

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 29, 2024

Fast Kötter–Nielsen–Høholdt Interpolation in the Guruswami–Sudan Algorithm

Nielsen, Johan Sebastian Rosenkilde

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, J. S. R. (2014). Fast Kötter–Nielsen–Høholdt Interpolation in the Guruswami–Sudan Algorithm. Paper
presented at 14th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2014),
Svetlogorsk, Russian Federation.

https://orbit.dtu.dk/en/publications/01dbadce-7011-428d-866a-eefeee0733b6

1

Fast Kötter–Nielsen–Høholdt Interpolation
in the Guruswami–Sudan Algorithm

Johan S. R. Nielsen jsrn@jsrn.dk

Ulm University, Department of Communications Engineering

Abstract. The Kötter–Nielsen–Høholdt algorithm is a popular way to construct
the bivariate interpolation polynomial in the Guruswami–Sudan decoding algorithm
for Reed–Solomon codes. In this paper, we show how one can use Divide & Con-
quer techniques to provide an asymptotic speed-up of the algorithm, rendering its
complexity quasi-linear in n. Several of our observations can also provide a practical
speed-up to the classical version of the algorithm.

1 Introduction

The computationally most demanding step of the Guruswami–Sudan algorithm
[4] is finding a bivariate interpolation polynomial. Many algorithms have been
proposed, both more classical with a quadratic dependence on the code length
n, e.g. [6, 7], as well as approaches utilising fast multiplication methods with a
resulting quasi-linear dependence on n [2, 3].

In this work we show how the Kötter–Nielsen–Høholdt algorithm1 of [7]
admits a Divide & Conquer variant to utilise fast multiplication. Our algorithm’s
complexity is O(`2s3n) +O∼(`ωsn), where `, s are the list size and multiplicity
parameters. O∼ means big-O but with log(ns`) terms omitted, and ω is the
exponent of matrix multiplication, i.e. ω ≤ 3.

This is not the fastest possible way to compute an interpolation polynomial,
since [3] achieves O∼(`ωsn), but it matches e.g. the speed of [2]. Ours is also a
comparatively simple algorithm: for instance, it is trivial to apply the algorithm
to Kötter–Vardy decoding [5] with varying multiplicities, while this is possible
but quite complicated for the lattice-basis reduction approaches of [1–3,6]; see [1]
for a description of how to accomplish this.

The algorithm has been implemented in Sage v. 5.13 and the source code is
available at http://jsrn.dk/code-for-articles.

2 Preliminaries and the Problem

First some notation: we will write 0 for the all-0 matrix, sub-scripted with
dimensions. Likewise I is the identity matrix. For any matrix V , then V [i, j]

1This algorithm is sometimes mistakenly attributed to Kötter only. However, it appeared
first in [7], stating that it was obtained as a generalisation of an algorithm in Kötter’s thesis.

2 3 THE KÖTTER–NIELSEN–HøHOLDT ALGORITHM

denotes the (i, j)’th entry. If V is over F[x] we will write deg V to denote the
greatest degree among the entries of V .

For any Q ∈ F[x, y] and w ∈ Z+, denote by degwQ the (1, w)-weighted
degree of Q: degw x

iyj = i+ wj and degw is then extended to polynomials by
the maximal of the monomials’ degw. degw induces a module monomial ordering
≤w, where ties are broken using the power of x.

Let F[x, y]` = {Q ∈ F[x, y] | ydegQ ≤ `}; this is an F[x]-module, and we
will be working with sub-modules of it. Given a set of polynomials B ⊂ F[x, y]`
then we denote by span(B) the F[x]-module spanned by B. We will be working
with Gröbner bases of such modules, always on the module monomial ordering
≤w. From now on, this term order is implicit when we say “Gröbner bases”.

Definition 1. For any Q ∈ F[x, y] and point (x0, y0) ∈ F2, then the (dx, dy)

Hasse derivative at (x0, y0) for dx, dy ∈ N0 is the coefficient to xdxydy in Q(x+

x0, y + y0). We denote this by ∂[dx,dy]Q(x0, y0).
Let Ds = {(dx, dy) ∈ N2

0 | 0 ≤ dx + dy < s}. Then we say that Q has a zero

of multiplicity at least s at (x0, y0) if ∂[dx,dy]Q(x0, y0) = 0 for all (dx, dy) ∈ Ds.

