the reactor was considered in
simulations.
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6.4.2 Comparison with literature data

The present chemical kinetic model is further evaluated by comparison to data avail-

able in literature. The model is used to reproduce the flow-reactor species profiles

from earlier experiments in [32]. Ignition delay times and flame speeds are also used

to assess the performance of the model at different temperatures and pressures.

6.4.2.1 Earlier results from the flow reactor

Rasmussen et al. [32] investigated the methane conversion in the same flow reactor

used here. Figure 6.9 shows the results from their experiments under reducing condi-

tions. The experiments gave the start of oxygen consumption at 775 K. The present

model predicts the onset temperature of fuel conversion around 25 K lower than the

experiments, but it reproduces well the concentrations of stable components above

800 K. Under stoichiometric (figure 6.10) and oxidizing (figure 6.11) conditions, the ex-

periments gave the onset of fuel conversion at 785 and 775 K, respectively. The model

predicts the ignition at 750 K for both stoichiometries. This premature ignition in sim-

ulations was also observed by Rasmussen et al. [32]. To address that, they included the

effect of surface reactions by introducing a terminating reaction for CH3OO radical

over the wall surface. As the present model can reproduce well our recent results from

the flow reactor, we refrain to implement a similar reaction in our model.

6.4.2.2 Ignition delay time in shock tubes

The oxidation of methane has been investigated for several years in shock tubes [21,

29–31, 33–35, 38, 75, 139, 220–224]. The residence time of gas in shock tubes is rel-

atively short which makes it difficult to study ignition at low temperatures. Conse-

quently, most of the measurements have been conducted at temperatures higher than

those of this study. To evaluate themodel at higher temperatures, selected experiments

are simulated here.

Davidson and Hanson [33] measured the ignition delays of methane at pressures

up to 156 atm and temperatures of 1137–1536 K. A selection of their results is shown in

figure 6.12. As expected, ignition delay decreases by increasing pressure or tempera-

ture, and it is more sensitive to temperature. The ignition is faster in fuel-leanmixtures

although they were diluted more (77% Ar) compared to the fuel-rich mixtures (67% Ar).

The model compares well with the experimental results, especially at higher pressures.
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Figure 6.9: Comparison of the results from the experiments by Rasmussen et al. [32] and the
prediction of the present model under reducing conditions (889 ppm O2 + 1.12% CH4 in N2,
Φ=25.2, 90 bar). The temperature profiles are inputted in the simulations.
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Figure 6.10: Comparison of the results from the experiments by Rasmussen et al. [32] and
the prediction of the present model under stoichiometric conditions (2903 ppm O2 + 1587 ppm
CH4 in N2, Φ=1.09, 100 bar).
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Figure 6.11: Comparison of the results from the experiments by Rasmussen et al. [32] and the
prediction of the present model under oxidizing conditions (4.57% O2 + 964 ppm CH4 in N2,
Φ=0.042, 100 bar).

Figure 6.12: Ignition delay times of fuel-lean (3.8% CH4+19.2% O2 in Ar, Φ=0.4) and fuel-rich
(20.0% CH4+13.3% O2 in Ar,Φ=3) mixtures. Symbols mark experimental results from Davidson
and Hanson [33] and lines denotes the predictions of the present model. The simulations are
conducted at fixed pressures while the pressure in the experiments fluctuated within ±10%.
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The model prediction is compared against ignition delay data at higher pressure

upon 456 atm, reported from shock-tube measurements by Zhukov et al. [29]. As

shown in figure 6.13, increasing pressure accelerates ignition. The modeling results

agree well with the measured data at 456 atm while the ignition delays are slightly

over-predicted at 156 atm. Figure 6.13 also includes ignition delays measured at much

lower pressures (6.9–8 atm) by Levy et al. [31]. There, the ignition is promoted by in-

creasing the oxygen fraction in the mixture, as it was seen in the results of Davidson

and Hanson [33]. Levy et al. [31] argued that excess oxygen accelerates the ignition by

promoting the chain-branching reaction of R25 which is followed by another chain-

branching reaction, R12. In contrast, redundant CH4 inhibits ignition by promoting

reaction R11 which competes over H radicals with the branching reaction of R1.

CH3 +O2 = CH3O +O (R25)

CH4 +O = CH3 +OH (R12)

CH4 + H = CH3 + H2 (R11)

H +O2 = O +OH (R1)

Although the model overpredicts the ignition delays slightly, it can predict well the

sensitivity to the stoichiometries.

Figure 6.13: Ignition delay times of CH4/air (Φ=0.5, from Zhukov et al. [29]) and CH4/O2
mixtures (from Levy et al. [31], mix 4: 3.53% CH4 in N2, 8 atm, Φ=1.01; mix 7: 4.0% CH4 in N2,
6.9 atm, Φ=1.33; mix 11: 1.99% CH4 + 3.72% CO2 in N2, 7.7 atm, Φ=0.32). The simulations are
conducted at fixed pressures while the pressure in the experiments fluctuated within ±10%.
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The model is assessed at lower temperatures by comparing with data reported by

Huang et al. [30] from shock-tube measurements over 1000–1350 K. According to fig-

ure 6.14, the model overpredicts the ignition delays, especially at lower temperatures.

Generally the model prediction improves at higher pressures and higher temperatures,

where ignition is faster. Simulating long ignition delay times (in order of millisec-

ond) measured in shock tubes are vulnerable to non-idealities caused by neglecting

the effects of flow compression and mixing [125]. Usually pressure and temperature

increases gradually behind the shock wave. Such pressure/temperature rises are be-

lieved to be a result of fluid dynamic non-idealities, as they have been observed even

for non-reactive mixtures [121]. To compensate for these device-dependent variations,

the measured pressure history behind the shock wave should be included in simula-

tions [121]. However, such data are not available for the measurements in [30].

Figure 6.14: Ignition delay times of 9.5% CH4 in N2 (Φ=1) at different pressures. Symbols mark
experimental results from Huang et al. [30] and lines denotes the predictions of the present
model. The simulations are conducted at fixed pressures while the pressure in the experiments
fluctuated within ±10%.

6.4.2.3 Flame speed

The laminar burning velocity of methane has been measured in several studies [11,

196, 225–229], but most of the published data have been limited to low pressures. Fig-

ure 6.15 shows the results of our simulations compared to the experimental data from

literature. The flame speed decreases at elevated pressures. The model prediction is

within the uncertainties of the measurements. The maximum of burning velocity was
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measured in a slightly fuel-rich (Φ ∼1.1) mixture for all pressures, and is well generated

by using the present model.

Figure 6.15: Laminar burning velocity of methane/air mixture at 1, 5, and 10 atm and initial
temperature of 298–300 K. Symbols mark experimental results fromGu et al. [11], Dirrenberger
et al. [225], Rozenchan et al. [196], Varea et al. [226], Goswami et al. [227], Tahtouh et al. [228],
and Lowry et al. [229]. Lines denote the model prediction at specified pressures.

To identify sensitive reactions in predicting flame speed, the sensitivity of mass

flow rate is calculated using the built-in functions of Chemkin [109]. Since the condi-

tions at the inlet of the system is fixed, the mass flow rate sensitivity is linearly related

to the flame speed sensitivity. Figure 6.16 shows the results of the analysis. The chain-

branching reaction of

H +O2 = O +OH (R1)

controls the prediction of the methane flame speed to a great extent. This reaction

is very efficient in branching radical chains, so competitor reactions in consuming H

radicals show negative sensitivities.

The decomposition of HCO (R3) increases the flame speed whereas its reactions

with one of H, OH, or O2, slow down the flame propagation due to terminating the

radical chain. The CO oxidation by OH (R44), the major source of heat release, is
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among the reactions controlling the flame speed.

CO +OH = CO2 +H (R44)

Among methane reactions, the terminating reaction of

CH3 +H( +M) = CH4( +M) (R10)

is the most sensitive one.

Figure 6.16: Sensitivity of laminar flame speed of methane/air at atmospheric pressure and
initial temperature of 300 K under stoichiometric conditions.
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Conclusion

Methane oxidation at high pressure (100 bar) and intermediate temperatures (600–

900 K) has been investigated in a flow reactor. The onset temperature of methane reac-

tion was found at 725–750 K, slightly depended on stoichiometry. A chemical kinetic

model was developed and tested against the measurements. The model was able to

predict well the onset temperature of reaction and the fractions of major stable species

upon ignition. The results of sensitivity analyses showed that the partial oxidation of

methane tomethanolwas highly sensitive to the oxidation chemistry of themethylper-

oxyl radical (CH3OO) while the current data for this component are highly uncertain.

The model compared well with measured ignition delay times and flame speeds from

literature. The presented measurements extend the existing data for methane oxida-

tion at high pressure and intermediate temperatures. Such data are vital in evaluating

chemical kinetic models. Models validated at this range of temperatures and pressure

are more likely to be useful in the design and optimization of engines and other devices

involving combustion at high pressures. Further studies on methylperoxyl reactions

are necessary for better understanding methane oxidation at high pressures and inter-

mediate temperatures.
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Ethane

Abstract

Ethane oxidation at intermediate temperatures (600–900 K) and high pressures (20–

100 bar) has been investigated in a laminar flow reactor. The measurements revealed

the onset temperature of ethane reaction between 700 K and 825 K, depending on pres-

sure and stoichiometry. At 20 bar, the fuel conversion was detected above 775 K under

reducing conditions and above 825 K for stoichiometric and oxidizing conditions. In-

creasing pressure to 50 bar facilitated ignition at 750, 775, and 800 K for reducing,

stoichiometric, and oxidizing conditions, respectively. Further increase of pressure to

100 bar gave ignition at 700 K for reducing and 750 K for other conditions. A detailed

chemical kinetic model was developed and evaluated against data from the present

work as well as from literature. The modeling results agreed well with most measure-

ments but the onset of reaction in the flow reactor was predicted prematurely at high

pressure under reducing conditions. Future work should be focused on improving the

model prediction of ignition delay time as well as the flame speed of ethane.

7.1 Introduction

The investigation of ethane oxidation at high pressure and intermediate temperature is

important from fundamental as well as practical perspectives. From a practical point of

view, knowledge about the combustion behavior of ethane is essential because ethane

is the major non-methane component in natural gas, and variations in ethane frac-

tion in natural gas may result in significant changes in the ignition properties of the

fuel [36]. These changes can result in undesired autoignition of the end gas in spark–
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ignited engines, known as knock, leading to damage to the engine and increase in

pollutant emissions. Moreover, information about the oxidation behavior is relevant to

the performance and development of HCCI engines [230] and gas turbines [231]. From

a fundamental perspective, the oxidation of C2H6 plays an important role in the hier-

archical structure of the reaction mechanisms of hydrocarbon fuels. In order to verify

and develop these chemical kinetic models for hydrocarbon oxidation, measurements

of combustion characteristics at high pressure are essential.

Figure 7.1 represents a selection of available data for ethane oxidation at high pres-

sures and intermediate temperatures. While the hydrocarbons ignition even at high

temperatures relies on medium–temperature chemistry, this range of temperature was

rarely covered by previous work.

Measured species profiles are useful as benchmarks in evaluating chemical kinetic

models. Flow and jet-stirred reactors are suitable devices to measure species profiles,

especially for relatively slow oxidation when long residence times are needed. Hunter

et al. [46] studied ethane oxidation over temperatures of 915–966 K and pressures up to

10 atm in a flow reactor. A jet-stirred reactor was used by Dagaut et al. [232] to study

ethane oxidation at temperatures of 800–1200 K and pressures of 1–10 atm. Beerer and

McDonell [233] evaluated the ignition delay of ethane in a flow reactor over tempera-

tures of 785–935 K and pressures of 7–15 atm.

The species profiles can also be measured in shock tubes. Tranter et al. [44] studied

the pyrolysis and oxidation of ethane behind a reflected shock at pressures as high

as 340 and 613 bar over temperatures of 1050–1450 K. Using a GC, they measured

major stable products, i.e. C2H6, C2H4, C2H2 and CO. In other work from the same

laboratory [45, 234] the measurements were extended to 40 and 1000 bar.

The ignition delay time, another useful tool to evaluate models, has been measured

for ethane for years [21, 37–43, 84, 233], but few of the studies were under conditions

relevant to engines. Bowman [37] measured the ignition delay of ethane for the first

time by monitoring infrared emission from CO2, CO, and H2O. Later, Burcat et al. [38]

measured the autoignition delay of ethane over 1204–1690 K and 8–10 bar in a shock

tube. In a later work by Burcat et al. [39], temperatures of 1235–1660 K and pressures of

2–8 bar were covered. Lamoureux et al. [42] quantified ignition delays in a wide range

of temperatures (1200–2700 K), pressures (1–18 bar), and equivalence ratios. Vries et

al. [43] explored ignition delays at 1218–1860 K and 0.6–3.0 atm. More recently, Aul

et al. [21] collected the ignition delays of ethane over 1082–1304 K at pressures below
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∼16 atm. Tests by Zhang et al. [84] at 1216–1360 K and 21 atm extended the benchmark

to higher pressures, which are still far below the pressure in many devices involving

combustion.

There have been a few chemical kinetic models for ethane oxidation. Nötzold and

Algermissen [235] developed a model for ethane oxidation and tested it against high

temperature data. Dagaut et al. [232] interpreted their results from a jet-stirred reactor

into a chemical kinetic model. Naik andDean [236] suggested amodel for the oxidation

of ethane at high pressure and evaluated it against available data up to that date. In a

previous study from this laboratory [32], a kinetic model for the oxidation of CH4 and

C2H6 was suggested and evaluated against the results of high-pressure flow-reactor

experiments while the C2H6 to CH4 ratio was limited to 13% at maximum.

To extend the existing data toward conditions relevant to engines and gas turbines,

this paper reports the results of ethane oxidation experiments in a laminar flow reac-

tor at pressures of 20–100 bar and temperatures of 600–900 K under a wide range of

stoichiometries. A chemical kinetic model based on previous work from the same lab-

oratory in ref [1, 32, 102, 178, 179, 237] is proposed and evaluated by comparison to

the present data as well as to data published in literature.
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Figure 7.1: The temperature- and pressure-coverage of earlier experiments and the present
ones. Dashed lines: the previous measurements in ref [37–46], red dash–dotted lines: the
present measurement of species profile in the flow reactor.
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7.2 Experimental approach

The experimental setup was a laboratory-scale high-pressure laminar-flow reactor de-

signed to approximate plug flow. The setup was described in detail elsewhere [102]

and only a brief description is provided here. The system was used here for the inves-

tigations of ethane oxidation chemistry at pressures from 20 to 100 bar, temperatures

up to 900 K, and flow rate of ∼ 3 Nliter/min (STP; 1 atm and 273.15 K).

The reactions took place in a tubular quartz reactor (inner diameter of 8 mm), en-

closed in a stainless steel tube that acted as a pressure shell. Using a quartz tube and

conducting experiments at high pressure are expected to minimize the contribution

from heterogeneous reactions at the reactor wall. The steel tube was placed in a tube

oven with three individually controlled electrical heating elements that produced an

isothermal reaction zone in the middle of the reactor. A moving thermocouple was

used to measure the temperature profile inside the pressure shell wall after stabiliz-

ing the system. The system was pressurized from the feed gas cylinders. The reactor

pressure was monitored upstream of the reactor by a differential pressure transducer

and controlled by a pneumatic pressure valve positioned after the reactor. The pres-

sure fluctuations were less than 0.2 % during the experiments. The reactant gases were

premixed before entering the reactor. All gases used in the present experiments were

high purity gases or mixtures with certified concentrations (±2% uncertainty). Down-

stream of the reactor, the system pressure was reduced to atmospheric level prior to

product analysis, which was conducted by an on-line 6890N Agilent Gas Chromato-

graph (GC-TCD/FID from Agilent Technologies). All GC sampling and measurements

were repeated at least two times to reduce measurement uncertainties. Distinguish-

ing methanol from acetaldehyde was not possible due to signal overlapping in the GC.

The signal areas corresponding to the sum of these components were measured and

quantified by using the response factor of methanol, but the reported quantity was less

accurate especially when a considerable acetaldehyde yield was expected.

The plug flow assumption was shown by Rasmussen et al. [102] to be a good

approximation for the present operating conditions. Figure 7.2 shows the measured

temperature profiles for different isotherms while the flow was pure nitrogen. It was

found that considering the temperature profiles promote the accuracy of simulations.

Therefore, a plug flow model with constrained temperature and pressure was used for

simulations in Chemkin [109]. Temperature profiles measured at different pressures
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revealed the sensitivity of temperature profiles to the system pressure, most likely due

to fluctuations in nitrogen supply of the pressure shell at higher pressures. Therefore

separate temperature profiles for each pressure are provided in supplementary mate-

rials. A source of uncertainty in determining gas temperature was the exothermicity

of reactions. Due to the high level of dilution, this effect was limited. Simulations in

Chemkin [109] with a constant pressure and enthalpy (adiabatic) model lead to maxi-

mum 22 K temperature rise. However, because of the fast heat transfer from hot gases

to the pressure shell, especially in such a narrow reactor, the deviation of the gas tem-

perature from the measured temperature should be even smaller.

Figure 7.2: Measured temperature profiles across the reaction zone. The flow rate was
3 NL/min at pressure of 30 bar. The isothermal zone shrunk slightly at higher pressures.

7.3 Chemical kinetic model

In a previous study from this laboratory [32], a chemical kinetic model for combustion

of CH4 and C2H6 was suggested and evaluated against the experimental data at high

pressures for the mixtures of C2H6 and CH4. The present experiments on the oxida-

tion of neat ethane make further evaluation of the model possible. Moreover, recent

advances in the oxidation chemistry of hydrogen as well as C1 species encouraged the

authors to update the model thoroughly in ref [1, 237]. Here, the reactions of ethane

subset which are important under investigated conditions, are reviewed and more ac-

curate rate constants are implemented whenever possible.

The dissociation of ethane (R1) can initiate pyrolysis/oxidation at high tempera-
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tures. At the temperatures of this study, this reaction is more favored in the reverse

direction and it acts as a chain-termination path.

CH3 + CH3( +M) = C2H6( +M) (R1)

At pressures of this study, the rate constant of this reaction approaches its high-

pressure limit. A theoretical calculation of the high-pressure limit of this reaction

by Klippenstein et al. [238] yielded a slight negative temperature dependency, it

decreased by 30% as temperature rose from 700 to 1000 K. This trend is in line with

most of earlier measurements (see details in ref [238]), so we replace the earlier

temperature-independent rate constant from Baulch et al. [136] by this recent one.

The H-abstraction by a hydrogen atom from ethane (R2) has a relatively large bar-

rier (∼5.1 kcal/mol [239]), so it is mostly favored at high temperatures.

C2H6 +H = C2H5 + H2 (R2)

For this reaction, we rely on the results of Sivaramakrishnan et al. [239] who mea-

sured the rate of this reaction in a shock tube at 1128–1299 K and extrapolated the rate

constant to 300–2000 K using transition-state theory calculations and earlier measure-

ments. The adopted rate constant has a higher sensitivity to temperature comparing

to an earlier one by Baulch et al. [136]. Whereas both rate constants are close at 600 K,

the value in [239] is 4.6 times larger than the other one, at 2000 K.

Ethane oxidation at intermediate temperatures highly depends on the H-

abstraction by OH radicals (R3).

C2H6 +OH = C2H5 + H2O (R3)

The lower barrier of this reaction (∼0.7 kcal/mol [240]) compared to R2 facilitates its

progress at medium temperatures. Here, the rate of this reaction is taken from a study

by Krasnoperov and Michael [240] whose rate constant agrees well to earlier determi-

nations.

Ethane oxidation at intermediate temperatures is initiated by the reaction between

ethane and molecular oxygen (R5).

C2H6 +O2 = C2H5 +HO2 (R5)
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For this reaction, we relied on calculations by Sharipov and Starik [241] giving a rate

constant around 40% lower (at 700 K) than the Baulch et al. [136] estimation.

The reaction between ethane and methyl radicals can be important under reducing

conditions.

C2H6 + CH3 = C2H5 + CH4 (R6)

Our preferred rate constant for this reaction is taken from shock tube measurements

by Peukert et al. [242] at 1153–1297 K. Presuming immediate dissociation of C2H5 to

C2H4 + H at investigated temperatures, Peukert et al. [242] quantified the rate of the

title reaction by measuring H-atom concentration and using TST calculations.

The ethyl radical mainly combines with other radicals or adds to molecular oxygen.

The ethyl reactions with hydroxyl radicals (R9, R10) as well as with HCO (R11) were

studied theoretically by Labbe et al. [243] and their calculated pressure-dependent rate

constants are adopted in this work.

C2H5 +OH( +M) = C2H4 +H2O( +M) (R9)

C2H5 +OH( +M) = CH3 + CH2OH( +M) (R10)

C2H5 + HCO( +M) = CH3 + CH2CHO( +M) (R11)

The main consumption path of the ethyl radical at intermediate temperatures is its

addition to molecular oxygen.

