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1 Introduction

Numerous recent publications have dealt with shaping the core of various decoding
algorithms for Reed–Solomon (RS) and other codes around Fq[x] module minimisation,
lattice basis reduction or module Gröbner basis computation: three computational
concepts which all converge to the same in this instance. First for the Guruswami–
Sudan list decoder [2,8,26], then for Power decoding [40] and also either type of decoder
for Hermitian codes [42].

The impact of this can be said to be two-fold: firstly, by factoring out coding
theory from the core problem, we enable the immediate use of sophisticated algorithms
developed by the computer algebra community such as [21, 63]. Secondly, the setup
has proved very flexible and readily applicable in settings which were not envisioned to
begin with, such as the aforementioned Power decoder for Hermitian codes, or recently
for Power decoding of RS codes up to the Johnson bound [41].

The main goal of this paper is to explore the row reduction description over skew
polynomial rings for decoding rank metric and subspace codes. Our algorithms improve
the best known results in these applications and in several instances solves more general
problems. We also believe there is a justifiable hope for similar generalisations and
speed-ups as known for other code classes. Concretely, we lay a foundation by extending
the core terms of weak Popov form and orthogonality defect, as well as extending the
elegantly simple Mulders–Storjohann algorithm [39] to matrices over skew polynomial
rings. To precisely analyse its complexity, we use the Dieudonné determinant for matrices
over non-commutative rings.

We apply the established methodology in two settings, and in each setting refine the
Mulders–Storjohann in a non-trivial way to obtain new algorithms with better complexity.
First we solve a general form of multi-shift-register synthesis over skew polynomials, in a
manner similar to [40] for Fq[x]. This is used for fast error-erasure decoding of Interleaved
Gabidulin codes. Secondly, we apply the method to the interpolation problem in the
list-decoding of Mahdavifar–Vardy codes [35].

Shift-register synthesis is a classical problem with many applications in a wide
variety of fields. We use the well-known polynomial description of shift-register syn-
thesis, see e.g. [36]. Formulated as such, the problem is almost equivalent to rational
function reconstruction and Padé approximation. Shift-register synthesis has several
generalisations, some of which have found applications in decoding of algebraic codes,
e.g. [50, 52, 62]. In the computer algebra community, Padé approximations have been
studied to matrix forms in a wide generality, e.g. [5]. Over skew polynomial rings, work
has been spurred on by decoding of Gabidulin and related codes, e.g. [16, 54], and the
literature is still far behind the Fq[x] counterpart.

Gabidulin codes [10, 16, 51] are maximum rank distance codes with various appli-
cations like random linear network coding [24, 57] and cryptography [17]. They are
the rank-metric analogue of RS codes. An Interleaved Gabidulin code [32, 54, 57] is a
direct sum of several Gabidulin codes: these can be decoded in a collaborative manner,
improving the error-correction capability beyond the usual half the minimum rank
distance of Gabidulin codes. Similar to Interleaved RS codes, see [52] and its references,
the core task of decoding can be reduced to a multi-sequence skew-feedback shift register
synthesis problem [54].

Mahdavifar–Vardy (MV) codes [33, 35] are subspace codes which can be used for
error- and erasure correction in random linear network coding. They are generalisations
of the codes proposed by Kötter–Kschischang [24], who use Gabidulin codes to construct
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constant-dimension subspace codes. Although obtainable rates are rather low, their
decoding is of interest since they can be list-decoded using an algorithm similar to
Sudan’s algorithm [58] for list-decoding Reed–Solomon codes.

Previous work on normal form computation of matrices over skew or Ore rings can
be found in [1, 4, 38]. However, the focus of [1, 4] was on Z or K[z] where coefficient
growth is a major concern. Over finite fields, only field operations are counted, and in
this measure those previous algorithms are slower than what we present here. The row
reduction algorithm presented in [38] is different from ours and has a slightly larger
complexity.

This work was partly presented at the International Workshop on Coding and
Cryptography (WCC) 2015 [28]. Compared to this previous work, we added the decoding
of MV codes using the row reduction approach1. This demanded a restructuring of
the presentation, where the row reduction approach is more central. It spurred a new
refinement of the Mulders–Storjohann, in Section 6.2, which could be of wider interest.
We also give proofs that were omitted in the conference paper due to space restrictions,
and we added a formal correctness proof and analysis of the Demand–Driven algorithm.
We have added an appendix containing basic facts on modules over skew polynomial
rings, culminating in Theorem 14 which is crucial to our work; these facts are all known,
but we found no convenient compilation in the literature.

We set basic notation in Section 2. Section 3 describes row reduction of skew
polynomial matrices and presents the skew polynomial version of Mulders–Storjohann
algorithm for accomplishing this. Important tools for arguing about reduced bases,
especially for complexity, are given in Section 4. Section 5 shows how to solve shift register
problems, arising from decoding problem of Interleaved Gabidulin codes, using row
reduction of skew polynomial matrices. For these cases, we go on to refine the Mulders–
Storjohann into the faster Demand–Driven algorithm. We then outline Mahdavifar–
Vardy codes in Section 6 and show in Lemma 9 how to decode them using row reduction.
In Section 6.2 we describe how to “walk” between row reduced forms, yielding a more
efficient algorithm for the MV decoding. Appendix A contains technical proofs, and we
prove general statements about modules over skew polynomial rings in Appendix B.

2 Notation and Remarks on Generality

LetK be a field. Denote byR = K[x; θ, δ] the non-commutative ring of skew polynomials
over K with automorphism θ and derivation δ: elements of R are of the form

∑
i aix

i

with ai ∈ K, addition is as usual, while multiplication is defined by xa = θ(a)x+ δ(a).
For a, b ∈ K, δ satisfies that δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ θ(a)δ(b). Being
an Ore extension, R is both a left and right Euclidean ring. When we say “polynomial”,
we will mean elements of R The definition of the degree of a polynomial is the same as
for ordinary polynomials. By R<n we mean polynomials in R with degree < n. See [45]
for more details.

For coding theory we usually take K as a finite field Fqm for a prime power q,
m ∈ N and θ as the Frobenius automorphism θ(a) = aq for a ∈ Fqr . Also, non-vanishing
derivations δ are usually not considered, a notable exception being [7]. The algorithms
in this paper are correct for any field, automorphism and derivation. For complexities,
we count field operations, and we often assume δ = 0.

1 In the literature, the term “row reduction” is more common that “module minimisation”,
which we used in [28].
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The outlined code constructions in this paper require the definition of an evaluation
map for skew polynomials. In general there are many ways to define such a mapping
(cf. [7]). We will need only the case where δ = 0, for which we use the following definition
for any a ∈ R:

a(·) := eva(·) : K → K , α 7→
∑
i

aiθ
i(α).

It is clear by construction that this is a group homomorphism on (K,+).
In the special case where K = Fqm and θ = ·q, then R is isomorphic to the ring

of linearised polynomials, and the rings’ evaluation maps agree. It follows that in this
case, the evaluation map of a multiplication of two polynomials f · g is equal to the
composition of their evaluation maps, i.e., evab = eva ◦evb. Furthermore, evaluation is in
this case an Fq-linear map of the Fq-vector space Fqm . This fact motivates the definition
of an annihilator polynomial AU as the monic polynomial of smallest degree having a
given U as zero set, where U is an Fq-subspace of Fqm . Thus, by [30, page 120], given
U , then AU is unique and has degAU = dimFq U . Also, for distinct a1, . . . , an ∈ Fqm
and arbitrary b1, . . . , bn ∈ Fqm , there is a unique c ∈ R with c(ai) = bi for all i and
deg c < n.

By a ≡ b mod c we denote the right modulo operation in R, i.e., that there exists
d ∈ R such that a = b+ dc. By “modules” we will mean left R-modules. We extensively
deal with vectors and matrices over R. Matrices are named by capital letters (e.g. V ).
The ith row of V is denoted by vi and the jth element of a vector v is vj . vi,j is the
(i, j)th entry of a matrix V . Indices start at 0.

– The degree of a vector v is deg v := maxi{deg vi} (and deg 0 = −∞) and the degree
of a matrix V is deg V :=

∑
i{deg vi}.

– The max-degree of V is maxdeg V := maxi{deg vi} = maxi,j{deg vi,j}.
– The leading position of a vector v is LP(v) := max{i : deg vi = deg v}. Furthermore

LT(v) := vLP(v) and LC(v) is the leading coefficient of LT(v).

For complexity estimations, we assume that given a ∈ K, then computing θi(a)

can be done in O(1) time for any i ∈ N. When K = Fqm and θ is a q-powering, then
this is reasonable since we can represent Fqm -elements using a normal basis over Fq
(cf. [59, Section 2.1.2]): in this case, aq is simply the cyclic shift of a seen as an Fq-vector
over the normal basis.

Basic notations and statements about (left) R-modules and R-matrices are provided
in Appendix B.

3 Row Reduction of R-matrices

In this section we discuss certain normal forms of matrices over R. In particular, we
are interested in how and in which complexity we can obtain bases of left R-modules
V ⊆ R`+1 in the row reduced weak Popov form2. This row reduction approach enables
us to present simple proofs of decoding algorithms in Section 5 and 6.

2 There is a precise notion of “row reduced” [23][p. 384] for F[x] matrices. It is easy to show
that being in weak Popov form implies being row reduced, but we will not formally define row
reduced in this paper.
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Definition 1 A matrix V over R is in weak Popov form if the leading positions of all
its non-zero rows are different.

We will need to “shift” the relative importance of some columns compared to others.
We therefore define for any shift w = (w0, . . . , w`) ∈ N`+1

0 , the mapping

Φw : R`+1 →R`+1, u = (u0, . . . , u`) 7→ (u0x
w0 , . . . , u`x

w`).

We can extend Φw to R-matrices by applying it row-wise. It is easy to see that Φw(V)

is also a left R-module and Φw is a module isomorphism. The following definition is
used in Section 5 and 6 to simplify notation.

Definition 2 For anyw = (w0, . . . , w`) ∈ N`+1
0 , a matrix V ∈ R·×(`+1) is in w-shifted

weak Popov form if Φw(V ) is in weak Popov form.

The following describes how the rows of a matrix in weak Popov form are minimal:

Lemma 1 Let V be a matrix in weak Popov form whose rows are a basis of a left
R-module V. Then every u ∈ V∗ satisfies degu ≥ deg v, where v is the row of V with
LP(v) = LP(u).

Proof: Let u ∈ V∗, and so ∃a0, . . . , a` ∈ R s.t. u =
∑`
i=0 aivi. The vi all have

different leading position, as well as the aivi for ai 6= 0, which in turn means that their
ψ(aivi) are all different. Notice that for any two u1,u2 with ψ(u1) 6= ψ(u2), ψ(u1+u2)

equals either ψ(u1) or ψ(u2). Applied inductively, it implies that there is an i such that
ψ(u) = ψ(aivi), which gives LP(u) = LP(vi) and degu = deg ai + deg vi.

