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Abstract
This dissertation presents our research in the broad area of algorithms and data struc-
tures. More specifically, we show solutions for the following problems related to strings,
points and integers. Results hold on the Word RAM and we measure space in w-bit words.

Compressed Fingerprints. The Karp-Rabin fingerprint of a string is a useful type of
hash value that has multiple applications due to its strong properties. Given a string S of
length N compressed into a straight line program (SLP) of size n, we show a O(n) space
data structure that supports fingerprint queries, retrieving the fingerprint of any substring
of S. Queries are answered in O(lg N) time. If the compression is a Linear SLP (capturing
LZ78 compression and variations), we get O(lg lg N) query time.

Our structure matches the best known query time bound for random access in SLPs,
and is the first for general (unbalanced) SLPs that answers fingerprint queries without
decompressing any text. We also support longest common extension queries, returning the
length ℓ that the substrings from two given positions in S are equal. Answers are correct
w.h.p. and take time O(lg N lgℓ) and O(lg lg N + lgℓ lg lgℓ) for SLPs and Linear SLPs,
respectively.

Dynamic Compression. In the dynamic relative compression scheme, we compress a
string S of length N into n substrings of a given reference string of length r. We give
data structures that maintain an asymptotically optimal compression in the scheme and
support access, replace, insert and delete operations on S. Our solutions support each
operation in O(lg n/ lg lg n+ lg lg r) time and O(n+ r) space; or O(lg n/ lg lg n) time and
O(n+ r lgε r) space. They can be naturally generalized to compress multiple strings.

Our solutions obtains almost-optimal bounds, and are the first to dynamically main-
tain a string under a compression scheme that can achieve better than entropy com-
pression. We also give improved results for the substring concatenation problem, and an
extension of our structure can be used as a black box to get an improved solution to the
previously studied dynamic text static pattern problem.

Compressed Pattern Matching. In the streaming model, input data flows past a client
one item at a time, but is far too large for the client to store. The annotated streaming
model extends the model by introducing a powerful but untrusted annotator (represent-
ing “the cloud”) that can annotate input elements with additional information, sent as
one-way communication to the client. We generalize the annotated streaming model to
be able to solve problems on strings and present a data structure that allows us to trade
off client space and annotation size. This lets us exploit the power of the annotator.

In compressed pattern matching we must report occurrences of a pattern of length m
in a text compressed into n phrases (capturing LZ78 compression and variations). In the
streaming model, any solution to the problem requires Ω(n) space. We show that the
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problem can be solved in O(lg n) client space in the annotated streaming model, using
O(lg n) time and O(lg n) words of annotation per phrase. Our solution shows that the
annotator let us solve previously impossible problems, and it is the first solution to a
classic problem from combinatorial pattern matching in the annotated streaming model.

Pattern Extraction. The problem of extracting important patterns from text has many
diverse applications such as data mining, intrusion detection and genomic analysis. Con-
sequently, there are many variations of the pattern extraction problem with different no-
tions of patterns and importance measures. We study a natural variation where patterns
must 1) contain at most k don’t cares that each match a single character, and 2) have at
least q occurrences. Both k and q are input parameters.

We show how to extract such patterns and their occurrences from a text of length n in
O(nk+k3occ) time and space, where occ is the total number of pattern occurrences. Our
bound is the first output-sensitive solution for any approximate variation of the pattern
extraction problem, with all previous solutions requiring Ω(n2) time per reported pattern.
Our algorithm is relatively simple, but requires a novel analysis technique that amortizes
the cost of creating the index over the number of pattern occurrences.

Compressed Point Sets. Orthogonal range searching on a set of points is a classic
geometric data structure problem. Given a query range, solutions must either count or
report the points inside the range. Variants of this problem has numerous classic solutions,
typically storing the points in a tree.

We show that almost any such classic data structure can be compressed without
asymptotically increasing the time spent answering queries. This allows us to reduce
the required space use if the point set contains geometric repetitions (copies of equal
point set that are translated relative to each other). Our result captures most classic
data structures, such as Range Trees, KD-trees, R-trees and Quad Trees. We also show a
hierarchical clustering algorithm for ensuring that geometric repetitions are compressed.

Points with Colors. Colored orthogonal range searching is a natural generalization of
orthogonal range searching which allows us to perform statistic analysis of a point set.
We must store n points that each have a color (sometimes called a category) and support
queries that either count or report the distinct colors of the points inside a query range.

We show data structures that support both types of queries in sublinear time, stor-
ing two-dimensional points in linear space and high-dimensional points in almost-linear
space. These are the first (almost) linear space solutions with sublinear query time. We
also give the first dynamic solution with sublinear query time for any dimensionality.
Previous solutions answer queries faster, but require much more space.

Points with Weights in Practice. If points are each assigned a weight, it is natural to
consider the threshold range counting problem. A data structure must store the points
and be able to count the number of points within a query range with a weight exceeding
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some threshold. This query appears naturally in a software system built by Milestone
Systems, and allows detecting motion in video from surveillance cameras.

We implement a prototype of an index for 3-dimensional points that use little space
and answers threshold queries efficiently. In experiments on realistic data sets, our pro-
totype shows a speedup of at least a factor 30 at the expense of 10% additional space
use compared to the previous approach. An optimized version of our proposed index is
implemented in the latest version of the Milestone Systems software system.

Finger Predecessor. The predecessor problem is to store a set of n integers from a
universe of size N to support predecessor queries, returning the largest integer in the
set smaller than a given integer q. We study a variation where the query additionally
receives a finger to an integer ℓ in the set from which to start the search. We show a linear
space data structure that answers such finger predecessor queries in O(lg lg |ℓ− q|) time.
This generalizes and improves the O(lg lg N) time solutions for the standard predecessor
problem. Our data structure is the first with a query time that only depends on the
numerical distance between the finger and the query integer.

Dynamic Partial Sums. The well-studied partial sums problem is to store a sequence
of n integers with support for sum and search queries. The sequence is static in the
sense that its length cannot change, but the update operation can be used to change
the value of an integer in the sequence by a given value. There are matching lower and
upper bounds showing that the problem can be solved on the w-bit Word RAM in linear
space and Θ(lg n/ lg(w/δ)) time per operation, where δ is the maximum number of bits
allowed in updates.

As a natural generalization we consider dynamic partial sums, allowing insertions and
deletions in the sequence. Our solution requires linear space and supports all operations
in optimal worst-case time Θ(lg n/ lg(w/δ)), matching lower bounds for all supported
operations. Our data structure is the first dynamic partial sums solution that matches the
lower bounds, and the first to support storing integers of more than lg w bits.
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Resumé
Denne afhandling præsenterer vor forskning i feltet algoritmer og datastrukturer. Mere
specifikt viser vi løsninger til følgende problemer relateret til strenge, punkter og heltal.
Vores grænser gælder i RAM-modellen, og vi måler plads i antal w-bit ord.

Komprimerede Fingeraftryk. En strengs Karp-Rabin fingeraftryk er en brugbar type
hash-værdi, der har talrige anvendelser på grund af dens stærke egenskaber. Givet en
streng S af længde N komprimeret som et Straight Line Program (SLP) af størrelse n,
viser vi en datastruktur der kræver O(n) plads som understøtter fingeraftryksforespørgsler
der returnerer fingeraftrykket af en given delstreng i S. Vi svarer på forespørgsler i
O(lg N) tid. Hvis kompressionen er en Lineær SLP (dette omfatter LZ78 kompression
og varianter) kan vi svare i O(lg lg N) tid.

Vores løsning matcher den bedst kendte tidsgrænse for at tilgå et enkelt tegn i SLPer,
og det er den første for generelle (ikke-balancerede) SLPer der svarer på forespørgsler
uden at dekomprimere noget tekst. Vi understøtter også længste fælles delstreng fore-
spørgsler, der returnerer længden ℓ som S matcher sig selv startende fra to givne posi-
tioner. Vi svarer forespørgsler korrekt med høj sandsynlighed i tid O(lg N lgℓ) og O(lg lg N+
lgℓ lg lgℓ) for henholdsvis SLPer og Lineære SLPer.

Dynamisk Kompression. I dynamisk relativ kompression komprimerer vi en streng S af
længde N som n delstrenge fra en given referencestreng af længde r. Vi giver datastruk-
turer der vedligeholder en asymptotisk optimal kompression i denne model og understøt-
ter operationer der tilgår, ændrer, indsætter og sletter tegn i S. Vores løsninger understøt-
ter hver operation i O(lg n/ lg lg n+ lg lg r) tid og O(n+ r) plads; eller O(lg n/ lg lg n) tid
og O(n+ r lgε r) plads. De generaliserer naturligt til at opbevare flere strenge.

Vi opnår næsten-optimale grænser, og vores løsning er den første der understøtter
at dynamisk vedligeholde en streng i en type kompression der kan opnå bedre end
entropi-kompression. Som en del af vores løsning viser vi forbedrede grænser for del-
strengskonkatenering og en udvidelse af vores struktur kan anvendes til at opnå en bedre
løsning for det tidligere studerede problem dynamisk mønstergenkendelse.

Komprimeret Mønstergenkendelse. I streamingmodellen ankommer en strøm af data
et element af gangen som input til en klient der ikke har plads til at opbevare det hele.
Den annoterede streamingmodel udvider modellen ved at introducere en kraftfuld ikke-
pålidelig annotator (som repræsenterer “skyen”) der kan tilføje annoteret information til
input elementer, ved at sende envejskommunikation til klienten. Vi generaliserer denne
model for at kunne løse problemer på strenge, og præsenterer en datastruktur der lader
os afveje plads på klienten og størrelsen af annotationen. Dette tillader os at anvende
annotatorens kraft.



RESUMÉ

I komprimeret mønstergenkendelse skal vi rapportere forekomster af et mønster af
længde m i en tekst der er komprimeret som n fraser (omfatter LZ78 kompression og
varianter). I streamingmodellen kræver enhver løsning til problemet Ω(n) plads. Vi viser
at problemet kan løses i den annoterede streamingmodel med O(lg n) klientplads og
O(lg n) tid og O(lg n) ord annotering per frase. Dermed bryder vores resultat med plads-
grænsen i streamingmodellen, og det er den første løsning på et klassisk problem fra
kombinatorisk mønstergenkendelse i den annoterede streamingmodel.

Mønsterudvinding. Der er mange forskelligartede anvendelser af at kunne udvinde
vigtige mønstre fra tekst, eksempelvis i data mining, intrusion detection og genetisk anal-
yse. Derfor er der varianter af mønsterudvindingsproblemet, med forskellige typer mønster
og mål for vigtighed. Vi studerer en naturlig variation hvor mønstre har 1) højst k wild-
cards der hver matcher et tegn, og 2) et minimalt antal forekomster for at betragtes som
vigtige.

Vi viser hvordan sådanne mønstre og deres forekomster kan udvindes fra en tekst
af længde n i O(nk + k3occ) tid og plads, hvor occ er det totale antal mønsterforekom-
ster. Vores grænse er den første løsning til en hvilken som helst ikke-eksakt variation af
mønstergenkendelsesproblemet, alle tidligere løsninger kræver Ω(n2) tid per rapporteret
mønster. Vores algoritme er relativt simpel, men kræver en ny analyseteknik der amortis-
erer udgiften ved at konstruere indekset over det totale antal mønsterforekomster.

Komprimerede Punktmængder. Ortogonal søgning på en mængde punkter er et klas-
sisk geometrisk datastrukturproblem. Løsninger skal enten tælle eller returnere punkter
i et givet forespørgselsområde. Der er talrige klassiske løsninger på problemet der typisk
opbevarer punkterne i et træ.

Vi viser at næsten alle klassiske datastrukturer til problemet kan komprimeres uden
at øge tiden til at svare på forespørgsler asymptotisk. Dette lader os reducere det krævede
pladsforbrug hvor punktsættet indeholder geometriske gentagelser (kopier af ens punkt-
sæt). Vores resultat omfanger de fleste klassiske datastrukturer, såsom Range træer, KD-
træer, R-træer og Quad træer. Vi viser en hierarkisk klyngealgoritme der sikrer at ge-
ometriske gentagelser kan komprimeres.

Punkter med Farver. Farvet ortogonal søgning er en naturlig generalisering af ortogo-
nal søgning der lader os foretage statistisk analyse af punktsæt. Vi skal gemme n punkter
der hver har en farve (også kaldet en kategori) og understøtte forespørgsler der enten
tæller eller returnerer de unikke farver på punkterne i et forespørgselsområde.

Vi viser datastrukturer der understøtter begge typer forespørgsler i mindre end lineær
tid, og gemmer to-dimensionelle punkter i lineær plads og høj-dimensionelle punkter
i næsten-lineær plads. Dette er de første løsninger med (næsten) lineær pladsforbrug.
Vi viser også den første dynamiske løsning med under-lineær forespørgselstid for alle
dimensionaliteter. Tidligere løsninger svarer hurtigere, men kræver meget mere plads.
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Punkter med Vægte i Praksis. Hvis vi tildeler hvert punkt en vægt er det naturligt
at studere problemet tærskeltælling. En løsning til dette gemmer punkterne og under-
støtter at tælle punkterne i et forespørgselsområde med en vægt som overstiger en given
tærskelværdi. Denne type forespørgsel optræder naturligt i software udviklet af Milestone
Systems, og muliggør at finde bevægelse i overvågningsvideo.

Vi implementerer en prototype af et indeks for 3-dimensionelle punkter som bruger
lidt plads og svarer effektivt på forespørgsler. I eksperimenter på realistiske datasæt
bruger vores prototype 10% yderligere plads men svarer mindst 30× hurtigere på fore-
spørgsler sammenlignet med den tidligere løsning. En optimeret løsning af vores indeks
er implementeret i den seneste udgave af softwaren fra Milestone Systems.

Finger-Forgænger. I forgængerproblemet skal vi opbevare en mængde af n heltal fra
et univers af størrelse N og understøtte forespørgsler efter forgængere, som returnerer
det største heltal i mængden som er mindre end et givet heltal q. Vi studerer en varia-
tion hvor en forespørgsler også modtager en finger til et heltal ℓ i mængden, hvorfra en
søgning kan starte. Vi viser en lineær plads datastruktur der svarer på fingerforgænger-
forespørgsler i O(lg lg |ℓ−q|) tid. Dette generaliserer og forbedrer løsningerne til standard
forgænger problemet, som kræver O(lg lg N) tid. Vores datastruktur er den første løsning
med et tidsforbrug der kun afhænger af den numeriske afstand mellem fingeren og fore-
spørgslen.

Dynamiske Delsummer. Det velstuderede delsumsproblem er at gemme en sekvens
af n heltal med understøttelse for forespørgslerne sum og søg. Sekvensen er statisk idet
dens længde ikke kan ændres, men update operationen kan bruges til at ændre værdien
af et givent heltal i sekvensen med en værdi på højst |2δ|. Der er matchende øvre og
nedre grænser for problemet som viser at det kan løses på en Word RAM med w-bit ord i
lineær plads og Θ(lg n/ lg(w/δ)) tid per operation, hvor δ er det maksimale antal tilladt
bits i update.

Som en naturlig generalisering studerer vi dynamiske delsummer, hvor vi tillader ind-
sættelser og sletninger i sekvensen. Vores løsning kræver lineær plads og understøtter
alle operationer i optimal tid Θ(lg n/ lg(w/δ)), som matcher nedre grænser for alle un-
derstøttede operationer. Vores resultat er den første løsning til dynamiske delsummer der
matcher de nedre grænser, og den første til at understøtte at gemme heltal på mere end
lg w bits.
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1 Introduction

In this dissertation, we consider the design and analysis of algorithms and data structures:

Our goal is to use computational resources efficiently. We design data structures and
algorithms that solve problems, and analyse proposed solutions in a model of computa-
tion that lets us predict efficiency and compare different solutions on real computers.

Data Structures are the basic building blocks in software engineering; they are the or-
ganizational method we use to store and access information in our computers efficiently.
An Algorithm specifies the steps we perform to complete some task on an input in or-
der to produce the correct output, relying on underlying data structures. Naturally, deep
knowledge and understanding of algorithms and data structures are core competences
for software engineers, absolutely vital to developing efficient software.

This dissertation documents our research in this field of theoretical computer science,
and later chapters each include one of the following papers that are published in or sub-
mitted to peer-reviewed conference proceedings. Papers appear in separate chapters in
their original form except for formatting, meaning that notation, language and termi-
nology has not been changed and may not be consistent across chapters. Authors are
listed alphabetically as is the tradition in theoretical computer science (except for Index-
ing Motion Detection Data for Surveillance Video, which was published at a multimedia
conference).

Chapter 3: Fingerprints in Compressed Strings.
By Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Benjamin Sach, Hjalte Wedel
Vildhøj and Søren Vind. At Algorithms and Data Structures Symposium (WADS)
2013 [Bil+13].

Chapter 4: Dynamic Relative Compression and Dynamic Partial Sums.
By Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen,
Hjalte Wedel Vildhøj and Søren Vind. In submission.

Chapter 5: Compressed Pattern Matching in the Annotated Streaming Model.
By Markus Jalsenius, Benjamin Sach and Søren Vind. In submission.

Chapter 6: Output-Sensitive Pattern Extraction in Sequences.
By Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani and Søren Vind. At
Foundations of Software Technology and Theoretical Computer Science (FSTTCS)
2014 [Gro+14a].
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Chapter 7: Compressed Data Structures for Range Searching.
By Philip Bille, Inge Li Gørtz and Søren Vind. At International Conference on Lan-
guage and Automata Theory and Applications (LATA) 2015 [Bil+15].

Chapter 8: Colored Range Searching In Linear Space.
By Roberto Grossi and Søren Vind. At Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT) 2014 [Gro+14b].

Chapter 9: Indexing Motion Detection Data for Surveillance Video.
By Søren Vind, Philip Bille and Inge Li Gørtz. At IEEE International Symposium on
Multimedia (ISM) 2014 [Vin+14].

The journal version of the following paper appeared during my PhD enrollment, but
as the results were obtained and the conference version published prior to starting the
PhD programme, the paper is omitted from this dissertation.

String Indexing for Patterns with Wildcards.
By Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj and Søren Vind. At Scandina-
vian Symposium and Workshops on Algorithm Theory (SWAT) 2012 [Bil+12b]. In
Theory of Computing Systems 2014 [Bil+14].

The dissertation is organized as follows. The following Section 1.1 is a brief general
introduction to the field of algorithmic research, and may be skipped by readers familiar
with the subject. Chapter 2 gives an overview of our contributions, and the later Chapters
include the papers mentioned above.

1.1 Background and Context

In his pioneering work “On Computable Numbers, with an Application to the Entschei-
dungsproblem” [Tur36] from 1936, Alan Turing in a single stroke became the father of
the field of theoretical computer science. He gave the first general model of the theoret-
ical capabilities of computers with the Turing Machine, and in doing so formalized the
concept of algorithms. In the following 80 years the computer revolution occurred and
the first institutions devoted to computer science research were established around fifty
years ago, causing the field to naturally expand1. Today, the field is founded on modern
day equivalents of the concepts introduced by Turing:

Algorithms An algorithm is a method for solving a problem on an input which produces
the correct output. The problem is a central concept which states the properties
of the input and requirements for the output. Sorting is a classic example of an
algorithmic problem: given as input a list of numbers, return the same numbers
listed in non-decreasing order.

1In 1965, the Department of Computer Science was founded at Carnegie Mellon University, as possibly the
first such department in the world.
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1.2. Why is this Important?

Data Structures A data structure is a method for maintaining a representation of some
data while supporting operations on the data. Operations typically either update or
answer queries on the stored data. We may think of a data structure as a collection
of algorithms operate on the stored data. An example of a data structure problem is
sorted list representation: store a list of numbers subject to insertions and deletions,
and support queries for the k’th smallest number.

Model of Computation The model of computation2 is an abstract model of a computer
that ignores most real-world implementation details. This allows us to reason about
the performance of algorithms and data structures on real physical computers. The
model of computation we use in this thesis is called the unit-cost w-bit Word RAM,
which resembles the capabilities of modern day processors: memory is modeled
as a sequence of w-bit words that can be read and written, and we can perform
arithmetic and word-operations on (pairs of) words.

Generally, research in a particular problem takes two different angles. One is to prove
that the problem is impossible to solve using fewer resources than some lower bound,
meaning that any solution must use at least that many resources. However, in this thesis
our focus is on the opposite direction, which is to show that there is a solution with some
upper bound on the resources used.

We characterise proposed solutions using several parameters. The output of a (deter-
ministic) solution must always adhere to its requirements and be a correct answer. The
performance of a solution is the amount of resources it requires in our model of compu-
tation relative to the size n of a finite input. Typically, we split the performance into two
components: the space usage is the number of memory words required, and the time is
the number of unit-cost machine operations required. Here, we study worst-case analy-
sis, which is the performance obtained when given an input that causes the solution to
perform as poorly as possible.

There are some problems for which traditional deterministic solutions have inherently
bad worst-case performance. To work around this, randomized solutions relaxes the strict
requirements on correctness or good worst-case performance. Instead, Monte Carlo solu-
tions have worst-case performance guarantees with a low probability of producing incor-
rect outputs. On the contrary, Las Vegas solutions always produce correct outputs with a
low risk of exhibiting bad performance for some inputs.

1.2 Why is this Important?

We now give a slightly contrived example that serves to illustrate why studying algo-
rithms and data structures is important. It shows two different possible solutions for the
fundamental dictionary data structure problem, and indicates how we can calculate their
(relative) performance.

2Also sometimes called the machine model.
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1. INTRODUCTION

Imagine that you want to look up the word “Dissertation” in The Oxford English
Dictionary in the physical book version from 1989. You remember that you used to
perform this kind of query before the internet, so you would know to go to a page
roughly in the middle and see if you had surpassed the entries for “D”. If so, you
would go to the middle part in the left half and continue like that. The property of the
dictionary you use is that dictionary editors traditionally sort the entries.

However, suppose that the editors forgot to sort the words before printing your
dictionary: How would you find the entry? Your only possibility would be to start on
the first page and check each entry it contains. This is unfortunate: You risk that the
entry is on the last page in the dictionary, forcing you to look at all pages!

The 1989 Oxford English Dictionary consist of 20 volumes with 21730 pages that
contain about 300000 entries. If you can check 1 entry per second the normal (sorted)
search would complete in less than 20 seconds, but the second (unsorted) search
would require slightly more than 83 hours. That is, your normal search is roughly
16000 times faster than the unsorted search!

Our sorted or unsorted dictionary is a good model of how we may store data in
our computer, and the search for a word is called a membership query. In computer
science the first (sorted) search is called a binary search, and it can be performed
exactly when the data we search in is sorted. Otherwise we must perform a linear
search like the second (unsorted) search.

Structuring data in an ordered fashion to help search is of course not a new invention
from computer science. The alphabetic ordering of information dates back at least two
thousand years, and the first monolingual English dictionary from 1604 was also ordered
alphabetically3. The example simply shows two simple possibilities for structuring data:
the remainder of this dissertation discuss much more advanced data structuring tech-
niques and algorithms for finding information in the structured data. As shown in the
example, the difference in performance is dramatic, and it only grows with larger data
sets. This is the main motivation for studying algorithms and data structures: we have to
use clever algorithmic techniques to cope with the ever growing quantities of data.

3Interestingly, the alphabetic ordering was unusual enough to require an explanation from the editor.
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2 Contributions

This chapter gives a brief overview of our contributions and shows how they fit in the
larger world of algorithms and data structures. It is meant to describe important related
problems from our perspective, not to provide an exhaustive history of the field. Each of
the following chapters contain a paper on a problem related to either strings or points.
We describe the contributions n the same order as the chapters, and finally present our
additional contributions to data structures for integers.

Our included papers each contribute at least one newly-designed data structure for
particular problem. In some instances, the data structure is a cornerstone in giving a
solution to an algorithmic problem, while in other cases it is the singular contribution. All
but one of the papers are purely theoretical, meaning that though they may perform well
in practice, their efficiency are only established in theory. In a single case, the proposed
data structure was implemented and tested experimentally on realistic data sets.

2.1 Model of Computation

The computation model used in all papers is the unit-cost w-bit Word RAM [Hag98],
which models memory as an array of w-bit words that can each be read and written in
constant time. To be able to index into the memory array in constant time, we require
w ≥ lg n where n is the problem size. Comparisons, arithmetic operations and common
word-operations (as available in the C programming language) each take constant time.

2.2 Strings

A string (or text) is a sequence of characters from some alphabet. Classically, we store the
sequence as is, with each character taking up a single word in memory. Text is core data
abstraction that naturally appears in countless applications, for example in log files, text
documents or DNA sequences such as AGCAATTTGACCTAGATA.

We may also consider storing strings in compressed form. Phrase compression1 is a
standard form of compression, where the text is compressed into a sequence of phrases
that may each be an extension of some previous phrase in the sequence. When dealing
with compressed text, we denote by n the size of the compressed text (equal to the
number of phrases), and let N be the size of the decompressed text.

Typically, encoding in a phrase-compression scheme processes a text from left to right,
maintaining a growing dictionary of phrases that was used to encode previous parts of the
text, which may be extended. Decompression of the whole string is simple, but it is not

1Also sometimes called grammar compression.
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straightforward to access a single character, as phrases may be recursively defined (i.e.
they extend on each other), requiring us to process many phrases to access a character.

We include four papers on string problems. First, we study compressed fingerprints,
which provide a useful primitive for designing algorithms that work efficiently on most
types of phrase compression. Second, we consider dynamic compression, which is to effi-
ciently maintain a compressed representation of a string subject to insert, delete, replace
and random access operations on the string. Third, we study the compressed pattern
matching problem, which is to find the occurrences of a given pattern in a given com-
pressed text (i.e. the starting positions where a substring of the text matches the pattern).
Finally, we consider pattern extraction, which may be considered the opposite of pattern
matching. It is to extract unknown and important patterns from a given text, where im-
portance is measured as the number of occurrences of the pattern in the text.

2.2.1 Compressed Fingerprints

In 1987, Karp and Rabin [Kar+87] proposed a classic Monte Carlo randomized pattern
matching algorithm for uncompressed text of length N . Their approach rely on finger-
prints to efficiently compare substrings, allowing one-sided errors: all occurrences will
be reported, but there is a small risk of reporting occurrences that do not exist. Their
fingerprints have subsequently been used as a cornerstone in solving many string prob-
lems [Ami+92; And+06; Col+03; Cor+05; Cor+07; Far+98; Gas+96; Kal02; Por+09].

The Karp-Rabin fingerprint function ϕ for a string x is given by

ϕ(x) =
∑|x |

i=1 x[i] · c i mod p,

where c < p is a randomly chosen positive integer, and p is a prime. If choosing prime p
sufficiently large compared to the length of x , we get multiple key properties that make
fingerprints extremely useful:

1. they support composition in constant time, allowing us to find the fingerprint of a
string from the fingerprints of two halves,

2. each fingerprint can be stored in constant space,

3. equal strings have equal fingerprints, and different strings have different finger-
prints with high probability.

An similarly fundamental string primitive is called longest common extensions (LCE),
used in many string algorithms as a black box (see for example [Ami+92; And+06;
Col+03; Cor+05; Cor+07; Far+98; Gas+96; Kal02; Por+09]). The answer to an LCE query
on a string s is the length of the longest matching substring in s starting from two given
positions positions.

For uncompressed strings, both fingerprints and answers to LCE queries can be re-
trieved in constant time and linear space (as well as random access to a character).
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2.2. Strings

Our Contribution: Fingerprints for Compressed Strings The paper considers strings
of length N that are compressed into a straight line program (SLP) with n rules. The SLP
is a general phrase compression scheme that captures many compression schemes with
low overhead. That is, it efficiently models many other types of phrase compression, such
as the LZ family schemes invented by Lempel and Ziv [Ziv+77; Ziv+78].

We present a data structure for storing a SLP in linear compressed space O(n) that
supports answering fingerprint queries that returns the Karp-Rabin fingerprint of any de-
compressed substring of the compressed string in O(lg N) time. Our structure also sup-
ports answering LCE queries in time O(lgℓ lg N) correctly with high probability. We also
give a modified data structure that works for Linear SLPs, which restricts SLPs to model
compression schemes such as LZ78 [Ziv+78] with constant overhead. Here, we show
that fingerprints can be obtained in improved time O(lg lg N) and O(n) space, and we
support LCE queries in O(lg lg N + lgℓ lg lgℓ) time. Our data structure for general SLPs
matches the query time of a structure by Gagie, Gawrychowski, Kärkkäinen, Nekrich and
Puglisi [Gag+12a] which only answers queries in balanced SLPs.

The property we exploit is that any fingerprint can be composed from many smaller
fingerprints that we store in the data structure. To obtain linear (compressed) space,
we use techniques introduced in a seminal paper by Bille, Landau, Raman, Sadakane,
Satti, and Weimann [Bil+11] where they showed how to store a SLP in linear space to
support random access to a character in the decompressed string in O(lg N) time. We use
our fingerprints for substring comparisons to answer LCE queries using an exponential
search followed by a binary search.

The consequence of our result is that (probabilistically) comparing two substrings can
be done in the same time as accessing a single character in SLPs. This is the same situation
as for uncompressed strings, though both operations have a logarithmic slowdown for
compressed strings. Our result immediately implies compressed space implementations
of all previous algorithms relying on access to Karp-Rabin fingerprints or LCE queries.

Future Work For uncompressed strings, it is possible to answer both random access,
fingerprint and LCE queries in constant time. This is contrary to the situation for SLPs,
where we are able to answer only the first two queries in the same time O(lg N), and
the best solution for answering LCE queries take O(lg2 N) time. Solving this disparaty
for LCE queries is an obviously interesting research direction.

For random access in SLPs Verbin and Yu [Ver+13] gave a lower bound showing that
the result of [Bil+11] is almost optimal for most compression ratios. A natural question
is if optimal structures exist for all compression ratios, and if fingerprint queries can be
improved similarly.

2.2.2 Dynamic Compression

Classically, we store a string as a sequence of characters that each require a word, giving
support for basic operations in constant time. For example, given a string s and a position
i, we can access the character s[i] or replace it with another alphabet symbol. We may
also consider more complicated operations, such as deleting or inserting a character in

9
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a string. Intuitively, because these operations cause all characters after the inserted or
deleted character to have their position changed, such operations require superconstant
time. Indeed, Fredman and Saks [Fre+89] gave a lower bound of Ω(lg n/ lg lg n) time per
operation for supporting access, insert and delete in a string of length n.

When storing compressed strings, we normally do not support dynamic operations.
The intuitive reason is that we use redundancy in the string to compress it efficiently,
and any such redundancy can be removed by operations that change the compressed
string. For example, it can be shown that an SLP for a string s may double in size if
inserting a character in the middle of s. However, a number of results show that it is
possible to maintain an entropy-compressed string representation under some dynamic
operations. In particular, the structure of Grossi, Raman, Rao and Venturini [Gro+13]
supports access, replace, insert and delete in optimal O(lg n/ lg lg n) time and kth order
empirical entropy space (plus lower order terms), which is always Ω(n/ lg n) words.

Recently, the relative compression scheme originally suggested by Storer and Szyman-
ski [Sto+78; Sto+82] has gained significant interest due to its performance in practice.
Here, we store an uncompressed reference string, and strings are compressed into a se-
quence of substrings from the reference string. It has been shown experimentally that
variations of their general scheme such as the Relative Lempel-Ziv compression scheme
exhibit extremely good performance in applications storing a large dictionary of sim-
ilar strings such as genomes [Fer+13; Kur+11a; Che+12; Do+14; Hoo+11; Kur+11b;
Wan+13; Deo+11; Wan+12; Och+14].

Our Contribution: Dynamic Relative Compression and Dynamic Partial Sums We
present a new dynamic variant of relative compression that supports access, replace,
insert and delete of a single character in the compressed string. Our data structure main-
tains an asymptotically optimal compression of size n, storing a compressed string of
(uncompressed) length N relative to a given reference string of length r. Operations are
supported in:

1. almost-optimal time O(lg n/ lg lg n+ lg lg r) and linear space O(n+ r), or

2. optimal time O(lg n/ lg lg n) and almost-linear space O(n+ r lgε r).