C2H5 +O2( +M) = CH3CH2OO( +M) (R12)

= CH2CH2OOH( +M) (R13)

= C2H4 +HO2( +M) (R14)

= cC2H4O +OH( +M) (R15)

For this reaction, we rely on calculations by Klippenstein [244] who derived pressure-

dependent rate constants for different branches of this reaction.

The ethylperoxyl radicals (CH3CH2OO) may isomerize internally to CH2CH2OOH
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or dissociate to either C2H4 + HO2 or cC2H4O + OH [244].

CH3CH2OO( +M) = CH2CH2OOH( +M) (R16)

= C2H4 + HO2( +M) (R17)

= cC2H4O +OH( +M) (R18)

The rate constants for these steps are taken from calculations by Klippenstein [244].

The ethylperoxyl radical (CH3CH2OO) may abstract hydrogen from stable

molecules e.g. CH4 and CH3OH, or combine with other radicals. In the absence of

measurements or theoretical determinations, these steps are estimated by analogy to

the reactions of CH3OO.

Hydroxyalkyl radicals (QOOH) generally add to molecular oxygen to give

OOQOOH at medium temperatures [119], so a probable reaction for CH2CH2OOH is

CH2CH2OOH +O2( +M) = OOCH2CH2OOH( +M)

where CH2CH2OOH is mainly produced from isomerization of CH3CH2OO in R16.

However, for small alkyls such as methyl and ethyl, it is not an important route in

oxidation [176]. In fact, the hydroxyethyl radical (CH2CH2OOH) mainly dissociates to

oxirane (cC2H4O) via R20 or ethene via R19.

CH2CH2OOH( +M) = C2H4 +HO2( +M) (R19)

= cC2H4O +OH( +M) (R20)

Both channels for CH2CH2OOH dissociation are taken from a theoretical study by

Klippenstein [244].

H-abstraction by CH3CH2OO from stable molecules gives ethyl hydroperoxide rad-

ical (CH3CH2OOH). The ethyl hydroperoxide radical can combine with other radicals

or dissociate. For combination with radicals, we estimated the rate constant by anal-

ogy to CH3OOH reactions. For the decomposition of ethyl hydroperoxide (R21), the

preferred rate constant is from a theoretical determination by Chen et al. [245]. Among

the investigated channels by Chen et al. [245], only CH3CH2O+OH is important under

combustion related conditions and is implemented in this work.

CH3CH2OOH( +M) = CH3CH2O +OH( +M) (R21)
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Ethene is mainly produced from R14 and R17. The reaction between ethene and

a hydroxyl radical was investigated theoretically by Senosiain et al. [246] who found

that the direct hydrogen abstraction (R22) to form vinyl radicals (C2H3) should be the

major channel at medium to high temperatures.

C2H4 +OH( +M) = C2H3 +H2O( +M) (R22)

= CH3 + CH2O( +M) (R23)

= CH3CHO + H( +M) (R24)

= CH2CHOH +H( +M) (R25)

= CH2CH2OH( +M) (R26)

More recently, Vasu et al. [247] measured the overall rate of the title reaction over

973–1438 K and pressures of 2–10 atm. At temperatures as high as in [247], the branch

to C2H3 is expected to be dominant, so the decay rate of OH should give the rate of

this branch. Adjusting TST calculations according to their measured values of OH

decay, Vasu et al. [247] suggested a rate constant for C2H3 branch around 50 % higher

(at 800 K) than Senosiain et al. [246]. However, the experiments in [247] could not

determine the contribution of other channels. Here we adopt the pressure-dependent

rate constants by Senosiain et al. [246] while measurements clarifying the branching

ratio of the title reaction are warranted.

One of consumption pathways of vinyl radicals is its reaction with formaldehyde.

C2H3 + CH2O( +M) = C2H4 +HCO( +M) (R27)

The rate constants of this reaction is taken from a work by Goldsmith et al. [248].
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Table 7.1: Selected reactions from ethane oxidation mechanism. The rate constants are in the
form of k = ATn exp

( −E
RT

)
. Units are mol, cm, K , s, and cal.

Reaction A n E Note/Ref.

R1 CH3 + CH3( +M)=C2H6( +M) 9.46E+14 -0.54 179 [238]

Low-pressure limit: 1.27E+41 -7.00 2762

Troe parameters: 0.62 73 1180 1.E30

R2 C2H6 + H=C2H5 + H2 7.35E+03 3.10 5340 [239]

duplicate rate constant 3.26E+14 0.00 13667

R3 C2H6 + OH=C2H5 + H2O 1.61E+06 2.22 741 [240]

R4 C2H6 + HO2=C2H5 + H2O2 1.10E+05 2.50 16850 [136]

R5 C2H6 + O2=C2H5 + HO2 2.92E+07 1.90 49548 [238]

R6 C2H6 + CH3=C2H5 + CH4 3.45E+01 3.44 10384 [238]

R7 CH3 + CH3−−C2H5 + H 5.40E+13 0.00 16055 [136]

R8 C2H4 + H( +M)=C2H5( +M) 1.40E+09 1.46 1355 [249]

Low-pressure limit: 2.00E+39 -6.64 5769

Troe parameters: -0.569 299 9147 152.4

R9 C2H5 + OH=C2H4 + H2O 4.70E+18 -1.58 7999 [243] , a

R10 C2H5 + OH=CH3 + CH2OH 6.50E+22 -2.44 12647 [243] , a

R11 C2H5 + HCO=CH3 + CH2CHO 6.50E+22 -2.44 12647 [243] , a

R12 C2H5 + O2=CH3CH2OO 2.91E+27 -4.72 5184 [244] , a

R13 C2H5 + O2=CH2CH2OOH 2.78E+13 -1.14 7725 [244] , a

R14 C2H5 + O2=C2H4 + HO2 1.35E+10 0.49 6247 [244] , a

R15 C2H5 + O2=cC2H4O + OH 6.44E+13 -0.87 12430 [244] , a

R16 CH3CH2OO=CH2CH2OOH 3.36E+08 0.53 28900 [244] , a

R17 CH3CH2OO=C2H4 + HO2 6.69E+23 -3.62 34110 [244] , a

R18 CH3CH2OO=cC2H4O + OH 6.66E+28 -5.29 43880 [244] , a

R19 CH2CH2OOH=C2H4 + HO2 3.73E+22 -3.15 19180 [244] , a

R20 CH2CH2OOH=cC2H4O + OH 4.86E+20 -2.71 16440 [244] , a

R21 CH3CH2OOH=CH3CH2O + OH 1.38E+33 -5.27 48696 [245], a

R22 C2H4 + OH=C2H3 + H2O 1.30E-01 4.20 -860 [246] , a

R23 C2H4 + OH=CH3 + CH2O 2.76E+13 -0.50 11455 [246] , a

R24 C2H4 + OH=CH3CHO + H 6.80E+09 0.81 13867 [246] , a

R25 C2H4 + OH=CH2CHOH + H 8.55E+10 0.75 11491 [246] , a

R26 C2H4 + OH=CH2CH2OH 6.02E+37 -7.44 14269 [246] , a

duplicate rate constant 2.79E+19 -2.41 1011

R27 C2H3 + CH2O=C2H4 + HCO 3.31E+14 -0.87 10966 [248] , a

a at 100 atm pressure. For other pressures see the mechanism file in the supplementary materials.
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7.4 Results and Discussion

7.4.1 Ethane oxidation in the flow reactor

The major aim of this work was to characterize ethane oxidation at high pressures

and intermediate temperatures. The results from the flow-reactor measurements at

temperatures of 600–900 K and pressures of 20–100 bar are presented in this section.

The volumetric flow rate was ∼3 Nl/min in all experiments. The gas residence time at

the isothermal part of the reactor was estimated to be 3–4 s, 7–10 s, and 14–22 s for

pressures of 20, 50, and 100 bar, respectively. For simulations, the temperature profiles

(provided as supplementary materials) were implemented to improve accuracy.

The tests were carried out on stoichiometric, strong reducing, and very oxidizing

mixtures. Evaluating models under intense fuel-rich and fuel-lean conditions can re-

veal the deficiency of reaction rate constants which are only sensitive under specific

circumstances. Ignition under reducing conditions can also be practically important

since in diesel engines combustion starts in a fuel-rich zone.

Figure 7.3 presents the results of experiments for fuel-rich mixtures (φ=37–47) at

the pressures of 20, 50, and 100 bar. The fuel consumption starts at 775 K at 20 bar

pressure. Ethene and to a lesser extent CO and CH4 are major products. Increasing

pressure to 50 and then 100 bar gives the onset temperatures of fuel conversion as

750 and 700 K, respectively. While the gas residence time at the isothermal zone of

the reactor increases ∼5 times when pressure is increased from 20 to 100 bar, the high-

temperature fuel conversion is inhibited by increasing pressure, which is also reflected

in the lower yield of C2H4. As outlined earlier, separating methanol and acetaldehyde

is not possible due to GC signals overlapping, so the total yield of methanol plus ac-

etaldehyde is quantified. The yield of methanol plus acetaldehyde first increases but

soon decreases with increasing temperature and it is independent of pressure at high

temperatures.

The model predictions under reducing conditions are also shown in figure 7.3. The

model yields the onset temperature of the fuel conversion slightly lower (∼25 K) than
that by the measurements at 20 and 50 bar. At 100 bar, this gap between the model

and the experiments grows to 50 K. However, the model prediction improves at higher

temperatures at all investigated pressures. Above 775 K, the model agrees reasonably

with the measurements of major species except CO, which is overpredicted twofold
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by the model. Although the model underestimates the oxygenates (methanol plus ac-

etaldehyde) at 100 bar, it captures well their variations at lower pressures.

For stoichiometric mixtures (φ=0.81–0.91), the onset of fuel oxidation is shifted

to higher temperatures of 825, 775, and 750 K for pressures of 20, 50, and 100 bar,

respectively (figure 7.4). Themajor products are measured as CO, CO2 and C2H4, while

C2H4 disappears by increasing temperature. In contrast to reducing conditions, here

increasing pressure (and gas residence time) enhances oxidation at high temperatures.

The model compares well with measurements under stoichiometric conditions and the

onset of reaction as well as the fractions of the major products are predicted accurately.

For fuel-lean mixtures (φ= 0.034–0.038), the fuel oxidation starts at temperatures

close to those found for stoichiometric mixtures (figure 7.5). Here, the major prod-

ucts are CO and CO2, and the fuel oxidation is enhanced by increasing pressure (and

consequently gas residence time). Similar to stoichiometric conditions, C2H4 peaks at

intermediate temperatures and disappears at higher temperatures. The model predicts

accurately the onset temperature of oxidation as well as the products composition.

From the present experiments, it can be seen that when pressure is increased the

fuel oxidation starts at lower temperatures. This is in line with earlier results by

Hunter et al. [46] who studied ethane oxidation at pressures up to 10 atm and temper-

atures ∼925 K. The same trend was also found by Rasmussen et al. [32] for mixtures

of methane and ethane.
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Figure 7.3: Results of experiments under reducing conditions at 20 bar (φ=37.2, 11130/1044
ppm of C2H6/O2), 50 bar (φ=39.7, 11055/978 ppm of C2H6/O2), and 100 bar (φ=46.6, 10990/834
ppm of C2H6/O2). All mixtures are diluted in nitrogen. Symbols mark experimental results and
lines denote predictions of the present model.
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Figure 7.4: Results of experiments under stoichiometric conditions at 20 bar (φ=0.82, 511/2194
ppm of C2H6/O2), 50 bar (φ=0.81, 542/2328 ppm of C2H6/O2), and 100 bar (φ=0.91, 580/2228
ppm of C2H6/O2). All mixtures are diluted in nitrogen. Symbols mark experimental results and
lines denote predictions of the present model.

124



Figure 7.5: Results of experiments under oxidizing conditions at 20 bar (φ=0.035, 538/54035
ppm of C2H6/O2), 50 bar (φ=0.034, 533/54815 ppm of C2H6/O2), and 100 bar (φ=0.038, 570/52335
ppm of C2H6/O2). All mixtures are diluted in nitrogen. Symbols mark experimental results and
lines denote predictions of the present model.
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The reaction pathways for ethane consumption at 100 bar and 600–900 K are shown

in figure 7.6. The first step in ethane oxidation is H-abstraction by OH (R3) to form an

ethyl radical, as expected at intermediate temperatures. At the early stages of oxida-

tion, the abstraction by HO2 (R4) is important too.

C2H6 +OH = C2H5 + H2O (R3)

C2H6 + HO2 = C2H5 + H2O2 (R4)

Under reducing conditions, the produced ethyl radical abstracts hydrogen from HO2

to form an ethoxy radical (CH3CH2O).

C2H5 +HO2( +M) = CH3CH2O +OH( +M) (R28)

The ethoxy radical then dissociates to give formaldehyde.

CH3CH2O( +M) = CH2O + CH3( +M) (R29)

For other stoichiometries, the ethyl radical adds to molecular oxygen (R12) to give

CH3CH2OO which dissociates (R17) to ethene and a hydroperoxyl radical.

C2H5 +O2( +M) = CH3CH2OO( +M) (R12)

CH3CH2OO( +M) = C2H4 + HO2( +M) (R17)

Ethene mainly reacts with OH to give either CH2CH2OH or C2H3,

C2H4 +OH( +M) = CH2CH2OH( +M) (R26)

C2H4 +OH( +M) = C2H3 + H2O( +M) (R22)

Then CH2CH2OH and the vinyl radical (C2H3) react with molecular oxygen,

CH2CH2OH +O2( +M) = HOCH2CH2OO( +M) (R30)

C2H3 +O2( +M) = CH2O +HCO( +M) (R31)

while HOCH2CH2OO dissociates to give formaldehyde.

HOCH2CH2OO( +M) = CH2O + CH2O +OH( +M) (R32)
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Another path for ethene consumption becomes important at higher temperatures

and under reducing conditions,

C2H4 + HO2( +M) = CH2CH2OOH( +M) (R33-rev)

which gives CH2CO after a few intermediate steps.

The reaction pathways found here are different from the general pathways sug-

gested for alkanes [119], as the isomerization of CH3CH2OO to CH2CH2OOH (R16) is

not favored here. Instead, CH3CH2OO dissociates to C2H4 + HO2 (R17). In fact, the

CH2CH2OOH radical is only formed under reducing conditions and around 900 K from

the combination of ethene and a hydroperoxyl radical (R33-rev). The consumption of

CH2CH2OOH also does not follow the general pathways, as CH2CH2OOH dissociates

(via R19 and R20) instead of the expected oxygen addition.

The sensitivities of selected reactions are analyzed via a brute-force method in

which the sensitivity coefficient (Si) is defined as

Si =

(
ΔXC2H6

/XC2H6

)
(Δki/ki)

(7.1)

where ki is the rate constant of the ith reaction. Figure 7.7 shows the results of the

analysis for a couple of reactions. The reaction R17 shows a relatively large sensitivity

for ethane conversion under reducing conditions.

CH3CH2OO( +M) = C2H4 +HO2( +M) (R17)

At 650 K and 100 bar, there is no sign of fuel conversion in the measurements but the

model predicts considerable amount of products. Increasing the rate constant of R17

inhibits the fuel oxidation, so it can improve the model prediction. The fuel conver-

sion starts at 700 K (at 100 bar) according to the experiments. At this temperatures,

the sensitivity coefficient of R17 changes the sign, now increasing R17 promotes the

oxidation while the reaction proceeds in the forward direction at both 650 and 700 K.

Figure 7.8 includes the results of the analyses for oxidizing and stoichiometric mix-

tures. Increasing the rates of H-abstraction from ethane by hydroperoxyl (R3) and hy-

droxyl (R4) radicals promote the fuel oxidation at different pressures and stoichiome-
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Figure 7.6: The major consumption path of ethane in the flow reactor at 100 bar pressure
under reducing, stoichiometric, and oxidizing conditions.

128



7.4. Results and Discussion

tries.

C2H6 +OH = C2H5 + H2O (R3)

C2H6 +HO2 = C2H5 + H2O2 (R4)

Under oxidizing conditions and at a high temperature of 900 K, the reactions R22 and

R26 emerge among the sensitive reactions.

C2H4 +OH( +M) = C2H3 + H2O( +M) (R22)

C2H4 +OH( +M) = CH2CH2OH( +M) (R26)

Both of these reactions inhibit the fuel consumption by removing hydroxyl radicals

from the system.
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Figure 7.7: Sensitivity coefficients of C2H6 molar fraction at different pressures and temper-
atures under reducing conditions. The coefficients are calculated at the end of the nominal
residence time of the flow reactor.
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Figure 7.8: Sensitivity coefficients of C2H6 at different pressures, temperatures, and stoi-
chiometries. The coefficients are calculated at the end of the nominal residence time of the
flow reactor.

131



Chapter 7. Ethane

7.4.2 Comparison with literature data

The chemical kinetic model was evaluated against data from the flow reactor exper-

iments at pressures of 20–100 bar and temperatures of 600–900 K. The assessment is

extended to higher temperatures by comparison to data from shock tubes and flame

speed measurements in the following sections.

7.4.2.1 Ignition at higher temperatures

The ignition delay time of ethane has been measured at pressures greater than 10 atm

by Aul et al. [21], Zhang et al. [84], and Pan et al. [250]. Figure 7.9 shows the measured

ignition delay times and the predictions by the present model. The ignition delays

decrease monotonically by increasing temperature over the investigated conditions.

Apart from fuel-lean data from Aul et al. [21], which are underestimated by the model,

the model compare well with the measurements.

Figure 7.9: Ignition delay time of C2H6/O2/Ar mixtures calculated by the present model. Sym-
bols mark experimental results from Aul et al. [21] (85% dilution in Ar), Zhang et al. [84] (95%
dilution in Ar), and Pan et al. [250] (95% dilution in Ar).

7.4.2.2 Species profiles from shock tubes

Tranter and coworkers [44, 45] havemeasured the concentration of stable components

in shock tube at high pressures of 40, 340, and 613 bar. The post-shock composition

wasmeasured by a GC. By recording pressure and calculating temperature accordingly,

they were able to simulate the post-shock conditions. Data for the nominal pressure

of 40 bar were reported in ref [45]. To simulate the data, here a fixed pressure of 40 bar
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and a residence time of 1.7 mswere implemented in themodel. As shown in figure 7.10,

the fuel conversion starts around 1150 K and is accompanied by the gradual rise of CO

and C2H4. Above 1250 K, the C2H4 concentration declines and it almost disappears

around 1400 K. The model prediction agrees fairly well with the measurements.

Another study by Tranter et al. [44] reported data at higher pressures of 340 and

613 bar. As shown in figures 7.11 and 7.12, the fuel conversion is detected above 1075 K.

Ethene peaks around 1200 K and then declines gradually. To simulate the data, two ex-

amples of pressure profiles provided in the original article are inputted into the model.

As can be seen, the model predictions agree well with the measurements.

Figure 7.10: Post–shock concentration profiles at different temperatures. Symbols mark ex-
perimental results measured in a shock tube with initial mole fractions of 200 ppm of C2H6
(Φ=1, in N2) at pressures of 40 bar, from ref [45]. Lines denote the prediction of the present
model.
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Figure 7.11: Post–shock concentration profiles at different temperatures. Symbols mark ex-
perimental results measured in a shock tube with initial mole fractions of 200 ppm of C2H6
(Φ=1, in N2) at pressures of ∼340 bar, from ref [44]; Lines denote the prediction of the present
model.

Figure 7.12: Post–shock concentration profiles at different temperatures. Symbols mark ex-
perimental results measured in a shock tube with initial mole fractions of 200 ppm of C2H6
(Φ=1, in N2) at pressures of ∼613 bar, from ref [44]. Lines denote the prediction of the present
model.
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7.4.2.3 Flame speed

Laminar flame speeds of combustiblemixtures arewidely used to evaluate kineticmod-

els. For ethane/air mixtures, the flame speed has been measured at pressures up to

10 atm [12, 229, 251–254]. Figure 7.13 compares the model prediction with measure-

ments at 1, 5, and 10 atm. The model overpredicts the flame speed at atmospheric

pressure, but its accuracy improves at higher pressures.

Figure 7.13: The unstretched laminar burning velocity of ethane/air mixtures versus equiv-
alence ratio for an initial temperature of 300 K and at different pressures. Lines denote the
present model predictions and symbolsmark experimental results fromVagelopoulos and Egol-
fopoulos [12], Lowry et al. [229], Konnov et al. [251], Jomaas et al. [252], Dyakov et al. [253],
and Goswami [254].