We will also use the following value function for R vectors as a “size” of R`+1

vectors:

ψ : R`+1 → N0

v 7→
{

0 if v = 0

(`+ 1) deg v + LP(v) + 1 otherwise

The following definition leads to a remarkably simple algorithm for computing
a basis of modules in weak Popov form: Algorithm 1, which is an R-variant of the
Mulders–Storjohann algorithm [39] that was originally described for K[x] matrices.

Definition 3 Applying a simple transformation i on j at position h on a matrix V
with deg vi,h ≤ deg vj,h means to replace vj by vj−αxβvi, where β = deg vj,h−deg vi,h
and α = LC(vj,h)/θβ(LC(vi,h)).

By a simple LP-transformation i on j, where LP(vi) = LP(vj), we will mean a
simple transformation i on j at position LP(vi).

Remark 1 Note that a simple transformation i on j at position h cancels the leading
term of the polynomial vj,h. Also elementary row operations keep the row space and
rank of the matrix unchanged (cf. Appendix B), so the same is true for any sequence of
simple transformations.

Lemma 2 For some V ∈ R·×(`+1), consider a simple LP-transformation i on j, where
vj is replaced by v′j . Then ψ(v′j) < ψ(vj).
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Algorithm 1 Mulders–Storjohann for R matrices
Input: A matrix V over R, whose rows span the module V.
Output: A basis of V in weak Popov form.

1 Until no longer possible, apply a simple LP-transformation on two rows in V .
2 return V .

Proof: Let h = LP(vi) = LP(vj). Since deg vi,h ≤ deg vj,h then deg vi ≤ deg vj ,
and therefore deg v′j ≤ deg vj . If deg v′j < deg vj , we are done since the leading position
of any vector is always less than ` + 1. If deg v′j = deg vj , then LP(v′j) < h: by the
definition of the leading position, all terms to the right of h in both vj and αxβvi—and
therefore also in v′j—have degree less than deg vj . If deg v′j = deg vj then some entry
in v′j must have degree deg vj , which must therefore be to the right of position h.

Theorem 1 Algorithm 1 is correct.

Proof: By Lemma 2, the ψ-value of one row of V decreases for each simple
LP-transformation. The sum of the values of the rows must at all times be non-negative
so the algorithm must terminate. When the algorithm terminates there are no i 6= j

such that LP(vi) = LP(vj). That is to say, V is in weak Popov form.
Note that the algorithm as written is non-deterministic, since there might be multiple

possible simple LP-transformations to choose from at any given iteration of the algorithm.
However, the above theorem shows that any deterministic rule for choosing between
simple LP-transformations would suffice for correctness. For certain input, some rules
might be better than others for complexity reasons, however; we’ll see an example of
this in Section 6.2.

The above proof easily leads to the rough complexity estimateO(m2 deg V maxdeg V )

when R has derivation zero, and where m is the number of columns in V . We will obtain
a more fine-grained estimate in the next section, where we also restrict ourselves to
matrices which are square and full rank.

4 Complexity Analysis

Lenstra [27] introduced the notion of orthogonality defect of square, full rank K[x]

matrices, and in [40], it was shown that it be used to describe the complexity of the
Mulders–Storjohann and Alekhnovich [2] algorithms for such matrices more fine-grained
than originally. This was used to improve those algorithms’ asymptotic complexity
estimates when the input comes from shift register problems.

The same concept cannot immediately be carried over to R matrices, since it is
defined using the determinant. For noncommutative rings, there are no functions behav-
ing exactly like the classical determinant, but the Dieudonné determinant [11] shares
sufficiently many properties with it for our use. Simply defining this determinant requires
us to pass to the field of fractions of R.

4.1 Dieudonné Determinant and Orthogonality Defect

The following algebra is standard for noncommutative rings, so we will go through it
quickly; more details can be found in [9, Chapter 1]. We know that R is a principal
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left ideal domain which implies that it is left Ore. It therefore has a unique left field of
fractions

Q = {s−1r : r ∈ R, s ∈ R∗}/(∼) ,

where ∼ is the congruence relation

s−1r ∼ s′−1r′ ⇐⇒ ∃u, u′ ∈ R∗ such that ur = u′r′ and us = u′s′ .

The degree map on R can be naturally extended to Q by defining

deg : Q → Z ∪ {−∞}
s−1r 7→ deg r − deg s .

Let [Q∗,Q∗] be the commutator of Q∗, i.e. the multiplicative group generated by
{a−1b−1ab : a, b ∈ Q∗}. Then Qab = Q∗/[Q∗,Q∗] is an abelian group called the
multiplicative abelianization of Q∗. There is a canonical homomorphism

φ :Q∗ → Qab

x 7→ x · [Q∗,Q∗] .

Since the elements (a−1b−1ab) ∈ [Q∗,Q∗] have degree deg(a−1b−1ab) = deg(ab) −
deg(ba) = 0, we can pass deg through φ in a well-defined manner: deg φ(x) = deg x for
all x ∈ Q∗. The following lemma was proved by Dieudonné [11] and can also be found
in [12, §20].

Lemma 3 There is a function det : Qn×n → Qab s.t. for all A,A′ ∈ Qn×n, k ∈ Q:
(i) det I = 1, where I is the identity matrix in Qn×n.
(ii) If A′ is obtained from A by an elementary row operation, then detA′ = detA.
(iii) If A′ is obtained from A by multiplying a row with k, then detA′ = φ(k) detA.

Definition 4 A function det(·) with the properties of Lemma 3 is called a Dieudonné
determinant.

Note that contrary to the classical determinant, a Dieudonné determinant is generally
not unique. For the remainder of the paper, consider det(·) to be any given Dieudonné
determinant for Qn×n.

Lemma 4 Let A ∈ Qn×n be in triangular form with non-zero diagonal elements
d0, . . . , dn−1. Then detA =

∏n−1
i=0 φ(di).

Proof: Since di 6= 0 for all i, we can multiply the ith row of A by d−1i and get a
unipotent triangular matrix A′. Any unipotent triangular matrix can be obtained by
elementary row operations from the identity matrix I. Thus

detA

Lemma
3 (iii)

=

[
n−1∏
i=0

φ(di)

]
· detA′

Lemma
3 (ii)
=

[
n−1∏
i=0

φ(di)

]
· det I

Lemma
3 (i)
=

n−1∏
i=0

φ(di).

Clearly, the notion of weak Popov form generalises readily to matrices overQ. We will
now examine how this notion interacts with the Dieudonné determinant and introduce
the concept of orthogonality defect. The statements in this section are all Q variants of
the corresponding statements for K[x] matrices, see [40].

Definition 5 The orthogonality defect of V ∈ Qn×n is ∆(V ) := deg V − deg detV .

Lemma 5 If V ∈ GLn(Q) is in weak Popov form, then ∆(V ) = 0.

Proof: See Appendix A
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4.2 Complexity of Mulders–Storjohann

We can now bound the complexity of Algorithm 1 using arguments similar to those
in [40]. These are in turn, the original arguments of [39] but finer grained by using the
orthogonality defect.

Theorem 2 Algorithm 1 with a full-rank input matrix V ∈ Rm×m performs at most
m[∆(V ) + 1] simple LP-transformations. If R has derivation zero, Algorithm 1 has
complexity O(m2∆(V ) maxdeg(V )) over K.

Proof: By Lemma 2, every simple LP-transformation reduces the ψ-value of one
row with at least 1. So the number of possible simple LP-transformations is upper
bounded by the difference of values of the input matrix V and the output matrix U , the
matrices values being the sum of their rows’. More precisely, the number of iterations is
upper bounded by:∑m−1

i=0 [mdeg vi + LP(vi)−
(
mdegui + LP(ui)

)
]

= LP(v0) +m
∑m−1
i=0 [deg vi − degui]

≤ m[deg V − degU + 1] = m[∆(V ) + 1],

where the last equality follows from degU = deg detU due to Lemma 5 and deg detU =

deg detV since the determinant is invariant under simple transformations.
One simple transformation consists of calculating vj−αxβvi, so for every coefficient

in vi, we must apply θβ , multiply by α and then add it to a coefficient in vj , each being
in O(1). Since deg vj ≤ maxdeg(V ) this costs O(mmaxdeg(V )) operations in K.

Since ∆(V ) ≤ deg V , the above theorem improves the immediate complexity bound
of Mulders–Storjohann whenever OD(V )� deg(V ).

As previously mentioned, a row reduction algorithm for Ore rings was given in [38].
This algorithm is slightly slower than Algorithm 1, is somewhat more complicated to
implement, and also computes only a “row reduced basis”, and not one in weak Popov
form.

5 Shift-Register Problems and Decoding Gabidulin Codes

We now describe how to decode Gabidulin and Interleaved Gabidulin codes from errors
and erasures using the tools introduced in the preceding section. In fact, we will use
the tools to solve a very general form of multi-sequence shift-register synthesis over
skew polynomials. We begin by introducing the codes and describe how to decode by
solving such a shift-register problem: in Section 5.1 first correcting only errors, since in
Section 5.2 for erasures also.

Gabidulin codes [10, 16, 51] are rank metric codes constructed using evaluation of
skew polynomials from Fqm [x; ·q, 0], for some prime power q and positive integer m.
In the literature, they are often described using linearised polynomials instead of skew
polynomials but this is mostly a difference in notation.

A Gabidulin code with parameters n, k (k ≤ n ≤ m) and code locators g1, . . . , gn ∈
Fqm , which are linearly independent over Fq, is given by the set

G[n, k] =
{
c = (f(g1), . . . , f(gn)) : f ∈ Fqm [x; ·q, 0], deg f < k

}
⊆ Fnqm
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It is easy to prove that G[n, k] has dimension k, as an Fqm vector space. The polynomial
f corresponding to a codeword c is called the message polynomial.

Recall from Section 2, the evaluation map on any polynomial in Fqm [x; ·q, 0] is an
Fq-linear map on the m-dimensional Fq-vector space Fqm . This is why the gi must be
linearly independent over Fq.

For some v ∈ Fnqm , the rank of v, rk(v), is dimFq (〈v1, . . . , vn〉). The rank distance,
distrk, of two Fnqm vectors is simply the rank of their difference. G[n, k] is a maximal-rank
distance separable code, i.e. distrk(c1, c2) ≥ n− k + 1 for all c1, c2 ∈ G[n, k] [16].

When decoding, the error model considered is usually that of rank errors, i.e. the
receiver knows r = c+e for some c ∈ G[n, k], and the number of errors is rk(e). Decoding
algorithms have long been known for retrieving c from r as long as rk(e) ≤ (n− k)/2

[16, 31,51].
Interleaved Gabidulin code [32, 46, 53–55,57] is the direct sum of several Gabidulin

codes. The idea is similar to interleaved codes in Hamming metric: if the errors occur
in “bursts”, i.e. the errors experienced by each constituent Gabidulin codeword has a
large overlap, then collaboratively decoding the error can provide a gain in decoding
performance, assuming random errors. The errors have large overlap when their pairwise
rank distance is relatively small.