Crucially, our result can be easily generalized to store multiple strings compressed
relative to the same reference string. Interestingly, the bounds we obtain almost match
those for uncompressed strings. That is, we can store our strings in compressed form with
almost no overhead for insert and delete operations. This is the first dynamic compression
result that ensures asymptotically optimal grammar-based compression, with previous
approaches only providing entropy compression. Our result implies an improved solution
to the dynamic text static pattern matching problem studied by Amir, Landau, Lewenstein
and Sokol [Ami+07].

The difficulty in solving the problem comes from the new dynamic operations that
change the string, forcing us to modify the representation. This may break both our
desired time bound for operations and our asymptotically optimal compression ratio.
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Our solution rely on two key properties: 1) modifications are local and can be reduced
to accessing and changing at most five substrings in the compression sequence; and 2)
a maximal compression is enough to maintain an asymptotically optimal compression
relative to a given reference string. This lets us solve the problem by reducing it to two
core data structure problems. First, we ensure compression maximality by detecting if
neighboring substrings among the five touched substrings can be merged into one. To
support efficient access operations, we maintain the dynamically changing sequence of
substring lengths. These data structure problems are known as substring concatenation
and dynamic partial sums, and we give new general solutions that significantly improve
on previous solutions to both.

In substring concatenation, we must preprocess a text of length r to support queries
asking for an occurrence of a substring of the text which is the concatenation of two other
substrings in the text (if it exists). We show two different solutions. The first requires
O(lg lg r) time and linear space and is a simple application of some of our previous
work [Bil+14]. The second solution requires constant time and O(r lgε r) space, reducing
the problem to answering one-dimensional range emptiness queries on nodes of a suffix
tree. We describe our dynamic partial sums data structure in Section 2.4.2.

Future Work A natural question is if we can get the best of both worlds for substring
concatenation queries, answering queries in constant time and linear space? Such a data
structure can be plugged into our current solution for dynamic relative compression, re-
sulting in a linear space and optimal time solution that closes the problem. The presented
compression scheme is relatively simple, and an experimental performance comparison
against other possible approaches would be highly interesting.

2.2.3 Compressed Pattern Matching

A classic string problem is pattern matching, where we must find occurrences of a pattern
in a text. Traditionally a pattern consist of characters from the same alphabet as the
text, and a pattern occurrence is the location of a substring in the text that is equal to the
pattern. In compressed pattern matching, the text of length N is compressed into n phrases
and we must report the occurrences of a pattern of length m in the decompressed text.

Good solutions exist for both the classic and compressed problem. There are multi-
ple optimal solutions to the classic variant, some of which even work in the streaming
model [Mun+80; Fla+85; Alo+99]. In this model of computation, the text is received in a
stream one character at a time, only sublinear space o(N) is allowed and we must report
occurrences immediately. Known solutions for compressed pattern matching do not work
in the streaming model. In fact, there is a space lower bound for compressed pattern
matching in the streaming model, showing that it requires Ω(n) space.

In order to model the current state of affairs in computing with easy access to mas-
sive computational power over the internet, the annotated streaming model introduced
by Chakrabarti, Cormode and McGregor [Cha+09; Cha+14] expands the classic stream-
ing model by introducing an untrustworthy annotator. This annotator is a theoretical
abstraction of “the cloud”, with unbounded computational resources and storage, and it
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assists a client in solving some problem by providing an annotated data stream that is
transmitted along the normal input stream (i.e. the client-annotator communication is
one-way). Software and hardware faults, as well as intentional attempts at deceit by the
annotator are modeled by assuming that the annotator cannot be trusted. In this model,
the relevant performance parameters are the client space, the time to process a phrase
and the amount of annotation sent per input element.

Our Contribution: Compressed Pattern Matching in the Annotated Streaming Model
We give a randomized trade-off solution to compressed pattern matching in the anno-
tated streaming model which require O(lg n) space on the client, and uses O(lg n) words
of annotation and time per phrase received (at one end of the trade-off). The result is
possibly the first to show the power of the annotator in solving traditional problems on
strings (existing work in the model focuses on graph algorithms). The implication of
the result is that the power of the annotator is highly useful even though it cannot be
trusted. In particular, our solution circumvent the Ω(n) space lower bound at the cost of
annotation.

We solve the problem by a careful application of techniques for pattern matching
in compressed strings, providing a simple initial solution in linear space and constant
time per phrase with no annotation. We reduce the space use with a new randomized
annotated data structure that generally allows us to trade client space for annotation,
allowing us to store and access arbitrary information in logarithmic client space with
logarithmic annotation overhead.

Future Work There are multiple natural directions to go in extending our work in the
annotated streaming model. Results that decrease the amount of annotation per input
element would be of great interest. It seems likely that our result can be extended to
dictionary matching, where matches with any pattern from a dictionary of patterns must
be reported.

Pattern matching for more powerful pattern such as regular expressions may be worth
investigating. Intuitively, access to an untrusted annotator with unbounded computa-
tional power should help, as finding such patterns typically require more resources than
classic patterns.

2.2.4 Pattern Extraction

In pattern extraction, the task is to extract the “most important” patterns from a text S.
We define the occurrence of a pattern in S as in pattern matching, and the importance of
a pattern depends on its statistical relevance like its number of occurrences.

Pattern extraction should not be confused with pattern matching. In fact, we may
consider the problems inverse: the former gets a text S as input and extracts patterns P
and their occurrences from S, where both are unknown (and P meets some criteria); the
latter gets S and a given pattern p as input, and finds unknown occurrences of p in S.

As is the case in pattern matching, one can imagine many ways of generalizing the
standard patterns which consist of text characters, making the problem more real-world
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applicable. Indeed, many approximate pattern variations and measures of importance
exist in the pattern extraction world [Com+13; Cun+12; Apo+11; Fed+14; Esk04; Ili+05;
Gro+11; Sag98; Ukk09; Ari+07]. The natural variation we study allows patterns that
contain the special don’t care character ⋆, which means that the position can be ignored
(so ⋆ matches any single character in S). For example, TA ⋆ C is such a pattern for DNA
sequences that e.g. matches strings TATC and TAGC.

Our Contribution: Output-Sensitive Pattern Extraction in Sequences We consider ex-
traction of patterns with at most k don’t cares and at least q occurrences. We call such
patterns motifs and note that both k and q are input parameters. More precisely, we show
how to extract maximal motifs, meaning that we do not report motifs that can be made
more precise (by extending them or replacing a don’t care by an alphabet symbol) with-
out losing occurrences. We extract all maximal motifs in O(nk+ k3occ) time and space,
where occ is the their total number of occurrences.

In comparison, existing approaches require polynomial time in n to report each pat-
tern. That is, we give the first truly output-sensitive bounds for any approximate variation
of the pattern extraction problem (we note that k is typically a small constant). This is
in the data structure sense of output-sensitivity where the time to output a single oc-
currence cannot depend on the size of the input. Our algorithm is relatively simple to
implement, but the analysis is complex.

We suggest an index called a motif trie that compactly stores the set of all maximal
motifs M. Each (maximal) motif can be represented as O(k) characters from a motif
alphabet. The motif trie uses this property to store M in a generalized suffix tree, repre-
senting motifs using the motif alphabet. Note that it is easy to extract M from the motif
trie and the difficulty is how to construct it efficiently. We do so level-wise, using an or-
acle that reveals the children of a node efficiently using properties of the motif alphabet
and one-dimensional intervals. To determine the time spent by our algorithm, we use a
novel analysis that amortizes the construction cost for the entire trie over the number of
occurrences it stores.

A Curious Result This result started not as a theoretical piece of work, but as an imple-
mentation. Roberto Trani was a student of Roberto Grossi who created a high-performing
pattern extraction implementation. The approach was relatively simple, but analyzing
why it had such good performance turned out to be complicated. The presented result is
a theoretical algorithm that uses some of the originally implemented ideas and extend
them to be able to prove worst-case time bounds. Interestingly, the history of the result
indicates that (a variant of) the solution performs well in practice, though the presented
version has not been implemented.

Future Work The motif trie is a natural construction, and our construction algorithm
may be used to create other similar indices. Interestingly, the presented algorithm is
essentially a slow way to generate a traditional suffix tree. A natural question is if a
similar construction and analysis can help understand the frequent itemset problem, which
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is to extract frequently occurring subsets of items from a collection of sets of items. Here
algorithms also perform bad in the worst case, but often have reasonable performance in
practice.

2.3 Points

Much real world data such as locations of landmarks, visual data, or visitors to web-
sites contains natural spatial information. Though it has no immediate spatial informa-
tion, even more data can be represented spatially. For example, each row in a relational
database may be thought of as a multidimensional point (with one dimension for each
column). Consequently, geometric data structures is an important and well-studied re-
search topic.

One of the core problems is orthogonal range searching, where we must store a set of
d-dimensional points P, possibly with support for point insertions or deletions. There are
two standard types of queries that takes as input a d-dimensional rectangle R. A reporting
query must return a list of points from P contained in R, and the answer to a counting
query is the number of points from P contained in R. Reporting query times have a
necessary occ term, which is the time spent listing the points in the output. We note that
the range searching problems are relatively well-understood for two-dimensional points,
but there are many open questions for the high-dimensional variants.

Three included papers consider variations of range searching for points in at least two
dimensions. First, we consider compressed range searching, which is to store the points
in a compressed form while supporting standard range searching queries. Second, we
study colored range searching where the points each have a single color and a query
answer must list or count the distinct colors inside a query rectangle. Finally, we give
experimental results on supporting threshold range counting, where each point has a
weight and we must count the points exceeding some weight threshold inside a query
rectangle.

2.3.1 Compressed Point Sets

The orthogonal range searching problem has been studied extensively over the last 40
years, with a variety of classic solutions [Ben75; Ben79; Ore82; Ben+80; Lue78; Lee+80;
Gut84; Cla83; Kan+99; Kre+91; Gae+98; Bay+72; Arg+08; Rob81; Pro+03; Com79;
Epp+08] (Samet presents an overview in [Sam90]). They typically store the points in
a tree, using a strategy for dividing the d-dimensional universe into smaller areas and
possibly storing multiple copies of the same point to answer queries efficiently.

The point set may contain geometric repetitions, that is, copies of point subsets that
are identical to each other but where each copy is offset by some translation vector.
Range searching on such points sets arise naturally in several scenarios such as data and
image analysis [Tet+01; Paj+00; Dic+09], GIS applications [Sch+08; Zhu+02; Hae+10;
Dic+09], and when compactly representing sparse matrices and web graphs [Gal+98;
Bri+09; Gar+14; Ber+13].
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Our Contribution: Compressed Data Structures for Range Searching We show how
to exploit geometric repetitions to compress almost all classic data structures based on
trees. We show that any query on the original data structure can be answered by simula-
tion on the compressed representation with only constant overhead.

We give a tree model that capture almost all classic range searching data structures
with constant overhead. We then show how to represent this model efficiently, compress-
ing it using a minimal DAG representation. As the classic data structures are not designed
to be compressed, they may be un-compressible even though the underlying point set is.
To compensate for this, we also give a new hierarchical clustering algorithm ensuring
that geometric repetitions are indeed compressed (under certain constraints). The result
is a new compressed data structure.

Future Work Our clustering algorithm requires O(N2 lg D) time to cluster N points
with a maximum distance of D between points. This is prohibitive for large point sets,
and improvements would be interesting. Furthermore, the clustering algorithm may be
modified to allow good clustering of more point distributions, such as subsets of points
that are identical under rotation or scaling. Our general tree model supports storing such
repetitions (if they can be described by a constant number of words per edge). An open
question is how to efficiently find such repetitions and construct a corresponding tree.

2.3.2 Points with Colors

We consider colored range searching as a natural variation of range searching where each
point has a single color. Colors are picked from some color alphabet, and two points can
have the same color. The problem is sometimes called generalized or categorical range
searching, as we can think of the colors as categories assigned to the points. Queries ask
for information about the distinct colors of points contained in a query range R (instead
of the actual points). That is, an answer to a reporting query is the distinct colors in R,
and a counting query must return the number of distinct colors in R.

Known solutions to colored range searching have much worse query performance
than their non-colored counterparts. Intuitively, this is because points in the query range
may have non-unique colors, meaning that additional filtering is required to output dis-
tinct color information. Observe that we can always obtain linear space and time by
simply storing the points in a list and scanning through it to find distinct colors of points
in the range.

Curiously, colored counting is considered harder than colored reporting as the former
problem is not decomposable: an answer cannot be determined from the number of col-
ors in two halves of the query range. This is opposed to reporting, where an answer can
be obtained by querying smaller parts of the range, merging the results and removing
duplicates. For the standard problems both types of queries are decomposable, and solu-
tions to counting are generally most efficient. Kaplan, Rubin, Sharir and Verbin [Kap+07]
give a hardness reduction which shows that a solution to two dimensional colored range
counting in polylogarithmic time per query and O(n polylg n) space would improve the
best known matrix multiplication algorithm. This would be a major breakthrough, and
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the reduction suggest that even in two dimensions, no polylogarithmic time and almost-
linear space solution for counting may exist.

Our Contribution: Colored Range Searching in Linear Space Our goal is to give data
structures that support both types of queries in little space. We give the first linear space
data structure for two-dimensional points that answers queries in sublinear time. We
also give a high-dimensional structure with almost-linear space of O(n lg lgd n) and the
first dynamic solutions for any dimensionality. This can be compared to previous results
that have large space use of Ω(nd) for counting and Ω(n lgd−1 n) for reporting to get
polylogarithmic query bounds.

Our result is obtained by partitioning points into groups with logarithmiccally many
color. We further partition each group into buckets, each containing a polylogarithmic
number of points. The points in each bucket are stored in a modified range tree data
structure with color information stored in auxiliary data structures for each node. To
answer a query, we solve the problem independently in each bucket and merge bucket
results.

Future Work The colored range searching problem has many interesting loose ends
and possible variations. First, the hardness result in [Kap+07] indicates that it may be
possible to achieve “real” large lower bounds for colored range counting. Second, if fo-
cusing on upper bounds, improved query bounds in little space or with some restriction
on the number of colors would be very interesting. We believe that especially the two-
dimensional case can be improved by tabulating answers for small sets of points. An open
question is if there is a linear space data structure with sublinear query time for at least
3 dimensional points?

2.3.3 Points with Weights in Practice

Another natural variation of range searching arise if points each have an integer weight.
We may consider threshold queries asking us to report or count the number of points in a
query area where the weight of each reported point must exceed some threshold.

To the best of our knowledge, no previous work has been done on obtaining results
for this particular variation of range searching. However, we can think of the weight as a
coordinate in a new integer dimension and the queries as being unbounded in one direc-
tion in that new dimension. This allows us to use known range searching data structures
to answer queries at the expense of increasing the dimensionality of the points stored.
Other related work show how to count the sums of weights [Cha90], or how to report
the top-k heaviest points inside a query area [Rah+11].

Our Contribution: Indexing Motion Detection Data for Surveillance Video We sug-
gest a data structure for 3-dimensional points that supports threshold range counting
queries. Our data structure is in turn used to answer motion detection queries on video
from a statically mounted surveillance camera to find “interesting clips” that contain a
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lot of motion in an area of the frame. The problem appears in a software system by
Milestone Systems, and in our paper we give experimental results on an implemented
prototype.

To see why threshold range counting can help answer motion detection queries, ob-
serve that each pixel in 2-dimensional grayscale video from a surveillance camera may
be considered a weighted 3-dimensional point (the timestamp in the video is the third di-
mension). The difference between two frames in the video is a matrix with large weights
in areas where many pixels changed value by a lot, meaning that something significant
happened. By storing such pixel differences a large answer to threshold range counting
implies motion in the video.

Our solution reduces the resolution of allowed queries. It stores histograms that sum-
marize information from the video and allow us to answer queries efficiently. The his-
tograms are stored in compressed form on disk to reduce the space use.

The previous solution implemented by Milestone Systems answered queries by de-
compressing the entire relevant portion of the compressed video file and computing the
answer from the decompressed frames. We implemented a prototype of our solution in
Python and performed a number of experiments with realistic data sets. The index is
space-efficient in practice (using around 10% of space required by the video file), quick
to construct and answers queries efficiently (speedup of at least a factor 30).

Real World Implications A modified version of the suggested solution is in use by
Milestone Systems. Their implementation is a restricted and optimized version of the
prototype, implementing automatic noise detection to filter out image noise. This allows
them to reduce the query resolution further. The end result is a performance improve-
ment of a factor 100 compared to their previous solution, for a space requirement of
about 1KB per second of video. The new data structure has enabled them to use the
search function as an integral part of their product, as it can now deliver results in real
time. This is contrary to previously where it was so slow that it was useless in practice.

Future Work The reason we study threshold range searching in the first place is that
data structures for storing moving points are quite complicated and seem to perform
relatively poorly in practice. What we actually want is a simple kinetic data structure
that supports efficient threshold queries: does such a structure exist?

2.4 Integers

An important and particularly well-studied area of data structure research is integer data
structures. Generally, we must store a sequence of n integers, here denoted X , and support
operations on the sequence2. In our work, we suggest new solutions to variants of two
core problems called predecessor and partial sums.

2Sometimes we consider sets of integers, but to unify our presentation we here only discuss sequences.
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2.4.1 Finger Predecessor

We must store a sequence X of n integers to support the predecessor query pred(q), re-
turning the largest element in X smaller than q. The successor query succ(q), returning
the smallest element larger than q, must also be supported. Elements in X are drawn
from a universe of size N (remember that w ≥ lg N). A line of papers by van Emde Boas,
Kaas and Zijlstra; Johnson; and Willard [Emd+76; Emd77; Wil83; Joh81] showed the
existence of data structures for the problem with O(lg lg N) = O(lg w) query time and
O(N) space use. Later, Mehlhorn and Näher [Meh+90] showed how to reduce the space
use to O(n) by using perfect hashing. The resulting data structure additionally supports
insertions and deletions in the sequence in O(lg lg N) expected time.

A finger search tree supports finger predecessor queries, which is a predecessor query
where the data structure is given a reference to an existing element ℓ ∈ X to start the
search from. Dietz and Raman [Die+94] showed that queries, insertions and deletions in
such a tree can be supported in time O(lg d), where d is the number of integers between
the query answer and ℓ. Andersson and Thorup [And+00] subsequently improved the
query time to O(

p
lg d/ lg lg d).

Our Contribution: Fingerprints in Compressed Strings We give a new data structure
for answering finger predecessor queries in bounds that depend on the absolute distance
between the query integer q and the finger ℓ. For this variation, we give a solution sup-
porting insertions and deletions with query time O(lg lg |ℓ−q|), which is an improvement
over the general solution when the reference element is close to the query point. Our
data structure is used in the paper to reduce the query time for multiple close queries to
improve the time to answer LCE queries.

Future Work A new result by Pătraşcu and Thorup [Păt+14] essentially closes the clas-
sic variant of the predecessor problem, and existing structures are optimal in almost all
cases. It is an open problem to construct optimal succinct solutions that use space pro-
portional to the information theoretic lower bound.

2.4.2 Dynamic Partial Sums

In the partial sums problem, we must store a sequence X of n integers to support three
operations: update the value of an integer at position i by adding some value∆ to it, find
the sum of the first i elements, and search for the smallest sum larger than some integer q.
It is natural to consider the search operation as a successor query among the prefix sums
of X . The problem is extremely well-studied, with many papers studying variations and
showing improved upper and lower bounds [Die89; Ram+01; Hus+03; Fre+89; Hon+11;
Hus+96; Fen94; Păt+04; Cha+10]. In 2004, Pătraşcu and Demaine [Păt+04] gave a linear
space solution in the w-bit Word RAM model with optimal query time O(lg n/ lg(w/δ))
per operation and showed a matching lower bound. They restrict the possibly negative
∆ argument to the update operation to be at most δ bits, so |∆| ≤ 2δ, and show that
δ = o(lgε n) for a solution to be faster than O(lg n) time per operation.
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Dynamic partial sums is a generalization of partial sums where we must additionally
support insertions and deletions of integers, changing the length of X . However, almost
no solutions include support for such modifications, though individual integers can be
updated. The only known solutions to dynamic partial sums are by Hon, Sadakane and
Sung [Hon+11] and Navarro and Sadakane [Nav+14]. Their solutions are succinct and
use O(lg n/ lg lg n) time per operation, but only work for sequences of small integers of
at most lg w bits. This is exponentially smaller than the w-bit integers supported in the
static data structure by Pătraşcu and Demaine [Păt+04].

Our Contribution: Dynamic Relative Compression and Dynamic Partial Sums We
give a new linear space data structure for the dynamic partial sums problem that ad-
ditionally supports splitting and merging neighboring integers in sequence X . Our data
structure is the first to support full w-bit integers, and it supports all operations in opti-
mal worst-case time O(lg n/ lg(w/δ)), matching the lower bound for non-dynamic partial
sums of Ω(lg n/ lg(w/δ)) time per operation by Pătraşcu and Demaine [Păt+04].

Since insert and delete can be used to implement update, the lower bound implies
that the new operations are supported in optimal time, and the δ update restriction
implies that only integers smaller than 2δ can be inserted or deleted. Any dynamic partial
sums solution solves list representation (support access, insert and delete on a list), and
we match the lower bound of Ω(lg n/ lg lg n) due to Fredman and Saks [Fre+89] for
elements of δ ≤ lgε n bits where ε< 1. This is optimal when also supporting sum.

The main difficulty in supporting modifications is that indices may change, which
causes elements in the sequence to shift left or right. Our data structure builds and im-
proves on the techniques used by Pătraşcu and Demaine [Păt+04] in their non-dynamic
optimal-time data structure. They precompute sums and store them in an array coupled
with a small data structure for updates. This supports all non-dynamic operations in
constant time for small sequences of polylogarithmic length, and a standard reduction
is used to store the full sequence in a B-tree. In our construction we first simplify their
approach, only storing some representative elements in a dynamic predecessor data struc-
ture by Pătraşcu and Thorup [Păt+14]. All other elements are stored in a small update
data structure. We then show how to modify this representation to efficiently support
insertions and deletions, changing the way we store representatives and supporting mod-
ifications on the update data structure.

Future Work Our new data structure almost closes the dynamic partial sums problem,
matching amortized lower bounds for all operations. Two open problems remain. First, as
the lower bounds are amortized, some operations may be implementable in less time: for
example, Chan and Pătraşcu [Cha+10] give a linear space solution to the non-dynamic
variant with a faster increment/decrement update operation and optimal query time for
sum. Second, our data structure uses linear space in words. Though succinct solutions ex-
ist for the partial sums problem, previous solutions to dynamic partial sums only support
very small integers, so a natural question is if our data structure can be made succinct.
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3 Fingerprints in Compressed Strings
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Abstract

The Karp-Rabin fingerprint of a string is a type of hash value that due to its
strong properties has been used in many string algorithms. In this paper we show
how to construct a data structure for a string S of size N compressed by a context-
free grammar of size n that answers fingerprint queries. That is, given indices i and
j, the answer to a query is the fingerprint of the substring S[i, j].

We present the first O(n) space data structures that answer fingerprint queries
without decompressing any characters. For Straight Line Programs (SLP) we get
O(lg N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 com-
pression and its variations) we get O(lg lg N) query time. Hence, our data structures
has the same time and space complexity as for random access in SLPs. We utilize the
fingerprint data structures to solve the longest common extension problem in query
time O(lg N lgℓ) and O(lgℓ lg lgℓ + lg lg N) for SLPs and Linear SLPs, respectively.
Here, ℓ denotes the length of the LCE.
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3. FINGERPRINTS IN COMPRESSED STRINGS

3.1 Introduction

Given a string S of size N and a Karp-Rabin fingerprint function ϕ, the answer to a
FINGERPRINT(i, j) query is the fingerprint ϕ(S[i, j]) of the substring S[i, j]. We consider
the problem of constructing a data structure that efficiently answers fingerprint queries
when the string is compressed by a context-free grammar of size n.

The fingerprint of a string is an alternative representation that is much shorter than
the string itself. By choosing the fingerprint function randomly at runtime it exhibits
strong guarantees for the probability of two different strings having different fingerprints.
Fingerprints were introduced by Karp and Rabin [Kar+87] and used to design a random-
ized string matching algorithm. Since then, they have been used as a central tool to
design algorithms for a wide range of problems (see e.g., [Ami+92; And+06; Col+03;
Cor+05; Cor+07; Far+98; Gas+96; Kal02; Por+09]).

A fingerprint requires constant space and it has the useful property that given the
fingerprints ϕ(S[1, i − 1]) and ϕ(S[1, j]), the fingerprint ϕ(S[i, j]) can be computed
in constant time. By storing the fingerprints ϕ(S[1, i]) for i = 1 . . . N a query can be
answered in O(1) time. However, this data structure uses O(N) space which can be expo-
nential in n. Another approach is to use the data structure of Ga̧sieniec et al. [Gas+05]
which supports linear time decompression of a prefix or suffix of the string generated by
a node. To answer a query we find the deepest node that generates a string containing
S[i] and S[ j] and decompress the appropriate suffix of its left child and prefix of its
right child. Consequently, the space usage is O(n) and the query time is O(h+ j − i),
where h is the height of the grammar. The O(h) time to find the correct node can be
improved to O(lg N) using the data structure by Bille et al. [Bil+11] giving O(lg N+ j− i)
time for a FINGERPRINT(i, j) query. Note that the query time depends on the length of the
decompressed string which can be large. For the case of balanced grammars (by height
or weight) Gagie etal. [Gag+12a] showed how to efficiently compute fingerprints for
indexing Lempel-Ziv compressed strings.

We present the first data structures that answer fingerprint queries on general gram-
mar compressed strings without decompressing any characters, and improve all of the
above time-space trade-offs. Assume without loss of generality that the compressed string
is given as a Straight Line Program (SLP). An SLP is a grammar in Chomsky normal form,
i.e., each nonterminal has exactly two children. A Linear SLP is an SLP where the root
is allowed to have more than two children, and for all other internal nodes, the right
child must be a leaf. Linear SLPs capture the LZ78 compression scheme [Ziv+78] and its
variations. Our data structures give the following theorem.

Theorem 3.1.1. Let S be a string of length N compressed into an SLP G of size n. We can
construct data structures that support FINGERPRINT queries in:

(i) O(n) space and query time O(lg N)

(ii) O(n) space and query time O(lg lg N) if G is a Linear SLP

Hence, we show a data structure for fingerprint queries that has the same time and space
complexity as for random access in SLPs.
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Our fingerprint data structures are based on the idea that a random access query for i
produces a path from the root to a leaf labelled S[i]. The concatenation of the substrings
produced by the left children of the nodes on this path produce the prefix S[1, i]. We
store the fingerprints of the strings produced by each node and concatenate these to get
the fingerprint of the prefix instead. For Theorem 3.1.1(i), we combine this with the fast
random access data structure by Bille et al. [Bil+11]. For Linear SLPs we use the fact that
the production rules form a tree to do large jumps in the SLP in constant time using a
level ancestor data structure. Then a random access query is dominated by finding the
node that produces S[i] among the children of the root, which can be modelled as the
predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using finger
searching techniques. Specifically, a finger for position i in a Linear SLP is a pointer to
the child of the root that produces S[i].

Theorem 3.1.2. Let S be a string of length N compressed into an SLP G of size n. We can
construct an O(n) space data structure such that given a finger f for position i or j, we can
answer a FINGERPRINT(i, j) query in time O(lg lg D) where D = |i− j|.
Along the way we give a new and simple reduction for solving the finger predecessor
problem on integers using any predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we assume that
the model of computation is the RAM model with a word size of lg N bits.

Longest Common Extension in Compressed Strings

As an application we show how to efficiently solve the longest common extension prob-
lem (LCE). Given two indices i, j in a string S, the answer to the LCE(i, j) query is the
length ℓ of the maximum substring such that S[i, i+ℓ] = S[ j, j+ℓ]. The compressed LCE
problem is to preprocess a compressed string to support LCE queries. On uncompressed
strings this is solvable in O(N) preprocessing time, O(N) space, and O(1) query time
with a nearest common ancestor data structure on the suffix tree for S [Har+84]. Other
trade-offs are obtained by doing an exponential search over the fingerprints of strings
starting in i and j [Bil+12a]. Using the exponential search in combination with the pre-
viously mentioned methods for obtaining fingerprints without decompressing the entire
string we get O((h+ ℓ) lgℓ) or O((lg N + ℓ) lgℓ) time using O(n) space for an LCE query.
Using our new (finger) fingerprint data structures and the exponential search we obtain
Theorem 3.1.3.

Theorem 3.1.3. Let G be an SLP of size n that produces a string S of length N. The SLP
G can be preprocessed in O(N) time into a Monte Carlo data structure of size O(n) that
supports LCE queries on S in

(i) O(lgℓ lg N) time

(ii) O(lgℓ lg lgℓ+ lg lg N) time if G is a Linear SLP.
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Here ℓ denotes the LCE value and queries are answered correctly with high probability. More-
over, a Las Vegas version of both data structures that always answers queries correctly can
be obtained with O(N2/n lg N) preprocessing time with high probability.

We furthermore show how to reduce the Las Vegas preprocessing time to O(N lg N lg lg N)
when all the internal nodes in the Linear SLP are children of the root (which is the
case in LZ78). The following corollary follows immediately because an LZ77 compres-
sion [Ziv+77] consisting of n phrases can be transformed to an SLP with O(n lg N

n
) pro-

duction rules [Cha+05; Ryt03].

Corollary 3.1.3.1. We can solve the LCE problem in O(n lg N
n
) space and O(lgℓ lg N) query

time for LZ77 compression.

Finally, the LZ78 compression can be modelled by a Linear SLP GL with constant over-
head. Consider an LZ78 compression with n phrases, denoted r1, . . . , rn. A terminal
phrase corresponds to a leaf in GL , and each phrase r j = (ri , a), i < j, corresponds
to a node v ∈ GL with ri corresponding to the left child of v and the right child of v being
the leaf corresponding to a. Therefore, we get the following corollary.

Corollary 3.1.3.2. We can solve the LCE problem in O(n) space and O(lgℓ lg lgℓ+ lg lg N)
query time for LZ78 compression.

3.2 Preliminaries

Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at index i and
let S[i, j] be the substring of S of length j − i + 1 from index i ≥ 1 to |S| ≥ j ≥ i, both
indices included.

A Straight Line Program (SLP) G is a context-free grammar in Chomsky normal form
that we represent as a node-labeled and ordered directed acyclic graph. Each leaf in G is
labelled with a character, and corresponds to a terminal grammar production rule. Each
internal node in G is labeled with a nonterminal rule from the grammar. The unique
string S(v) of length size(v) = |S(v)| is produced by a depth-first left-to-right traversal
of v ∈ G and consist of the characters on the leafs in the order they are visited. We let
root(G) denote the root of G, and left(v) and right(v) denote the left and right child of
an internal node v ∈ G, respectively.

A Linear SLP GL is an SLP where we allow root(GL) to have more than two children.
All other internal nodes v ∈ GL have a leaf as right(v). Although similar, this is not the
same definition as given for the Relaxed SLP by Claude and Navarro [Cla+11]. The Linear
SLP is more restricted since the right child of any node (except the root) must be a leaf.
Any Linear SLP can be transformed into an SLP of at most double size by adding a new
rule for each child of the root.

We extend the classic heavy path decomposition of Harel and Tarjan [Har+84] to
SLPs as in [Bil+11]. For each node v ∈ G, we select one edge from v to a child with
maximum size and call it the heavy edge. The remaining edges are light edges. Observe
that size(u) ≤ size(v)/2 if v is a parent of u and the edge connecting them is light. Thus,
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the number of light edges on any path from the root to a leaf is at most O(lg N). A heavy
path is a path where all edges are heavy. The heavy path of a node v, denoted H(v), is
the unique path of heavy edges starting at v. Since all nodes only have a single outgoing
heavy edge, the heavy path H(v) and its leaf leaf(H(v)), is well-defined for each node
v ∈ G.

