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Abstract  11 

Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus 12 

has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to 13 

support early stage research and development of a biochemical system for wastewater resource recovery. The 14 

freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be 15 

recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental 16 

concerns, for example water scarcity and use of non-renewable phosphorus. However, the resource recovery 17 

may come at the cost of unintended environmental impacts. One promising recovery system, referred to as 18 

TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to 19 

a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential 20 

operating environment, we assess the potential environmental impacts of such a system using the 21 

EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural 22 
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irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% 23 

and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery 24 

and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the 25 

LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery 26 

products. The toxicity impacts are from both heavy metals release associated with land application of 27 

recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to 28 

aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content 29 

of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems 30 

such as TRENS is to be better characterized. Our study provides valuable feedback to the TRENS developers 31 

and identified the importance of system expansion to include impacts outside the immediate nutrient 32 

recovery system itself. The study also showed for the first time the successful evaluation of urban-to-33 

agricultural water systems in EASETECH. 34 

1. Introduction  35 

Sustainability in the urban water cycle is increasingly at the forefront of discussions on new treatment 36 

technologies due changes in climate, population, and regulation (Guest et al., 2009). Wastewater resource 37 

recovery and reuse is one area where technology is responding to the need for pollution prevention and 38 

resource efficiency. Wastewater (also referred to as used water – Verstraete et al., 2009) technology 39 

development has traditionally been compliance-driven, designed to meet safety and discharge regulations. 40 

During conventional treatment, nutrients – notably nitrogen and phosphorus – are biologically and physical-41 

chemically converted and removed from the water. Increasingly, the freshwater and nutrient content of 42 

wastewater are recognized as resources that can be recovered to address existing environmental concerns (e.g. 43 

water scarcity, use of non-renewable phosphorus) (Guest et al., 2009). However, resource recovery may 44 

come at the cost of increased treatment intensity and there is a need to assess treatment systems from a 45 

holistic systems perspective so that the quest for sustainability in the water cycle does not overshadow other 46 

environmental concerns (Mo & Zhang, 2013, Batstone et al., 2014).  47 
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TRENS is a wastewater resources recovery technology currently under development (Valverde-Pérez et al., 48 

2015b), which combines an enhanced biological phosphorous removal and recovery (EBP2R) system 49 

(Valverde-Pérez et al., 2015) with a downstream photobioreactor (PBR) to cultivate green microalgae under 50 

optimal growth conditions. The system recovers both water and nutrient resources from wastewater, with the 51 

nutrients being taken up and encapsulated by the algal biomass. This water and algae suspension can then be 52 

used together (for combined irrigation and fertilization, otherwise referred to as fertigation) or individually if 53 

the algae are harvested through solid-liquid separation. The coupled system is a completely biological 54 

process that is less chemical and energy intensive than conventional physical-chemical phosphorus removal 55 

processes - e.g. struvite precipitation, ultrafiltration (Valverde-Pérez et al., 2015), thereby reducing the water 56 

and energy demand of traditional algae cultivation (Clarens et al., 2010). 57 

In recent years, Life Cycle Assessment (LCA) has been used in environmental assessment of urban water 58 

systems (Loubet et al., 2014), including wastewater specific studies (Corominas et al., 2013, Zang et al., 59 

2015). Moreover, LCA has been used in understanding environmental trade-offs in optimizing specific 60 

treatment technologies such as ozonation (Rodríguez et al. 2012). Recent wastewater related LCA studies for 61 

technology development include coupled wastewater treatment for microalgae biofuel production 62 

(Rothermel et al., 2013) and nutrient removal and recovery from anaerobic digestion supernatant (Rodriguez-63 

Garcia et al., 2014). Both of these studies report the need to expand the system boundaries to include the 64 

wastewater treatment plant (WWTP) when evaluating wastewater technologies and emphasize the need to 65 

consider options at a plant level rather than at a unit process level. One of the challenges of LCA is 66 

delineating the system boundary since they vary widely, with some studies limited to the WWTP and others 67 

encompassing the entire urban water system (Corominas et al., 2013, Zang et al., 2015). The environmental 68 

performance of WWTPs is largely dependent on effluent discharge and sludge application on land (Hospido 69 

et al., 2004, 2012, Foley et al., 2010), although plant performance can be affected by influent composition, 70 

plant size, and local climate (Lorenzo-Toja et al., 2015). Furthermore, the sludge and solids stream of 71 

wastewater treatment accumulates beneficial and problematic compounds (e.g. phosphorus and heavy 72 

metals) that need to be included in LCA (Yoshida et al., 2013). Therefore, any environmental assessment of 73 
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a novel wastewater technology needs to include life cycle boundaries that encompass the end use of water 74 

and nutrients.  75 

This is the first study related to LCA-supported technology development that accounts not only for the 76 