More formally, let G1 = G[n, k1], . . . ,G` = G[n, k`] be Gabidulin codes with Gi having
code locators gi,1, . . . , gi,n. The corresponding Interleaved Gabidulin code is defined as

IG[n, k1, . . . , k`] =
⊕̀
i=1

Gi = {c = (c1, . . . , c`) : ci ∈ Gi} ⊆
(
Fnqm

)` ∼= Fn`qm

5.1 Correcting errors only

Assume that an error of the form r = c+ e occurs, with

e = (e1, . . . , e`) = (e1,1, . . . , e1,n, e2,1, . . . , e`,n) ∈ Fn`qm .

Now we consider number of errors as t := dim E , where

E = 〈e1,1, . . . , e1,n, e2,1, . . . , e`,n〉Fq
In the following, we describe an strategy for decoding Interleaved Gabidulin codes. Our
formulation combines the ideas of [60, §3.2] and [54].

Recall from Section 2 the notion of “annihilator polynomial” AU for an Fq-linear
space U ⊂ Fqm . Define the (unknown) error span polynomial Λ = AE and for all
i = 1, . . . , ` the (known) polynomials Gi = A〈gi,1,...,gi,n〉Fq . For all ri, we define r̂i to
be the unique polynomial in Fqm [x; ·q, 0]<n such that

r̂i(gi,j) = ri,j ∀j = 1, . . . , n.

Note that if n|m, we can choose the gi,j ’s to be a basis of Fqn ⊆ Fqm for any i, yielding
Gi = xn − 1.

The following theorem states a relation between Λ, r̂i, Gi and the information
polynomials fi. It uses a formulation which is similar to Gao’s key equation [20] for
Reed–Solomon codes and is an extension of [59, Section 3.2.2] to Interleaved Gabidulin
codes. As soon as a solution (Λ,Λf1, . . . , Λf`) of this key equation is found, the fi
can be obtained simply by division, so no further steps are necessary in contrast to
syndrome-based decoding algorithms, e.g. [53].
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Theorem 3 (Key Equation)

Λr̂i ≡ Λfi mod Gi ∀i = 1, . . . , ` (1)

Proof: For all i, j, by definition of r̂i and Λ, we obtain[
Λ(r̂i − fi)

]
(gi,j) = Λ(r̂i(gi,j)− fi(gi,j)) = Λ(ri,j − ci,j) = Λ(ei,j) = 0,

Thus T = Λ(r̂i − fi) is a polynomial which has 〈gi,1, . . . , gi,n〉Fq in its zero set. By
considering T ’s remainder when dividing on the right by Gi = A〈gi,1,...,gi,n〉Fq , and by
the minimality of degGi, we conclude Gi | T , proving the congruence.

The key equation motivates us to find a solution (λ, ω1, . . . , ω`) to a linearised
version of the above equation:

λr̂i ≡ ωi mod Gi

deg λ > degωi − ki for i = 1, . . . , ` ,

and such that deg λ is minimal. It is shown in [53] for an equivalent key equation that
this strategy succeeds with high probability, if t ≤ `

`+1 (n− 1
`

∑`
i=1 ki). When successful,

fi can then be extracted by right-dividing ωi by λ.

5.2 Errors and erasures

Erasures in rank metric naturally occur in error correction of subspace codes constructed
as lifted rank metric codes [55, 57]. Compared to erasures in Hamming metric, we need
to distinguish between two different types of erasures, row erasures and column erasures.
These terms stem from the interpretation of errors as matrices [57, 59], where row
erasures correspond to an error matrix whose column space is given in form of a basis
and in case of column erasures, a basis of the row space of the error matrix is given.

There exist several descriptions and decoding algorithms for correcting errors and
erasures for Gabidulin codes [14, 18, 19, 48, 49, 55, 57, 59] and interleaved Gabidulin
codes [29], [59, Section 4.4]. Here, we use the erasure description of [15], which is similar
to [29], and combine them with the results of [59, Section 3.2.3] to obtain a Gao key
equation for error and erasure correction of Interleaved Gabidulin codes.

For simplicity, we restrict ourselves to the case n = m. Thus, for every i = 1, . . . , `,
Gi = {gi,1, . . . , gi,n} is a basis of Fqm and has a unique dual basis G⊥i = {g⊥i,1, . . . , g

⊥
i,n}

[37]. Also, Gi = xm − 1 for all i.
Consider again receiving r = c+ e. The “erasures” correspond to side-information

at the receiver on the structure of e, whose nature we now explain. We consider that the
error e = (e1, . . . , e`) ∈ (Fnqm)` is decomposed into three components e = eE+eR+eC ,
where

– eE is the full error of rank(eE) = τ

– eR is the row erasure of rank(eR) = %

– eC is the column erasure of rank(eC) = γ

By rank decomposition, we can thus rewrite any sub-part ei ∈ Fnqm of the error as

ei =

τ∑
j=1

aEj b
E
i,j +

%∑
j=1

aRj b
R
i,j +

γ∑
j=1

aCj b
C
i,j ,

where for all i, j we consider at the receiver that:
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– aEj ∈ Fqm and bEi,j ∈ Fnq are both unknown,
– aRj ∈ Fqm is known and bRi,j ∈ Fnq is unknown,
– aCj ∈ Fqm is unknown and bCi,j ∈ Fnq is known.

Using only known variables, we can define the following (bCi,j,κ is the κth entry of bCi,j):

dCi,j =

n∑
κ=1

bCi,j,κg
⊥
κ ∈ Fqm ,

ΓCi = A〈dCi,1,...,dCi,τ 〉Fq ∈ Fqm [x; ·q, 0] ,

ΛR = A〈aR1 ,...,aR% 〉Fq ∈ Fqm [x; ·q, 0],

as well as the unknown error-span polynomial :

ΛE = A〈ΛR(aE1 ),...,ΛR(aEτ )〉Fq .

Finally, for any a =
∑m−1
i=0 aix

i ∈ Fqm [x; ·q, 0]<m, we define its full q-reverse as

ā =
∑m−1
i=0 āix

i, where āi = aq
i

−i mod m (cf. [55]).
Using all of this we can prove the following key equation.

Theorem 4 (Error-Erasure Key Equation)

ΛEΛRr̂iΓ
C
i ≡ Λ

EΛRfiΓ
C
i mod xm − 1 ∀ i = 1, . . . , `

Proof: See Appendix A.
Since ΛRr̂iΓCi is known and deg(ΛEΛRfiΓ

C
i ) < degΛE + % + ki + deg(ΓCi ), we

can reduce the problem to the linearised problem of finding (λ, ω1, . . . , ω`) ∈ R`+1 with
deg λ minimal such that

λ · (ΛRr̂iΓCi ) ≡ ωi mod xm − 1,

deg λ > degωi − (ki + %+ deg(ΓCi )).

A similar key equation was proved in [29] and it is claimed [29, Theorem 5] that the
strategy of solving the linearised problem will succeed in finding ΛE with probability
greater than 1− 4

qm if

` < τ ≤ `

`+ 1
(d− 1),

where d = 1
`

∑`
i=1(n− ki + 1− %− γ) and with probablity 1 if

τ <
1

2
min
i
{n− ki + 1− %− γ}.



12

5.3 Shift Register Synthesis Problems

For the remainder of this section, we consider the following Multi-Sequence generalised
Linear Skew-Feedback Shift Register (MgLSSR) synthesis problem, which as special
cases includes both types of key equations introduced in the previous subsections.

Problem 1 (MgLSSR) Given skew polynomials si, gi ∈ R and non-negative integers
γi ∈ N0 for i = 1, . . . , `, find skew polynomials λ, ω1, . . . , ω` ∈ R, with λ of minimal
degree such that the following holds:

λsi ≡ ωi mod gi

deg λ+ γ0 > degωi + γi

The solutions we describe works over any skew polynomial ringR, and not just Fqm [x; ·q, 0].
OverK[x] the analogous problem is studied as multi-sequence shift-register synthesis [13],
simultaneous Padé approximation [3], or vector rational function reconstruction [44].

We will first show how to solve such problems using row reduction by Mulders–
Storjohann. We then present a refinement, the Demand–Driven algorithm, for the
matrices arising from the above problem. The latter algorithm has the same complexity
as [54], but there only the case where the gi are all powers of x, and where all γi = 0 is
handled.

In the sequel we consider a particular instance of Problem 1, so R, ` ∈ N, and
si, gi ∈ R, γi ∈ N0 for i = 1, . . . , ` are arbitrary but fixed. We assume deg si ≤ deg gi
for all i since taking si := (si mod gi) yields the same solution to Problem 1.

Denote byM the set of all vectors v ∈ R`+1 satisfying just the congruence require-
ment, i.e.,

M :=
{

(λ, ω1, . . . , ω`) ∈ R`+1 | λsi ≡ ωi mod gi ∀i = 1, . . . , `}. (2)

Lemma 6 M with component-wise addition and left multiplication by elements of R
forms a left module over R. The rows of M form a basis ofM, where

M =


1 s1 s2 . . . s`
0 g1 0 . . . 0
0 0 g2 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . g`

 (3)

Proof: To show that M is free, then since R`+1 is a left module over R and
M⊂ R`+1, it suffices to show thatM is closed under addition and left multiplication,
by Theorem 12 in Appendix B. If v ∈M, it follows from (2) that

v0si = vi + aigi ∀i ∈ {1, . . . , `} (4)

for some ai ∈ R. If v,v′ ∈M then (4) implies that (v0 + v′0)si = (vi + v′i) + (ai + a′i)gi,
i = 1, . . . , `, which means that v + v′ ∈M. If v ∈M and b ∈ R then from (4) we get
bv0si = bvi + baigi and thus, bv ∈M. ThereforeM is indeed a left R module.

For the basis claim, then clearly the left span of M is a subset ofM. To see that
M is a subset of the left span of M , consider again (4) for some v ∈M and the ai ∈ R
which must exist. That means

v = v0u0 − a1u1 − · · · − a`u` ,
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where u0, . . . ,u` are the rows ofM . Lastly, the rows ofM must be linearly independent
since M is in triangular form.

The above gives a simple description of all solutions of the congruence requirement
of Problem 1 in the form of the row span of an explicit matrixM . The following theorem
implies that computing the weak Popov form of M is enough to solve Problem 1. The
strategy is formalised in Algorithm 2.

Theorem 5 Let w = (γ0, . . . , γ`). If V is a basis ofM in w-shifted weak Popov form,
the row v of M with LP(Φw(v)) = 0 is a solution to Problem 1.

Proof: By Lemma 6 then v satisfies the congruence requirement of Problem 1.
For the degree restriction of Problem 1, note that any u ∈M satisfies this restriction
if and only if LP(Φw(u)) = 0, since deg ui + γi = deg(Φw(u)i). Furthermore, if this
is the case, then deg(Φw(u)) = deg u0 + γ0. Thus, not only must v satisfy the degree
restriction, but by Lemma 1, then v0 also has minimal possible degree.

