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a b s  t  r  a  c t

We  present a universal protocol  for quick  and  reproducible  conductivity determinations  in  bio
applications using electrochemical  impedance  spectroscopy  (EIS),  electrode modification  and automated
spectral analysis. Twoterminal  EIS measurements may  be acquired  using  any standard  impedance  anal
yser  adjusting  the  applied sinusoidal potential  and  frequency range for  spectral analysis. An  implemented
Matlab  algorithm  displays  the  acquired spectra,  automatically  identifies the  frequency at  which  the  phase
angle  (ϕ) is closest  to  0◦ and  determines  the impedance  magnitude,  i.e. the  solution  resistance (RS). The
corresponding conductivity value  is  immediately  calculated  as  the  ratio  of  the  conductivity  cell constant
(�), determined  based  on calibration,  and  RS. This protocol  eliminates the  need  for evaluating  a spe
cific equivalent  circuit  followed by nonlinear  regression  based  curve  fitting that  is generally  required  in
EISbased  conductivity  determinations.  The  protocol  is  applicable to conductivity determinations  using
different conductivity  cell configurations  in  any electrolyte  solution regardless  of  its composition,  i.e.  in
solutions with  or without  electroactive  species  that give rise  to faradaic interface  impedance. Conducted
measurements showed high reproducibility in good  agreement  with  a  commercial  conductometer  in  a
wide  range of ionic strengths  up  to five  times  that  of  physiological  PBS.  Since  measurements in cell cul
ture medium with  bare  gold  electrodes indicated  the  need  for recalibration  to counteract the  effect  of
biomolecule  physisorption,  the  validity of  the protocol  was  further  extended  using  a  proteinrepellent
coating  of  poly(ethylene  glycol)  methyl ether  thiol  selfassembled  monolayer.  This effectively  elimi
nated electrode fouling,  facilitating high  reproducibility  in  repeated  conductivity  determinations  in  the
presence  of  proteins.

©  2015  Elsevier  B.V.  All rights  reserved.

1. Introduction

Measurement of solution conductivity is  a  classical analytical
technique that finds application in a  wide variety of chemi
cal  and biochemical studies, e.g., evaluation of solvent purity,
determination of relative ionic strength in solutions, assess
ment of critical micelle concentration, monitoring of enzymatic
reactions and calculation of basic thermodynamic quantities
[1], as well as biosensing [2,3].  Although bioapplications most
frequently involve measurements in the physiological conduc
tivity range [4,5], low conductivity solutions have been used
for, e.g., impedancebased affinity biosensing [6,7], while high
conductivity solutions are used as supporting electrolytes in

∗ Corresponding author. Tel.: +45 45 25 68 39; fax: +45 45 88 77 62.
Email address: arto.heiskanen@nanotech.dtu.dk (A. Heiskanen).

voltammetric analysis,  where concentrations may range up to 3 M
[8,9].

Solution conductivity can be explained in terms of ionic
mobility, which is  directly proportional to temperature with an
immediate effect of typically 1–3% per ◦C with respect to tabu
lated values at 25 ◦C. It is  also influenced by shifts in pH; acidic or
basic solutions increase conductivity since hydrated protons and
hydroxyl ions are the most mobile cations and anions, respec
tively. Variation of conductivity over time may  also  convey a
high degree of information about the chemical dynamics of bio
logical processes. A  culture medium containing proliferating or
dying cells is  an extremely heterogeneous chemical environment,
the composition of which is  continuously changing depending
on cellular metabolism [10].  Conductivity of culture media was
correlated to  microbial concentration and fermentation activity
already in 1898 [11],  paving the way to impedance microbi
ology [12], which gained increased significance in the 1970s

http://dx.doi.org/10.1016/j.snb.2015.02.029
09254005/© 2015 Elsevier B.V. All rights reserved.
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with the emergence of frequency response analysers. However,
although electrical impedance spectroscopy (EIS) potentially pro
vides extensive information about electron transfer mechanisms,
mass transfer phenomena and biochemical activity, the design of
an  optimised analytical strategy may  be highly demanding [13].
Simplified approaches have been devised based on conductivity
measurements. Parsons and Sturges developed and tested a  sim
ple and relatively quick approach to correlate culture medium
conductivity to the total amount of ammonia and amino nitro
gen produced by putrefactive anaerobic bacteria [14,15].  Allison
et al. extended this technique to metabolic studies on  aerobes
producing ammonia and lactic acid [10].  Similarly, cell culture
medium conductivity may  be a  key parameter for analysing the
complex dynamics that modulate mammalian cell cultures over
time [16]. This is particularly relevant for biomedical research
which is currently undergoing a  shift of paradigm toward 3D cell
cultures, needing new noninvasive online monitoring technolo
gies [17,18]. Furthermore, EIS has already been shown to be a
valuable tool for defining the porosity of 3D cell culture scaf
folds by yielding the conductivity of the bulk electrolyte filling the
pores [19,20].

The simplest approach for conductivity determination is to
apply an alternating electric field between two electrodes and mea
sure the impedance magnitude as an estimation of the solution
resistance (RS), which can be used to calculate conductivity. Alter
nating current at  frequencies above 1  kHz should be used  instead
of direct current that may  lead to electrolysis and electrode polar
ization [21]. Commercial conductometers are standalone devices
which typically operate maximally at  few predetermined frequen
cies. During calibration using a conductivity standard solution, an
internal algorithm selects the frequency value depending on the
conductivity range to give an accurate estimation of RS.  However,
the algorithm may  vary between manufacturers and depending
on the instrument quality, increasing the possibility of systematic
errors in the analysis. Moreover, although commercially avail
able conductivity sensors are manufactured from robust metals,
e.g., platinum, stainless steel and titanium, that provide high
mechanical stability, they are not designed for measurements in
biological solutions. Biomolecule adsorption on  the electrode sur
face increases the measured impedance, hence, yielding a lower
apparent conductivity value.

EISbased conductivity measurements, relying on analysis of
complete spectra using equivalent circuits, have been proposed
in order to eliminate the need of choosing a  specific frequency
that may  result in measurement inaccuracy [22]. To our best
knowledge, such approach has been used especially for labona
chip devices in impedance microbiological applications [23–25].
Generally, such analysis depends on the electrolyte composi
tion and hence, whether the measured impedance is  contributed
to by faradaic and/or nonfaradaic processes. Additionally, the
structure/geometry of a conductivity cell  imposes requirements
on the used equivalent circuit [22],  especially when microfab
ricated devices having interdigitated electrodes (IDEs) are used
[26]. Hence, this approach complicates conductivity determina
tions, requiring a  different equivalent circuit depending on the
composition of the used electrolyte solution [13,27] or  structure
of the conductivity cell [22,26].

To avoid the limitations described above, we hereby present a
universal protocol that relies on acquisition and automated analysis
of complete impedance spectra as the basis for quick conductiv
ity determinations, as well as electrode modification applicable
for measurements in biomolecule containing electrolytes. Con
ventional twoterminal EIS measurements can be used with the
flexibility of choosing both the sinusoidal potential of excitation
and frequency range for analysis. A Matlabbased algorithm dis
plays Bode plots for impedance magnitude (|Z|) and phase angle

(ϕ) while it automatically identifies the most suitable frequency
for determining RS,  i.e. |Z| at the frequency where ϕ is  closest to 0◦.
This approach provides two  major advantages: the calculated solu
tion conductivity value is (1) based on an accurately determined RS

unlike in the case of an algorithm relying on a  few predetermined
frequencies, and (2) independent of validation and analysis of a
specific equivalent circuit. A  commercial conductometer was used
for validation and a  good agreement between the two methods
was found for ionic strength (I) values up to five times that of
physiological PBS. Our universal protocol facilitated stable, precise
and accurate measurements using inexpensive electrodes and a
standard impedance analyser. Moreover, the validity was  further
extended to conductivity measurements in biomolecule contain
ing electrolytes (i.e. cell culture medium). The influence of protein
physisorption on conductivity determination was eliminated using
a  proteinrepellent selfassembled monolayer (SAM) modification
of poly(ethylene glycol)terminated alkanethiol. High precision
and reproducibility was achieved in repeated measurements in cell
culture medium without the requirement for recalibration during
measurements or labourintensive electrode cleaning after mea
surements.

2. Materials and methods

2.1. Chemicals and solutions

Potassium hydroxide (semiconductor grade), hydrogen perox
ide (30%  solution in water), cell culture tested PBS (physiological
and 10×  concentrate), Roswell Park Memorial Institute medium
1640 (RPMI), fetal bovine serum (FBS), penicillin/streptomycin
(P/S), and poly(ethylene glycol) methyl ether thiol (mPEG, aver
age Mn 800) were purchased from Sigma–Aldrich Corporation
(St. Louis, MO,  USA). Electrochemical measurements were per
formed on  serial dilutions of  PBS in the range of  0–1.5 M NaCl
(chemical composition of the 10×  concentrate given by the sup
plier: 0.03  M Na(PO4)3, 1.5 M NaCl, 0.0105 M KH2PO4).  Ultrapure
deionized water (18.2 M� cm)  from MilliQ system (Millipore Cor
poration, Billerica, MA,  USA) was used for diluting PBS samples
and rinsing electrodes. Standard solutions of known conductivity
(8.4 × 10−3,  1.4 × 10−2,  1.3, 11.2 S/m) were purchased from Hanna
Instruments (Kungsbacka, Sweden).

2.2. Measurement protocol

Prior to  the first EIS measurement, gold plate electrodes,
fabricated by ebeam evaporation on oxidized silicon wafers as pre
viously described [18,20],  were cleaned by a 10min treatment with
a  mixture of 25% (v/v)  H2O2 and 50 mM KOH followed by a  potential
sweep from −200 mV  to −1200 mV in 50 mM KOH [27].  Electrodes
were mounted on a  3D printed conductivity cell as described in
Supplementary Information S1 and shown in Fig. S1. Impedance
spectra were acquired using a  Reference 600 potentiostat (Gamry
Instruments, Warminster, PA, USA). An alternating potential (rms)
of 10 mV  was applied in the frequency range between 10 Hz and
1 MHz. The  geometrically determined cell  constant (�) was verified
by acquiring and  analysing three EIS spectra in triplicate samples
of each  conductivity standard solution. This allowed calculation of
the experimental value for �,  which is defined as the product of
the solution conductivity and solution resistance (RS). The results
are presented as average ± standard error of mean (s.e.m.), n =  9. EIS
data processing for automated generation of Bode plots and con
ductivity determination were implemented as a Matlab (version
R2012b) script (detailed description in Supplementary Information
S2). Forloops allowed presentation of spectra acquired in differ
ent solutions in the same Bode plot (|Z| or ϕ).  To  calculate the



546 C. Canali et al. /  Sensors and Actuators B 212  (2015) 544–550

conductivity, RS was determined based on  the |Z| value in a fre
quency range where ϕ is closest to 0◦.  This was computed using
the min(X,Y) function. Three EIS spectra were acquired in triplicate
samples of different PBS dilutions. The relationship between calcu
lated conductivity and I (approximated by NaCl concentration) was
determined and validated against the performance of a  commer
cial conductometer (CDM 92, Radiometer Analytical, Copenhagen).
The results are presented as average ± s.e.m., n  = 9. All the measure
ments were conducted at room temperature in solutions exposed
to atmospheric CO2.

2.3. Electrode modification for  bioapplications

Three EIS spectra were acquired in triplicate samples of cell
culture medium. Before and after measurements in cell culture
medium, three samples of physiological PBS was analysed to eval
uate the influence of medium serum proteins on  the electrode
performance. The results are presented as average ±  s.e.m., n  =  9.
Then, three sets of electrodes were used for measurements after
modification with 10 mM mPEG in water for 16 h.  The results are
presented as average ± s.e.m., n  =  27. Impedance measurements
were performed as described in Section 2.2.  CO2 level in cell
culture medium samples was equilibrated in an  incubator (5%
CO2/95% air) for 30 min  prior to measurements. Between measure
ments in different samples, electrodes were rinsed using MilliQ
water.

3. Results and discussion

3.1. Analysis of PBS dilutions

As first validation of our universal protocol, EIS spectra were
acquired in samples of different PBS dilutions (range of 0–1.5 M
NaCl) and analysed using the custommade Matlab algorithm
(Supplementary Information S2) that presents data as Bode plots
(Fig. 1a, b) and determines RS in a  frequency range where ϕ is
approximately 0◦ (Fig. 1b). The corresponding conductivity was  cal
culated as the ratio between the conductivity cell constant (�) and
RS. The calculations were based on  the experimentally determined
�, 1.77 ± 0.02 cm−1 (average ± s.e.m., n  = 9), obtained by calibration
in standard solutions with known conductivity. The geometric def
inition of � is the ratio between the distance of the electrodes and
the area exposed to the solution. Based on these factors, � was
calculated to be 1.85 cm−1 (Fig. S1b), indicating a  good agreement
between the experimental and geometric value.

The relationship between the determined conductivity and  the
ionic strength (I) of the PBS dilutions showed very high repro
ducibility, the overall relative standard error (RSE%) for all the
dilutions being only 0.5%. The value also  comprises measurements
in solutions with very low conductivity, which are more prone to
be affected by artifacts due to parasitic conduction paths [28,29].
This means that in solutions with higher conductivity, such as those
around physiological I,  the obtained variation in measurements was
even lower than the above mentioned overall RSE%. Correspond
ing measurements using the commercial conductometer resulted
in an overall RSE% of 3.0%, which is  clearly higher than the value
obtained with our universal protocol. Further comparison between
the  methods is shown in Fig. 2.  The linear correlation between
the determined conductivity and calculated I of the PBS dilutions
shown in Fig. 2a indicates that the coefficient of  determination
(R2) for our universal protocol was slightly higher (0.998) than
the one obtained for the commercial instrument (R2 = 0.991). The
general observation based on Fig. 2a is  that both approaches show
good agreement in conductivity determination for solutions reach
ing five times the I value of  physiological PBS (I =  8.12 ×  10−1 M).

Fig. 1.  Averaged EIS spectra (±s.e.m., n = 9) for PBS dilutions ranging from very low
to  high  conductivity: Bode plots for (a) impedance magnitude (|Z|) and (b) phase
angle  (ϕ).

However, for  highly concentrated electrolytes (10 times the I of
physiological PBS), the commercial conductometer deviated signif
icantly from the value obtained using our universal protocol, which
retained linearity throughout the used I range. Performed regres
sion analysis (Fig. 2b) indicated a  very good agreement (R2 =  0.999)
until I  five times that of physiological PBS. These results showed
that the established universal protocol provides stable, accurate
and reproducible measurements in a wide conductivity range.

The impedance spectra acquired in the PBS dilutions were
also used to define four frequency ranges applicable for
quicker determination of conductivity with single frequency
analysis: (1)  1–4 kHz for very low conductivity solutions
(I ≤  1.62 ×  10−3 M);  (2)  20–50 kHz for low conductivity solutions
(1.62 ×  10−3 <  I  ≤ 8.12 × 10−2 M);  (3)  200–250 kHz for solutions
close to the physiological I (8.12 × 10−2 <  I ≤ 1.62 × 10−1 M);
(4) 300–400 kHz for solutions above the physiological I

(I >  1.62 ×  10−1 M).
In  the above described conductivity determinations based on

EIS measurements, the applied sinusoidal potential was 10 mVrms

and the used electrodes had large area with a  deposited thin gold
film. When using an impedance analyser, the amplitude of the
sinusoidal potential may  be freely chosen as long as it ensures
linearity of  the  current–voltage response. However, despite the
chosen potential amplitude, the measured impedance, and hence
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Fig. 2. Comparison of the  universal conductivity determination protocol with a
commercial conductometer: (a) trend of data point distribution relating increasing
NaCl  concentration (M) in PBS dilutions to the corresponding conductivity (S/m)
and  (b) regression analysis. The error bars represent s.e.m. (n = 9).

the determined conductivity, is  the same provided that the setup
does not have a  high intrinsic impedance, which could decrease
measurement accuracy at  low applied potential amplitudes. The
validity of our proposed universal protocol was additionally evalu
ated using other potential amplitudes (25 and 50 mVrms) aside from
10 mVrms. The results are shown in Supplementary Information
S3. For EIS measurements using IDEs, different equivalent circuits
have been proposed in literature; however, a  common feature is
the presence of a  parallel geometric capacitance [26].  The conse
quence is that in a frequency range below 1  MHz the absolute value
of ϕ may  significantly deviate from 0◦.  Supplementary Information
S4 shows conductivity determinations using IDEs applied in two
configurations. The results demonstrate that our universal proto
col provides possibility for reliable conductivity determinations in
miniaturised devices where the conductivity cell  significantly influ
ences the characteristic equivalent circuit, making it different from
one that is valid for parallel plate electrodes.

3.2. Electrode modification for bioapplications

To further evaluate the validity of the presented universal pro
tocol for conductivity measurements in biomoleculecontaining
electrolytes, we determined the conductivity of cell  culture
medium containing serum proteins. Physisorption of biomolecules
on bare gold surfaces is  wellknown. To easily see the effect of
electrode fouling, we determined the conductivity of physiological

PBS  before and  after measurements in cell culture medium. The
performed conductivity measurements clearly indicated that the
used electrode surfaces were fouled by physisorbed biomolecules,
requiring intensive electrode cleaning and recalibration after
each measurement. Therefore, we optimised a  proteinrepellent
electrode modification using selfassembled monolayer (SAM)
of a  poly(ethylene glycol)terminated alkanethiol. This approach
eliminated the need for labourintensive electrode cleaning and
recalibration that  are crucial when using a  commercial instrument.