A predecessor data structure supports predecessor and successor queries on a set
R ⊆ U = {0, . . . , N − 1} of n integers from a universe U of size N . The answer to a
predecessor query pred(q) is the largest integer r− ∈ R such that r− ≤ q, while the an-
swer to a successor query succ(q) is the smallest integer r+ ∈ R such that r+ ≥ q. There
exist predecessor data structures achieving a query time of O(lg lg N) using space O(n)
[Emd+76; Meh+90; Wil83].

Given a rooted tree T with n vertices, we let depth(v) denote the length of the path
from the root of T to a node v ∈ T . A level ancestor data structure on T supports level an-
cestor queries LA(v, i), asking for the ancestor u of v ∈ T such that depth(u) = depth(v)− i.
There is a level ancestor data structure answering queries in O(1) time using O(n) space
[Die91] (see also [Ber+94; Als+00; Ben+04]).

Fingerprinting

The Karp-Rabin fingerprint [Kar+87] of a string x is defined as ϕ(x) =
∑|x |

i=1 x[i]·c i mod
p, where c is a randomly chosen positive integer, and 2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-
Rabin fingerprints guarantee that given two strings x and y , if x = y then ϕ(x) = ϕ(y).
Furthermore, if x ̸= y , then with high probability ϕ(x) ̸= ϕ(y). Fingerprints can be
composed and subtracted as follows.

Lemma 3.2.1. Let x = yz be a string decomposable into a prefix y and suffix z. Let N be
the maximum length of x, c be a random integer and 2N c+4 ≤ p ≤ 4N c+4 be a prime. Given
any two of the Karp-Rabin fingerprints ϕ(x), ϕ(y) and ϕ(z), it is possible to calculate the
remaining fingerprint in constant time as follows:

ϕ(x) = ϕ(y)⊕ϕ(z) = ϕ(y) + c|y | ·ϕ(z)mod p

ϕ(y) = ϕ(x)⊖s ϕ(z) = ϕ(x)− c|x |

c|z|
·ϕ(z)mod p

ϕ(z) = ϕ(x)⊖p ϕ(y) =
ϕ(x)−ϕ(y)

c|y|
mod p

In order to calculate the fingerprints of Theorem 3.2.1 in constant time, each fingerprint
for a string x must also store the associated exponent c|x | mod p, and we will assume
this is always the case. Observe that a fingerprint for any substring ϕ(S[i, j]) of a string
can be calculated by subtracting the two fingerprints for the prefixes ϕ(S[1, i − 1]) and
ϕ(S[1, j]). Hence, we will only show how to find fingerprints for prefixes in this paper.
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3.3 Basic Fingerprint Queries in SLPs

We now describe a simple data structure for answering FINGERPRINT(1, i) queries for a
string S compressed into a SLP G in time O(h), where h is the height of the parse tree
for S. This method does not unpack the string to obtain the fingerprint, instead the
fingerprint is generated by traversing G.

The data structure stores size(v) and the fingerprint ϕ(S(v)) of the string produced
by each node v ∈ G. To compose the fingerprint f = ϕ(S[1, i]) we start from the root
of G and do the following. Let v′ denote the currently visited node, and let p = 0 be
a variable denoting the size the concatenation of strings produced by left children of
visited nodes. We follow an edge to the right child of v′ if p+size(left(v′))< i, and follow
a left edge otherwise. If following a right edge, update f = f ⊕ϕ(S(left(v′))) such that
the fingerprint of the full string generated by the left child of v′ is added to f , and set
p = p+ size(left(v′)). When following a left edge, f and p remains unchanged. When a
leaf is reached, let f = f ⊕ϕ(S(v′)) to include the fingerprint of the terminal character.
Aside from the concatenation of fingerprints for substrings, this procedure resembles a
random access query for the character in position i of S.

The procedure correctly composes f = ϕ(S[1, i]) because the order in which the fin-
gerprints for the substrings are added to f is identical to the order in which the substrings
are decompressed when decompressing S[1, i].

Since the fingerprint composition takes constant time per addition, the time spent
generating a fingerprint using this method is bounded by the height of the parse tree for
S[i], denoted O(h). Only constant additional space is spent for each node in G, so the
space usage is O(n).

3.4 Faster Fingerprints in SLPs

Using the data structure of Bille et al. [Bil+11] to perform random access queries allows
for a faster way to answer FINGERPRINT(1, i) queries.

Lemma 3.4.1 ([Bil+11]). Let S be a string of length N compressed into a SLP G of size
n. Given a node v ∈ G, we can support random access in S(v) in O(lg(size(v))) time, at
the same time reporting the sequence of heavy paths and their entry- and exit points in the
corresponding depth-first traversal of G(v).

The main idea is to compose the final fingerprint from substring fingerprints by perform-
ing a constant number of fingerprint additions per heavy path visited.

In order to describe the data structure, we will use the following notation. Let V (v)
be the left children of the nodes in H(v) where the heavy path was extended to the right
child, ordered by increasing depth. The order of nodes in V (v) is equal to the sequence in
which they occur when decompressing S(v), so the concatenation of the strings produced
by nodes in V (v) yields the prefix P(v) = S(v)[1, L(v)], where L(v) =

∑
u∈V (v) size(u).

Observe that P(u) is a suffix of P(v) if u ∈ H(v). See Figure 3.1 for the relationship
between u, v and the defined strings.
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Figure 3.1: Figure showing how S(v) and its prefix P(v) is composed of substrings gener-
ated by the left children a1, a2, a3 and right children b1, b2 of the heavy path
H(v). Also illustrates how this relates to S(u) and P(u) for a node u ∈ H(v).

Let each node v ∈ G store its unique outgoing heavy path H(v), the length L(v),
size(v), and the fingerprints ϕ(P(v)) and ϕ(S(v)). By forming heavy path trees of total
size O(n) as in [Bil+11], we can store H(v) as a pointer to a node in a heavy path tree
(instead of each node storing the full sequence).

The fingerprint f = ϕ(S[1, i]) is composed from the sequence of heavy paths visited
when performing a single random access query for S[i] using Lemma 3.4.1. Instead of
adding all left-children of the path towards S[i] to f individually, we show how to add
all left-children hanging from each visited heavy path in constant time per heavy path.
Thus, the time taken to compose f is O(lg N).

More precisely, for the pair of entry- and exit-nodes v, u on each heavy path H tra-
versed from the root to S[i], we set f = f ⊕ (ϕ(P(v)) ⊖s ϕ(P(u)) (which is allowed
because P(u) is a suffix of P(v)). If we leave u by following a right-pointer, we addition-
ally set f = f ⊕ϕ(S(left(u))). If u is a leaf, set f = f ⊕ϕ(S(u)) to include the fingerprint
of the terminal character.
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Figure 3.2: A Linear SLP compressing the string abbaabbaabab and the dictionary tree
obtained from the Linear SLP.

Remember that P(v) is exactly the string generated from v along H, produced by the
left children of nodes on H where the heavy path was extended to the right child. Thus,
this method corresponds exactly to adding the fingerprint for the substrings generated by
all left children of nodes on H between the entry- and exit-nodes in depth-first order, and
the argument for correctness from the slower fingerprint generation also applies here.

Since the fingerprint composition takes constant time per addition, the time spent
generating a fingerprint using this method is bounded by the number of heavy paths
traversed, which is O(lg N). Only constant additional space is spent for each node in G,
so the space usage is O(n). This concludes the proof of Theorem 3.1.1(i).

3.5 Faster Fingerprints in Linear SLPs

In this section we show how to quickly answer FINGERPRINT(1, i) queries on a Linear SLP
GL . In the following we denote the sequence of k children of root(GL) from left to right
by r1, . . . , rk. Also, let R( j) =

∑ j
m=1 size(rm) for j = 0, . . . , k. That is, R( j) is the length of

the prefix of S produced by GL including r j (and R(0) is the empty prefix).
We also define the dictionary tree F over GL as follows. Each node v ∈ GL corresponds

to a single vertex vF ∈ F . There is an edge (uF , vF ) labeled c if u = left(v) and c =
S(right(v)). If v is a leaf, there is an edge (root(F), vF ) labeled S(v). That is, a left child
edge of v ∈ GL is converted to a parent edge of vF ∈ F labeled like the right child leaf of v.
Note that for any node v ∈ GL except the root, producing S(v) is equivalent to following
edges and reporting edge labels on the path from root(F) to vF . Thus, the prefix of length
a of S(v) may be produced by reporting the edge labels on the path from root(F) until
reaching the ancestor of vF at depth a.

The data structure stores a predecessor data structure over the prefix lengths R( j)
and the associated node r j and fingerprint ϕ(S[1, R( j)]) for j = 0, . . . , k. We also have a
doubly linked list of all r j ’s with bidirectional pointers to the predecessor data structure
and GL . We store the dictionary tree F over GL , augment it with a level ancestor data

30
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structure, and add bidirectional pointers between v ∈ GL and vF ∈ F . Finally, for each
node v ∈ GL , we store the fingerprint of the string it produces, ϕ(S(v)).

A query FINGERPRINT(1, i) is answered as follows. Let R(m) be the predecessor of i
among R(0), R(1), . . . , R(k). Compose the answer to FINGERPRINT(1, i) from the two fin-
gerprints ϕ(S[1, R(m)])⊕ϕ(S[R(m)+1, i]). The first fingerprint ϕ(S[1, R(m)]) is stored
in the data structure and the second fingerprint ϕ(S[R(m) + 1, i]) can be found as fol-
lows. Observe that S[R(m)+1, i] is fully generated by rm+1 and hence a prefix of S(rm+1)
of length i−R(m). We can get rm+1 in constant time from rm using the doubly linked list.
We use a level ancestor query uF = LA(r F

m+1, i−R(m)) to determine the ancestor of r F
m+1

at depth i − R(m), corresponding to a prefix of rm+1 of the correct length. From uF we
can find ϕ(S(u)) = ϕ(S[R(m) + 1, i]).

It takes constant time to find ϕ(S[R(m) + 1, i]) using a single level ancestor query
and following pointers. Thus, the time to answer a query is bounded by the time spent
determining ϕ(S[1, R(m)]), which requires a predecessor query among k elements (i.e.
the number of children of root(GL)) from a universe of size N . The data structure uses
O(n) space, as there is a bijection between nodes in GL and vertices in F , and we only
spend constant additional space per node in GL and vertex in F . This concludes the proof
of Theorem 3.1.1(ii).

3.6 Finger Fingerprints in Linear SLPs

The O(lg lg N) running time of a FINGERPRINT(1, i) query is dominated by having to find
the predecessor R(m) of i among R(0), R(1), . . . , R(k). Given R(m) the rest of the query
takes constant time. In the following, we show how to improve the running time of a
FINGERPRINT(1, i) query to O(lg lg | j− i|) given a finger for position j. Recall that a finger
f for a position j is a pointer to the node rm producing S[ j]. To achieve this, we present
a simple linear space finger predecessor data structure that is interchangeable with any
other predecessor data structure.

3.6.1 Finger Predecessor

Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of size N . Given a
finger f ∈ R and a query point q ∈ U , the finger predecessor problem is to answer finger
predecessor or successor queries in time depending on the universe distance D = | f − q|
from the finger to the query point. Belazzougui et al. [Bel+12] present a succinct solution
for solving the finger predecessor problem relying on a modification of z-fast tries. Other
previous work present dynamic finger search trees on the word RAM [Kap+13; And+07].
Here, we use a simple reduction for solving the finger predecessor problem using any
predecessor data structure as a black box.

Lemma 3.6.1. Let R⊆ U = {0, . . . , N−1} be a set of n integers from a universe U of size N.
Given a predecessor data structure with query time t(N , n) using s(N , n) space, we can solve
the finger predecessor problem in worst case time O(t(D, n)) using space O(s(N , n

lg N
) lg N).
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Proof. Construct a complete balanced binary search tree T over the universe U . The
leaves of T represent the integers in U , and we say that a vertex span the range of U
represented by the leaves in its subtree. Mark the leaves of T representing the integers in
R. We remove all vertices in T where the subtree contains no marked vertices. Observe
that a vertex at height j span a universe range of size O(2 j). We augment T with a
level ancestor data structure answering queries in constant time. Finally, left- and right-
neighbour pointers are added for all nodes in T .

Each internal node v ∈ T at height j store an instance of the given predecessor data
structure for the set of marked leaves in the subtree of v. The size of the universe for the
predecessor data structure equals the span of the vertex and is O(2 j)1.

Given a finger f ∈ R and a query point q ∈ U , we will now describe how to find
both succ(q) and pred(q) when q < f . The case q > f is symmetric. Observe that f
corresponds to a leaf in T , denoted fl . We answer a query by determining the ancestor v
of fl at height h= ⌈lg(| f −q|)⌉ and its left neighbour vL (if it exists). We query for succ(q)
in the predecessor data structures of both v and vL , finding at least one leaf in T (since
v spans f and q < f ). We return the leaf representing the smallest result as succ(q) and
its left neighbour in T as pred(q).

Observe that the predecessor data structures in v and vL each span a universe of size
O(2h) = O(| f − q|) = O(D). All other operations performed take constant time. Thus, for
a predecessor data structure with query time t(N , n), we can answer finger predecessor
queries in time O(t(D, n)).

The height of T is O(lg N), and there are O(n lg N) vertices in T (since vertices span-
ning no elements from R are removed). Each element from R is stored in O(lg N) pre-
decessor data structures. Hence, given a predecessor data structure with space usage
s(N , n), the total space usage of the data structure is O(s(N , n) lg N).

We reduce the size of the data structure by reducing the number of elements it stores
to O( n

lg N
). This is done by partitioning R into O( n

lg N
) sets of consecutive elements Ri of

size O(lg N). We choose the largest integer in each Ri set as the representative gi for that
set, and store that in the data structure described above. We store the integers in set Ri in
an atomic heap [Fre+93; Hag98] capable of answering predecessor queries in O(1) time
and linear space for a set of size O(lg N). Each element in R keep a pointer to the set Ri
it belongs to, and each set left- and right-neighbour pointers.

Given a finger f ∈ R and a query point q ∈ U , we describe how to determine pred(q)
and succ(q) when q < f . The case q > f is symmetric. We first determine the closest
representatives gl and gr on the left and right of f , respectively. Assuming q < gl , we
proceed as before using gl as the finger into T and query point q. This gives p = pred(q)
and s = succ(q) among the representatives. If gl is undefined or gl < q < f ≤ gr , we
select p = gl and s = gr . To produce the final answers, we perform at most 4 queries in
the atomic heaps that p and s are representatives for.

All queries in the atomic heaps take constant time, and we can find gl and gr in
constant time by following pointers. If we query a predecessor data structure, we know

1The integers stored by the data structure may be shifted by some constant k · 2 j for a vertex at height j,
but we can shift all queries by the same constant and thus the size of the universe is 2 j .
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that the range it spans is O(|gl − q|) = O(| f − q|) = O(D) since q < gl < f . Thus, given a
predecessor data structure with query time t(N , n), we can solve the finger predecessor
problem in time O(t(D, n)).

The total space spent on the atomic heaps is O(n) since they partition R. The number
of representatives is O( n

lg N
). Thus, given a predecessor data structure with space usage

s(N , n), we can solve the finger predecessor problem in space O(s(N , n
lg N
) lg N).

Using the van Emde Boas predecessor data structure [Emd+76; Meh+90; Wil83] with
t(N , n) = O(lg lg N) query time using s(N , n) = O(n) space, we obtain the following
corollary.

Corollary 3.6.1.1. Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of
size N. Given a finger f ∈ R and a query point q ∈ U, we can solve the finger predecessor
problem in worst case time O(lg lg | f − q|) and space O(n).

3.6.2 Finger Fingerprints

We can now prove Theorem 3.1.2. Assume wlog that we have a finger for i, i.e., we are
given a finger f to the node rm generating S[i]. From this we can in constant time get
a pointer to rm+1 in the doubly linked list and from this a pointer to R(m + 1) in the
predecessor data structure. If R(m+ 1)> j then R(m) is the predecessor of j. Otherwise,
using Corollary 3.6.1.1 we can in time O(lg lg |R(m+ 1)− j|) find the predecessor of j.
Since R(m+ 1) ≥ i and the rest of the query takes constant time, the total time for the
query is O(lg lg |i− j|).

3.7 Longest Common Extensions in Compressed Strings

Given an SLP G, the longest common extension (LCE) problem is to build a data structure
for G that supports longest common extension queries LC E(i, j). In this section we show
how to use our fingerprint data structures as a tool for doing LCE queries and hereby
obtain Theorem 3.1.3.

3.7.1 Computing Longest Common Extensions with Fingerprints

We start by showing the following general lemma that establishes the connection be-
tween LCE and fingerprint queries.

Lemma 3.7.1. For any string S and any partition S = s1s2 · · · st of S into k non-empty sub-
strings called phrases, ℓ = LCE(i, j) can be found by comparing O(lgℓ) pairs of substrings
of S for equality. Furthermore, all substring comparisons x = y are of one of the following
two types:

Type 1 Both x and y are fully contained in (possibly different) phrase substrings.

Type 2 |x |= |y|= 2p for some p = 0, . . . , lg(ℓ) + 1 and for x or y it holds that
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(a) The start position is also the start position of a phrase substring, or

(b) The end position is also the end position of a phrase substring.

Proof. Let a position of S be a start (end) position if a phrase starts (ends) at that position.
Moreover, let a comparison of two substrings be of type 1 (type 2) if it satisfies the first
(second) property in the lemma. We now describe how to find ℓ = LCE(i, j) by using
O(lgℓ) type 1 or 2 comparisons.

If i or j is not a start position, we first check if S[i, i+k] = S[ j, j+k] (type 1), where
k ≥ 0 is the minimum integer such that i+k or j+k is an end position. If the comparison
fails, we have restricted the search for ℓ to two phrase substrings, and we can find the
exact value using O(lgℓ) type 1 comparisons.

Otherwise, LCE(i, j) = k+ LCE(i + k+ 1, j + k+ 1) and either i + k+ 1 or j + k+ 1
is a start position. This leaves us with the task of describing how to answer LCE(i, j),
assuming that either i or j is a start position.

We first use p = O(lgℓ) type 2 comparisons to determine the biggest integer p such
that S[i, i + 2p] = S[ j, j + 2p]. It follows that ℓ ∈ [2p, 2p+1]. Now let q < 2p denote
the length of the longest common prefix of the substrings x = S[i+2p+1, i+2p+1] and
y = S[ j+2p+1, j+2p+1], both of length 2p. Clearly, ℓ= 2p+q. By comparing the first half
x ′ of x to the first half y ′ of y , we can determine if q ∈ [0, 2p−1] or q ∈ [2p−1+1, 2p−1].
By recursing we obtain the exact value of q after lg2p = O(lgℓ) comparisons.

However, comparing x ′ = S[a1, b1] and y ′ = S[a2, b2] directly is not guaranteed to
be of type 1 or 2. To fix this, we compare them indirectly using a type 1 and type 2
comparison as follows. Let k < 2p be the minimum integer such that b1 − k or b2 − k is
a start position. If there is no such k then we can compare x ′ and y ′ directly as a type 1
comparison. Otherwise, it holds that x ′ = y ′ if and only if S[b1 − k, b1] = S[b2 − k, b2]
(type 1) and S[a1 − k− 1, b1 − k− 1] = S[a2 − k− 1, b2 − k− 1] (type 2).

Theorem 3.1.3 follows by using fingerprints to perform the substring comparisons. In par-
ticular, we obtain a Monte Carlo data structure that can answer a LCE query in O(lgℓ lg N)
time for SLPs and in O(lgℓ lg lg N) time for Linear SLPs. In the latter case, we can use
Theorem 3.1.2 to reduce the query time to O(lgℓ lg lgℓ+ lg lg N) by observing that for all
but the first fingerprint query, we have a finger into the data structure.

3.7.2 Verifying the Fingerprint Function

Since the data structure is Monte Carlo, there may be collisions among the fingerprints
used to determine the LCE, and consequently the answer to a query may be incorrect. We
now describe how to obtain a Las Vegas data structure that always answers LCE queries
correctly. We do so by showing how to efficiently verify that the fingerprint function ϕ is
good, i.e., collision-free on all substrings compared in the computation of LCE(i, j). We
give two verification algorithms. One that works for LCE queries in SLPs, and a faster one
that works for Linear SLPs where all internal nodes are children of the root (e.g. LZ78).
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3.7.2.1 SLPs

If we let the phrases of S be its individual characters, we can assume that all finger-
print comparisons are of type 2 (see Theorem 3.7.1). We thus only have to check that
ϕ is collision-free among all substrings of length 2p, p = 0, . . . , lg N . We verify this in
lg N rounds. In round p we maintain the fingerprint of a sliding window of length 2p

over S. For each substring x we insert ϕ(x) into a dictionary. If the dictionary already
contains a fingerprint ϕ(y) = ϕ(x), we verify that x = y in constant time by check-
ing if ϕ(x[1, 2p−1]) = ϕ(y[1, 2p−1]) and ϕ(x[2p−1 + 1, 2p]) = ϕ(y[2p−1 + 1, 2p]). This
works because we have already verified that the fingerprinting function is collision-free
for substrings of length 2p−1. Note that we can assume that for any fingerprint ϕ(x) the
fingerprints of the first and last half of x are available in constant time, since we can
store and maintain these at no extra cost. In the first round p = 0, we check that x = y
by comparing the two characters explicitly. If x ̸= y we have found a collision and we
abort and report that ϕ is not good. If all rounds are successfully verified, we report that
ϕ is good.

For the analysis, observe that computing all fingerprints of length 2p in the sliding
window can be implemented by a single traversal of the SLP parse tree in O(N) time.
Thus, the algorithm correctly decides whether ϕ is good in O(N lg N) time and O(N)
space. We can easily reduce the space to O(n) by carrying out each round in O(N/n)
iterations, where no more than n fingerprints are stored in the dictionary in each iteration.
So, alternatively, ϕ can be verified in O(N2/n lg N) time and O(n) space.

3.7.2.2 Linear SLPs

In Linear SLPs where all internal nodes are children of the root, we can reduce the
verification time to O(N lg N lg lg N), while still using O(n) space. To do so, we use Theo-
rem 3.7.1 with the partition of S being the root substrings. We verify that ϕ is collision-
free for type 1 and type 2 comparisons separately.

Type 1 Comparisons. We carry out the verification in rounds. In round p we check that
no collisions occur among the p-length substrings of the root substrings as follows: We
traverse the SLP maintaining the fingerprint of all p-length substrings. For each substring
x of length p, we insert ϕ(x) into a dictionary. If the dictionary already contains a fin-
gerprint ϕ(y) = ϕ(x) we verify that x = y in constant time by checking if x[1] = y[1]
and ϕ(x[2, |x |]) = ϕ(y[2, |y|]) (type 1).

Every substring of a root substring ends in a leaf in the SLP and is thus a suffix of
a root substring. Consequently, they can be generated by a bottom up traversal of the
SLP. The substrings of length 1 are exactly the leaves. Having generated the substrings
of length p, the substrings of length p + 1 are obtained by following the parents left
child to another root node and prepending its right child. In each round the p length
substrings correspond to a subset of the root nodes, so the dictionary never holds more
than n fingerprints. Furthermore, since each substring is a suffix of a root substring, and
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3. FINGERPRINTS IN COMPRESSED STRINGS

the root substrings have at most N suffixes in total, the algorithm will terminate in O(N)
time.

Type 2 Comparisons. We adopt an approach similar to that for SLPs and verify ϕ in
O(lg N) rounds. In round p we store the fingerprints of the substrings of length 2p that
start or end at a phrase boundary in a dictionary. We then slide a window of length
2p over S to find the substrings whose fingerprint equals one of those in the dictionary.
Suppose the dictionary in round p contains the fingerprint ϕ(y), and we detect a sub-
string x such that ϕ(x) = ϕ(y). To verify that x = y, assume that y starts at a phrase
boundary (the case when it ends in a phrase boundary is symmetric). As before, we first
check that the first half of x is equal to the first half of y using fingerprints of length
2p−1, which we know are collision-free. Let x ′ = S[a1, b1] and y ′ = S[a2, b2] be the
second half of x and y . Contrary to before, we can not directly compare ϕ(x ′) = ϕ(y ′),
since neither x ′ nor y ′ is guaranteed to start or end at a phrase boundary. Instead, we
compare them indirectly using a type 1 and type 2 comparison as follows: Let k < 2p−1

be the minimum integer such that b1 − k or b2 − k is a start position. If there is no
such k then we can compare x ′ and y ′ directly as a type 1 comparison. Otherwise, it
holds that x ′ = y ′ if and only if ϕ(S[b1 − k, b1]) = ϕ(S[b2 − k, b2]) (type 1) and
ϕ(S[a1 − k − 1, b1 − k − 1]) = ϕ(S[a2 − k − 1, b2 − k − 1]) (type 2), since we have
already verified that ϕ is collision-free for type 1 comparisions and type 2 comparisions
of length 2p−1.

The analysis is similar to that for SLPs. The sliding window can be implemented in
O(N) time, but for each window position we now need O(lg lg N) time to retrieve the
fingerprints, so the total time to verify ϕ for type 2 collisions becomes O(N lg N lg lg N).
The space is O(n) since in each round the dictionary stores at most O(n) fingerprints.
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Abstract

We initiate the study of dynamic relative compression, which is the problem of
maintaining a compression of a dynamically changing string S. In this model S is
compressed as a sequence of pointers to substrings of a static reference string R of
length r. Let n be the size of the optimal compression of S with regards to R. We
give a data structure that maintains an asymptotically optimal compression of S with
regards to R using O(n+ r) space and O(lg n/ lg lg n+ lg lg r) time to access, replace,
insert or delete a character in S. We can improve the update time to O(lg n/ lg lg n)
at the cost of increasing the space to O(n+ r lgε r), for any ε > 0. Our result can be
generalized to storing multiple compressed strings with regards to the same reference
string.

Our main technical contribution is a new linear-space data structure for dynamic
partial sums on a sequence of w-bit integers with support for insertions and deletions,
where w is the word size. Previous data structures assumed lg w-bit or even O(1)-
bit integers. We support all operations in optimal time O(lg s/ lg(w/δ)), matching
a lower bound by Pătraşcu and Demaine [SODA 2004]. Here s is the length of the
sequence and δ ≤ w is the maximum number of bits allowed in updates.
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4. DYNAMIC RELATIVE COMPRESSION AND DYNAMIC PARTIAL SUMS

4.1 Introduction

In this paper we study the problem of maintaining a compressed representation of a
dynamically changing string S. Our solutions support efficient updates on S while guar-
anteeing that the compression is always asymptotically optimal.

The model of compression we consider is relative compression. Given a static refer-
ence string R, a relative compression of a string S with regards to R is an encoding of
S as a sequence of references to substrings of R. Relative compression is a classic and
general model of compression introduced by Storer and Szymanski [Sto+78; Sto+82] in
1978. Variations of this model, such as relative Lempel-Ziv compression, have been widely
studied and shown to be very useful in practice [Kur+10; Kur+11a; Che+12; Do+14;
Hoo+11].

We initiate the study of dynamic relative compression (DRC). More specifically, the
dynamic relative compression problem is to maintain a relative compression of S under
the following operations:

access(i): return the character S[i],

replace(i,α): change S[i] to α,

insert(i,α): insert character α before position i in S,

delete(i): delete the character at position i in S,

where i is a position in S and α is a character that occurs in R. Note that operations
insert and delete changes the length of S by a single character. In all our results we also
support decompressing an arbitrary substring of length ℓ in time O(tacc + ℓ), where tacc
is the time to perform a single access(i) query.

A relative compression of S with regards to R is a sequence C = ((i1, j1), ..., (i|C |, j|C |))
such that S = R[i1, j1] · · ·R[i|C |, j|C |]. The size of the compression is |C |, and we say that
C is optimal if it has minimum size over all relative compressions of S with regards to R.
Throughout the paper, let r be the length of the reference string R, N be the length of the
(uncompressed) string S, and n be the size of an optimal relative compression of S with
regards to R.

4.1.1 Our Results

We present solutions to the DRC problem that efficiently support updating S while main-
taining a relative compression of S of size at most 2n− 1. All of our results are valid in
the Word RAM model with word length w ≥ lg(n+ r) bits.

Theorem 4.1.1. We can solve the DRC problem

(i) in O(n+ r) space and O
�

lg n
lg lg n

+ lg lg r
�

time per operation, or

(ii) in O(n+ r lgε r) space and O
�

lg n
lg lg n

�
time per operation, for any ε> 0.
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Together, these bounds are optimal for most natural parameter combinations. In par-
ticular, any data structure for a string of length N supporting access, insert, and delete
must use Ω(lg N/ lg lg N) time in the worst-case regardless of the space [Fre+89] (this
is called the list representation problem). Since n ≤ N , we can view O(lg n/ lg lg n) as
a compressed optimal time bound that is always O(lg N/ lg lg N) and better when S is
compressible. Hence, Theorem 4.1.1(i) provides a linear-space solution that achieves the
compressed optimal time bound except for an O(lg lg r) additive term. Note that when-
ever n ≥ (lg r)lg

ε lg r , for any ε > 0, the O(lg n/ lg lg n) term dominates the query time
and we match the compressed time bound. Hence, Theorem 4.1.1(i) is only suboptimal
in the special case when n is almost exponentially smaller than R. In this case, we can
use Theorem 4.1.1(ii) which always provides a solution achieving the compressed time
bound at the cost of increasing the space to O(n+ r lgε r).

Our solution can be generalized to support storing multiple strings with regards to
a single reference string R in the natural way. In this case, n is the sum of the optimal
compression sizes with regards to R for each string.

4.1.2 Technical Contributions

We reduce the DRC problem to the following two central problems, which we provide
new and improved solutions for. Both of these problems are of independent interest.

4.1.2.1 The Dynamic Partial Sums Problem

Let Z = Z[1], ..., Z[s] be a sequence of w-bit integers. The problem is to support the
operations:

sum(i): return
∑i

j=1 Z[ j],

update(i,∆): set Z[i] = Z[i] +∆,

search(t): return 1≤ i ≤ s such that sum(i − 1)< t ≤ sum(i),

insert(i,∆): insert integer ∆ before Z[i],

delete(i): delete Z[i].

We require Z[i]≥ 0 for all i at all times to ensure well-defined answers to search(t). The
possibly negative ∆ argument in update is restricted to be at most δ bits, so |∆| ≤ 2δ.
This (sometimes implicit) data structure parameter δ is standard and included in the best
lower bound. Note that the update restriction implies that only elements of size ≤ 2δ can
be inserted or deleted (as these operations can be used to implement update).

The non-dynamic partial sums problem (without the operations insert and delete)
is well-studied [Die89; Ram+01; Hus+03; Fre+89; Hon+11; Hus+96; Fen94; Păt+04].
Pătraşcu and Demaine [Păt+04] presented a linear-space data structure with query time
O(lg s/ lg(w/δ)) per operation and showed a matching lower bound.
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We give a new data structure for dynamic partial sums, which also supports the non-
standard operations: divide(i, t), which replaces Z[i] by Z[i]′ = t and Z[i]′′ = Z[i]− t,
where 0 ≤ t ≤ Z[i]; and merge(i), which replaces Z[i] and Z[i + 1] with Z[i]′ =
Z[i] + Z[i + 1].

Theorem 4.1.2. The dynamic partial sums problem can be solved in linear space and
O(lg s/ lg(w/δ)) worst-case time per operation. The data structure also supports the op-
erations divide and merge in the same time.

The only known solutions to dynamic partial sums are by Hon et al. [Hon+11] and
Navarro and Sadakane [Nav+14]. Their solutions are succinct and use O(lg s/ lg lg s) time
per operation, but only work for sequences of small integers of ≤ lg w bits.

Our dynamic partial sums data structure is the first to support full w-bit integers.
Moreover, we match the lower bound for non-dynamic partial sums of Ω(lg s/ lg(w/δ))
time per operation by Pătraşcu and Demaine [Păt+04]. The dynamic operations are sup-
ported in optimal time as update can be implemented with insert and delete. Any so-
lution to dynamic partial sums also solves list representation (we can solve access us-
ing two sum queries), and we match the lower bound of Ω(lg s/ lg lg s) for elements of
δ ≤ lgε s bits where ε < 1. Pătraşcu and Demaine [Păt+04] show that this is optimal
when also supporting sum.