Algorithm 2 Solve Problem 1 by Row Reduction
Input: si, gi ∈ R for i = 1, . . . , ` and a shift w = (γ0, . . . , γ`).
Output: Solution v = (λ, ω1, . . . , ω`) of Problem 1.

1 Set up M as in (3).
2 Compute V as a w-shifted weak Popov form of M .
3 return the row v of V having LP(Φw(v)) = 0.

The complexity of Algorithm 2 is determined by Line 2. We can compute a w-shifted
weak Popov form of M by applying Algorithm 1 to Φw(M), and then applying Φ−1w to
the result. In the following we investigate the computational complexity of Algorithm 2
if one does this. In Section 5.4 we modify Algorithm 1 to arrive at a new, often more
efficient algorithm for computing the weak Popov form when starting with matrices of
the special form that Φw(M) has.

Remark 2 Using known properties for the weak Popov form, it is easy to prove how
the polynomials returned by Algorithm 1 can be used as a basis for all solutions to the
shift register problem. For decoding Gabidulin codes, this can be used to determine
whether the found solution corresponds to a unique decoding, without incurring an
additional cost. Another use is when the error has rank greater than (n− k)/2, where
such a basis can be used to exhaustively search through the higher-degree solutions to
the key equation, thereby correcting more errors (at a high computational cost).

In the following, let µ := maxi{γi + deg gi}. We can assume that γ0 < µ since
otherwise M is already in w-shifted weak Popov form.

Theorem 6 Over R with derivation zero, Algorithm 1 with input matrix Φw(M) per-
forms at most (` + 1)(µ − γ0 + 1) simple LP-transformations and performs O(`2µ2)

operations over K.

Proof: Since Φw(M) is upper triangular, the degree of its determinant is

deg detΦw(M) = deg
(
φ(xγ0)

∏`
i=0 φ(gix

γi)
)

= γ0 +
∑`
i=0(γi + deg gi).
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The degrees of the rows of Φ(M) are

degΦw(m0) = max
i
{γi + deg si} and degΦw(mi) = γi + deg gi for i ≥ 1.

Thus,∆(Φw(M)) = maxi{γi+deg si}−γ0 ≤ µ−γ0.With maxdeg(Φw(M)) ≤ maxi{γi+
deg si} = µ, the statement follows from Theorem 2.

5.4 Demand-Driven Algorithm

It was observed in [40] that the Mulders–Storjohann algorithm over K[x] admits a
“demand–driven” variant when applied to matrices coming from shift register problems:
the algorithm stores and computes only the necessary coefficients of the working matrix.
This means a much lower memory requirement, as well as a better complexity under
certain conditions. Over R, Algorithm 1 admits exactly the same speedup.

The central observation is that due to the special form of M , during the Mulders–
Storjohann algorithm the first column suffices for reconstructing the rest. The Demand–
Driven algorithm, Algorithm 3, therefore calculates just the first element of a vector
whenever doing a simple LP-transformation. A bit more information, like degree and
leading coefficient of the remaining rows, is also cached, in order to know which simple
LP-transformations to apply. We begin with a technical lemma.

Lemma 7 Consider Algorithm 1 with input Φ(M), and let g̃j = gjx
γj . Consider a

variant where, we after a simple LP-transformation i on j, which replaces vj with v′j ,
we instead replace it with v′′j = (v′j,0, v

′
j,1 mod g̃1, . . . , v

′
j,` mod g̃`). This does not

change the correctness of the algorithm or the upper bound on the number of simple
LP-transformations performed.

Proof: Correctness follows if we can show that each of the ` modulo reductions
could have been achieved by a series of row operations on the current matrix V after the
simple LP-transformation producing v′j . For each h ≥ 1, let gh = (0, . . . , 0, g̃h, 0, . . . , 0),
with position h non-zero.

During the algorithm, we will let Jh be a subset of the current rows in V having
two properties: that gh can be constructed as an R-linear combination of the rows in
Jh; and that each v ∈ Jh has ψ(v) ≤ ψ(gh). Initially, Jh = {gh}.

After simple LP-transformations on rows not in Jh, the h’th modulo reduction is
therefore allowed, since gh can be constructed by the rows in Jh. On the other hand,
consider a simple LP-transformation i on j where vj ∈ Jh, resulting in the row v′j .
Then the h’th modulo reduction has no effect since ψ(v′j) < ψ(vj) ≤ ψ(gh). Afterwards,
Jh is updated as Jh = Jh \ {vj} ∪ {v′j ,vi}. We see that Jh then still satisfies the two
properties, since ψ(vi) ≤ ψ(vj) ≤ ψ(gh).

Since ψ(v′′j ) ≤ ψ(v′j) the proof of Theorem 2 shows that the number of simple
LP-transformations performed is still not greater than (`+ 1)[∆(V ) + 1].

Theorem 7 Algorithm 3 is correct.

Proof: We first prove that an intermediary algorithm, Algorithm 4, is correct
using the correctness of Algorithm 1, and then prove the correctness of Algorithm 3
using Algorithm 4 and Lemma 7.

Starting from Algorithm 1, then Algorithm 4 is obtained by two simple modifications.
For the first modifications, note that initially, when V := Φw(M), then LP(vh) = h for
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Algorithm 3 Demand–Driven algorithm for MgLSSR
Input: s̃j ← s1,jx

γj , g̃j ← gjx
γj for j = 1, . . . , `.

Output: The first column of a basis ofM in w-shifted weak Popov form.
1 (η, h)← (deg,LP) of (xγ0 , s̃1, . . . , s̃σ).
2 if h = 0 then return (1, 0, . . . , 0).
3 (λ0, . . . , λ`)← (xγ0 , 0, . . . , 0).
4 αjx

ηj ← the leading monomial of g̃j for j = 1, . . . , `.
5 while deg λ0 ≤ η do
6 α← coefficient to xη in (λ0s̃h mod g̃h).
7 if α 6= 0 then
8 if η < ηh then swap (λ0, α, η) and (λh, αh, ηh).
9 λ0 ← λ0 − α/θη−ηh (αh)xη−ηhλh.

10 (η, h)← (η, h− 1) if h > 1 else (η − 1, `).
11 return

(
λ0x−η0 , . . . , λ`x

−η0
)
.

Algorithm 4 Intermediary algorithm for the correctness proof of Algorithm 3
Input: V ← Φw(M).
Output: A basis V ′ ofM in w-shifted weak Popov form.

1 (η, h)← (deg,LP) of v0.
2 if h = 0 then return Φ−1

w (V ).
3 while deg v0,0 ≤ η do
4 α← coefficient to xη in v0,h.
5 if α 6= 0 then
6 ηh ← deg vh.
7 αh ← coefficient to xηh in vh,h.
8 if η < ηh then swap (v0, α, η) and (vh, αh, ηh).
9 v0 ← v0 − α/θη−ηh (αh)xη−ηhvh.

10 (η, h)← (η, h− 1) if h > 1 else (η − 1, `).
11 return Φ−1

w (V ).

h ≥ 1, and therefore the only possible simple LP-transformation must involve v0. We
can maintain this property as a loop invariant throughout the algorithm by swapping
v0 and vLP(v0) when applying a simple LP-transformation LP(v0) on 0.

The second modification is to keep an upper bound on the (deg,LP) of v0 throughout
the algorithm: we initially simply compute the value and store as (η, h). Whenever we
have applied a simple LP-transformation on v0 resulting in v′0, we know by Lemma 2
that ψ(v′0) < ψ(v0). Therefore, either deg v′0 < η or deg v′0 = η ∧ LP(v′0) < h. This is
reflected in a corresponding decrement of (η, h) in order of the ψ it bounds.

As a loop invariant we therefore have ψ(v0) ≤ η(` + 1) + h. After an iteration, if
this inequality is sharp, it simply implies that the α computed in the following iteration
will be 0, and (η, h) will be correspondingly decremented once more. Note that we never
set h = 0: when LP(v0) = 0 then V must be in weak Popov form (since LP(vh) = h

for h > 0). At this point, the while-loop will be exited since deg v0 > η.
Algorithm 4 is then simply the implementation of these modifications, and writing

out in full what the simple LP-transformation does to v0.
This proves that Algorithm 4 is operationally equivalent to Algorithm 1. Obtaining

Algorithm 3 from Algorithm 4 is relatively straightforward. The idea is simply to store
only the necessary part of V and compute the rest on demand. Firstly, by Lemma 7
correctness would be maintained if the simple LP-transformation on Line 9 of Algorithm 4
was followed by the ` modulo reductions. In that case, we would have v0,h = (v0,0s̃h
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mod g̃h), so only storing v0,0 suffice for reconstructing v0. For simple LP-transformations,
we then need the entire first column of V which is stored in Algorithm 3 as (λ0, . . . , λ`).

Line 6 of Algorithm 3 is now the computation of the needed coefficient of v0,h at
the latest possible time, instead of an inspection in an already computed polynomial.

As deg vh is used in Line 6 of Algorithm 4, we need to store and maintain this
between iterations; this is the variables η1, . . . , η`. To save some redundant computation
of coefficients, the xηh -coefficient of vh,h is also stored as αh.

This proves that Algorithm 3 is operationally equivalent to Algorithm 4, which
finishes the proof of correctness.

It is interesting to remark that a direct proof of correctness of Algorithm 3 without
using Algorithm 1 is rather cumbersome, and would likely have to establish technical
properties on the (λhs̃h mod g̃h) during the algorithm.

Now we turn to the computational complexity of Algorithm 3. This will depend
entirely on how Line 6 is realised, as is described by the following proposition. The
algorithm will turn out to be faster on special cases of the gh, such as when they are
powers of x, and we elaborate on such cases and the general case afterwards. Recall
that we let µ := maxi{γi + deg gi}.

Proposition 1 Over R with derivation zero, Algorithm 3 has computational complex-
ity O(`µ2 +

∑`
h=1

∑µ−1
η=0 Th,η), where Th,η bounds the complexity of running Line 6

for those values of h and η.

Proof: Clearly, all steps of the algorithm are essentially free except Line 6 and
Line 9. Observe that every iteration of the while-loop decrease an upper bound on the
value of row 0, whether we enter the if-branch in Line 7 or not. So by the arguments of
the proof of Theorem 6, the loop will iterate at most O(`µ) times in which each possible
value of (h, η) ∈ {1, . . . , `} × {0, . . . , µ− 1} will be taken at most once. Each execution
of Line 9 costs O(µ) since the λj all have degree at most µ.

The cost of Line 6 will depend on how we realise it. We introduce some notation to
describe this. For any f ∈ R, we let f [i] denote the coefficient to xi in f , with f [i] := 0

if i < 0 or i > deg f . Note first that for any η, we have

(λs̃h mod g̃h)[η] = (λsh mod gh)[η − γh] ,

and thus, we can essentially ignore the shift when considering how to compute Line 6.
Now, for any g ∈ R, let Ξg be the following matrix, where t = deg g:

Ξg =


It×t

(xt mod g)[0] · · · (xt mod g)[t− 1]
...