The present model predicts the flame speed of methane very well [237]. The flame

speed of ethene is also calculated for an atmospheric flame and the results are within

the uncertainty range of experimental measurements as shown in figure 7.14. Sensi-

tivity analyses are conducted using built-in functions of Chemkin [109] for mass flow

rate sensitivity, which represents well the sensitivity of flame speed to reaction rate

constants. Figure 7.15 shows the results of the analyses for both ethane and ethene

flames. Reactions involved in the production/ consumption of H radicals are crucial

in determining flame speed. The hydrogen radical can diffuse from high-temperature

zone of the flames to colder zones and initiates the reactions there. Most of the sen-

sitive reactions are common between ethene and ethane. However, two reactions are
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sensitive for ethane but not so sensitive for ethene:

CH3 + CH3( +M) = C2H5 +H( +M) (R1)

C2H4 + H( +M) = C2H5( +M) (R8)

Both reactions generally proceed in the reverse direction under ethane flame condi-

tions so R1 consumes H radicals while R8 produces H. Earlier, Park et al. [197] exam-

ined three chemical kinetic models and found that all of them overpredicted the flame

speed of ethane. In agreement to our findings here, Park et al. [197] concluded that

reactions R1 and R8 are likely involved in the disagreement between the models and

measurements for ethane flame speed.

The rate constant for reaction R1 is taken from a review by Baulch et al. [136], and

for R8 we rely on a theoretical study by Miller and Klippenstein [249] which benefited

from earlier measurements. In the absence of any advance in determining the rates

of these reactions, we retained the rate constants here while further studies of these

reactions are warranted.

Figure 7.14: The unstretched laminar burning velocity of ethene/air mixtures versus equiva-
lence ratio for an initial temperature of 300 K and at atmospheric pressure. Lines denote the
present model predictions and symbols mark experimental results from Jomaas et al. [252],
Egolfopoulos et al. [255], Hassan et al. [256], and Kumar et al. [257].
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Figure 7.15: The sensitivity of the mass flow rate of ethane/air and ethene/air stoichiometric
mixtures at atmospheric pressure and initial temperature of 300 K.

Conclusions

Ethane oxidation was investigated in a laminar flow reactor at intermediate temper-

atures of 600–900 K and high pressures of 20–100 bar. Through the experiments, the

concentrations of stable species were measured at the reactor outlet while temperature

was varied. The results revealed the onset temperatures of reaction between 700 K

and 825 K, depending on pressure and stoichiometry. It was also found that increasing

pressure and consequently the gas residence time reduced the onset temperature while

stoichiometry had only a slight effect.
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A detailed chemical kinetic model for ethane oxidation has been developed and

evaluated against the data from the present experiments as well as from literature. The

model predicted well the species concentrations from the flow reactor experiments.

However, for high-pressure reducing conditions, the fuel conversion was predicted

prematurely. The model could reproduce ignition delay times and post-shock concen-

trations from shock-tube experiments in literature, but it overpredicted flame speed at

atmospheric pressure.

The provided data extend the ethane oxidation benchmark at high pressures and

intermediate temperatures. Models validated against such data can be usedmore safely

in the optimization of engines and gas turbines. Further work should address the pre-

mature ignition of the model at certain circumstances and the overprediction of ethane

flame speed.
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Abstract

The pyrolysis and oxidation of ethanol has been investigated at temperatures of 600–

900 K and a pressure of 50 bar in a laminar flow reactor. The experiments covered a

wide range of fuel-air equivalence ratios (Φ=0.1, 1, 43, ∞), all highly diluted in nitro-

gen. The results, collected as the composition of the exhaust gas from the reactor as

a function of the nominal temperature, extend the ethanol oxidation database at high

pressures and intermediate temperatures. The onset temperature of ethanol oxidation

was at 700–725 K over a wide range of stoichiometries. A considerable yield of alde-

hydes was detected at intermediate temperatures. Ethanol pyrolysis was observed at

temperatures above 850 K. A detailed chemical kinetic model has been developed and

evaluated against the present data as well as ignition delay times and flame speedmea-

surements from literature. The developed model was able to predict the onset of fuel

conversion and the composition of products from the flow reactor experiments fairly

well. The model performed well in simulating ignition delays above 900 K whereas

it overpredicted the flame speeds slightly. The results of sensitivity analyses revealed

the importance of the reaction between ethanol and a hydroperoxyl radical for igni-

tion at high pressure and intermediate temperatures. Future work should improve the

accuracy of the model by providing more accurate rate constants for the key reactions

identified here.
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8.1 Introduction

In recent years, ethanol has attracted much research and commercial attention as an

additive to conventional liquid fuels or even as an alternative for them. Ethanol ad-

dition to gasoline promotes the overall octane number of the fuel while it potentially

reduces the emission of particulate matter [50] and CO [51]. In Brazil and many other

places gasoline doped by ethanol is widely used in spark-ignited (SI) engines [49].

Ethanol addition to diesel fuel has also been studied [52, 53] and a positive effect on

fuel economy was found [52]. The relatively high energy density of ethanol makes

it attractive as a neat fuel too. Using ethanol-based fuels produced from bio-sources

can reduce pressure on fossil fuels resources and reduce CO2 release to atmosphere.

However, the widespread usage of ethanol fuel may increase the emission of aldehydes

[49, 51, 54] which can cause health risks.

Ethanol fuel, either neat or in blends, is mainly used in internal combustion en-

gines. The next generation of internal combustion engines is likely to work based

on the concept of homogeneous-charge compression-ignition (HCCI) engines which

promises to combine the best features of conventional compression- and spark-ignited

engines [258]. Ignition in such engines as well as any combustion device working at

intermediate temperatures (below 1000 K) and elevated pressures is strongly affected

by chemical kinetics. Furthermore, the reaction mechanism of ethanol is a crucial part

in models for heavier alcohols often found in complicated biofuels [49]. The reac-

tion mechanism of hydrocarbon fuels has been studied over decades, but the oxidation

chemistry of oxygenated fuels is recent and many links in intermediate steps may be

missing.

Despite its importance, detailed data for ethanol oxidation at high pressures and

intermediate temperatures are scare. Tests at these conditions can be carried out in

flow reactors. Li et al. [62] investigated ethanol pyrolysis at 950 K and pressures of

3–12 atm in a turbulent flow reactor. They found that the widely used mechanism by

Marinov [259] underpredicted the fuel consumption under the investigated conditions.

In their succeeding work [63], the rate constants for the thermal decomposition of

ethanol was extracted. The same device was used by Haas et al. [61] to explore ethanol

oxidation over 523–903 K and at 12.5 atm.

Ignition delay times at intermediate temperatures are commonlymeasured in rapid

compression machines (RCM). Relatively short ignition delays of ethanol make it pos-
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sible to conduct such experiments in shock tubes too. Lee et al. [55] measured the

ignition delays of ethanol in an RCM at 750–1000 K and 20–40 atm. Noorani et al.

[59] measured the ignition delay times of ethanol in a shock tube at 1070–1760 K and

2–12 atm and found a good agreement between the measurements and the prediction

of the Marinov mechanism [259]. Mittal et al. [65] reported ignition delays of ethanol

from RCM experiments at 10–50 bar and 825–985 K. Heufer and Olivier [34] measured

ethanol ignition delays in a shock tube at 800–1400 K and pressures up to 40 bar. The

same device was used by Lee et al. [60] to study ethanol ignition over 775–1300 K and

at 80 bar. Lee et al. [60] further extended the data to 705 K by conducting RCM experi-

ments. Cancino et al. [56] measured the ignition delay of ethanol in a shock tube over

650–1220 K and pressures of 10–50 bar. Some of the listed work partly cover the pres-

sure and temperatures of the current study, but they only report ignition delay times

as an overall characteristic of combustion. Additional valuable insight into the com-

bustion chemistry can be obtained by measuring more detailed characteristics such as

species profiles.

Early versions of ethanol oxidation mechanism by Dunphy et al. [58] and Norton

and Dryer [260] and Norton and Dryer [261] were mainly developed for atmospheric

pressure. Marinov [259] conducted a comprehensive analysis on ethanol oxidation and

estimated unknown rate constants by analogy to well determined reactions. Whereas

most of the data used by Marinov [259] were collected at low pressures and high tem-

peratures, his model has been used widely in high-pressure studies. Dryer and co-

workers [61, 63] developed a kinetic model and validated it against flow-reactor data

at 12.5 bar as well as against ignition delays up to 50 bar. Lee et al. [60] modified a

few key reactions of the model in [61, 63] and validated the model against ignition

delays at pressures up to 77 bar. Frassoldati et al. [262] published a kinetic model for

ethanol, heavier alcohols, and their mixtures with gasoline surrogates. This model and

those by Saxena and Williams [263] and Leplat et al. [264] were not validated at high

pressures. Cancino et al. [56] modified earlier kinetic models to address ethanol oxida-

tion chemistry at high pressures and intermediate temperatures. However, their model

was solely validated against shock tube data. Mittal et al. [65] optimized a model for

ethanol oxidation at intermediate temperatures. By the advent of more reliable data for

the key reactions in ethanol oxidation, a thorough reevaluation of reactions focusing

on medium temperatures and high pressure seems necessary.

In this paper we present species concentration profiles from ethanol pyrolysis and
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oxidation in a flow reactor at high pressure and intermediate temperatures. A detailed

chemical kinetic model based on earlier studies from the same laboratory [1, 32, 102,

178–180, 237, 265] is further developed and evaluated against the data from the present

work as well as from literature.

8.2 Experimental approach

The experimental setup was a laboratory-scale high-pressure laminar-flow reactor

designed to approximate plug flow [102]. The setup was described in detail else-

where [102] and only a brief description is provided here. The system was used here

for the investigation of ethanol oxidation chemistry at a pressure of 50 bar, tempera-

tures up to 900 K, and a flow rate of 4.78 Nliter/min (4.42 Nliter/min for the pyrolysis

experiments, STP: 1 atm and 273.15 K).

The reactions took place in a tubular quartz reactor (inner diameter of 8 mm) to

minimize the effects of surface reactions. The quartz reactor was enclosed in a stainless

steel tube that acted as a pressure shell. The system was pressurized from the feed

gas cylinders and the reactor pressure was monitored upstream of the reactor by a

differential pressure transducer and controlled by a pneumatically operated pressure

control valve positioned after the reactor. The pressure fluctuations of the reactor were

limited to ±0.2%. The pressure in the shell-side of the reactor was retained close to that
inside the reactor in order to prevent breaking the quartz tube.

The steel tube was placed in a tube oven with three individually controlled electri-

cal heating elements that produced an isothermal reaction zone (±6 K) of ∼42–48 cm
in the middle of the reactor. A moving thermocouple was used to measure the temper-

ature profile inside the pressure shell at the external surface of the quartz tube after

stabilizing the system.

The flow rates were regulated by mass-flow controllers. The gases were mixed

at ambient temperature well before entering the reactor so a complete mixing was

expected before the high temperature zone of the reactor.

The liquid feeding system was described in detail in [103]. The liquid was pressur-

ized by an HPLC pump and its flow to the reactor was controlled by a liquid mass flow

controller. The liquid then evaporated at temperatures around 520 K and mixed with

the incoming gaseous feed before entering the reactor. A long stabilization period

before each test was employed to limit the fluctuations of the liquid feeding system

to ±5%.
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Downstream of the reactor, the system pressure was reduced to atmospheric level

prior to product analysis, which was conducted by an on-line 6890N Agilent Gas Chro-

matograph (GC-TCD/FID from Agilent Technologies) calibrated according to the pro-

cedure in [237]. The GC allowed detecting O2, CO, CO2, C2H4 and C2H6 with esti-

mated uncertainties around 5%. CH4 could not be quantified accurately due to signal

overlapping with CO. A higher uncertainty for ethanol measurement was estimated

due to its calibration procedure. Distinguishing methanol from acetaldehyde was not

possible due to signal overlapping for the GC configuration used. However, it was pos-

sible to measure the signal areas corresponding to sum of these components. Using

the response factor of methanol, the sum of acetaldehyde and methanol was reported

quantitatively but a relatively large uncertainty must be acknowledged. Moreover,

due to the small signal to noise ratio of formaldehyde, a larger uncertainty especially

in measuring low quantities of formaldehyde was expected.

All gases used in the present experiments were high purity gases or mixtures with

certified concentrations (±2% uncertainty) and the ethanol purity was above 99.8 %.

The total flow rate was also measured by a bubble flow meter downstream of the reac-

tor. Using a quartz tube and conducting experiments at high pressures were expected

to minimize the contribution from heterogeneous reactions at the reactor wall.

For each set of experiments, the concentration of reactants aswell as the pressure of

the system were maintained while temperature of the isothermal zone was increased

in small steps which simultaneously shortened gas residence time at the isothermal

zone of the reactor.

Figure 8.1 shows the measured temperature profiles for different isotherms in

pure nitrogen. The residence time of the gases at the isothermal zone of the reactor

can be estimated as τ[s]=3840/T [K] (±8%) for all the oxidizing experiments and

τ[s]=4098/T [K] (±8%) for the pyrolysis tests. A model with constrained temperature

and pressure was used for modeling in Chemkin [109].

A potential source of uncertainty in interpreting data from the flow reactor was

temperature rise due to exothermic reactions. The reactants were strongly diluted in

inert gases to limit the undesired temperature rise. When the mixture has the high-

est exothermicity, measuring the temperature profile indicated a marginal difference

compared to the flow of pure nitrogen. The narrow quartz tube used here also ac-

celerated the thermal equilibrium between the reactive gas inside the reactor and the

heating bath gas surrounding it. A constant pressure and enthalpy (adiabatic) model
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leads to maximum 107 K temperature rise in the most critical situation. However, in

the absence of any indication of temperature rise, the deviation of the gas temperature

from the measured temperatures was expected to be significantly smaller due to the

fast heat transfer between the quartz reactor and its surrounding.

Figure 8.1: Measured temperature profiles across the reaction zone. The nitrogen flow rate
was 4.78 NL/min at a pressure of 50 bar. The flow rate and temperature profiles were slightly
different for the ethanol pyrolysis experiments.

8.3 Chemical kinetic model

The reaction mechanism and corresponding thermodynamic and transport data were

drawn from previous work from the same laboratory in [32, 102, 178, 180]. The

methanol subset has been revisited and improved by Aranda et al. [179]. Recently, we

have reevaluated hydrogen, methane, and ethane subsets in [1, 237, 265]. Here, the

reactions important for ethanol oxidation at high pressure and moderate temperatures

are discussed.

The thermal decomposition of ethanol (R1) plays a key role in the oxidation process

at high temperatures [61] and is believed to proceed in three channels [266]:

CH3CH2OH( +M) = C2H4 + H2O( +M) (R1a)

= CH3 + CH2OH( +M) (R1b)

= C2H5 +OH( +M) (R1c)

Sivaramakrishnan et al. [266] measured ethanol dissociation over 1392–1663 K and by
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employing theoretical calculations suggested rate constants for 800–2000 K. At high

pressures and temperatures, the derived rate constants are close to those calculated

by Park et al. [267], but they differ more at low pressures and temperatures. Ethanol

dissociation were also measured by Wu et al. [268] at 1450–1760 K in shock-tube tests

with very low ethanol concentrations of 1–3 ppm. Data from Wu et al. [268] support

branching ratios which are less sensitive to pressure, compared to those by Sivara-

makrishnan et al. [266]. More recently, Kiecherer et al. [269] extracted the rate of

C2H4 +H2O branch by measuring the concentration of H2O at 1300–1510 K under at-

mospheric pressure. Their measured rate for C2H4 + H2O branch is in line with those

concluded in [266, 268]. In the absence of any measurements at the elevated pressure

of this study, we rely on the results from Sivaramakrishnan et al. [266].

Ethanol combustion is controlled by H-abstraction reactions forming isomers of

C2H5O radicals, i.e. α-hydroxyethyl (CH3CHOH), β-hydroxyethyl (CH2CH2OH), and

ethoxy (CH3CH2O) radicals. One of the key abstraction reactions is the reaction be-

tween ethanol and an H atom (R2).

CH3CH2OH + H = CH3CHOH + H2 (R2a)

= CH2CH2OH +H2 (R2b)

= CH3CH2O +H2 (R2c)

At high temperatures, ethanol dissociation also becomes active, so only measuring H-

decay cannot give the rate of R2 accurately [266]. To overcome this problem, Sivara-

makrishnan et al. [266] measured D atom concentration in reaction CH3CH2OH + D

over 1054–1359 K and then eliminated the isotope effect via theoretical calculations.

Their calculations show that the dominant channels are CH3CHOH and CH2CH2OH,

which are consistent with an earlier study by Park et al. [267]. A more recent the-

oretical study by Meana-Paneda and Fernandez-Ramos [270] yielded an overall rate

constant 4–6 times higher than those by Sivaramakrishnan et al. [266] at combustion

temperatures. However, due to the lack of experimental evidence for such higher rates,

we adopt the rate constants from Sivaramakrishnan et al. [266].

The reaction between ethanol and hydroxyl radical is the dominant H-abstraction

reaction of ethanol at intermediate temperatures [61, 271]. The dominant channels
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under combustion related conditions are [266]:

CH3CH2OH +OH = CH3CHOH + H2O (R3a)

= CH2CH2OH +H2O (R3b)

= CH3CH2O + H2O (R3c)

The CH2CH2OH radical produced from the second channel (R3b) is expected to disso-

ciate to C2H4 + OH at temperatures above 550 K [266]. Above 650 K, the dissociation

further accelerates, so it is considered instantaneous compared to other chemical time

scales. Sivaramakrishnan et al. [266] studied the title reaction over 857–1297 K by

monitoring OH decay rate, which only represents the overall rate of R3a + R3c due to

the dissociation of CH2CH2OH. Theoretical calculations by Sivaramakrishnan et al.

[266] gave an overall rate for R3a + R3c larger than the measured values so they ad-

justed the barrier heights of all the branches in their calculations to compensate for

it. Their adjusted rate constants indicate negligible contributions from R3b and R3c in

the overall rate of CH3CH2OH + OH at combustion temperatures.

The title reaction was investigated at lower temperatures of 298–523 K by Carr

et al. [271] who used isotopic labeling to distinguish different channels below 523 K,

where CH2CH2OH decomposition is negligible. Carr et al. [271] found an overall rate

of R3 in agreement to that in [266] at low temperatures but with a stronger temper-

ature dependence. Moreover, the two studies differ in determining branching ratios.

Data from Carr et al. [271] support minor contributions of α and β channels at high

temperatures which makes R3c the dominant path. However, the branching to β chan-

nel at the upper limit of temperatures studied by Carr et al. [271] was determined with

a larger uncertainty which makes conclusion difficult.

A theoretical study by Zheng and Truhlar [272] yielded an overall rate for R3 in

line with the majority of the earlier measurements. However, a higher dependence on

temperature was predicted above 1000 K compared to ref [266]. Over a wide range of

temperature, the branching ratios of α and β channels were calculated to be around

0.6 and 0.2, higher than those found in [266].

More recently, Stranic et al. [273] measured the overall rate as well as the rate of

the β branch of the title reaction over 900–1270 K. Isotopic labeling of OH radicals

enabled Stranic et al. [273] to prevent interference from CH2CH2OH dissociation on

the measured rate. The branching ratio of the β channel was reported to be 0.2–0.25
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over 900–1200 K whereas distinction between R3a and R3c was not possible in [273].

All in all, the major difference between most studies is in allocating branching

ratios. The overall rate of Zheng and Truhlar [272] lies within the uncertainty range

of the listed measurements over a wide range of temperature. The β branching ratio

calculated in [272] is close to the only reliable measurement of the β branch from

Stranic et al. [273]. Therefore, the rate constants of Zheng and Truhlar [272] are used

here. To implement the calculated rate (using M08-SO/6-31+G(d,p) potential surface)

in Chemkin [109], a modified Arrhenius equation is fitted to the data over 300–2500 K.

The fitted equation reproduces the original complicated equation with an error of 10%

at maximum.

Ignition at intermediate temperatures depends strongly on hydroperoxyl radical

reactions [1, 237, 265]. In the absence of anymeasurement or theoretical calculation for

the reaction between ethanol and the hydroperoxyl radical, Marinov [259] estimated

the rate constant by analogy to methanol reactions.

CH3CH2OH + HO2 = CH3CHOH +H2O (R4a)

= CH2CH2OH + H2O (R4b)

= CH3CH2O + H2O (R4c)

For the reaction between ethanol and a methyl radical, the most reliable data are

those from a theoretical study by Xu et al. [274] who found a smaller overall rate of

CH3CH2OH + CH3 compared to the estimation by Marinov [259].

CH3CH2OH + CH3 = CH3CHOH + CH4 (R5a)

= CH2CH2OH + CH4 (R5b)

= CH3CH2O + CH4 (R5c)

The α-hydroxyethyl radical (CH3CHOH) is presumably the major product of H-

abstraction reactions from ethanol. For the decomposition of CH3CHOH, the rate con-

stants are taken from an RRKM study by Dames [275] who predicted the major branch

(R6a) to be faster up to one order of magnitude compared to an earlier calculation by
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Xu et al. [276].