The main difficulty in supporting insertions and deletions is that indices may change,
which causes elements in the sequence to shift left or right. We build on the solution
to non-dynamic partial sums by Pătraşcu and Demaine [Păt+04], extending it to the dy-
namic case. They precompute sums and store them in an array coupled with a small data
structure for updates. This supports all operations in constant time for a polylogarithmi-
cally size sequence, and a standard reduction (that we will also use) is used to store the
full sequence in a B-tree.

In our construction we first simplify their approach, only storing (values and indices)
of some representative elements in a dynamic integer set data structure by Pătraşcu
and Thorup [Păt+14]. All other elements are stored in the update data structure. We
then show that this representation can be changed to efficiently support insertions and
deletions by modifying the way we store representative indices (and how to support the
dynamic operations in the update data structure).

4.1.2.2 The Substring Concatenation Problem

A substring concatenation query on a string R takes two pairs of indices (i, j) and (i′, j′)
and returns the start position in R of an occurrence of R[i, j]R[i′, j′], or NO if the string
is not a substring of R. The substring concatenation problem is to preprocess R into a data
structure that supports substring concatenation queries.

Let r be the length of R. Amir et al. [Ami+07] gave a solution using O(r
p

lg r) space
with query time O(lg lg r), and very recently Gawrychowski et al. [Gaw+14] showed how
to solve the problem in O(r lg r) space and O(1) time. We propose two new solutions that
improve each of their bounds.
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4.1. Introduction

Theorem 4.1.3. The substring concatenation problem can be solved in

(i) in O(r lgε r) space and O(1) time, for any ε> 0, or

(ii) in O(r) space and O(lg lg r) time,

The two solutions lead to the two branches of Theorem 4.1.1.

4.1.3 Extensions

Our results have the following interesting extensions, the details are in Section 4.5.

Theorem 4.1.4. We can solve the DRC problem, only supporting access and replace

(i) in space O(n + r) and time O(lg lg N) for access and time O(lg lg N + lg lg r) for
replace, or

(ii) in space O(n+ r lgε r) and time O(lg lg N) for both operations.

This implies an improved solution to the following dynamic pattern matching problem:
Given a static pattern P and a text T , maintain the set L of occurrences of P in T under
an update operation that replaces the ith character in T with another character from the
alphabet. For this problem, Amir et al. [Ami+07] gave a data structure using O(|T | +
|P|plg |P|) space and supporting updates in O(lg lg |P|) time. By using Theorem 4.1.4(i)
as a black-box in their work, we obtain a data structure using O(|T |+ |P|) space with
O(lg lg |P|) update time.

Multiple Strings with Split and Concatenate

The dynamic relative compression problem on multiple strings is the problem of maintain-
ing a dynamic set of strings, S = {S1, . . . , Sk}, all compressed in the dynamic relative
compression model, relative to the same reference string R. In this problem the opera-
tions access, replace, insert and delete take an extra parameter indicating the string from
S to perform the operation on. We additionally wish to support the operations split(i, j),
which updates S to (S \ Si) ∪ {Si[1, j − 1], Si[ j, |Si |]}, and concat(i, j) updating S to
(S \ {Si , S j})∪ {SiS j}.
Theorem 4.1.5. We can solve the DRC problem on multiple strings, supporting access,
replace, insert, delete, split, and concat,

(i) in space O(n+ r) and time O(lg n) for access and time O(lg n+ lg lg r) for replace,
insert, delete, split, and concat, or

(ii) in space O(n+ r lgε r) and time O(lg n) for all operations.
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4.1.4 Related Work

Relative Compression The non-recursive external pointer macro compression scheme
was introduced by Storer and Szymanski in 1978 [Sto+78; Sto+82]. They provided sem-
inal analytical work, showing that finding the best reference string given some uncom-
pressed string is NP-complete, and showed that n+ r = Ω(

p
N) for any reference string

when only compressing a single string. This is the same compression ratio as obtained by
the LZ78/LZW schemes [Wel84; Ziv+78] when compressing a single string. However, if
compressing multiple strings with regards to the same reference string we can do much
better. Relative compression is a special case of their scheme which also supports com-
pressing multiple strings. The general scheme suggested by Storer and Szymanski is also
sometimes called LZSS, used by popular archivers such as PKZip, ARJ and RAR.

More recently, Kuruppu et al. [Kur+10] suggested the Relative Lempel-Ziv (RLZ)
scheme for compressing highly repetitive data such as genomes. The RLZ scheme de-
fines its parse identically to the greedy LZ77 [Ziv+77] parse when using all substrings
of R as the dictionary, meaning that it produces an optimal compression for a given and
fixed reference string (shown in [Coh+96; Sto+82; Cro+14]). Multiple papers show im-
pressive compression ratios for both RLZ and LZSS in various practical settings, storing
a dictionary of similar strings [Fer+13; Kur+11a; Che+12; Do+14; Hoo+11; Kur+11b;
Wan+13; Deo+11; Wan+12; Och+14]. The relative compression scheme considered in
this paper is closely related to RLZ, and we may in fact create our initial compression as
in the RLZ scheme. However, we maintain an asymptotically optimal compression under
updates.

Dynamic Compression Several schemes for dynamic compression exist in the litera-
ture. The overall idea is to dynamically maintain a compressed string under a set of
operations. In particular, Grossi et al. [Gro+13] presents a scheme for compressing a
string S in entropy bounds while dynamically maintaining it under the operations: ac-
cess a substring of S; replace, insert or delete a character of S; support rank and select
queries on S. This work stem from earlier work on string compression in entropy bounds.
Both Grossi et al. [Gro+03] and Ferragina et al. [Fer+04] present schemes for providing
random access to entropy compressed strings. These ideas have gradually been refined
and varied in [Fer+04; Fer+05; Sad+06; Gon+07; Fer+07; Jan+12; Nav+13].

All of the above schemes either use succinct space or compressed space depending
on the empirical entropy defined relative to fixed-length contexts. In contrast, relative
compression can take advantage of long contexts and hence may achieve much better
compression on such strings.

4.2 Dynamic Relative Compression

In this section we show how Theorems 4.1.2 and 4.1.3 lead to Theorem 4.1.1. The proofs
of Theorems 4.1.2 and 4.1.3 appear in Section 4.3 and Section 4.4, respectively.

Let C = ((i1, j1), ..., (i|C |, j|C |)) be the compressed representation of S. From now on,
we refer to C as the cover of S, and call each element (il , jl) in C a block. Recall that a
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block (il , jl) refers to a substring R[il , jl] of R. A cover C is maximal if concatenating any
two consecutive blocks (il , jl), (il+1, jl+1) in C yields a string that does not occur in R, i.e.,
the string R[il , jl]R[il+1, jl+1] is not a substring of R. We need the following lemma.

Lemma 4.2.1. If CMAX is a maximal cover and C is an arbitrary cover of S, then |CMAX| ≤
2|C | − 1.

Proof. In each block b of C there can start at most two blocks in CMAX, because otherwise
two adjacent blocks in CMAX would be entirely contained in the block b, contradicting the
maximality of CMAX. In the last block of C there can start at most one block in CMAX. Hence,
|CMAX| ≤ 2|C | − 1.

Recall that n is the size of an optimal cover of S with regards to R. The lemma implies
that we can maintain a compression with size at most 2n− 1 by maintaining a maximal
cover of S. The remainder of this section describes our data structure for maintaining
and accessing such a cover. Initially, we construct a maximal cover of S in O(|S|+ r) time
by greedily traversing the suffix tree of R.

4.2.1 Data Structure

The high level idea for supporting the DRC operations on S is to store the sequence of
block lengths ( j1 − i1 + 1, . . . , j|C | − i|C | + 1) in a dynamic partial sums data structure.
This allows us, for example, to identify the block that encodes the kth character in S by
performing a search(k) query.

Updates to S are implemented by splitting a block in C , which may break the max-
imality property. The key idea is to use substring concatenation queries on R to detect
consecutive blocks that break maximality. When two such blocks are found, we merge
the two blocks in C . We only need a constant number of substring concatenation queries
to restore maximality. To maintain the correct sequence of block lengths we use update,
divide and merge operations on the dynamic partial sums data structure.

Our data structure consist of the string R, a substring concatenation data structure
of Theorem 4.1.3 for R, a maximal cover C for S stored in a doubly linked list, and
the dynamic partial sums data structure of Theorem 4.1.2 storing the block lengths of
C (we require the data structure to support divide and merge). We also store auxiliary
links between a block in the doubly linked list and the corresponding block length in
the partial sums data structure, and a list of alphabet symbols in R with the location
of an occurrence for each symbol. By Lemma 4.2.1 and since C is maximal we have
|C | ≤ 2n− 1 = O(n). Hence, the total space for C and the partial sums data structure is
O(n). The space for R is O(r) and the space for substring concatenation data structure
is either O(r) or O(r lgε r) depending on the choice in Lemma 4.1.3. Hence, in total we
use either O(n+ r) or O(n+ r lgε r) space.
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4.2.2 Answering Queries

To answer access(i) queries we first compute search(i) in the dynamic partial sums struc-
ture to identify the block bl = (il , jl) containing position i in S. The local index in R[il , jl]
of the ith character in R is ℓ = i − sum(l − 1), and thus the answer to the query is the
character R[il + ℓ].

We perform replace and delete by first identifying bl = (il , jl) and ℓ as above. Then
we partition bl into three new blocks b1

l = (il , il +ℓ−1), b2
l = (il +ℓ), b3

l = (il +ℓ+1, jl)
where b2

l is the single character block for index i in S that we must change. In replace
we change b2

l to an index of an occurrence in R of the new character (which we can
find from the list of alphabet symbols), while we remove b2

l in delete. The new blocks
and their neighbors, that is, bl−1, b1

l , b2
l , b3

l , and bl+1 may now be non-maximal. To
restore maximality we perform substring concatenation queries on each consecutive pair
of these 5 blocks, and replace non-maximal blocks with merged maximal blocks. A similar
idea is used by Amir et al. [Ami+07]. We perform update, divide and merge operations
to maintain the corresponding lengths in the dynamic partial sums data structure. The
insert operation is similar, but inserts a new single character block between two parts of
b j before restoring maximality. Observe that using δ = O(1) bits in update is sufficient
to maintain the correct block lengths.

In total, each operation require a constant number of substring concatenation queries
and dynamic partial sums operations; the latter with time complexity O(lg n/ lg(w/δ)) =
O(lg n/ lg lg n) as w ≥ lg n. Hence, the total time for each access, replace, insert, and
delete operation is either O(lg n/ lg lg n+ lg lg r) or O(lg n/ lg lg n) depending on the sub-
string concatenation data structure used. In summary, this proves Theorem 4.1.1.

4.3 Dynamic Partial Sums

In this section we prove Theorem 4.1.2. Recall that Z = Z[1], ..., Z[s] is a sequence of w-
bit integer keys. We show how to implement the two non-standard operations divide(i, t)
and merge(i), besides operations sum(i), search(t), and update(i,∆). We support the
operations insert(i,∆) and delete(i) (insert a new integer ∆ before element i or delete
element i, respectively) by implementing them using update and a divide or merge op-
eration, respectively. This means that we support inserting or deleting keys with value at
most 2δ.

We first solve the problem for small sequences. The general solution uses a standard
reduction, storing Z at the leaves of a B-tree of large outdegree. We use the solution for
small sequences to navigate in the internal nodes of the B-tree.

Dynamic Integer Sets We need the following recent result due to Pătraşcu and Tho-
rup [Păt+14] on maintaining a set of integer keys X under insertions and deletions. The
queries are as follows, where q is an integer. The membership query member(q) returns
true if q ∈ X , predecessor predX (q) returns the largest key x ∈ X where x < q, and suc-
cessor succX (q) returns the smallest key x ∈ X where x ≥ q. The rank rankX (q) returns
the number of keys in X smaller than q, and select(i) returns the ith smallest key in X .
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Lemma 4.3.1 (Pătraşcu and Thorup [Păt+14]). There is a data structure for maintaining
a dynamic set of wO(1) w-bit integers that supports insert, delete, membership, predecessor,
successor, rank and select in constant time per operation.

4.3.1 Dynamic Partial Sums for Small Sequences

Let Z be a sequence of at most B ≤ wO(1) integer keys. We will show how to store Z in
linear space such that all dynamic partial sums operations can be performed in constant
time. We let Y be the sequence of prefix sums of Z , defined such that each key Y [i]
is the sum of the first i keys in Z , i.e., Y [i] =

∑i
j=1 Z[ j]. Observe that sum(i) = Y [i]

and search(t) is the index of the successor of t in Y . Our goal is to store and maintain
a representation of Y subject to the dynamic operations update, divide and merge in
constant time per operation.

4.3.1.1 The Scheme by Pătraşcu and Demaine.

We first review a version of the solution to the non-dynamic partial sums problem by
Pătraşcu and Demaine [Păt+04], simplified and improved due to Lemma 4.3.1. Our dy-
namic solution builds on this.

The entire data structure is rebuilt every B operations as follows. We first partition Y
greedily into runs. Two neighboring elements in Y are in the same run if their difference
is at most B2δ, and we call the first element of each run a representative for all elements
in the run. We use R to denote the sequence of representative values in Y and rep(i) to
be the index of the representative for element Y [i] among the elements in R.

We store Y by splitting representatives and other elements into separate data struc-
tures: I and R store the representatives at the time of the last rebuild, while U stores
each element in Y as an offset to its representative value as well as updates since the
last rebuild. We ensure Y [i] = R[rep(i)] + U[i] for any i and can thus reconstruct the
values of all elements in Y .

The representatives are stored as follows. I is the sequence of indices in Y of the
representatives and R is the sequence of representative values in Y . Both I and R are
stored using the data structure of Lemma 4.3.1. We then define rep(i) = rankI(predI(i))
as the index of the representative for i among all representatives, and use R[rep(i)] =
selectR(rep(i)) to get the value of the representative for i.

We store in U the current difference from each element to its representative, U[i] =
Y [i]−R[rep(i)] (i.e. updates between rebuilds are applied to U). The idea is to pack U
into a single word of B elements. Observe that update(i,∆) adds value ∆ to all elements
in Y with index at least i. We can support this operation in constant time by adding to
U a word that encodes ∆ for those elements. Since each difference between neighbours
in a run is at most B2δ and |Y | = O(B), the maximum value in U after a rebuild is
O(B22δ). As B updates of size 2δ may be applied before a rebuild, the changed value at
each element due to updates is O(B2δ). So each element in U requires O(lg B + δ) bits
(including an overflow bit per element). Thus, U requires O(B(lg B+δ)) bits in total and
can be packed in a single word for B = O(min{w/ lg w, w/δ}).
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Between rebuilds the stored representatives are potentially outdated because updates
may have changed their values. However, observe that the values of two neighboring
representatives differ by more than B2δ at the time of a rebuild, so the gap between
two representatives cannot be closed by B updates of δ bits each (before the structure is
rebuilt again). Hence, an answer to search(t) cannot drift much from the values stored
by the representatives; it can only be in a constant number of runs, namely those with a
representative value succR(t) and its two neighbours. In a run with representative value
v, we find the smallest j (inside the run) such that U[ j]+ v− t > 0. The smallest j found
in all three runs is the answer to the search(t) query. Thus, by rebuilding periodically, we
only need to check a constant number of runs when answering a search(t) query.

On this structure, Pătraşcu and Demaine [Păt+04] show that the operations sum,
search and update can be supported in constant time each as follows:

sum(i): return the sum of R[rep(i)] and U[i]. This takes constant time as U[i] is a field
in a word and representatives are stored using Lemma 4.3.1.

search(t): let r0 = rankR(succR(t)). We must find the smallest j such that U[ j]+R[r]−
t > 0 for r ∈ {r0 − 1, r0, r0 + 1}, where j is in run r. We do this for each r using
standard word operations in constant time by adding R[r]− t to all elements in U ,
masking elements not in the run (outside indices selectI(r) to selectI(r + 1)− 1,
and counting the number of negative elements.

update(i,∆): we do this in constant time by copying ∆ to all fields j ≥ i by a multiplica-
tion and adding the result to U .

To count the number of negative elements or find the least significant bit in a word in
constant time, we use the technique by Fredman and Willard [Fre+93].

Notice that rebuilding the data structure every B operations takes O(B) time, result-
ing in amortized constant time per operation. We can instead do this incrementally by a
standard approach by Dietz [Die89], reducing the time per operation to worst case con-
stant. The idea is to construct the new replacement data structure incrementally while
using the old and complete data structure. More precisely, during update j we rebuild
the data structure for index ( j mod B).

4.3.1.2 Efficient Support for Modifications

We now show how to maintain the structure described above while supporting operations
divide(i, t) and merge(i).

Observe that the operations are only local: Splitting Z[i] into two parts or merging
Z[i] and Z[i + 1] does not influence the precomputed values in Y (besides adding/re-
moving values for the divided/merged elements). We must update I, R and U to reflect
these local changes accordingly. Because a divide or merge operation may create new
representatives between rebuilds with values that does not fit in U , we change I, R and
U to reflect these new representatives by rebuilding the data structure locally. This is
done as follows.
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First, consider the run representatives. Both divide(i, t) and merge(i) may require us
to create a new run, combine two existing runs or remove a run. In any of those cases, we
can find a replacement representative for each run affected. As the operations are only
local, the replacement is either a divided or merged element, or one of the neighbours of
the replaced representative. Replacing representatives may cause both indices and values
for the stored representatives to change. We use insertions and deletions on R to update
representative values.

Since the new operations change the indices of the elements, these changes must also
be reflected in I. For example, a merge(i) operation decrement the indices of all elements
with index larger than i compared to the indices stored at the time of the last rebuild (and
similarly for divide(i, t)). We should in principle adjust the O(B) changed indices stored
in I. The cost of adjusting the indices accordingly when using Lemma 4.3.1 to store I is
O(B). Instead, to get our desired constant time bounds, we represent I using a resizable
data structure with the same number of elements as Y that supports this kind of update.
We must support selectI(i), rankI(q), and predI(q) as well as inserting and deleting
elements in constant time. Because I has few and small elements, we can support the
operations in constant time by representing it using a bitstring B and a structure C which
is the prefix sum over B as follows.

Let B be a bitstring of length |Y | ≤ B, where B[i] = 1 iff there is a representative
at index i. C has |Y | elements, where C[i] is the prefix sum of B including element
i. Since C requires O(B lg B) bits in total we can pack it in a single word. We answer
queries as follows: rankI(q) equals C[q− 1], we answer selectI(i) by subtracting i from
all elements in C and return one plus the number of elements smaller than 0 (as done
in U when answering search), and we find predI(q) as the index of the least significant
bit in B after having masked all indices larger than q. Updates are performed as follows.
Using mask, shift and concatenate operations, we can ensure that B and C have the same
size as Y at all times (we extend and shrink them when performing divide and merge
operations). Inserting or deleting a representative is to set a bit in B, and to keep C up to
date, we employ the same ±1 update operation as used in U .

We finally need to adjust the relative offsets of all elements with a changed representa-
tive in U (since they now belong to a representative with a different value). In particular,
if the representative for U[ j] changed value from v to v′, we must subtract v′ − v from
U[ j]. This can be done for all affected elements belonging to a single representative si-
multaneously in U by a single addition with an appropriate bitmask (update a range of
U). Note that we know the range of elements to update from the representative indices.
Finally, we may need to insert or delete an element in U , which can be done easily by
mask, shift and concatenate operations on the word U .

We present an example structure where B2δ = 4 in Figures 4.1, 4.2 and 4.3. Figure
4.1 presents the data structure immediately after a rebuild, Figure 4.2 shows the result
of performing divide(8, 3) on the structure of Figure 4.1, and Figure 4.3 shows the result
of performing merge(12) on the structure of Figure 4.2.

Concluding, divide and merge can be supported in constant time, so:
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Figure 4.3: The result of merge(12) on the structure of Figure 4.2.
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4.4. Substring Concatenation

Theorem 4.3.2. There is a linear space data structure for dynamic partial sums supporting
each operation search, sum, update, insert, delete, divide, and merge on a sequence of
length O(min{w/ lg w, w/δ}) in worst-case constant time.

4.3.2 Dynamic Partial Sums for Large Sequences

Willard [Wil00] (and implicitly Dietz [Die89]) showed that a leaf-oriented B-tree with
out-degree B of height h can be maintained in O(h) worst-case time if: 1) searches, in-
sertions and deletions take O(1) time per node when no splits or merges occur, and 2)
merging or splitting a node of size B require O(B) time.

We use this as follows, where Z is our integer sequence of length s. Create a leaf-
oriented B-tree of degree B = Θ(min{w/ lg w, w/δ}) storing Z in the leaves, with height
h= O(lgB n) = O(lg n/ lg(w/δ)). Each node vuses Theorem 4.3.2 to store the O(B) sums
of leaves in each of the subtrees of its children. Searching for t in a node corresponds
to finding the successor Y [i] of t among these sums. Dividing or merging elements in Z
corresponds to inserting or deleting a leaf. This concludes the proof of Theorem 4.1.2.

4.4 Substring Concatenation

In this section, we give the proof of Theorem 4.1.3. Recall that we must store a string R
to answer substring concatenation queries: given two strings x and y return the location
of an occurrence of x y in R or NO if no such occurrence exist.

To prove (i) we need the following definitions. For a substring x of R, let S(x) denote
the suffixes of R that have x as a prefix, and let S′(x) = {i+|x | | i ∈ S(x)∧i+|x | ≤ n}, i.e.,
S′(x) are the suffixes of R that are immediately preceded by x . Hence for two substrings
x and y , the suffixes that have x y as a prefix are exactly S′(x)∩S(y). This is a 2D range
reporting problem, but we can reduce to it to a 1D range emptiness problem in rank
space as follows.

Let rank(i) be the position of suffix R[i...] in the lexicographic ordering of all suffixes
of R, and let rank(A) = {rank(i) | i ∈ A} for A⊆ {1, n}. Then x y is a substring of R if and
only if rank(S′(x))∩ rank(S(y)) = ;. Note that rank(S(y)) is a range [a, b]⊆ [1, n], and
we can determine this range in constant time for any substring y using a constant-time
weighted ancestor query on the suffix tree of R [Gaw+14]. Consequently, we can decide
if x y is a substring of R by a 1D range emptiness query on the set rank(S′(x)).

Belazzougui et al. [Bel+10] (see also [Gos+15]) recently gave a 1D range emptiness
data structure for a set A ⊆ [1, r] using O(|A| lgε r) bits of space, for any ε > 0, and
answering queries in constant time. We will build this data structure for rank(S′(x)), but
doing so for all substrings would require space Ω̃(r2).

To arrive at the space bound of O(r lgε r) (words), we employ the standard technique
of a heavy path decomposition [Har+84] on the suffix tree of R, and only build the data
structure for substrings of R that correspond to the top of a heavy path. In this way, each
suffix will appear in at most lg r such data structures, leading to the claimed O(r lgε r)
space bound (in words).
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To answer a substring concatenation query with substrings x and y, we first deter-
mine how far y follows the heavy path in the suffix tree from the location where x stops.
This can be done in O(1) time by a standard constant-time LCP query between two suf-
fixes of R. We then proceeed to the top of the next heavy path, where we query the
1D range reporting data structure with the range rank(S(y ′)) where y ′ is the remaining
unmatched suffix of y . This completes the query, and the proof of (i).

The second solution (ii) is an implication of a result by Bille et al. [Bil+14]. Given
the suffix tree STR of R, an unrooted LCP query [Col+04] takes a suffix y and a location
ℓ in STR (either a node or a position on an edge) and returns the location in STS that
is reached after matching y starting from location ℓ. A substring concatenation query is
straightforward to implement using two unrooted LCP queries, the first one starting at
the root, and the second starting from the location returned by the first query. It follows
from Bille et al. [Bil+14] that we can build a linear space data structure that supports
unrooted LCP queries in time O(lg lg r) thus completing the proof of (ii).

4.5 Extensions to DRC

In this section we show how to solve two other variants of the dynamic relative compres-
sion problem. We first prove Theorem 4.1.4, showing how to improve the query time if
only supporting operations access and replace. We then show Theorem 4.1.5, generalis-
ing the problem to support multiple strings. These data structures use the same substring
concatenation data structure of Theorem 4.1.3 as before but replace the dynamic partial
sums data structure.

4.5.1 DRC Restricted to Access and Replace

In this setting we constrain the operations on S to access(i) and replace(i,α). Then,
instead of maintaining a dynamic partial sums data structure over the lengths of the
substrings in C , we only need a dynamic predecessor data structure over the prefix sums.
The operations are implemented as before, except that for access(i)we obtain block b j by
computing the predecessor of i in the predecessor data structure, which also immediately
gives us access to ℓ. For replace(i,α), a constant number of updates to the predecessor
data structure is needed to reflect the changes. We use substring concatenation queries to
restore maximality as described in Section 4.2. The prefix sums of the subsequent blocks
in C are preserved since |b j |= |b1

j |+ |b2
j |+ |b3

j |. This results in Theorem 4.1.4.

4.5.2 DRC of Multiple Strings with Split and Concatenate

Consider the variant of the dynamic relative compression problem where we want to
maintain a relative compression of a set of strings S1, . . . , Sk. Each string Si has a cover Ci

and all strings are compressed relative to the same string R. In this setting n =
∑k

i=1 |Ci |.
In addition to the operations access, replace, insert, and delete, we also want to support
split and concatenation of strings. Note that the semantics of the operations change to
indicate the string(s) to perform a given operation on.
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We build a height-balanced binary tree Ti (e.g. an AVL tree or red-black tree) over the
blocks Ci[1], . . . , Ci[|Ci |] for each string Si . In each internal node v, we store the sum of
the block sizes represented by its leaves. Since the total number of blocks is n, the trees
use O(n) space. All operations rely on the standard procedures for searching, inserting,
deleting, splitting and joining height-balanced binary trees. All of these run in O(lg n)
time for a tree of size n. See for example [Cor+01] for details on how red-black trees
achieve this.

The answer to an access(i, j) query is found by doing a top-down search in Ti using
the sums of block sizes to navigate. Since the tree is balanced and the size of the cover
is at most n, this takes O(lg n) time. The operations replace(i, j,α), insert(i, j,α), and
delete(i, j) all initially require that we use access(i, j) to locate the block containing the
j-th character of Si . To reflect possible changes to the blocks of the cover, we need to
modify the corresponding tree to contain more leaves and restore the balancing property.
Since the number of nodes added to the tree is constant these operations each take
O(lg n) time. The concat(i, j) operation requires that we join two trees in the standard
way and restore the balancing property of the resulting tree. For the split(i, j) operation
we first split the block that contains position j such that the j-th character is the trailing
character of a block. We then split the tree into two trees separated by the new block.
This takes O(lg n) time for a height-balanced tree.

To finalize the implementation of the operations, we must restore the maximality
property of the affected covers as described in Section 4.2. At most a constant number
of blocks are non-maximal as a result of any of the operations. If two blocks can be
combined to one, we delete the leaf that represents the rightmost block, update the
leftmost block to reflect the change, and restore the property that the tree is balanced.
If the tree subsequently contains an internal node with only one child, we delete it and
restore the balancing. Again, this takes O(lg n) time for balanced trees, which concludes
the proof of Theorem 4.1.5.
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Abstract

The annotated streaming model was originally introduced by Chakrabarti, Cor-
mode and McGregor [ICALP 09, ACM TALG 14]. In this extension of the conventional
streaming model, a single query on the stream has to be answered by a client with
the help from an untrusted annotator that provides an annotated data stream (to be
used with the input stream). Only one-way communication is allowed. We extend this
model by considering multiple queries. In particular, our primary focus is on on-going
queries where a new output must be given every time a stream item arrives.

In this model, we show the existence of a data structure that enables us to store
and recover information about past items in the stream in very little space on the
client. We first use this technique to give a space-annotation trade-off for the an-
notated multi-indexing problem, which is a natural generalisation of the previously
studied annotated indexing problem.

Our main result is a space-annotation trade-off for the classic exact pattern match-
ing problem in phrase-compressed strings. In particular, we show the existence of a
O(lg n) time per phrase, O(lg n+m) client space solution which uses O(lg n) words of
annotation per phrase. If the client space is increased to O(nε +m) then O(1) words
of annotation and O(1) time per phrase suffices. Here n is the length of the stream
and m is the length of the pattern. Our result also holds for the well-known LZ78
compression scheme which is a special case of phrase-compression.

All of the problems we consider have Ω(n) randomised space lower bounds in the
standard (unannotated) streaming model.

∗Supported by a grant from the Danish National Advanced Technology Foundation.



5. COMPRESSED PATTERN MATCHING IN THE ANNOTATED STREAMING MODEL

5.1 Introduction

In the streaming model [Mun+80; Fla+85; Alo+99], an input stream of elements arrive
one at a time, and we must solve problems using sub-linear (typically polylogarithmic)
space and time per element with a single pass over the data. Throughout the paper, we
let n denote the length of the input stream, and assume that input elements require O(1)
words of w ≥ lg n bits each.

In order to model the current state of affairs in computing with easy and cheap access
to massive computational power over the internet, the annotated streaming model intro-
duced by Chakrabarti, Cormode and McGregor [Cha+09; Cha+14] expands the normal
streaming model by introducing an untrustworthy annotator. This annotator is assumed
to have infinite computational resources and storage, and it assists a client in solving
some problem by providing an annotated data stream that is transmitted along with the
normal input stream (i.e. the client-annotator communication is one-way). Software and
hardware faults, as well as intentional attempts at deceit by the annotator (as could
reasonably be the case), are modeled by assuming that the annotator cannot be trusted.
Consequently, for a given problem we must create a client algorithm and associated anno-
tation protocol that allows the client to either solve the problem if the annotator is honest,
or alternatively to detect a protocol inconsistency. As we are designing an algorithm-
protocol pair, we allow the annotator to know the online algorithm used by the client
(but, crucially, not the random choices made by the client at runtime). This means that
the annotator can simulate the client and its behaviour, up to random choices.

In this paper we introduce a variant of the annotated streaming model which is suited
to on-going, high-throughput streaming pattern matching problems. In particular our
main result in this paper is a randomized annotated streaming algorithm which detects
occurrences of a pattern in a compressed text stream as they occur with high probability.
In contrast to the standard annotated streaming model, our result returns an answer (to
the implicit query ‘is there a new match?’) every time a stream element arrives. We also
provide worst case bounds on the amount of annotation received by the client between
any two text stream elements. This is important in high-throughput applications. A par-
ticularly notable feature of our annotated streaming algorithm is that in uses o(n) space
which is impossible (even randomized) for this problem in the standard unannotated
streaming model. In-fact at one point on the space-annotation trade-off that we present
we use only O(lg n+ m) space (where m is the pattern length) while still maintaining
O(lg n) worst case time and annotation per stream element. Our result also holds for the
widely used LZ78 compression scheme which is a special case of phrase-compression.

Annotated Data Structures. We also introduce the notion of an annotated data struc-
ture that is run by the client and the annotator in cooperation. The annotator “answers
queries” in the annotated data stream, and the client maintains a small data structure for
checking the validity of annotated query answers. Answers can be given by the annotator
if the queries are specified only by the client algorithm and the input, meaning that the
annotator can predict required answers though no two-way communication takes place.
The data structure relies on using Karp-Rabin fingerprints on the client to ensure that
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the annotator remains honest. As a result, all answers are correct with high probability.
As the annotator has unbounded computational power, it is crucial that they do not have
access to the random choices of the client.

5.1.1 The model

Before we give our results, we give a more detailed overview of the key features of the
variant of the annotated streaming model that we consider. In each case we highlight
how this compares to the standard annotated streaming model.

Multiple Queries. The standard annotated streaming model supports a single query -
which occurs after the full input stream arrives. For streaming pattern matching prob-
lems, it is conventional and natural to require that occurrences of a pattern in the text
are reported as they happen. That is, we consider each new element in the stream as
a new query that must be answered before the next stream element arrival. Thus, to
support solving pattern matching in the annotated model, we extend the model by allow-
ing multiple queries, where queries and their answers may be interleaved with the input
stream.