3.2.1. Effect of biological solutions on bare gold electrodes

The impedance spectra presented in Fig. 3a indicate that the
spectral behaviour is  in accordance with the one previously shown

Fig. 3. Averaged EIS spectra  (±s.e.m.) for physiological PBS and cell culture medium
using (a) bare gold electrodes (n = 9) and (b) mPEGmodified gold electrodes (n = 27).
Measurements in PBS were performed before and after analysis of cell culture
medium.
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Table 1

Influence of biomoleculecontaining electrolytes on conductivity measurements:
conductivity [S/m] values for physiological PBS and cell culture medium determined
using bare and mPEGmodified gold electrodes.

Type of electrolyte Conductivity [S/m]

Bare gold electrodesa

PBS before measurements in  cell culture medium 1.66  ± 0.01
PBS  after measurements in cell culture medium 1.12  ± 0.01
PBS  after measurements in cell culture medium

and recalibration
1.49 ± 0.01

Cell culture medium (RPMI) 1.55 ± 0.01

mPEGmodified gold electrodesb

PBS before measurements in  cell culture medium 1.596 ± 0.007
PBS  after measurements in cell culture medium 1.603 ± 0.007
Cell culture medium (RPMI) 1.44  ± 0.01

a Conductivity values are reported as average ± s.e.m., n = 9.
b Conductivity values are reported as average ± s.e.m., n = 27. Three sets of elec

trodes were evaluated.

for PBS dilutions (Fig. 1).  The decrease in conductivity corresponds
to a slight upward shift in the Bode plots for |Z| at frequencies
above 200 Hz and a  clear separation above 5 kHz. Values of con
ductivity were calculated in the frequency range proposed for
performing measurements on solutions with I close to the physio
logical range, further confirming that the protocol is fully suitable
for single frequency analysis. Table 1  summarises the determined
conductivity values for PBS and cell culture medium. The obtained
results clearly show that measurements in cell culture medium
influenced the behaviour of bare gold electrodes. The  conductivity
value determined for PBS before measurements in medium agreed
well with previously shown results [30],  whereas after electrode
exposure to biomolecules the determined conductivity was  clearly
lower. Moreover, despite the small distribution of the determined
conductivity values (s.e.m.) for cell culture medium, the individ
ual measurements showed a  clear trend in terms of decreasing
conductivity, which indicates that even during a  series of mea
surements in a biological solution the individual measurement
results may  be influenced by electrode fouling. When performing
conductivity measurements using a  commercial conductometer,
which has fixed electrodes, calibration using conductivity standard
solutions may  alleviate the effect of exposure to biomolecule
containing electrolytes. To  evaluate this possibility, we  recalibrated
our  conductivity cell after measurements in cell culture medium
and repeated conductivity determination of physiological PBS. The
obtained result (Table 1) indicates that, despite recalibration, the
determined conductivity was still lower than obtained in the orig
inal measurements prior to any exposure to cell culture medium.
Extensive cleaning might improve electrode behaviour in subse
quent measurements; however, it  would easily deteriorate the
performance of microfabricated thinfilm electrodes, shortening
their lifetime. This encourages the use of modified electrodes with a
stable proteinrepellent SAM so that they can  be applied to a series
of measurements without the influence of electrode fouling.

3.2.2. Effect of biological solutions on mPEGmodified gold

electrodes

Analogously to chemical electrode modifications, which behave
as capacitors in series with the double layer capacitance [27],
adsorbed biomolecules also change the capacitive behaviour of
the electrode–electrolyte interface. Results described in Section
3.2.1 clearly indicate that |Z| increases as a  consequence of mea
surements in biomoleculecontaining electrolytes when using
bare gold electrodes. To eliminate this effect and be able to
conduct EIS measurements without the need for extensive elec
trode cleaning and/or recalibration after each measurement, we
evaluated the possibility of using electrodes modified with a
proteinrepellent coating. Polyethylene glycol (PEG) is a  nontoxic

and nonimmunogenic polymer which is  able to decrease attractive
forces between solid surfaces and proteins. Harder et al. showed
how this ability  is related to PEG molecular conformation and
becomes most effective when PEG chain length allows the forma
tion of dense and  predominantly helical films of PEG [31].  They
speculated that  the helical conformation may  correlate with the
degree of solvation and, consequently, with the stability of the
interfacial layer of water, which may  repel proteins reaching the
electrode surface by diffusion. Hence, PEGterminated alkanethiol
SAMs on gold surfaces have been successfully used to facilitate
selective cell patterning and reduce surface fouling [32].

To readily modify gold surfaces and increase the biocompati
bility, we  used water soluble mPEGterminated alkanethiol. Initial
tests followed by EIS characterisation indicated that a  modification
time of  at least 16 h yielded a  robust wellbehaved functionaliza
tion (data not shown). Three sets of electrodes were calibrated after
mPEG modification and � was  calculated to be (1.52 ±  0.01) cm−1

(average ±  s.e.m., n  = 9). Based on the geometric factors, � resulted
1.85 cm−1. The larger difference between the calculated and the
geometrically determined � is due to the fact that although
� is  generally referred to as the ratio between electrode dis
tance and area, calibration takes into account the condition of
the electrode–electrolyte interface, which is  different for chemi
cally  modified electrodes in comparison with nonmodified ones.
Fig. 3b shows a  set of averaged impedance spectra for PBS and
cell culture medium acquired using three sets of modified elec
trodes (three repetitive spectra acquired for each electrode set
in three electrolyte samples). Each spectrum is  reported as aver
age ± s.e.m. (n  =  27). In  the frequency range 200–250 kHz, where ϕ

is approximately 0◦, the spectra acquired in PBS before and after
measurements in cell culture medium completely overlap, which
means that the mPEG modification was  able to protect the electrode
surface from the influence of physisorbed biomolecules. The spec
tra acquired in PBS indicate that the measurements in cell culture
medium only had a slight influence on the capacitive behaviour of
the electrodes as seen in the shift of ϕ at  frequencies below 100 Hz.
The conductivity values for PBS are shown in Table 1 and agree well
with values reported in literature [30].  Moreover, the values shown
in Table 1  also indicate that, on virtue of the electrode modification,
the conducted measurements are highly reproducible between sets
of electrodes.

4.  Conclusions

We established and verified a universal protocol for quick
conductivity determinations using electrochemical impedance
spectroscopy (EIS) and electrode modification for bioapplications
with high reproducibility. The approach relies on simple spectral
analysis to determine the frequency at which the phase angle
(ϕ) is  closest to 0◦.  The impedance magnitude (|Z|) at that fre
quency  corresponds to the solution resistance (RS), which can be
used to  calculate the conductivity. Unlike commercial instruments,
typically operating at  a few predetermined frequencies, which,
depending on the solution composition, may  not yield an accu
rate estimation of RS, our universal protocol, based on analysis
of complete spectra, has the advantage that RS, and consequently
the corresponding conductivity, can be determined with certainty
independent of the solution composition. A Matlabbased algo
rithm was implemented to display impedance spectra as Bode plots
and automatically identify the suitable frequency for determining
RS and calculating solution conductivity. The universal protocol
gave results in good agreement with a commercial conductome
ter in a  wide range of  electrolyte solutions for ionic strength up
to five  times that of physiological PBS. The validity of the pro
tocol was  extended to bioapplications by applying an optimised
electrode modification method using a  proteinrepellent coating
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of poly(ethylene glycol) methyl ether thiol. This allowed precise
and reproducible conductivity determinations without influence
of electrode fouling, which clearly affected measurements with
nonmodified electrodes. Our universal protocol combined with
proteinrepellent electrode modification provides a  fast and simple
way of performing programmed conductivity monitoring using any
impedance analyser, opening possibilities for diverse application
areas, ranging from biosensing to cellbased assays and microbi
ological studies. Moreover, the entire protocol for data treatment
and electrode modification may  be particularly beneficial for the
development of stable, precise and accurate miniaturised devices.
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Impedance Spectroscopic Characterisation of Porosity in
3D Cell Culture Scaffolds with Different Channel
Networks
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1 Introduction

Over the last two decades, three-dimensional (3D) cell
culture systems have gained increasing interest in differ-
ent fields spanning from biomedical sciences to pharma-
ceutical research [1]. The 3D format is believed to enable
the formation and maintenance of a more in vivo like cel-
lular environment able to supply cells with oxygen, nu-
trients, and soluble factor gradients (e.g. growth factors
and hormones) leading to a more biologically relevant be-
haviour of cell functionality [2]. Careful considerations
need to be taken in the design of 3D scaffolds for sup-
porting cell organisation, proliferation and differentiation
[3]. Based on the specific application, they can be fabri-
cated from a variety of biocompatible materials (e.g. bio-
polymers, synthetic polymers, ceramic, metals). Among
these, polydimethylsiloxane (PDMS) is a cheap transpar-
ent material with low autofluorescence and can be
molded with a resolution down to a few micrometers [4].
It has already been demonstrated to be a suitable cell cul-
ture scaffold [5] after chemical and/or physical functional-
isation [6] forming a hydrophilic surface, which can be
further coated with specific extracellular matrix proteins,
such as collagen and laminin.
Different scaffold parameters, such as pore size, geom-

etry, orientation and interconnectivity, as well as channel
branching can be tuned in order to influence the diffusion
of nutrients and cell organisation within the 3D environ-
ment [7]. This can be achieved with traditional fabrica-
tion technologies (e.g. solvent-casting/particle leaching,
gas foaming, fibre bonding, phase separation, and emul-
sion freeze drying [8]). Recently, 3D printing has also
emerged as a promising technique to precisely control the
scaffold architecture [9].

A wide range of methods are currently available for
characterising scaffold porosity, spanning from scanning
electron microscopy (SEM) to gas adsorption and mercu-
ry intrusion porosimetry (MIP). All of them strictly
depend on the sample exposure to vacuum conditions
[10]. SEM allows characterisation of both the degree of
scaffold porosity and pore size, although it requires sec-
tioning and gold sputtering of the sample in order to pro-
vide relevant information. Furthermore, sputter coating
has the potential disadvantage of causing heat damage to
the sample. Gas adsorption may be applied to measure
the scaffold surface area and probe its entire surface in-
cluding irregularities and pore interiors. Prior to the
measurements, the sample is pretreated at an elevated
temperature in vacuum to remove any contaminants,
which increases the risk of its degradation. MIP is
a widely used approach to measure pore distribution and
connectivity, tortuosity and compressibility in biomateri-
als. It allows the detection of pore size ranging from 2 up
to more than 50 nm in diameter by monitoring the pro-

Abstract : We present the application of electrochemical
impedance spectroscopy (EIS) as a method for discrimi-
nating between different polydimethylsiloxane (PDMS)
scaffolds for three-dimensional (3D) cell cultures. The
validity of EIS characterisation for scaffolds having differ-
ent degree of porosity (networks of structured or random
channels) is discussed in relation to Archie�s law. Guide-

lines for EIS analysis are presented and demonstrated to
provide porosity information in physiological buffer that
agrees well with a more conventional weight-based ap-
proach. We also propose frequency ranges that may serve
as means of single-frequency measurements for fast scaf-
fold characterization combined with in vitro monitoring
of 3D cell cultures.
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gressive intrusion of mercury into a dried structure. How-
ever, the strict condition of applied pressure may damage
the scaffold [10].
Electrochemical impedance spectroscopy (EIS) is

a nondestructive and fast technique, which can be applied
at room temperature and atmospheric pressure. It has
been applied for the evaluation of pore geometry in
random chitosan scaffolds prepared by freeze drying [11].
However, this approach was not validated for different
networks of structured or random channels, and a detailed
analysis of the performed measurements was not includ-
ed. EIS has also been shown to be suitable for real-time
monitoring of large 3D cell cultures with spatial sensitivi-
ty [12]. Hence, EIS has potential for simultaneous struc-
tural characterisation of 3D scaffolds and evaluation of
cellular behaviour (growth, response to cellular effectors,
etc.). This can be possible even in perfusion-based 3D cell
culture systems and bioreactors, which are relevant in
biomedical engineering.
In this study, we focus on further development of EIS-

based characterisation of 3D scaffold porosity to achieve
a more universal approach suitable for future biomedical
applications. This comprises complete analysis of acquired
spectra to find a range of frequencies that provides a high
sensitivity for characterisation of scaffolds with i) several
networks of structured or random channels, and ii) differ-
ent degrees of porosity. In our work, PDMS scaffolds
were fabricated using a molding process which exploits
water soluble negative templates carrying random (from
sugar cube) or structured (3D printed) channels. The ob-
tained data for scaffold porosity were validated against
a more conventional weight-based method which takes
into account the apparent volume (based on external geo-
metric dimensions) of the scaffold and the PDMS density
[13].

2 Theory

Archie�s law is an empirical correlation usually employed
to estimate the amount of hydrocarbons in reservoir
rocks [14]. Accordingly, it links the electrical resistivity of
the rock to its porosity, to the resistivity of the water that
saturates its pores, and to the fractional saturation of the
pore space with water. Hence, Archie�s law indirectly es-
tablishes a relationship between the pore geometry of
a rock and the conductivity of the interstitial space due to
the presence of hydrocarbons and aqueous environment.
Tully-Dartez et al. [11] applied Archie�s law for dis-

crimination between chitosan-based 3D cell culture scaf-
folds with different random porosity. Here, we further de-
velop the method, making it more universal by applying
gold plate electrodes in a measurement setup instead of
the more conventional cylindrical probes (already used
for geophysical measurements and by Tully-Dartez et al.).
Plate electrodes facilitate interfacing with a scaffold with-
out the necessity of penetrating into the bulk material,
which gives a significant advantage for measurements
when using scaffolds made of brittle or tough elastomeric

materials. Phosphate buffered saline (PBS) was used as
bulk electrolyte to saturate the scaffold pores.
According to Archie�s law:

seff ¼ Cs0f0
m ð1Þ

where C is the coefficient of saturation with the electro-
lyte (ranging from 0.1 to 1), s0 is the conductivity of the
bulk electrolyte filling the pores, f0 is the porosity, and m
is the cementation factor originally related to the degree
of compactness of the rock matrix. Since the scaffold is
completely soaked in the electrolyte, C was set equal to
1, assuming complete saturation of the pores. m depends
on the grain type, size and shape, the dimension and pro-
file of pores and pore cavities, as well as the size and
number of dead-end pores. In general, m increases as the
degree of connections of the pore network decreases, and
can be between slightly less than one for fractured rocks
and around 5 for highly compacted ones [15]. m is diffi-
cult to estimate based on physical observations and takes
different values depending on the type of rock formation
and the calculation method. Experiments have shown
that m values are commonly between 1.3 and 3.0; howev-
er, it is often assumed to be constant and equal to 2, as in
the case of clean sandstone [16]. In only two ideal cases,
an analytical solution of the Archie�s law has been possi-
ble, corresponding to m=1 and m=1.5. The first case
represents a 3D matrix penetrated by an array of straight
channels [17], while the second refers to a network of
perfect spherical pores [18,19].

Since Archie�s law relates the bulk electrical conductiv-
ity to the porosity of a rock, it indirectly embeds the con-
cept of electrical conductance, which is based on resist-
ance measurements of the interstitial electrolyte. Conduc-
tivity of an electrolyte is determined using a two-elec-
trode setup as the product of a specific cell constant and
the inverse of solution resistance. The cell constant is the
ratio between the distance separating the electrodes and
the area exposed to the electrolyte. Solution resistance
can be extracted from impedance magnitude ( jZ j ) at the
frequency where the phase angle is equal to 08. In our
work, preliminary EIS estimations of PBS conductivity
were conducted and a value of 1.35 S/m was adopted. Ar-
chie�s law basically corrects the bulk electrical conductivi-
ty by a geometric factor, which in our study is specific for
each characterised scaffold between the two electrodes.
Thereby, the scaffold�s effective conductivity can be cal-
culated as:

seff ¼
l

RbA
ð2Þ

where Rb is the bulk solution resistance, A and l are the
cross-sectional area and the length of the scaffold, respec-
tively. Rb is the impedance value at the frequency for
which the phase angle is equal to 08. In the presence of
a scaffold, the value of Rb is higher than the solution re-
sistance of a pure electrolyte filling the electrochemical
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cell, which according to Equation 2 results in a decreased
seff.
Analogously to what has been previously proposed for

sandstone, Tully-Dartez et al. adopted m=2 for porosity
determination in random chitosan scaffolds. In our work
using PDMS-based random scaffolds, the same value of
m was used. However, for structured PDMS scaffolds,
which are characterised by arrays of straight channels, we
chose m=1 in accordance with the general considerations
presented for geophysical studies [17].