WWTP, but also the larger system, which includes the urban-rural water connection and end-use of 77 

recovered water and nutrients. This broader system boundary is particularly necessary in view of the 78 

development objectives of TRENS, which is to provide an efficient resource recovery technology. An LCA 79 

carried out in the early development phase of TRENS provides a diagnostic opportunity: a chance to identify 80 

environmental impacts that may be roadblocks to developing and marketing a sustainability-focused 81 

technology. Moreover, the LCA results become documentation for sustainability that can iteratively follow 82 

TRENS throughout its development, optimization, and ultimately implementation. 83 

The study objectives are (1) to demonstrate the use of LCA in the early research and development phase of a 84 

new wastewater process by quantifying its environmental performance using accepted impact categories; (2) 85 

to provide a first assessment of the environmental impacts of the TRENS system and (3) to use LCA results 86 

to provide feedback for additional research by identifying further areas of interest and data needs. The 87 

TRENS performance is assessed in three scenarios based on the Lynetten WWTP in Copenhagen. The 88 

scenarios were chosen to ensure an evaluation that captures the necessary infrastructure additions, 89 

operational changes, and reuse options. 90 

2. Materials and Methods  91 

2.1. Framing a context for water and nutrient recovery 92 

Copenhagen and its surrounding municipalities are supplied entirely by groundwater. HOFOR, the local 93 

water utility, supplies approximately 50 million m3 annually to 1 million residents in the area. A high 94 

percentage of Danish households (>85%) are connected to the sewers, meaning a large portion of the 95 

distributed water resource can be recaptured (Hochstrat et al., 2005). The Lynetten WWTP serves a 96 

catchment area of 76 km2 of the central and North-East sections of Copenhagen (Flores-Alsina et al., 2014) 97 
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and treated 59.3 million m3 in 2012 (Lynettefællesskabet I/S). In the existing Lynetten WWTP, the effluent 98 

is discharged and mixed into the sea water of Øresund. Through the treatment process, nitrogen resources in 99 

the wastewater are converted to free nitrogen gas and lost to the atmosphere, while phosphorus is lost to the 100 

sludge and subsequently incinerated. In the WWTP, excess phosphorus that is not taken up in the 101 

biologically process is removed through chemical precipitation using iron (III) chloride (FeCl3). 102 

The groundwater resource surrounding Copenhagen is over-exploited due to abstraction for drinking water. 103 

Henriksen et al. (2008) reported an estimated deficit of 77 million m3/year for the Northern-Zealand area, 104 

which encompasses Copenhagen. However, the refinement in spatial resolution can change results of water 105 

stress evaluations by 10-53% (Hybel et al., 2015). In this context, wastewater reuse presents a valid 106 

opportunity to ameliorate the local groundwater resource deficit related to the Northern-Zealand area. In 107 

particular, there is an opportunity to collect water from the high-use urban area and return it to the rural 108 

groundwater abstraction areas.  109 

Regulatory standards of treated wastewater reuse for irrigation or aquifer recharge are not specifically 110 

addressed by existing European Union (EU) policies, although there is an on-going effort to identify 111 

appropriate policies and encourage reuse (EC, 2012). Treated wastewater is most commonly reused for non-112 

potable purposes such as irrigation of non-food crops or crops requiring further processing (Bixio et al., 113 

2006). This restricted use is due partly to the public’s perceived risks from wastewater and partly to the lack 114 

of formal regulatory frameworks (Bixio et al., 2005, Chen et al., 2012). The implications of water quality, 115 

and therefore treatment needs, for scenario design is presented in Section 2.3.  116 