Annotations. In both the standard annotated streaming model and our variant, the
annotations can be modeled as additional words which arrive between consecutive ele-
ments of the input stream. In the standard model, annotation is measured by the total
number of words of annotation received by the client while processing the entire stream.
In contrast we will give bounds on the worst-case annotation per element in the input
stream. I.e. the maximum number of words of annotation received by the client between
any two input elements. These annotation per element guarantees are important in high-
throughput applications where queries are highly time sensitive as may well be the case
for pattern matching problems. It is also important in applications where the arrival rate
of the original stream cannot be controlled. There may simply not be time to receive
many words of annotation before the next stream element arrives.

Prescience. In our variant of the annotated streaming model, we assume that the anno-
tator is also prescient (as in parts of [Cha+09; Cha+14]), meaning that it has full access
to the input stream in advance. In the case that the annotator also provides the input
stream this is a very reasonable assumption, and the model we will use in this paper. Our
motivation is that the client may require an annotated stream when receiving some input
stream to be able to verify if the input stream is valid. For example, our scheme allows
the client to perform pattern matching in a compressed input text. That is, the client
can for example perform a streamed virus scan (using virus signatures as patterns) on a
streamed input file. The result is that a malicious prescient annotator trying to infect the
client can not make the client receive an infected file.
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An interesting detail is that any prescient algorithm in the annotated streaming model
can be made non-prescient relatively straightforwardly by blowing up the time before
detecting a protocol inconsistency.

5.1.2 Our Results

As our main result, we solve the pattern matching problem in a phrase-compressed text
stream where phrases arrive in order, one by one. The compression model is classic, with
each phrase being either a single character or an extension of a previous phrase by a
single character. This model subsumes for example the widely used LZ78 compression
scheme.

This is the first result to show the power of one-way annotation in solving classic prob-
lems on strings, proving that the annotator allows us to reduce the space required by the
client from linear in the stream length to logarithmic by using a logarithmic amount of
annotation per phrase received. We give the following smooth trade-off for the problem:

Theorem 5.1.1. Let 2≤ B ≤ n. Given a text compressed into n phrases arriving in a stream
and a pattern p of length m. We can maintain a structure in O(B lgB n+m) space that allow
us to determine if an occurrence of p ends in a newly arrived phrase in O(lgB n) words of
annotation and O(lgB n) time per phrase. Our algorithm is randomised and all matches are
output correctly with high probability (at least 1− 1/n).

That is, we can solve the problem in O(lg n+ m) space and O(lg n) time and anno-
tation per phrase; or if spending O(nε + m) space then O(1) time and annotation per
phrase suffices. In the standard streaming model, the problem has a Ω(n) randomised
space lower bound, which show that one-way communication from an untrusted annota-
tor can help in solving classic string problems.

The result is a careful application of techniques for pattern matching in compressed
strings, providing a simple initial solution in linear space and constant time per phrase
with no annotation. We reduce the space required using a new annotated data structure
that allows us to store and access arbitrary information in logarithmic client space with
logarithmic overhead.

Before giving the solution to Theorem 5.1.1, we give an interesting warm up with
a solution to streamed multi-indexing, motivating and illustrating our solution scheme.
From a high level, we solve the problems in three steps:

1. Construct a protocol for the annotation that must be sent by the annotator when
an element arrives in the stream.

2. Give a client algorithm that uses the annotation to either solve the problem or to
detect a protocol inconsistency before the next input arrives.

3. Store information about the current element for the future, and consistently re-
trieve required information about the past.
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We show the existence of the following new data structure for the streamed recovery
problem that generally allows us to trade client space for annotation when storing infor-
mation about the stream. We believe this data structure to be of independent interest.
We associate with each input element an automatically incremented timestamp t, and
the problem is to maintain an array R with an entry for each timestamp. The operations
are attach(i, x), which sets R[i] = x; and recover() returns the data associated with
the current timestamp t. We show the following theorem:

Theorem 5.1.2. Let 2≤ B ≤ n. There is an annotated data structure for streamed recovery
that requires O(B lgB |R|) words of space, and executes operations in O(lgB |R|) words of
worst case annotation and O(lgB |R|) time. The result is randomized and all operations are
completed correctly with high probability (at least 1− 1/n).

5.1.3 Related Work

Chakrabarti, Cormode and McGregor [Cha+09; Cha+14] introduced the annotated stream-
ing model and gave solutions to a number of natural problems, showing the utility of the
annotator in solving classic problems on streams, such as selecting the median element,
calculating frequency moments and various graph problems. Assuming a helpful annota-
tor, Cormode, Mitzenmacher and Thaler [Cor+13] show how to solve various graph prob-
lems such as connectivity, triangle-freeness, DAG determination, matchings and shortest
paths. Semi-streaming solutions requiring superlinear space and annotation to solve tri-
angle counting and computing maximal matchings was given by Thaler [Tha14].

Multiple papers [Cor+12; Kla+14; Cha+15; Kla+13] have considered a variant allow-
ing interactive communication (where the client can query the annotator in a number of
rounds). Chakrabarti et al. [Cha+15] showed that very little two-way communication is
sufficient to solve problems such as nearest neighbour search, range counting and pat-
tern matching, restricting the amount of interaction to be only a constant number of
rounds. Klauck and Prakash [Kla+13] consider two-way communication, but similarly
to our model variant restrict the amount of annotation spent per input element, giving
solutions to the longest increasing subsequence problem (and others). To the best of our
knowledge, there are no proposed solutions to any classic string problems where only
one-way communication is allowed.

The annotated streaming model is related to a myriad of models from other fields
where an untrusted annotator helps a client in solving problems (see e.g. [Göö+15;
Bab85; Gol+86; Gol+85; Gol+91]). For example, in communication complexity an Arthur-
Merlin Protocol [Bab85; Gol+86] model an all-powerful but untrustworthy Merlin that
help Arthur to solve some problem probabilistically (using only public randomness). In
cryptology, a related notion is that of Zero Knowledge Proofs [Gol+85; Gol+91], where
a client must verify a proof by the annotator without obtaining any knowledge about the
actual proof (here, private randomness is permitted).

Karp-Rabin fingerprints. Our work makes use of Karp and Rabin [Kar+87] finger-
prints which were originally used to design a randomized string matching algorithm and
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5. COMPRESSED PATTERN MATCHING IN THE ANNOTATED STREAMING MODEL

since have been used as a central tool to design algorithms for a wide range of problems
(see e.g., [Col+03; Kal02; Por+09]). The Karp-Rabin fingerprint of a string is given by
the following definition.

Definition 1 (Karp-Rabin fingerprint.). Let p be a prime and r a random integer in
{1, 2, 3, ..., p− 1}. The fingerprint function ϕ for a string S is given by:

ϕ(S) =
∑|S|−1

i=0 S[i]r i mod p.

We will make extensive use of the following well-known properties. Given ϕ(S) and
ϕ(S′), we can compute the fingerprint of the concatentation ϕ(S ◦ S′) in O(1) time.
Given ϕ(S) and ϕ(S ◦ S′), we can compute the fingerprint ϕ(S′) in O(1) time. If p > n4

then ϕ(S) = ϕ(S′) iff S = S′ with probability at least 1− 1/n3. This is the only source of
randomness in our results. For convenience in our algorithm descriptions and correctness
we will assume that whenever a comparison between some ϕ(S) and ϕ(S′) is made that
ϕ(S) = ϕ(S′) iff S = S′. As our client algorithms run in sub-quadratic total time, by
applying the union bound, we have that this assumption holds for all comparisons with
probability at least 1− 1/n when p ≥ n4.

5.2 Multi-Indexing

As an interesting warm-up before showing our main results, we show how to use Theo-
rem 5.1.2 to solve the multi-indexing problem. The input stream consist of a sequence of
input elements X and queries Q. The answer to an index(i) query is the input element
X [i] (where i is an index in the input element sequence). Input elements and queries
may be mixed (but queries must refer to the past). At any time n= |X |+ |Q| is the stream
length so far.

In the standard streaming model (without annotation) it can be shown that even a
randomized algorithm must use Ω(|X |) bits of space on the client. This follows almost
immediately by the observation that a streaming algorithm for multi-indexing which uses
o(|X |) bits of space would give an o(|X |) bit one-way communication protocol for the
indexing problem. It is folklore that this is impossible. In the annotated streaming model
without prescience, Chakrabarti et al. [Cha+09] gave a lower bound in the form of a
space-annotation product of Ω(|X |) bits if |Q| = 1 (and an upper bound with O(

p|X |)
space and annotation). There are no better lower bounds for |Q| > 1 or when having
access to prescience.

There are two simple solutions, one of which is using O(1) space to store a Karp-
Rabin Fingerprint of X . To answer an index(i) query, the annotator must then replay all
of X in O(|X |) annotation, which allows the client to answer the query and verify that X
was correctly replayed.

If the client instead stores the entire stream in O(|X |) space, it is easy to answer a
query in O(1) time, by simply looking up the answer. This is the solution we will build
on, using the data structure of Theorem 5.1.2 as black box storage of X to reduce the
space use, resulting in the following trade-off:
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Theorem 5.2.1. Let 2 ≤ B ≤ n. We can solve the multi-indexing problem in O(B lgB n)
space, using O(lgB n) words of annotation and O(lgB n) time per stream element. All queries
are answered correctly with high probability (at least 1− 1/n).

Clearly, we can answer a query index(i) if we have access to element X [i]. Assume
that on arrival of element X [i] we know that at time t query index(i) will arrive. This
allows us to perform an attach operation for X [i] at time t, and we can then use
a recover query to get the element. If we have these timestamps for all queries, we
clearly have |R| = O(n) when using Theorem 5.1.2. As the annotator is prescient, it has
all the timestamps for queries to X [i] and can send them to the client when the element
arrives in the stream. The resulting annotation takes O(|Q|) words in total (but may
be unevenly distributed). The remaining difficulty is to force the annotator to send the
correct timestamps, and to only send one annotation timestamp per element.

We send the timestamps for queries to X [i] one at a time by stringing together
queries, only receiving the timestamp of the next query to an element each time we
access it. The annotation protocol for a new element in the stream is:

• Let the new stream element be x = X [i] or a query index(i). Then the annotator
must send the timestamp j of the next query1 to item i. The client saves element
x for timestamp j by performing an attach( j, i ◦ x) operation, where ◦ denotes
concatenation of words.

• If the stream element is a query index(i), the client first performs a i′ ◦ x =
recover() query to retrieve element x . We check if i′ and i match and return
x if so; otherwise we report a protocol inconsistency.

Note that when an item x is received in the stream, the client can correctly attach
it, providing us with the ground truth in the chain of queries to the element. Observe
that if the recovered i′ does not match i for a query, the protocol was broken, as either
the annotator told us a wrong future timestep for the next query to i or the annotated
recovery data structure gave a wrong answer. In either case, we have an inconsistency.

5.3 Streamed Recovery

As previously defined, the streamed recovery problem is to maintain a data structure that
allow us to attach(i, x) some bitstring x to the arrival of a stream element at time i,
and to recover the bitstring attached to the current stream element. We now give the
proof for Theorem 5.1.2.

The overall idea in our solution is to maintain a small data structure on the client that
is updated when performing attach operations and used to ensure that the answers to
recover queries provided by the annotator are correct.

To simplify our presentation, we initially assume that all attach updates are per-
formed first, followed by all recover queries. This assumption can be removed as shown

1The next query is the future query with the smallest timestamp.
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later without increasing the time and space. Remember that R is the list of items to attach
or recover, indexed by the timestamp of the items.

From a high level, we build a balanced B-tree T with out-degree B and R at the leaves,
where each internal node have a data structure that allow consistency checking the leafs
in its subtree. We let Ti refer to the leaf corresponding to R[i]. When an attach(i, x)
operation is performed all nodes on the path from Ti to the root are updated. By using
the consistency checking data structures when a recover query is answered, we can
check if the answer fit the expectation.

Since T is balanced with out degree B, it has height O(lgB |R|). Each node u ∈ T
covers some interval of R. We use Karp-Rabin Fingerprints to check the consistency of
subtrees, storing for each node u ∈ T the O(B) fingerprints for all prefixes of its children.
Clearly, storing T and the fingerprints takes O(|R|) space. However, using the annotator
we can reduce the space required to O(B lgB |R|) as recover queries only move forward
in time (so there is no reason to store fingerprints to check the past or the distant future).
This is done as follows.

At time t the client stores the fingerprints on a single root-to-leaf path from the
root to Tt as well as all immediate children of that path. This path is called the active
fingerprint path and denoted At . The active fingerprint path consist of O(lgB |R|) layers of
fingerprints with O(B) fingerprints stored in each layer. Thus, the total space required is
O(B lgB |R|) at any time t.

Since time moves forward, the active fingerprint path starts at the leftmost root-to-
leaf path of the tree and moves right through the leaves, each of which correspond to
a single recover query. The fingerprints in T are constructed by the client when per-
forming attach(i, x) operations. The details are as follows. Note that for any t the
active fingerprint path moves from Tt to Tt+1 through a diamond transition path. Since
it moves left to right we can find p = lca(Tt , Tt+1) on At . Let vt be the child of p that
At passes through. We know there is a right neighbour vt+1 of vt that At+1 must pass
through. At time t the client stores all fingerprints for children of p and thus the full
fingerprint for vt+1. Thus, we can force the annotator to send us the correct list of leaves
below vt+1, checking the received items with our stored fingerprint. Furthermore, at the
same time as receiving these items, we can build up the leftmost fingerprint path in the
subtree rooted by vt+1. That is, when we move the active fingerprint path, we can make
sure that the annotator sends us the correct list of leaves below vt+1.

The annotation as described transmits each leaf O(lgB |R|) times, as it is sent once for
each ancestor node in T . However, a lot of annotation may be sent per stream element.
We can ensure O(lgB |R|) annotated words per element with the following deamortization.
The annotator must repeatedly send the items that should be recovered by the right
neighbour node on each level of the tree. Transmission of the leaves in the subtree rooted
by v is timed such that it ends when the active fingerprint path moves to v. That is,
transmission of the leaves below vt+1 begin when the path moves to node vt , where vt+1
is on the right of vt and in the same level. The result of this is that we at each timestamp
transmit O(1) leaves for each of the O(lgB |R|) levels in the tree.

Our final concern is to remove the requirement of non-interleaved attach and recover
queries. In this case, we build T incrementally. This means that we may have already
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transferred the leaf Ti (as an empty leaf) before an attach(i, x) operation is performed.
It is up to the client to later correct the fingerprint for the ancestors of Ti when an
attach(i, x) is made (so we can check recover queries correctly). This can be done by
the client assuming the client can already decide where to attach(i, x) items: it involves
updating the fingerprints already stored and in transfer that covers item i, of which there
are at most O(lgB |R|).

5.4 Compressed Pattern Matching

We now show how to use the power of the annotator to solve the pattern matching
problem in a phrase-compressed text stream. The compressed phrases are on the form
i = ( j,σ), which either extends a previous phrase j by an alphabet character σ, or starts
a new chain of extending phrases if j = −12. The problem is to find occurrences of an
(uncompressed) pattern P of m alphabet characters in the uncompressed text as follows:
for each arriving phrase we must output true iff there is an occurrence of P ending in the
latest phrase. At any time n denotes the number of phrases we have seen so far.

In compressed pattern matching, the output when phrase n arrives can depend on
phrases arbitrarily far in the past. This is is in contrast to well-studied uncompressed
streaming pattern matching problems in which the output typically only depends on
a window of length O(m). More formally, we have that in the standard, unannotated
streaming model, there is a space lower bound of Ω(n) for our problem. This follows
via a reduction to the indexing problem with the pattern P = 1. We can use the first n
phrases to encode a bit string of length n (by starting a new chain with every phrase). We
can then ‘query’ any of these bits by appending the phrase ( j, 0) where j is the index to
be queried. This lower bound also holds (with a little bit of fiddling) if the phrase scheme
is restricted to be LZ78 compression [Ziv+78]. The details are given in the appendix.

We first give an algorithm which determines whether P is a substring of the latest
phrase, we will then then extend this to find new pattern occurrences that cross phrase
boundaries (but still end in the latest phrase). Before we do so, we briefly discuss some
(mostly) standard pattern matching data structures that we store on the client for use in
for our solution.

Additional client-side data structures. The following standard data structures use
O(m) space on the client and can be constructed during preprocessing in O(m) time
using standard methods3. We build a suffix tree for P [Wei73] with edges stored in
nodes using perfect hashing [Fre+84].

We also build a set of m perfect static dictionaries. Each dictionary D j is associated
with a pattern prefix P[0, j− 1]. The role of these dictionaries is to provide an analogue
of the classic KMP prefix table. However, unlike the classic prefix table, this approach will
lead to worst case constant processing times. Each entry in D j is keyed by an alphabet
symbol σ and associated with a length ℓ. Here ℓ is largest non-negative integer such

2This models most phrase-based compressors, such as LZ78.
3We assume a linear alphabet size.
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that P[0,ℓ− 1] = P[ j − ℓ+ 1, j − 1] and P[ℓ] = σ ̸= P[ j]. The dictionary D j contains
every symbol for which ℓ is well-defined. This construction was also used in [Cli+12]
(see Lemma 1) which is in turn a rephrasing of the original approach from [Sim93].
It was proven in [Sim93] that, surprisingly, the total size of all D j summed over all
j ∈ [m] is only O(m). Our perfect static dictionaries are constructed according to the
FKS scheme [Fre+84] so lookup operations take O(1) worst-case time.

Occurrences in the latest phrase. We first give a simple O(n + m) client space and
O(1) time solution which does not use annotation. When each phrase i = ( j,σ) arrives,
the output is match(i) which is TRUE iff there is a match in phrase i. To determine this
we also calculate the length of the longest suffix of phrase i that matches a prefix of P.
This length is denoted pref(i). We store both pref(i) and match(i) for each phrase
seen so far in O(n) space.

We compute pref(i) from pref( j) and σ using the dictionary D j , in a similar way
to the KMP algorithm. In particular if σ = P[pref( j) + 1] then pref(i) = pref( j) + 1.
Otherwise, we look up σ in D j in O(1) time. If σ is in the dictionary then pref(i) = ℓ+1.
Otherwise, pref(i) = 0. This follows because both P[0,pref( j)] and P[0,pref(i)] are
pattern prefixes.

To decide whether a match occurs in phrase i, we make the observation that,

match(i) = TRUE if and only if (pref(i) = m or match( j) = TRUE).

This follows because a match in phrase i is either completely contained in phrase j (in
which case match( j) = TRUE) or ends at the final character of phrase j (in which case
pref(i) = m). This completes the basic algorithm description.

To reduce the space to O(B lgB n+m) we use the annotated recovery data structure
that we gave in Theorem 5.1.2. From the description, we spend O(n) space storing the
facts pref(i) and match(i) for each phrase, while the client side data structures for
processing phrases take O(m) space in total. We reduce the first term to O(B lgB n) by the
observation that for a new phrase i = ( j,σ) we only ever require access to pref( j) and
match( j), each of which can be obtained from the data structure of Theorem 5.1.2 using
recover queries. Furthermore, when receiving phrase i the can send the timestamps
of all phrases directly extending i in the annotated stream for use in attaching facts to
these timestamps. Since a phrase i may be extended multiple times, the trick is to avoid
sending the timestamps for all phrases that extend i at once.

We force the annotator to string together the extension timestamps as in the anno-
tation scheme for multi-indexing as follows. The annotator must send two indices for
phrase i = ( j,σ): the index j′ of the next phrase extending j and the index i′ of the
first phrase extending i. We attach pref( j) and match( j) to phrase j′, calculate pref(i)
and match(i) as previously shown and attached those facts to phrase i′. As O(n) attach
and recover queries are made in total and all phrase processing besides the operations of
Theorem 5.1.2 take constant time and O(m) space, we obtain Theorem 5.4.1 below.
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Theorem 5.4.1. In a stream of n phrases of compressed text, one can find the phrases
that contain a pattern of length m in O(B lgB n+ m) space, O(lgB n) worst case words of
annotation per phrase and O(lgB n) time per phrase.

We now give our main result by showing how to extend this to find matches that
cross phrase boundaries. To simplify exposition, matches within phrase boundaries are
still found as shown above. We will give our full algorithm in two versions. First we give
a time efficient, O(n+ m) space solution which is based on existing techniques for the
classic offline, unannotated version of the problem. Then we improve the space to be
logarithmic by using our annotated recovery data structure.

Occurrences across phrase boundaries. In our first solution when phrase i arrived we
computed pref(i), the longest suffix of phrase i that matches a prefix of P. In addition
we will also compute tpref(i), the longest prefix of the pattern matching a suffix of
the text up to and including phrase i. This is distinct from pref(i) because it allows
for prefix matches that cross phrase boundaries. In particular it is (conceptually) more
difficult to compute because the prefix may cross many phrase boundaries. It is important
to observe that for any phrase i = ( j,σ), in contrast to our previous in-phrase approach,
a cross-boundary match in phrase i is not generally implied by tpref( j) = m. This is
because tpref( j) can extend to the left of phrase j and into a region of the text unrelated
to phrase i.

To enable us to find cross-boundary matches efficiently, we will also compute sub(i),
the length of the longest substring of the pattern which matches a prefix of phrase i.
We also store the location of an occurrence of this substring in P. In the first version
we explicitly store pref( j), tpref( j) and sub( j) (and its location) on the client for all
phrases seen so far in O(n) space.

The key observation is that when i = ( j,σ) arrives any new cross-boundary matches
are completely contained within the portion of the text given by concatenating the strings
corresponding to tpref(i−1) and sub(i). This follows immediately from the definitions
of tpref(i − 1) and sub(i). These are both substrings of P. Further, we can compute
sub(i) from sub( j) (and its location) and σ. This can be done in O(1) time using the
suffix tree for the pattern. The details are straightforward and are given in the appendix
for completeness.

As observed above, any new cross-boundary matches are contained within the con-
catenation of two pattern substrings. Therefore, we can apply Lemma 5.4.2 to find the
substring cross-boundary matches in O(1) time.

Lemma 5.4.2 (Gawrychowski [Gaw13], Lemma 3.1 rephrased). The pattern P can be
preprocessed in O(m) time and O(m) client space to allow queries of the following form
in O(1) time: Given two substrings P[i1, j1] and P[i2, j2] decide whether P occurs within
P[i1, j1] ◦ P[i2, j2].

We now explain how to use our annotated recovery data structure to again improve
the space used on the client to O(B lgB n+m). As previously shown, we can attach and
recover the required facts pref and match for each new phrase i = ( j,σ) by stringing

63



5. COMPRESSED PATTERN MATCHING IN THE ANNOTATED STREAMING MODEL

together the facts using annotated knowledge about the next references to i and j. We
store the new facts tpref and sub in the exact same way, attaching the them to the
next references to i and j. As we spend O(n) space only on the facts and O(m) on the
remaining data structure, this concludes the full algorithm description and our proof of
Theorem 5.1.1.

Appendix

LZ78 lower bound In LZ78 compression, the phrases given for the lower bound are an
incorrect compression of the underlying string. In particular in LZ78 compression there
cannot be two phrases which correspond to the same substring (except if one of them
is the final phrase). This is because LZ78 phrases are defined to be maximal. That is
when compressing a text the next phrase will represent the longest (valid) prefix of the
uncompressed suffix of the text.

With an unbounded alphabet, a suitable lower bound for LZ78 is given as follows.
The overall technique of reduction to indexing is the same. Start with n phrases each
representing a single different symbol x1 . . . xn. Then encode the bit string B one bit at a
time, with the i-th bit encoded as the phrase 2i = (i, B[i]). The pattern is P = 1. A query
to bit j is modeled by a phrase given by (3 j, 0). If there is a match we know the bit was
a 1, otherwise 0. Similar (but more involved) constructions work for binary alphabets.

Computing sub(i) from sub( j). If sub( j) is shorter than the length of phrase j then
sub(i) = sub( j)4. Otherwise we must decide whether phrase i is a substring of the
pattern. This can be achieved as follows. The location of the string corresponding to
sub( j) is stored as the location in the suffix tree for P. We can then extend this in
constant time by looking for σ on an edge. Note that sub(i) does not contribute new
matches besides pref(i) by itself, as if |sub(i)| = m then we must have pref(i) = m as
well.

4No new symbol make a longer substring of P match as there is a previous mismatch.
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Abstract

Genomic Analysis, Plagiarism Detection, Data Mining, Intrusion Detection, Spam
Fighting and Time Series Analysis are just some examples of applications where ex-
traction of recurring patterns in sequences of objects is one of the main computa-
tional challenges. Several notions of patterns exist, and many share the common idea
of strictly specifying some parts of the pattern and to don’t care about the remaining
parts. Since the number of patterns can be exponential in the length of the sequences,
pattern extraction focuses on statistically relevant patterns, where any attempt to fur-
ther refine or extend them causes a loss of significant information (where the number
of occurrences changes). Output-sensitive algorithms have been proposed to enumer-
ate and list these patterns, taking polynomial time O(nc) per pattern for constant
c > 1, which is impractical for massive sequences of very large length n.

We address the problem of extracting maximal patterns with at most k don’t care
symbols and at least q occurrences. Our contribution is to give the first algorithm
that attains a stronger notion of output-sensitivity, borrowed from the analysis of
data structures: the cost is proportional to the actual number of occurrences of each
pattern, which is at most n and practically much smaller than n in real applications,
thus avoiding the aforementioned cost of O(nc) per pattern.
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6. OUTPUT-SENSITIVE PATTERN EXTRACTION IN SEQUENCES

6.1 Introduction

In pattern extraction, the task is to extract the “most important” and frequently occur-
ring patterns from sequences of “objects” such as log files, time series, text documents,
datasets or DNA sequences. Each individual object can be as simple as a character from
{A,C,G,T} or as complex as a json record from a log file. What is of interest to us is the
potentially very large set of all possible different objects, which we call the alphabet Σ,
and sequence S built with n objects drawn from Σ.

We define the occurrence of a pattern in S as in pattern matching but its importance
depends on its statistical relevance, namely, if the number of occurrences is above a cer-
tain threshold. However, pattern extraction is not to be confused with pattern matching.
The problems may be considered inverse of each other: the former gets an input sequence
S from the user, and extracts patterns P and their occurrences from S, where both are
unknown to the user; the latter gets S and a given pattern P from the user, and searches
for P ’s occurrences in S, and thus only the pattern occurrences are unknown to the user.

Many notions of patterns exist, reflecting the diverse applications of the problem
[Gro+11; Ari+07; Sag98; Ukk09]. We study a natural variation allowing the special don’t
care character ⋆ in a pattern to mean that the position inside the pattern occurrences in S
can be ignored (so ⋆ matches any single character in S). For example, TA ⋆C ⋆ ACA ⋆ GTG
is a pattern for DNA sequences.

A motif is a pattern of any length with at most k don’t cares occurring at least q times
in S. In this paper, we consider the problem of determining the maximal motifs, where
any attempt to extend them or replace their ⋆’s with symbols from Σ causes a loss of
significant information (where the number of occurrences in S changes). We denote the
family of all motifs by Mqk, the set of maximal motifs M⊆ Mqk (dropping the subscripts
in M) and let occ(m) denote the number of occurrences of a motif m inside S. It is well
known that Mqk can be exponentially larger than M [Par+00].

Our Results We show how to efficiently build an index that we call a motif trie
which is a trie that contains all prefixes, suffixes and occurrences of M, and we show
how to extract M from it. The motif trie is built level-wise, using an oracle GENERATE(u)
that reveals the children of a node u efficiently using properties of the motif alphabet
and a bijection between new children of u and intervals in the ordered sequence of
occurrences of u. We are able to bound the resulting running time with a strong notion
of output-sensitive cost, borrowed from the analysis of data structures, where the cost is
proportional to the actual number occ(m) of occurrences of each maximal motif m.

Theorem 6.1.1. Given a sequence S of n objects over an alphabet Σ, and two integers
q > 1 and k ≥ 0, there is an algorithm for extracting the maximal motifs M ⊆ Mqk and

their occurrences from S in O
�

n(k+ lgΣ)+ (k+ 1)3 ×∑m∈M occ(m)
�

time.

Our result may be interesting for several reasons. First, observe that this is an optimal
listing bound when the maximal number of don’t cares is k = O(1), which is true in many
practical applications. The resulting bound is O(n lgΣ+

∑
m∈M occ(m)) time, where the
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first additive term accounts for building the motif trie and the second term for discovering
and reporting all the occurrences of each maximal motif.

Second, our bound provides a strong notion of output-sensitivity since it depends
on how many times each maximal motif occurs in S. In the literature for enumeration,
an output-sensitive cost traditionally means that there is polynomial cost of O(nc) per
pattern, for a constant c > 1. This is infeasible in the context of big data, as n can be very
large, whereas our cost of occ(m) ≤ n compares favorably with O(nc) per motif m, and
occ(m) can be actually much smaller than n in practice. This has also implications in what
we call “the CTRL-C argument,” which ensures that we can safely stop the computation
for a specific sequence S if it is taking too much time1. Indeed, if much time is spent with
our solution, too many results to be really useful may have been produced. Thus, one
may stop the computation and refine the query (change q and k) to get better results. On
the contrary, a non-output-sensitive algorithm may use long time without producing any
output: It does not indicate if it may be beneficial to interrupt and modify the query.

Third, our analysis improves significantly over the brute-force bound: Mqk contains
pattern candidates of lengths p from 1 to n with up to min{k, p} don’t cares, and so has
size

∑
p |Σ|p× (

∑min{k,p}
i=1

�p
i

�
) = O(|Σ|nnk). Each candidate can be checked in O(nk) time

(e.g. string matching with k mismatches), or O(k) time if using a data structure such as
the suffix tree [Sag98]. In our analysis we are able to remove both of the nasty exponen-
tial dependencies on |Σ| and n in O(|Σ|nnk). In the current scenario where implemen-
tations are fast in practice but skip worst-case analysis, or state the latter in pessimistic
fashion equivalent to the brute-force bound, our analysis could explain why several pre-
vious algorithms are fast in practice. (We have implemented a variation of our algorithm
that is very fast in practice.)

Related Work Although the literature on pattern extraction is vast and spans many
different fields of applications with various notation, terminology and variations, we
could not find time bounds explicitly stated obeying our stronger notion of output-sensitivity,
even for pattern classes different from ours. Output-sensitive solutions with a polynomial
cost per pattern have been previously devised for slightly different notions of patterns.
For example, Parida et al. [Par+01] describe an enumeration algorithm with O(n2) time
per maximal motif plus a bootstrap cost of O(n5 lg n) time. 2 Arimura and Uno obtain a
solution with O(n3) delay per maximal motif where there is no limitations on the num-
ber of don’t cares [Ari+07]. Similarly, the MADMX algorithm [Gro+11] reports dense
motifs, where the ratio of don’t cares and normal characters must exceed some thresh-
old, in time O(n3) per maximal dense motif. Our stronger notion of output-sensitivity is
borrowed from the design and analysis of data structures, where it is widely employed.
For example, searching a pattern P in S using the suffix tree [McC76] has cost propor-
tional to P ’s length and its number of occurrences. A one-dimensional query in a sorted

1Such an algorithm is also called an anytime algorithm in the literature.
2The set intersection problem (SIP) in appendix A of [Par+01] requires polynomial time O(n2): The re-

cursion tree of depth ≤ n can have unary nodes, and each recursive call requires O(n) to check if the current
subset has been already generated.
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6. OUTPUT-SENSITIVE PATTERN EXTRACTION IN SEQUENCES

array reports all the wanted keys belonging to a range in time proportional to their num-
ber plus a logarithmic cost. Therefore it seemed natural to us to extend this notion to
enumeration algorithms also.