We will slightly abuse notation in algorithms by using Ds as an ordered
list. The order of Ds is given by �: the lexicographical order on integer tuples,
i.e. (a1, b1) � (a2, b2) if a1 < a2 or a1 = a2 ∧ b1 ≤ b2.

If Q =
∑

i,j qi,jx
iyj for qi,j ∈ F, then we have the formula

∂[dx,dy]Q(x0, y0) =
∑
i≥dx

∑
j≥dy

(
i

dx

)(
j

dy

)
qi,jx

i−dx
0 y

j−dy
0

Detached from the application in Guruswami–Sudan for decoding Reed–
Solomon codes, the interpolation problem that we will solve is the following:

Problem 1. Given (x1, y1), . . . , (xn, yn) ∈ F2 with all xi distinct, as well as
s, `, w ∈ Z+, find a Q ∈ F[x, y] with ydegQ ≤ ` such that degwQ is minimal
while Q has a zero with multiplicity at least s at each (xi, yi).

3 The Kötter–Nielsen–Høholdt algorithm

The Kötter–Nielsen–Høholdt algorithm (KNH) for solving Problem 1 is very
short and given as Algorithm 1. We will not prove its correctness here but refer
the reader to [7]. A few comments should be made before we proceed: Firstly,
in [7], the initial basis is chosen as xiyj for all 0 ≤ i < s and 0 ≤ j ≤ `. It is
well-known that one can simply choose yj for 0 ≤ j ≤ `, without changing the
correctness of the algorithm.

Secondly, the proof of correctness actually establishes that after the i’th
iteration of the outer loop, B is a Gröbner basis of M1 ∩ . . . ∩ Mi, where

3

Algorithm 1 The Kötter–Nielsen–Høholdt algorithm

Input: {(xi, yi} ∈ F2, xi distinct. s, `, w ∈ Z+

Output: Q, a solution to Problem 1

1 B ← {1, y, . . . , y`}
2 for i = 1, . . . , n do
3 for (dx, dy) ∈ Ds do
4 bt ← arg minbj∈B{degw bj if ∂[dx,dy]bj(xi, yi) 6= 0 else ∞}
5 B ←

{
bj −

(
∂[dx,dy]bj(xi, yi)/∂

[dx,dy]bt(xi, yi)
)
bt | bj ∈ B \ {bt}

}
6 ∪{(x− xi)bt}
7 return arg minbj∈B{degw bj}

Mj ⊂ F[x, y]` consists of all polynomials with a zero of multiplicity at least s at
(xj , yj). Furthermore, each iteration of the inner loop further refines B to be a

Gröbner basis of those polynomials Q which also have ∂[dx,dy]Q(xi, yi) = 0.

Proposition 1. The complexity of the KNH is O(`2s3n2).

Proof. Firstly, any b ∈ B has xdeg b < sn since for each point the same index t
can be chosen in Line 4 at most s times. That is because if for some dx then
∂[dx−1,dy]b(xi, yi) = 0 for all dy, then ∂[dx,dy]((x− xi)b(xi, yi)) = 0 for all dy; i.e.
if some bt is chosen, it will be replaced with (x− xi)bt so it will not be chosen
again for the same dx. Thus the maximal x-degree in B increases at most s for
every iteration of the outer loop.

Now in the O(s2n) iterations of the inner loop, we compute ` + 1 Hasse
derivatives of basis elements, as well as ` linear combinations of two basis
elements. By the xdeg on basis elements, either such operation costs O(`sn).

4 Manipulating Hasse Derivatives

We will start with some observations on the computation and manipulation
of the Hasse derivatives during the inner loop of the algorithm. For any

Q =
∑`

i=0Qiy
i ∈ F[x, y]` and p ∈ F[x], we will denote by Q mod p the

polynomial
∑`

i=0(Qi mod p)yi. Likewise, for a set B of F[x, y]-elements, we will
denote by B mod p the set {b mod p | b ∈ B}.

Lemma 1. For any Q ∈ F[x, y], point (x0, y0) ∈ F2, and (dx, dy) ∈ Ds, then

∂[dx,dy]Q(x0, y0) = ∂[dx,dy](Q mod (x− x0)s)(x0, y0)

Proof. Let Q =
∑`

i=0Qiy
i and Q̂ =

∑`
i=0 Q̂iy

i = Q mod (x− x0)s. Then there

exist q0, . . . , q` ∈ F[x] such that Qi = Q̂i + qi(x − x0)s for every i. But then

4 5 FAST KNH: A DIVIDE & CONQUER VARIANT

Qi(x + x0) = Q̂i(x + x0) + xsqi(x + x0). The lemma now follows from the

definition of ∂[dx,dy].

