

A wind-wave coupled mesoscale modelling system for coastal extreme wind and wave conditions

Larsén, Xiaoli Guo

Publication date: 2015

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Larsén, X. G. (Author). (2015). A wind-wave coupled mesoscale modelling system for coastal extreme wind and wave conditions. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A wind-wave coupled mesoscale modelling system

for coastal extreme wind and wave conditions

Xiaoli Guo Larsén DTU WIND xgal@dtu.dk

DTU Wind Energy, Technical University of Denmark

We are

DTU WIND (Xiaoli Larsén, Jianting Du, Mark Kelly, Andrea Hahmann, Søren Larsen, Merete Badger, Ioanna Karagali, Joakim Nielsen)

DHI (Rodolfo Bolaños, Henrik Kofoed-Hansen, Ole Petersen, Jacob T. Sørensen, Nikhil Garg)

Bergen University (Alastair Jenkins, Angus Graham)

With supports from **DONG** and **Vattenfall** Funded by PSO ForksEL Project name: XWIWA

We aim at

- Exploring the full potential of the different model components (atmospheric, wave and ocean model)
- Improving the physics and numerical descriptions for fast developing weather conditions
- Providing a coupled system that uses the strength of each model component for the challenging storm and coastal conditions
- Reducing uncertainties and therefore risk and cost for offshore, port or coastal development

Offshore challenges

--Toward lower risk ar

4

Kystnære havmøller i Danmark

Screening af havmølleplaceringer indenfor 20 km fra kysten Juni 2012

UDKAST til offentlig høring

Air-sea interaction - Actions

Air-sea interaction - Actions

Air-sea interaction - Actions

MIKE functions and strength

DTU Wind Energy, Technical University of Denmark

WRF functions and strength

WRF model domain 18 km – 6 km – 2 km – 666.7 m – 222.3 m ~ 100 m (WRF-LES)

Actions

We have been examining coupling techniques:

One-way offline, two-way offline,

two-way online

The results on the wind outputs could be very different!

Actions

When modeling a storm, we examine Domain, initial time

to best reserve the large scale storm structure

CFSR large scale forcing

WRF outer domain

We have been examining the coastal, storm, issues, including

Actions

ospheric forcin

model resolution, input data, fetch effect

We have been examining the air-sea interaction physics

ss)

We have been examining the oceanic impact

Including SST, current and water level

MIKE 3 Model doma

We have been examining the oceanic impact

Including SST, current and water level

We are examining the Spray effect...

Actions

Actions - Validation

We have been validating the model results through various kinds of measurements

Mean meteorological measurements Turbulence Mean wave data Cloud pictures QuikSkat (wind, temperature, Hs) SAR wind

We have been **validating** the model results through

Action - Validation

various kinds of measurements in many ways

- Time series
- Distribution

0.50

0.10 0.05

0.01

- **Spatial distribution**
- **Spectral analysis**

0.001

0.010

Compared to literatures

What we can offer

- Wind and wave data in the coastal zones
 - high resolution
 - from advanced modeling
 - Long term statistics vs time series
 - For siting, design, O&M

• Tools

- A modeling system, particularly for storm conditions, suitable for coastal zones
- Post-processing program for assessing, evaluating and applying the data for particular use
- Improved knowledge, in technology, science and application

Final remarks

•Better understanding and modelling of the challenging conditions: Storms, coastal zone

Targeted at issues relevant for offshore (open sea and coastal) applications

Useful input for existing systems