2.2. TRENS process addition to existing WWTP 117 

The TRENS system was included in this study as a side-stream process, where a portion of the influent 118 

wastewater at the Lynetten WWTP was diverted, while the remainder passed through existing conventional 119 

treatment (Fig. 1). The new side-stream system was designed to treat 10% of WWTP influent flow, which is 120 

approximately 5.9 million m3/yr or 16247 m3/d. This flow rate is in excess of the reported local agricultural 121 

demands for irrigation water (2.1 and 0.93 million m3/yr for Zealand and the Capital Region, respectively, 122 
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covering 2561 km2 in total). However, it is possible that irrigation values are underestimated since the total is 123 

based on self-reported water use from only 22% of the farms surveyed, in addition to inferred values from 124 

the non-responders (EC, 2010). It was also assumed that crop selection and irrigation practices may increase 125 

to take advantage of the available supply of reuse water. The TRENS system was designed to produce a 126 

nitrogen to phosphorus ratio (N-to-P ratio) of 16 optimal for microalgae cultivation in the PBR (Valverde-127 

Pérez et al, 2015b). The nutrient concentration in the TRENS water is 47 mg/L N and 6.5 mg/L P, thereby 128 

recovering 9 and 8% respectively of the nitrogen and phosphorus load to the Lynetten WWTP.  129 

2.3. Scenario construction 130 

Although many reuse options exist for reclaimed water (i.e. reuse in urban cleaning, industrial applications, 131 

control of salt water intrusion), this study focuses on two reuse scenarios that were considered most 132 

applicable to the TRENS system and the Danish context (Table 1). First, agriculture is the second largest 133 

water use sector after urban use and would therefore be a logical recipient of TRENS effluent which contains 134 

both nutrients and water. Second, as groundwater is the main freshwater supply in Denmark, aquifer 135 

recharge is an obvious method to augment freshwater sources. In addition, both agricultural irrigation and 136 

aquifer recharge are common and well-documented options for wastewater reuse (Bixio et al., 2006, EEA, 137 

2010). Although the two scenarios are modeled separately in this study, it is possible to consider them as 138 

complementary where fertigation and aquifer recharge could be used at the same time with various flow 139 

ratios or individually at different times of the year. These use combinations were not modeled in order to 140 

minimize the scenario complexity. Additionally, the two scenarios represent two extreme cases for nutrient 141 

reuse, one where the nutrients are recovered continuously and the other where no nutrients are recovered.  142 

For the agricultural fertigation scenario it is assumed that the nutrients and water must be used together. If 143 

TRENS is used to supply a crop with 300 mm/year of irrigation water, the average nutrient load would be 144 

approximately 140 kg/ha for N and 20 kg/ha for P, similar to the nutrient needs for common Danish crops 145 

such as winter wheat (Olesen et al., 2009). Since the water and nutrients are used together, either the water 146 

demand or the nutrient demand will be met first depending on numerous factors such as crop type, farming 147 
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practices, and local climate. In reality, fertilizer and water requirements may have large variations seasonally 148 

and across crop types and this complexity is not captured in the scenario. This scenario makes a simplifying 149 

assumption that fertilizer and water needs are constant throughout the year and TRENS operation continues 150 

uninterrupted.  In this scenario, TRENS water is not further treated for pathogen removal since irrigation is 151 

not targeted at any specific crop and the potential need for further treatment would vary by crop (e.g. less 152 

strict for biofuel production than for tomato production). 153 

In the aquifer recharge scenario, the microalgae component is separated out and ultimately incinerated. 154 

Although the nutrients are an integral portion of the TRENS system, the intention of this scenario is to 155 

explore the water recovery and reuse aspect independent of the nutrients. Excluding nutrient recovery also 156 

results in a more conservative outcome since there are no environmental benefits from nutrient reuse. Due to 157 

the lack of EU-specific policies on water quality for aquifer recharge, the technology-based Californian Title 158 

22 regulation was used to define additional treatment processes including: coagulation/flocculation, 159 

sedimentation, filtration, and UV disinfection (Bixio et al., 2006). 160 

From a TRENS perspective, the aquifer recharge scenario is possibly the least optimal way to operate the 161 

system since the nutrients are not utilized. Together with fertigation, which is possibly the most optimal way 162 

TRENS can be operated, these two scenarios form the operational “envelope” for a potential TRENS system. 163 

Neither scenario is completely realistic, but gives a simplified view of possibilities. 164 

2.4. LCA Methodology 165 

The LCA is performed using EASETECH (DTU, Denmark), a model that allows handling of heterogeneous 166 

materials and tracking of flows at the substance level essential for evaluation of environmental technologies 167 