3 Experimental

3.1 Measurement Setup, Scaffold Fabrication and

Preparation for Measurements

The measurement setup (Figure 1a) comprising a rectan-
gular chamber was micromilled of polycarbonate and the
gold plate electrodes were fabricated by thermally evapo-

rating a 200-nm gold layer onto a wet-oxidized (650-nm
oxide layer) silicon wafer coated with a 20-nm titanium
adhesion layer [12]. The PDMS scaffolds were fabricated
in order to tightly fit them between the electrodes (width
10 mm) placed at the ends of the chamber, resulting in an
inter-electrode distance of 14 mm. The height of the
chamber was 10 mm.
Random PDMS scaffolds (Figure 1b, Supporting Infor-

mation Figure S1B) were fabricated with the sugar-tem-
plating process proposed by Choi et al. [20] using com-
mercially available sugar cubes. PDMS (Sylgard 184) was
purchased from Dow Corning Inc., Midland, MI, USA.
Structured scaffolds with arrays of parallel and perpendic-
ular straight channels were fabricated through a molding
process where negative templates were 3D printed (Mak-
erbot Replicator 2X, Slottsmçllan, Sweden) using a water
soluble filament (polyvinyl alcohol, PVA). Different de-
grees of infill (i.e. the amount of deposited material
during 3D printing) spanning from 20 up to 80% were
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Fig. 1. (a) Photo of the measurement setup. (b–f) SEM images of the PDMS scaffolds: random pore networks (b); structured chan-
nels with 20 (c), 40 (d), 60 (e) and 80% (f) infill.
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used. After PDMS casting, the filaments were dissolved
in water under ultrasonication for at least 2 h (dependent
on scaffold compactness). In this way, the volumes origi-
nally filled with the water soluble polymer became
straight channels within the scaffold structure, i.e. the
higher the infill %, the higher the achieved scaffold po-
rosity (Fig. 1c–f). Prior to analysis, scaffolds were ren-
dered hydrophilic by combining oxygen plasma treatment
(2 minutes for each side; power of 50 W and pressure of
35 Pa) and autoclaving.
In preparation for EIS analysis, scaffolds were manual-

ly cut to match as closely as possible the width of the
plate electrodes. The length was always strictly kept as
the inter-electrode distance. The height of the cut scaf-
folds varied between 8 and 9 mm.

3.2 EIS Analysis

Prior to any measurements, the gold electrodes were
cleaned by a 10-min treatment using a mixture of H2O2

(25% v/v) and KOH (50 mM) followed by a potential
sweep from ÿ200 mV to ÿ1200 mV in 50 mM KOH [21].
The scaffolds were completely soaked in PBS (Sigma
D8662) by applying vacuum and transferred into the mea-
surement setup which was then filled with PBS to have
the scaffold fully immersed. The level of PBS was adjust-
ed according to the height of each scaffold.
A sinusoidal potential of 10 mV (rms) with respect to

the open circuit potential was applied in the frequency
range between 1 Hz and 1 MHz using a Reference 600
potentiostat/galvanostat/ZRA (Gamry Instruments, War-
minster, PA, USA). Three scaffolds of each type were
used for the measurements and the results are reported
as mean� standard deviation (n=3).
The geometric factors described above (inter-electrode

distance, l ; electrode width; scaffold height) determine
the basis for conductivity measurements using EIS. The
bulk conductivity of the electrolyte (PBS) was deter-
mined based on calibration with a standard solution
having a known conductivity (1.29 S/m, Hanna Instru-
ments, cat. 663–5047). Measurements were conducted
using three PBS samples.

3.3 Validation

The scaffolds were imaged using SEM (Supra 40 VP,
Zeiss SMT AG, Oberkochen, Germany) as shown in Fig-
ure 1b–f. Scaffold porosity was determined using the
weight-based method described by Cho et al. [13] by ap-
plying the following equation:

Porosity ¼
V0ÿðm=1Þ

V0

� 100 ð%Þ ð3Þ

where V0 is the apparent volume of the scaffold calculat-
ed using its outer dimension; m is the mass of the scaffold
and 1 is the PDMS density (0.965 g/mL). The analysis

was performed on three different samples of each scaffold
type and the results are reported as mean� standard devi-
ation (n=3).

4 Results and Discussion

A complete spectral analysis of the experimental data
was performed to understand how EIS measurements re-
flect the structural features of different type of scaffolds
in physiological PBS (Figure 2a). The measurements
were also compared with EIS behavior of PBS as control.
Bode plots for phase angle allow easy visual estimation of
the frequency range where the phase angle is close to 08
to obtain the solution resistance. Furthermore, the fre-
quency ranges should exclude the influence of possible
parasitics usually appearing above 500 kHz. A very high
reproducibility was achieved as shown by the low stan-
dard deviation among the measurements. A common fre-
quency range for structural characterisation was inferred
from the spectra and reported in Table 1. For fast evalua-
tion of scaffold porosity, the proposed frequency range
provides the possibility to conduct single-frequency EIS
measurements instead of acquiring and analyzing com-
plete spectra. The frequency ranges presented here are
valid for the used PDMS-based scaffolds and may vary
depending on the scaffold material and the overall 3D ar-
chitecture.
Since EIS measurements were performed using an elec-

trolyte which does not contain any redox couple, they
merely involve non-faradaic processes associated with the
double layer capacitance of the electrodes and the ionic
current, the bulk behavior of which is affected by the
presence of the scaffolds. Hence, in this case, the acquired
spectra are influenced by ionic strength, type of ions and
temperature, as well as the material properties and poros-
ity/channel geometry of the different scaffolds.
The scaffolds under investigation are composed of

PDMS, which is a non-conducting polymer. Due to this,
when a scaffold is placed in the high-conductivity electro-
lyte, the measured jZ j is expected to increase with de-
creasing volume of the electrolyte filling the pores. In
order to obtain an accurate estimation of seff (Equation 2)
in the presence of the different scaffolds, their cross-sec-
tional area needs to be taken into account during analysis
of EIS data. Therefore, jZ j values over the entire fre-
quency range can be divided by the specific geometric
factor l/A of each scaffold, which may have slight varia-
tion due to manual cutting. This normalisation approach
is reported in Figure 2b and allows an easy discrimination
between the different scaffolds based on their specific
geometric constraints.
Table 1 and Figure 3 show values of porosity deter-

mined for random and structured scaffolds (20–80%
infill) using both EIS- and weight-based techniques. The
obtained porosity values using the two approaches are
comparable. The weight-based method shows a higher
standard deviation, which may be due to errors in the
weighing, whereas EIS measurements provide a higher
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precision for the obtained porosity values reflected by the
small standard deviations. Nevertheless, the porosity
values determined using the more conventional weight-
based technique were considered as guidelines for valida-
tion of the EIS-based technique.

On the other hand, when comparing the porosity
values determined using the two techniques, it can be
clearly seen that the EIS-based technique gives porosity
which is larger than the one obtained using the weight-
based technique, with exception of the structured scaffold
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Fig. 2. (a) EIS analysis of the scaffolds soaked in PBS between 1 and 106 Hz. Data are reported as mean� standard deviation (n=3).
(b) Normalisation of the impedance data: jZ j (Ohm) of the scaffold soaked in PBS was divided by the geometric factor l/A (mÿ1)
characteristic of each scaffold.

Table 1. Porosity values (%) for random and structured scaffolds (20–80% infill) determined using the weight-based method [13] and
EIS measurements in PBS. Values are reported as mean� standard deviation (n=3) with suitable frequency ranges for EIS analysis.

Scaffold type Porosity (%): weight-based method Porosity (%): EIS [a] Frequency range (kHz) for EIS analysis

Random 64�1 67.75�0.01 50–70
Structured 20% 19.5�0.5 23.47�0.01 50–70
40% 38.89�0.07 45.80�0.04 50–70
60% 60.5�0.5 60.99�0.03 50–70
80% 81�1 89.17�0.05 50–70

[a] In porosity calculation involving Equation 1 and 2, the following parameters were used: m=1 for structured scaffolds and m=2
for random scaffolds; C=1 for all scaffolds and s0=1.35 S/m.
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having 60% infill. The deviation between the porosity
values obtained using the two techniques entails that the
results of the EIS-based approach contain a certain
degree of systematic errors. The sources of systematic
error may comprise imprecision in cutting the scaffolds
and placement in the measurement chamber. These fac-
tors can significantly influence the EIS-based results,
which are strongly dependent on the degree of contact
between the scaffolds and plate electrodes. In case there
are voids between the electrodes and scaffolds, the result
can be leakage current, i.e. the electric fields can bypass
the scaffolds through the surrounding electrolyte. A simi-
lar phenomenon was pointed out by Tully-Dartez et al. in
measurements using cylindrical electrodes embedded
inside the scaffolds. They used sealing with wax as an ap-
proach to eliminate the effect of leakage current. In our
approach targeting to a more universal technique using
plate electrodes at the ends of the scaffolds, introduction
of a sealing material would impede the future possibility
for combined cell culture investigations.
EIS measurements using the random scaffolds comprise

additional complication in comparison with the structured
scaffolds due to the fact that the surfaces in contact with
the electrodes are corrugated due to the structural fea-
tures. This results in additional leakage current around
the scaffolds due to the larger electrode area which is in
direct contact with the surrounding electrolyte. To ex-
plore in more detail the effect of the electric field bypass-
ing the scaffold, finite element (FE) simulations of the
measurement setup containing two electrodes and the
random PDMS scaffold were carried out for studying the
electric potential (Supporting Information Fig. S1Ba) and

the current density distribution (Supporting Information
Figure S1 Bb,c) across the random PDMS scaffold.
The obtained average porosity for random scaffolds

agrees fairly well with the weight-based technique. More-
over, the random scaffolds show a porosity which is
roughly comparable to the structured scaffold with 60%
infill. This means that for a random scaffold, which has
curved and dead-end paths able to impede ionic current
more strongly than the straight channels of a structured
scaffold, the determined porosity entails the presence of
larger random void volumes. However, both the EIS- and
weight-based technique are affected by the degree of
wettability of the scaffold material. In our experiments,
the scaffolds were treated using oxygen plasma to allow
complete electrolyte penetration. Due to the complex
structure of such scaffolds, the plasma treatment may not
completely influence the PDMS surface in all dead-end
pores, which may decrease the achieved wettability.
Therefore, the porosities determined using the two tech-
niques may comprise a certain degree of systematic error
since the underlying assumption is complete pore satura-
tion with the electrolyte (C=1 in Equation 1). For further
development of the EIS-based technique, evaluation of
different random scaffolds with varying pore dimensions,
geometries and fabrication materials need to be explored,
which may lead to a deeper understanding of the degree
of electrolyte saturation, i.e. the range of valid C values.
As for geophysical investigations, the valid m values for

random porous tissue engineering scaffolds may vary de-
pending on the pore architecture. When using the porosi-
ty obtained in weight-based determinations as reference,
recalculations of the actual m value for the random scaf-
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Fig. 3. Evaluation of porosity for random and structured scaffolds using the weight-based method [13] and EIS measurements in
PBS. Data are reported as mean� standard deviation (n=3).
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folds is around 1.75. This means that in further develop-
ment of the EIS-based technique, analogously to what
was mentioned above in connection with electrolyte satu-
ration (C value), investigations are needed to achieve
more rigorous understanding of a valid range of m values
for different type of random scaffolds. Additionally, other
experimental techniques, such as 3D imaging, can be ap-
plied for complete empirical validation of m values.
The good agreement between the determined porosi-

ties using the two techniques demonstrates that the EIS
approach constitutes a significant fast and non-invasive
alternative for porosity evaluation. This could be ach-
ieved in the same setup where cell-based measurements
are to be performed for biomedical applications. The
technique can be further validated for a wide range of
scaffold materials and geometries, opening perspectives
for future studies on more complex combined architec-
tures of structured and random geometries [22,23]. How-
ever, to optimise EIS-based porosity determination in
a setup where cells are cultured in serum-containing
medium, it is necessary to further investigate the influ-
ence of protein adsorption on the scaffold material and
electrodes, which based on our preliminary experiments
has an effect on the impedance measurements.

5 Conclusions

Previous studies have shown the possibility of applying
EIS measurements to determine the porosity of tissue en-
gineering scaffolds using cylindrical electrodes that pene-
trate into the material. Here, we demonstrated a more
universal EIS-based approach using plate electrodes in-
terfaced to ends of the scaffold. Our results prove the po-
tential of EIS measurements in characterising 3D cell cul-
ture scaffolds with different networks of structured or
random channels, and several degrees of porosity in
a setup were cell culturing is to be performed. To further
optimise the EIS-based technique, additional experimen-
tal work combined with alternative techniques is required
in order to take into consideration the geometrical con-
straint of channel architecture and their degree of electro-
lyte saturation (i.e. suitable range of m and C values, re-
spectively).
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One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly

perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed poly-

vinyl alcohol (PVA) as a sacrificialmould in a polymer casting process. The PVAmould network defines the chan-

nels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA

filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding

elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm2/cm3 surface to volume

ratio. The process is easily scalable as demonstrated by fabricating a 75 cm3 scaffold with about 16,000 intercon-

nected channels (about 1 m2 surface area) and with a channel to channel distance of only 78 μm. To our knowl-

edge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured

channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period.

Smaller scaffolds (6× 4mm)were tested for cell culturing and could support homogeneous cell growth through-

out the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid

enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture,

rapid, and inexpensive.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, there has been a great demand for the development

of bioartificial organs/tissues in the field of organ transplantation and

in vitro toxicological drug screening [1]. One of the primary challenges

in translation of tissue engineering to clinical application is the difficulty

in scaling up complex, biological effective tissues and organs to the size

relevant for human [2]. Although small scale three-dimensional (3D)

scaffold constructs have been achieved to mimic organs for e.g.,

in vitro drug testing [3], the applied fabrication approaches are not eas-

ily translated to constructs of human organ size. When engineering tis-

sues in vitro, there is a requirement for structures or scaffolds that are

able to support cell growth and at the same time mimicking the physi-

ological environment including the geometrical, topographical and

physical features of the targeted tissue. Specifically for the generation

of thick 3D tissues, the development of highly dense vascular networks

that can meet the nutrient and oxygen requirements of large masses of

living cells remains a tissue engineering challenge. This often limits the

size of engineered tissues to a few hundred micrometres [4]. The ideal

tissue engineering scaffold supports the spatial distribution of cells in

a three dimensional structure, provides mechanical stability to the

cells and enables optimum nutrient transport and metabolic waste

removal [5,6]. Numerous approaches exist to create 3D highly

vascularized engineered tissue scaffolds to accommodate a high density

of cells in high surface to volume ratio structures [6,7]. One strategy has

been to use highly porous structures with interconnected pores/

microchannels that provide space for penetration and growth of cells

and enable favourable mass transport characteristics [8,9]. The struc-

tural, mechanical and mass transport properties of such scaffolds are

determined by parameters such as pore size, pore shape, porosity,

pore interconnectivity, permeability, scaffold surface area, scaffold ef-

fective stiffness and scaffold material [10].

Scaffolds consisting of stochastic, disordered or random micropores

are one of the oldest and most widely used templates for tissue engi-

neering [11,12]. Manufacturing techniques such as solvent casting-

particulate leaching [13], phase separation [14], gas foaming [15],

emulsion freeze drying [16] and fibre meshes [17] have been used to

generate engineered scaffolds of foam-like internal structure with a

random architecture and a limited control of scale [18]. Although such

processing techniques are quick, scalable and economical, they do not

enable accurate control of the microarchitectural details such as the
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pore size, geometry, their interconnections and distribution within the

scaffold [19]. The possibility to control the inner architecture of scaffolds

is desirable as it enables the control over itsmechanical strength, the ef-

fective surface area for cell growth, and nutrientflowprofileswithin the

scaffold [18]. To produce scaffolds with fine control over scaffold archi-

tecture in three dimensions, layer-by layer assembly techniques, where

layers of polymers, patterned by moulding or embossing processes, are

stacked, have been investigated by many researchers [20,21]. These

techniques enable the formation of channels with precisely defined di-

mensions. However, the requirement for microfabricated master

moulds andmanual alignment of layers implies a slow and tedious pro-

cess for achieving a multi-layered 3D construct [22].

Recently there has been amove towards employing 3D printing [10,

23,24] as a rapid prototyping technique to fabricate micro-scale porous

structures of desired complexities, allowing a true engineering of the

scaffold [18]. These methods involve the creation of 3D objects using

layer by layer deposition approach. Such techniques have successfully

been employed in tissue engineering to develop scaffolds based on

hard polymeric materials [25,26] and hydrogels [27,28]. The application

of scaffolds made from soft polymers or elastomeric materials is desir-

ablewhen engineering soft tissues [12,29,30]. For the fabrication of elas-

tomeric scaffolds with microfluidic networks, micromoulding and

individual layer-by layer assembly techniques have commonly been

used [20,31]. However such techniques require the use of complex fab-

rication technologies and manual assembly for producing large scale

structures. Thus the fabrication of 3D elastomeric scaffoldswith defined

microarchitectural details in cost-effective, scalable manner remains a

challenge.

Recently, processes combining 3D printing and moulding have been

used for making structured 3D scaffolds. For example, 3Dmicrovascular

networks within polymer matrices have been fabricated by 3D printing

of sacrificial wax moulds, casting of low viscosity epoxy around the

moulds and subsequent removal of the moulds [23,32]. However the

use of wax (which has a melting temperature of about 60 °C) limits

the materials that can be cast around the mould to form the scaffold

since polymers requiring higher temperatures for cross-linking cannot

be employed. Furthermore, the complete removal of the sacrificial

wax components (whichmaynot be biocompatible) can be challenging,

in particular if you have a large 3D structure with complex geometry.

Perfusable 3D scaffolds have also been demonstrated in a similar man-

ner by casting extracellular matrix (ECM) containing cells around a 3D

printed sacrificial sugar glass lattice and subsequently dissolving the lat-

tice to form vascular networks [24]. However, it is probably difficult to

print large 3D structures in the very brittle sugar glass, and the

interfilament distance (defined by the printing process) is limited to a

minimumof 1mm. Itmay therefore not be feasible to use this technique

for creating dense vascular channels in large scale structures.