We need the above lemma for our Fast KNH, but together with another
observation it can even be used in the original KNH to speed up calculations:
for each point, we can compute all the Hasse derivatives for each basis element
just once and then update them during the iterations of the inner loop. That is
possible since Hasse derivatives change straightforwardly under the operations
performed: first, represent the derivatives of a given element b as an upper
anti-triangular matrix H = [∂[dx,dy]b(xi, yi)](dx,dy)∈Ds

∈ Fs×s. Then the linear
combinations in Line 6 of Algorithm 1 can simply be reflected as linear combi-
nations of these Hasse matrices. Furthermore, if Ht is the Hasse matrix for bt,
then the one for (x− xi)bt is simply Ht shifted down by one row, and the new
first row set to all-zero; the elements now outside the upper anti-diagonal can
be set to zero or ignored.

In the original KNH, this can reduce the total cost of computing with Hasse
derivatives to O(`s4n + sn2) + O∼(`sn); due to space limitations we omit the
details on this. Since the cost of updating B in the inner loop still incurs cost
O(`2s3n2), the overall complexity remains unchanged. However, I can remark
that the above optimisation drastically sped up my own software implementation
of the KNH algorithm.

This bottleneck of updating B is exactly what is handled in the Fast KNH,
described in the next section, allowing us to end up with a complete algorithm
which is quasi-linear in n.

5 Fast KNH: A Divide & Conquer Variant

The main idea of the Fast KNH is to completely avoid working with the
unreduced B in the inner loop, and only work with B mod (x − xi)

s. The
operations to perform only depend on the Hasse matrices, so we do not actually
manipulate B in the inner loop; instead the operations are “recorded” as a
matrix T ∈ F[x](`+1)×(`+1), and when continuing the interpolation with the
next point, they are applied to B as T (B mod (x− xi+1)

s). In particular, the
operations of one iteration of the inner loop can be represented as the matrix U :

U = I(`+1)×(`+1) −
[
0(`+1)×(t−1) | u>t | 0(`+1)×(`−t+2)

]
(1)

ut = (H1[dx, dy]/Ht[dx, dy], . . . ,Ht−1[dx, dy]/Ht[dx, dy],

1− (x− xi), Ht+1[dx, dy]/Ht[dx, dy], . . . ,H`+1[dx, dy]/Ht[dx, dy])

The list of points (xi, yi) to process is then structured into a binary tree to
minimise the representation of B necessary at any given time. This results in
two sub-algorithms: InterpolatePoint as well as InterpolateTree. InterpolateTree
is the main entry point, called with the basis B = {1, y, . . . , y`}.

REFERENCES 5

Proposition 2. InterpolatePoint is correct. It has computational complexity
O(`2s3).

Proof sketch. Only how the degrees δj are updated has not already been dis-
cussed. For a given iteration of the loop, let bj refer to the elements of TB
where T is as in the beginning of the iteration, while b′j are the elements

of T ′B where T ′ is T at the end of the iteration. Let also B be the set
of bj such that ∂[dx,dy]bj(xi, yi) 6= 0, and let B′ be the set of b′j for the

same indices. Clearly degw b
′
t = degw bt + 1, so the update in Line 8 is

correct. We claim degw b
′
j = degw bj for j 6= t: by the choice of bt then

degw bt ≤ degw bj , which means that degw b
′
j ≤ degw bj . If degw bt < degw bj

then clearly degw b
′
j = degw bj . Otherwise, assume that degw bt = degw bj . Now,

TB is a Gröbner basis of span(TB) (recall that this was part of the proof of
the original KNH in [7]), so likewise B is a Gröbner basis of span(B). Since
span(B′) ⊂ span(B) then b′j ∈ span(B). But then degw b

′
j cannot be less than

the degw of all the elements in B.
Due to lack of space, we omit the details on the computational complexity.

Proposition 3. InterpolateTree is correct. It has computational complexity
O(`2s3n) +O∼(`ωsn), where n is the number of input points.