CH3CHOH( +M) = CH3CHO +H( +M) (R6a)

= CH2CHOH +H( +M) (R6b)

= CH3 + CH2O( +M) (R6c)

The abstraction by a hydrogen atom is expected to be important only at low pres-

sures [243]. The rate constants for different branches of this reaction are taken from a

theoretical study by Labbe et al. [243].

CH3CHOH +H( +M) = CH2CHOH + H2( +M) (R7a)

= C2H4 + H2O( +M) (R7b)

= CH3 + CH2OH( +M) (R7c)

= C2H5 +OH( +M) (R7d)

= CH3CH2OH( +M) (R7e)

For the reaction between CH3CHOH and molecular oxygen, we rely on a theoret-

ical study by Silva et al. [277] who found the major products to be CH3CHO + HO2

under combustion conditions.

CH3CHOH +O2( +M) = CH3CHO +HO2( +M) (R8a)

= CH2CHOH +HO2( +M) (R8b)

The other possible products, CH2CHOH + HO2, were formed in small amounts and

only at high temperatures. The high pressure limit of this reaction was also studied by

Zador et al. [278] who predicted an overall rate larger within a factor of two. However,

the pressure dependence of the reaction was not explored in [278].

The β-hydroxyethyl radical (CH2CH2OH) is another isomer of C2H5O formed by

hydrogen abstraction from ethanol. The dissociation of CH2CH2OH is expected to

yield either C2H4 + OH (R9a) or CH2CHO + H (R9b) [276].

CH2CH2OH( +M) = C2H4 +OH( +M) (R9a)

= CH2CHO +H( +M) (R9b)
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The branch to C2H4 was studied theoretically [246, 276, 279] and experimentally [280].

The theoretical derivations by Xu et al. [276] and Senosiain et al. [246] differed within

a factor of six at atmospheric pressure over 700–1000 K. Senosiain et al. [246] predicted

a larger sensitivity to temperature which was also confirmed with experiments by

Srinivasan et al. [280]. Therefore, the C2H4 +OH (R9a) branch is taken from Senosiain

et al. [246] who fitted pressure-dependent rate constants for the reverse direction of

this reaction. The rate constant of the other branch to CH2CHO + H (R9b) is adopted

from the calculations of Yamada et al. [279].

The rate constants for the reaction between CH2CH2OH and hydrogen atoms are

taken from a study by Labbe et al. [243].

CH2CH2OH +H( +M) = C2H4 + H2O( +M) (R10a)

= CH2OH + CH3( +M) (R10b)

= C2H5 +OH( +M) (R10c)

For the reactions between CH2CH2OH and other radicals, the rate constants are esti-

mated by analogy to C2H5 reactions.

Lopez et al. [178] analyzed the consumption paths of β-hydroxyethyl radical

(CH2CH2OH) and estimated the major sink of this radical to be its reaction with

molecular oxygen. They estimated the rate constant of this reaction by analogy to

C2H5 reactions.

CH2CH2OH +O2( +M) = CH2CHOH + HO2( +M) (R11a)

= HOCH2CH2OO( +M) (R11b)

Zador et al. [278] derived the high pressure limit of this reaction by high-level ab initio

calculations and found an overall high-pressure rate around five times larger than those

in Lopez et al. [178]. Three branches of this reaction is found to be important [278]:

CH2CH2OH +O2( +M) = CH2CHOH + HO2( +M) (R11a)

= HOCH2CH2OO( +M) (R11b)

= CH2O + CH2O +OH( +M) (R11c)

However, the branching ratios could not be determined accurately in their work. An-

other theoretical study by Silva et al. [281] using density functional theory and ab ini-
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tio methods gave rate constant 2–3 orders of magnitude lower than the high-pressure

limit of Zador et al. [278]. Due to the inconsistency in the two studies and lack of data

for branching ratios in [278], we estimated the rate constants and the major products

based on analogy to C2H5 reactions, while further study of this reaction is warranted.

Another isomer of C2H5O formed via H-abstraction reactions from ethanol is the

ethoxy radical (CH3CH2O). Caralp et al. [282] measured the ethoxy radical decomposi-

tion at 391–471 K. Later Dames [275] used an RRKM equation simulation to extrapolate

the rate constant to higher temperatures of 406–1200 K and pressures of 0.001–100 atm.

Dames [275] found that the decomposition to CH3+CH2O is the only favored channel

under combustion conditions.

CH3CH2O( +M) = CH3 + CH2O( +M) (R13)

Another RRKM study by Xu et al. [276] agreed well with the experimental results of

Caralp et al. [282]. However, outside the range of temperature and pressure of the

experiments in [282], the two theoretical calculations predict substantially different

pressure and temperature dependencies. Here, we adopt the rate from Dames [275]

while measurements at medium temperatures are desired.

The ethoxy radical isomerization was also studied by Dames [275].

CH3CH2O( +M) = CH2CH2OH( +M)

According to Dames [275], this path is unimportant so it is omitted from the present

model.

For the reactions between ethoxy and hydrogen radicals, the preferred rate con-

stants are taken from a theoretical study by Xu et al. [283]

CH3CH2O +H( +M) = CH3CH2OH( +M) (R14a)

= CH2OH + CH3( +M) (R14b)

= CH3CHO + H2( +M) (R14c)

Acetaldehyde is a major undesired by-product from ethanol oxidation [49, 51, 54].

At high temperatures, acetaldehyde is expected to dissociate mainly to CH3 + HCO

[284]. Yasunaga et al. [285] studied acetaldehyde pyrolysis behind a reflected shock

wave over 1000–1700 K and fitted rate constants for the dissociation of acetaldehyde by
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trial and error. Sivaramakrishnan et al. [284] measured the overall rate of acetaldehyde

pyrolysis as well as its branching ratio in a shock tube and identified major branches

as

CH3CHO( +M) = CH3 + HCO( +M) (R15a)

= CH4 + CO( +M) (R15b)

Since at high temperatures the formyl radical (HCO) decomposes rapidly to CO + H,

measuring hydrogen atom concentration can give the rate of the branch to CH3+HCO

(R15a). According to Sivaramakrishnan et al. [284] the branch to CH3+CHO accounted

for 77% of the total conversion, independent from pressure and temperature under

the investigated conditions. In combination with theoretical calculations, Sivaramakr-

ishnan et al. [284] extracted the rate constants over 600–2500 K and pressures up to

130 atm, which are adopted here.

The isomerization of acetaldehyde to vinyl alcohol was studied theoretically by

Shao et al. [286]. Here, the rate constant for the reverse direction (R15c-rev) is taken

from an Arrhenius fitting by Dames [275] to the rate in [286].

CH2CHOH( +M) = CH3CHO( +M) (R15c-rev)

The reaction between acetaldehyde and a hydrogen atom was studied by Sivara-

makrishnan et al. [284] who derived rate constants over 200–2500 K from shock-tube

tests and theoretical calculations. The dominant branch of the title reaction is expected

to be CH3CO+H2, but at the upper-limit temperature of this study the CH2CHO+H2

branch can also contribute considerably.

CH3CHO +H( +M) = CH3CO + H2( +M) (R17a)

= CH2CHO + H2( +M) (R17b)

= CH3CH2O( +M) (R17c)

= CH3CHOH( +M) (R6a-r)

The branch to CH3CHOHwas also studied by Dames [275] and the rate constant were

expressed for the reverse direction, the dissociation of CH3CHOH. For CH3CHOH dis-

sociation at 50 atm, the pressure-dependent rate constants by Dames [275] depend less

on temperature compared to pressure-independent rate constants from Sivaramakrish-
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nan et al. [284]. We adopt the rate constants for R17a–R17c from Sivaramakrishnan

et al. [284] while the rate constant for CH3CHOH branch is taken from Dames [275],

due to the potential importance of pressure.

The reaction between the hydroxyl radical and acetaldehyde is expected to be the

primary acetaldehyde removal pathway during combustion [193].

CH3CHO +OH = CH2CHO +H2O (R18a)

= CH3CO +H2O (R18b)

The overall rate of this reaction was measured by Taylor et al. [287] in a shock tube at

temperatures up to 860 K. According to theoretical analyses in [287], CH3CO + H2O

should be the major branch at low temperatures while CH2CHO+H2O is dominant at

intermediate temperatures.

A more recent shock tube measurement by Wang et al. [193] extended the data

to temperatures of 1000–1388 K and revealed a positive temperature dependence at

combustion temperatures [193]. However, determining the branching ratio was not

possible experimentally. Earlier studies at low temperatures of 220–298 K suggested

the contribution of CH3CO channel to be around 93–95% [288, 289]. The fitted rate

constants in Wang et al. [193] are biexponential. Here, one exponential term of the

fitted rate is assigned to CH3CO and the other one to CH2CHO, depending on their

temperature dependence. This gives the contribution of CH3CO channel to be 88–94%

(over 500–1200 K). However, a more accurate determination of the branching ratio

would be beneficial.

The reaction between acetaldehyde and the hydroperoxyl radical is presumably

important at temperatures investigated in this work. Marinov [259] estimated ma-

jor products of this reaction and its rate constants by analogy to formaldehyde and

propane reactions.

CH3CHO + HO2
−−CH3CO + H2O2 (R19a)

−−CH2CHO + H2O2 (R19b)

According to his analysis, the CH3CO branch is dominant at temperatures below

1300 K but the CH2CHO branch takes over at higher temperatures. A single point

measurement by Morajkar et al. [290] yielded 9 × 109 (cm3 mol−1 s−1) at 294 K which

is within 30% of the overall rate estimated by Marinov [259]. In contrast, a theoretical
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study by Altarawneh et al. [291] derived an overall rate considerably smaller below

1000 K compared to that in [259]. As the only available experimental data agree better

with the estimation by Marinov [259], we adopt the rate constants in Marinov [259]

while further study of this reaction is recommended.

Vinyl alcohol is expected to be an important intermediate in ethanol oxidation.

For the reactions between vinyl alcohol and either hydrogen or oxygen atoms, the rate

constants are taken from a theoretical study by Labbe et al. [243].

CH2CHO +H( +M) = CH3 +HCO( +M) (R20a)

CH2CHO +H( +M) = CH3CO + H( +M) (R20b)

CH2CHO +O = CH2O +HCO (R21)

Table 8.1: Reactions from ethanol reaction mechanism. The rate constants are in the form of
k = ATn exp(−E/(RT )). Units are mol, cm, K , s, and cal.

Reaction A n E Note/Ref.

R1a CH3CH2OH=C2H4 + H2O 3.84E+20 -2.06 69426 a , [266]

R1b CH3CH2OH=CH3 + CH2OH 6.17E+51 -10.34 109879 a , [266]

R1c CH3CH2OH=C2H5 + OH 1.78E+47 -8.96 101002 a , [266]

R2a CH3CH2OH + H=CH3CHOH + H2 8.79E+03 2.68 2913 [266]

R2b CH3CH2OH + H=CH2CH2OH + H2 5.31E+03 2.81 7491 [266]

R2c CH3CH2OH + H=CH3CH2O + H2 9.45E+02 3.14 8696 [266]

R3a CH3CH2OH + OH=CH3CHOH + H2O 4.46E+02 3.11 -2666 pw, [272]

R3b CH3CH2OH + OH=CH2CH2OH + H2O 9.43E+03 2.67 -1004 pw, [272]

R3c CH3CH2OH + OH=CH3CH2O + H2O 2.37E+03 2.82 -691 pw, [272]

duplicate rate constant 7.91E+07 1.18 -303

R4a CH3CH2OH + HO2=CH3CHOH + H2O 8.20E+03 2.55 10750 [259]

R4b CH3CH2OH + HO2=CH2CH2OH + H2O 1.20E+04 2.55 15750 [259]

R4c CH3CH2OH + HO2=CH3CH2O + H2O 2.50E+12 0.00 24000 [259]

R5a CH3CH2OH + CH3=CH3CHOH + CH4 1.99E+01 3.37 7630 [259]

R5b CH3CH2OH + CH3−−CH2CH2OH + CH4 2.04E+00 3.57 7717 [259]

R5c CH3CH2OH + CH3−−CH3CH2O + CH4 3.30E+02 3.30 12283 [259]

R6a CH3CHOH( +M)=CH3CHO + H( +M) 6.17E+09 1.31 33778 [276]

Low-pressure limit: 1.77E+16 0.00 20782

Troe parameters: 0.187 65.2 2568 41226

R6b CH3CHOH( +M)=CH2CHOH + H( +M) 6.36E+09 1.33 35974 [276]

Continued on next page
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Table 8.1 – continued from previous page

Arrhenius data

Low-pressure limit: 8.18E+14 0.00 21517

Troe parameters: 0.473 10 2218 2615

R6c CH3CHOH( +M)=CH3 + CH2O( +M) 2.22E+09 1.18 33987 [276]

Low-pressure limit: 5.86E+15 0.00 21333

Troe parameters: 0.124 1 1729 50000

R7a CH3CHOH + H=CH2CHOH + H2 3.14E+12 0.27 -334 [243]

R7b CH3CHOH + H=C2H4 + H2O 1.65E+20 -1.81 9448 a , [243]

R7c CH3CHOH + H=CH3 + CH2OH 4.03E+23 -2.53 13637 a , [243]

R7d CH3CHOH + H=C2H5 + OH 6.27E+21 -2.11 15269 a , [243]

R7e CH3CHOH + H=CH3CH2OH 1.63E+40 -7.82 12916 a , [243, 292]

R8a CH3CHOH + O2−−CH3CHO + HO2 3.78E+20 -2.43 3090 a , [277]

R8b CH3CHOH + O2=CH2CHOH + HO2 4.38E+05 1.70 2330 a , [277]

R9arev C2H4 + OH=CH2CH2OH 2.79E+19 -2.41 1011 a , [246]

R9b CH2CH2OH=CH2CHO + H 2.20E+05 2.84 32920 [279]

R10a CH2CH2OH + H=C2H4 + H2O 3.64E+16 -0.72 8767 a , [243]

R10b CH2CH2OH + H=CH2OH + CH3 7.47E+20 -1.69 13429 a , [243]

R10c CH2CH2OH + H=C2H5 + OH 8.07E+19 -1.51 15534 a,b , [243]

R11a CH2CH2OH + O2=CH2CHOH + HO2 1.35E+10 0.49 6247 a , C2H5 + O2

R11b CH2CH2OH + O2=HOCH2CH2OO 2.91E+27 -4.72 5184 a , C2H5 + O2

R12 HOCH2CH2OO=CH2O + CH2O + OH 9.40E+08 0.99 22250 [293]

R13 CH3CH2O( +M)−−CH3 + CH2O( +M) 6.31E+10 0.93 17100 [275]

Low-pressure limit: 4.70E+25 -3.00 16001

Troe parameters: 0.426 0.3 2278 100000

R14a CH3CH2O + H( +M)=CH3CH2OH( +M) 3.08E+11 0.89 13 [283]

Low-pressure limit: 3.77E+51 -15.55 11101

R14b CH3CH2O + H( +M)=CH2OH + CH3( +M) 2.56E+18 -1.05 5128 [283]

Low-pressure limit: 2.99E+11 0.89 17

R14c CH3CH2O + H=CH3CHO + H2 7.47E+09 1.15 673 [283]

R15a CH3CHO( +M)=CH3 + HCO( +M) 2.09E+22 -1.74 86355 c , [284]

Low-pressure limit: 8.81E+58 -11.30 95912

R15b CH3CHO( +M)=CH4 + CO( +M) 8.98E+21 -1.74 86355 c , [284]

Low-pressure limit: 3.78E+58 -11.30 95912

Troe parameters: 0.183 462 167734 1.58E+06

R15crev CH2CHOH( +M)=CH3CHO( +M) 9.66E+23 -3.29 59994 [275, 286]

Low-pressure limit: 2.87E+45 -8.12 52204

Troe parameters: 0.5 863 320 100000

Continued on next page
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Table 8.1 – continued from previous page

Arrhenius data

R16a CH3CHO + H=CH3CO + H2 1.31E+05 2.58 1219 [284]

R16b CH3CHO + H=CH2CHO + H2 2.72E+03 3.10 5203 [284]

R16c CH3CHO + H=CH3CH2O 4.61E+07 1.71 7090 [284]

R17a CH3CHO + OH=CH2CHO + H2O 8.49E+13 0.00 5310 [193]

R17b CH3CHO + OH−−CH3CO + H2O 2.76E+12 0.00 -709 [193]

R18a CH3CHO + HO2=CH3CO + H2O2 2.40E+19 -2.20 14030 [259]

R18b CH3CHO + HO2=CH2CHO + H2O2 2.30E+11 0.40 14864 [259]

R19 CH2CHOH( +M)=CH3CHO( +M) 9.66E+23 -3.29 59994 [275, 286]

Low-pressure limit: 2.87E+45 -8.12 52204

Troe parameters: 0.5 863 320 100000

R20a CH2CHO + H=CH3 + HCO 7.47E+20 -1.69 13429 a , [243]

R20b CH2CHO + H=CH3CO + H 8.07E+19 -1.51 15534 a , [243]

R21 CH2CHO + O=CH2O + HCO 5.00E+13 0.00 0 [243]

R22 CH2CHOH + HO2=CH3CHO + HO2 1.49E+05 1.67 6810 [294]
a : at 100 atm pressure, for other pressures see the mechanism file in the supplementary materials.
b : for reactions between CH2CH2OH and other radicals, estimated by analogy to C2H5 reactions, see the

mechanism file in the supplementary materials.
c : enhanced third-body efficiencies: H2: 2.86, H2O: 8.57, CH4: 4.23, CO: 2.14, CO2: 2.86, C2H6: 4.23, N2:

1.43, HE: 1.00, AR: 1.00

8.4 Results and Discussion

8.4.1 Ethanol oxidation in the flow reactor

The aim of this work was to characterize the pyrolysis and oxidation of ethanol at

high pressure and intermediate temperatures. Here, results from the flow reactor ex-

periments are presented and the developed model is evaluated against them.

Figure 8.2 shows the results of pyrolysis experiments in which ethanol conversion

starts around 825 K. The maximum of fuel conversion is 18% and occurs at 900 K. CH4,

CO, and C2H4 are the major detected products. The ethanol mole fraction fluctuates

below the onset temperature of reaction, but these fluctuations are within the ±5%
uncertainty of the liquid feeding system discussed earlier. Carbon is balanced within

the maximum scatter of ±8%. This small gap can be due to the fluctuations of the liquid

feeding system as well as the uncertainties in measuring aldehydes and ethanol.
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The present model predicts the onset temperature of ethanol decomposition well

but it slightly overestimates the chemical reactivity of ethanol at higher temperatures.

As discussed earlier, the GC configuration does not allow quantifying acetaldehyde

and methanol separately. According to the model, methanol is only formed in negli-

gible quantities in all experiments conducted here, so it is expected that the measured

quantity represents only acetaldehyde. The acetaldehyde yield from the model agrees

well with the measurements at temperature below 875 K. However it should be noted

that the relation between GC detector signals and acetaldehyde concentration is es-

tablished by using the methanol response factor, so the measurement of acetaldehyde

is more uncertain than those of other components.

Ethanol conversion starts around 700 K for the fuel-rich mixture (Φ=43, see figure

8.3). Acetaldehyde and CO are themajor detected products of ethanol partial oxidation.

It is not possible to quantify the methane concentration since the GC signals for CH4

and CO overlap partly which may also slightly deteriorate the accuracy of CO mea-

surement. Similar to the pyrolysis test, the model predicts a negligible methanol yield

so the sum of methanol and acetaldehyde measured by GC is interpreted as acetalde-

hyde. The maximum conversion of ethanol is 36% while oxygen is fully consumed at

high temperatures

The model predicts well the onset temperature of reaction but it marginally under-

estimates the fuel conversion at high temperatures. Although the model overpredicts

the formation of ethane and formaldehyde to some extent, it reproduces well the frac-

tions of O2, C2H4, CO, and CH3CHO. By adopting methane concentration from the

model, the carbon loss in the experiments is 15% at maximum.

Under stoichiometric conditions, ethanol oxidation starts around 725 K. CO and

CO2 are the major detected products, as shown in figure 8.4. The CO concentra-

tion peaks around 750 K and drops gradually at higher temperatures. Aldehydes

are detected around 725 K, which is the onset temperature of oxidation, but they

soon disappear at higher temperatures. Ethene, detected in a few ppm, changes

non-monotonically versus temperature.

The model reproduces fairly well the onset of fuel conversion as well as the con-

centration of major products. Notwithstanding CO is overestimated at high temper-

atures, the non-linear changes in aldehydes and ethene profiles are well predicted by

the model. Balancing carbon reveals a maximum loss of 22%.