Applications Although the pattern extraction problem has found immediate appli-
cations in stringology and biological sequences, it is highly multidisciplinary and spans a
vast number of applications in different areas. This situation is similar to the one for the
edit distance problem and dynamic programming. We here give a short survey of some
significant applications, but others are no doubt left out due to the difference in terminol-
ogy used (see [Abo+10] for further references). In computational biology, motif discov-
ery in biological sequences identifies areas of interest[Sag98; Ukk09; Gro+11; Abo+10].
Computer security researches use patterns in log files to perform intrusion detection and
find attack signatures based on their frequencies [Deb+99], while commercial anti-spam
filtering systems use pattern extraction to detect and block SPAM [Rig+04]. In the data
mining community pattern extraction is used extensively [Mab+10] as a core method
in web page content extraction [Cha+03] and time series analysis [Pic+06; She+06]. In
plagiarism detection finding recurring patterns across a (large) number of documents is
a core primitive to detect if significant parts of documents are plagiarized [Bri+95] or
duplicated [Bak95; Che+04]. And finally, in data compression extraction of the common
patterns enables a compression scheme that competes in efficiency with well-established
compression schemes [Apo+06].

As the motif trie is an index, we believe that it may be of independent interest for
storing similar patterns across similar strings. Our result easily extends to real-life appli-
cations requiring a solution with two thresholds for motifs, namely, on the number of
occurrences in a sequence and across a minimum number of sequences.

Reading Guide Our solution has two natural parts. In Section 6.3 we define the
motif trie, which is an index storing all maximal motifs and their prefixes, suffixes and
occurrences. We show how to report only the maximal motifs in time linear in the size
of the trie. That is, it is easy to extract the maximal motifs from the motif trie – the
difficulty is to build the motif trie without knowing the motifs in advance. In Section
6.4 and 6.5 we give an efficient algorithm for constructing the motif trie and bound its
construction time by the number of occurrences of the maximal motifs, thereby obtaining
an output-sensitive algorithm.

6.2 Preliminaries

Strings We let Σ be the alphabet of the input string S ∈ Σ∗ and n= |S| be its length.
For 1 ≤ i ≤ j ≤ n, S[i, j] is the substring of S between index i and j, both included.
S[i, j] is the empty string ε if i > j, and S[i] = S[i, i] is a single character. Letting
1≤ i ≤ n, a prefix or suffix of S is S[1, i] or S[i, n], respectively. We let prefset(S) be the
set of all prefixes of S. The longest common prefix lcp(x , y) is the longest string such that
x[1, | lcp(x , y)|] = y[1, | lcp(x , y)|] for any two strings x , y ∈ Σ∗.
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String TACTGACACTGCCGA

Quorum q = 2

Don’t cares k = 1

(a) Input and parameters for example.

Maximal Motif Occurrence List

A 2, 6, 8, 15

AC 2, 6, 8

ACTG⋆C 2, 8

C 3, 7, 9, 12, 13

G 5, 11, 14

GA 5, 14

G⋆C 5, 11

T 1, 4, 10

T⋆C 1, 10

(b) Output: Maximal motifs found (and their occur-
rence list) for the given input.

Figure 6.1: Example 1: Maximal Motifs found in string.

Tries A trie T over an alphabet Π is a rooted, labeled tree, where each edge (u, v)
is labeled with a symbol from Π. All edges to children of node u ∈ T must be labeled
with distinct symbols from Π. We may consider node u ∈ T as a string generated over Π
by spelling out characters from the root on the path towards u. We will use u to refer to
both the node and the string it encodes, and |u| to denote its string length. A property
of the trie T is that for any string u ∈ T , it also stores all prefixes of u. A compacted trie
is obtained by compacting chains of unary nodes in a trie, so the edges are labeled with
substrings: the suffix tree for a string is special compacted trie that is built on all suffixes
of the string [McC76].

Motifs A motif m ∈ Σ(Σ∪ {⋆})∗Σ consist of symbols from Σ and don’t care charac-
ters ⋆ ̸∈ Σ. We let the length |m| denote the number of symbols from Σ ∪ {⋆} in m, and
let dc(m) denote the number of ⋆ characters in m. Motif m occurs at position p in S iff
m[i] = S[p+ i − 1] or m[i] = ⋆ for all 1 ≤ i ≤ |m|. The number of occurrences of m in
S is denoted occ(m). Note that appending ⋆ to either end of a motif m does not change
occ(m), so we assume that motifs starts and ends with symbols from Σ. A solid block is a
maximal (possibly empty ε) substring from Σ∗ inside m.

We say that a motif m can be extended by adding don’t cares and characters from Σ
to either end of m. Similarly, a motif m can be specialized by replacing a don’t care ⋆ in m
with a symbol c ∈ Σ. An example is shown in Figure 6.1.

Maximal Motifs Given an integer quorum q > 1 and a maximum number of don’t
cares k ≥ 0, we define a family of motifs Mqk containing motifs m that have a limited
number of don’t cares dc(m)≤ k, and occurs frequently occ(m)≥ q. A maximal motif m ∈
Mqk cannot be extended or specialized into another motif m′ ∈ Mqk such that occ(m′) =

69
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occ(m). Note that extending a maximal motif m into motif m′′ ̸∈ Mqk may maintain
the occurrences (but have more than k don’t cares). We let M ⊆ Mqk denote the set of
maximal motifs.

Motifs m ∈ Mqk that are left-maximal or right-maximal cannot be specialized or ex-
tended on the left or right without decreasing the number of occurrences, respectively.
They may, however, be prefix or suffix of another (possibly maximal) m′ ∈ Mqk, respec-
tively.

Fact 1. If motif m ∈ Mqk is right-maximal then it is a suffix of a maximal motif.

6.3 Motif Tries and Pattern Extraction

This section introduces the motif trie. This trie is not used for searching but its properties
are exploited to orchestrate the search for maximal motifs in M to obtain a strong output-
sensitive cost.

6.3.1 Efficient Representation of Motifs

We first give a few simple observations that are key to our algorithms. Consider a suffix
tree built on S over the alphabet Σ, which can be done in O(n lg |Σ|) time. It is shown in
[Ukk09; Fed+09] that when a motif m is maximal, its solid blocks correspond to nodes
in the suffix tree for S, matching their substrings from the root3. For this reason, we
introduce a new alphabet, the solid block alphabet Π of size at most 2n, consisting of the
strings stored in all the suffix tree nodes.

We can write a maximal motif m ∈ Mqk as an alternating sequence of ≤ k + 1 solid
blocks and ≤ k don’t cares, where the first and last solid block must be different from ε.
Thus we represent m as a sequence of ≤ k + 1 strings from Π since the don’t cares are
implicit. By traversing the suffix tree nodes in preorder we assign integers to the strings
in Π, allowing us to assume that Π ⊆ [1, . . . , 2n], and so each motif m ∈ Mqk is actually
represented as a sequence of ≤ k+ 1 integers from 1 to |Π| = O(n). Note that the order
on the integers in Π shares the following grouping property with the strings over Σ.

Lemma 6.3.1. Let A be an array storing the sorted alphabet Π. For any string x ∈ Σ∗, the
solid blocks represented in Π and sharing x as a common prefix, if any, are grouped together
in A in a contiguous segment A[i, j] for some 1≤ i ≤ j ≤ |Π|.

When it is clear from its context, we will use the shorthand x ∈ Π to mean equiva-
lently a string x represented in Π or the integer x in Π that represents a string stored
in a suffix tree node. We observe that the set of strings represented in Π is closed under
the longest common prefix operation: for any x , y ∈ Π, lcp(x , y) ∈ Π and it may be
computed in constant time after augmenting the suffix tree for S with a lowest common
ancestor data structure [Har+84].

Summing up, the above relabeling from Σ to Π only requires the string S ∈ Σ∗ and
its suffix tree augmented with lowest common ancestor information.

3The proofs in [Ukk09; Fed+09] can be easily extended to our notion of maximality.
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.............

A

.

AC

.

AC
TG

.

C

.

G

.

GA

.

T

.

C

.

C

.

C

Figure 6.2: Motif trie for Example 1. The black nodes are maximal motifs (with their
occurrence lists shown in Figure 6.1(b)).

6.3.2 Motif Tries

We now exploit the machinery on alphabets described in Section 6.3.1. For the input
sequence S, consider the family Mqk defined in Section 6.2, where each m is seen as a
string m = m[1,ℓ] of ℓ ≤ k + 1 integers from 1 to |Π|. Although each m can contain
O(n) symbols from Σ, we get a benefit from treating m as a short string over Π: unless
specified otherwise, the prefixes and suffixes of m are respectively m[1, i] and m[i,ℓ] for
1≤ i ≤ ℓ, where ℓ= dc(m)+1≤ k+1. This helps with the following definition as it does
not depend on the O(n) symbols from Σ in a maximal motif m but it solely depends on
its ≤ k+ 1 length over Π.

Definition 2 (Motif Trie). A motif trie T is a trie over alphabet Π which stores all maximal
motifs M⊆ Mqk and their suffixes.

As a consequence of being a trie, T implicitly stores all prefixes of all the maximal
motifs and edges in T are labeled using characters from Π. Hence, all sub-motifs of the
maximal motifs are stored in T , and the motif trie can be essentially seen as a generalized
suffix trie4 storing M over the alphabet Π. From the definition, T has O((k + 1) · |M|)
leaves, the total number of nodes is O(|T |) = O((k+1)2 · |M|), and the height is at most
k+ 1.

We may consider a node u in T as a string generated over Π by spelling out the
≤ k+1 integers from the root on the path towards u. To decode the motif stored in u, we
retrieve these integers in Π and, using the suffix tree of S, we obtain the corresponding
solid blocks over Σ and insert a don’t care symbol between every pair of consecutive
solid blocks. When it is clear from the context, we will use u to refer to (1) the node
u or (2) the string of integers from Π stored in u, or (3) the corresponding motif from
(Σ∪ {⋆})∗. We reserve the notation |u| to denote the length of motif u as the number of
characters from Σ ∪ {⋆}. Each node u ∈ T stores a list Lu of occurrences of motif u in S,
i.e. u occurs at p in S for p ∈ Lu.

4As it will be clear later, a compacted motif trie does not give any advantage in terms of the output-sensitive
bound compared to the motif trie.
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Since child edges for u ∈ T are labeled with solid blocks, the child edge labels may be
prefixes of each other, and one of the labels may be the empty string ε (which corresponds
to having two neighboring don’t cares in the decoded motif).

6.3.3 Reporting Maximal Motifs using Motif Tries

Suppose we are given a motif trie T but we do not know which nodes of T store the
maximal motifs in S. We can identify and report the maximal motifs in T in O(|T |) =
O((k+ 1)2 · |M|) = O((k+ 1)2 ·∑m∈M occ(m)) time as follows.

We first identify the set R of nodes u ∈ T that are right-maximal motifs. A charac-
terization of right-maximal motifs in T is relatively simple: we choose a node u ∈ T if
(i) its parent edge label is not ε, and (ii) u has no descendant v with a non-empty par-
ent edge label such that |Lu| = |Lv |. By performing a bottom-up traversal of nodes in T ,
computing for each node the length of the longest list of occurrences for a node in its
subtree with a non-empty edge label, it is easy to find R in time O(|T |) and by Fact 1,
|R|= O((k+ 1) · |M|).

Next we perform a radix sort on the set of pairs 〈|Lu|, reverse(u)〉, where u ∈ R and
reverse(u) denotes the reverse of the string u, to select the motifs that are also left-
maximal (and thus are maximal). In this way, the suffixes of the maximal motifs become
prefixes of the reversed maximal motifs. By Lemma 6.3.1, those motifs sharing common
prefixes are grouped together consecutively. However, there is a caveat, as one maximal
motif m′ could be a suffix of another maximal motif m and we do not want to drop m′: in
that case, we have that |Lm| ̸= |Lm′ | by the definition of maximality. Hence, after sorting,
we consider consecutive pairs 〈|Lu1

|, reverse(u1)〉 and 〈|Lu2
|, reverse(u2)〉 in the order, and

eliminate u1 iff |Lu1
| = |Lu2

| and u1 is a suffix of u2 in time O(k+ 1) per pair (i.e. prefix
under reverse). The remaining motifs are maximal.

6.4 Building Motif Tries

The goal of this section is to show how to efficiently build the motif trie T discussed in Sec-
tion 6.3.2. Suppose without loss of generality that enough new symbols are prepended
and appended to the sequence S to avoid border cases. We want to store the maximal
motifs of S in T as strings of length ≤ k + 1 over Π. Some difficulties arise as we do
not know in advance which are the maximal motifs. Actually, we plan to find them dur-
ing the output-sensitive construction of T , which means that we would like to obtain a
construction bound close to the term

∑
m∈Mocc(m) stated in Theorem 6.1.1.

We proceed in top-down and level-wise fashion by employing an oracle that is invoked
on each node u on the last level of the partially built trie, and which reveals the future
children of u. The oracle is executed many times to generate T level-wise starting from
its root u with Lu = {1, . . . , n}, and stopping at level k+1 or earlier for each root-to-node
path. Interestingly, this sounds like the wrong way to do anything efficiently, e.g. it is a
slow way to build a suffix tree, however the oracle allows us to amortize the total cost
to construct the trie. In particular, we can bound the total cost by the total number of
occurrences of the maximal motifs stored in the motif trie.
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The oracle is implemented by the GENERATE(u) procedure that generates the children
u1, . . . , ud of u. We ensure that (i) GENERATE(u) operates on the≤ k+1 length motifs from
Π, and (ii) GENERATE(u) avoids generating the motifs in Mqk \M that are not suffixes
or prefixes of maximal motifs. This is crucial, as otherwise we cannot guarantee output-
sensitive bounds because Mqk can be exponentially larger than M.

In Section 6.5 we will show how to implement GENERATE(u) and prove:

Lemma 6.4.1. Algorithm GENERATE(u) produces the children of u and can be implemented
in time O(sort(Lu) + (k+ 1) · |Lu|+∑d

i=1 |Lui
|).

By summing the cost to execute procedure GENERATE(u) for all nodes u ∈ T , we now
bound the construction time of T . Observe that when summing over T the formula stated
in Lemma 6.4.1, each node exists once in the first two terms and once in the third term,
so the latter can be ignored when summing over T (as it is dominated by the other terms)∑

u∈T

(sort(Lu) + (k+ 1) · |Lu|+
d∑

i=1

|Lui
|) = O

 ∑
u∈T

(sort(Lu) + (k+ 1) · |Lu|)
!

.

We bound ∑
u∈T

sort(Lu) = O

 
n(k+ 1) +

∑
u∈T

|Lu|
!

by running a single cumulative radix sort for all the instances over the several nodes u at
the same level, allowing us to amortize the additive cost O(n) of the radix sorting among
nodes at the same level (and there are at most k+ 1 such levels).

To bound
∑

u∈T |Lu|, we observe
∑

i |Lui
| ≥ |Lu| (as trivially the ε extension always

maintains the number of occurrences of its parent). Consequently we can charge each
leaf u the cost of its ≤ k ancestors, so∑

u∈T

|Lu|= O

 
(k+ 1)× ∑

leaf u∈T

|Lu|
!

.

Finally, from Section 6.3.2 there cannot be more leaves than maximal motifs in M
and their suffixes, and the occurrence lists of maximal motifs dominate the size of the
non-maximal ones in T , which allows us to bound:

(k+ 1)× ∑
leaf u∈T

|Lu|= O

 
(k+ 1)2 × ∑

m∈M
occ(m)

!
.

Adding the O(n lgΣ) cost for the suffix tree and the LCA ancestor data structure of Sec-
tion 6.3.1, we obtain:

Theorem 6.4.2. Given a sequence S of n objects over an alphabet Σ and two integers
q > 1 and k ≥ 0, a motif trie containing the maximal motifs M ⊆ Mqk and their occur-

rences occ(m) in S for m ∈M can be built in time and space O
�

n(k+ lgΣ)+ (k+ 1)3 ×∑
m∈M occ(m)

�
.
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6.5 Implementing GENERATE(u)

We now show how to implement GENERATE(u) in the time bounds stated by Lemma 6.4.1.
The idea is as follows. We first obtain Eu, which is an array storing the occurrences in
Lu, sorted lexicographically according to the suffix associated with each occurrence. We
can then show that there is a bijection between the children of u and a set of maximal
intervals in Eu. By exploiting the properties of these intervals, we are able to find them
efficiently through a number of scans of Eu. The bijection implies that we thus efficiently
obtain the new children of u.

6.5.1 Nodes of the Motif Trie as Maximal Intervals

The key point in the efficient implementation of the oracle GENERATE(u) is to relate each
node u and its future children u1, . . . , ud labeled by solid blocks b1, . . . , bd , respectively,
to some suitable intervals that represent their occurrence lists Lu, Lu1

, . . . , Lud
. Though

the idea of using intervals for representing trie nodes is not new (e.g. in [Abo+04]),
we use intervals to expand the trie rather than merely representing its nodes. Not all
intervals generate children as not all solid blocks that extend u necessarily generate a
child. Also, some of the solid blocks b1, . . . , bd can be prefixes of each other and one of
the intervals can be the empty string ε. To select them carefully, we need some definitions
and properties.

Extensions. For a position p ∈ Lu, we define its extension as the suffix ext(p, u) =
S[p+ |u|+1, n] that starts at the position after p with an offset equivalent to skipping the
prefix matching u plus one symbol (for the don’t care). We may write ext(p), omitting the
motif u if it is clear from the context. We also say that the skipped characters skip(p) at
position p ∈ Lu are the d = dc(u) + 2 characters in S that specialize u into its occurrence
p: formally, skip(p) = 〈c0, c1, . . . , cd−1〉 where c0 = S[p − 1], cd−1 = S[p + |u|], and
ci = S[p+ ji − 1], for 1≤ i ≤ d − 2, where u[ ji] = ⋆ is the ith don’t care in u.

We denote by Eu the list Lu sorted using as keys the integers for ext(p) where p ∈ Lu.
(We recall from Section 6.3.1 that the suffixes are represented in the alphabet Π, and
thus ext(p) can be seen as an integer in Π.) By Lemma 6.3.1 consecutive positions in Eu
share common prefixes of their extensions. Lemma 6.5.1 below states that these prefixes
are the candidates for being correct edge labels for expanding u in the trie.

Lemma 6.5.1. Let ui be a child of node u, bi be the label of edge (u, ui), and p ∈ Lu be an
occurrence position. If position p ∈ Lui

then bi is a prefix of ext(p, u).

Proof. Assume otherwise, so p ∈ Lu ∩ Lui
but bi ̸∈ prefset(ext(p, u)). Then there is a

mismatch of solid block bi in ext(p, u), since at least one of the characters in bi is not
in ext(p, u). But this means that ui cannot occur at position p, and consequently p ̸∈ Lui

,
which is a contradiction.
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Intervals. Lemma 6.5.1 states a necessary condition, so we have to filter the can-
didate prefixes of the extensions. We use the following notion of intervals to facilitate
this task. We call I ⊆ Eu an interval of Eu if I contains consecutive entries of Eu. We
write I = [i, j] if I covers the range of indices from i to j in Eu. The longest common
prefix of an interval is defined as LCP(I) = minp1,p2∈I lcp(ext(p1), ext(p2)), which is a
solid block in Π as discussed at the end of Section 6.3.1. By Lemma 6.3.1, LCP(I) =
lcp(ext(Eu[i]), ext(Eu[ j])) can be computed in O(1) time, where Eu[i] is the first and
Eu[ j] the last element in I = [i, j].

Maximal Intervals. An interval I ⊆ Eu is maximal if (1) there are at least q positions
in I (i.e. |I| ≥ q), (2) motif u cannot be specialized with the skipped characters in skip(p)
where p ∈ I, and (3) any other interval I ′ ⊆ Eu that strictly contains I has a shorter
common prefix (i.e. |LCP(I ′)| < |LCP(I)| for I ′ ⊃ I) 5. We denote by Iu the set of all
maximal intervals of Eu, and show that Iu form a tree covering of Eu. A similar lemma
for intervals over the LCP array of a suffix tree was given in [Abo+04].

Lemma 6.5.2. Let I1, I2 ∈ Iu be two maximal intervals, where I1 ̸= I2 and |I1| ≤ |I2|.
Then either I1 is contained in I2 with a longer common prefix (i.e. I1 ⊂ I2 and |LCP(I1)| >|LCP(I2)|) or the intervals are disjoint (i.e. I1 ∩ I2 = ;).

Proof. Let I1 = [i, j] and I2 = [i′, j′]. Assume partial overlaps are possible, i′ ≤ i ≤ j′ < j,
to obtain a contradiction. Since |LCP(I1)| ≥ |LCP(I2)|, the interval I3 = [ j′, j] has a
longest common prefix |LCP(I3)| ≥ |LCP(I2)|, and so I2 could have been extended and
was not maximal, giving a contradiction. The remaining cases are symmetric.

The next lemma establishes a useful bijection between maximal intervals Iu and chil-
dren of u, motivating why we use intervals to expand the motif trie.

Lemma 6.5.3. Let ui be a child of a node u. Then the occurrence list Lui
is a permutation

of a maximal interval I ⊆ Iu, and vice versa. The label on edge (u, ui) is the solid block
bi = LCP(I). No other children or maximal intervals have this property with ui or I.

Proof. We prove the statement by assuming that T has been built, and that the maximal
intervals have been computed for a node u ∈ T .

We first show that given a maximal interval I ∈ Iu, there is a single corresponding
child ui ∈ T of u. Let bi = LCP(I) denote the longest common prefix of occurrences in I,
and note that bi is distinct among the maximal intervals in Iu. Also, since bi is a common
prefix for all occurrence extensions in I, the motif u ⋆ bi occurs at all locations in I (as
we know that u occurs at those locations). Since |I| ≥ q and u ⋆ bi is an occurrence at all
p ∈ I, there must be a child ui of u, where the edge (u, ui) is labeled bi and where I ⊆ Lui

.
From the definition of tries, there is at most one such node. There can be no p′ ∈ Lui

− I,
since that would mean that an occurrence of u ⋆ bi was not stored in I, contradicting
the maximality assumption of I. Finally, because |PI | ≥ 2 and bi is the longest common

5Condition (2) is needed to avoid the enumeration of either motifs from Mqk \M or duplicates from M.
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prefix of all occurrences in I, not all occurrences of ui can be extended to the left using
one symbol from Σ. Thus, ui is a prefix or suffix of a maximal motif.

We now prove the other direction, that given a child ui ∈ T of u, we can find a
single maximal interval I ∈ Iu. First, denote by bi the label on the (u, ui) edge. From
Lemma 6.5.1, bi is a common prefix of all extensions of the occurrences in Eui

. Since
not all occurrences of ui can be extended to the left using a single symbol from Σ, bi is
the longest common prefix satisfying this, and there are at least two different skipped
characters of the occurrences in Lui

. Now, we know that ui = u⋆ bi occurs at all locations
p ∈ Lui

. Observe that Lui
is a (jumbled) interval of Eu (since otherwise, there would

be an element p′ ∈ Eu which did not match ui but had occurrences from Lui
on both

sides in Eu, contradicting the grouping of Eu). All occurrences of ui are in Lui
so Lui

is a
(jumbled) maximal interval of Eu. We just described a maximal interval with a distinct
set of occurrences, at least two different skipped characters and a common prefix, so
there must surely be a corresponding interval I ∈ Iu such that LCP(I) = bi , |PI | ≥ 2 and
Lui
⊆ I. There can be no p′ ∈ I − Lui

, as p′ ∈ Lu and bi ∈ prefset(ext(p′, u)) means that
p′ ∈ Lui

.

6.5.2 Exploiting the Properties of Maximal Intervals

We now use the properties shown above to implement the oracle GENERATE(u), result-
ing in Lemma 6.4.1. Observe that the task of GENERATE(u) can be equivalently seen by
Lemma 6.5.3 as the task of finding all maximal intervals Iu in Eu, where each interval
I ∈ Iu corresponds exactly to a distinct child ui of u. We describe three main steps, where
the first takes O(sort(Lu)+ (k+ 1) · |Lu|) time, and the others require O(

∑d
i=1 |Lui

|) time.
The interval I = Eu corresponding to the solid block ε is trivial to find, so we focus on the
rest. We assume dc(u)< k, as otherwise we are already done with u.

Step 1. Sort occurrences and find maximal runs of skipped characters. We per-
form a radix-sort of Lu using the extensions as keys, seen as integers from Π, thus obtain-
ing array Eu. To facilitate the task of checking condition (2) for the maximality of inter-
vals, we compute for each index i ∈ Eu the smallest index R(i) > i in Eu such that motif
u cannot be specialized with the skipped characters in skip(Eu[ j]) where j ∈ [i, R(i)].
That is, there are at least two different characters from Σ hidden by each of the skipped
characters in the interval. (If R(i) does not exist, we do not create [i, R(i)].) We define
|PI | as the minimum number of different characters covered by each skipped character
in interval I, and note that |P[i,R(i)]| ≥ 2 by definition.

To do so we first find, for each skipped character position, all indices where a maximal
run of equal characters end: R(i) is the maximum indices for the given i. This helps us
because for any index i inside such a block of equal characters, R(i) must be on the
right of where the block ends (otherwise [i, R(i)] would cover only one character in that
block). Using this to calculate R(i) for all indices i ∈ Eu from left to right, we find each
answer in time O(k + 1), and O((k + 1) · |Eu|) total time. We denote by R the set of
intervals [i, R(i)] for i ∈ Eu.
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Lemma 6.5.4. For any maximal interval I ≡ [i, j] ∈ Iu, there exists R(i) ≤ j, and thus
[i, R(i)] is an initial portion of I.

Step 2. Find maximal intervals with handles. We want to find all maximal inter-
vals covering each position of Eu. To this end, we introduce handles. For each p ∈ Eu,
its interval domain D(p) is the set of intervals I ′ ⊂ Eu such that p ∈ I ′ and |PI ′ | ≥ 2.
We let ℓp be the length of the longest shared solid block prefix bi over D(p), namely,
ℓp = maxI ′∈D(p) |LCP(I ′)|. For a maximal interval I ⊆ Iu, if |LCP(I)| = ℓp for some p ∈ I
we call p a handle on I. Handles are relevant for the following reason.

Lemma 6.5.5. For each maximal interval I ⊆ Iu, either there is a handle p ∈ Eu on I, or I
is fully covered by ≥ 2 adjacent maximal intervals with handles.

Proof. From Lemma 6.5.2, any maximal interval I ∈ Iu is either fully contained in some
other maximal interval, or completely disjoint from other maximal intervals. Partial over-
laps of maximal intervals are impossible.

Now, assume there is no handle p ∈ Lu on I. If so, all p′ ∈ I has ℓp′ ̸= |LCP(I)|
(since otherwise p′ ∈ I and ℓp′ = |LCP(I)| and thus p′ was a handle on I). Clearly for
all p′ ∈ I, |LCP(I)| is a lower bound for ℓp′ . Thus, to get a contradiction it must be the
case that ℓp′ > |LCP(I)| for all p′ ∈ I. This can only happen if I is completely covered
by ≥ 2 maximal intervals with a larger longest common prefix. From Lemma 6.5.2, a
single interval I ′ is not enough because I ′ is fully contained (or completely disjoint) in I
if |LCP(I ′)| ≥ |LCP(I)|.

Let Hu denote the set of maximal intervals with handles. We now show how to find
the set Hu among the intervals of Eu. Observe that for each occurrence p ∈ Eu, we must
find the interval I ′ with the largest LCP(I ′) value among all intervals containing p.

From the definition, a handle on a maximal interval I ′ requires |PI ′ | ≥ 2, which is
exactly what the intervals in R satisfy. As the LCP value can only drop when extending
an interval, these are the only candidates for maximal intervals with handles. Note that
from Lemma 6.5.4, R contains a prefix for all of the (not expanded) maximal intervals
because it has all intervals from left to right obeying the conditions on length and skipped
character conditions. Furthermore, |R| = O(|Eu|), since only one R(i) is calculated for
each starting position. Among the intervals [i, R(i)] ∈R, we will now show how to find
those with maximum LCP (i.e. where the LCP value equals ℓp) for all p.

We use an idea similar to that used in Section 6.3.3 to filter maximal motifs from the
right-maximal motifs. We sort the intervals I ′ = [i, R(i)] ∈R in decreasing lexicographic
order according to the pairs 〈|LCP(I ′)|,−i〉 (i.e. decreasing LCP values but increasing
indices i), to obtain the sequence C. Thus, if considering the intervals left to right in
C, we consider intervals with larger LCP values from left to right in S before moving to
smaller LCP values.

Consider an interval Ip = [i, R(i)] ∈ C. The idea is that we determine if Ip has already
been added to Hu by some previously processed handled maximal interval. If not, we
expand the interval (making it maximal) and add it to Hu, otherwise Ip is discarded.
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When C is fully processed, all occurrences in Eu are covered by maximal intervals with
handles.

First, since maximal intervals must be fully contained in each other (from Lemma
6.5.2), we determine if Ip = [i, R(i)] ∈ C is already fully covered by previously expanded
intervals (with larger LCP values) – if not, we must expand Ip. Clearly, if either i or R(i)
is not included in any previous expansions, we must expand Ip. Otherwise, if both i and
R(i) is part of a single previous expansion Iq ∈ C, Ip should not be expanded. If i and R(i)
is part of two different expansions Iq and Ir we compare their extent values: Ip must be
expanded if some p ∈ Ip is not covered by either Iq or Ir . To enable these checks we mark
each j ∈ Eu with the longest processed interval that contains it (during the expansion
procedure below).

Secondly, to expand Ip maximally to the left and right, we use pairwise lcp queries on
the border of the interval. Let a ∈ Ip be a border occurrence and b ̸∈ Ip be its neighboring
occurrence in Eu (if any, otherwise it is trivial). When | lcp(a, b)|< |LCP(Ip)|, the interval
cannot be expanded to span b. When the expansion is completed, Ip is a maximal interval
and added to Hu. As previously stated, all elements in Ip are marked as being part of their
longest covering handled maximal interval by writing Ip on each of its occurrences.

Step 3. Find composite maximal intervals covered by maximal intervals with
handles. From Lemma 6.5.5, the only remaining type of intervals are composed of
maximal intervals with handles from the set Hu. A composite maximal interval must be the
union of a sequence of adjacent maximal intervals with handles. We find these as follows.
We order Hu according to the starting position and process it from left to right in a greedy
fashion, letting Ih ∈ Hu be one of the previously found maximal intervals with handles.
Each interval Ih is responsible for generating exactly the composite maximal intervals
where the sequence of covering intervals starts with Ih (and which contains a number of
adjacent intervals on the right). Let I ′h ∈ Hu be the interval adjacent on the right to Ih,
and create the composed interval Ic = Ih + I ′h (where + indicates the concatenation of
consecutive intervals). To ensure that a composite interval is new, we check as in Step
2 that there is no previously generated maximal interval I with |LCP(I)| = |LCP(Ic)|
such that Ic ⊆ I. This is correct since if there is such an interval, it has already been
fully expanded by a previous expansion (of composite intervals or a handled interval).
Furthermore, if there is such an interval, all intervals containing Ic with shorter longest
common prefixes have been taken care of, since from Lemma 6.5.2 maximal intervals
cannot straddle each other. If Ic is new, we know that we have a new maximal composite
interval and can continue expanding it with adjacent intervals. If the length of the longest
common prefix of the expanded interval changes, we must perform the previous check
again (and add the previously expanded composite interval to Iu).

By analyzing the algorithm described, one can prove the following two lemmas show-
ing that the motif trie is generated correctly. While Lemma 6.5.6 states that ε-extensions
may be generated (i.e. a sequence of ⋆ symbols may be added to suffixes of maximal
motifs), a simple bottom-up cleanup traversal of T is enough to remove these.
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Lemma 6.5.6. (Soundness) Each motif stored in T is a prefix or an ε-extension of some
suffix of a maximal motif (encoded using alphabet Π and stored in T).

Proof. The property to be shown for motif m ∈ T is: (1) m is a prefix of some suffix of
a maximal motif m′ ∈M (encoded using alphabet Π), or (2) m is the suffix of some
maximal motif m′ ∈M extended by at most k ε solid blocks (and don’t cares).