...
(x2t−2 mod g)[0] · · · (x2t−2 mod g)[t− 1]

 ∈ K(2t−1)×t

Consider an execution of Line 4 for given h, η, λ0, s̃h and g̃h, and denote by th = deg g̃h
and by u = λ0s̃h mod g̃h. Clearly u[η] = 0 when η ≥ th. For lower values of η, we have
the following equality:

(u[0], . . . , u[th − 1]) = λqh Ξg̃h ,
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where λ = (λ[0], . . . λ[th − 1]), and where qh is given by

qh =


s̃h[0] · · · s̃h[th − 1]

θ(s̃h[0]) · · · θ(s̃h[th − 1])

. . .
. . .

θth−1(s̃h[0]) · · · θth−1(s̃h[th − 1])

 ∈ Kth×(2th−1)

When the Ξg̃h are sparse, this immediately leads to an efficient realisation of Line 6:

Lemma 8 In the context of Proposition 1, assume that Ξg̃h has been precomputed and
cached. Then we can set

∑µ−1
η=0 Tη,h ∈ O(wt(Ξg̃h)µ) where wt(Ξg̃h) denotes the number

of non-zero entries of Ξg̃h .

Proof: By the above discussion, u[η] = λqhξh,η, where ξh,η is the ηth column
of Ξg̃h for η < th − 1, and u[η] = 0 otherwise. To compute u[η] in the first case, we can
first compute those elements of λqh that correspond to non-zero elements of ξh,η, and
then do a dot-product. The cost of this will be in O((wt(ξh,η)(µ + 1)). The lemma’s
claim follows directly.

In many applications—e.g. for decoding Interleaved Gabidulin codes as in Section 5—
one would use the same gh for multiple sh; in this case, an actual precomputation of
the Ξg̃h makes sense. The computation of all the Ξg̃h can be done in O(`µ2), however,
so it would in any case not incur an asymptotic cost to always perform it just before
Algorithm 3.

Corollary 1 Let R have derivation zero. For any g ∈ R where deg2(g) < 1
2 deg(g),

then
wt(Ξg) < deg g · wt(g) + deg2 g ·min(wt(g)2, deg2 g)

where deg2(g) denotes the second-largest non-zero monomial of g, and wt(g) denotes
the number of non-zero monomials.3

Proof: Write g = gtx
t + g′, where deg g′ = deg2 g, and let w = wt(g′) =

wt(g)− 1. Then (xt mod g) = −g−1t g′, so the t’th row of Ξg has weight w. Similarly,
xt+i ≡ −xig−1t g′ mod g, so for any i < t−deg2 g then (xt+i mod g) = −xig−1t g′, and
therefore the (t+ i)’th row of Ξg also has weight w. This is depicted on Figure 1.

For the (t + i)’th row when i ≥ t − deg2 g, then xt+i mod g can be written as
h>x

i + h⊥, where deg h> < t− i, wt(h>) < w, and

deg h⊥ < deg2 g + i− (t− deg2 g) < 2 deg2 g .

Furthermore, wt(h⊥) < (w − wt(h>))w: this is because each non-zero monomial of g′

becomes at most w monomials when they have been shifted to degree t and reduced
modulo g.

In total, the number on non-zero entries in Ξg is upper-bounded by

t+ tw + min(w2 deg2 g, 2(deg2 g)2)

3 In Theorem 3 of the WCC extended abstract [28], a complexity estimate was given for
Algorithm 3 which unfortunately is slightly incorrect: in the terms of this paper, it claims
wt(Ξg) ∈ O(deg g ·wt(g)) when deg2 g < deg g/2. As seen by this corollary, that is not generally
true, e.g. if deg2 g ∈ O(deg g) while wt(g) ∈ Ω(1) and wt(g)2 ∈ o(deg g).
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It×t

Ξg = ∈ K(2t−1)×t
deg2g

w-sparse

≤ w2-sparse

0

0

Figure 1 Depiction of Ξg in the proof of Corollary 1.

For decoding of Interleaved Gabidulin codes, two important cases are gi = xk

(syndrome decoding [54]) and gi = xn−1 (Gao-type decoding as in Section 5 or [60, §3.2]),
and the above immediately implies that these cases are fast:

Corollary 2 For R with derivation zero, then Algorithm 3 can be realised in complex-
ity O(`µ2) if each gh has the form xt + c for some t ∈ Z+ and c ∈ K.

Remark 3 Algorithm 3 also has good memory complexity when Line 6 is realised using
Lemma 8: if the Ξg are sparse matrices, they require only memory O(wt(Ξg)) to store,
and the rest of Algorithm 3 clearly uses only O(`µ) memory. This can be compared
with the memory complexity O(`2µ) of Algorithm 1.

For completely general gh, Proposition 1 clearly implies that Algorithm 3 can be
done in O(`µ3). We can do slightly better however:

Proposition 2 For R with derivation zero, Algorithm 3 can be realised in complexity
O(`MM(µ)), where O(MM(µ)) denotes the cost of multiplying two Kµ×µ matrices.

Proof: Consider u,λ,qh as in the proof of Lemma 8. If we first compute qhΞg̃h ,
then afterwards u[η] can be computed in time O(µ) as a dot-product of λ and the
ηth column of qhΞg̃h . Thus, if we prepend Algorithm 3 with the computation of the `
matrices qhΞg̃h , costing a total of O(`MM(µ)), the execution of Algorithm 3 itself will
cost only a further O(`µ2) by Proposition 1.

Remark 4 When all gi are powers of x, Algorithm 3 bears a striking similarity to
the Berlekamp–Massey-variant for multiple shift-registers [54]. By Corollary 2, the
algorithms have the same running time in this case. Using the language of modules, we
obtain a more general algorithm with a conceptually simpler proof, and we can much
more readily realise algebraic properties of the algorithm, as mentioned in Remark 2.
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6 Decoding Mahdavifar–Vardy Codes

Mahdavifar–Vardy (MV) codes [33, 35] are subspace codes constructed by evaluating
powers of skew polynomials at certain points. We will describe how one can use row
reduction to carry out the most computationally intensive step of the MV decoding
algorithm given in [35]. The decoding of MV codes is heavily inspired by the Guruswami–
Sudan algorithm for Reed–Solomon codes [22]; our row reduction approach is similarly
inspired by fast module-based algorithms for realising the Guruswami–Sudan, [6, 8, 26].

We only give an overview of MV codes and the other parts of the decoding procedure
here.

Let n,m ∈ Z+ be such that 1 ≤ n ≤ m. Consider the spaceW = 〈α1, . . . , αn〉⊕F`qnm ,
where the αi ∈ Fqnm are n carefully selected elements specified in [35, Section IV.A].

They satisfy that all the elements αq
j

i for i = 1, . . . , n and j = 0, . . . ,m − 1 are
linearly independent over Fq, but apart from that their precise expression will not be
important for us.W is then an n(`m+1)-dimensional Fq-vector space. The Grassmanian
Gr(n,W) is the set of all n-dimensional Fq-subspaces of W. A Mahdavifar–Vardy code
CMV ⊆ Gr(n,W) of dimension k ≤ nm is defined as

CMV =
{
〈v1, . . . ,vn〉 : vi = (αi, f(αi), f

2(αi), . . . , f
`(αi)) ∧ f ∈ Fq[x; ·q, 0]<k

}
.

That is, the codewords of CMV are n-dimensional Fq-subspaces of the ambient space
W, i.e. CMV ⊆ Gr(n,W), As with Gabidulin codes, the polynomial f ∈ Fq[x; ·q, 0]<k,
from which a given codeword is obtained, is called the message polynomial. We stress
that the code will consist of Fq vector spaces spanned by Fqnm -elements, while message
polynomials are over Fq. Note in particular that Fq[x; ·q, 0] ∼= Fq[x].

We endow Gr(n,W), and therefore our code, with the subspace metric [24]:

distS(U ,V) = dimFq (U ⊕ V)− dimFq (U ∩ V) , U ,V ∈ Gr(n,W)

As error model we use the operator channel as in [35], i.e., for some 0 ≤ t ≤ `nm

and 0 ≤ ρ ≤ n, the receiver obtains the result of the codeword through the following
probabilistic mapping:

CMV → Gr(r = n− ρ+ t,W)

V 7→ U := V ′ ⊕F ,

where V ′ is an (n− ρ)-dimensional subspace of V and dimF = t with F ∩ CMV = {0};
we say that ρ erasures and t errors occurred. Note that r = n− ρ+ t is immediately
known by the receiver as dimU , while ρ and t independently are unknown.

Mahdavifar and Vardy describe a decoding algorithm for MV codes consisting of
two steps [35, Section IV.C], strongly inspired by the Guruswami–Sudan algorithm [22]:

1. Find a non-zero formal polynomial Q ∈ Fqnm [x; ·q, 0][y] satisfying certain interpola-
tion properties.

2. Find the message polynomial f ∈ Fq[x; ·q, 0]<k as a root of Q.

More precisely, consider a decoding instance where U is the received subspace, and
let {(xi, y1,i, . . . , y`,i) : i = 1, . . . , r} be a basis of U . The “interpolation step” is now to
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find a Q of the following form4:

Q(X,Y1, . . . , Y`) = Q0(X) +
∑̀
i=1

Qi(Yi) ,

with all Qi ∈ Fqnm [x; ·q, 0], and which satisfies:

Q(x, y1, . . . , y`) = 0 ∀ (x, y1, . . . , y`) ∈ P, (5)

degQi < χ− 1− i(k − 1) ∀ i = 0, . . . , `, (6)

where χ and P are given by

χ =
⌈
mr + 1

`+ 1
+

1

2
`(k − 1)

⌉
P =

{
(xq

j

i , y
qj

1,i, . . . , y
qj

`,i) : i=1,...,r
j=0,...,m−1

}
.

All the xq
j

i are distinct, due to xi ∈ 〈α1, . . . , αn〉 and the properties of the αi, as shown
in [35, Lemma 9].

In the second step, root-finding, one should then find the list of all f ∈ Fq[x; ·q, 0]<k
satisfying Q(X, f(X), f2(X), . . . , f`(X)) = 0.

[35, Lemma 8] shows that a satisfactory Q always exists. Furthermore, [35, Theorem
12] states that if

`ρ+ t < n`− 1

2
`(`+ 1)

k

m
, (7)

then the original message polynomial f is found among the roots of Q. (7) can therefore
be considered as an error-erasure decoding radius of the decoding algorithm.

Mahdavifar and Vardy describe a linearised version of the Roth–Ruckenstein algo-
rithm [35] for finding the roots of Q. We have to point out that the complexity analysis
of that algorithm has severe issues5, and it is outside the scope of this paper to amend
them; however, the algorithm possibly has a complexity of O(`2rmk).

The interpolation step can be accomplished using a skew-variant of the Kötter–
Nielsen–Høholdt algorithm [43], given by Xie, Lin, Yan and Suter [61], with a reported
complexity O(`2m2rn) over Fqnm .