For the fuel-lean mixture (Φ=0.10), the fuel oxidation is observed at temperatures
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above 725 K, the similar temperature to those found for stoichiometric and reducing

mixtures. Again, aldehydes peak at 725 K, but they soon disappear at higher tempera-

tures. The model yields a satisfactory agreement to the measurements and the carbon

is balanced by a maximum loss of 18% which occurs at 725 K.

The data presented here are in line with the results by Haas et al. [61] who studied

ethanol ignition at a lower pressure of 12.5 atm and found the ignition temperatures

of 750–775 K under stoichiometric (Φ = 0.91, 0.27% ethanol) and fuel–lean (Φ = 0.43,

0.28% ethanol) conditions. No sign of negative temperature coefficient (NTC) behavior

was observed neither in [61] nor in the present study.
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Figure 8.2: Results of pyrolysis experiments (0.689% ethanol in N2) at 50 bar. Gas residence
time is given by τ[s]=4098/T[K] (±8%).
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Figure 8.3: Results of experiments under reducing conditions (0.525% ethanol and 0.0363% O2
in N2, Φ=43) at 50 bar. Gas residence time is given by τ[s]=3840/T[K] (±8%).
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Figure 8.4: Results of experiments under stoichiometric conditions (0.525% ethanol and
0.0363% O2 in N2, Φ=1.0) at 50 bar. Gas residence time is given by τ[s]=3840/T[K] (±8%).
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Figure 8.5: Results of experiments under oxidizing conditions (0.312% ethanol and 9.830% O2
in N2, Φ=0.10) at 50 bar. Gas residence time is given by τ[s]=3840/T[K] (±8%).
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The consumption path of ethanol under the flow reactor conditions is shown in fig-

ure 8.6. Under all investigated conditions, ethanol is mainly consumed via conversion

to the α-hydroxyethyl radical (CH3CHOH). In the absence of oxygen, ethanol pyroly-

sis to CH3CHOH is mainly governed by H-abstractions by H (R2a) and CH3 (R5a). For

ethanol oxidation, the H-abstraction reactions by OH (R3a) and HO2 (R4a) take over

the other abstraction reactions.

CH3CH2OH + H = CH3CHOH +H2 (R2a)

CH3CH2OH +OH = CH3CHOH +H2O (R3a)

CH3CH2OH + HO2 = CH3CHOH +H2O (R4a)

CH3CH2OH + CH3 = CH3CHOH + CH4 (R5a)

The formed α-hydroxyethyl radical (CH3CHOH) either reacts with an oxygen

molecule (R8a) or dissociates (R6a), depending on oxygen availability in the system.

CH3CHOH( +M) = CH3CHO + H( +M) (R6a)

CH3CHOH +O2 = CH3CHO + HO2 (R8a)

Both paths give acetaldehyde which is then dehydrogenated to the acetyl radical

(CH3CO).

CH3CHO + H = CH3CO + H2 (R16a)

CH3CHO +OH( +M) = CH3CO + H2O( +M) (R17b)

CH3CHO + HO2 = CH3CO + H2O2 (R18a)

The acetyl radical (CH3CO) then dissociates to CO and CH3.

CH3CO( +M) = CH3 + CO( +M) (R23)

The H-abstraction from ethanol may also give CH3CH2O or CH2CH2OH, but these

paths are less important in ethanol conversion. The path to CH3CH2O (R5c) is more

favored under reducing conditions.

CH3CH2OH + CH3 = CH3CH2O + CH4 (R5c)
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The ethoxy radical (CH3CH2O) then dissociates to formaldehyde which finally gives

HCO.

CH3CH2O( +M) = CH2O + CH3( +M) (R13)

CH2O +OH = HCO +H2O (R24)

CH2O + HO2 = HCO +H2O2 (R25)

The HCO radical mainly reacts with molecular oxygen to give CO.

HCO +O2 = CO + HO2 (R26)

The other product of H-abstraction from ethanol is β-hydroxyethyl radical

(CH2CH2OH), which is more favored under stoichiometric and oxidizing conditions.

CH3CH2OH +OH = CH2CH2OH +H2O (R3b)

The CH2CH2OH radical either adds to molecular oxygen (R11b) or dissociates (R9a).

CH2CH2OH +O2( +M) = HOCH2CH2OO( +M) (R11b)

CH2CH2OH( +M) = C2H4 +OH( +M) (R9a)

Then HOCH2CH2OO dissociates to give two formaldehyde molecules.

HOCH2CH2OO( +M) = CH2O + CH2O +OH( +M) (R12)

The reaction pathways presented here agree with a general pathway for ethanol ox-

idation suggested by Frassoldati et al. [262]. However, the lower temperatures of the

current study favors oxygen association to CH2CH2OH (R11b) in addition to its disso-

ciation (R9a) predicted in [262].

The sensitivities of selected reactions are analyzed via a brute-force method in

which the sensitivity coefficient (Si) is defined as

Si =
(ΔXEtOH/XEtOH)

(Δki/ki)
(8.1)

Figures 8.7 and 8.8 show the results of the analysis for selected reactions under the

flow reactor conditions. Ethanol pyrolysis is mainly affected by the reactions between
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Figure 8.6: Consumption path for ethanol at 50 bar and 750–900 K under the flow reactor
conditions.

ethanol and methyl radicals (R5).

CH3CH2OH + CH3 = CH3CHOH + CH4 (R5a)

= CH2CH2OH + CH4 (R5b)

= CH3CH2O + CH4 (R5c)

The ethanol dissociation to CH2OH is also important in ethanol pyrolysis.

CH3CH2OH( +M) = CH3 + CH2OH( +M) (R1b)

Under reducing conditions and at 723 K, the reactions R27 and R28 also become
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controlling steps.

HO2 + HO2 = H2O2 +O2 (R27)

H2O2( +M) = OH +OH( +M) (R28)

Increasing R27 inhibits the fuel oxidation as HO2 may be consumed by another sensi-

tive abstraction reaction, R4a

CH3CH2OH + HO2 = CH3CHOH +H2O (R4a)

R28 promotes the oxidation by providing much needed hydroxyl radicals. Under the

same conditions but at a temperature 150 K higher, the abstraction by hydroxyl radicals

becomes important too.

CH3CH2OH +OH = CH2CH2OH +H2O (R3b)

For stoichiometric and oxidizing conditions, the reactions R28 and R4a are impor-

tant over 723–900 K. At 900 K, formaldehyde reactionwith the hydroxyl radical inhibits

the fuel oxidation, as this reaction takes out hydroxyl radicals.

CH2O +OH = HCO + H2O (R24)

The other path for formaldehyde conversion enhances the oxidation:

CH2O + HO2 = HCO + H2O2 (R25)

Higher temperatures also promote the ethanol reaction with hydroxyl radicals.

CH3CH2OH +OH = CH3CHOH + H2O (R3a)

= CH2CH2OH +H2O (R3b)

= CH3CH2O +H2O (R3c)

Again, the abstractions by HO2 (R4, R25) promote the fuel oxidation whereas HO2

conversion to H2O2 (R27) restrains ethanol oxidation.
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Figure 8.7: Sensitivity of ethanol prediction by the model at 50 bar and under the flow reactor
conditions.
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Figure 8.8: Sensitivity of ethanol prediction by the model at 50 bar and under the flow reactor
conditions.
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8.4.2 Comparison with literature data

8.4.2.1 Ignition at higher temperatures

Figure 8.9 presents selected ethanol ignition delays measured in shock tubes which

make further evaluation of the model at higher temperatures possible. The ignition

delays decrease monotonically by increasing temperature. The model can predict the

ignition delays fairly well above 900 K. At lower temperatures, ignition delays are

overpredicted.

The overprediction of models for long ignition delays (∼ms) measured in shock

tubes was reported and discussed earlier in [121, 125]. Over long residence times, pres-

sure and temperature increase gradually behind the shock wave, even in non-reactive

mixtures. To compensate for it, a pressure rise of 2% (per ms) is considered in simu-

lating data from Cancino et al. [56]. A method suggested by Chaos and Dryer [121] is

used to input the pressure variation in Chemkin [109], which improves the prediction

of ignition delays. It is likely that inputting post-shock pressure history improves the

model prediction against other low-temperature data as well. However, the model still

overpredicts the ignition delays measured by Cancino et al. [56] by a factor of four at

low temperatures.

Figure 8.9: Ignition delay time of stoichiometric ethanol/air (from Cancino et al. [56], Lee et al.
[60], and Heufer and Olivier [34]) and ethanol/O2/Ar (Φ=0.5 and 1, from Noorani et al. [59]).
The lines mark the present model prediction. In simulating data from Cancino et al. [56], a
post-shock pressure rise of 2% (per ms) is included.

The sensitivity of ignition-delay prediction to selected reactions are calculatedwith
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a brute-force method in which the coefficients are calculated as

Si =
(Δτ/τ)
(Δki/ki)

(8.2)

where τ is the ignition delay time and ki is the rare constant of ith reaction. The results

of the analyses for selected reactions are shown in figure 8.10. Among the evaluated

reactions, the H-abstraction by HO2 from ethanol is sensitive over temperatures of

800–1400 K.

CH3CH2OH + HO2 = CH3CHOH +H2O (R4a)

By increasing temperature, the importance of this reaction decreases while R29 be-

comes a bottleneck step in ignition.

H +O2 = O +OH (R29)

Both reactions R4a and R29 promote ignition and shorten the ignition delay time. At

low temperature, the HO2 radical is even more important when its conversion to H2O2

(R27) inhibits the ignition considerably, similar to the flow reactor conditions.

HO2 + HO2 = H2O2 +O2 (R27)

The importance of the H-abstraction reaction by HO2 (R4a) in ethanol ignition at

medium temperature has been noted earlier in [56, 60, 65, 295]. Here, the rate of this

reaction is taken from Marinov [259] who estimated the rate constants by analogy

to methanol reactions, something which naturally gives a rise in the uncertainty. To

improve model predictions at temperatures below 1000 K, the rate constant of this

reaction was modified in [56, 60, 65]. In the work by Cancino et al. [56], the overall

rate of CH3CH2OH + HO2 increased by orders of magnitude. Here, we refrain from

optimizing the rate constant of CH3CH2OH+HO2, but a more accurate description of

this reaction could potentially improve the agreement at intermediate temperatures.
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Figure 8.10: Sensitivity of ignition delay time prediction to selected reactions. The coefficients
were calculated as Si = (Δτ/τ)/(Δki/ki ) for a stoichiometric ethanol/air mixtures at 50 bar.
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8.4.2.2 Flame speed

Figure 8.11 compares the laminar flame speed of ethanol/air mixtures calculated by the

model with those measured in [296–301]. At atmospheric pressure, the model slightly

overpredicts the burning velocity but its prediction improves for fuel-rich mixtures.

The trend of changes as well as the fuel-air equivalence ratio corresponding to the

maximum flame speed are also predicted well.

Figure 8.11: Laminar flame speed of ethanol/air mixture at (a) atmospheric pressure and initial
temperature of 300 K; (b) 5, 7, and 10 bar and initial temperatures of 350, 350, and 358 K,
respectively. Experimental results are from Gulder [296], Konnov et al. [297], Bradley et al.
[298], Lipzig et al. [299], Egolfopoulos et al. [300], and Eisazadeh-Far et al. [301].

The model is further tested against data at higher pressures of 5, 7, and 10 bar.

Experimental data for high pressures are taken from Gulder [296] and Bradley et al.

171



Chapter 8. Ethanol

[298]. To avoid ethanol condensation in the mixtures, the initial temperature had to be

increased at higher pressures. While the maximum flame speed at 5 and 7 bar occurred

at Φ=1.1 according to Gulder [296], it was reported at Φ=1.2 by Bradley et al. [298].

This difference shifted the whole profiles and made noticeable scattering between the

data, specially in the fuel-rich side. Although the model overestimates the flame speed

for fuel–lean mixtures, its prediction improves for fuel-rich mixtures.

The sensitivity of gas flow rate (in mass unit) to reaction rate constants is analyzed

with the built-in functions of Chemkin [109] and the results are shown in figure 8.12.

Since the initial temperature and pressure are fixed, the mass flow rate sensitivity nec-

essarily correlates to the sensitivity of flame speed. As expected, the reactions involv-

ing hydrogen atoms are far more sensitive in determining the burning velocity, e.g.

the chain-branching reaction of R29.

H +O2 = O +OH (R29)

The CO oxidation which is the major source of heat in the system, influences signifi-

cantly the calculation of flame speed.

CO +OH = CO2 + H (R30)

Whereas the decomposition of HCO promotes the burning rate noticeably, its reactions

with any of H, OH, or O2 slow down the burning rate.

The C2 subset is relatively less important in determining the burning velocity. Its

most important reactions are

C2H5 +HCO( +M) = CH3 + CH2CHO( +M) (R31)

C2H3 + H( +M) = C2H4( +M) (R32)

C2H2 + H( +M) = C2H3( +M) (R33)

The most sensitive reaction from ethanol subset is R3a:

CH3CH2OH +OH = CH3CHOH + H2O (R3a)

The deviation of model predictions from measurements of ethanol flame speed has

been reported earlier in [297, 302]. Konnov et al. [297] showed that both mechanisms
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by Konnov [303] and Saxena andWilliams [263] significantly overpredict ethanol lam-

inar burning velocities in lean and near-stoichiometric mixtures. Another model by

Leplat et al. [264] generally underestimated burning velocities under fuel-rich condi-

tions. Christensen et al. [302] found that in addition to ethanol, the flame speed of

acetaldehyde is also generally overpredicted by the chemical kinetic models in [263,

303]. Christensen et al. [302] analyzed the sensitivity of the mechanism by Leplat et

al. [264] and found R29 and R30 to be controlling for both ethanol and acetaldehyde

flames, similar to the finding here for ethanol flames. However, Christensen et al. [302]

found that the flame speed of ethanol is not sensitive to the acetaldehyde subset.

The calculation of burning velocity is highly affected by high temperature chem-

istry, so achieving a perfect agreement is not within the scope of this paper. However,

a more thorough analysis of the model to improve the prediction of burning velocity

can be interesting.
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Figure 8.12: Sensitivity of flame speed of ethanol/air mixture at 1 atm and 10 bar pressures
and the initial temperatures of 300 and 358 K.
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Conclusion

Ethanol pyrolysis and oxidation were investigated in a laminar flow reactor at 50 bar

pressure and temperatures of 700–900 K. The onset temperature of ethanol oxidation

was found to be 700–725 K for a wide range of stoichiometries (Φ=0.1–43). In pyrolysis

experiments, the decomposition of ethanol was detected above 850 K. A detailed chem-

ical kinetic model was developed for ethanol oxidation and pyrolysis. The modeling

results agreedwell with themeasured onset temperature of reaction as well as the con-

centration of most components upon initiation. The model was also manipulated to

predict the ignition delay time and flame speed of ethanol measured in literature. Mod-

eling results agreed well with the measured ignition delays above 900 K. Below 900 K,

the model overpredicted ignition delays which might be due to the uncertainty in the

rate constants of the reaction between ethanol and hydroperoxyl radicals. The flame

speedwere slightly overpredicted but the model prediction improved for fuel-richmix-

tures. The presented data can be used to validate kinetic models at intermediate tem-

perature and elevated pressures. More accurate determination of the key reactions

identified here might be helpful in utilizing the model for industrial applications.
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Chapter 9

Dimethyl ether (DME) and
DME/Methane

Abstract

The pyrolysis and oxidation of dimethyl ether (DME) and its mixtures with methane

were investigated at high pressures (50 and 100 bar) and intermediate temperatures

(450–900 K). Mixtures highly diluted in nitrogen with different fuel-air equivalence

ratios (Φ = ∞, ∼20, 1, ∼0.05) were studied in a laminar flow reactor. At 50 bar, the

DME pyrolysis started at 825 K and the major products were CH4, CH2O, and CO. For

the DME oxidation at 50 bar, the onset temperature of reaction was 525 K, indepen-

dent of fuel-air equivalence ratio. The DME oxidation was characterized by a negative

temperature coefficient (NTC) zone which was found sensitive to changes in the mix-

ture stoichiometry but always including temperatures of 575–625 K. The oxidation of

methane doped by DME was studied in the flow reactor at 100 bar. The fuel-air equiv-

alence ratio (Φ) was varied from 0.06 to 20, and the DME to CH4 ratio changed over

1.8–3.6%. A profound promoting effect of DME addition on methane ignition was ob-

served as the onset of reaction shifted to lower temperatures by 50–150 K. A detailed

chemical kinetic model based on previous work from the same laboratory was devel-

oped by adding a DME subset from Zhao and coworkers and updating a few reactions.

The model was evaluated against the present data as well as high temperature data

from literature. The model predicted fairly well the onset temperature of the fuel con-

version as well as the gas composition upon ignition. However, further studies of the

interactions between DME and methane are needed.
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9.1 Introduction

Combustion will remain the major source of energy for decades [2, 3]. The steady in-

crease in the global energy demand aswell as the release of carbon dioxide and harmful

pollutants from the combustion of most fossil fuels are the major motivations to seek

alternative sources of energy. In medium term, fossil-derived fuels which produce less

pollutants and have a higher energy efficiency may relieve the environmental prob-

lems to some extent. Among the alternative fuels, dimethyl ether (DME) has attracted

interest, especially for engines. DME can be produced from different feedstocks, e.g.

oil, natural gas, coal, waste products, and biomass. Bio-derived DME fuel can po-

tentially reduce the release of CO2 to the environment. Lower ignition temperature,

shorter ignition delay time, and easier evaporation compared to conventional diesel

fuels make DME an attractive alternative. Replacing diesel fuel by DME reduces the

emission of particulate matter (PM) and nitrogen oxides (NOx) from slightly modified

compression-ignition (CI) engines [67–71]. The absence of a C−C bond in the molec-

ular structure of DME, as well as its high oxygen content, are believed to suppress soot

formation [69]. Using DME fuel in gas turbines has also been demonstrated and DME

could replace natural gas in slightly modified gas turbines [72]. However, low energy

density and potentially high emission of aldehydes and CO may challenge widespread

usage of DME as a fuel [69].

DME has also been considered as an additive to improve combustion properties of

various fuels, e.g. natural gas. Adding DME to natural gas accelerates ignition [73–76]

and its addition to methane increases flame speed [74, 77]. DME addition to methane,

ethane, and propane can suppress the formation of polycyclic aromatic hydrocarbons

(PAHs) and soot [304]. Doping LPG by DME reduces NOx emissions [78]. DME is also

an effective additive in ethanol-fueled CI and SI (spark-ignition) engines [79, 80]. DME

was considered as an additive to methanol for use in CI engines in early studies [81–

83]. Whereas DME accelerates methane ignition, its effect on ethane oxidation is more

complicated [84]. Therefore it is vital to understand interactions between DME and

the components of natural gas, especially since local variations in the composition of

natural gas can be noticeable.

The DME ignition and oxidation show a complicated behavior of negative tem-

perature coefficient (NTC) at intermediate temperatures [86, 90, 95, 98]. Ignition in

engines and many industrial processes is greatly affected by combustion chemistry at

high pressure and intermediate temperature. Despite this fact, the DME oxidation has
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rarely been investigated at this range of temperature and pressure. This regime usu-

ally can be studied in flow reactors and rapid compression machines (RCM), but for

DME shock tubes are also useful due to its short ignition delay time. Shock-tube mea-

surements of ignition delays by Pfahl et al. [86] at pressures up to 40 bar reasserted

the two-stage ignition of DME. Dagaut and coauthors [98, 99] used a jet-stirred reac-

tor (JSR) to study DME oxidation at pressures up to 10 atm. Dryer and coauthors [90,

91, 95, 100] explored DME oxidation in flow reactors and RCM’s at pressures below

20 atm. Their results were interpreted in terms of a chemical kinetic model in [95].

Other shock-tube studies by Li et al. [87], Hu et al. [76], Tang et al. [75], and Burke et

al. [85] reported ignition delays at pressures below 25 bar. DME flame-measurements

were conducted at pressures as high as 10–20 bar [305–307], but they mostly reflect the

high-temperature oxidation-chemistry of DME. Ignition delays and flame speeds are

valuable as benchmarks in studying combustion, but details of the oxidation chemistry

cannot be drawn from them. Species profiles upon ignition from flow reactors can offer

additional detailed insight into the involved chemistry.

Despite its importance, DME interactions with natural gas components were

rarely characterized. Amano and Dryer [73] reported flow-reactor measurements of

CH4/DME oxidation at 10–18 atm and 800–1060 K. Burke et al. [85] measured ignition

delays of CH4/ DME mixtures over 10–30 atm and 600–1400 K. Other studies of

DME addition to natural gas components [74–77] were limited to temperatures above

1000 K. Extending data to high pressure and intermediate temperature is beneficial in

understanding CH4 /DME interactions.