This paper presents a new scalable and general approach for

manufacturing structured pores/channels in 3D polymer based scaf-

folds. The method involves 3D printing (using a commercially available

filament based 3D printer) of a sacrificial polyvinyl alcohol (PVA)mould

whose geometrical features are designed according to the required vas-

cular channel network. In addition to its biocompatibility, PVA is an

ideal material because its water solubility in combination with its high

melting temperature (190 °C) makes it robust for subsequent polymer

casting and curing steps. A desired polymer is cast around the PVA

mould, cross-linked and then the mould is dissolved, leaving behind a

structured porous scaffold in the desired polymermaterial. The fabrica-

tion method was here demonstrated for two different polymers, the

silicone elastomer polydimethylsiloxane (PDMS), and the synthetic hy-

drogel poly(2-hydroxyethyl methacrylate) (pHEMA). The scalability of

themethodwas demonstrated by fabricating a 75 cm3 large PDMS scaf-

fold structure with 16,000 channels. Moreover, it was also shown that

the PDMS scaffolds when properly pre-treated could support hepato-

cyte growth and proliferation for up to 12 days with high viability and

proper function.

2. Materials and methods

2.1. Fabrication of structured porous elastomeric scaffolds

The method used to fabricate elastomeric polymer scaffolds with

structured channels is schematically presented in Fig. 1. First, a com-

mercial, low-cost 3D filament printer (MakerBot 2X) was used to print

Fig. 1. Schematic illustration of the steps involved in the fabrication of structured porous elastomeric scaffolds. A sacrificial 3Dmouldwas printed in PVA (a, b). The printed PVAmouldwas

transferred into a container containing pre-cured PDMS (c). Vacuumwas applied to ensure complete filling of pre-cured PDMS into the pores of the mould (d). Following crosslinking of

the PDMS, the sacrificial PVA mould was dissolved in water (e) leaving behind the structured PDMS scaffold (f).
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a sacrificial mould. A solid 3D cube of the specified length, width and

height was designed using a computer aided design (CAD) software

package (SolidWorks 2013). The 3D CAD design was exported as

.STL mesh file format for processing using the 3D printer software

(Makerware 2.4.1,MakerBot). Commercially availablewater dissolvable

polymer, polyvinyl alcohol (PVA) (MakerBot, USA) filaments were

used to print the sacrificialmould. In the printing process amoving noz-

zle (x- and y-axis control) extrudes a heated polymer filament which

then solidifies as it is deposited (Fig. 1(a)). Following deposition of

each layer, themould is lowered (z-axis control) and the extrusion pro-

cedure is repeated such that successive layers are built on top of each

other to form a 3D object (Fig. 1(b)). The printer settings used for print-

ing PVA moulds are given in Table 1. The extrusion temperature and

feed-rates were optimised for printing PVA.

The printing infill density was varied to generate structures with

varying porosity. The infill density is the parameter that defines the

amount of material filled into the object and subsequently relates to

the porosity of the 3D printed structure. The infill density can range

from 0% to 100%, where 0% results in a completely hollow object and

100% infill results in a completely solid object. In order to generate

structures with different porosities, moulds were printed with infill

densities ranging from 20% to 80%. An illustration of the infill patterns

and densities that were employed is shown in Supplementary Fig. 1.

The 3D printed microvascular network of the PVA mould was repli-

cated into elastomeric structures of polydimethylsiloxane (PDMS):

PDMS pre-polymer solution (Sylgard 184, Dow Corning) was mixed

with the curing agent in a 10:1 ratio (as per the manufacturer's guide-

lines). The mixture was degassed in vacuum and poured into a petri

dish containing the printed mould (Fig. 1(c)). PDMS fills the pores of

the mould through capillary action and, in addition, vacuum was ap-

plied for 2–3 h to ensure complete filling of the micro-channels of the

mould with PDMS (Fig. 1(d)). PDMS was cured at a temperature of

60 °C in an oven for 4 h. Once cured, excess PDMS around the mould

was removed to expose the PVA layer. This was done to assist the sub-

sequent dissolution of PVA inwater: Thewhole structurewas immersed

into a water bath (Fig. 1(e)) until the PVA mould was completely dis-

solved (6 h), and the elastomeric PDMSwithmicrovascular network ar-

chitecture was obtained (Fig. 1(f)).

Cuboidal PVA moulds of 25 × 25 × 10 mm3 and 25 × 25 × 4 mm3

(length ×width × height) were printed and used for casting PDMS scaf-

folds and these scaffolds were used for mechanical testing and cell cul-

turing studies respectively.

2.2. Characterizations of scaffolds

2.2.1. Scanning electron microscopy (SEM) imaging

The structural morphology and microstructure of the printed PVA

mould as well as the resulting PDMS porous scaffolds were analysed

using scanning electron microscopy (JEOL, Tokyo, Japan). Prior to SEM

analysis, moulds and scaffolds were dried in an oven at 50 °C overnight

and sputter coated with gold. Samples were then analysed using 12 kV

of accelerating voltage. Pore sizes of themoulds and scaffoldsweremea-

sured from SEM micrographs using ImageJ software. For each sample,

ten measurements of pore dimensions were acquired.

For cell-seeded scaffolds, samples were washed with PBS and fixed

with 2.5% glutaraldehyde in PBS overnight. Next the samples were

dehydrated in a series of ethanol solutions (50%, 70%, 90% and 100%),

the samples were further air-dried and then the samples were ready

for SEM observation.

2.2.2. Porosity measurement

The porosity of the PDMS scaffold wasmeasured using Eq. (1) as de-

scribed in the literature [33].

Porosity %ð Þ ¼

V−
M

ρ

! "

V
$ 100% ð1Þ

where V is the volume of the scaffold, which is calculated using its outer

dimension, M is themass of the porous PDMS scaffold, and ρ is the den-

sity of PDMS (0.965 g/cm3).

Four scaffolds from each type of scaffold (with dimensions

23 × 23 × 6mm3) were dried overnight at 80 °C, andweighed to obtain

the mass of the samples. The porosity was then calculated from the

weight and the dimensions using Eq. (1).

2.2.3. Mechanical testing

The mechanical properties of dry PDMS scaffolds (with dimensions

of 25 × 25 × 10 mm3) of varying porosity (20–80%) were tested by

conducting uniaxial compression tests. A constant compression speed

of 0.5 mm/min was applied to each sample using a tensile test machine

with a 5 kN load cell (INSTRONModel 4301, Instron Engineering Corpo-

ration, Canton, MA, USA). The compressive modulus was estimated

from the slope of the stress–strain curve in the elastic region, which

was in the range of 12%–20% strain. The stress at 20% strain was obtain-

ed. The values reported were an average from four tested samples.

2.2.4. Surface roughness

The surface topography of the PVA mould and PDMS scaffold was

visualised using SEM. PDMS scaffold surface roughness was measured

using an optical measuring device (Alicona infinite focus). The parame-

ters Ra and Rz were obtained from a standard spectrum of roughness.

2.2.5. Wettability

To assess wettability of the scaffolds, contact angle measurements

were carried out on scaffolds before and after treatment with oxygen

plasma. The contact angle wasmeasured using the sessile drop method

by depositing 3 μl of an ultrapure water drop on the scaffold. Three indi-

vidual measurements were carried out on three independent scaffolds.

2.2.6. Surface area calculation

To estimate the surface area of the scaffolds, the dimensions of the

filaments constituting the mould were acquired from SEM images of

the mould. As previously described, the scaffold is formed by printing

layers of filaments (with a height of 0.2 mm) organised in the x–y

axis. The surface area was calculated from the SEM images of a single

layer and then multiplied by the number of layers.

2.3. Culturing cells in scaffolds

2.3.1. Cells

Human hepatoblastoma (HepG2) cells were obtained from the

German Collection of Microorganisms and Cell Cultures (DSMZ,

Braunschweig, Germany). The cells were maintained in Roswell Park

Memorial Institute (RPMI) 1640 growth medium supplemented

with 10% foetal bovine serum (FBS, Sigma-Aldrich Chemie GmbH,

Switzerland) and 100 μg/ml penicillin and 10 μg/ml streptomycin in a

humidified incubator at 37 °C and 5% CO2. Cells were cultured to conflu-

ence in standard polystyrene cell culture flasks, and then released using

0.025% trypsin/EDTA solution. The cell suspension was centrifuged and

the cell pellet was washed twice with phosphate buffered saline (PBS)

and then re-suspended in fresh growth medium. The cell density was

Table 1

3D printing parameters used for fabricating sacrificial PVA mould.

3D printing parameters Settings

Layer height 0.2 mm

Infill pattern Woodpile or hexagonal

Nozzle temperature 200 °C

Build platform temperature 40 °C

Feed-rate 20 mm/s
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measured using a haemocytometer and adjusted as required for the

seeding on the 3D scaffolds.

2.3.2. Scaffold preparation for cell culture

PDMS scaffolds (fabricated with 80% infill moulds) were frozen in

liquid nitrogen and punched into cylindrical scaffolds (having a diame-

ter of 6 mm and height 4 mm) using a tissue puncher (Harris Uni-Core,

USA). To render them hydrophilic, the scaffolds weremodifiedwith ox-

ygen plasma using a 13.56MHz RF generator equipped Atto Plasma Sys-

tem (Diener Electronic GmbH, Ebhausen, Germany). Initially the plasma

chamber was evacuated to a pressure below 15 Pa, after which oxygen

was introduced (pressure stabilization at 30 Pa) and the plasma was

ignited (power 50 W) for a duration of 2 min for each side of the scaf-

fold. The treated scaffolds were transferred into an autoclavable glass

vial containing sterile water and autoclaved at 120 °C for 20 min for

sterilisation. To promote cell attachment to the scaffolds, the scaffolds

were coated with 40 μg/ml of Collagen I (Collagen I rat protein, Life

Technologies, A1048301) at 4 °C overnight. The scaffolds were washed

twice with phosphate buffered saline (PBS) and excess collagen was

removed by centrifugation of the samples at 1000 rpm. Finally, the scaf-

folds were placed in a petri dish containing RPMI medium and incubat-

ed inside a humidified incubator at 37 °C and 5% CO2 for 2 h prior to cell

seeding.

2.3.3. Cultivation of HepG2 cells inside the scaffolds

HepG2 cells were cultured in the fabricated scaffolds to evaluate the

ability of PDMS3D constructs to support cell adhesion, proliferation and

spreading. For cell seeding a customised cell loading platform was de-

veloped as shown schematically in Supplementary Fig. 2. A cell seeding

plate with 16 cylindrical holes (having a diameter of 6 mm) and a rect-

angular support framewas fabricated in 6mm thick Poly(methyl meth-

acrylate) (PMMA) using a CO2 laser cutter machine (Epilog Mini 18

Laser, CO 80403, USA). The seeding plate and frame were sterilised by

immersion in 0.5M sodium hydroxide solution for 2 h followed by rins-

ing in sterile water. The frame and seeding plate were placed inside a

sterile petri dish such that the seeding plate was raised and had no di-

rect contact with the petri dish. The collagen coated scaffolds from the

incubator were inserted into the holes in the seeding plate. A suspen-

sion containing 250,000 cells in 20 μl of media was prepared and loaded

into each scaffold. After seeding, the petri plate was incubated at 37 °C

for 3 h to allow the cells to attach to the scaffold. Every hour the loading

platewas inverted upside down to enable better cell infiltration into the

scaffold. Finally the scaffolds were removed from the seeding plate and

transferred into a 24 well plate. 1 ml of cell culture mediumwas added

to each well. The medium was refreshed every 2 days and old medium

was collected for cellular functionality assays. On days 4, 8 and 12 of the

culture period, two scaffolds from each time point were sacrificed and

used for live/dead staining.

2.3.4. Biochemical assays

Cell proliferation was estimated using the colorimetric indicator

alamarBlue® assay (Life Technologies). The cell-scaffold constructs

were transferred into a 24 well plate each containing 1 ml of RPMI

and alamarBlue® solution (in a 10:1 ratio) and incubated for 2 h in a hu-

midified incubator at 37 °C. The absorbance of the extracted dye, which

is proportional to the number of cells attached to the scaffold, wasmea-

sured spectrophotometrically using a microplate reader (PerkinElmer,

USA) atwavelengths of 570nm. Three independent scaffoldsweremea-

sured in triplicates, and the background (i.e., alamarBlue® absorbance

measured at day 0) was subtracted.

For the HepG2 functionality test, extracellular concentration of

albumin secretion from the HepG2 cells was determined by using an

enzyme-linked immunosorbent assay (ELISA) (Bethyl Laboratories,

USA) according to the manufacturer's instructions. All samples were

measured in triplicates and the standard deviation (SD) of mean was

determined from 3 independent scaffolds. The absorbance was mea-

sured at 450 nm using a spectrophotometer (PerkinElmer, USA).

2.3.5. Cell imaging

To visualise cell viability in the scaffolds, a live/dead-assay was per-

formed using a live/dead cell imaging kit (Life Technologies LIVE/

DEAD® Cell Imaging Kit), which is based on a cell-permeable dye for

staining of live cells (excitation/emission 488 nm/515 nm) and a cell-

impermeable dye for staining of dead and dying cells (excitation/

emission 570 nm/602 nm). Briefly, the cell-laden scaffolds were re-

moved from the culture medium and gently washed with PBS. They

were then incubated in the dye solution for 30 min at 37 °C (as per

manufacturer's instructions). The scaffoldswere imaged using afluores-

cence microscope (Zeiss Axio Observer, ZI). 3D reconstructions were

compiled from 20 imaged sections (each of 30 μm thickness).

To visualise the cell proliferation and distribution through the cross

section of the scaffolds, cell-laden scaffolds were stained with cell-

permeable nuclear stain Hoechst 33342 (NucBlue® Live Ready Probes®

Reagent, life technologies) for live cell nuclei and ethidiumhomodimer-

1 (life technologies) for dead cell nucleus for 10min. The scaffolds were

then dissected longitudinally using a sterile scalpel and each section

was observed under a fluorescence microscope. 3D reconstructions

were compiled from 20 imaged sections (each of 30 μm thickness).

An immunofluorescence study was performed to visualise the

morphology of cells attached to the scaffold surface: After 12 days of

cell growth, the cell-laden scaffolds were immunostained with beta-

tubulin as cell cytoskeleton and nucleus. The construct was fixed (4%

paraformaldehyde), permeabilized (30 min, 0.1% Triton X-100 in phos-

phate buffered saline (PBS)), and blocked (30 min, 0.1% Tween 20 and

1% bovine serum albumin in PBS) for unspecific binding of the antibod-

ies. The construct was stained with primary antibody as monoclonal

anti-α-tubulin IgG1 (2 h, 1:200, Life Technologies) followed by TO-

PRO-3 nuclear stain (1:1000, Life Technologies). The scaffold was then

cut through the centre using a sterile scalpel and visualised under a

Zeiss ApoTome fluorescencemicroscope. 3D reconstructionswere com-

piled from 20 imaged sections (each having a thickness of 5 μm).

3. Results

3.1. Scaffold fabrication

Scaffolds were fabricated by casting PDMS around sacrificial moulds

printed using two different infill patterns (woodpile and hexagonal)

and four different infill densities. Photographs and SEM images of the

printed moulds and resulting PDMS scaffolds of the two different infill

patterns are shown in Fig. 2. The scaffolds possessed well-defined, po-

rous structures. The square and hexagonal pore structure of both PVA

moulds and PDMS scaffoldswere observed to be uniform and consistent

(Fig. 2(a, b, e, f)). The structural features of the PVAmould are faithfully

replicated in the PDMS scaffold (Fig. 2(c, d, g, h)).

Thewoodpile infill pattern results in structures comprising orthogo-

nal arrays of filaments with the centre-to-centre spacing between adja-

cent filaments differing based on the chosen infill density (Fig. 3). Infill

densities of 20, 40, 60 and 80% produces structures where filaments in a

layer had a distances of 1482, 593, 253 and 78 μm respectively. As the

infill density increases, the centre-to-centre spacing of the filaments in

the PVAmould decreases (Fig. 3a–d). SEM images of themould showed

that the printed PVA filaments have an elliptical cross-section with a

width of 400 μm and a height of 200 μm (Supplementary figure). The

channels in the resulting PDMS scaffold have an elliptical profile

from a cross section view (width 344 μm, height 190 μm) (shown in

Supplementary Fig. 5) and a square profile (average side length 344

um) from the top view. The channel dimensions in the PDMS scaffold

are slightly smaller than the dimension of the PVA filaments of the

mould due to shrinkage of PDMS during the curing process. The channel

to channel distance varied from 1.4 mm at 20% infill density down to
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78 μm at 80% infill density of the printed mould. Thus the employed

3D printing technique enables the layer by layer assembly of a differ-

ent number of PVA filaments forming a porous 3D mould. To demon-

strate the scalability of the fabrication process, a larger cubic mould

(75 cm3) was fabricated and employed for generating a replica PDMS

scaffold with the same dimensions. Fig. 2(i) shows an image of two

cubic moulds of dimensions 1 cm3 and 75 cm3 printed using 80% infill

settings and Fig. 2(j) shows the resulting PDMS scaffolds. Thus, as dem-

onstrated in Fig. 2, the periodic micro- and macroscale structural pat-

terns of the PVA mould were well replicated in the PDMS scaffolds.