In the following, we give an alternative method for solving the interpolation step
using the framework of Section 3. The method will also have complexity O(`r2m2) over
Fqnm . Since r < `n, this is at least as fast as the algorithm of [61]. The algorithm first
finds a basis of the module spanning all possible interpolation polynomials, and then
brings it into a shifted weak Popov form to obtain an interpolation polynomial with low
enough weighted degree. Algorithm 1 can be directly applied for this, but to obtain a
better complexity, we show in Section 6.2 how a better complexity can be obtained by
“walking” between weak Popov forms through a sequence of shifts.

4 Here, we explicitly add the different formal variables to the Fqm [x; ·q , 0] polynomials.
5 There are two problems: 1) It is not proven that the recursive calls will not produce many

spurious “pseudo-roots” which are sifted away only at the leaf of the recursions; and 2) the cost
analysis ignores the cost of computing the shifts Q(X,Y q + γY ). Issue 1 is necessary to resolve
for assuring polynomial complexity. For the Roth–Ruckenstein this is proved as [50, Proposition
6.4], and an analogous proof might carry over. Issue 2 is critical since these shift dominate the
complexity: assuming the algorithm makes a total of O(`k) recursive calls to itself, then O(`k)
shifts need to be computed, each of which costs O(`degxQ) ⊂ O(`rm).
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Note that Mahdavifar and Vardy presented in [34] a code construction which can
be decoded “with multiplicities” for allowing a better decoding radius and rate. We are
not considering that construction here, though it is interesting as potential future work.

6.1 Interpolation step of Mahdavifar–Vardy decoding using Row Reduction

LetM be the set of vectors (Q0, Q1, . . . , Q`) ∈ Fqnm [x; ·q, 0]`+1 corresponding to all
formal multivariate polynomials satisfying the interpolation requirement (5) (but not
necessarily the degree requirement). We will speak of “evaluation” of such elements of
Fqnm [x; ·q, 0]`+1 at points in F`+1

qm by considering them as (`+1)-ary formal polynomials
over Fqnm [x; ·q, 0] of the form of Q.

Lemma 9 M is a left Fqnm [x; ·q, 0]-module.

Proof: M is closed under addition since a(α) + b(α) = (a+ b)(α) for all a, b ∈
Fqnm [x; ·q, 0] and α ∈ Fqm . Let f ∈ Fqnm [x; ·q, 0], u = (Q0, Q1, . . . , Q`) ∈M. Then the
evaluation of the multivariate polynomial representation of f ·u = (f ·Q0, . . . , f ·Q`) ∈
Fqnm [x; ·q, 0]`+1 at a point (x, y1, . . . , yL) ∈ P is

(f ·Q0)(x) +
∑̀
i=1

(f ·Qi)(yi) = f (Q0(x)) +
∑̀
i=1

f (Qi(yi))

= f

(
Q0(x) +

∑̀
i=1

Qi(yi)

)
= f(0) = 0

Thus, f · u ∈M.
To complete the interpolation step, we therefore need to find a low weighted-degree

element ofM. Using row reduction, we will in fact find the minimal. Since we know
that there must exist a satisfactory Q, the minimal that we will find must in particular
be satisfactory.

In order to apply the row reduction approach, we first need to find a basis of the
moduleM. Note that by Theorem 12 on page 31, thenM must admit a basis, since
it is a sub-module of Fqnm [x; ·q, 0]`+1. The following definitions turn out to be useful
for explicitly describing such a basis. For each j ∈ {1, . . . , `}, let Rj ∈ Fqnm [x; ·q, 0] be
such that

Rj
(
xq
v

i

)
= yq

v

j,i ∀i = 1, . . . , r, ∀v = 0, . . . ,m− 1

and let
G := A

〈x1,x
q
1,x

q2

1 ,...,xq
m−1

1 ,x2,x
q
2,...,x

qm−1
r 〉

,

using the annihilator polynomial notation from Section 2. By the remarks in that section,
and since all the xq

v

i are distinct, such Rj must exist, and we can choose them such
that degRj < rm. Also degG = rm.

Lemma 10 The rows of M form a basis ofM:

M =


m0

m1

m2

...
m`

 =


G 0 0 . . . 0

−R1 1 0 . . . 0

−R2 0 1 . . . 0
...

...
...
. . .

...
−R` 0 0 . . . 1
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Proof: “⊇”: All rows mj are in Fqnm [x; ·q, 0]`+1. It remains to show that they
all vanish at the points P. Let (xq

v

i , y
qv

1,i, . . . , y
qv

`,i) ∈ P. Then, by definition,

m0 : G(xq
v

i ) = 0

mj : 1(yq
v

j,i)−Rj(x
qv

i ) = yq
v

j,i −Rj(x
qv

i ) = 0 , j = 1, . . . , `

“⊆”: Let v` := (Q0, . . . , Q`) ∈M. Then we can write

v`−1 := v` − v`,` ·m` = (v`−1,0, . . . , v`−1,`−1, 0)

v`−2 := v`−1 − v`−1,`−1 ·m`−1 = (v`−2,0, . . . , v`−2,`−2, 0, 0)

...

v0 := v1 − v1,1 ·m1 = (v0,0, 0, . . . , 0).

Since v` ∈ M, and each mj ∈ M, we conclude that all the vj ∈ M and in par-
ticular v0 ∈ M. Thus for any (xi, . . . ) ∈ P we must have v0,0(xi) = 0, and so all

of 〈x1, xq1, x
q2

1 , . . . , x
qm−1

1 , x2, x
q
2, . . . , x

qm−1

r 〉 are zeroes of v0,0. This means G must
right-divide v0,0: for otherwise, the division would yield a non-zero remainder B ∈
Fqnm [x; ·q, 0] with degB < degG but with the same zero set, contradicting the mini-
mality of G.

Summarily, v0 = A·m0 for some A ∈ Fqnm [x; ·q, 0], and hence v` is an Fqnm [x; ·q, 0]-
linear combination of the rows of M .

Theorem 8 Let w = (0, (k − 1), . . . , `(k − 1)) and let V be a basis ofM in w-shifted
weak Popov form. If v is a row of V with minimal w-shifted degree degΦw(v), then it
is an interpolation polynomial satisfying (5) and (6).

Proof: Any row of V satisfies (5) because it is inM. According to [35, Lemma
8] there is an interpolation polynomial u = (Q0, Q1, . . . , Q`) satisfying the degree
conditions (6). By the choice of v and by Lemma 1 on page 5, then degΦw(v) ≤
degΦw(u). But then if h = LP(u) we have that for any i:

deg
(
vix

i(k−1)
)
≤ degΦw(u) = deg

(
Qhx

h(k−1)
)
≤ m

Hence, v satisfies (6) and is a desired interpolation polynomial.
Algorithm 5 outlines the implied decoding procedure of MV codes. The following

theorem provides a complexity estimate of Algorithm 5, using the Mulders–Storjohann
algorithm for row reduction.

Algorithm 5 Find Interpolation Polynomial by Row Reduction
Input: Interpolation points P and w = (0, (k − 1), . . . , `(k − 1)).
Output: Interpolation polynomial satisfying (5) and (6).

1 Set up M as in (3).
2 Compute w-shifted weak Popov form V of M .
3 return row v which has minimal w-shifted degree degΦw(v).

Theorem 9 Algorithm 5 has complexity O(`3r2m2) if Line 2 is computed using Algo-
rithm 1.
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Proof: The computation of the minimal subspace polynomial G can be done in
time O((degG)2) = O(r2m2), [57], and the ` many Rj ’s can each be computed in time
O((deg(Rj)

2) ⊆ O(r2m2) using the algorithm from [56], yielding in total O(`r2m2).
The degrees of the nonzero entries in Φw(M) are component-wise upper bounded by:

rm

rm (k − 1)

rm 2(k − 1)
...

. . .
rm `(k − 1)


Since χ− 1− `(k − 1) > degQ` ≥ 0, we must have

rm+ 1

`+ 1
>

1

2
`(k − 1) + 1 so rm >

1

2
`(`+ 1)(k − 1) + ` > `(k − 1),

and thus, maxdeg(Φw(M)) = rm and

∆(Φw(M)) ≤
∑̀
i=1

(rm− i(k − 1)) = `rm− `(`+ 1)

2
(k − 1) ≤ `rm.

Using Theorem 2, we obtain a complexity in

O
(
`2∆(Φw(M)) maxdeg(Φw(M))

)
⊆ O(`3r2m2)

over Fqnm .
We explain the next section how to gain a factor `2 in complexity by exploiting the

initial structure and the small determinant of M .

6.2 Weak Popov Walking

Let M be as in Lemma 10 and w =
(
0, (k − 1), . . . , `(k − 1)

)
. We saw in the previous

section that ∆(Φw(M)) is large compared to degM , leading to the bad complexity of
Algorithm 1. Consider now w+ = w+ (0, rm, . . . , rm): then Φw+(M) is in weak Popov
form and consequently has an orthogonality defect of zero. That is, by a relatively small
change in the shift compared to the sought, M is already in weak Popov form.

We will use these two observations—that deg detM is small while M is already in
a shifted weak Popov form close to the sought—to obtain an algorithm which is in a
sense a special case of the Mulders–Storjohann on such input: we carefully select in
which order to apply simple transformations, and this gives a better bound on how
many transformations to do and how expensive they are.

In this section we will extensively discuss vectors under different shifts. To ease the
notation somewhat, we therefore introduce shifted versions of the following operators:
LPw(v) := LP(Φw(v)) as well as degw(v) := degΦw(v).

We begin by Algorithm 6 that efficiently “walks” from a weak Popov form according
to the shift w into one with the shift w + (1, 0, . . . , 0). The approach can readily be
generalised to support incrementing any index, and not just index 0, but since we need
only this case and since it simplifies notation, we restrict ourselves to that.
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Algorithm 6 Weak Popov Walking
Input: Shift w ∈ Zm and matrix V ∈ Rm×m in w-shifted weak Popov form.
Output: Matrix in ŵ-shifted weak Popov form spanning the same R-row space as V , where

ŵ = w + (1, 0, . . . , 0).
1 hi ← LPw(vi), for i = 0, . . . ,m− 1.
2 I ← indexes i such that LPŵ(vi) = 0.
3 [i1, . . . , is]← I sorted such that hi1 < hi2 < . . . < his .
4 t← i1.
5 for i = i2, . . . , is do
6 if deg vt,0 ≤ deg vi,0 then
7 Apply a simple transformation t on i at position 0 in V .
8 else
9 Apply a simple transformation i on t at position 0 in V .

10 t← i.
11 return V .

Theorem 10 Algorithm 6 is correct.

Proof: Denote for the sake of the proof V as the input and V̂ as the output of
the algorithm. Note that each row is the target of a simple transformation at most once,
and always by a row of V which has not yet been modified. Thus if vi, v̂i are the rows of
V respectively V̂ , then either v̂i = vi or v̂i is the result of a simple transformation on vi
by another row of V . The algorithm performs a single sweep of simple transformations.
We will see that the ŵ-shifted leading positions after this sweep will be a permutation
of the hi, implying that V̂ is in ŵ-shifted weak Popov form.