(Clavreul et al., 2014). Although initially developed for waste management systems, EASETECH’s ability to 168 

handle mass and individual substance flows allows for detailed modelling of wastewater treatment systems 169 

(Yoshida et al., 2014a). The study follows the four-phased, iterative approach defined by ISO (2006) 170 

consisting of (1) goal and scope definition, (2) inventory analysis, (3) impact assessment, and (4) results 171 

interpretation.  172 
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2.4.1. LCA - goal and scope 173 

The goal of the LCA is to quantify the environmental impacts of wastewater resource recovery and reuse in 174 

agricultural crops production and in aquifer recharge associated with the operation of Lynetten WWTP, 175 

located southeast of Copenhagen, Denmark. To that end, the boundaries of this study are defined as starting 176 

from the influent of the WWTP, and extend to cover the WWTP itself, the TRENS side-stream process, 177 

transportation of the treated water in a pressurized pipeline, and final end use (including any additional 178 

advanced treatment required). Construction and operating phases are included in the scope. However, end-179 

of-life phases for the WWTP and TRENS system are not included. Studies related to WWTPs (Foley et al, 180 

2010) and water reuse (Ortiz et al., 2007, Tangsubkul et al., 2005) have reported that end-of-life phases 181 

contribute relatively little to overall impacts compared to the construction and operation phases. Within the 182 

operating phase, both direct emissions (e.g. gas and treated water effluent) and indirect emissions (e.g. 183 

derived from production of chemicals and power generation) are included. The functional unit is defined as 1 184 

m3 of influent wastewater with the same composition as reported by Lynettefællesskabet I/S (2012), as the 185 

primary function of the WWTP system – with or without TRENS sidestream – is to maintain public health 186 

and environmental water quality, with fertigation and aquifer recharge as secondary benefits.  187 

2.4.2. Life cycle inventory 188 

Life cycling inventory (LCI) data was collected from operating reports for existing processes, databases, and 189 

model results.  Background inventory data was obtained through the Ecoinvent LCA database that contains 190 

unit process data valid mainly for Swiss and European markets (Frischknecht et al., 2005). Where TRENS 191 

water is used for crop irrigation, the nutrients N and P contained in the microalgae are assumed to offset 192 

mineral fertilizer application and production. In this study, both N and P substitutability is assumed as 100% 193 

based on algae fertilizer performance on seedlings as reported in Mulbry et al. (2005). It is further assumed 194 

that microalgal fertilizer would result in zero runoff and leaching, and would perform similarly to mineral 195 

fertilizer in terms of ammonia volatilization, and soil mineralization. This assumption is analyzed in section 196 

3.2.6 as it is known to be an oversimplification from other applications of biomass to land (Yoshida, 2014c). 197 

Although promising, the use of algae as fertilizer is still under investigation, as the influence of algae 198 
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harvesting and application methods on fertilizer stability, availability, and performance is still poorly 199 

documented in literature (Shilton et al. 2012). Additionally, the substitution of organic mineral fertilizer 200 

depends on factors such as soil property and application technique (Lundin et al., 2000).  201 

An analysis was made regarding nutrient leaching from algae fertilizer on environmental performance by 202 

increasing leaching of applied nutrient N and P to groundwater in the model from 0 to 10%. This study 203 

initially assumed an optimal PBR operation where all the nutrients would be encapsulated in algae biomass. 204 

Thus, the model was run with zero nutrient leaching to groundwater. This meant, there was no adverse 205 

environmental impact and this process could not be identified during contribution analysis. However, this 206 

process is important to investigate because one of the key benefits of algae fertilizer is its expected reduction 207 

of nutrient mobility. The leaching could occur if the nutrients sent to the PBR were not completely taken up 208 

by the algae and some remained in the water phase when it is sent to the irrigation systems. 209 

Electricity production was based on consumption of Danish specific electricity mix, which is predominantly 210 

fossil-based and uses coal (46.6%), natural gas (24.4%), wind (12.4%) and heavy fuel oil (10.2%) as the 211 

main sources (EC-JRC, 2002).  212 

2.4.3. Impact assessment 213 

This study uses the LCIA method recommended by the International Reference Life Cycle Data System 214 