3.2. Scaffold characterisation

3.2.1. Porosity

The experimentally determined porosity of fabricated scaffolds is

presented in Fig. 4. The porosity of the scaffolds varied linearly as a func-

tion of the infill density of the printedmould from 19.9% porosity at 20%

infill up to 81.2% porosity at 80% infill (Fig. 4(a)).

3.2.2. Surface area

The calculated surface areas of a 1 cm3 fabricated scaffolds of varying

porosities are shown in Fig. 4(b). As the infill density of the mould in-

creases from 20% to 80%, there is also a corresponding increase (from

52.5 cm2/cm3 to 150.9 cm2/cm3, respectively) in the surface area of

the channels within the PDMS scaffold volume. As the infill density of

themould increases (Fig. 3(a–d)) the density of channels also increases

(Fig. 3(e–h)), which results in a linear increase in the total surface area

of the channels (Fig. 4(b)).

3.2.3. Mechanical testing

The assessment of the compressive characteristics of scaffolds is

known to play a significant role inmany tissue-engineering applications

[34]. Compression tests of the scaffolds varying in porosity were per-

formed to assess the stress–strain relationship and evaluate their com-

pressive moduli (Fig. 5). The compressive modulus was determined

as the slope of the initial linear portion of the stress vs. strain curve

(12–20%). The compressive modulus were determined to be 1.84 ±

0.023, 0.84 ± 0.044, 0.36 ± 0.046 and 0.075 ± 0.047 MPa for the 20,

40, 60, and 80% porosity scaffolds, respectively. Results showed that

the energy absorption of the scaffolds is greatly reducedwith increasing

porosity. There is also a dramatic decrease in the compressive modulus

and in the stress at 20% strain with increasing scaffold porosity.

3.2.4. Surface roughness

The roughness of the 3D printed PVA mould and corresponding

PDMS scaffold was assessed using SEM. As shown in Fig. 6(a–d), the

presence of features such as pillars and grooves visible on the PVA

mould are faithfully replicated in the PDMS scaffolds. The roughness

of the PDMS scaffold was measured using an optical profilometer. The

relative height and surface roughness are shown in the surface profile

image (Fig. 6(e)) and the roughness parameters Ra and Rz of the

PDMS scaffold surface were measured to be approximately 1.036 μm

and 1.32 μm, respectively.

Fig. 2. Photographs of moulds and scaffolds with hexagonal (a, e) and woodpile (b, f) infill patterns. SEM images of moulds and scaffolds with hexagonal (c, g) and woodpile (d, h) infill

patterns. (i) Optical image of a 50 layered (1 cm3 cube) and 150 layered (75 cm3 cube) 3D printed PVAmould. (j) Optical image of 50 layered (1 cm3 cube) and 150 layered (75 cm3 cube)

PDMS scaffolds replicated from the mould (i). Scale bar in (i) and (j): 1 cm.

Fig. 3. SEM micrographs of 3D printed PVA moulds of 20, 40, 60 and 80% infill densities (a–d) and corresponding PDMS scaffolds (e–h).
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3.3. Culturing cells in scaffold

3.3.1. Preparing scaffold for cell culturing (surface treatment)

To enable cell seeding and culturing within a porous scaffolds, it is

important to render the scaffold surface hydrophilic [35]. This is re-

quired to ensure that the cell suspension and culture media can be

absorbed within the scaffold pores. Oxygen plasma treatment was ap-

plied to the fabricated scaffolds to achieve this. Using this treatment,

the contact angle of the scaffold surface decreased from 122° ± 3.5° to

0° andmediawas able to infiltrate the pores of the scaffold (Supplemen-

tary Fig. 3).

3.3.2. Cell proliferation, viability and function

Following the surface treatment, the scaffolds were prepared for cell

culturing, seededwith cells, and incubated as described inMaterials and

methods. Cell viability and proliferation in the PDMS scaffolds with 80%

porosity were investigated over a 12 day culture period using biochem-

ical assays and imaging techniques. Cell proliferation in the scaffold was

quantified using the alamarBlue® assay. As shown in Fig. 7(a), the fluo-

rescence intensity increased linearly over the culture period, indicating

an increase in the number of cells in the scaffolds with time. The func-

tionality of HepG2 cells cultured on the scaffolds was established by

measuring the extracellular albumin production (Fig. 7(b)). There was

an increase in albumin production from day 1 to day 12 of the cultures

which correlate with the increased cell density in the scaffolds.

Live/dead staining of the cell-scaffold construct was carried out to

assess the viability of cells cultured on the scaffolds. Fig. 8 shows the

confocal microscopy images of stained HepG2 cells on days 4, 8 and

12 of the culture period. Through the culture period, the density of living

cells (stained green) increased. On day 12 of the culture, a confluent

layer of live cells was visible on the scaffolds. In all cases, no dead cells

were observed, so close to 100% cell viability was maintained through-

out the 12 days of culture period.

3.3.3. Cell infiltration and distribution within the scaffolds

At different time points during the culture period, the infiltration

and distribution of HepG2 cells within the PDMS scaffolds were investi-

gated. This was done by staining the scaffolds with nuclear stain

Hoechst 33342 (NucBlue® Live Ready Probes® Reagent, Life Technolo-

gies) for live cell nuclei and ethidium homodimer-1 (life technologies)

for dead cell nucleus. To visualise cell distribution through the cross sec-

tion of the scaffold, it was dissected along its central axis and imaged

using fluorescence microscopy. Fig. 9 shows live cell nuclei (stained

blue) on the scaffold on days 4, 8 and 12 of the culture. Close to 100%

cell viability was observed (no dead cells could be seen)with cells pres-

ent throughout the cross section of the scaffold by the end of the culture

period. Scaffolds acquired from day 4 of the culture showed a higher

density of cells closer to the top and bottom face of the scaffold and

a sparse density of cells in the central regions of the scaffold. But with

longer culture time, cells appeared to proliferate and are seen to be

homogenously distributed throughout the channels of the scaffolds at

days 8 and 12.

Immunostaining of the scaffold was carried out to visualise themor-

phology of cells cultured on the scaffolds. Fig. 10 shows a homogeneous

and confluent distribution of cells in the central region of the scaffold,

Fig. 4. Measured porosity (error bars = SD, n = 4) (a) and calculated surface to volume ratio (b) of scaffolds fabricated from mould with different infill densities.

Fig. 5. (a) Stress–strain curves at 4 N load for different scaffolds, (b) compressive moduli of different PDMS scaffolds (error bars = standard deviation of 4 samples (n = 4)).
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highlighting the cytoskeleton beta-tubulin (green) and cell nucleus

(red). After 12 days of cell culture the cells were uniformly distributed

with high density of live cell in the centre of the scaffold. Immunofluo-

rescence staining of the beta-tubulin demonstrated that the cells were

well attached to the surface with a spread-out cell morphology.

HepG2 cell adhesion on scaffold was also investigated through SEM

as shown in the Supplementary Fig. 5(a, b & c). After 4 days of culture,

the interaction between cells and the scaffold surface was examined.

Cells cultured on PDMS scaffold formed a well spread morphology and

exhibited excellent cell adhesion.

4. Discussion

In this paper, a new scalable and reproducible technique for fabricat-

ing 3D polymer scaffolds with defined micro-architectures has been

presented. The technique is simple and involves casting of a desired

polymer material within a 3D printed water-soluble PVA mould,

which defines the microarchitecture/geometry of pores or channels

within the scaffold (Figs. 1–3). 3D printing parameters were optimised

to enable the production of reproducible moulds with high yield. The

technique was applied to fabricate ‘woodpile’ like scaffolds with regu-

larly spaced aligned polymer filaments in the x and y directions.

Scaffolds of porosities ranging from 20 to 80% and channel to channel

distances ranging from 78 μm to 1482 μmwere fabricated by specifying

the infill density of themoulds. Scaffoldswith hexagonalmicro-features

were also obtained by using moulds with hexagonal infill patterns.

The dimensions of the channels formed in the PDMS replica scaffolds

were ellipsoidal shaped with dimensions (344 μm × 190 μm) that

were slightly smaller than that of the filaments in the printed mould

(400 μm × 200 μm), due to shrinkage during elastomer curing.

Fig. 7. (a) Change in alamarBlue® florescence intensity of scaffolds over culture time. The fluorescence intensity is proportional to the amount of cells. (b) Albumin production of HepG2

cells grown in PDMS scaffolds over 12 days of culture. Error bars indicate standard deviation of 3, independent scaffolds.

Fig. 6. Surface roughness analysis: SEM images showingmicrofeatures in the PVAmould surface (a) and PDMS scaffold (b, c & d). Surface profile image of PDMS scaffold surface generated

from optical profilometer (c) and zoom in of image c (d).
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We used the biocompatible elastomeric polymer PDMS to demon-

strate the ease of fabrication and scaling of scaffold structure, and

furthermore showed that it has potential as a scaffold for growth of

liver cells. However, the method has general applicability, meaning

that other mouldable materials can be structured in a similar manner.

To prove this point, poly-2-hydroxyethyl methacrylate (pHEMA) hy-

drogel scaffoldswere produced bymonomer/crosslinker casting around

PVA mould, photocrosslinking (Supplementary Fig. 4, and Material and

method in the Supplementary section) and subsequent dissolution of

the PVA mould.

The silicone elastomer PDMS is optically clear, and, in general, inert,

non-toxic, and non-flammable. Its applications range from contact

lenses andmedical devices to additives in cosmetics and food products.

PDMS is also widely used as a material for microfluidic cell culturing

and the high number of publications using it indicates that it is a bio-

compatible material [36]. In general the effects of PDMS or silicones

on cells need to be evaluated on a case by case situation, as PDMS in

some situations has subtle effect on gene expression [37], butwe clearly

show here that the fabricated PDMS elastomer scaffold supports HepG2

growth and function (Figs. 7–10). This type of elastomer scaffold could

be used as a part of a life support system (LSS), e.g., an extracorporeal

liver [38] to temporarily relieve liver disease patients. In such applica-

tion PDMS offers several advantages: 1) It is easy to fabricate PDMS scaf-

fold structures using the PVA sacrificial moulding method presented

here. 2) PDMS is a structurally strongmaterial for building largemeshes

(Fig. 2j). 3) PDMS is easy to sterilise by autoclavation (in contrast to

some hydrogels). 4) In contrast to hydrogels and many biodegradable

materials PDMS does not shrink, swell or warp significantly with time

meaning that rationalfluidics optimisation canbedone aswell as robust

fluidic connections for perfusions. 5) There are FDA approved medical

grade silicone elastomerswhich should be compatiblewith the here de-

scribed fabrication method.

It is well recognised that in order to be of clinical relevance, tissue

constructs must be scaled up to the macroscale, not only in length and

width, but also in thickness [20]. The presented fabrication method

overcomes existing challenges in creating thicker constructs in a simple

and reproducible manner by using precision assembly technology to

control the micro-architectural details. The scalability of the process

was demonstrated by producing a 75 cm3 large scaffold structure with

16,000 channels with a channel to channel distance of only 78 μm

(Fig. 2(j)). To our knowledge this is the largest scaffold ever to be pro-

ducedwith such small features sizes andwith somany structured chan-

nels. Thus the process enables amore efficient scale up of scaffolds both

in size and in throughput, while also allowing versatility in the imple-

mentation of 3D microarchitectural designs.

It is well established that the micro-roughness of a scaffold surface

plays an important role in cell attachment and proliferation [39–42].

For this reason, the topological features of the scaffold were analysed

using SEM tomeasure the surface roughness. Geometrical and topolog-

ical features of the 3D printed PVA mould (Fig. 6a and b) were well

Fig. 8. Live/dead staining of HepG2 cells grown on the top and bottom parts of the PDMS scaffold for 4, 8 and 12 days. Scale bars represent 1 mm.

Fig. 9.Visualisation of cell distribution through the central section of the scaffold stainedwith NucBlue® (live cells: blue) and ethidiumHomodimer-1 (EthD-1) (dead stain: red) ondays 4,

8, and 12 of HepG2 cell culturing. Scale bars: 1 mm.
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replicated in the PDMS scaffold (Fig. 6c andd), giving the scaffoldmicro-

and nano-scale roughness. Such micro- and nano-scale roughness can

be an advantage for cell attachment and proliferation [43]. Our results

are in agreement with this: We observed confluent layer of well-

attached cells with spread-out cell morphology (Fig. 10).

It is well known that cells respond to the material on which they

grow, both in terms of cytoskeleton, cellmorphology, cell differentiation

and function [45,46]. The mechanical properties of the fabricated

scaffolds of varying porosities were therefore characterised. The com-

pressive modulus of the scaffolds were estimated to be 1.84, 0.84,

0.34, 0.075 MPa for 20, 40, 60 and 80% porous scaffolds, respectively.

The inverse relationship between scaffold porosity and compressive

modulus is expected because scaffold with a higher porosity has less

material/mass to resist applied load and therefore has a lower compres-

sivemodulus. If the stiffness of the PDMS scaffold should be a problem it

can be adjusted by changing the ratio of pre-polymer to curing agent

[46] or by selecting hydrogel materials such as pHEMA (Supplementary

Fig. 4) could be used for casting the scaffold.

A highly available surface area in a scaffold can provide high ligand

density for initial cell attachment and proliferation [47]. We chose to

use the scaffold with the highest porosity (80%) for culturing cells since

it has the lowest compressive modulus, enables better mass transport,

and has the highest specific surface area (Fig. 4b) for cell attachment.

Until now it has been a challenge to maintain viable cells within

the inner cores of thick engineered tissue constructs due to insufficient

oxygen and nutrient levels [33]. To regenerate artificial tissues a homo-

geneous cell distribution should be maintained inside the porous scaf-

fold structure [48,49]. The scaffolds presented in this work were able

to sustain cellswith 100%viability throughout the 12 day culture period.

Metabolic assays and total cell DNA quantification assays do not give

information on cell infiltration and distribution inside the scaffold. In

order to visualise this aspect, the cell nucleus stained scaffolds were im-

aged at the top, bottom and cross sectional surfaces (Fig. 9). Cells were

seen to be uniformly distributed throughout the channels of the scaf-

folds and along the cross sectional length of the scaffold. The achieved

homogeneity can be attributed to the following: Firstly, the cell loading

procedure employed ensures an even distribution of cells throughout

the scaffolds. Secondly, the parallel and perpendicular structured chan-

nels in the scaffold allow sufficient oxygen and nutrient mass transport

into the scaffold which promotes cell survival and proliferation. Thus at

the endof the culture period, cellswere seen to be uniformly distributed

throughout the scaffolds and along the cross sectional length of the scaf-

fold. Results from immunostaining clearly showed good HepG2 cell

morphology and attachment to the scaffold surface (Fig. 10). Cell func-

tionality was assessed by measuring albumin secretion of cells in scaf-

folds over time (Fig. 7b). The increase in albumin secretion through

the culture period indicates that the cells were able to maintain their

functionally while cultured in the presented 3D scaffold.

5. Conclusions

In this study, we have demonstrated a new technique for fabricating

scaffolds by 3D printing a sacrificial water dissolvable PVA mould, cast-

ing polymer around it and subsequently dissolving the sacrificial mould,

leading to structured scaffolds. Different designs of PDMS scaffoldswere

successfully prepared, and the fabrication technique allowed the tuning

of physical andmechanical properties by controlling the 3D printing pa-

rameter. By observing the biological activity of the hepatocytes in the

scaffold we conforms that along with maintaining very high cellular

viability the scaffold could also support high level of cellular albumin se-

cretion throughout the cultivation period. After 12 days of cell culturing

we observed a very high density of cells, homogeneously distribution

across the scaffold due to goodmass and oxygen transport into the scaf-

fold. The fabrication method can also be applied to other synthetic or

natural polymers as demonstrated by fabricating scaffolds in the hydro-

gel pHEMA. Furthermore, as we have demonstrated, the fabricated

scaffold can be scaled up to sizes relevant for bioartificial organs. In con-

clusion, the described process is scalable, compatible with cell culture,

rapid, and inexpensive.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.msec.2015.06.002.
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a b s t r a c t

A bioimpedance platform is presented as a promising tool for non-invasive real-time monitoring of the

entire process of three-dimensional (3D) cell culturing in a hydrogel scaffold. In this study, the dynamics

involved in the whole process of 3D cell culturing, starting from polymerisation of a bare 3D gelatin

scaffold, to human mesenchymal stem cell (MSC) encapsulation and proliferation, was monitored over

time. The platform consists of a large rectangular culture chamber with four embedded vertical gold

plate electrodes that were exploited in two- and three terminal (2T and 3T) measurement configurations.

By switching between the different combinations of electrode couples, it was possible to generate a

multiplexing-like approach, which allowed for collecting spatially distributed information within the 3D

space. Computational finite element (FE) analysis and electrochemical impedance spectroscopic (EIS)

characterisation were used to determine the configurations’ sensitivity field localisation. The 2T setup

gives insight into the interfacial phenomena at both electrode surfaces and covers the central part of the

3D cell culture volume, while the four 3T modes provide focus on the dynamics at the corners of the 3D

culture chamber. By combining a number of electrode configurations, complementary spatially

distributed information on a large 3D cell culture can be obtained with maximised sensitivity in the

entire 3D space. The experimental results show that cell proliferation can be monitored within the tested

biomimetic environment, paving the way to further developments in bioimpedance tracking of 3D cell

cultures and tissue engineering.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The current challenge in systems biology is to explore the

intricate dynamics that orchestrate the cellular microenvironment

where complex signalling pathways spatially and temporally

direct cellular phenotype towards tissues formation, function

and pathophysiology (Huh et al., 2011). The physico-chemical

phenomena that take place in the extracellular three dimensional

(3D) environment significantly contribute to tissue organisation,

but may be hidden by compensating mechanisms when operated

in two dimensional (2D) cell culture models (Tibbitt and Anseth,

2009). Therefore, 3D cell cultures are believed to enable, in a more

physiologically true manner, the formation of dynamic spatial

gradients of soluble factors that influence cell migration, cell–cell

communication and differentiation (Watt and Huck, 2013). To

reach this goal new scientific advances in the fields of biomimetic

materials (Lu et al., 2013), molecular biochemistry (Baker and

Chen, 2012) and microfluidic perfusion techniques (Buchanan and

Rylander, 2013) are being explored to mimic biomechanical

stability and more complex cell functionality.