Note first that for any vector v ∈ Rm with LPw(v) 6= LPŵ(v), then LPŵ(v) = 0,
since only the degree of the 0’th position of Φŵ(v) is different from the corresponding
position of Φw(v). Therefore, for each i ∈ {0, . . . ,m − 1} \ I we have LPŵ(v̂i) = hi,
and of course for each i ∈ I we have LPŵ(vi) = 0. Furthermore, for each i ∈ I we must
have

deg vi,0 + w0 = deg vi,hi + whi (8)

Consider first an index i ∈ I for which Line 7 was run, and let t be as at that point.
We will establish that LPŵ(v̂i) = hi. Since deg vt,0 ≤ deg vi,0, applying the simple
transformation makes sense. Due to (8) then

deg vt,k + wk < deg vt,ht + wht = deg vt,0 + w0 ,

for k > ht. By the order of the i?, then ht < hi, and so the simple transformation will
have

deg v̂i,k +wk ≤ max
(

deg vi,k, deg vt,k + (deg vi,0− deg vt,0)
)

+wk < deg vi,hi +whi ,

for k > hi. Since the degree at position 0 went down, we get LPŵ(v̂i) = hi.
Consider now an i ∈ I for which Line 9 was run, and let again t be as at that point,

before the reassignment. The situation is completely reversed according to before, so by
the same arguments LPŵ(v̂t) = hi.

For the value of t at the end of the algorithm, then clearly LPŵ(v̂t) = 0 since the
row was not modified. Since we necessarily have hi1 = 0, then LPŵ(v̂t) = hi1 .

Thus we conclude that the ŵ-leading positions of the ŵi are a permutation of the
hi. But the hi were all different, and so V̂ is in ŵ-shifted weak Popov form.
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Proposition 3 If R has derivation zero, then Algorithm 6 performs at most

O
(
mdeg det(V ) +

∑m−1
i=0 (2i+ 1−m)wi +m2

)
operations over R.

Proof: We will bound the total number of non-zero monomials which are involved
in simple transformations. All the computation of the algorithm is in the addition of
two such monomials, so this will bound the complexity.

Assume w.l.o.g. that w0 ≤ w1 ≤ . . . ≤ wm−1, and since the input matrix V was in
w-shifted weak Popov form, assume also w.l.o.g that we have sorted the rows such that
LPw(vi) = i. Since ∆(Φw(V )) = 0 we have

deg detΦw(V ) = degw V that is degw V = deg detV +
∑

w .

We can therefore consider what is the assignment of degw to the individual rows of V
which maximises the possible number of monomials in V . We can not have degw vi < wi
since LPw(vi) = i. It is easy to see that the worst-case assignment is then to have
exactly degw vi = wi for i = 0, . . . ,m− 2 and degw vm−1 = deg detV +wm−1. In this
case, the number of monomials can then be bounded asm−2∑

i=0

(
1 +

i−1∑
j=0

(wi − wj + 1)
)+

(
m(deg detV + wm−1)−

m−1∑
i=0

wi + 1

)

≤ m2 +

m−2∑
i=0

iwi −
m−2∑
j=0

(m− 2− j)wj

+

(
mdeg detV +mwm−1 −

m−1∑
i=0

wi

)

= m2 +mdeg detV +

m−1∑
i=0

(2i+ 1−m)wi .

In particular, if
∑m−1
i=0 (2i+ 1−m)wi ∈ O(mdeg detV ), then the cost is bounded

by O(mdeg detV +m2). That is to say, as long as the wi are fairly balanced wrt. each
other, then they essentially are handled for free. Similar balancing conditions are seen
in other fast algorithms for K[x] matrices, e.g. in [63].

Remark 5 Note that Algorithm 6 is essentially a special case of the Mulders–Storjohann,
Algorithm 1, where we carefully select which simple transformations to apply. This results
in a factor m fewer simple transformations to apply, as well as a better handle on the
size of the simple transformations, leading to the improved complexity.

Algorithm 7 Find Interpolation Polynomial by Weak Popov Walk
Input: Interpolation points P and w = (0, (k − 1), . . . , `(k − 1)).
Output: Interpolation polynomial satisfying (5) and (6).

1 V ←M as in (3).
2 w =

(
0, (k − 1), 2(k − 1), . . . , `(k − 1)

)
.

3 w′ = w +
(
0, rm, rm, . . . , rm

)
.

4 for i = 0, ..., rm− 1 do
5 V ←WeakPopovWalk(V,w).
6 w′ ← w′ + (1, 0, . . . , 0).
7 return row v which has minimal w-shifted degree degw v.
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Proposition 4 Algorithm 7 is correct. It has complexity O(`r2m2).

Proof: Note that M is in w′-shifted weak Popov form, where w′ is as on Line 3.
Thus by the correctness of Algorithm 6, then V at the end of the algorithm must be
in
(
w + (rm, . . . , rm)

)
-shifted weak Popov form. Then it is clearly also in w-shifted

weak Popov form. By Theorem 8 the returned row must be a satisfactory interpolation
polynomial.

For the complexity, the algorithm simply performs rm calls to WeakPopovWalk.
The quantity

∑m−1
i=0 (2i+ 1−m)w′i is greatest at the first iteration, where it is:

m−1∑
i=1

(2i+ 1−m)(rm+ i(k − 1)) ≈ `rm+ 2
3 `

3(k − 1)− 1
2 `

2 .

Since rm > 1
2 `(`+ 1)(k − 1), as we established in the proof of Theorem 9, the above is

bounded by O(`rm). Since deg det(V ) = deg det(M) = rm then by Proposition 3 each
of the calls to WeakPopovWalk therefore costs at most O(`rm).

Bounding r < `n, we obtain a complexity of O(`2m2rn), matching [61].

7 Conclusion

In this paper, we have explored the notion of row reduction of polynomial matrices in
the setting of matrices over skew polynomial rings. For ordinary polynomial rings, row
reduction has proven a useful strategy for obtaining numerous flexible, efficient while
conceptually simple decoding algorithms for Reed–Solomon and other code families.
Our results introduce the methodology and tools aimed at bringing similar benefits to
Gabidulin, Interleaved Gabidulin, Mahdavifar–Vardy, and other skew polynomial-based
codes. We used those tools in two settings. We solved a general form of multiple skew-shift
register synthesis, and applied this for error-erasure decoding of Interleaving Gabidulin
codes in complexity O(`µ2). For Mahdavifar–Vardy codes, we gave an interpolation
algorithm with complexity O(`r2m2).

We extended and analysed the simple and generally applicable Mulders–Storjohann
algorithm to the skew polynomial setting. In both the studied settings, the complexity of
that algorithm was initially not satisfactory, but it served as a crucial step in developing
more efficient algorithms. For multiple skew-shift register synthesis, we were able to solve
a much more general problem than previously, but retaining good complexity. For the
Mahdavifar–Vardy codes, the improved algorithm was in the shape of a versatile “Weak
Popov Walk”, which could potentially apply to many other problems. In all previously
studied cases, we matched the best known complexities [54,61].

Over K[x], row reduction, and the related concept of order bases, have been widely
studied and sophisticated algorithms have emerged, e.g. [2, 21, 63]. We hope that future
work will enable similar speed-ups for reducing R-matrices.
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A Technical Proofs

A.1 Proof of Lemma 5

Proof: Let V ∈ GLn(Q). It is obvious that for each i then LT(vi) 6= 0 because otherwise
vi = (0, . . . , 0) and V would not be invertible. We can assume w.l.o.g that LP(vi) = i because
if not, we can change the order of the rows (elementary row operation) of V and obtain a
matrix with the same determinant and degree. We consider a sequence of matrices V (k) for
k = 0, . . . , n−1, where V (0) = V and V (k+1) is obtained from V (k) by the following elementary
row operations:

v
(k+1)
i = v

(k)
i − v(k)ik

(
v
(k)
kk

)−1
v
(k)
k ∀i = k + 1, . . . , n− 1 (9)

We can prove the following properties for any k = 0, . . . , n− 1 by induction.

LP(v
(k)
i ) = i ∀i = 0, . . . , n− 1 (10)

deg v
(k)
ii = deg vii ∀i = 0, . . . , n− 1 (11)

v
(k)
ij = 0 ∀j < i ∧ j < k (12)

For k = 0, these properties are fulfilled because V (0) = V . Now suppose (10) - (12) are true for
some k ∈ {0, . . . , n− 2}. Then (12) follows for k + 1 because

v
(k+1)
ik = v

(k)
ik − v

(k)
ik

(
v
(k)
kk

)−1
v
(k)
kk = v

(k)
ik − v

(k)
ik = 0 ∀i > k.

Due to LP(vk) = k, deg v(k)kj < deg v
(k)
kk for j > k and it follows that

deg
(
v
(k)
ik · (v

(k)
kk )−1 · v(k)kj

)
= deg v

(k)
ik + deg v

(k)
kj − deg v

(k)
kk < deg v

(k)
ik

LP(vi)=i

≤ deg v
(k)
ii .

Hence, for j > k it holds that

deg v
(k+1)
ij =



−∞ < deg vii = deg v
(k+1)
ii (since v(k+1)

ij = 0), j ≤ k

deg
(

v
(k)
ij︸︷︷︸

deg≤deg v
(k)
ii

− v(k)ik · (v
(k)
kk )−1 · v(k)kj︸ ︷︷ ︸

deg<deg v
(k)
ii

)
≤ deg v

(k)
ii = deg v

(k+1)
ii , k < j < i

deg
(
v
(k)
ii − v

(k)
ik · (v

(k)
kk )−1 · v(k)ki

)
= deg v

(k)
ii = deg vii, j = i

deg
(

v
(k)
ij︸︷︷︸

deg<deg v
(k)
ii

− a(k)ik · (v
(k)
kk )−1 · v(k)kj

)
< deg v

(k)
ii = deg v

(k+1)
ii , i < j

This implies that LP(vi) = i (10) and deg v
(k)
ii = deg vii (11) for k + 1. Hence, V (n−1) is in

upper triangular form, its diagonal elements have degree deg v
(n−1)
ii = deg vii and by Lemma 4

deg detV (n−1) = deg det
( n−1∏
k=0

φ
(
v
(n−1)
ii

))
=

n−1∑
i=0

deg φ
(
v
(n−1)
ii

)
=

n−1∑
i=0

deg vii.

Since V (n−1) is obtained from V by elementary row operations, it follows that

∆(V ) = deg V − deg detV =

n−1∑
k=0

deg vk − deg detV (n−1) =

n−1∑
k=0

deg vii −
n−1∑
i=0

deg vii = 0
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A.2 Proof of Theorem 4

Due to the properties of the interpolation, we can split r̂i − fi =: êi into three parts

êi = êEi + êRi + êCi

with êi, ê
E
i , ê

R
i , ê

C ∈ R<n such that êi(gi,j) = r̂(gi,j) − fi(gi,j) = ri,j − ci,j = ei,j and
êEi (gi,j) = eEi,j , ê

R
i (gi,j) = eRi,j , and ê

C
i (gi,j) = eCi,j for all i = 1, . . . , ` and j = 1, . . . , n

Lemma 11 êCi (Γ
C
i (gi,j)) = 0 for all i = 1, . . . , ` and j = 1, . . . , n.