(ILCD) (EC-JRC, 2010), commonly referred to as ILCD 2011. This method was selected as it consists of 215 

fourteen impact categories based on existing best practice. Human toxicity related impacts were assessed 216 

using USETox, which is included in ILCD 2011 as best-of-the-field. Nevertheless, USETox results, 217 

particularly for metals, should be interpreted with caution since there are still many uncertainties related to 218 

the characterization factors (e.g. degradation rate, exposure routes). Results are normalized using 219 

normalization factors from Blok et al. (2013) and presented in milli-person equivalents (mPE), where 1 mPE 220 

represents one thousandths of an average European person’s annual impact.  221 
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2.4.4. Contribution and perturbation analysis 222 

The approach recommended by Clavreul (2013) for uncertainty and sensitivity assessment is used as the 223 

basis for the contribution and perturbation analysis. The goal is to systematically identify potential sources of 224 

uncertainty, while operating under data scarcity and limited resources to evaluate the large number of inputs 225 

in the LCA model. This approach takes advantage of the iterative nature of LCA and uses the initial results 226 

from LCIA. The following steps were performed: 227 

1. The contribution analysis identified any process (e.g. WWTP operation or biogas collection) that 228 

contributed more than 5% to any impact category. Then, the key parameters that collectively contribute 229 

to >90% of the process impacts were identified (e.g. N2O emission during WWTP operation). The cut-230 

off is arbitrary and assigned to constrain the number of parameters so that they can be evaluated in a 231 

limited time frame.  232 

2. A perturbation analysis was performed whereby the parameters identified in step 1 were varied one at a 233 

time by 10% to gauge the sensitivity of the model output to the parameter input following the example of 234 

Yoshida et al. (2014a) and Clavreul et al. (2012). Parameter sensitivity was then evaluated using a 235 

sensitivity ratio (SR): 236 
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3. The results were discussed to highlight the sensitive parameters. The limitation of the assessment is that 237 

it does not take into account the actual uncertainty of the parameters, only how sensitive the model is to 238 

these parameters. The benefit of this method is it allows refinement the number of parameters needed for 239 

further data collection when ultimately conducting an uncertainty analysis. 240 
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3. Results and discussion 241 

3.1. Inventory  242 

A summary of the life cycle inventory results is presented in Table 2. More detail is available in the 243 

Supporting Information. 244 

3.2. Impact assessment 245 

3.2.1. Scenario A Status quo 246 

In the life cycle impacts of the existing Lynetten WWTP, the two impact categories of ecotoxicity (ETox) 247 

and marine eutrophication (ME) are the highest at 3.1 and 1.0 mPE, respectively (Fig. 2). This is primarily 248 

due to the discharge of treated effluent to the sea (Fig. 3). Nitrate-nitrogen in the effluent contribute most to 249 

the ME category, while the heavy metals in the effluent (mainly zinc and copper) contribute to the ETox 250 

category. Global warming at 7.8×10-2 mPE (GWP) is the third highest category. The largest contributor to 251 

this impact is energy consumption during WWTP operation (67%), followed by emissions of N2O to air 252 

during treatment (18%), emissions during incineration (11%), and leakage of methane during biogas 253 

collection from the anaerobic digester (4%). Biogas combustion and subsequent use for district heating, 254 

results in an offset GWP of -4.5%.  255 

The emissions related to sludge incineration and biogas combustion are also major contributors to several 256 

impact categories, such as acidification (AC), terrestrial eutrophication (TE), and photochemical oxidant 257 

formation (POF). Nitrogen oxides (NOx) and sulfur-dioxide are the main compounds responsible in these 258 

categories. Deposition of nitrogen and sulfur from the atmosphere contributes to acidification. In addition to 259 

the acidifying effect, atmospheric deposition of nitrogen also contributes to terrestrial eutrophication 260 

(Jaworski et al., 1997, Jeffries and Marron, 1997). Both NOx and sulfur dioxide contribute to POF since they 261 

form ozone when exposed to sunlight, which ultimately contributes to urban smog (Derwent et al., 1998). 262 

The results suggest that the status quo model provides a reasonable representation of a large, centralized 263 

WWTP consistent with other wastewater LCA studies. The WWTP electricity consumption is one of the 264 
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main contributors to global warming and fossil resource depletion as reported in Corominas et al. (2013). 265 