Any sensing technique for real-time monitoring of 3D cell

cultures must be able to collect real-time information of the time

course of the biological processes at strictly controlled physiolo-

gical-like conditions without damaging the cells. However, the

advances so far are still some way off from providing fully robust,

quick and user-friendly on-line detection solutions to follow

biological dynamics throughout the 3D organisational complexity.

Confocal imaging microscopy is widely used for monitoring cell

culture evolution in terms of cell viability and differentiation with

high subcellular resolution. Nevertheless, this approach still needs

to be optimised for tissue engineering purposes. At this point it

can be implemented only as an endpoint analysis since a large 3D

scaffold has to be sectioned in thin slices (200–300 mm) to allow
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light penetration (Smith et al., 2010). Furthermore, the scaffold

should be optically transparent and composed of materials with

low autofluorescence.

Electrical impedance measurements, including electrochemical

impedance spectroscopy (EIS), are used to describe material

properties as resistance to electrical current flow and ability to

store electrical charge. Impedance measurements have been

demonstrated as a powerful tool for the real-time study of

complex biological systems both in vivo (Weijenborg et al., 2013)

and in vitro (Giaever and Keese, 1984; Daza et al., 2013; Lei et al.,

2012, 2014) by establishing a correlation between the electrical

measurements and the biological phenomena in a non-destructive

way. Physiological impedance measurements on tissues and or-

gans have been extensively described by Grimnes and Martinsen

(2008) and defined as bioimpedance. These measurements give an

insight of biological 3D systems, reflecting cell dimensions, density

and integrity as well as the extracellular matrix composition.

in vitro applications of impedance measurements may encompass

2D and 3D cell cultures. However, the methodology originally

proposed by Giaever and Keese (1993) for monitoring 2D cultures

(electric cell–substrate impedance sensing, ECIS) is still the main

focus of such applications. The measurements reflect the electrode

interface impedance (polarisation impedance, Zp) modulated by

adhering cells. Lei et al. (2012) and (2014) have applied 2-electrode

impedance measurements on 3D cell cultures using thin agarose

layers. However, the emergence of 3D culturing and tissue en-

gineering warrant significant development of bioimpedance mon-

itoring strategies to map spatial distribution of cells in larger

scaffolds.

Fig. 1. (A) Schematics of the 2T and 3T (modes 1–4) configurations tested. In bioimpedance measurements (a) CC1 and CC2 form the current-carrying couple, PU1 and PU2

form the pick-up couple. Red (CC) and blue (PU) arrows represent a top view of the equipotential surface directions. In EIS analysis (b): WE¼ working electrode,

CE¼ counter-electrode, RE¼ reference electrode. (B) Design of the overall bioimpedance platform. (a) The system consists of 3 layers: bottom plate accommodating the

electrodes, culture chamber and lid. (b) Photograph of the system embedding four electrodes for 3T measurements. (c) Experimental setup for the 2T configuration.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To maximise the biophysical information obtained through

in vitro bioimpedance measurements on tissue engineering scaf-

folds and 3D cell cultures, it is crucial to tailor parameters like

electrode number, geometry, orientation and spacing. Further-

more, the sensitivity field in such bioimpedance measurements

largely depends on the used configurations between electrode

couples (current carrying, CC, and picking up, PU). The same

electrode pair can have a dualistic role serving both as CC and

PU, as in the case of a more conventional two-terminal (2T)

configuration (Fig. 1Aa, 2T), which typically includes Zp and the

entire sample volume between the two electrodes. The measure-

ment sensitivity is proportional to the square of the current

density (Grimnes and Martinsen, 2008). Alternatively, three- and

four-terminal (3T or 4T) configurations, as conventionally used in

physiological bioimpedance, are also possible. 4T measurements

are commonly used when there is a need to reduce the sensitivity

close to both PU electrodes, either to avoid contribution from Zp or

to focus the measurements on a specific volume inside the sample.

In this case, separate electrodes are used as CC and PU, none of

them with a dualistic role. In 3T configurations, one electrode is

common for the CC and PU couple with a dualistic role (Fig. 1Aa,

3T modes). The impedance of that electrode is the only one having

a contribution from Zp and reflecting the sample volume in its

close proximity (Grimnes and Martinsen, 2007).

To our knowledge, bioimpedance monitoring has not been

previously established for large 3D cultures applicable in tissue

engineering. To fill this gap, we present here bioimpedance

monitoring of 3D cultures, including the different stages from

gelatin scaffold polymerisation and cell encapsulation to cell

proliferation in the 3D environment. A number of alternative

and complementary 2T and 3T electrode configurations (Fig. 1A)

were applied between vertical gold plate electrodes (Fig. 1B) in a

multiplexing-like approach to maximise the sensitivity in a 2-mL

gelatin matrix with embedded human mesenchymal stem cells

(MSCs). The difference and complementarity between 2T and 3T

configurations were described by finite element (FE) analysis and

EIS characterisation.

2. Material and methods

2.1. Design and fabrication of bioimpedance platform

The bioimpedance platform (Fig. 1B) was designed for static cell

cultures and consists of a bottom plate with rectangular slits for

mounting up to four electrodes adjacent to each sidewall of the

culture chamber (19#16#10 mm3). The two parts were sealed

together using a PDMS O-ring. The chamber is closed with an

optically transparent lid having an opening (2-mm diameter) to

enable culture medium removal and replenishment. The system

components were fabricated of polycarbonate using micromilling.

Vertical electrodes (10#25#0.525 mm3) were fabricated by ther-

mally evaporating a 200-nm thick layer of gold onto an oxidised

(650 nm) silicon wafer coated with a 20-nm titanium adhesion

layer.

2.2. FE analysis

FE simulations were carried out using Comsol Multiphysics

v4.3b to study the sensitivity field distribution within the bioim-

pedance platform with the different electrode configurations. The

method for calculating the sensitivity field has been previously

described by Pettersen and Høgetveit (2011). 3D models of the

chamber containing four electrodes and a gelatin scaffold (5% w/v,

2 mL) were created in the AC–DC module. Gelatin parameters

were set as 0.3 S/m for conductivity (s) (Marchal et al., 1989) and

60 for relative permittivity (εr) (Ferguson et al., 1934). The electrode

parameters were set as 45.6#106 S/m for s and 1.5 for εr. The mesh

consisted of 33,772 tetrahedral elements with an average element

quality of 0.77.

For simulating the 2T configuration, 10 mV were applied to one

electrode while the other was grounded. Electrical insulation was

applied to the chamber chassis. The sensitivity field (S) was

computed as S¼ J′2 [m$4] (Høyum et al., 2010) where J′ is the

relative surface density of the injected current. For the 3T config-

urations, 10 mV were applied between two opposing electrodes,

and S was evaluated in relation to the adjacent PU couple at the

corner of the chamber (Fig. 1Aa). In this case, S was calculated as

S¼ J′PU∙J′CC [m$4] where J′PU is the current density vector for the

PU couple and J′cc is the current density for the CC couple.

2.3. EIS analysis of Zp distribution in 2T and 3T configurations

Prior to any measurements, gold electrodes were cleaned by a

10-min treatment using a mixture of H2O2 (25% v/v) and KOH

(50 mM) followed by a potential sweep from $200 mV to

$1200 mV in 50 mM KOH (Heiskanen et al., 2008). EIS analysis

was performed using an equimolar solution of K3[Fe(CN)]6 and

K4[Fe(CN)]6 (10 mM) dissolved in 1 M KNO3. Electrode modifica-

tion with sodium 3-mercapto-1-propanesulfonate (MPS, 63765

Fluka) was performed for EIS analysis of Zp distribution. A

sinusoidal perturbation of 10 mV (rms) with respect to the open

circuit potential was applied in the frequency range between

10 mHz and 1 MHz using a Reference 600 potentiostat/galvano-

stat/ZRA (Gamry Instruments). 2T and 3T measurements were

performed on conductivity standard solutions (Hanna Instru-

ments) with s values (25 °C): 84#10$4 (cat. 663-5054), 0.14

(cat. 663-5048), 1.29 (cat. 663-5047) and 11.18 S/m (cat. 663-

5008) using an SI1260 impedance analyser and a 1294 impedance

interface (Solartron Instruments) based on the protocol described

above. Due to the platform symmetry and solution homogeneity,

only mode 1 is reported for the 3T configuration. Fig. 1Ab shows

the assignment of electrodes for EIS (see also Section S1 in

Supplementary material).

2.4. Bioimpedance experiments

Experiments were carried out using 5% w/v gelatin (Fluka

48723). The hydrogel was covalently cross-linked using the micro-

bial enzyme transglutaminase (Activas RM, Ajinomoto) dissolved

in 1# PBS (Sigma D8537). Bioimpedance was used to monitor:

(1) polymerisation of the bare gelatin matrix, (2) encapsulation of

MSCs (Gibco A15652) within the scaffold, and (3) MSCs growth

over time. The used measurement volume was in all cases 2 mL.

Bioimpedance measurements using Solartron SI1260/SI1294 were

performed by applying a 10 mV AC in the frequency range

between 100 Hz and 1 MHz. Two densities of MSCs (1.5#105 and

1.5#106 cells/mL) were encapsulated within the hydrogel by

directly mixing the cell suspension with gelatin. Prior to measure-

ments, the mixture was allowed to polymerise in the chamber for

2 h at room temperature. Separate measurements were conducted

on the bare gelatin scaffold (also 10% w/v for comparison) during

the process of polymerisation without any cells present.

To investigate the capability of the system to monitor cell

growth, 5#105 cells/mL MSCs were loaded into the gelatin scaf-

fold and measurements were performed over time. In this case,

cross-linking of 5% gelatin was carried out in cell culture medium

(RPMI 1640 with 10% fetal bovine serum and 1% penicillin/

streptomycin). Scaffold polymerisation was allowed for 45 min

(37 °C, 5% CO2 in a humidified incubator) and then the culture

chamber was filled with cell culture medium. Cells were grown for

48 h in the incubator. At the end of each growth experiment, cells
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were recovered from gelatin to estimate the cell number and

viability. Gelatin scaffolds were digested at 37 °C with a 250 mg/mL

thermolysin (Sigma T7902) solution in 50 mM Tris and 10 mM

CaCl2. Cells were counted with a MOXI Z automated cell counter

(Orflo Technologies) and viability was estimated using Trypan blue

(Sigma T8158).

3. Results and discussion

3.1. FE analysis

Fig. 2 shows the solutions of the mathematical models for the

spatial distribution of the sensitivity field of 2T (a) and 3T

(b) configuration. The 3T setup allows several combinations of

CC and PU electrode couples and four of them were chosen with

the aim to focus on the dynamics occurring at the corners of the

3D culture chamber. Due to the platform symmetry and bulk

homogeneity, only the FE model for 3T mode 1 (Fig. 1Aa) is shown

here, while the complete FE analysis for all the 3T setups (modes

1–4) is reported in Fig. S1.

As expected, the 2T configuration senses the dynamics occur-

ring in the whole volume between the two electrodes with

significant contribution from Zp at both interfaces (Fig. 2a). The

3T configuration mainly focuses on the volume between the PU

couple at the corner of the respective culture chamber (Fig. 2b).

Hence, by switching between modes 1–4 it is possible to build a

multiplexing-like approach that provides an insight of the 3D

space at the corners. A minor influence of the electrode edge on

conduction was emphasised in these models. This localised charge

density is related to the used electrode structure with conductive

edges. This could be eliminated by insulating the edges using a

passivation layer.

3.2. EIS analysis of Zp distribution in 2T and 3T configurations

As discussed in the introduction and theoretically illustrated in

the FE simulations (Fig. 2), Zp has a different influence on 2T and

3T configuration. To experimentally validate this, we used EIS

characterisation with the redoxactive probe [Fe(CN)6]
3$ /4$ com-

bined with a self-assembled monolayer (SAM) of MPS, modifying

each electrode one-by-one (see the defined roles of the different

electrodes in Fig. 1Ab). MPS renders a modified electrode with a

negative net charge, which repels [Fe(CN)6]
3$ /4$ . When using a

redoxactive probe, the Zp in acquired impedance spectra shows

both a Faradaic (electron transfer: charge transfer resistance, Rct,

and mass transfer: Warburg impedance, Zw) and non-Faradaic

(double layer capacitance, Cdl) contribution. Due to repulsion by

the negatively charged MPS SAM, especially the Rct should increase

on electrodes, whose Zp is a part of the sensitivity field of the

electrode configuration. Since the electrodes in the system are

equal in size, in 2T configuration the contribution of Zp at both

electrodes should be equal, whereas in 3T configuration the

contribution of Zp should be eliminated at one of the PU electro-

des. Fig. 3a shows two Nyquist plots, one for an unmodified WE

and another for the same WE after MPS modification, the latter

indicating a significant increase in Rct. If the electrode assignment

is reversed, i.e. the MPS-modified electrode is used as the CE, the

acquired Nyquist plot is superimposable with the one in Fig. 3a. A

corresponding set of Nyquist plots for mode 1 of 3T configuration

(Fig. 1Ab) is shown in Fig. 3b. In this case, the MPS-modified

electrode is the RE, the PU at which the Zp is expected to be

eliminated. This is verified by the fact that the Nyquist plots before

and after MPS modification are superimposable. When a corre-

sponding test is performed modifying the other PU, i.e. the WE in

Fig. 1Ab, an increase in Rct is observed (result not shown).

All together, these results demonstrate that the 2T configura-

tion allows gathering of information about the interfacial phe-

nomena at both electrode surfaces in addition to those occurring

at the centre of the 3D sample. By combining the 2T information

with the one acquired using the 3T configuration when switching

between the four modes (Fig. 1A), it is possible to collect spatially

distributed information that focuses on the culture chamber

corners in a multiplexing-like approach. Additional EIS-based

verification regarding the differences between the 2T and 3T

configuration are shown in Fig. S4 and further discussed in

Section S3 in Supplementary material.

3.3. EIS conductivity measurements

The system needs to account for changes in the cell-scaffold

conductivity during cellular growth. For instance, a decrease in pH

within the cell culture leads to an increase in conductivity, thus

influencing the sensed impedance. Such changes may be corre-

lated to different biochemical phenomena, e.g. hypoxia and cell

death, bacterial contamination, aging of the culture. To ensure

system reproducibility, the intra- and inter assay reproducibility

were first determined and found to be excellent for the 2T and 3T

measurement modes (Figs. S2 and S3). Impedance spectra were

then acquired for different conductivity standard solutions using

Fig. 2. FE analysis: Sensitivity field [m$4] distribution (slice view) and current density vectors for (a) 2T configuration and (b) 3T configuration (mode 1).
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the 2T and 3T (mode 1) configurations. As shown in Fig. 3c, the

spectra (presented as Bode plots) provide a clear discrimination

between standards of medium low (1.29 S/m) and high (11.18 S/m)

conductivity. Due to the system isotropy, the acquired Bode plots

for all the four modes of the 3T configuration showed good

superimposability (Fig. S5).

The impedance spectra acquired using conductivity standard

solutions are characterised by bulk resistance at high frequencies

and Zp (contribution of Cdl) at lower frequencies. For both 2T and

3T configuration, the cut-off frequency indicating the transition

between resistive and capacitive behaviour is roughly the same

although a sharper transition is observed for the 2T configuration.

Low-conductivity solutions (84#10$4 and 0.14 S/m) were also

tested to evaluate the functionality of the setup under conditions,

which often lead to artefacts especially at high frequencies due to

the formation of parasitic conduction paths (Scully and Silverman,

1993; Stewart et al., 1993). Even under these conditions, the

platform facilitated stable measurements, which were negligibly

affected by noise (Fig. S6). A characteristic difference between the

2T and 3T configuration, related to the differential mapping of the

3D space as also illustrated in Fig. 2, can be seen in the high-

frequency behaviour of |Z|, being systematically higher in compar-

ison with the average of the four 3T modes (further details shown

in S4).

3.4. Bioimpedance of gelatin scaffold polymerisation and cell

encapsulation

Gelatin is a well-known biodegradable and biocompatible

material often exploited as scaffold for tissue engineering, either

alone or in combination with other molecules, such as chitosan

(Kang et al., 1999; Huang et al., 2005). Engler et al. (2006) showed

that MSCs were able to specify lineage and commit to phenotypes

with extreme sensitivity to scaffold stiffness. This opened up a

new perspective for the use of hydrogels as 3D cell culturing

scaffolds due to their tuneable physico-chemical properties and

ease of preparation.