Proof: The proof is exactly the same as for the statement of [59, Lemma A.1], using
the relation of the matrix representation of the linear maps êCi (·) and êCi (·) in certain bases
(cf. [55, Lemma 6.3]).

We recall the statement of the theorem:

Theorem 11

ΛEΛRr̂iΓCi ≡ Λ
EΛRfiΓCi mod xm − 1 ∀ i = 1, . . . , `

Proof: Subtracting the right-hand side from the left-hand, we split the expression into
parts as in êi, and evaluate at each gi,j :

(ΛEΛRr̂iΓCi − Λ
EΛRfiΓCi )(gi,j)

= (ΛEΛRêEi Γ
C
i )(gi,j)︸ ︷︷ ︸

=:A

+ (ΛEΛRêRi Γ
C
i )(gi,j)︸ ︷︷ ︸

=:B

+ (ΛEΛRêCi Γ
C
i )(gi,j)︸ ︷︷ ︸

=:C

.

We now have

A = (ΛEΛRêEi Γ
C
i )(gi,j) = ΛE(ΛR(êEi (Γ

C
i (gi,j)))) = ΛE(ΛR(êEi (

m∑
κ=1

αi,κgi,κ)))

αi,κ∈Fq
=

m∑
κ=1

αi,κΛ
E(ΛR(êEi (gi,κ))) =

m∑
κ=1

αi,κΛ
E(ΛR(eEi,κ)) =

m∑
κ=1

αi,κΛ
E(ΛR(

τ∑
j=1

aEi,jb
E
i,j,κ))

bEi,j,κ∈Fq
=

m∑
κ=1

αi,κ

τ∑
j=1

bEi,j,κΛ
E(ΛR(aEi,j))︸ ︷︷ ︸

=0

= 0 .

B = ΛE(ΛR(êRi (Γ
C
i (gi,j)))) =

m∑
κ=1

αi,κΛ
E(ΛR(êRi (gi,κ))) =

m∑
κ=1

αi,κ

τ∑
j=1

bRi,j,κΛ
E(ΛR(aRi,j)︸ ︷︷ ︸

=0

) = 0 .

C = (ΛEΛRêCi Γ
C
i )(gi,j) = ΛE(ΛR(êCi (Γ

C
i (gi,j))︸ ︷︷ ︸

=0, Lemma 11

)) = ΛE(ΛR(0)) = 0 .

We obtain (ΛEΛRêiΓCi )(gi,j) = 0 for all i, j, so since G1 = . . . = G`, all Gi must divide
ΛEΛRêiΓCi , and the claim follows.
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B Basics on R-modules

In this section, we prove statements about R-modules. Most of the results are well-known
or obvious for commutative rings. However, we have not found a compact source for these
statements which include the case of skew polynomial rings and derives them from algebraic
principles.

We say that vectors v1,v2, . . . ,vn ∈ Rn are (left) linearly independent over R if from a
vanishing linear combination a1v1 +a2v2, . . . , anvn = 0 it follows that a1 = a2 = · · · = an = 0.
For a left module M and B ⊆ M, by 〈B〉R we denote the (left) span of B: the set of (left)
R-linear combinations of elements of B. B is a generating set ofM if 〈B〉R =M. A basis of a
(left) moduleM is a generating set B ⊆M which is (left) linearly independent over R. We say
a moduleM is free if it admits a basis.

We define the (left) rank of a matrix as the maximum number of rows which are linearly
independent over R. Note that any subset of linearly independent rows of cardinality equal to
the rank is a basis of the (left) row space 〈M〉R of a matrix M , which is a (left) module. Since
R is a left (right) Euclidean domain [45], it is a left (right) principal ideal domain.

The statement and proof of the following theorem is similar to [25, Theorem 7.1], with the
difference that we use the weaker assumption that R is in general only left (right) principal
and not a commutative principal ideal domain.

Theorem 12 Let F be a free left (right) module over R which has a finite basis {x1, . . . , xn}
for some n ∈ N, and M ⊂ F a left (right) submodule. Then M is free and there exists a basis
of M which has ≤ n elements.

Proof: We prove the claim by constructing a basis of F inductively. Before we start, we
have to define the sets Mr :=M ∩ 〈x1, . . . , xr〉R for any r ∈ N with 1 ≤ r ≤ n. Note that we
only show the claim for left modules. The right module case can be shown equivalently.

Base case: We first consider M1 =M ∩ 〈x1〉R. Since M and 〈x1〉R are both left modules
over R, M1 is also a left module over R. Let J be the set of all a ∈ R such that ax1 ∈ M .
Then J is a left ideal of R because for any a, b ∈ J and r ∈ R also (a + b) ∈ J (because
(a+ b)x1 = ax1 + bx1 ∈M) and (ra) ∈ J (because (ra)x1 = r(ax1) ∈M). J is (left) principal
and therefore generated by some a1 ∈ R. Hence, M1 must be of the form (a1x1). If a1 6= 0,
{a1x1} is a basis of M1. Otherwise, M1 = {0} and ∅ is a basis of M1. Thus, M1 is free and has
a basis with ≤ 1 elements.

Induction hypothesis: Now we assume that Mr =M ∩ 〈x1, . . . , xr〉R is free and has a
basis {x̃1, . . . , x̃`} with 0 ≤ ` ≤ r for some r with 1 ≤ r < n.

Inductive step: If Mr = Mr+1, we are done, because by hypothesis Mr+1 is free with
the same basis as Mr which also obviously has ≤ (r+1) elements. In the following we therefore
assume that Mr+1 \Mr 6= ∅.

Let I be the set of all a ∈ R such that there exists an element x(a) ∈M and b(a)1 , . . . , b
(a)
r ∈

R with axr+1 = x(a) −
∑r
i=1 b

(a)
i xi. Then I is a left ideal of R because if a, b ∈ I and r ∈ R,

then a + b ∈ I because x(a+b) = x(a) + x(b) ∈ M and b(a+b)i = b
(a)
i + b

(b)
i ∈ R and ra ∈ I

because x(ra) = rx(a) ∈ M and b(ra)i = rb
(a)
i ∈ R. Since R is (left) principal, I is generated

by some element ar+1 ∈ R. Since we assume that Mr+1 6= Mr, ar+1 must not be 0. We can
choose a γ ∈Mr+1 such that γ = x(ar+1) 6= 0.

(Sub-)Claim: Br+1 := {x̃1, . . . , x̃`, γ} is a basis of Mr+1.
(i) Br+1 is a generating set of Mr+1:
For any x ∈Mr+1, the coefficient of x with respect to xr+1 is in I and therefore divisible

by ar+1. Hence, there exists a d ∈ R such that the coefficient of x− dγ with respect to xr+1 is
0 and therefore x− dγ ∈Mr. This shows that {x̃1, . . . , x̃`, γ} is a generating set of Mr+1.

(ii) The elements of Br+1 are linearly independent:
Since Mr+1 6= Mr, there is an x ∈ Mr+1 which is not in Mr. Like in the previous

statement, there is a d ∈ R such that x − dγ ∈ Mr (note that here d 6= 0 because x /∈ Mr).
This shows that γ /∈Mr because if it was, dγ would be in Mr (because Mr is a module) and
x = (x− dγ) + dγ ∈Mr, which would be a contradiction. Thus, γ /∈Mr = (x̃1, . . . , x̃`) which
implies that x̃1, . . . , x̃` and γ are linearly independent.

Hence, Br+1 is a basis of Mr+1 which has `+ 1 ≤ r + 1 elements (by hypothesis ` ≤ r).
Conclusion: At this point we found a basis Bn for Mn which has ≤ n elements. Since

{x1, . . . , xn} is a basis of F andM ⊂ F ,Mn =M ∩〈x1, . . . , xn〉R =M ∩F =M and therefore
Bn is also a basis of M . Note that the existence of a basis directly implies that M is free.
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An important corollary of Theorem 12 is that for n ∈ N, any submodule of Rn is free.
The following theorem proves thatR has the Invariant Basis Number property. Its statement

and proof combines ideas from [47, Theorem 18] and [47, Proposition 16]. Note that R is left
(right) Noetherian because it is left (right) principal. Hence, any finitely generated R-module
is Noetherian which implies that any submodule of a finitely generated R-module is finitely
generated.

Theorem 13 Any two finite bases of a left (right) R-module have the same number of ele-
ments.

Proof: Again we show the claim only for left modules, the right case can be shown
equivalently. Assume we have two bases B1 and B2 of the same R-module with |B1| =: n ∈ N
and |B2| =: m ∈ N. We want to show that n = m.

We first note that from any R-module with a basis B = {b1, . . . , bk} of cardinality k, there
is a natural module isomorphism ϕ : 〈B〉R → Rk, ϕ(x) = (x1, . . . , xk) which is defined by the
unique representation x =

∑k
i=1 xibi for any x ∈ (B).

This means that Rn ∼= 〈B1〉R = 〈B2〉R ∼= Rn, so Rn ∼= Rm, or in other words there is an
isomorphism α : Rn →Rm.

We assume n > m. This means that α gives us an embedding α : Rn = Rm
⊕
Rn−m ↪→

Rm with Rn−m 6= {0} because n > m and R 6= {0}. Therefore, A0 := Rm must have a
submodule of the form A1

⊕
B1 such that A1

∼= Rm and B1
∼= Rn−m 6= {0}. Constructing

Ai
⊕
Bi as a submodule of Ai−1 inductively with the same approach, we obtain a submodule⊕∞

i=1Bi of Rm which is an infinite direct sum of non-zero modules and can therefore not
be finitely generated. This contradicts the fact that Rm is a (left) Noetherian module, which
means that all its submodules are finitely generated. Hence, n ≤ m. By the same argument we
get that m ≤ n and therefore n = m.

We continue with some remarks on matrices over R and the module their rows span. An
elementary row operation on an R matrix can be the following two actions:

(i) Interchange two rows.
(ii) Add an R multiple of a row vi to another row vj .

Theorem 14 An elementary row operation on a matrix neither changes its row space nor its
rank.

Proof: The statement is obvious for type (i) row operations because (R,+) is an abelian
group. Suppose that in a type (ii) operation on a matrix V , resulting in V ′, vj is replaced by
v′j ← avi + vj , where a ∈ R. Clearly we then have 〈V ′〉R ⊂ 〈V 〉R. But since vi = v′i and
vj = v′j − av′i then also vj ∈ 〈V ′〉R and so 〈V ′〉R ⊂ 〈V 〉R. So the two modules spanned by
the rows are the same. Therefore the rank can also not change due to Theorem 13.

Note that a simple transformation (cf. Section 3) is an elementary row operation (type (ii)).
A type (i) row operation is used in Section 5.4 (swapping of rows within the Demand-Driven
algorithm).
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