Our study also finds that discharge to sea (primarily nitrate-nitrogen) is another main source of impacts, 266 

consistent with results from Hospido et al. (2004). All impact categories except one are within the same 267 

order of magnitude as values obtained in an LCA study of the Avedøre WWTP in Copenhagen (Yoshida et 268 

al., 2014a). The exception is for ETox where our result is more than twenty times higher than the median 269 

value given by Yoshida et al. 2014a. One possible reason for the higher ETox value at Lynetten WWTP is 270 

that it discharged eight times the copper per 1 m3 of influent than Avedøre WWTP (Spildevandscenter 271 

Avedøre I/S, 2012, Lynettefællesskabet I/S, 2012). 272 

 273 

3.2.2. Scenario B Agricultural fertigation 274 

Implementation of Scenario B has predicted environmental impacts that are on the order of 0 to 0.2 mPE/ m3 275 

less than Scenario A. The small changes are partly due to the design of the side-stream system. Since only 276 

10% of the influent water passes through the TRENS system, the impacts are dominated by the effects of  277 

90% of the flow passing through the WWTP. In the fertigation scenario, the main WWTP processes (e.g. 278 

discharge to sea and WWTP operation) continue to contribute to the impacts (Fig. 3b and c compared to Fig. 279 

3a). However, the use-on-land process now plays a large part in the toxicity impacts (ETox, HTc, and HTnc). 280 

Fig. 4a shows that the largest changes, both positive and negative, occur in the ME, ETox, HTc and HTnc 281 

categories. Overall, the reduced impacts are a result of two main processes (Fig. 4b): (1) reduced flow 282 

through WWTP secondary treatment leading to less N2O emissions, and (2) offset mineral fertilizer 283 

production. Increases in environmental impacts are mainly due to four processes: (1) land application of 284 

algae suspension, (2) energy consumption of the TRENS system, (3) energy consumption of the pipeline, 285 

and (4) emissions from increased biogas combustion.  286 

The largest change from the baseline (+0.19 mPE, +290%) is in the human toxicity, non-cancer effects 287 

category (HTnc). This is almost entirely a result of heavy metals - primarily zinc and mercury - application 288 

to soil from the treated effluent. The other toxicity categories (ETox and HTc) are similarly affected by the 289 
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heavy metals. The avoided production and application of mineral fertilizer (shown in Fig. 4 as fertilizer 290 

substitution) results in some savings in toxicity related impacts. This is because mining of commercial 291 

fertilizer ingredients such as phosphate rock brings with it the naturally occurring heavy metals, notably 292 

cadmium (Wilsenach et al., 2003).  These metals then end up in the soil once the fertilizer is applied. The 293 

avoided mineral fertilizer production is also responsible for 1%-24% savings in other impact categories 294 

(GWP, AC, TE, POF and PM), since there is lower production and therefore lower emissions from the 295 

associated industrial processes. However, land application of the effluent results in a net toxicity increase.  296 

There is a decrease in marine eutrophication from the baseline (-9.2e-2 mPE, -9%), which is almost entirely 297 

(98%) due to the avoided discharge of nitrate-nitrogen to the sea. The TRENS side-stream diverted flow that 298 

would otherwise have entered the recipient water body (Øresund). In addition, during the TRENS process, 299 

soluble nitrogen, which has the potential to contribute to surface runoff and leaching, is taken up and stored 300 

in algal biomass prior to land application. Global warming impacts are reduced by 15% (1.2e-2 mPE) due to 301 

lower emissions of N2O from the WWTP since the water diverted to TRENS does not undergo ammonia 302 

oxidation and denitrification, the main pathways for N2O production (Kampschreur et al., 2009).   303 

3.2.3. Scenario C Aquifer recharge 304 

The overall environmental performance of the aquifer recharge scenario is similar to that of the baseline, 305 

Scenario A (Fig. 5). Scenario C has reduced WWTP energy consumption, but increased in TRENS-related 306 

energy consumption resulting in a very minor net change in total energy use.  307 

The ME impact category decreased 8.6e-2 mPE (9%) from the baseline as a result of avoided nitrate-nitrogen 308 

discharge due to diversion of the TRENS sidestream. The category with the largest percent increase is HTc 309 

(26%, 3.6e-3 mPE) as a result of pre-infiltration treatment, specifically due to production of aluminum 310 

chlorite (AlCl3) used in the flocculation step of the pre-infiltration treatment to separate algae from the water. 311 