Note that we only need to show that GENERATE(u) can only create children of u ∈ T
with the desired property. We prove this by induction. In the basis, u is the root and
GENERATE(u) produce all motifs such that adding a character from Σ to either end de-
creases the number of occurrences: this is ensured by requiring that there must be more
than two different skipped characters in the occurrences considered, using the LCP of
such intervals and only extending intervals to span occurrences maintaining the same
LCP length. Since there are no don’t cares in these motifs they cannot be specialized and
so each of them must be a prefix or suffix of some maximal motif.

For the inductive step, we prove the property by construction, assuming dc(u) < k.
Consider a child ui generated by GENERATE(u) by extending with solid block bi: it must
not be the case that, without losing occurrences, (a) ui can be specialized by converting
one of its don’t cares into a solid character from Σ, or (b) ui can be extended in either
direction using only characters from Σ. If either of these conditions is violated, ui can
clearly not satisfy the property (in the first case, the generalization ui is not a suffix or
prefix of the specialized maximal motif). However, these conditions are sufficient, as they
ensure that ui is encoded using Π and cannot be specialized or extended without using
don’t cares. Thus, if bi ̸= ε, ui is either a prefix of some suffix of a maximal motif (since
ui ends with a solid block it may be maximal), or if bi = ε, ui may be an ε-extension of u
(or a prefix of some suffix if some descendant of ui has the same number of occurrences
and a non-ε parent edge).

By the induction hypothesis, u satisfies (1) or (2) and u is a prefix of ui . Furthermore,
the occurrences of u have more than one different character at all locations covered
by the don’t cares in u (otherwise one of those locations in u could be specialized to
the common character). When generating children, we ensure that (a) cannot occur by
forcing the occurrence list of generated children to be large enough that at least two
different characters is covered by each don’t care. That is, ui may only be created if it
cannot be specialized in any location, ensured by only considering intervals covering
L(p) and R(p). Condition (b) is avoided by ensuring that there are at least two different
skipped characters for the occurrences of ui and forcing the extending block bi to be
maximal under that condition.

Lemma 6.5.7. (Completeness) If m ∈M, T stores m and its suffixes.

Proof. We summarize the proof that GENERATE(u) is correct and the correct motif trie
is produced. From Lemma 6.5.5, we create all intervals in GENERATE(u) by expanding
those with handles, and expanding all composite intervals from these. By Lemma 6.5.3
the intervals found correspond exactly to the children of u in the motif trie. Thus, as
GENERATE(u) is executed for all u ∈ T when dc(u) ≤ k − 1, all nodes in T is created
correctly until depth k+ 1.

79



6. OUTPUT-SENSITIVE PATTERN EXTRACTION IN SEQUENCES

Now clearly T contains M and all the suffixes: for a maximal motif m ∈M, any suffix
m′ is generated and stored in T as (1) occ(m′)≥ occ(m) and (2) dc(m′)≤ dc(m).
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7 Compressed Data Structures for
Range Searching

Philip Bille∗ Inge Li Gørtz∗ Søren Vind†
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Abstract

We study the orthogonal range searching problem on points that have a signifi-
cant number of geometric repetitions, that is, subsets of points that are identical un-
der translation. Such repetitions occur in scenarios such as image compression, GIS
applications and in compactly representing sparse matrices and web graphs. Our con-
tribution is twofold.

First, we show how to compress geometric repetitions that may appear in stan-
dard range searching data structures (such as K-D trees, Quad trees, Range trees,
R-trees, Priority R-trees, and K-D-B trees), and how to implement subsequent range
queries on the compressed representation with only a constant factor overhead.

Secondly, we present a compression scheme that efficiently identifies geomet-
ric repetitions in point sets, and produces a hierarchical clustering of the point sets,
which combined with the first result leads to a compressed representation that sup-
ports range searching.
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7. COMPRESSED DATA STRUCTURES FOR RANGE SEARCHING

7.1 Introduction

The orthogonal range searching problem is to store a set of axis-orthogonal k-dimensional
objects to efficiently answer range queries, such as reporting or counting all objects inside
a k-dimensional query range. Range searching is a central primitive in a wide range of ap-
plications and has been studied extensively over the last 40 years [Ben75; Ben79; Ore82;
Ben+80; Lue78; Lee+80; Gut84; Cla83; Kan+99; Kre+91; Gae+98; Bay+72; Arg+08;
Rob81; Pro+03; Com79; Epp+08] (Samet presents an overview in [Sam90]).

In this paper we study range searching on points that have a significant number of
geometric repetitions, that is, subsets of points that are identical under translation. Range
searching on points sets with geometric repetitions arise naturally in several scenarios
such as data and image analysis [Tet+01; Paj+00; Dic+09], GIS applications [Sch+08;
Zhu+02; Hae+10; Dic+09], and in compactly representing sparse matrices and web
graphs [Gal+98; Bri+09; Gar+14; Ber+13].

Our contribution is twofold. First, we present a simple technique to effectively com-
press geometric repetitions that may appear in standard range searching data structures
(such as K-D trees, Quad trees, Range trees, R-trees, Priority R-trees, and K-D-B trees).
Our technique replaces repetitions within the data structures by a single copy, while only
incurring an O(1) factor overhead in queries (both in standard RAM model and I/O
model of computation). The key idea is to compress the underlying tree representation
of the point set into a corresponding minimal DAG that captures the repetitions. We then
show how to efficiently simulate range queries directly on this DAG. This construction
is the first solution to take advantage of geometric repetitions. Compared to the original
range searching data structure the time and space complexity of the compressed version
is never worse, and with many repetitions the space can be significantly better. Secondly,
we present a compression scheme that efficiently identifies translated geometric repeti-
tions. Our compression scheme guarantees that if point set P1 is a translated geometric
repetition of point set P2 and P1 and P2 are at least a factor 2 times their diameter away
from other points, the repetition is identified. This compression scheme is based on a
hierarchical clustering of the point set that produces a tree of height O(lg D), where D is
the diameter of the input point set. Combined with our first result we immediately obtain
a compressed representation that supports range searching.

Related Work

Several succinct data structures and entropy-based compressed data structures for range
searching have recently been proposed, see e.g., [Mäk+07; Bos+09; Bar+10; Far+14].
While these significantly improve the space of the classic range searching data structure,
they all require at least a Ω(N) bits to encode N points. In contrast, our construction can
achieve exponential compression for highly compressible point sets (i.e. where there is a
lot of geometric repetitions).

A number of papers have considered the problem of compactly representing web
graphs and tertiary relations [Bri+09; Gar+14; Ber+13]. They consider how to efficiently
represent a binary (or tertiary) quad tree by encoding it as bitstrings. That is, their ap-
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proach may be considered compact storage of a (sparse) adjacency matrix for a graph.
The approach allows compression of quadrants of the quad tree that only contain zeros
or ones. However, it does not exploit the possibly high degree of geometric repetition in
such adjacency matrices (and any quadrant with different values cannot be compressed).

To the best of our knowledge, the existence of geometric repetitions in the point sets
has not been exploited in previous solutions for neither compression nor range searching.
Thus, we give a new perspective on those problems when repetitions are present.

Outline

We first present a general model for range searching, which we call a canonical range
searching data structure, in Section 7.2. We show how to compress such data structures
efficiently and how to support range searching on the compressed data structure in the
same asymptotic time as on the uncompressed data structure in Section 7.3. Finally, we
present a similarity clustering algorithm in Section 7.4, guaranteeing that geometric rep-
etitions are clustered such that the resulting canonical range searching data structure is
compressible.

7.2 Canonical Range Searching Data Structures

We define a canonical range searching data structure T , which is an ordered, rooted and
labeled tree with N vertices. Each vertex v ∈ T has an associated k-dimensional axis-
parallel range, denoted rv, and an arbitrary label, denoted label(v). We let T (v) denote
the subtree of T rooted at vertex v and require that ranges of vertices in T (v) are con-
tained in the range of v, so for every vertex u ∈ T (v), ru ⊆ rv. Leafs may store either
points or ranges, and each point or range may be stored in several leafs. The data struc-
ture supports range queries that produce their result after evaluating the tree through a
(partial) traversal starting from the root. In particular, we can only access a node after
visiting all ancestors of the node. Queries can use any information from visited vertices.
A similar model for showing lower bounds for range searching appeared was used by
Kanth and Singh in [Kan+99].

Geometrically, the children of a vertex v in a canonical range searching data structure
divide the range of v into a number of possibly overlapping ranges. At each level the
tree divides the k-dimensional regions at the level above into smaller regions. Canonical
range searching data structures directly capture most well-known range searching data
structures, including Range trees, K-D trees, Quad trees and R-trees as well as B-trees,
Priority R-trees and K-D-B trees.

Example: Two-dimensional R tree The two-dimensional R tree is a canonical range
searching data structure since a vertex covers a range of the plane that contains the
ranges of all vertices in its subtree. The range query is a partial traversal of the tree
starting from the root, visiting every vertex having a range that intersects the query range
and reporting all vertices with their range fully contained in the query range. Figure 7.1
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Figure 7.1: A two-dimensional point set with R tree ranges overlaid, and the resulting R
tree. Blue ranges are children of the root in the tree, red ranges are at the
second level. A vertex label (a - h) in the R tree identifies the range. We have
omitted the precise coordinates for the ranges, but e.g. range a spans the
range [13, 22]× [46, 54] .

shows an R tree for a point set, where each vertex is labeled with the range that it
covers. The query described for R trees can be used on any canonical range searching
data structure, and we will refer to it as a canonical range query.

7.3 Compressed Canonical Range Searching

We now show how to compress geometric repetitions in any canonical range searching
data structure T while incurring only a constant factor overhead in queries. To do so
we convert T into a relative tree representation, which we then compress into a minimal
DAG representation that replaces geometric repetitions by single occurrences. We then
show how to simulate a range query on T with only constant overhead directly on the
compressed representation. Finally, we extend the result to the I/O model of computa-
tion.

7.3.1 The Relative Tree

A relative tree R is an ordered, rooted and labeled tree storing a relative representation of
a canonical range searching data structure T . The key idea is we can encode a range or a
point r = [x1, x ′1]× . . .× [xk, x ′k] as two k-dimensional vectors position(r) = (x1, . . . , xk)
and extent(r) = (x ′1− x1, . . . , x ′k− x ′k) corresponding to an origin position and an extent of
r. We use this representation in the relative tree, but only store extent vectors at vertices
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explicitly. The origin position vector for the range rv of a vertex v ∈ R is calculated from
offset vectors stored on the path from the root of R to v, denoted path(v).

Formally, each vertex v ∈ R stores a label, label(v), and a k-dimensional extent vector
extent(rv). Furthermore, each edge (u, v) ∈ R stores an offset vector offset(u, v). The
position vector for rv is calculated as position(rv) =

∑
(a,b)∈path(v) offset(a, b). We say that

two vertices v, w ∈ R are equivalent if the subtrees rooted at the vertices are isomorphic,
including all labels and vectors. That is, v and w are equivalent if the two subtrees R(v)
and R(w) are equal.

It is straightforward to convert a canonical range searching data structure into the
corresponding relative tree.

Lemma 7.3.1. Given any canonical range searching data structure T , we can construct the
corresponding relative tree R in linear time and space.

Proof. First, note that a relative tree allows each vertex to store extent vectors and labels.
Thus, to construct a relative tree R representing the canonical range searching data struc-
ture T , we can simply copy the entire tree including extent vectors and vertex labels. So
we only need to show how to store offset vectors in R to ensure that the ranges for each
pair of copied vertices are equal.

Consider a vertex v ∈ T and its copy vR ∈ R and their parents w ∈ T and wR ∈ R. Since
the extent vector and vertex labels are copied, extent(rv) = extent(rvR

) and label(v) =
label(vR). The offset vector for edge (wR, vR) is offset(wR, vR) = position(rv)− position(rw).
We assume the offset for the root is the 0-vector. Observe that summing up all the offset
vectors on path(v) is exactly position(rv), and so position(rvR

) = position(rv).
Since each vertex and edge in T is only visited a constant number of times during the

mapping, the construction time for R is O(N). The total number of labels stored by R is
asymptotically equal to the number of labels stored by T . Finally, the degrees of vertices
does not change from T to R. Thus, if v ∈ T is mapped to vR ∈ R and v requires s space,
vR requires Θ(s) space.

7.3.2 The Data Structure

The compressed canonical data structure is the minimal DAG G of the relative tree R
for T . By Lemma 7.3.1 and [Dow+80] we can build it in O(N) time. Since G replaces
equivalent subtrees in R by a single subtree, geometric repetitions in T are stored only
once in G. For an example, see Figure 7.2.

Now consider a range query Q on the canonical range searching data structure T . We
show how to simulate Q efficiently on G. Assuming vG ∈ G generates vR ∈ R, we say that
vG generates v ∈ T if vR is the relative tree representation of v. When we visit a vertex
vG ∈ G, we calculate the origin position position(rvG

) from the sum of the offset vectors
along the root-to-vG path. The origin position for each vertex can be stored on the way
down in G, since we may only visit a vertex after visiting all ancestors (meaning that
we can only arrive at vG from a root-to-vG path in G). Thus, it takes constant time to
maintain the origin position for each visited vertex. Finally, a visit to a child of v ∈ T
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Figure 7.2: The relative tree obtained from the R tree from Figure 7.1 and the resulting
minimal DAG G generating the tree. Only coordinates of the lower left cor-
ner of the ranges in the R tree are shown. In the relative tree, the absolute
coordinates for the points are only shown for illustration, in order to see that
the relative coordinates sum to the absolute coordinate along the root-to-leaf
paths .

can be simulated in constant additional time by visiting a child of vG ∈ G. So we can
simulate a visit to v ∈ T by visiting the vertex vG ∈ G that generates v and in constant
time calculate the origin position for vG .

Any label comparison takes the same time on G and T since the label must be equal
for vG ∈ G to generate v ∈ T . Now, since there is only constant overhead in visiting a
vertex and comparing labels, it follows that if Q uses t time we can simulate it in O(t)
time on G. In summary, we have the following result.

Theorem 7.3.2. Given a canonical range searching data structure T with N vertices, we
can build the minimal DAG representation G of T in linear time. The space required by G
is O(n), where n is the size of the minimal DAG for a relative representation of T . We can
support any query Q on T that takes time t on G in time O(t).

As an immediate corollary, we get the following result for a number of concrete range
searching data structures.

Corollary 7.3.2.1. Given a K-D tree, Quad tree, R tree or Range tree, we can in linear time
compress it into a data structure using space proportional to the size of the minimal relative
DAG representation which supports canonical range searching queries with O(1) overhead.

7.3.3 Extension to the I/O Model

We now show that Theorem 7.3.2 extends to the I/O model of computation. We assume
that each vertex in T require Θ(B) space, where B is the size of a disk block. To allow
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for such vertices, we relax the definition of a canonical range searching data structure to
allow it to store B k-dimensional ranges. From Lemma 7.3.1 and [Dow+80], if a vertex
v ∈ T require Θ(B) space, then so does the corresponding vertex vG ∈ G. Thus, the
layout of the vertices on disk does not asymptotically influence the number of disk reads
necessary to answer a query, since only a constant number of vertices can be retrieved by
each disk read. This means that visiting a vertex in either case takes a constant number
of disk blocks, and so the compressed representation does not asymptotically increase
the number of I/Os necessary to answer the query. Hence, we can support any query Q
that uses p I/Os on T using O(p) I/Os on G.

7.4 Similarity Clustering

We now introduce the similarity clustering algorithm. Even if there are significant geo-
metric repetitions in the point set P, the standard range searching data structures may
not be able to capture this and may produce data structures that are not compressible.
The similarity clustering algorithm allows us to create a canonical range searching data
structure for which we can guarantee good compression using Theorem 7.3.2.

7.4.1 Definitions

Points and point sets We consider points in k-dimensional space, assuming k is con-
stant. The distance between two points p1 and p2, denoted d(p1, p2), is their euclidian
distance. We denote by P = {p1, p2, . . . , pr} a point set containing r points. We say that
two point sets P1, P2 are equivalent if P2 can be obtained from P1 by translating all points
with a constant k-dimensional offset vector.

The minimum distance between a point pq and a point set P is the distance between
pq and the closest point in P, mindist(P, pq) = minp∈P d(p, pq). The minimum distance
between two point sets P1, P2 is the distance between the two closest points in the two
sets, mindist(P1, P2) = minp1∈P1,p2∈P2

d(p1, p2). These definitions extend to maximum dis-
tance in the natural way, denoted maxdist(P, pq) and maxdist(P1, P2). The diameter of
a point set P is the maximum distance between any two points in P, diameter(P) =
maxp1,p2∈P d(p1, p2) =maxdist(P, P).

A point set P1 ⊂ P is lonely if the distance from P1 to any other point is more than
twice diameter(P1), i.e. mindist(P1, P \ P1)> 2× diameter(P1).

Clustering A hierarchical clustering of a point set P is a tree, denoted C(P), containing
the points in P at the leaves. Each node in the tree C(P) is a cluster containing all the
points in the leaves of its subtree. The root of C(P) is the cluster containing all points. We
denote by points(v) the points in cluster node v ∈ C(P). Two cluster nodes v, w ∈ C(P)
are equivalent if points(v) is equivalent to points(w) and if the subtrees rooted at the
nodes are isomorphic such that each isomorphic pair of nodes are equivalent.
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7.4.2 Hierarchical Clustering Algorithm for Lonely Point Sets

Order P in lexicographically increasing order according to their coordinates in each di-
mension, and let ∆(P) denote the ordering of P. The similarity clustering algorithm
performs a greedy clustering of the points in P in levels i = 0, 1, . . . , lg D + 1, where
D = diameter(P). Each level i has an associated clustering distance threshold di , defined
as d0 = 0 and di = 2i−1 for all other i.

The clustering algorithm proceeds as follows, processing the points in order ∆(P) at
each level. If a point p is not clustered at level i > 0, create a new cluster Ci centered
around the point p (and its cluster Ci−1 at the previous level). Include a cluster Ci−1 from
level i−1 in Ci if maxdist(points(Ci−1), p)≤ di . The clusters at level 0 contain individual
points and the cluster at level lg D+ 1 contains all points.

Lemma 7.4.1. Given a set of points P, the similarity clustering algorithm produces a clus-
tering tree containing equivalent clusters for any pair of equivalent lonely point sets.

Proof. Let P1 and P2 be two lonely point sets in P such that P1 and P2 are equivalent,
and let d = diameter(P1) = diameter(P2). Observe that a cluster formed at level i has at
most diameter 2di = 2i . Thus, since all points are clustered at every level and all points
outside P1 have a distance greater than 2d to any point in P1, there is a cluster c ∈ C(P)
formed around point a ∈ P1 at level j = ⌈lg d⌉ containing no points outside P1. Now,
assume some point p ∈ P1 is not in points(c). As all unclustered points within distance
2 j ≥ d from a are included in c, this would mean that p was clustered prior to creating c.
This contradicts the assumption that P1 is lonely, since it can only happen if some point
outside P1 is closer than 2d to p. Concluding, c contains exactly the points in P1. The
same argument naturally extends to P2.

Now, let C1, C2 be the clusters containing the points from P1, P2, respectively. Observe
that points(C1) and points(C2) are equivalent. Furthermore, because each newly created
cluster process candidate clusters to include in the same order, the resulting trees for C1
and C2 are isomorphic and have the same ordering. Thus, the clusters C1 and C2 are
equivalent.

Because the clustering proceeds in O(lg D) levels, the height of the clustering tree is
O(lg D). Furthermore, by considering all points and all of their candidates at each level,
the clustering can be implemented in time O(N2 lg D). Observe that the algorithm allows
creation of paths of clusters with only a single child cluster. If such paths are contracted
to a single node to reduce the space usage, the space required is O(N)words. In summary,
we have the following result.

Theorem 7.4.2. Given a set of N points with diameter D, the similarity clustering algorithm
can in O(N2 lg D) time create a tree representing the clustering of height O(lg D) requiring
O(N) words of space. The algorithm guarantees that any pair of equivalent lonely point
sets results in the same clustering, producing equivalent subtrees in the tree representing the
clustering.

90



7.5. Open Problems

Since the algorithm produces equivalent subtrees in the tree for equivalent lonely
point sets, the theorem gives a compressible canonical range searching data structure for
point sets with many geometric repetitions.

7.5 Open Problems

The technique described in this paper for generating the relative tree edge labels only
allows for translation of the point sets in the underlying subtrees. However, the given
searching technique and data structure generalizes to scaling and rotation (if simply
storing a parent-relative scaling factor and rotation angle in each node, along with the
nodes parent-relative translation vector). We consider it an open problem to efficiently
construct a relative tree that uses such transformations of the point set.

Another interesting research direction is if it is possible to allow for small amounts
of noise in the point sets. That is, can we represent point sets that are almost equal
(where few points have been moved a little) in a compressed way? An even more general
question is how well one can do when it comes to compression of higher dimensional
data in general.

Finally, the O(N2 lg D) time bound for generating the similarity clustering is pro-
hibitive for large point sets. So an improved construction would greatly benefit the pos-
sible applications of the clustering method and is of great interest.
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8 Colored Range Searching in Linear
Space
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Abstract

In colored range searching, we are given a set of n colored points in d ≥ 2 di-
mensions to store, and want to support orthogonal range queries taking colors into
account. In the colored range counting problem, a query must report the number of dis-
tinct colors found in the query range, while an answer to the colored range reporting
problem must report the distinct colors in the query range.

We give the first linear space data structure for both problems in two dimensions
(d = 2) with o(n)worst case query time. We also give the first data structure obtaining
almost-linear space usage and o(n) worst case query time for points in d > 2 dimen-
sions. Finally, we present the first dynamic solution to both counting and reporting
with o(n) query time for d ≥ 2 and d ≥ 3 dimensions, respectively.
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8. COLORED RANGE SEARCHING IN LINEAR SPACE

8.1 Introduction

In standard range searching a set of points must be stored to support queries for any
given orthogonal d-dimensional query box Q (see [Ber+08] for an overview). Two of the
classic problems are standard range reporting, asking for the points in Q, and standard
range counting, asking for the number of points in Q. In 1993, Janardan and Lopez
[Jan+93] introduced one natural generalisation of standard range searching, requiring
each point to have a color. This variation is known as colored range searching1. The two
most studied colored problems are colored range reporting, where a query answer must
list the distinct colors in Q, and colored range counting, where the number of distinct
colors in Q must be reported.

As shown in Tables 8.1–8.2, there has been a renewed interest for these problems due
to their applications. For example, in database analysis and information retrieval the d-
dimensional points represent entities and the colors are classes (or categories) of entities.
Due to the large amount of entities, statistics about their classes is the way modern data
processing is performed. A colored range query works in this scenario and reports some
statistical analysis for the classes using the range on the entities as a filtering method:
“which kinds of university degrees do European workers with age between 30 and 40
years and salary between 30,000 and 50,000 euros have?”. Here the university degrees
are the colors and the filter is specified by the range of workers that are European with
the given age and salary. The large amount of entities involved in such applications calls
for nearly linear space data structures, which is the focus of this paper.

Curiously, counting is considered harder than reporting among the colored range
queries as it is not a decomposable problem: knowing the number of colors in two halves
of Q does not give the query answer. This is opposed to reporting where the query answer
can be obtained by merging the list of colors in two halves of Q and removing duplicates.
For the standard problems, both types of queries are decomposable and solutions to
counting are generally most efficient.

In the following, we denote the set of d-dimensional points by P and let n = |P|.
The set of distinct colors is Σ and σ = |Σ| ≤ n, with k ≤ σ being the number of colors
in the output. We use the notation lga b = (lg b)a and adopt the RAM with word size
w =Θ(lg n) bits, and the size of a data structure is the number of occupied words.

Observe that for both colored problems, the trivial solution takes linear time and
space, storing the points and looking through all of them to answer the query. Another
standard solution is to store one data structure for all points of each color that supports
standard range emptiness queries (“is there any point inside Q?”). In two dimensions, this
approach can answer queries in O(σ lg n) time and linear space using a range emptiness
data structure by Nekrich [Nek09]. However, since σ = n in the worst case, this does not
guarantee a query time better than trivial. Due to the extensive history and the number
of problems considered, we will present our results before reviewing existing work.

1Also known in the literature as categorical or generalized range searching.
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Dim. Query Time Space Usage Dyn. Ref.

1 O(lg n/ lg lg n) O(n) × §

O(lg2 n) O(n2 lg2 n) ⋆

O(lg2 n) O(n2 lg2 n) †

2 O(X lg7 n) O(( n
X
)2 lg6 n+ n lg4 n) †

O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)2+ε

�
O(n) New

O(lg2(d−1) n) O(nd lg2(d−1) n) †

> 2 O(X lgd−1 n) O(( n
X
)2d + n lgd−1 n) †

O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)d−1 lg lg lgc n

�
O
�

n(lg lgc n)d−1
�

New

≥ 2 O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)d

�
O
�

n(lg lgc n)d−1
� × New

Table 8.1: Known and new solutions to colored range counting, ordered according to
decreasing space use in each dimension group. Dyn. column shows if solution
is dynamic, d is the dimensionality. References are abbreviated § = [JáJ+05],
⋆ = [Gup+95], † = [Kap+07].

8.1.1 Our Results

We observe (see Section 8.1.2) that there are no known solutions to any of the colored
problems in two dimensions that uses O(n) words of space and answer queries in o(n)
worst case time. Furthermore, for colored range reporting there are no known solutions
in d > 3 dimensions using o(n1+ε) words of space and answering queries in o(n) worst
case time. For colored range counting, no solutions with o(n polylg n) words of space and
o(n) worst case time exist.

We present the first data structures for colored range searching achieving these bounds,
improving almost logarithmically over previously known solutions in the worst case (see
Section 8.1.2 and Tables 8.1–8.2). Specifically, we obtain

• o(n) query time and O(n) space in two dimensions,

• o(n) query time and o(n polylg n) space for counting in d ≥ 2 dimensions,

• o(n) query time and o(n1+ε) space for reporting in d > 3 dimensions,

• o(n) query time supporting O(polylg n) updates in d ≥ 2 and d ≥ 3 dimensions for
counting and reporting, respectively.

We note that while our bounds have an exponential dimensionality dependency (as
most previous results), it only applies to lg lg n factors in the bounds. Our solutions can
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Dim. Query Time Space Usage Dyn. Ref.

1 O(1+ k) O(n) × §

O(lg n+ k) O(n lg n) †

2 O(lg2 n+ k lg n) O(n lg n) × ⋆, ‡

O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)2+ε + k

�
O(n) New

≥ 2 O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)d + k

�
O
�

n(lg lgc n)d−1
� × New

3 O(lg2 n+ k) O(n lg4 n) ⋆

> 3 O(lg n+ k) O(n1+ε) ⋄, $

≥ 3 O
�
( σ

lg n
+ n

lgc n
)(lg lgc n)d−1 lg lg lgc n+ k

�
O
�

n(lg lgc n)d−1
�

New

Table 8.2: Known and new solutions to colored range reporting, ordered according to
decreasing space use in each dimension group. Dyn. column shows if solution
is dynamic, d is the dimensionality. References are abbreviated § = [Nek+13],
⋆ = [Gup+95], † = [Shi+05], ‡ = [Boz+95], ⋄ = [Kre92], $ = [Gup+97].

be easily implemented and parallelized, so they are well-suited for the distributed pro-
cessing of large scale data sets. Our main results can be summarised in the following
theorems, noting that c > 1 is an arbitrarily chosen integer, and σ ≤ n is the number of
distinct colors.

Theorem 8.1.1. There is a linear space data structure for two-dimensional colored range
counting and reporting storing n points, each assigned one of σ colors. The data structure
answers queries in time O((σ/ lg n + n/ lgc n)(lg lgc n)2+ε), with reporting requiring an
additive term O(k).

Theorem 8.1.2. There is a O(n(lg lgc n)d−1) space data structure storing n d-dimensional
colored points each assigned one of σ colors. Each colored range counting and reporting
query takes time O((σ/ lg n+n/ lgc n)(lg lgc n)d−1 lg lg lgc n). Reporting requires an additive
O(k) time.

To obtain these results, we partition points into groups depending on their color.
Each group stores all the points for at most lg n specific colors. Because the colors are
partitioned across the groups, we can obtain the final result to a query by merging query
results for each group (and we have thus obtained a decomposition of the problem along
the color dimension). A similar approach was previously used in [Kap+07].

In order to reduce the space usage of our data structure, we partition the points
in each group into a number of buckets of at most lgc n points each. The number of
buckets is O(σ/ lg n + n/ lgc n), with the first term counting all underfull buckets and
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the second counting all full buckets. Each bucket stores m ≤ lgc n points colored with
f ≤ lg n different colors. To avoid counting a color several times across different buckets,
we use a solution to the d-dimensional colored range reporting problem in each bucket
for which answers to queries are given as bitstrings. Answers to the queries in buckets
can be merged efficiently using bitwise operations on words. We finally use an o(n) space
lookup table to obtain the count or list of colors present in the merged answer.

The solution to d-dimensional colored range reporting for each bucket is obtained
by building a d-dimensional range tree for the m points, which uses a new linear space
and O(lg lg m) time solution to restricted one-dimensional colored range reporting as
the last auxiliary data structure. In total, each bucket requires O(m lgd−1 m) space and
O(lgd−1 m lg lg m) query time. In two dimensions, we reduce the space to linear by only
storing representative rectangles in the range tree covering O(lg m) points each. Using
the linear space range reporting data structure by Nekrich [Nek09], we enumerate and
check the underlying points for each of the O(lg m) range tree leaves intersecting the
query range, costing us a small penalty of O(lgε n) per point. We thus obtain a query
time of O(lg2+ε m) for two-dimensional buckets in linear space.

Using classic results on dynamisation of range trees, we can dynamise the data struc-
ture with a little additional cost in query time. Previously, there was no known dynamic
data structures with o(n) query time for colored range counting in d ≥ 2 dimensions and
colored range reporting in d ≥ 3 dimensions. Consequently, this is the first such dynamic
data structure.

Theorem 8.1.3. There is a dynamic O(n(lg lgc n)d−1) space data structure storing n d-
dimensional colored points each assigned one of σ colors. The data structure answers colored
range counting and reporting queries in time O((σ/ lg n + n/ lgc n)(lg lgc n)d). Reporting
requires a additive O(k) time and updates are supported in O((lg lgc n)d) amortised time.

Finally, if paying a little extra space, we can get a solution to the problem where the
query time is bounded by the number of distinct colors instead of the number of points.
This is simply done by not splitting color groups into buckets, giving the following result.

Corollary 8.1.3.1. There is a O(n lgd−1 n) space data structure for n d-dimensional colored
points each assigned one of σ colors. The data structure answers colored range counting and
reporting queries in time O(σ lgd−2 n lg lg n). Reporting requires a additive O(k) time.

In two dimensions this is a logarithmic improvement over the solution where a range
emptiness data structure is stored for each color at the expense of a lg n factor additional
space. The above approach can be combined with the range emptiness data structure by
Nekrich [Nek09] to obtain an output-sensitive result where a penalty is paid per color
reported:

Corollary 8.1.3.2. There is a O(n lg n) space data structure storing n two-dimensional
colored points each assigned one of σ colors. The data structure answers colored range
counting and reporting queries in time O(σ+ k lg n lg lg n).
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8.1.2 Previous Results

Colored range counting. Colored range counting is challenging, with a large gap in the
known bounds compared to standard range counting, especially in two or more dimen-
sions. For example, a classic range tree solves two-dimensional standard range counting
in logarithmic time and O(n lg n) space, but no polylogarithmic time solutions in o(n2)
space are known for colored range counting.

Larsen and van Walderveen [Lar+13; Gup+95] showed that colored range counting
in one dimension is equivalent to two-dimensional standard range counting. Thus, the
optimal O(lg n/ lg lg n) upper bound for two-dimensional standard range counting by
JáJá et al. [JáJ+05] which matches a lower bound by Patrascu [Păt07] is also optimal
for one-dimensional colored range counting.