Fig. 4a presents the ability of the 3T configuration (mode 1) to

discriminate between 5% and 10% gelatin polymerisation. Gelatin

contains mobile ions and readily reactive groups (amino, hydroxyl

and thiol groups, hydrogen ions and small chain fragments up to

several kDa), which partly lose their mobility during the poly-

merisation process. Under the influence of a small applied electric

field, the ions migrate through the hydrogel, depending on the

degree of cross-linking (Winter and Shifler, 1975). During the

polymerisation process, new chemical bonds are formed with a

decrease in the number of reactive groups and hydrogen ions until

the system reaches a new thermodynamic stability. This leads to a

decrease in gelatin conductivity, and therefore an increase in

impedance, and as expected is more pronounced for 10% cross-

linked gel (Fig. 4a). In our further study, 5% scaffold was employed

since it displays a Young’s modulus of approximately 3.6 kPa (data

not shown), which is the stiffness common to many soft tissues

(e.g. liver, kidney and some blood vessels) (Janmey and Miller,

2011).

Fig. 4 shows Bode plots for the 2T (b) and 3T (c) configuration

acquired during polymerisation of 5% gelatin scaffold during 2-h

period. At the beginning of the polymerisation (0 h), the standard

deviation among acquired triplicate spectra was higher, especially

for the 2T configuration (Fig. 4b). This may be explained by the

higher ionic mobility at the beginning in comparison with the fully

cross-linked polymer. Since each spectrum acquisition took 7 min,

it is plausible to correlate the higher impedance variation with the

higher ionic mobility. Moreover, the 2T configuration reflects a

more significant contribution from both the gelatin bulk resistance

(cf. conductivity standards, Fig. 3c) and Zp at both electrodes,

which may also explain the higher standard deviation in compar-

ison with the 3T configuration, where the contribution of Zp on

one PU electrode is negligible. After the first hour of polymerisa-

tion, a 1.05 (70.02)-fold increase in |Z| was detected with both

configurations. Throughout the 2-h period, the 3T configuration

provided lower impedance values in the whole frequency range.

As an example, after 1 h, the |Z| at 1 kHz was calculated to be

38.60% (standard deviation o0.01) lower. This value should thus

correspond to the impedance polarisation of one PU electrode at

those specific conditions. This absolute variation of |Z| agrees well

Fig. 3. Nyquist plots showing the effect of MPS functionalisation of (a) one

electrode in the 2T configuration and (b) the PU1 in the 3T configuration (mode

1). (c) Discrimination between different conductivity standards using 2T and 3T

configurations (mode 1).
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with the one found for the conductivity standard of 1.29 S/m

(Fig. 3c) since gelatin was prepared in PBS at physiological

concentration.

The two configurations were further characterised in terms of

their ability to discriminate between different cell loadings within

the 5% gelatin scaffold. This was achieved by directly mixing

different MSCs densities (1.5#105 and 1.5#106 cells/mL) with a

gelatin solution in PBS, which was poured into the culture

chamber and let polymerise for 2 h at room temperature. Fig. 5

shows clearly that the 2T configuration (solid lines, solid symbols)

can discriminate between the bare gelatin scaffold (solid line) and

the scaffold loaded with both cell densities, whereas the 3T

configuration could only discriminate the higher cell density (solid

lines, open symbols) from the bare gelatin scaffold (dashed line).

This difference in sensitivity may be partially explained by the

larger number of cells in the central volume of the culture

chamber in comparison with the restricted zones at the corners

where the 3T configuration modes are focused. Analogously to

this, the lower detection limit of the 2T configuration is also

related to the findings of Kalvøy et al. (2009) as well as the FE

simulations and EIS characterisation presented above, i.e., in 2T

configuration the highest sensitivity field is located around the

entire width of the two electrodes (pronounced Zp contribution for

the 2T configuration).

3.5. Bioimpedance of 3D cell growth

As a proof of concept on the capability of the system to monitor

cell proliferation and distribution over time, based on the above

results, 5#105 cells/mL was chosen as a starting cell density. MSCs

were encapsulated in a 5% gelatin scaffold and cultured in the

chamber for 48 h. In this experiment, the gelatin scaffold was

polymerised in cell culture medium to provide a proper environ-

ment for cell growth. The cell culture was performed under static

conditions (37 °C, 5% CO2 in a humidified incubator) while bioim-

pedance monitoring was performed in triplicate every 24 h. Fig. 6

shows the increase in |Z| (at 4 kHz) for the 2T (a) and 3T (modes

1–4, b) configuration. This frequency was chosen based on spectral

analysis (see Section S5 in Supplementary material), which in-

dicates that the discrimination between time points was the

highest for both configurations.

The two different configurations showed consistent results in

terms of the increase in |Z|, albeit with different trends over time.

For the 3T measurements, which respond to the dynamics occur-

ring at the corners of the 3D culture chamber, the growth curve is

still rising after 48 h (Fig. 6b), whereas the growth curve for the 2T

measurements is approaching a saturation limit after 48 h

(Fig. 6a), which may correspond to differences in cell distribution

inside the gelatin matrix during the culture period. Corresponding

results were obtained in bioimpedance monitoring of the growth

of HeLa and HepG2 cells as well as neural stem cells (results not

Fig. 4. (a) Bode plots showing the discrimination between two different degrees of

crosslinking for thick gelatin scaffolds (5% and 10% w/v) for the 3T configuration

(mode 1). Bode plots for the polymerisation of 5% gelatin over time at room

temperature and the frequency range between 1 kHz and 1 MHz: (a) 2T and (b) 3T

(mode 1) configuration. Data are presented as mean7standard deviation (n¼3).

Fig. 5. Bode plots of the impedance modulus |Z| between 500 Hz and 500 kHz: bare

gelatin scaffold and different MSC densities encapsulated in the gelatin scaffold for

the 2T (solid line for gelatin scaffold and solid lines/filled symbols for encapsulated

cells) and 3T (mode 1) configuration (dashed line for gelatin scaffold and solid

lines/open symbols for encapsulated cells). Data are presented as mean7standard

deviation (n¼3).

C. Canali et al. / Biosensors and Bioelectronics 63 (2015) 72–79 77



shown). In separate tests, the initial cell distribution in gelatin has

been found to be homogeneous (results not shown). Based on this,

the bioimpedance results support the hypothesis that the cells

tend to proliferate more in the centre of the culture chamber than

in the corners close to the chamber walls. Indirectly, this is also

supported by the findings of Rao et al. (2012) showing differential

behaviour glioblastoma cells (morphology and motility) in the

bulk of 3D Matrigel in comparison with regions in the proximity of

a solid substrate.

Due to the hydrogel scaffold thickness, the visualisation of the

3D culture over time with optical microscopy was not possible.

Furthermore, the softness of 5% gelatin hampered the possibility of

slicing the scaffold. At the end the experiment, the MSCs were

therefore recovered from gelatin by incubating the scaffolds with a

thermolysin solution at 37 °C to estimate the cell number and

viability using the Trypan blue endpoint assay. Based on this assay,

the average cell number was almost doubled from the initial value

and all the cells were viable. This verifies that the increase in |Z| is

related to an increase in cell number over time and that cell

viability is not affected by bioimpedance monitoring. The pre-

sented bioimpedance monitoring of 3D cell culture with spatial

distribution of the sensitivity field and capability to discriminate

between gelatin scaffolds with different degree of crosslinking

(Fig. 4a) underline the suitability of the system for assessing, e.g.,

cell proliferation dependence of different type of cells on hydrogel

stiffness, which was pointed out by Wang et al. (2010) as a factor

influencing MSC proliferation rate in gelatin-based 3D matrix.

4. Conclusions

A bioimpedance based platform has been developed for real-

time monitoring of the dynamics involved in the whole process of

3D cell culturing in large gelatin scaffolds, comprising enzymatic

polymerisation, mesenchymal stem cell (MSC) encapsulation and

proliferation. Using finite element (FE) simulations and electro-

chemical impedance spectroscopic characterisation, we demon-

strate the distribution of the sensitivity fields and behaviour of

impedance measurements when employing 2 terminal (2T) and

3 terminal (3T) electrode configurations. The 2T configuration

maps the central part of the scaffold space, whereas the 3T

configurations focus on the corners. The differential spatial dis-

tribution of the sensitivity fields were exploited in multiplexed

bioimpedance monitoring of MSC proliferation inside the gelatin

scaffolds maximising the obtained spatial information. This ap-

proach constitutes a first attempt of generating a flexible bioim-

pedance based method for monitoring large 3D cell cultures with

spatial resolution, hence, bridging the gap between conventional

impedance monitoring of 2D cultures and future electrical im-

pedance tomography of 3D cultures.
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An impedance method for spatial sensing of 3D
cell constructs – towards applications in tissue
engineering†
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M. Dufvaa and J. Emnéus*a

We present the characterisation and validation of multiplexed 4-terminal (4T) impedance measurements

as a method for sensing the spatial location of cell aggregates within large three-dimensional (3D) gelatin

scaffolds. The measurements were performed using an array of four rectangular chambers, each having

eight platinum needle electrodes for parallel analysis. The electrode positions for current injection and

voltage measurements were optimised by means of finite element simulations to maximise the sensitivity

field distribution and spatial resolution. Eight different 4T combinations were experimentally tested in

terms of the spatial sensitivity. The simulated sensitivity fields were validated using objects (phantoms)

with different conductivity and size placed in different positions inside the chamber. This provided the

detection limit (volume sensitivity) of 16.5%, i.e. the smallest detectable volume with respect to the size of

the measurement chamber. Furthermore, the possibility for quick single frequency analysis was demon-

strated by finding a common frequency of 250 kHz for all the presented electrode combinations. As final

proof of concept, a high density of human hepatoblastoma (HepG2) cells were encapsulated in gelatin to

form artificial 3D cell constructs and detected when placed in different positions inside large gelatin

scaffolds. Taken together, these results open new perspectives for impedance-based sensing techno-

logies for non-invasive monitoring in tissue engineering applications providing spatial information of con-

structs within biologically relevant 3D environments.

1. Introduction

The membranes of biological cells are primarily composed of

phospholipid bilayers embedding cholesterol and proteins.

Hence, they are dielectrics with bound charges, displaying

high resistivity (tens of kΩ cm2) and capacitance (1 µF cm−2).

Cell membranes surround a conductive aqueous environment

(cytosol) consisting of a mixture of small molecules and bio-

logical macromolecules. In biological tissues, cells are sur-

rounded by proteinaceous hydrogel-like extra cellular matrix

(ECM), which combines the cellular passive electrical pro-

perties with free charges of varying mobility. Hence, under the

influence of an alternating electric field, cells and tissues

exhibit complex behaviour, which varies depending on the fre-

quency range.1–3 Accordingly, electrical impedance spectro-

scopy (EIS) has been successfully applied as a non-invasive

and cost-effective method for studying the physico-chemical

properties of different biological materials in research span-

ning from cell biology4,5 and tissue engineering6,7 to physio-

logy and medical technology.8

Although biophysical studies of cells in suspension have

provided information on their electrical properties,9 presently

the most widely used application of EIS is related to studies on

2D cultures of adherent cells as originally proposed by Giæver

and Keese.10 2-terminal (2T) impedance measurements, where

the dielectric properties of cells modulate the interface

impedance of electrodes, have been demonstrated to provide

information on cell size, morphology, adhesion, spreading,

proliferation and death.

In the last decade, there has been an increasing demand

for cell culture models to bridge the gap between conventional

2D cultures and tissue engineering to better mimic the in vivo

environment in terms of physiological and biomechanical be-

haviour.11,12 Cells cultured in a three-dimensional (3D)

environment significantly differ in terms of cell–cell and cell-
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matrix interactions from those grown in conventional 2D cul-

tures. They acquire an in vivo-like morphology that better

reflects the mechanisms of proliferation, survival, differen-

tiation and migration.13 Such dynamics may be difficult to

monitor using conventional microscopy techniques due to

difficulties with light penetration and scattering effects in

thick scaffolds. A promising tool in this regards is EIS detec-

tion, which has been demonstrated for monitoring thin 3D

cultures.14 However, when increasing the dimensions of the

3D matrix towards the requirements of tissue engineering, the

developed sensing method has to provide sufficient spatial

resolution for mapping cell distribution. We have recently

demonstrated EIS detection in large 3D cell cultures using

complementary 2T- and 3T measurements to collect spatially

distributed information within the 3D space.6

Further development of EIS monitoring in large scaffolds

relevant for tissue engineering is, however, necessary to

improve the achieved spatial resolution. Inspiration can be

found in physiological impedance measurements on tissues

and organs, usually defined as bioimpedance.15 These

measurements give an insight into the composition, i.e.

density and integrity, of tissues and organs, correlating the

results to pathophysiological processes. More recently, electri-

cal impedance tomography (EIT) has emerged as a suitable

technique for imaging organs, e.g., brain and breast, as well as

their activity, e.g., lung ventilation and gastric empting.16 In

EIT, four-terminal (4T) impedance measurements are com-

monly employed to minimise errors due to electrode interface

impedance (e.g. polarisation impedance, Zp)
17,18 and to maxi-

mise the reciprocity of the measurement method.19,20 Two sepa-

rate electrode couples are used as current carrying (CC) and

voltage pick-up (PU) electrodes. The measured impedance is

the transfer impedance,21 i.e. a part of the excitation signal

carried by the CC couple is transferred to the PU couple

depending on the material properties and composition.

Modern instrumentation, having high input impedance,

allows measurements in which the PU electrodes are not

current carrying, eliminating the contribution of the PU elec-

trode interfaces to the measured impedance.6,22,23 Moreover,

the application of an independent CC couple facilitates

measurements without the sensitivity field (S) being influ-

enced by the interface impedance of the CC couple.

In this work, we present the characterisation and validation

of an impedance-based method using multiplexed 4T impe-

dance measurements for sensing the distribution of cell aggre-

gates within large 3D gelatin scaffolds. An array of four

rectangular measurement chambers, each chamber compris-

ing eight platinum (Pt) needle electrodes positioned along the

perimeter, was used for parallel analysis. Using different combi-

nations of electrodes (modes) as the CC and PU couple, we

demonstrate the potential of using multiplexed 4T measure-

ments to gather information on the spatial distribution of cell

aggregates within a 3D environment. Finite element (FE) simu-

lations were used to study the influence of electrode position-

ing within the measurement chamber and the resulting

sensitivity field (S).22,24 The approach was first validated using

cylindrical metal and plastic test objects (phantoms) of

varying dimensions placed in different positions to find the

detection limit (volume sensitivity), i.e. the smallest detectable

volume with respect to the measurement chamber size, and a

common frequency for the eight sensing modes to facilitate

quick single frequency analysis. Artificial cylindrical 3D cell con-

structs, composed of a high density of human hepatoblastoma

(HepG2) cells encapsulated in gelatin, were then introduced in

different positions inside a larger gelatin scaffold in each

measurement chamber. The presented 4T impedance sensing

provides information on the spatial position of the constructs

within biologically relevant 3D environments, opening new

possibilities for non-invasive 3D monitoring in tissue engineer-

ing applications.

2. Experimental
2.1. FE simulation of sensitivity field (S) distribution

FE simulations were carried out using Comsol Multiphysics

v.4.4 to map the sensitivity field (S) distribution for different

combinations of current carrying (CC) and voltage pick-up

(PU) electrodes placed within the measurement chamber. ESI

S1,† provides details of different electrode configurations used

in EIS (2T, 3T, 4T) and the technique for calculating S.25

Regions of positive/(negative) sensitivity are defined where the

measured impedance increases/(decreases) with an increase in

the actual impedance of the sample.26 It is relevant to point

out that S does not quantitatively reflect what is experimentally

measured, but it expresses how much weight the local

impedance in a specific 3D sub-volume has on the total

measured impedance.25 Computational models were built to

maximise regions of positive sensitivity, assuming the

chamber was filled with a commercial conductivity standard

solution with a conductivity close to that of physiological solu-

tions (σ = 1.3 S m−1 and εr = 80). The mesh consisted of

153 891 tetrahedral elements with an average element quality

of 0.672. Eight different combinations of electrode pairs were

optimised (Fig. 1Aa–h) to focus on the sensitivity field distri-

bution in specific sub-volumes within the whole measurement

chamber volume (Fig. 1Ba–h). A potential of 10 mV was

applied. Electrical insulation was applied to the chamber

walls. S was computed as S = JPUJCC [m−4], where JPU is the

current density vector for the PU couple and JCC is the current

density for the CC couple.25 ESI S2 and S3† show simulations

of different (i) chamber geometries, (ii) electrode distances

and (iii) phantoms (made of stainless steel and acrylic plastic)

to assess the suitability of the method for sensing samples

with a wide range of electric properties.

2.2. Design and fabrication of the measurement

chamber array

An array of four chambers (dimensions: 16 × 19 × 10 mm3) for

parallel analysis was micromilled from a polycarbonate sub-

strate having a thickness of 15 mm (Fig. 2). Within each

chamber, eight cylindrical holes (Ø 1.1 mm, 2 mm deep) were
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drilled along the periphery of the measurement chamber for

holding the Pt electrodes (Ø 1 mm) in place. The electrode

positioning was determined based on the results of the FE

simulation. Pt was chosen as it has been demonstrated to be a

suitable biocompatible material for AC applications.27 Electro-

des were located in couples, 4 mm apart from each other on

each perpendicular side of the chamber (Fig. 2a). A lid for the

measurement chamber was fabricated using 5 mm thick poly-

carbonate with holes in different positions (Fig. 2b) for place-

ment of (i) electrodes and (ii) cylindrical phantoms having

different diameters (2, 3, 4, 5, 6, 8 mm). Crocodile clips were

used for contacting the electrodes to the impedance analyser.