Developing chemical kinetic models for combustion of methane and DME is a vital

step in utilizing their mixtures practically. Alzueta et al. [308] developed a model for

DME oxidation based on their data from an atmospheric flow reactor. Dagaut and

coauthors [98, 99] suggested a model for DME oxidation from their experiments in a

jet-stirred reactor (JSR). Curran et al. [309] suggested a model which later has been

extended to low temperatures in [90, 91]. Zhao et al. [95] improved the earlier models

in [90, 91] by comparing with data from a flow reactor. More recently, Burke et al. [85]

suggested an optimized model for DME oxidation.

In this work, we present the results of DME pyrolysis and oxidation at 50 bar and

450–900 K as well as results of tests on methane doped with DME at 100 bar pressure

and 450–900 K. All experiments are conducted in a flow reactor. In addition to stoichio-

metric conditions, oxidation data are collected at strongly reducing (Φ=∼20) and very
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oxidizing conditions (Φ=0.04–0.06). The DME oxidation subset from Zhao et al. [95] is

added to a reaction mechanism developed in our laboratory [1, 179, 237, 265, 310, 311]

and reaction rate constants are modified according to recent updates. The developed

model is evaluated against the present data and those available from the literature.

9.2 Experimental approach

The experimental setup was a laboratory-scale high-pressure laminar-flow reactor

designed to approximate plug flow [102]. The setup was described in detail else-

where [102] and only a brief description is provided here. The system was used here

to study the oxidation chemistry of DME as well as its mixtures with methane. The

temperature of the reactor was varied between 450–900 K. DME experiments were

conducted at 50 bar pressure and with a constant flow rate of 4.53 Nliter/min (STP;

1 atm and 273.15 K). The oxidation of methane doped by DME was studied at 100 bar

and at a flow rate of 3.23 Nliter/min (STP).

The reactions took place in a tubular quartz reactor (inner diameter of 8 mm) to

minimize the effects of surface reactions. The quartz reactor was enclosed in a stainless

steel tube that acted as a pressure shell. The system was pressurized from the feed gas

cylinders and the reactor pressurewas controlled by a pneumatically operated pressure

control valve positioned after the reactor. The pressure fluctuations of the reactor were

limited to ±0.2%.
The steel tube was placed in a tube oven with three individually-controlled electri-

cal heating-elements that produced an isothermal reaction zone (±6 K) of ∼37–41 cm
in the middle of the reactor. A moving thermocouple was used to measure the temper-

ature profile inside the pressure shell at the external surface of the quartz tube after

stabilizing the system.

The flow rates of different gaseswere regulated bymass-flowcontrollers. The gases

were mixed at ambient temperature well before entering the reactor, so a complete

mixing was expected before the reactor.

All gases used in the present experiments were high purity gases or mixtures with

certified concentrations (±2% uncertainty). The total flow rate was measured by a

bubble flow meter downstream of the reactor. Using a quartz tube and conducting

experiments at high pressures were expected to minimize the contribution from het-

erogeneous reactions at the reactor wall.

Downstream of the reactor, the system pressure was reduced to atmospheric level
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prior to product analysis, which was conducted by an on-line 6890N Agilent Gas Chro-

matograph (GC-TCD/FID from Agilent Technologies) calibrated according to the pro-

cedure in [237]. The GC allowed detection of O2, CO, CO2, CH4, C2H4, and C2H6 with

estimated uncertainties around 5%. Distinguishing methanol from acetaldehyde was

not possible due to signal overlapping in the GC detector. However, it was possible to

measure the signal areas corresponding to the sum of these components. According to

simulations, no yield of acetaldehyde was expected in the present experiments, so the

sum of acetaldehyde and methanol could be interpreted and quantified as methanol.

Moreover, due to the small signal to noise ratio of formaldehyde, a larger uncertainty

especially in measuring low quantities of formaldehyde was expected.

For each set of experiment, the mole fractions of reactants as well as the gas pres-

sure were constrainedwhile temperature of the isothermal zone was increased in small

steps which simultaneously shortened gas residence time in the reactor.

Figure 9.1 shows the measured temperature profiles of nitrogen flow with flow

rate and pressure corresponding to the DME experiments. The tabulated temperature

profiles for the DME experiments can be found in supplementary data. For the doped

methane experiments, the temperature profiles were similar to those given in [237].

Over this work, it was found that considering only the isothermal zone of the reactor

in interpreting and simulating the data can be misleading, due to the high reactivity

of DME at the low temperatures in the heating zone of the reactor. Therefore, a plug

flow approximation with constrained temperature according to the measured profiles

was used for modeling in Chemkin [109].

A potential source of uncertainty in interpreting data from the flow reactor was

the temperature rise due to exothermic reactions. The reactants were strongly diluted

in inert gas to limit the undesired temperature change. When the mixture has the

highest exothermicity, a measured temperature profile indicated a marginal difference

compared to the flow of pure nitrogen. Simulations with a constant pressure and en-

thalpy (adiabatic) model lead to a maximum temperature rise of 5 K for neat DME

experiments and 25 K for the mixtures of methane and DME. The narrow quartz tube

used here accelerated the thermal equilibrium between the reactive gas inside the re-

actor and the heating bath gas surrounding it, so the deviation of the gas temperature

from the measured profiles is estimated to be even smaller.
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Figure 9.1: Measured temperature profiles across the reaction zone. The flow was pure nitro-
gen with a flow rate of 4.53 NL/min at a pressure of 50 bar.

9.3 Chemical kinetic model

The present reaction scheme consists of H2/C1/C2/alcohols submodels developed in

[1, 179, 237, 265, 310]. The DME submodel is taken from Zhao et al. [95] with some

modifications discussed below. The oxidation subset for formic acid is taken from a

recent study by Marshall and Glarborg [311].

An accurate description of the thermal decomposition of DME,

CH3OCH3( +M) = CH3 + CH3O( +M) (R1)

= CH4 + CH2O( +M) (R1b)

is needed in modeling its high temperature oxidation [95]. Zhao et al. [95] calculated

the dissociation rate of DME by using RRKM/master equation simulations. Sivara-

makrishnan et al. [312] combined shock-tube measurements with theoretical calcu-

lations to derive pressure-dependent rate constants of DME dissociation over 500–

2000 K and at pressures of 0.01–300 bar. The major channel of DME dissociation gave

CH3 + CH3O (R1) while a roaming channel to CH4 + CH2O (R1b) contributed impor-

tantly at temperatures high enough, according to the experiments by Sivaramakrish-

nan et al. [312]. In contrast, the theoretical calculation in [312] predicted negligible

branching to the roaming channel (R1b). More recently, Tranter et al. [313] measured

the title reaction over temperatures of 1500–2450 K and at low pressures. Above 2000 K,
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the total rate of DME dissociation by Tranter et al. [313] was smaller than that in [312].

Moreover, Tranter et al. [313] found the contribution of the roaming channel to be

negligible, in line with the theory in [312]. We thus adopt the pressure-dependent rate

constants derived by Sivaramakrishnan et al. [312] but we assign the total rate to the

major channel (CH3 + CH3O).

The reaction between DME and a hydrogen atom (R2) was investigated experimen-

tally by Sivaramakrishnan et al. [312] at 1149–1465 K.

CH3OCH3 + H = CH3OCH2 +H2 (R2)

Combining their results with available data from literature, Sivaramakrishnan et al.

[312] suggested a rate constant for temperatures of 273–1465 K which is employed

here.

The initial propagation reaction in combustion of DME at low-medium tempera-

ture is the H-abstraction by the hydroxyl radical [314]:

CH3OCH3 +OH = CH3OCH2 +H2O (R4)

In a recent measurement using laser flash-photolysis by Carr et al. [314], this reaction

was explored at the temperatures of 200–850 K. Utilizing theoretical calculations and

adding data at lower and higher temperatures from literature enabled Carr et al. [314]

to derive a rate constant over 200–1400 K which is adopted in the present model.

The hydrogen abstraction by the HO2 radical (R5) is an important step in low-

temperature oxidation.

CH3OCH3 +HO2 = CH3OCH2 +H2O2 (R5)

Zhao et al. [95] increased the estimated rate of R5 by Curran et al. [309] to fit their

model to experimental data. For this reaction we rely on a more recent calculation by

Mendes et al. [315] over 500–2000 Kwhich yielded a rate constant considerably smaller

than that in [95].

The abstraction by the methyl radical from DME (R6) is an important step in DME

consumption in flow reactors and shock tubes [95].

CH3OCH2 + CH3 = CH3OCH2 + CH4 (R6)
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For this reaction we rely on measurements by Tranter et al. [316] in a shock tube at

low pressures and over 1163–1629 K.

The hydrogen abstraction by CH3OO was found to be sensitive at low temperature

combustion of methane [237]. A similar reaction (R10) for DME oxidation was not

included in the model by Zhao et al. [95].

CH3OCH3 + CH3OO = CH3OCH2 + CH3OOH (R10)

Recently Burke et al. [85] estimated the rate constant for this reaction. In the absence

of any measurement or calculation, we adopt this estimation.

The dissociation of methoxymethyl radical (R11) is important in predicting ignition

delay time [85].

CH3OCH2( +M) = CH2O + CH3( +M) (R11)

For this reaction the most reliable data are those advocated by Burke et al. [85] who

investigated its pressure dependence by RRKM calculations.

Methyl formate is an important intermediate in DME oxidation [243]. The major

product of H-abstraction from methyl formate (R17–R23) is CH3OCO. The CH3OCO

reactions with methyl and hydrogen radicals (R26–R30) are taken from a theoretical

study by Labbe et al. [243].

CH3OCO + H( +M) = CH3OH + CO( +M) (R26)

= CH2O + CH2O( +M) (R27)

= CH4 + CO2( +M) (R28)

CH3OCO + CH3( +M) = CH3OH + CH2CO( +M) (R29)

= CH3CHO + CH2O( +M) (R30)

Formic acid (HOCHO) is a major reaction intermediate in the oxidation of DME

at medium temperatures [90]. Curran et al. [90] suggested two main pathways

for the production of formic acid. The first one started with the decomposition

of HO2CH2OCHO to OCH2OCHO (R42) and then isomerization via R43. The

HOCH2OCO radical decomposed to HOCH2O + CO (R44) and the HOCH2O radical

184



9.3. Chemical kinetic model

dissociated to the formic acid and a hydrogen radical (R46).

HO2CH2OCHO = OCH2OCHO +OH (R42)

OCH2OCHO( +M)−−HOCH2OCO( +M) (R43)

HOCH2OCO( +M) = HOCH2O + CO( +M) (R44)

HOCH2O( +M) = HOCHO +H( +M) (R46)

In the second pathway, HOCH2O was formed from a reaction between formaldehyde

and hydroxyl radical (R47).

CH2O +OH = HOCH2O (R47)

We maintain these two pathways for the generation of the formic acid in our model,

but the rate constant for R47 is taken from theoretical calculations by Xu et al. [317]

instead of the estimation by Curran et al. [90]. For the oxidation of formic acid, we

adopt the entire submodel from a recent study by Marshall and Glarborg [311].

Table 9.1: Reactions from DME chemical kinetic model. The rate constants are in the form of
k = ATn exp(−E / (RT )). Units are mol, cm, K , s, and cal.

Reaction A n E Note/Ref.

R1 CH3OCH3( +M)=CH3 + CH3O( +M) 2.33E+19 −0.66 84092 [312]

Low-pressure limit: 1.72E+59 −11.4 93243.0

Troe parameters: 1 1 880

R2 CH3OCH3 + H=CH3OCH2 + H2 3.94E+00 4.13 1779 [312]

R3 CH3OCH3 + O=CH3OCH2 + OH 1.86E−03 5.29 −109 ‡
R4 CH3OCH3 + OH=CH3OCH2 + H2O 1.95E+07 1.89 −365 [314]

R5 CH3OCH3 + HO2=CH3OCH2 + H2O2 3.17E−03 4.64 10556 [315]

R6 CH3OCH3 + CH3=CH3OCH2 + CH4 1.02E+01 3.78 9687 [316]

R7 CH3OCH3 + O2=CH3OCH2 + HO2 4.10E+13 0.00 44910 ‡
R8 CH3OCH3 + CH3O=CH3OCH2 + CH3OH 6.02E+11 0.00 4074 ‡
R9 CH3OCH3 + CH3OCH2O2=CH3OCH2 + CH3OCH2O2H 5.00E+12 0.00 17690 ‡
R10 CH3OCH3 + CH3OO=CH3OCH2 + CH3OOH 1.27E−03 4.64 10556 [85]

R11 CH3OCH2=CH2O + CH3 2.66E+29 −4.94 31786 a , [85]

R12 CH3OCH2 + CH3O=CH3OCH3 + CH2O 2.41E+13 0.00 0 ‡
R13 CH3OCH2 + CH2O=CH3OCH3 + HCO 5.49E+03 2.80 5862 ‡
R14 CH3OCH2 + HO2=CH3OCH2O + OH 9.00E+12 0.00 0 ‡

Continued on next page
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Table 9.1 – continued from previous page

Arrhenius data

Methyl formate (CH3OCHO) subset

R15 CH3OCH2O=CH3OCHO + H 1.75E+16 −0.66 11720 ‡
R16 CH3OCHO=CH3 + OCHO 1.39E+18 −0.99 79140 ‡
R17 CH3OCHO + O2=CH3OCO + HO2 1.00E+13 0.00 49700 ‡
R18 CH3OCHO + OH=CH3OCO + H2O 2.34E+07 1.61 35 ‡
R19 CH3OCHO + HO2=CH3OCO + H2O2 1.22E+12 0.00 17000 ‡
R20 CH3OCHO + O=CH3OCO + OH 2.35E+05 2.5 2230 ‡
R21 CH3OCHO + H=CH3OCO + H2 4.55E+06 2 5000 ‡
R22 CH3OCHO + CH3=CH3OCO + CH4 7.55E−01 3.46 5481 ‡
R23 CH3OCHO + CH3O=CH3OCO + CH3OH 5.48E+11 0.00 5000 ‡
R24 CH3OCO=CH3O + CO 7.45E+12 −1.76 17150 ‡
R25 CH3OCO=CH3 + CO2 1.51E+12 −1.78 13820 ‡
R26 CH3OCO + H=CH3OH + CO 4.06E+20 −1.75 8027 a , [243]

R27 CH3OCO + H=CH2O + CH2O 8.11E+14 −0.68 8112 a , [243]

R28 CH3OCO + H=CH4 + CO2 3.40E+14 −0.40 9188 a , [243]

R29 CH3OCO + CH3=CH3OH + CH2CO 2.22E+15 −0.45 16410 a , [243]

R30 CH3OCO + CH3=CH3CHO + CH2O 3.79E+14 −0.63 18985 a , [243]

Low temperature sequence

R31 CH3OCH2 + O2=CH3OCH2O2 2.00E+12 0.00 0 ‡
R32 CH3OCH2O2 + CH2O=CH3OCH2O2H + HCO 1.00E+12 0.00 11670 ‡
R33 CH3OCH2O2 + CH3OCH2O2=O2 + CH3OCH2O +

CH3OCH2O

1.60E+23 −4.50 0 ‡

R34 CH3OCH2O2 + CH3OCH2O2=O2 + CH3OCHO +

CH3OCH2OH

6.84E+22 −4.50 0 ‡

R35 CH3OCH2O2H=CH3OCH2O + OH 2.11E+22 −2.12 43830 ‡
R36 CH3OCH2O=CH3O + CH2O 9.72E+15 −1.10 20640 ‡
R37 CH3OCH2O + O2=CH3OCHO + HO2 5.00E+10 0.00 500 ‡

Isomerization

R38 CH3OCH2O2=CH2OCH2O2H 6.00E+10 0.00 21500 ‡
R39 CH2OCH2O2H=OH + CH2O + CH2O 1.50E+13 0.00 20500 ‡
R40 CH2OCH2O2H + O2=O2CH2OCH2O2H 7.00E+11 0.00 0 ‡
R41 O2CH2OCH2O2H=HO2CH2OCHO + OH 4.00E+10 0.00 18500 ‡
R42 HO2CH2OCHO=OCH2OCHO + OH 3.00E+16 0.00 40000 ‡
R43 OCH2OCHO=HOCH2OCO 1.00E+11 0.00 14000 ‡
R44 HOCH2OCO=HOCH2O + CO 2.18E+16 −2.69 17200 ‡
R45 HOCH2OCO=CH2OH + CO2 5.31E+15 −2.61 20810 ‡

Continued on next page
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Table 9.1 – continued from previous page

Arrhenius data

Formic acid (HOCHO) formation

R46 HOCH2O=HOCHO + H 1.00E+14 0.00 14900 ‡
R47 CH2O + OH=HOCH2O 6.30E+06 1.63 4282 [317]

‡ according to Zhao et al. [95]
a at 100 atm pressure, for other pressures see the mechanism file in the supplementary data.

9.4 Results and Discussion

Species profiles from DME pyrolysis and oxidation in the flow reactor at intermedi-

ate temperatures (450–900 K) and high pressure (50 bar) are presented in this section.

Later, the results of the oxidation experiments of methane doped by DME over 450–

900 K and at 100 bar are presented and compared with the neat methane oxidation

published in [237]. To simulate the flow reactor results, a plug flow approximation

with constrained temperature (according to provided temperature profiles) and pres-

sure is used in Chemkin [109].

9.4.1 Oxidation of neat DME in the flow reactor

Figure 9.2 gives results from DME pyrolysis experiments. The DME dissociation starts

around 825 K, where a trace amount of methane is detected. At higher temperatures,

CH2O and CO are detected as well. Carbon is balanced well within ±3%. Although
the model overpredicts slightly the conversion at high temperatures, it predicts the

experimentally observed changes in the concentrations fairly well.

Under reducing conditions (Φ=20, figure 9.3), the DME consumption starts around

525 K, and CO is detected above 550 K. Between 575 K and 675 K, the concentration

of DME remains almost constant which is an indication of the expected NTC behav-

ior. The NTC trend is more pronounced in the oxygen profile in which two inflection

points characterizing the NTC zone can be identified at 575 and 625 K. Between these

points, the oxygen fraction increases with increasing temperature. DME oxidation re-

sumes at higher temperatures and oxygen is completely consumed. Below 725 K, the

major detected product is formaldehyde. Above 725 K, CO and CH4 become the ma-

jor products while formaldehyde is still non-negligible. Trace amounts of ethene and

ethane are also measured above 700 K.
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Figure 9.2: Results of DME pyrolysis experiments (1136 ppm of DME in N2) at 50 bar.
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The model predicts well the complicated non-monotonic changes in species frac-

tion against temperature. The concentrations of CH4, CO, and C2H6 are also well

reproduced by the model. Although formaldehyde fraction is overpredicted, the trend

of its change is reasonably predicted by the model.

Balancing carbon in the fuel-rich experiments reveals 12% carbon loss in the

worst case. According to the simulations, formic acid (HOCHO) and methyl formate

(CH3OCHO) should be formed in trace amounts under current conditions, but our

measuring facility does not allow us to quantify these components. Adopting the

concentrations of formic acid and methyl formate from the model, the carbon balance

is improved to 10%.

The NTC behavior of DME is more pronounced under stoichiometric conditions

(figure 9.4). The onset of DME reaction is found around 525 K, where trace amounts

of CO and CO2 are detected. The first inflection point can be identified at 575 K; above

this point the fraction of reactants increases as temperature is raised. This NTC trend

continues until 650 K, the second inflection point. Above 650 K, the DME consumption

is accelerated as temperature rises and DME disappears completely above 775 K. The

oxygen consumption is confined to maximum 60%, likely due to the slow oxidation

of CO at these temperatures. The inflection points can also be identified in the CO

and CO2 profiles. Withing these points, product formation is retarded. An interesting

trend in the CO2 fraction is seen at 800–900 K, where it falls but soon rises by elevating

temperature. Methane increases monotonically with temperature and is formed in

trace amounts above 725 K. Formaldehyde peaks around 700 K and disappears above

750 K.

The model predicts well the onset of reaction, the inflection points, and the frac-

tions of DME, O2, CO, and CH4. However, it slightly overpredicts formaldehyde,

and underpredicts CO2 in the NTC zone. The simulations show that methyl formate

(CH3OCHO) and formic acid (HOCHO) are produced up to 40 and 84 ppm, respectively.

Adopting their fractions from the model, carbon is balanced within ±6%.
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Figure 9.3: Results of DME reducing experiments at 50 bar (744/111 ppm of DME/O2 in N2,
Φ=20.2).
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Figure 9.4: Results of DME experiments under stoichiometric conditions and at 50 bar (268/782
ppm of DME/O2 in N2, Φ=1.0).
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For the fuel-lean mixtures (Φ=0.04), oxidation starts around 525 K. The NTC in-

flection points can be positioned at 575 and 675 K. Between these points, DME fraction

remains almost constant but it disappears completely above 700 K. A similar plateau

can be seen in the CO and CO2 profiles over the same temperatures. Interestingly, the

CO fraction is almost independent of temperature and it stays around 90 ppm over

575–900 K.

