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Introduction
The construction of surrogate models is important as a mean of acceleration in computational methods for
uncertainty quantification (UQ). When the forward model is particularly expensive, surrogate models can be
used for the forward propagation of uncertainty [4] and the solution of inference problems [5]. An adaptive
construction is necessary to meet the prescribed accuracy tolerances with the lowest computational effort.

Problem setting
We consider f ∈ L2

μ([a, b]
d), d � 1, and x ∈ [a, b]d

to be the variables entering the formulation of a
parametric problem.
When to construct a surrogate?
• f is computationally expensive
• f needs to be evaluated many times
• the construction complexity pays off

Spectral tensor-train
Functional tensor-train approximation [1]

For r = (1, r1, . . . , rd−1, 1), let fTT be s.t.

fTT = argmin
g∈L2

μ

‖f − g‖L2
μ

g(x) =
r∑

α0,...,αd=1

γ1(α0, x1, α1) · · · γd(αd−1, xd, αd)

where 〈γk(i, ·,m), γk(i, ·, n)〉L2
μ
= δmn.

FTT-approximation convergence [1]

For f ∈ Hk
μ, k > d− 1 and RTT = f − fTT ,

lim
r→∞‖RTT‖L2

μ
= 0

FTT-decomposition and Sobolev spaces [1]

Let I ⊂ R
d be closed and bounded, and f ∈

L2
μ(I) be a Hölder continuous function with ex-

ponent > 1/2 such that f ∈ Hk
μ(I). Then fTT is

such that γj(αj−1, ·, αj) ∈ Hk
μj
(Ij) for all j, αj−1

and αj.

Let PN : L2
μ(I) → span

(
{Φi}Ni=0

)
where {Φi}Ni=0

are orthogonal polynomials:

STT-Projection

PNfTT =

N∑
i=0

ciΦi

ci =

r∑
α0,...,αd=1

β1(α0, i1, α1) . . . βd(αd−1, id, αd)

βn(αn−1, in, αn) =

∫
In
γn(αn−1, xn, αn)φin(xn)μn(dxn)

STT-Projection convergence

Let f ∈ Hk
μ(I), then

‖f − PNfTT‖L2
μ
≤D(k)r−

k+1−d
2 ‖f‖Hk

μ

+ C(k)N−k|fTT |μ,k

The construction is performed using the
tensor-train decomposition [6] of tensorized
quadrature rules, obtained through the deter-
ministic sampling algorithm TT-dmrg-cross [7],
achieving scalable O(dNr2) complexity.

Anisotropic adaptivity

Let N = (n1, . . . , nds) and M = (m1, . . . ,mds) s.t. N < M. Then

‖PNfTT − PMfTT‖L2
μ
=

√√√√ M∑
i=N

c2i =

√∑
#i=1

‖Ci‖2F +
∑
#i=2

‖Ci‖2F + · · ·

Let us define the n-th order error contribution in the j-th direction:

E
(n)
j =

(
‖Cj‖2F +

∑
#i=2
j∈i

‖Ci‖2F + · · · +
∑
#i=n
j∈i

‖Ci‖2F
)1

2
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Numerical experiments – Modified Genz functions

Oscillatory : f1(x) = cos
( d∑

i=1

2cixi

)

Corner Peak : f2(x) =
(
1 +

d∑
i=1

2cixi

)−(d+1)

ci ∼
{
Be(2, 8) if pi < 0.5

Be(8, 2) otherwise

pi ∼ Bernoulli(0.5)

The performances are evaluated on the
Genz functions up to d = 100, and com-
pared to the results obtained with the
anisotropic Smolyak pseudo-spectral ap-
proximation [2]. The adaptivity avoids
over-fitting and under-fitting due to
discrepancy between the polynomial
order and the FTT tolerance.

Uncertain wave loads on offshore monopiles

Scalable flexible-order finite
difference of nonlinear and dis-
persive potential flow [3] for
shoaling water waves subject to
uncertain bathymetry (d = 10).

ε N.f.e. L2-err E[Load]
5× 10−1 221 3.8× 10−2 9.962× 10−2 N

1× 10−1 236 2.4× 10−2 9.866× 10−2 N

5× 10−2 260 7.3× 10−3 9.766× 10−2 N

Features
• Linear scaling w.r.t. d
• Incremental construction
•Storage and re-starting
•Parallel implementation

Outlook
• Investigation of nested rules
•UQ on 3D water waves [3] in-

teraction with structures
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