Proof. Correctness follows inductively by the correctness of InterpolatePoint,
since B̂1 = B̂ mod

∏t
h=i1

(x− xi)s = B mod
∏t

h=i1
(x− xi)s.

Let C(n) denote the complexity on n input points, ignoring the costs of
calls to InterpolatePoint. Since deg T1,deg T2 ≤ sn/2 then C(n) = 2C(n/2) +
O∼(`ωsn/2), which means C(n) ∈ O∼(`ωsn). Adding the cost of n calls to
InterpolatePoint yields the result. Computing the O(2n) moduli polynomials
has negligible cost O∼(sn).

References

[1] M. Alekhnovich. Linear Diophantine Equations Over Polynomials and Soft
Decoding of Reed–Solomon Codes. IEEE Trans. Inf. Theory, 51(7):2257–
2265, July 2005.

[2] P. Beelen and K. Brander. Key equations for list decoding of Reed–Solomon
codes and how to solve them. J. Symb. Comp., 45(7):773–786, 2010.

[3] H. Cohn and N. Heninger. Ideal forms of Coppersmith’s theorem and
Guruswami–Sudan list decoding. arXiv, 1008.1284, 2010.

[4] V. Guruswami and M. Sudan. Improved Decoding of Reed–Solomon Codes
and Algebraic Geometry Codes. IEEE Trans. Inf. Theory, 45(6):1757–1767,
1999.

6 REFERENCES

Algorithm 2 InterpolatePoint

Input: (xi, yi) ∈ F2, s, `, w ∈ Z+, B̂, and {δj}j . Here B̂ = B mod (x − xi)s
where B ⊂ F[x, y]` is a Gröbner basis of span(B), and δj = degw bj for each
bj ∈ B.

Output: T ∈ F[x](`+1)×(`+1), {δ̂j}j . Here TB is a Gröbner basis of span(B)∩Mi,

and δ̂j = degw b̂j for each b̂j ∈ TB.

1 Hj = [∂[dx,dy]bj(xi, yi)](dx,dy)∈Ds
for each b̂j ∈ B̂

2 T = I(`+1)×(`+1)

3 for (dx, dy) ∈ Ds do
4 t← arg mint∈{1,...,`+1}{δj if Hj [dx, dy] 6= 0 else ∞}
5 Hj = Hj − (Hj [dx, dy]/Ht[dx, dy])Ht, for j 6= t
6 Ht = [0(`+1)×1 | H̀>t]> where H̀t is Ht with the last row removed
7 T = UT , where U is as in (1)
8 δt = δt + 1

9 return T, {δj}j

Algorithm 3 InterpolateTree

Input: (xi1 , yi1}, . . . , (xi2 , yi2) ∈ F2, s, `, w ∈ Z+, B̂ and {δj}j . Here B̂ = B
mod

∏i2
h=i1

(x− xh)s where B ⊂ F[x, y]` is a Gröbner basis of span(B), and
δj = degw bj for each bj ∈ B.

Output: T ∈ F[x](`+1)×(`+1), {δ̂j}j . Here, TB is a Gröbner basis of span(B) ∩
Mi1 ∩ . . . ∩Mi2 and δ̂j = degw b̂j for each b̂j ∈ TB.

1 if i1 = i2 then return InterpolatePoint((xi1 , yi1), B̂, {δj}j)
2 else
3 t← b(i1 + i2)/2c; B̂1 ← B̂ mod

∏t
h=i1

(x− xh)s

4 (T1, {δj})← InterpolateTree((xi1 , yi1), . . . , (xt, yt), B̂1, {δj}j)
5 B̂2 ← T1B̂ mod

∏i2
h=t+1(x− xh)s

6 (T2, {δj})← InterpolateTree((xt+1, yt+1), . . . , (xi2 , yi2), B̂2, {δj}j)
7 return (T2T1, {δj})

[5] R. Kötter and A. Vardy. Algebraic Soft-Decision Decoding of Reed-Solomon
Codes. IEEE Trans. Inf. Theory, 49(11):2809–2825, 2003.

[6] K. Lee and M. E. O’Sullivan. List Decoding of Reed–Solomon Codes from a
Gröbner Basis Perspective. J. Symb. Comp., 43(9):645 – 658, 2008.

[7] R. R. Nielsen and T. Høholdt. Decoding Reed–Solomon codes beyond half
the minimum distance. In Coding Theory, Cryptography and Related Areas,
page 221–236. Springer, 1998.