Prior to each experiment, the Pt electrodes were cleaned for

10 min in acetone followed by rinsing with Milli-Q water (Milli-

pore Corporation, Billerica, MA, USA) and potential cycling in

0.1 M H2SO4 (−0.4 to 1.7 V vs. Ag/AgCl (3 M KCl); approxi-

mately 40 cycles at a scan rate of 200 mV s−1).

2.3. Phantom experiments

The eight simulated modes of 4T configuration were validated

with phantom experiments using stainless steel and plastic

cylinders of increasing dimensions (Ø 2–8 mm) placed in

different positions (centre and four corners, Fig. 2b) inside the

measurement chambers filled with conductivity standard solu-

tion (1.3 S m−1 Hanna Instruments, cat. 663-5047). A 10 mV AC

potential was applied in the frequency range between 1 kHz

and 1 MHz using an impedance analyser SI1260 and a SI1294

impedance interface (Solartron Instruments, Hampshire, UK).

For all phantom experiments, characterisation data are pre-

sented as an average of three individual experiments in each

chamber using fresh solution and rinsing the phantom

with Milli-Q water prior to each experiment (average ± s.e.m.,

n = 12).

Fig. 1 (A) Schematics of the eight optimised 4T configurations (modes 1–8). CC1 and CC2 form the current-carrying electrode couple and PU1 and

PU2 form the voltage pick-up couple. Red and blue dashed lines represent the directions of CC and PU electric fields, respectively. (B) FE simulations

for S [m−4] distribution (slice view): mode 1 (a), mode 2 (b), mode 3 (c), mode 4 (d), mode 5 (e), mode 6 (f ), mode 8 (h). White areas in the horizontal

cross-sections are associated with negative sensitivity.

Fig. 2 (a) The measurement chamber design. (b) Photo of the measure-

ment chamber, showing electrode position and openings for phantoms.
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2.4. Spatial sensing of artificial 3D cell constructs

Prior to impedance measurements, the chambers were steri-

lised with 70% ethanol for 20 min and allowed to dry in a

laminar flow bench. Artificial 3D cell constructs (Ø 4.6 mm

and height 10 mm) were prepared by encapsulating 107 HepG2

cells (American Type Culture Collection, Rockville, MD, USA)

in 5% w/v gelatin (48723 Fluka). 12.5% (w/v) gelatin stocks

were dissolved in serum-free cell culture medium (Roswell

Park Memorial Institute RPMI 1640). The gel was covalently

cross-linked using microbial transglutaminase (Activa® RM,

Ajinomoto) dissolved in RPMI 1640 containing 10% fetal

bovine serum and 1% penicillin/streptomycin. Cells were

directly mixed with liquid gelatin and cast in a cylindrical

mould with a piston for cylinder extrusion after curing

(4 hours at 37 °C in a humidified 5% CO2 incubator). Measure-

ments were performed placing a cylindrical artificial 3D cell

construct in two different positions inside the chamber (centre

or top left corner), and 2 mL of 5% (w/v) gelatin was cast

around and let polymerise for 2 hours. After gelatin polymeri-

sation, the chamber was filled with cell culture medium. EIS

spectra were acquired before and after medium addition, as

described in Section 2.3. Data for artificial 3D cell constructs

were compared with plain 5% (w/v) gelatin cylinders sur-

rounded by 2 mL of 5% w/v gelatin. Measurements were per-

formed in three independent experiments using a different

cylinder and filling gelatin (each position tested in duplicate).

Data are presented as average ± s.e.m., n = 6. Control experi-

ments comprised measurements on 5% (w/v) bulk gelatin

scaffolds without any added gelatin cylinder. 21 individual

experiments were performed (average ± s.e.m., n = 21) using

5% (w/v) bulk gelatin scaffold (three different stock solutions)

filling the same volume as in the presence of a gelatin cylinder

(16 × 19 × 6.6 mm3).

3. Results and discussion
3.1. FE simulation of S distribution

Martinsen and Grimnes previously illustrated the significance

of electrode configuration for impedance measurements focus-

ing on a sub-volume in a physiological 3D sample.21 In this

study, we optimised eight different modes of 4T configuration

(Fig. 1A) for spatial sensing in a 3D environment. The elec-

trode distance was evaluated with respect to the measurement

chamber size (ESI S2†). To design configurations that individu-

ally focus on specific sub-volumes inside the chamber and

cover the entire chamber volume (Fig. 1), sites for current

injection and voltage measurement were established by mini-

mising negative sensitivity zones. Based on FE simulations,

modes 1 and 2 (Fig. 1Ba,b) are expected to have a sensitivity

covering the entire chamber volume, however, mainly focusing

on the centre. Mode 2, associated with longer current path,

results in a higher simulated impedance. Modes 3, 4, 5 and 6

(Fig. 1Bc–f ) focus on the corners in a symmetrical fashion,

therefore, yielding the same impedance for a homogeneous 3D

volume. They show very low sensitivity in the centre. Mode 3,

focusing on the top left corner, has S = 0 at the bottom right

corner. Due to symmetry, all the other modes (4–6) have the

maximum S in one corner, whereas S = 0 in the opposite

corner (diagonally). Modes 7 and 8 (Fig. 1Bg,h) show sym-

metrical diagonal current paths through the centre of the

chamber, with lower S with respect to modes 1 and 2. They

also slightly sense two diagonally located corners and have

large zones of negative sensitivity in the two other corners.

The eight configurations were further evaluated based on FE

simulation of a metal and plastic object (phantom) inside the

chamber (ESI S3†). Results indicate that each mode individu-

ally provides S focusing on a specific sub-volume and that they

provide information regarding the position of an object in the

chamber through the distribution of relative impedance

changes in the whole 3D volume.

3.2. Phantom experiments

Phantom experiments were used to verify FE simulations and

determine the limit of detection for the sensing method. In

impedance measurements, a metal phantom, having a higher

conductivity than the surrounding electrolyte medium,

decreases the measured impedance in comparison with

measurements on the same solution without a phantom. In

the case of a nonconductive phantom (plastic object), the

effect is the opposite.28 This applies to measurements when

the phantom is placed in a zone of positive S (Fig. 1B). Fig. 3

and 4 show the impedance spectra obtained when using metal

and plastic phantoms of increasing diameter, respectively,

placed in the centre of the measurement chamber. The same

analysis was performed for 4 mm diameter phantoms placed

in the corners of the chamber. All the experimental results are

summarised in ESI S4.†

Fig. 3a,b and 4a,b show acquired spectra for modes 1 and 2,

respectively, in the presence of a metal or plastic phantom

with increasing diameter placed in the centre of the chamber.

Corresponding spectra for modes 3 and 7 are shown in Fig. 3c,

d and 4c,d. A phantom placed in the centre of the chamber is

primarily sensed with modes 1, 2 and 7, which focus on the

entire volume, whereas mode 3 only slightly senses the pres-

ence of the phantom. On virtue of symmetry, modes 4–6

(Table S4†) show exactly the same behaviour as mode 3. Since

mode 3 has weak sensitivity for the centre, the spectrum for

the 2 mm metal phantom (Fig. 3c) fully overlaps with that of

the blank. In the case of plastic phantoms, the spectrum for

2 mm phantom is below the impedance level of the blank,

while that for the 3 mm phantom overlaps with the spectrum

of the blank. From Fig. 3 and 4, it can be concluded that our

method has the limit of detection of 4 mm in terms of object

dimension regardless of material properties. This corresponds

to 16.5% of the total volume in the centre of the chamber.

This applies also to phantoms placed in the measurement

chamber corners (Table S4†).

For all modes, the spectra acquired for the different metal

phantoms show good discrimination in terms of phantom dia-

meter in the frequency range 100–300 kHz, with mode 2 giving

the highest impedance. For plastic phantoms, the impedance
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magnitude of the spectra acquired for the different modes

remains more constant through a wider frequency range. For

general analysis of the spectra, 250 kHz is a suitable frequency

when comparing the behaviour of different objects in the

chambers. This choice of frequency has also the advantage

that it is low enough not to be significantly affected by parasi-

tics that appear at higher frequencies (above 300 kHz).

For a phantom placed in one of the chamber corners, all

the modes show good discrimination at 250 kHz. All spectra

were analysed at this frequency and summarised in Table S4,

ESI S4.† Modes 3–6 show the highest S for a phantom placed

in the corner where the mode has specific focus according to

the FE simulation (Fig. 1Bc–f ), with the S being lowest in the

opposite corner (diagonally). Modes 1 and 2 do not show any

discrimination of phantoms placed in the corners due to their

specific focus on the centre of the measurement chamber.

Modes 7 and 8 have two diagonal corners where the presence

of the phantom can be weakly sensed. However, the spectra

acquired for a phantom in either of those corners are over-

lapping and cannot be discriminated, as expected from the FE

analysis (Fig. 1Bg,h). In the two other corners, the presence of

the phantom cannot be sensed due to the large zones of nega-

tive sensitivity. This represents a situation where the phantom

is partially located in the zone of negative and positive sensi-

tivity (depending on its size) which makes it difficult to dis-

tinguish the spectra for the phantoms from that of the blank.

Fig. 3 Characterisation using a metal phantom of increasing diameter (2–8 mm) placed in the centre of the measurement chamber (indicated by a

grey dot) filled with conductivity standard solution: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 7. Data are compared with spectra for the same

solution (blank) and reported as average ± s.e.m., n = 12.
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As expected, by increasing the phantom diameter, the absolute

variation in measured impedance increased for all eight

modes.

3.3. Spatial sensing of artificial 3D cell constructs

The sensing method was further validated with artificial 3D

cell constructs using 5% (w/v) gelatin cylinders, embedding

high density of HepG2 cells to mimic a biological tissue placed

in the centre and at the top left corner of a large 5% (w/v) bulk

gelatin scaffold. The Young’s modulus of these enzymatically

cross-linked gelatin constructs is approximately 3.6 kPa (data

not shown), which is within the stiffness range for soft tissues,

such as liver.6,29,30

The variability between different bulk gelatin scaffolds was

assessed for impedance measurements with the eight different

modes after medium addition on top (ESI S5†). The s.e.m.

were in all cases one order of magnitude lower than the aver-

aged impedance values at 250 kHz (Table S5†), indicating the

good reproducibility of our method. This also demonstrates

that there is low variability between different gelatin stocks

and different 5% (w/v) bulk gelatin scaffolds. Since modes that

focus on the chamber corners show current paths having the

same length, they are expected to give the same impedance

Fig. 4 Characterisation using a plastic phantom of increasing diameter (2–8 mm) placed in the centre of the measurement chamber (indicated by a

grey dot) filled with conductivity standard solution: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 7. Data are compared with spectra for the same

solution (blank) and reported as average ± s.e.m., n = 12.
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value if the bulk gelatin scaffold is homogeneously distributed

in the 3D space, with a smooth top surface. However, we found

that the measured impedances were similar for corners on the

same side, i.e. the impedance associated to the top left corner

(mode 3, 43 ± 3 Ω) was similar to the one measured for the

bottom left corner (mode 5, 44 ± 3 Ω) and the impedance for

the top right corner (mode 4, 58 ± 5 Ω) was similar to the one

for the bottom right corner (mode 6, 56 ± 5 Ω). This is probably

due to the fact that the measurement chambers were always

slightly tilted in the incubator, with slightly more medium

covering the left side of each scaffold. Hence, the higher con-

ductivity of cell culture medium31,32 above the gelatin provides

an additional current path bypassing the gelatin, which

decreases the measured overall impedance. Modes 7 and 8,

focusing primarily on the chamber centre and slightly on

diagonal corners, showed similar values of impedance (37 ± 3

and 40 ± 3 Ω, respectively).

Fig. 5 shows spatial characterisation using a plain gelatin

cylinder placed at the top left corner and in the centre of the

bulk gelatin scaffold (Fig. S6.1†). Based on the results reported

Fig. 5 Sensing of a 5% (w/v) gelatin cylinder embedded in bulk gelatin scaffold and placed either at the top left corner or in the centre: (a) mode 1,

(b) mode 2, (c) mode 3, (d) mode 7. Data are compared with 5% (w/v) bulk gelatin scaffold (average ± s.e.m., n = 21) and reported as average ± s.e.m.,

n = 6. Other modes are shown in Fig. S6.2.† The position of the main focus of each mode is indicated by an asterisk.
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above, measurements were taken after addition of medium on

top of the scaffold and the most significant frequency range

up to 300 kHz is shown. As expected, the sensing method

cannot discriminate between cylinder positions since both

cylinder and scaffold are made of the same biomaterial.

However, disregarding the measurement mode, the impedance

for scaffolds with embedded cylinders is always higher than

for bulk gelatin scaffolds. This may be related to surface in-

homogeneities originating when casting gelatin around the

cylinder or to the possibility that the cylinder becomes slightly

more solidified than the bulk gelatin scaffold when this latter

is solidifying in the chamber. None of the sensing modes

shows any significant difference between the two tested posi-

tions (centre and top left corner). However, what was illus-

trated in the previous paragraphs for metal and plastic

phantoms also applies for gelatin cylinders. Mode 1 (Fig. 5a)

resulted in lower impedance than mode 2 (Fig. 5b) due to

its shorter current path, while modes 7 (Fig. 5d) and 8

Fig. 6 Sensing of a 5% (w/v) gelatin cylinder containing 107 HepG2 cells as artificial 3D cell construct embedded in bulk gelatin scaffold and placed

either at the top left corner or in the centre. Mode 1 (a), mode 2 (b), mode 3 (c), mode 7 (d). Data are compared with 5% (w/v) bulk gelatin scaffold

(average ± s.e.m., n = 21) and reported as average ± s.e.m., n = 6. Other modes are shown in Fig. S6.3.† The position of the main focus of each mode

is indicated by an asterisk.

Paper Analyst

Analyst This journal is © The Royal Society of Chemistry 2015

View Article Online



(Fig. S6.2d†) resulted in similar impedance values as they have

equal and symmetrical current paths. Due to the symmetrical

current paths, the sensing modes focusing on the corners

(mode 3: Fig. 5c; modes 4–6: Fig. S6.2a–c†) gave similar impe-

dance values for a gelatin cylinder in the centre of the

measurement chamber. Moreover, since the used gelatin cylin-

ders and the surrounding scaffold had the same material com-

position, mode 3 did not show any difference in comparison

with modes 4–6 when a gelatin cylinder was placed in the top

left corner.

Fig. 6 and S6.3† show corresponding data for the artificial

cylindrical 3D cell constructs placed at the top left corner and

in the centre. For each sensing mode, the 3D cell constructs

showed higher impedance in comparison with the plain

gelatin cylinders (control, Fig. 5 and S6.2†). As expected,

modes 1 and 2 (Fig. 6a and b) showed higher impedance when

the cylinder was placed in the centre and lower impedance

when it was placed in the top left corner. The same applies to

modes 7 (Fig. 6d) and 8 (Fig. S6.3d†). The key validation of the

sensing method was given by mode 3 (Fig. 6c), resulting in

higher impedance when the 3D cell construct was placed at

the top left corner (i.e. the position where it was shown to have

the highest S). The spectrum for the top left corner is clearly

separated from the one representing the centre, where mode

3 has a very low S. Mode 6 (Fig. S6.3c†), which has S = 0 at the

top left corner, gives a further validation. In this case, the

impedance magnitude of the spectra is considerably higher

when the 3D cell construct was placed in the centre compared

to the top left corner. Modes 4 and 5 (Fig. S6.3a,b†) showed a

similar behaviour disregarding the position of the 3D cell

construct.

The s.e.m. for all the acquired spectra in relation to the

different modes and positions of the gelatin cylinders (with

and without cells) were of the same order of magnitude and

slightly below 10%. However, the s.e.m for the plain gelatin

cylinders is slightly lower, which can be explained by the fact

that the presence of cells increases the inhomogeneity of the

cylinders. The appearing differences in s.e.m between the

different modes may be derived from minor variations in elec-

trode positioning which causes deviation from perfect sym-

metry. Additionally, repeated experiments using the same

recleaned and reassembled electrodes in the measurement

chambers may affect the electrode shape, therefore also contri-

buting to differences between experiments.

The presented method allows addressing the detection of

different sample sub-volumes in a biologically relevant 3D

environment. Such method responds to the spatial distri-

bution of cell aggregates in a biocompatible scaffold for tissue

engineering. The simulation of the sensitivity field distri-

bution related to each sensing mode provides qualitative infor-

mation that describes its focus on a specific 3D sub-volume

and its weight on the total measured impedance. Hence, the

measured impedance using the different sensing modes can

be applied in tissue engineering applications to obtain insight

about proliferation and accumulation of cells in specific sub-

volumes of a large 3D scaffold. This may be also applied for

scaffold characterisation in terms of structural features (e.g.

channels mimicking vascularisation) and potentially used for

co-cultures of different cell types.

4. Conclusions

Several electrode combinations (sensing modes) can be used

for multiplexed 4-terminal (4T) impedance sensing to provide

spatial information of objects placed in a biologically relevant

3D environment, which is compatible with tissue engineering

applications. The results presented here demonstrate the

potential and suitability of our impedance-based sensing

method for future monitoring of tissue engineering processes,

such as the formation of bioartificial organs. Our method is a

first step towards miniaturisation of impedance detection to

enable on-line monitoring with 3D spatial resolution and, pro-

vides the fundamental basis for reconstruction of images

related to cell distribution in a 3D environment using several

multiplexed measurements.
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