In two dimensions, Gupta et al. [Gup+95] show a solution using O(n2 lg2 n) space
that answers queries in O(lg2 n) time. They obtain their result by storing n copies of a
data structure which is capable of answering three-sided queries. The same bound was
matched by Kaplan et al. [Kap+07] with a completely different approach in which they
reduce the problem to standard orthogonal range counting in higher dimensions. Kaplan
et al. also present a tradeoff solution with O(X lg7 n) query time and O(( n

X
)2 lg6 n+n lg4 n)

space for 1 ≤ X ≤ n. Observe that the minimal space use for the tradeoff solution is
O(n lg4 n).

In d > 2 dimensions, the only known non-trivial solutions are by Kaplan et al. [Kap+07].
One of their solutions answers queries in O(lg2(d−1) n) time and O(nd lg2(d−1) n) space,
and they also show a number of tradeoffs, the best one having O(X lgd−1 n) query time
and using O(( n

X
)2d + n lgd−1 n) space for 1 ≤ X ≤ n. In this case, the minimal space

required by the tradeoff is O(n lgd−1 n).
Kaplan et al. [Kap+07] showed that answering n two dimensional colored range

counting queries in O(np/2) time (including all preprocessing time) yields an O(np) time
algorithm for multiplying two n×n matrices. For p < 2.373, this would improve the best
known upper bound for matrix multiplication [Wil12]. Thus, solving two dimensional
colored range counting in polylogarithmic time per query and O(n polylg n) space would
be a major breakthrough. This suggest that even in two dimensions, no polylogarithmic
time solution may exist.

Colored range reporting. The colored range reporting problem is well-studied [Jan+93;
Nek12; Nek+13; Nek14; Gag+12b; Shi+05; Gup+95; Gup+97; Kre92; Mor03; Boz+95;
Lar+12], with output-sensitive solutions almost matching the time and space bounds ob-
tained for standard range reporting in one and two dimensions. In particular, Nekrich
and Vitter recently gave a dynamic solution to one dimensional colored range reporting
with optimal query time O(1 + k) and linear space [Nek+13], while Gagie et al. ear-
lier presented a succinct solution with query time logarithmic in the length of the query
interval [Gag+12b].

In two dimensions, Shi and JaJa obtain a bound of O(lg n+k) time and O(n lg n) space
[Shi+05] by querying an efficient static data structure for three-sided queries, storing
each point O(lg n) times. Solutions for the dynamic two-dimensional case were developed
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L1 = 1, 4, 5, 6 L2 = 2, 3, 8, 10 Li = 13, 15, 23…
P1 P2 Pi

Figure 8.3: Grouping and bucketing of some point set with f = 4. The white boxes are
the groups and the grey boxes below each group are buckets each storing
O(lgc n) points.

in [Gup+95; Boz+95], answering queries with a logarithmic penalty per answer. If the
points are located on an N × N grid, Agarwal et al. [Aga+02] present a solution with
query time O(lg lg N + k) and space use O(n lg2 N). Gupta et al. achieve a static data
structure using O(n lg4 n) space and answering queries in O(lg2 n+ k) [Gup+95] in the
three-dimensional case. To the best of our knowledge, the only known non-trivial data
structures for d > 3 dimensions are by van Kreveld and Gupta et al., answering queries
in O(lg n+ k) time and using O(n1+ε) space [Kre92; Gup+97]. Other recent work on the
problem include external memory model solutions when the points lie on a grid [Nek12;
Lar+12; Nek14].

8.2 Colored Range Searching in Almost-Linear Space

We present here the basic approach that is modified to obtain our theorems. We first show
how to partition the points into O(σ/ lg n+ n/ lgc n) buckets each storing m = O(lgc n)
points of f = O(lg n) distinct colors, for which the results can be easily combined. We
then show how to answer queries in each bucket in time O(lgd−1 m lg lg m) and space
O(m lgd−1 m), thus obtaining Theorem 8.1.2.

8.2.1 Color Grouping and Bucketing

We partition the points of P into a number of groups Pi , where i = 1, . . . , σ
lg n

, depending
on their color. Each group stores all points having f = lg n distinct colors (except for the
last group which may store points with less distinct colors). For each group Pi we store
an ordered color list Li of the f colors in the group. That is, a group may contain O(n)
points but the points have at most f distinct colors. Since colors are partitioned among
groups, we can clearly answer a colored query by summing or merging the results to the
same query in each group.

Each group is further partitioned into a number of buckets containing m= lgc n points
each (except for the last bucket, which may contain fewer points). Since the buckets
partition the points and there cannot be more than one bucket with fewer than lgc n
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points in each group, the total number of buckets is O(σ/ lg n+ n/ lgc n). See Figure 8.3
for an example of the grouping and bucketing.

We require that each bucket in a group Pi supports answering restricted colored range
reporting queries with an f -bit long bitstring, where the jth bit indicates if color Li[ j]
is present in the query area Q in that bucket. Clearly, we can obtain the whole answer
for Q and Pi by using bitwise OR operations to merge answers to the restricted colored
range reporting query Q for all buckets in Pi . We call the resulting bitstring Fi,Q, which
indicates the colors present in the query range Q across the entire group Pi .

Finally, we store a lookup table T of size O(
p

n lg n) = o(n) for all possible bitstrings
of length f

2
. For each bitstring, the table stores the number of 1s present in the bitstring

and the indices where the 1s are present. Using two table lookups in T with the two
halves of Fi,Q, we can obtain both the number of colors present in Pi for Q, and their
indices into Li in O(1) time per index.

Summarising, we can merge answers to the restricted colored range reporting queries
in O(1) time per bucket and obtain the full query results for each group Pi . Using a
constant number of table lookups per group, we can count the number of colors present
in Q. There is O(1) additional cost per reported color.

8.2.2 Restricted Colored Range Reporting for Buckets

Each bucket in a group Pi stores up to m = lgc n points colored with up to f = lg n
distinct colors, and must support restricted colored range reporting queries, reporting
the colors in query range Q using an f -bit long bitstring. A simple solution is to use
a classic d-dimensional range tree R, augmented with an f -bit long bitstring for each
node on the last level of R (using the Li ordering of the f colors). The colors within the
range can thus be reported by taking the bitwise OR of all the bitstrings stored at the
O(lgd m) summary nodes of R spanning the range in the last level. This solution takes
total time O( f

w
lgd m) = O(lgd m) and space O(m lgd−1 m f

w
) = O(m lgd−1 m), and it can

be constructed in time O(m lgd−1 m) by building the node bitstrings from the leaves and
up (recall that w =Θ(lg n) is the word size).

The above solution is enough to obtain some of our results, but we can improve it
by replacing the last level in R with a new data structure for restricted one-dimensional
colored range reporting over integers that answer queries in time O(lg lg m) and linear
space. A query may perform O(lgd−1 m) one-dimensional queries on the last level of the
range tree, so the query time is reduced to O(lgd−1 m lg lg m) per bucket. The new data
structure used at the last level is given in the next section.

Observe that though the points are not from a bounded universe, we can remap a
query in a bucket to a bounded universe of size m in time O(lg m) and linear space per
dimension. We do so for the final dimension, noting that we only need to do it once for
all O(lgd−1 m) queries in the final dimension.
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1D restricted colored range reporting on integers.

Given O(m) points in one dimension from a universe of size m, each colored with one of
f = lg n distinct colors, we now show how to report the colors contained in a query range
in O(lg lg m) time and linear space, encoded as an f -bit long bitstring. First, partition the
points into j = O(m/ lg m) intervals spanning Θ(lg m) consecutive points each. Each
interval is stored as a balanced binary search tree of height O(lg lg m), with each node
storing a f -bit long bitstring indicating the colors that are present in its subtree. Clearly,
storing all these trees take linear space.

We call the first point stored in each interval a representative and store a predecessor
data structure containing all of the O(m/ lg m) representatives of the intervals. Also, each
representative stores O(lg m) f -bit long bitstrings, which are summaries of the colors kept
in the 1, 2, . . . , 2lg j neighboring intervals. We store these bitstrings both towards the left
and the right from the representative, in total linear space.

A query [a, b] is answered as follows. We decompose the query into two parts, first
finding the answer for all intervals fully contained in [a, b], and then finding the answer
for the two intervals that only intersect [a, b]. The first part is done by finding the two
outermost representatives inside the interval (called a′, b′, where a ≤ a′ ≤ b′ ≤ b) by
using predecessor queries with a and b on the representatives. Since we store summaries
for all power-of-2 neighboring intervals of the representatives, there are two bitstrings
stored with a′ and b′ which summarises the colors in all fully contained intervals.

To find the answer for the two intervals that contain a or b, we find O(lg lg m) nodes
of the balanced binary tree for the interval and take the bitwise OR of the bitstrings
stored at those nodes in O(lg lg m) total time. Using one of the classic predecessor data
structures [Emd+76; Meh+90; Wil83] for the representatives, we thus obtain a query
time of O(lg lg m) and linear space.

8.3 2D Colored Range Searching in Linear Space

To obtain linear space in two dimensions and the proof of Theorem 8.1.1, we use the
same grouping and bucketing approach as in Section 8.2. For each group Pi′ , we only
change the solution of each bucket Bi in Pi′ , recalling that Bi contains up to m = lgc n
points with f = lg n distinct colors, so as to use linear space instead of O(m lg m) words
of space.

We store a linear space 2D standard range reporting data structure Ai due to Nekrich
[Nek09] for all points in the bucket Bi . As shown in [Nek09], Ai supports orthogonal
standard range reporting queries in O(lg m + r lgε m) time and updates in O(lg3+ε m)
time, where r is the reported number of points and ε> 0.

We also store a simple 2D range tree Ri augmented with f -bit long bitstrings on the
last level as previously described in Section 8.2.2, but instead of storing points in Ri , we
reduce its space usage by only storing areas covering O(lg m) points of Bi each. This can
be done by first building Ri taking O(m lg m) space and time, and then cutting off subtrees
at nodes at maximal height (called cutpoint nodes) such that at most c′ lg m points are
covered by each cutpoint node, for a given constant c′ > 0. In this way, each cutpoint
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8. COLORED RANGE SEARCHING IN LINEAR SPACE

node is implicitly associated with O(lg m) points, which can be succinctly represented
with O(1) words as they all belong to a distinct 2D range. Note that the parent of a
cutpoint node has Ω(lg m) descending points, hence there are O(m/ lg m) cutpoint nodes.

A query is answered by finding O(lg2 m) summary nodes in Ri that span the entire
query range Q. Combining bitstrings as described in Section 8.2.2, the colors for all fully
contained ranges that are not stored in the leaves can thus be found. Consider now
one such leaf ℓ covering an area intersecting Q: since the O(lg m) points spanned by ℓ
may not be all contained in Q, we must check those points individually. Recall that the
points associated with ℓ are those spanning a certain range Q′, so they can be succinctly
represented by Q′. To actually retrieve them, we issue a query Q′ to Ai , check which ones
belong to Q′ ∩ Q, and build a bitstring for the colors in Q′ ∩ Q. We finally merge the
bitstrings for all summary nodes and intersecting leaves in constant time per bitstring to
obtain the final result.

The time spent answering a query is O(lg2 m) to find all bitstrings in non-leaf nodes
of Ri and to combine all the bitstrings. The time spent finding the bitstring in leaves is
O(lg1+ε m) per intersecting leaf as we use Nekrich’s data structure Ai with r = O(lg m).
Observe that only two leaves spanning a range of O(lg m) points may be visited in each
of the O(lg m) second level data structures visited, so the time spent in all leaves is
O(lg2+ε m), which is also the total time. Finally, since we reduced the size of the range
tree by a factor Θ(lg m), the total space usage is linear. This concludes the proof of
Theorem 8.1.1.

8.4 Dynamic Data Structures

We now prove Theorem 8.1.3 by discussing how to support operations INSERT(p, c) and
DELETE(p), inserting and deleting a point p with color c, respectively. Note that the color
c may be previously unused. We still use parameters f and m to denote the number
of colors in groups and points in buckets, respectively. We first give bounds on how to
update a bucket, and then show how to support updates in the color grouping and point
bucketing.

8.4.1 Updating a Bucket

Updating a bucket with a point corresponds to updating a d-dimensional range tree
using known techniques in dynamic data structures. Partial rebuilding [And99; Ove87]
requires amortised time O(lgd m), including updating the bitstrings in the partially rebuilt
trees and in each node of the last level trees (which takes constant time). Specifically, the
bitstrings for the O(lgd−1 m) trees on the last level where a point was updated may need
to have the bitstrings fixed on the path to the root on that level. This takes time O(lg m)
per tree, giving a total amortised update time of O(lgd m).
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8.4. Dynamic Data Structures

8.4.2 Updating Color Grouping and Point Bucketing

When supporting INSERT(p, c), we first need to find the group to which c belongs. If the
color is new and there is a group Pi with less than f colors, we must update the color
list Li . Otherwise, we can create a new group Pi for the new color. In the group Pi , we
must find a bucket to put p in. If possible, we put p in a bucket with less than m points,
or otherwise we create a new bucket for p. Keeping track of sizes of groups and buckets
can be done using priority queues in time O(lg lg n). Note that we never split groups or
buckets on insertions.

As for supporting DELETE(p), we risk making both groups and buckets underfull, thus
requiring a merge of either. A bucket is underfull when it contains less than m/2 points.
We allow at most one underfull bucket in a group. If there are two underfull buckets
in a group, we merge them in time O(m lgd m). Since merging buckets can only happen
after Ω(m) deletions, the amortized time for a deletion in this case is O(lgd m). A group
is underfull if it contains less than f /2 colors and, as for buckets, if there are any two
underfull groups Pi , Pj , we merge them. When merging Pi , Pj into a new group Pr , we
concatenate their color lists Li , L j into Lr , removing the colors that are no more present
while keeping the relative ordering of the surviving colors from Li , L j . In this way, a group
merge does not require us to merge the underlying buckets, as points are partitioned ar-
bitrarily into the buckets. However, a drawback arises: as the color list Lr for the merged
group is different from the color lists Li , L j used for answering bucket queries, this may
introduce errors in bucket query answers. Recall that an answer to a bucket query is an
f -bit long bitstring which marks with 1s the colors in Li that are in the range Q. So we
have a bitstring for Li , and one for L j , for the buckets previously belonging to Pi , Pj , but
we should instead output a bitstring for Lr in time proportional to the number of buckets
in Pr . We handle this situation efficiently as discussed in Section 8.4.3.

8.4.3 Fixing Bucket Answers During a Query

As mentioned in Section 8.4.2, we do not change the buckets when two or more groups
are merged into Pr . Consider the f -bit long bitstring bi that is the answer for one merged
group, say P ′i , relative to its color list, say Li . However, after the merge, only a sublist
L′i ⊆ Li of colors survives as a portion of the color list Lr for Pr . We show how to use
Li and L′i to contribute to the f -bit long bitstring a that is the answer to query Q for
the color list Lr in Pr . The time constraint is that we can spend time proportional to the
number, say g, of buckets in Pr .

We need some additional information. For each merged group P ′i , we create an f -bit
long bitstring vi with bit j set to 1 if and only if color Li[ j] survives in Lr (i.e. some point
in Pr has color Li[ j]). We call vi the possible answer bitstring and let oi be the number of
1s in vi: in other words, L′i is the sublist built from Li by choosing the colors Li[ j] such
that vi[ j] = 1, and oi = |L′i |.

Consider now the current group Pr that is the outcome of h ≤ f old merged groups,
say P ′1, P ′2, . . . , P ′h in the order of the concatenation of their color lists, namely, Lr = L′1 ·
L′2 · · · L′h. Since the number of buckets in Pr is g ≥ h, we can spend O(g) time to obtain
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8. COLORED RANGE SEARCHING IN LINEAR SPACE

the f -bit long bitstrings b1, b2, . . . , bh, which are the answers for the old merged groups
P ′1, P ′2, . . . , P ′h, and combine them to obtain the answer a for Pr .

Here is how. The idea is that the bits in a from position 1+
∑i−1

l=1 ol to
∑i

l=1 ol are
reserved for the colors in L′i , using 1 to indicate which color in L′i is in the query Q and
0 which is not. Let us call b′i this oi-bit long bitstring. Recall that we have bi , which is
the f -bit long bitstring that is the answer for P ′i and refers to Li , and also vi , the possible
answer bitstring as mentioned before.

To obtain b′i from bi , vi and oi in constant time, we would like to employ a lookup
table S[b, v] for all possible f -bitstrings b and v, precomputing all the outcomes (in the
same fashion as the Four Russians trick). However, the size of S would be 2 f × 2 f ×
f bits, which is too much (remember f = lg n). We therefore build S for all possible
( f /3)-bitstrings b and v, so that S uses o(n) words of memory. This table is periodically
rebuilt when n doubles or becomes one fourth, following a standard rebuilding rule. We
therefore compute b′i from bi , vi by dividing each of them in three parts, looking up S
three times for each part, and combining the resulting three short bitstrings, still in O(1)
total time.

Once we have found b′1, b′2, . . . , b′h in O(h) time as shown above, we can easily con-
catenate them with bitwise shifts and ORs, in O(h) time, so as to produce the wanted
answer a = b′1 · b′2 · · · b′h as a f -bit long bitstring for Pr and its color list Lr . Recall that
Pr consists of h buckets where h≤ g ≤ f . Indeed, if it were h> f , there would be some
groups with no colors. Since Ω( f ) deletions must happen before two groups are merged,
we can clean and remove the groups that have no more colors, i.e, with oi = 0, and
maintain the invariant that h≤ g ≤ f .

8.5 Open Problems

There are a lot of loose ends in colored range searching that deserve to be investigated,
and we will shortly outline a few of them. The hardness reduction by Kaplan et al.
[Kap+07] gives hope that colored range counting can be proven hard, and we have
indeed assumed that this is the case here. If taking instead an upper bound approach as
this paper, improved time bounds obtainable in little space, or with some restriction on
the number of colors, would be very interesting motivated by the large scale applications
of the problem.
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Abstract

We show how to compactly index video data to support fast motion detection
queries. A query specifies a time interval T , a area A in the video and two thresholds
v and p. The answer to a query is a list of timestamps in T where ≥ p% of A has
changed by ≥ v values.

Our results show that by building a small index, we can support queries with a
speedup of two to three orders of magnitude compared to motion detection without
an index. For high resolution video, the index size is about 20% of the compressed
video size.
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9. INDEXING MOTION DETECTION DATA FOR SURVEILLANCE VIDEO

9.1 Introduction

Video data require massive amounts of storage space and substantial computational re-
sources to subsequently analyse. For motion detection in video surveillance systems, this
is particularly true, as the video data typically have to be stored (in compressed form)
for extended periods for legal reasons and motion detection requires time-consuming de-
compressing and processing of the data. In this paper, we design a simple and compact
index for video data that supports efficient motion detection queries. This enables fast
motion detection queries on a selected time interval and area of the video frame without
the need for decompression and processing of the video file.

Problem & Goal

A motion detection query MD(T,A,v,p) specifies a time range T , an area A, and two thresh-
olds v ∈ [0, 255] and p ∈ [0, 100]. The answer to the query is a list of timestamps in T
where the amount of motion in A exceeds thresholds v and p, meaning that ≥ p% of the
pixels in A changed by ≥ v pixel values. Our goal is build an index for video data that
supports motion detection queries. Ideally, the index should be small compared to the
compressed size of the video data and should support queries significantly faster than
motion detection without an index.

Related Work

Several papers have considered the problem of online motion detection, where the goal
is to efficiently identify movement in the video in real time, see e.g. [Sac+94; Tia+05;
Hu+04; Cut+00; Hua11]. Previous papers [Du+14; Kao+08] mentions indexing move-
ment of objects based on motion trajectories embedded in video encoding. However, to
the best of our knowledge, our solution is the first to show a highly efficient index for
motion detection queries on the raw video.

Our Results

We design a simple index for surveillance video files, which support motion detection
queries efficiently. The performance of the index is tested by running experiments on a
number of surveillance videos that we make freely available for use. These test videos
capture typical surveillance camera scenarios, with varying amounts of movement in the
video.

Our index reduces the supported time- and area-resolution of queries by building sum-
mary histograms for the number of changed pixels in a number of regions of frames suc-
ceeding each other. Histograms for a frame are compressed and stored using an off-the-
shelf compressor. Queries are answered by decompressing the appropriate histograms
and looking up the answer to the query in the histograms.
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9.2. The Index

The space required by the index varies with the amount of motion in the video and
the region resolution supported. The query time only varies slightly. Compared to motion
detection without an index we obtain:

• A query time speedup of several orders of magnitude, depending on the resolution
of the original video. The choice of compressor has little influence on the time
required to answer a query by the index.

• A space requirement which is 10 − 90% of the compressed video. The smallest
relative space requirement occur for high resolution video. Quadrupling the region
resolution roughly doubles the space use.

Furthermore, as the resolution of the video increases, the time advantage of having an
index grows while the additional space required by the index decreases compared to
the compressed video data. That is, the index performs increasingly better for higher
resolution video.

9.2 The Index

A MD(T,A,v,p) query spans several dimensions in the video file: The time dimension
given by T and two spatial dimensions given by A. However, as high-dimensional data
structures for range queries typically incur high space cost, we have decided to not im-
plement our index using such data structures. Instead, we create a large number of
two-dimensional data structures for the pixel value difference for each successive pair
of frames, called a difference frame. Answering a query then involves querying the data
structures for all difference frames in T .

We restrict the query area A to always be a collection of regions, r1, . . . , rk. The height
and width of a region is determined by the video resolution and the number of regions
in each dimension of the video (if other query areas are needed, the index can be used
as a filter). For simplicity, we assume that the pixel values are grey-scale.

The index stores the following. For each region r and difference frame F , we store
a histogram HF,r , counting for each value 0 ≤ c ≤ 255 the number of pixels in the
region changed by at least c pixel values. Clearly a histogram can be stored using 256
values only. While this may exceed the number of pixels in a region when storing many
regions per frame, it generally does not. However, because modern video encoding is
extremely efficient, the raw histograms may take more space than the compressed video
(especially for low video resolutions). Thus, we compress the histograms using an off-the-
shelf compressor before storing them to disk.

To answer a MD(T,A,v,p) query, we decompress and query the histograms for each
region in A across all difference frames in T . Let |r| denote the number of pixels in region
r. For a specific difference frame F , we calculate p′ =

∑
r∈A HF,r[v]/

∑
r∈A |r|, which is

exactly the percentage of pixels in A changed by ≥ v pixel values. Thus, if p′ ≥ p, frame
F is a matching timestamp.
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9. INDEXING MOTION DETECTION DATA FOR SURVEILLANCE VIDEO

Table 9.1: Surveillance video recording samples used for testing. Videos were encoded
at 29.97fps using H264/MP4.

Size (MB)

Scenario Length (s) Motion amount 1080p 720p 480p

Office 60 Low 9.0 3.0 1.2

Students 60 Medium 27.3 7.8 3.3

Rain 60 High 67.6 18.1 4.6

9.3 Experiments

9.3.1 Experimental setup

All experiments ran on an Apple Macbook Pro with an Intel Core i7-2720QM CPU, 8GB
ram and a 128GB Apple TS128C SSD disk, plugged into the mains power. All reported
results (both time and space) were obtained as the average over three executions (we
note that the variance across these runs was extremely low).

9.3.2 Data sets

We tested our index on the following three typical video surveillance scenarios, encoded
at 29.97fps using H264/MP4 (reference [Vin14]). We use different video resolutions
(1920× 1080, 1280× 720 and 852× 480 pixels). See Table 9.1.

Office Recording of typical workday activities in a small well-lit office with three people
moving. The image is almost static, only containing small movements by the people.
There is very little local motion in the video.

Students Recording of a group of students working in small groups, with trees visible
through large windows that give a lot of reflection. People move about, which gives a
medium amount of motion across most of the frame.

Rain A camera mounted on the outside of a building, recording activities along the
building and looking towards another building. It is windy and raining, which combined
with many trees in the frame creates a high amount of motion in the entire frame.

9.3.3 Implementation

The system was implemented in Python using bindings to efficient C/C++ libraries
where possible. In particular, OpenCV and NumPy were used extensively, and we used
official python bindings to the underlying C/C++ implementations of the compressors.
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9.4. Main Results

The implementation uses a number of tunable parameters, see Table 9.2. The source code
can be found at [Vin14].

9.4 Main Results

We now show the most significant experimental results for our index compared to the
trivial method. We show results on both query time and index space when applicable.
Unless otherwise noted, the index was created for a video size of 1080p, storing 1024
regions/frame, 3 frames/second, 1 frame/file, using linear packing and zlib-6 compres-
sion. We will only give detailed results for the students scenario, as the index performs
relatively worst in this case.

9.4.1 Regions Queried

The first set of experiments show the influence of the number of regions queried in the
image on the total query time and also check if one scenario diverts significantly from
the others in query time performance. The number of regions queried was both extremes
(1 and 1024).

Table 9.3 summarises the results, with the index size shown relative to the video size.
The query time of the index does not vary with the video input, while that is the case
for the video compression approach. Observe that though the total time spent answering
a query using the index scales with the number of regions queried, it never exceeds 1
s, while the video approach spends at least 250 s in all cases. Thus, the index answers
queries at least two orders of magnitude faster than the video compression approach.

Table 9.2: Tunable parameters for use in experiments.

Name Description

Frames/Second The frame rate of the difference frames to
index.

Regions/Frame The number of regions to divide a frame
into.

Compressor The compressor used to compress the his-
tograms.

Frames/File The number of frames for which the his-
tograms should be stored in the same file
on disk

Packing Which strategy should be used when stor-
ing histograms for more than one frame in
same file on disk
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Table 9.3: Index query time versus video query time for 1 and 1024 regions queried. Size
of index compared to the video size.

Time (s)

Scenario Query Reg. Index Video Speedup Size

Office 1 0.17 463.51 2726× 24.4%

1024 0.81 467.17 576× 2.2 MB

Students 1 0.20 249.76 1248× 20.1%

1024 0.83 253.86 305× 5.5 MB

Rain 1 0.20 351.40 1757× 8.0%

1024 0.83 355.98 428× 5.4 MB

Table 9.4: Speedup for index query time compared to video query time for students
scenario, with varying input video resolutions and number of regions queried.

Speedup / Query Reg.

Resolution 1 64 1024 Size

480p 454× 368× 102× 75.8%

720p 903× 745× 219× 47.4%

1080p 1248× 1060× 305× 20.1%

The very small difference in query time for both extremes is surprising, since it di-
rectly influences the number of pixels to analyse in each difference frame. The relative
increase is much larger for the index query than the video, meaning that the time spent
performing the actual query is a larger fraction of the total query time for the index
(as shown in Section 9.5). We believe that the reason the office scenario has the worst
performance is that the video compression is most efficient here (and thus harder to
decompress).

Table 9.4 shows that the relative index query time increases when fewer regions are
queried. However, even when querying all regions the index has a performance which is
at least two orders of magnitude quicker than the video.

9.4.2 Resolution Comparison

Table 9.4 show the influence of the video resolution on the speedup obtained for the stu-
dents scenario. The difference in space required for the index with varying resolutions
is shown in Table 9.5. Note that the index times are almost always the same (varies be-
tween 0.2s and 1s), while the video query times decrease from around 250s at 1080p to
75s at 480p, and we thus only report the relative speedup for different numbers of re-
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9.5. Other Results

Table 9.5: Size of indexes for varying input video resolutions.

Index Size (MB) Index Size (%)

Scenario 1080p 720p 480p 1080p 720p 480p

Office 2.2 1.5 1.1 24.4% 50.0% 91.7%

Students 5.5 3.7 2.5 20.1% 47.4% 75.8%

Rain 5.4 3.7 2.2 8.0% 20.4% 47.8%

Table 9.6: Index size for varying number of stored regions and resolutions in the students
scenario.

Index Size (MB) Index Size (%)

Store Reg. 1080p 720p 480p 1080p 720p 480p

64 1.1 0.8 0.6 4.0% 10.2% 18.2%

256 2.3 1.7 1.2 8.4% 21.8% 36.4%

1024 5.5 3.7 2.5 20.1% 47.4% 75.8%

gions queried. The relative index performance compared to the video approach improves
in both space and time with larger video resolution. The index query time varies very
little with the resolution (which is as expected, since the number of histogram values to
check does not change).

9.4.3 Regions Stored

Clearly, the number of regions stored by the index has an influence on the index size (as
this directly corresponds to the number of histograms to store). However, from Table 9.6,
it is clear that the influence is smaller than would be expected. In fact, due to the more
efficient compression that is achieved, quadrupling (4×) the number of regions only
causes the index to about double (2×) in size. That is, it is relatively cheap to increase
the resolution of regions.

9.5 Other Results

In this section, we review the index performance when varying the different parameters
listed in Table 9.2. Changing the index parameters had insignificant influence on query
times, so we only show results for the index space when varying the parameters. The
largest contributor to the index advantage over the video decompression method is the
idea of storing an index, and thus we only briefly review the results when varying the
parameters.
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Table 9.7: Index size comparison for different compressors.

Index Size (MB) / Compressor

Scenario lz4 snappy zlib lzma bzip2

Office 2.9 6.6 2.2 1.7 1.5

Students 7.5 10.9 5.5 4.1 3.5

Rain 7.4 10.6 5.4 4.2 3.4

Table 9.8: Index compression time for different compressors.

Compression Time (s) / Compressor

Scenario lz4 snappy zlib lzma bzip2

Office 0.04 0.07 1.01 29.67 30.67

Students 0.07 0.11 1.29 32.69 31.80

Rain 0.07 0.11 1.41 31.89 31.92

Compressor

Table 9.7 shows the size of the index when the histograms are compressed using a num-
ber of different compressors, and Table 9.8 shows the time spent compressing the index
in total (remember the input is a 60s video file). In all of the tests in the previous section,
we have used the zlib-6 compressor, as it gives a good tradeoff between compression
time and space use. If one can spare the computing resources, there is hope for almost
halving the index space if switching to bzip2 compression. Note, however, that the
query time increases with a slower decompressor (especially when querying few regions,
as shown in Section 9.5).

Query Time Components

To see the influence of the compressor used, we determined how much of the total query
time is spent checking the decompressed values, compared to the amount of time spent
decompressing the video frames or histograms. The results are in Table 9.9. It is evident
that the video resolution and our chosen index compressor only has a small influence on
the total query time when the number of regions queried is large: Around 75% of the
time is spent on the actual query. As for the video query time, > 95% of the total time
is spent decompressing the video, with the actual query time being very insignificant in
all cases. In absolute terms, the query times for the index and the decompressed video
approach are comparable (difference around 10×) after decompression.
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9.6. Conclusion

Table 9.9: Fraction of time spent analysing regions of total query time for students sce-
nario (remainder is decompression).

Index Query Time Video Query Time

Resolution 1 1024 1 1024 Size

480p 2.63% 76.73% 0.01% 1.48% 75.8%

720p 3.27% 76.84% 0.01% 1.84% 47.4%

1080p 3.08% 73.79% 0.02% 3.84% 20.1%

Frames/File & Histogram Packing Strategies

We tested the influence on the index size if storing more than one difference frame per
file on disk. We tested four different value packing strategies: linear, binned, reg-linear,
reg-binned. Consider a frame F with two region histograms r1, r2. In the linear strategy,
we just write all values from r1 followed by all values from r2. In the binned strategy, we
interleave the value for the same histogram index from all regions in a frame, i.e. we wite
r1[0]r2[0]r1[1]r2[1] . . . r1[255]r2[255] on disk. When storing multiple frames F1, F2 in
a file, assume r1, r2 has the same spatial coordinate in both frames. Then the reg-linear
strategy writes r1 followed by r2, while the reg-binned strategy interleaves the values as
before.

The hope is that this would result in more efficient compression, since the histogram
for the same region may be assumed to be very similar across neighbouring frames. How-
ever, our results show that storing more frames per file and changing the packing strategy
had very little effect on the index efficiency for storing many regions. One exception is
when storing few regions (less than 64), increasing the number of frames per file de-
creases the index size due to the added redundancy available for the compressor.

9.6 Conclusion

We have shown an index for motion detection data from surveillance video cameras that
provides a speedup of at least two orders of magnitude when answering motion detection
queries in surveillance video. The size of the index is small compared to the video files,
especially for high resolution video.
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