The model predicts well the onset of oxidation, the shapes of the profiles, and the

fractions of the major components. However, it slightly underpredicts CO2 formation

at NTC zone, similar to that for stoichiometric conditions. The model predicts the

maximum formation of methyl formate and formic acid in considerable amounts of 30

and 86 ppm, respectively. Adopting these concentrations from the model, the carbon

loss in the experiments is less than 14%.

Figure 9.5: Results of DME oxidizing experiments at 50 bar (146/10774 ppm of DME/O2 in N2,
Φ=0.04).

In the DME oxidization experiments, the onset temperature of DME reaction is

around 525 K, independent of the fuel-air equivalence ratio. The inflection points cor-

responding to the NTC regime are slightly sensitive to changes in the stoichiometry,

but generally NTC zone includes temperatures of 575–625 K. The present results are in

line with the results of earlier jest-stirred reactor [98] and flow reactor [90, 92] experi-

ments where DME ignitionwas reported around 525–550 K and the NTC zone included

temperatures of 600–700 K, despite differences in their initial reactant concentrations

and pressure.

As outlined earlier, the current experimental facility does not allow quantifying

formic acid and methyl formate whereas the model predicts a considerable yield of
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9.4. Results and Discussion

them, especially under stoichiometric and oxidizing conditions. Measuring these com-

ponents in future studies can be beneficial for better evaluation of models. Moreover,

the GC is not configured for quantifying C3 components, and the model also does not

include C3 subset. Therefore, it is likely that the observed carbon loss in the experi-

ments is partly due to the formation of C3 components.

A better insight into DME oxidation in the flow reactor can be obtained from simu-

lations. Figure 9.6 shows simulated DME conversion profiles against the length in the

reactor under stoichiometric conditions. At 550 K, the conversion starts at the begin-

ning of the isothermal zone of the reactor while the fuel conversion starts well before

the isothermal zone at higher temperatures. This explains the necessity of including

the temperature profiles to simulate the experimental results. Since the total flow rate

(in mole) is constant, increasing temperature shortens the reactor residence time as

well. To separate the effect of the residence time from the temperature variations, the

DME conversion is simulated using an isothermal model with initial gas composition

same as those in stoichiometric conditions. As shown in figure 9.7, the conversion

starts well earlier at 650 K compared to 550 K, but the fuel consumption is retarded

after a while at 650 K. At 750 K, DME conversion is slow and the final fuel conversion

is less than that at 550 K, but more than at 650 K. Above 800 K, the fuel conversion is

further accelerated by elevating temperature.

Figure 9.6: DME conversion versus the length in the reactor at different temperatures un-
der conditions same as those in figure 9.4. The temperature profiles are implemented in the
simulations.

Figure 9.8 shows the fractions of radicals in conditions corresponding to figure 9.7.

At 550 K, radicals are formed later compared to other temperatures and their fraction
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Chapter 9. Dimethyl ether (DME) and DME/Methane

Figure 9.7: DME conversion versus time for initial conditions as those in figure 9.4. The
conversion profile is shown for different isotherms.

stays high. The major reactivity at 800 and 900 K can be identified with local peaks in

the radical concentrations.

Figure 9.8: Radicals growth in the DME stoichiometric oxidation under conditions similar to
those in figure 9.4. Simulations are conducted at constant temperatures. The number of radicals
represents the summation of H, O, OH, HO2, H2O2, CH3, CH3OO, C2H5, and CH3OCH2.

Themodel is used to analyze the reaction pathways of DMEpyrolysis and oxidation

under the flow reactor conditions. The analysis (figure 9.9) shows that in the absence

of oxygen the pyrolysis of DME initiates by its dissociation (R1),

CH3OCH3( +M) = CH3O + CH3( +M) (R1)
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9.4. Results and Discussion

and followed by CH3O dissociation (R48).

CH3O( +M) = CH2O +H( +M) (R48)

The produced hydrogen radical can attack another DME molecule (R2) to give a

methoxy-methyl radical (CH3OCH2).

CH3OCH3 + H = CH3OCH2 +H2 (R2)

The CH3OCH2 radical dissociates to formaldehyde and a methyl radical (R11),

CH3OCH2( +M) = CH2O + CH3( +M) (R11)

and the formed methyl radicals can attack another DME molecule,

CH3OCH3 + CH3 = CH3OCH2 + CH4 (R6)

so the chain-propagating continues. When the concentrations of the methyl and hy-

drogen radicals increase enough, the major consumption of DME is governed by its

reactions with CH3 (R6) and H (R2). More production of formaldehyde activates its

consumption path via reaction with the methyl radical,

CH2O + CH3 = HCO + CH4 (R49)

where HCO eventually decomposes to CO and a hydrogen atom.

For DME oxidation, however the process is more complicated. DME reaction with

molecular oxygen,

CH3OCH3 +O2 = CH3OCH2 +HO2 (R7)

and to a lesser extent the thermal decomposition of DME (R1) initiate the reactions

at 550–800 K. Around 900 K, DME dissociation takes over the initiation process. As

shown in figure 9.9 for the temperatures of 550–900 K, DME is mainly consumed with

H-abstraction by OH radicals (R4). The abstraction reactions by H (R2) and CH3 (R6)
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also contribute, especially for fuel-rich conditions at relatively high temperatures.

CH3OCH3 +OH = CH3OCH2 + H2O (R4)

CH3OCH3 + H = CH3OCH2 + H2 (R2)

CH3OCH3 + CH3 = CH3OCH2 + CH5 (R6)

At temperatures as high as 900 K, the CH3OCH2 radical dissociates directly to

formaldehyde (R11) which eventually yields CO. At lower temperature of 750 K, al-

most half of the CH3OCH2 radicals add tomolecular oxygen (R31) to formCH3OCH2O2

which itself isomerizes to CH2OCH2O2H via R38.

CH3OCH2 +O2( +M) = CH3OCH2O2( +M) (R31)

CH3OCH2O2( +M) = CH2OCH2O2H( +M) (R38)

The CH2OCH2O2H radical dissociates and gives two formaldehyde molecules and a

hydroxyl radical:

CH2OCH2O2H( +M) = OH + CH2O + CH2O( +M) (R39)

Below 700 K, the direct conversion of CH3OCH2 to formaldehyde (R11) disappears

from the reaction path and CH3OCH2 removal is overtaken by oxygen addition (R31).

As temperature decreases furthermore, the fuel conversion becomes even more com-

plicated, as CH2OCH2O2H does not dissociate to CH2O via R39 anymore. Instead, it

adds to another oxygen molecule to form O2CH2OCH2O2H (R40) which dissociates to

HO2CH2OCHO(R41). The later radical isomerizes (R42) and gives OCH2OCHO.

CH2OCH2O2H +O2( +M) = O2CH2OCH2O2H( +M) (R40)

O2CH2OCH2O2H( +M) = HO2CH2OCHO +OH( +M) (R41)

HO2CH2OCHO( +M) = OCH2OCHO +OH( +M) (R42)

These steps (R41–R42) produce two hydroxyl radicals per each O2CH2OCH2O2H rad-

ical consumed. This path eventually yields formic acid that oxidizes to CO2.

The path favored at 550–650 K produces more radicals than it consumes, so even

at such low temperatures it accelerates the ignition considerably, because of chain-

branching. The paths followed at higher temperatures are also chain-branching, but
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less efficient in generating radicals. As the temperature rises to around 900 K, the hy-

drogen peroxide dissociation becomes the major source of OH production hence accel-

erating the ignition considerably. The presented pathways are generally independent

of the stoichiometries investigated here.

The reaction path demonstrated here agrees well with analyses by Guo et al. [318]

and by Curran et al. [90] although they were mainly focused on pressures lower than

the present work.
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Figure 9.9: The reaction pathways of DME at different stoichiometries under the flow reactor
conditions at 50 bar and 550–900 K.
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The sensitivities of predicted DME fraction under the flow reactor conditions are

analyzed via a brute-force method in which the sensitivity coefficient (Si) is defined as

Si =
(ΔXDME/XDME)

(Δki/ki)
(9.1)

According to figures 9.10 and 9.11, the abstraction reaction from DME by CH3 (R6) as

well as DME thermal decomposition (R1) are sensitive in the pyrolysis of DME.

CH3OCH3( +M) = CH3 + CH3O( +M) (R1)

CH3OCH3 + CH3 = CH3OCH2 + CH4 (R6)

In the presence of a small amount of oxygen, under reducing conditions and at high

temperatures, the abstraction steps by H (R2) and HO2 (R5) radicals also become im-

portant.

CH3OCH3 + H = CH3OCH2 +H2 (R2)

CH3OCH3 +HO2 = CH3OCH2 +H2O2 (R5)

While R2 inhibits the fuel conversion, the reaction between a hydrogen atom and

molecular oxygen (R50) promotes the fuel conversion.

H +O2( +M) = HO2( +M) (R50)

Formaldehyde conversion to the formyl radical is another step promoting fuel conver-

sion.

CH2O + CH3 = HCO + CH4 (R49)

Under reducing conditions but at lower temperatures of 550–650 K, oxygen addi-

tion to CH2OCH2O2H (R40) becomes a critical step.

CH2OCH2O2H +O2( +M) = O2CH2OCH2O2H( +M) (R40)

The sensitivity coefficients for reactions R2 and R50 change their signs compared to

the high-temperature reducing conditions.
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Figure 9.10: Sensitivity coefficients for DME pyrolysis and reduction under conditions similar
to those in figures 9.2 and 9.3. The coefficients are calculated by considering only the isothermal
part of the reactor (the gas residence time as τ[s] = 3534 / T[K]).
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Figure 9.11: Sensitivity coefficients for DME pyrolysis and reduction under conditions similar
to those in figures 9.2 and 9.3. The coefficients are calculated by considering only the isothermal
part of the reactor (the gas residence time as τ[s] = 3534 / T[K]).
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Figures 9.12 and 9.13 show the results of sensitivity analyses under stoichiomet-

ric and oxidizing conditions. For the stoichiometric mixture, the fuel conversion at

high temperature is extensively affected by the rate constant of the reaction between

formaldehyde and a hydroxyl radical,

CH2O +OH = HCO + H2O (R51)

This reaction inhibits the fuel oxidation by removing much needed hydroxyl radicals.

DME conversion at this temperature is also sensitive to the abstraction by OH,

CH3OCH3 +OH = CH3OCH2 + H2O (R4)

Furthermore, the chain-terminating reaction R52 inhibits substantially the fuel con-

version.

HO2 +HO2
−−H2O2 +O2 (R52)

At the lower temperature of 550 K and under stoichiometric conditions, the

formaldehyde reaction with the hydroxyl radical (R51) is not so sensitive. Instead,

the oxygen addition to CH2OCH2O2H (R40) becomes important. The isomerization

of CH3OCH2O2 to CH2OCH2O2H (R38) is also sensitive at 550 K, whereas the rate of

this step turns to be less important at higher temperatures.

CH3OCH2O2( +M) = CH2OCH2O2H( +M) (R38)

For the fuel-lean mixture, high temperature oxidation is controlled considerably

by the reaction between formaldehyde and a hydroxyl radical (R51), similar to high-

temperature stoichiometric conditions. At 750 K, the dissociation of CH2OCH2O2H

(R39) also retards the DME oxidation to a great extend.

CH2OCH2O2H( +M) = OH + CH2O + CH2O( +M) (R39)

At this temperature, according to the reaction pathways, the path to formaldehyde

(R39) and the path to O2CH2OCH2O2H (R40) contribute almost equally in removing

the CH2OCH2O2H radical. In other words, the transition from low-temperature route

to the high-temperature one occurs around 750 K. This can explain the large negative
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sensitivity coefficient of R39, as enhancingR39 favors the high-temperaturepathwhich

is less efficient in generating radicals.
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Figure 9.12: Sensitivity coefficients for DME conversion under stoichiometric and oxidizing
conditions similar to those in figures 9.4 and 9.5. The coefficients are calculated considering
only the isothermal part of the reactor (τ[s] = 3534 / T[K]).
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Figure 9.13: Sensitivity coefficients for DME conversion under stoichiometric and oxidizing
conditions similar to those in figures 9.4 and 9.5. The coefficients are calculated considering
only the isothermal part of the reactor (τ[s] = 3534 / T[K]).

205



Chapter 9. Dimethyl ether (DME) and DME/Methane

9.4.2 Oxidation of Methane doped with DME

The effect on the fuel oxidation of doping methane with small amounts of DME is

investigated in the flow reactor at a pressure of 100 bar. Neat methane oxidation

data were published previously [237] and are shown here for comparison. For neat

as well as the doped methane experiments, the isothermal residence time is given by

τ[s] = 9550/T [K ]. However, implementing the temperature profiles provided in [237]

improves the accuracy of the simulation.

Figure 9.14 presents the results of experiments under reducing conditions (Φ=19.5–

20.0). Constraining the fuel-air equivalence ratio, DME is added to the mixture with

the DME to CH4 ratio of 3.2%. Such a small amount of DME has a striking effect, as

the onset temperature of the fuel conversion shifts from ∼725 K for the neat methane

to ∼575 K for the doped methane.

The effect of DME addition is not only on the ignition temperature, but also on the

shapes of species profiles. For the neat DME experiment under reducing conditions,

a plateau was observed in the DME profile over 575–675 K. Such a plateau now can

be identified around 600–650 K for the doped experiments, not only in DME profile,

but also in the O2, CO, and CH4 profiles. It seems that the doped mixture inherits the

two-stage ignition from DME. The first stage of ignition takes place around 575 K, a

temperature higher than that of neat DME at 50 bar (525 K). The second one is around

675 K, a temperature lower than the ignition temperature of neat methane (725 K). The

earlier ignition triggered by adding DME promotes the formation of CO2 and CO at

high temperatures. In contrast, C2H4 and C2H6 yields are slightly suppressed in the

presence of DME.

According to figure 9.14, almost the same yield of methanol can be achieved when

temperature is reduced from 750 K to 600 K but DME is added at the same time. There-

fore DME may be useful as a promoting agent in the direct conversion of methane to

methanol. The DME fraction fluctuated slightly (±3%) before the ignition, but that is
within the uncertainty range of our experiments.

Whereas the onset of reaction under reducing conditions is predicted accurately

by the model for both neat DME and neat methane [237], the ignition of methane

mixed with DME is predicted slightly premature. This results in the slight underpre-

dictions of DME and oxygen over 550–700 K. However, the model accurately repro-

duces the changes observed experimentally in the DME, O2, CO, CH4 and CO2 profiles.

Formaldehyde is overpredicted noticeably in the presence of DME.
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9.4. Results and Discussion

Figure 9.14: Results of DME addition to methane under reducing conditions (Φ=19.5–20.0)
and at 100 bar. Open symbols/solid lines: the neat CH4 experiment [237] with 1832/17819 ppm
of O2/CH4; Crossed symbols/dashed lines: the doped experiment with 1736/16469/530 ppm of
O2/CH4/DME; all diluted in N2.

Under stoichiometric conditions (Φ=0.99–1.02), two sets of experiments are con-

ducted with the DME to CH4 ratios of 1.8% and 3.2%. For both cases, the DME con-

version starts around 675 K, but there is no consumption of CH4 and O2 below 700–

725 K (see figure 9.15). As neat methane ignites at 750 K, the addition of DME triggers

methane oxidation at temperatures 25–50 K lower. The NTC behavior can be identified

only in the DME profiles over 725–750 K. Apart from that, the species profiles show

a monotonic sensitivity to temperature. The concentrations of the major products at
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high temperatures are not sensibly affected by DME addition.

The model predicts well the onset of methane conversion as well as the fractions

of O2, CH4, CO, and CO2, but it underestimates the ignition temperature of DME in

both doped mixtures, i.e. 550–575 K instead of 650 K. This premature DME conver-

sion affects the DME profiles at higher temperatures. The predictions of methane and

oxygen fractions have not been affected by the premature ignition of DME.

Neat DME ignites at 525 K (at 50 bar) for a wide range of stoichiometries, so it seems

that methane suppresses the ignition of DME in the mixture. Methane might activate

some chain-terminating paths in DME oxidation at low temperatures. Noting that

the model was able to predict accurately the ignition of neat DME and neat methane

under a wide range of stoichiometries, it is likely that the potential inhibiting effect of

methane on DME ignition is not well covered in the model.

For the fuel-lean mixture (Φ=0.06), the oxidation of neat methane starts around

750 K, according to figure 9.16. Doping with a DME to CH4 ratio of 3.6% gives methane

oxidation at 700 K, but DME itself ignites around 650 K. Oxygen abundance promotes

CO oxidation.

The model estimates well the methane oxidation temperature as well as the frac-

tions of CH4, CO2, and CO. However, DME ignition is predicted at lower temperatures

than the experimental observations, i.e. 550 K instead of 650 K.

Calculations show that heat released from DME oxidation in the doped mixture is

negligible, so the promoting effect of DME addition is probably related to a dramatic

growth in the concentrations of radicals.
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Figure 9.15: Results of DME addition to methane under stoichiometric conditions (Φ=0.99–
1.02) and at 100 bar. Open symbols/solid lines: the neat CH4 experiment [237] with 3104/1553
ppm of O2/CH4; Crossed symbols/dashed lines: the doped experiment (1.8%) with 3195/1542/28
ppm of O2/CH4/DME; Half-open symbols/dotted lines: the doped experiment (3.2%) with
3117/1519/48 ppm of O2/CH4/DME; all diluted in N2.
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Figure 9.16: Results of experiments of DME addition to methane under oxidizing condi-
tions (Φ=0.06) and at 100 bar. Open symbols/solid lines: the neat CH4 experiment [237]
with 39573/1095 ppm of O2/CH4; Crossed symbols/dashed lines: the doped experiment with
36849/1049/38 ppm of O2/CH4/DME; all diluted in N2.
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Under stoichiometric conditions and at 725 K, ignition is only observed in the doped

experiments (3.2% doping) and not in the neat methane experiments. The reaction

pathways analysis under such conditions reveals that the DME conversion initiates by

the reaction betweenDME andmolecular oxygen, similar to neat DME (figure 9.9). The

produced CH3OCH2 radical then follows the consumption path of neat DME, yielding

OH radicals, especially from the dissociation of CH2OCH2O2H at this temperature. At

an early stage of ignition, around two-thirds of the producedOH radicals are consumed

in the abstracting hydrogen from methane,

CH4 +OH = CH3 +H2O (R53)

which starts the major path of methane oxidation [237]. After ignition, methane fol-

lows the consumption path of neat methane as in [237].

Previously, Tang et al. [75] argued that the ignition promotion of DME addition

to methane was due to the growth of the methyl radical fraction at the beginning of

oxidation. Chen et al. [74] also attributed the promoting effect to the rapid build-up of

HO2 and CH3 over the ignition delay time. However, their analyses were conducted

at temperatures higher than this study, where the ignition regime is expected to be

different from the ones investigated here.

The sensitivity of DME prediction at 600 K for the stoichiometric mixture of the

dopedmethane (3.2% doping) is shown in figure 9.17. At this temperature, DME should

not be converted according to themeasurements, but themodel predicts a considerable

consumption of DME. The total fuel to oxygen ratio is in agreement with stoichiomet-

ric balance, but DME reacts in a very oxidizing environment since methane does not

participate in the oxidation at such low temperatures. The sensitivity of reactions are

analogous to the sensitivity of neat DME under oxidizing conditions and at a lower

pressure of 50 bar (figures 9.12 and 9.13). However, the results of brute-force sensi-

tivity analyses conducted in this work should be interpreted with caution, as the sen-

sitivity coefficients are calculated only for selected reactions, and consequently other

important reactions might be left out.
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Figure 9.17: Sensitivity coefficients (brute-force) of DME in its mixture with methane (DME
/ CH4 =3.2%) under stoichiometric conditions and at a pressure of 100 bar in the flow reactor.
The coefficients were calculated by implementing the temperature profiles.

9.4.3 Comparison with literature data

9.4.3.1 Ignition at higher temperatures

The model can be evaluated at higher temperatures by comparing its prediction with

available ignition delays measured in shock tubes. The ignition delay times of stoi-

chiometric DME/air and DME/O2/Ar at pressures of 1–40 bar are shown in figure 9.18.

As expected, DME/air ignites considerably faster than the highly diluted mixtures of

DME/O2 in Ar. The ignition delays of DME/air are characterized by two inflection

points. Between these points, the ignition delay represents the NTC behavior, simi-

lar to flow-reactor results for onset temperature of reaction. The first inflection point

is slightly affected by pressure as it moves from 790 K to 830 K when pressure is in-

creased from 13 bar to 40 bar. The sensitivity of ignition delays to pressure is higher

over the NTC region and increasing pressure reduces the ignition delays considerably.
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The model reproduces well the ignition delays of DME/air and the corresponding in-

flection points.

Figure 9.18: Ignition delay times of stoichiometric DME/air (data from Pfahl et al. [86] and
Li et al. [87]) and DME/O2/Ar (data from Hu et al. [76], Pan et al. [88], Hu et al.b [89]). Lines
denote the prediction of the present model assuming constant u,v.

The ignition delay times of stoichiometric mixtures highly diluted in argon are

measured at temperatures above 1100 K, so the NTC behavior is not expected. It seems

that the ignition delay shortens by increasing pressure over 1100–1600 K too. Although

the agreement between themodeled and themeasured delay times deteriorates slightly

at high temperatures, the model performs well below 1400 K at different pressures.

Themodel is further evaluated against ignition delays under fuel-rich and fuel-lean

conditions for the mixtures of DME/O2 diluted either in argon or nitrogen (figure 9.19).

The ignition delays are longer for the fuel-lean mixtures. Same as for stoichiometric

conditions, the model predicts well the ignition delays.

Previously we observed that the model was able to estimate accurately the onset

temperature of the major reaction in the mixtures of methane and DME in the flow

reactor although it predicted premature ignition of DME in the mixtures. To further

evaluate the interaction of methane and DME in the model, the ignition delays of mix-

tures of methane and DME are calculated and compared to the available data in figure

9.20. Here, the DME to methane ratio is varied from 0% to 100%, and as can be seen the

model follows very well the experimental results for mixtures in air. For the mixtures

in argon, however the model estimates a little longer ignition delays compared to the

measurements.
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Figure 9.19: Ignition delay times of fuel-lean (Hu et al. [76]: 0.68% DME in O2/Ar, Li et al.
[87]: 3.38% DME in O2/N2, Pan et al. [88]: 0.68% DME in O2/Ar) and fuel-rich (Hu et al. [76]:
2.46% DME in O2/Ar, Li et al. [87]: 9.51% DME in O2/N2, Pan et al. [88]: 2.46% DME in O2/Ar )
mixtures at different pressures. Lines denote the prediction of the present model.

Figure 9.20: Effect of replacing methane by DME on the ignition delay times of stoichiometric
mixtures. Symbols present the measurements in shock tubes for mixtures in air by Burke et al.
[85] and for mixtures in argon (94% Ar) by Tang et al. [75]. Lines denote the prediction of the
present model.
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9.4. Results and Discussion

After evaluating the present model under different conditions, we use it to study

the effects of pressure on the ignition delay time of DME/air. Figure 9.21 presents the

results of the simulations over 600–1100 K and pressures of 1–200 bar. The ignition

delay seems to be independent of the pressure at temperatures as low as 600 K. In

fact, this trend was already observed in the experimental data where the measured

ignition delays at different pressures converged below the first inflection temperature

(see figure 9.18). On the other side, the ignition at 1100 K is accelerated strongly by

increasing pressure from 1 to 200 bar. For intermediate temperatures between 600 and

1100 K, the ignition delay initially drops but later it levels off at higher pressures.

Figure 9.21: Effect of pressure and temperature on ignition delay times of stoichiometric
DME/air mixture.

9.4.3.2 Flame speed

The variations of laminar flame speed can represent the net effect of the mixture diffu-

sivity, exothermicity, and reactivity [319]. The flame speed thus has widely been used

to evaluate chemical kinetic models, especially regarding high temperature chemistry.

Figure 9.22 compares modeled flame speeds with measured data at pressures up to

10 atm. As expected, the flame speed decreases with increasing pressure. The maxi-

mum of the flame speed at 1–6 atm was measured at Φ � 1.2, which is well predicted

by the model. The model slightly underestimates the flame speed of fuel-richmixtures.

The sensitivity of flow rate (inmass) to the reaction rate constants can be calculated

by the built-in functions in Chemkin [109]. Since pressure, temperature, and compo-

sition are fixed at the inlet, the sensitivity of the flow rate represents the sensitivity of
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Chapter 9. Dimethyl ether (DME) and DME/Methane

Figure 9.22: Laminar flame speed of DME/air at initial temperature of 298 K and different
pressures. Experimental results are taken from Qin and Ju [306], Daly et al. [13], Vries et al.
[307], and Zhao et al. [320]. Lines denote the predictions of the present model.

the flame speed too. As shown in figure 9.23, the flame speed of DME is determined

strongly by reactions involved hydrogen atom. Especially, the chain-branching reac-

tion of R54 and the chain-propagating reactions of R55 and R56 affect the flame speed

of DME extensively.

H +O2 = O +OH (R54)

HCO( +M) = H + CO( +M) (R55)

CO +OH = CO2 +H (R56)
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9.4. Results and Discussion

Figure 9.23: The sensitivity of flame speed of stoichiometric DME/air at initial temperature
and pressure of 298 K and 1 atm, respectively. The coefficients are calculated and normalized
using the built-in functions of Chemkin [109].

Conclusion

The pyrolysis and oxidation of DME and its effect on methane oxidation as an additive

have been investigated in a flow reactor at high pressures and intermediate tempera-

tures. It was found that DME pyrolysis started around 825 K at 50 bar pressure. The

DME oxidation experiments at 50 bar gave the onset temperature of reaction at 525 K,

independent of fuel-air equivalence ratio. Further experiments at 100 bar showed that

by adding a small amount of DME to methane its ignition could effectively be ac-

celerated. A model was developed for DME/CH4 oxidation and was evaluated at a

wide range of pressure, temperature, and stoichiometries. The model compared well

with the data of neat DME oxidation from the flow reactor. Both onset temperature

of reaction and the fractions of major components were reproduced fairly well by the

model. The model agreed reasonably with ignition delays and flame speeds of DME.

The model could also outline the onset temperature of major reactions in CH4/DME

mixtures. Further work is needed to focus on the interactions between DME and CH4

in the model to address the premature DME depletion in CH4/DME mixtures. The
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Chapter 9. Dimethyl ether (DME) and DME/Methane

presented species profiles of DME and DME/CH4 conversion extended the experimen-

tal benchmark for oxidation at high pressures and intermediate temperatures. Such

benchmark are vital in validating chemical kinetic models developed for addressing

problems in real conditions.
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Chapter 10

Comparison across the Fuels

In this chapter, combustion characteristics of investigated fuels are compared. In addi-

tion to species profiles, calculated ignition delay times of the fuels are presented. These

data are discussed in details in the corresponding chapters and they are presented here

only to provide a wider perspective of the results.

10.1 Species profiles for the flow reactor

Figure 10.1 shows the results from the flow-reactor experiments under reducing con-

ditions and at different pressures. The fuel-air equivalence ratio (Φ) varies from 12 to

47. The fuel and oxygen fractions are shown as normalized by their initial values. The

CO and CO2 fractions are normalized by the carbon content of the fuel at the inlet of

the reactor. Under investigated conditions, DME is chemically reactive above 525 K,

and it gives a considerable fraction of CO at high temperatures. Ethanol is the second

most reactive fuel which converts around 675 K. However, ethane (at 100 bar) is more

reactive compared to ethanol (at 50 bar) regarding the oxygen consumption.

As stoichiometry, pressure, gas residence time, and the extent of dilution vary

among experiments, fuel-reactivity should be compared with caution. Ideally, the ex-

periments should be conducted under similar conditions to facilitate comparison of dif-

ferent fuels, but it was not possible due to practical and technical limitations. Instead,

the strategy followed in this project is first to evaluate the model against collected

results under different conditions. If the model compares well with the experimental

observations, then the species profiles of all fuels will be extrapolated to certain fixed

conditions using the model.

In corresponding chapters for each fuel, it is shown that the model generally agrees

well with the measured data. Consequently, the model is used here to predict the

219



Figure 10.1: The normalized species profiles from the flow-reactor experiments on fuel-rich
mixtures (Φ=12–47). The initial mole fractions of the fuels were 0.953 / 1.753 / 1.113 / 1.106 / 1.1
/ 0.525 / 0.074 (in %) and the initial mole fractions of oxygen were 395 / 1781 / 1048 / 981 / 830 /
363 / 112 (in ppm) for H2, CH4, C2H6 (20 bar), C2H6 (50 bar), C2H6 (100 bar), ethanol, and DME
experiments, respectively. All gases were strongly diluted in nitrogen. Symbols are connected
by lines for eye guidance. Note that gas residence time varied among tests with pressure and
the isothermal length of the reactor.
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10.1. Species profiles for the flow reactor

species profiles from oxidation in an ideal constant-pressure and -temperature reactor

with a residence time of 10 s, a pressure of 100 bar, and a fuel-air equivalence ratio of

25 (in air). It should be acknowledged that when the mixtures of fuel in air are studied,

the concentrations of reactants, e.g. [O2], are several times larger than the concen-

tration studied in the flow reactor experiments, due to high dilution with inert gas

(usually more than 90%) in the experiments. However, whenever data were available

from experiments in mixtures with air, the model has been evaluated against them and

has been shown to give reliable predictions.

Figure 10.2 shows the results of the extrapolation by the model. At low tempera-

tures, ethane is more reactive compared to ethanol. In contrast, ethanol is converted

more at high temperatures. Hydrogen is the least reactive fuel at intermediate temper-

atures. Methane reactivity lies within those of ethanol and hydrogen.

Comparing the rate of the thermal dissociation of the different fuels (R1–R5) may

explain this behavior. Figure 10.3 shows the rate constants for the thermal dissociation

of the investigated fuels (R1–R5) in nitrogen atmosphere at 100 bar.

C2H6( +M)−−CH3 + CH3( +M) (R1)

CH3CH2OH( +M)−−CH2OH + CH3( +M) (R2a)

−−C2H4 + H2O( +M) (R2b)

−−C2H5 +OH( +M) (R2c)

CH3OCH3( +M)−−CH3 + CH3O( +M) (R3)

CH4( +M)−−CH3 +H( +M) (R4)

H2( +M)−−H +H( +M) (R5)

The rate constants for the dissociation of DME and ethanol are much higher than those

of other fuels, explaining their faster consumption. However, it should be noted that

even in the complete absence of oxygen, the dissociation is not the only reaction con-

verting the fuels. In fact, the reaction between the fuel molecule and radicals produced

from dissociation can be important as well. For example, in DME pyrolysis the reaction

between the methyl radical and DME (R6) also contributes significantly.

CH3OCH3 + CH3 = CH3OCH2 + CH4 (R6)
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Figure 10.2: The species profiles extrapolated by the model for fuel-rich mixtures (Φ=25) in
air. The isothermal gas residence time is fixed at 10 s and pressure is 100 bar.
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10.1. Species profiles for the flow reactor

Figure 10.3: The rate constants of the dissociation of studied fuels in nitrogen atmosphere at
100 bar.

After the ignition, DME and ethanol profiles show a non-linear sensitivity to tem-

perature. In chapter 9 the Negative Temperature Coefficient (NTC) behavior of DME

at intermediate temperatures has been discussed in detail. As shown in figure 10.1 for

highly diluted mixtures, the NTC behavior has not been observed for ethanol. Instead,

it seems that ethanol conversion in figure 10.2 has two stages, ethanol fraction drops

sharply by increasing temperature up to 650 K, but above that it changes slowly against

temperature. Such behavior in the ethanol profile might be an artifact of the model,

so further experiments on ethanol oxidation in air are interesting, both fundamentally

and practically. When oxygen is fully consumed in the mixture, further conversion of

hydrogen, methane, and ethane is stopped. In contrast, the conversion of oxygenated

fuels (ethanol and DME) continues after oxygen depletion.

For a better perspective, the conversion profiles are plotted for all fuels as a func-

tion of time in the reactor (figure 10.4). The first drop in DME concentration coincides

with the complete consumption of oxygen, but DME conversion continues gradually

afterwards. Ethanol conversion also continues for a short interval after oxygen deple-

tion.
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Chapter 10. Comparison across the Fuels

Figure 10.4: The normalized fractions of fuel and oxygen as a function of time for oxidation
at 800 K under conditions similar to those in figure 10.2.

Figures 10.5 and 10.6 show the results of the tests on stoichiometric mixtures. The

most reactive fuel is DME, with conversion starting from 525 K. Fuel oxidation starts

at 700–725 K for ethanol (at 50 bar) and at 750 K for ethane (at 100 bar). The NTC

behavior of DME is more profound under conditions investigated here, and the major

part of DME carbon converts to CO. Whereas DME, ethanol, and ethane are consumed

completely at 900 K, a considerable amount of oxygen still remains in the system, in

line with the high ratio of CO to CO2 fractions.

To eliminate the effects of pressure, dilution, and gas residence time, the model is

used to predict conversion in an ideal reactor under stoichiometric conditions (Φ=1.0).
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10.1. Species profiles for the flow reactor

Figure 10.5: The normalized species profiles from the flow-reactor experiments on stoichio-
metric mixtures (Φ=0.8–1.0). The initial mole fractions of the fuels were 3104 / 1553 / 512 / 546
/ 581 / 3467 / 268 (in ppm) and the initial mole fractions of oxygen were 1508 / 3104 / 2190 / 2335
/ 2240 / 10076 / 782 (in ppm) for H2, CH4, C2H6 (20 bar), C2H6 (50 bar), C2H6 (100 bar), ethanol,
and DME experiments, respectively. All gases were strongly diluted in nitrogen. Symbols are
connected by lines for eye guidance. Note that gas residence time varied among tests with
pressure and the isothermal length of the reactor.

As shown in figure 10.7, ethane is the most reactive fuel after DME. The onset temper-

atures of reaction are 525, 600, 625, 675, and 725 K for DME, ethane, ethanol, methane,

and hydrogen, respectively. The CO formation is considerable up to 775 K in methane

oxidation and until 825 K in the oxidation of other fuels. For all investigated fuels at

900 K, more than 92% of fuel carbon is eventually converted to CO2.
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Figure 10.6: The normalized species profiles from the flow-reactor experiments under stoi-
chiometric conditions given in figure 10.5.
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Figure 10.7: The normalized species profiles extrapolated by the model for stoichiometric
mixtures (Φ=1.0) in air. The isothermal gas residence time is fixed as 10 s and pressure is
100 bar.
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Chapter 10. Comparison across the Fuels

Figure 10.8 shows the effect of pressure on fuel conversion under stoichiometric

conditions. For all fuels except DME, elevating pressure accelerates fuel conversion

at low temperatures to some extent. For DME, the onset temperature of reaction is

slightly retarded by increasing pressure. The highest sensitivity to pressure is seen

for ethane, where the ignition temperature shifts around 75 K due to the changes in

pressure.

Figure 10.8: Effect of pressure on fuel conversion for stoichiometric mixtures (Φ=1.0) in air
simulated by the present model. The isothermal gas residence time is 10 s.

The results of the tests on fuel-lean mixtures are shown in figure 10.9. Even at the

highest temperature, hydrogen is not completely oxidized despite the high fraction of

oxygen. In DME oxidation, the NTC trend is weakened, but CO fraction shows an

interesting behavior where it levels off above 575 K. The CO2 profile from DME oxida-

tion has two plateaus, one over 550–675 K, and the other over 750–900 K. Figure 10.10

shows the results of simulations for the mixtures in air. Ethane is the most reactive

fuel after DME at low temperatures. The fuel oxidation starts at 525, 675, 700, 725, and

750 K for DME, ethanol, ethane, methane, and hydrogen, respectively. For DME oxi-

dation, the plateau in the CO2 profile disappears, but CO still shows a non-monotonic

trend.
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Figure 10.9: The normalized species profiles from the flow reactor experiments on fuel-lean
mixtures (Φ=0.04–0.1). The initial mole fractions of the fuels were 1610 / 1095 / 538 / 533 / 570
/ 3121 / 146 (in ppm) and the initial mole fractions of oxygen were 1.604 / 3.957 / 5.404 / 5.482
/ 5.234 / 9.83 / 1.077 (in %) for H2, CH4, C2H6 (20 bar), C2H6 (50 bar), C2H6 (100 bar), ethanol,
and DME experiments, respectively. All gases were strongly diluted in nitrogen. Symbols are
connected by lines for eye guidance. Note that gas residence time varied among tests with
pressure and the isothermal length of the reactor.
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Figure 10.10: The normalized species profiles extrapolated by themodel for fuel-leanmixtures
(Φ=0.1) in air. The isothermal gas residence time is fixed as 10 s and pressure is 100 bar.
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10.2. Ignition delay times of mixtures in air

10.2 Ignition delay times of mixtures in air

The ability of the model in predicting ignition delay times of the investigated fuels is

evaluated over a wide range of conditions in corresponding chapters. Here, the igni-

tion delay times of stoichiometric mixtures of different fuels with air are calculated.

As shown in figure 10.11, DME ignites considerably faster that the other fuels at tem-

peratures around 800 K. Ethane, ethanol, methane, and hydrogen ignite later. Above

1200 K, ethanol precedes DME in ignition. While hydrogen ignites later than the other

fuels at 800 K, it has the shortest delay time above 1400 K. The dramatic variations in

the ignition delays of the fuels at different temperatures emphasize the necessity of re-

liable chemical kinetic models in the design and optimization of systems involved with

ignition. The sensitivity of ignition delay to pressure and temperature is discussed in

more detail for each fuel in its corresponding chapter.

Figure 10.11: The ignition delay time calculated by the present model for stoichiometric fuel-
air mixtures at 100 bar.
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Conclusion and outlook

Combustion at high pressures and intermediate temperatures has generated research

interest due to its importance in modern engines and energy plants. Alternative bio-

derived fuels have attracted interest of policymakersmainly due to their environmental

advantages. However, application of bio-derived fuels under the conditions of modern

energy plants and engines has rarely been studied. In this project, the combustion of

hydrogen, methane, ethane, ethanol, and dimethyl ether (DME) was characterized by

measurements in a laminar flow reactor over a wide range of temperature, pressure,

and stoichiometry. Themeasurements presented the onset temperature of reaction and

mixture composition upon ignition for studied fuels. A detailed chemical kinetic model

was evaluated against the present data as well as against flame speeds and ignition

delays from literature. The results indicated that

– Hydrogen reaction started at 800 K (at 50 bar) under stoichiometric and oxidizing

conditions and at 750 K under reducing conditions. The model compared well

with the species profiles, flame speeds, and ignition delay times and it could

clarify the complicated sensitivity of hydrogen ignition delay to pressure and

temperature.

– Methane reaction started at 725–750 K (at 100 bar), almost independent of the

stoichiometry. The model agreed well with the species profiles, flame speed, and

ignition delay time measurements. Sensitivity analyses showed that methanol

yield from the partial oxidation of methane at high pressures strongly depended

on the thermochemistry data of CH3OO which are quite uncertain.

– The onset temperature of ethane reaction was between 700 and 825 K, and de-

pended on stoichiometry and pressure (20–100 bar). Elevating pressure generally

promoted ethane oxidation. The developed model was able to predict the mix-

ture composition frommost experiments. However, the fuel conversion was pre-
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dicted prematurely under reducing conditions and at high pressures. Moreover,

the model overestimated flame speed. Via sensitivity analyses, the reactions po-

tentially responsible for the disagreement were found for further studies.

– Ethanol dissociation was detected above 850 K while its oxidation was at 700–

725 K and almost independent of fuel-air equivalence ratio (at 50 bar). Themodel

compared well with the measurements of species profiles from the flow reactor.

The flame speed of ethanol was slightly overpredicted. Ignition delay time of

ethanol was well predicted by the model above 900 K, but it was overpredicted

below 900 K. Sensitivity analyses revealed the reaction between ethanol and the

hydroperoxyl radical as a critical factor in predicting ignition delay time at low

temperatures, while this reaction has only been determined with a large uncer-

tainty.

– DME pyrolysis and oxidation were investigated over 450–900 K and at 50 bar.

DME pyrolysis started around 825 K while the onset of DME oxidation was

around 525 K, independent of fuel-air equivalence ratio. In DME oxidation, the

NTC temperatures always included the range of 575–625 K. Flame speed and

ignition delays of DME were predicted well by the model. Further experiments

at 100 bar on the mixtures of methane and DME showed that doping methane

with a small amount of DME enhanced the oxidation considerably. The model

predicts well the onset of major reactions, but DME conversion in the mixtures

with methane was predicted prematurely. Further work on interactions between

methane and DME is required.

– Using the model to extrapolate the results to fixed conditions for all fuels showed

that DME is the most reactive fuel among the investigated ones at low tempera-

tures (650 K). For all the fuels except DME, the oxidation of stoichiometric mix-

tures started at lower temperatureswhen the pressurewas elevated. The ignition

delay times of different fuels showed a complicated sensitivity to temperature,

e.g. while hydrogen ignited later than the other fuels at 800 K, it ignited faster

than the others at 1500 K.
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