The production phase produces emissions of hexavalent chromium, Cr (VI), and arsenic, both of which are 312 

highly toxic. Niero et al. (2014) noted in a WWTP study that AlCl3 production was one of the main 313 

processes contributing to ecotoxicity. Separation of the algae and water could also be achieved through 314 
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centrifugation or direct filtration, although these methods are associated with their own negative 315 

environmental impacts related to high energy demand (Rothermel et al. 2013). All other impact categories 316 

show changes of less than 5% from the baseline. In terms of the processes involved, biogas combustion is a 317 

major contributor to increases in terrestrial eutrophication (TE) and photochemical oxidant formation (POF) 318 

impact categories. This was a result of increased sludge, and associated biogas, production from the TRENS 319 

system, thereby increasing biogas combustion and combustion-source pollutants (e.g. NOx). When compared 320 

to Scenario B (fertigation), the lack of nutrient recovery for agricultural reuse in this scenario meant higher 321 

GWP (12%), AC (18%), TE (23%), and POF (12%). However, HTc and HTnc were 45% and 290% lower 322 

than in the fertigation scenario, which shows the difference in diverting the nutrient water suspension to land, 323 

versus just water.  324 

Scenario C explored a reuse option that was at the extreme end for TRENS, since only the water is reused 325 

and none of the recovered nutrients are reused. Although the environmental benefits are less pronounced 326 

than in the fertigation scenario, there are still benefits in terms of the ME impact category. TRENS may be a 327 

valid option in situations where there is interest in both water reuse and reducing nitrate-nitrogen discharge.  328 

3.2.4. Relative importance of construction versus operation of the overall life cycle 329 

The WWTP related impacts (Fig. 6a) are dominated by the operating phase, while the TRENS (Fig. 6b) and 330 

pipeline (Fig. 6c) impacts were more equally shared between the construction and operating life cycle 331 

phases. Furthermore, several impacts categories (TE, ME, POF, ETox, HTc, and RD) which are dominated 332 

by the operating phase for the WWTP, are instead dominated by the construction phase for TRENS and the 333 

pipeline. These differences were due to the higher use of plastic materials, specifically LDPE and HDPE 334 

plastics, in construction of the PBR and pipeline. In addition, the shorter service life of the PBR (15 years 335 

compared to 30 years for the WWTP) meant the construction phase impacts are more prominent. 336 

The results are consistent with reports from Machado et al. (2007) and Pasqualino et al. (2010) who 337 

considered the WWTP construction phase insignificant compared to the operating phase. In studies which 338 

reported the opposite, Corominas et al. (2013) noted that those were for low-tech, non-energy intensive 339 
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processes which are not comparable to the Lynetten WWTP. In terms of PBR construction, Rothermel et al. 340 

(2013) reported that LDPE plastic production contributed to increased eutrophication, as was observed in this 341 

study. Silva et al. (2013) also found that the choice of construction material (in their case PVC plastic) 342 

caused the majority of PBR construction impacts. Both sources recommended optimizing the use of plastics 343 

in PBR construction as a way to reduce environmental impacts. It should be noted that this study’s choice to 344 

use LDPE, as a representative material for PBR construction, was based on Rothermel et al. (2013) and this 345 

choice explains that LDPE production contributes a large portion of the overall TRENS impacts. These 346 

results illustrate the variability of life cycle phase contributions to environmental impacts. The construction 347 

phase was not important when dealing with the WWTP. However, this assumption should not be 348 

extrapolated to apply to other systems such as the PBR and the pipeline, and the construction phase should 349 

always be considered as supported by other piped network studies for both drinking water (Sanjuan-Delmás 350 

et al., 2014) and sewers (Petit-Boix et al., 2014).  351 

Other implications for technology developers and future implementation of TRENS are: i) for the TRENS 352 

system, addressing both the construction and operating life cycle phases could have environmental benefits 353 

since both phases contribute nearly equally to the environmental impacts; and ii) in Scenarios B and C, 354 

TRENS (construction and operation) caused 4.4% and 3.5% of the overall environmental impacts. This was 355 

for a side-stream TRENS system treating 10% of the total influent wastewater and this contribution should 356 

increase as the proportion of side-stream flow increases. These results are technology specific. Impact results 357 

would change if the algae production takes place in an open pond system, which has lower energy 358 

requirements, but also has drawbacks like high land use and lower productivity (Jorquera et al., 2010).  359 

3.2.5. Contribution analysis 360 

The contribution analysis shows that 10 of the 14 processes included in this study had a greater than 5% 361 

contribution to one or more impact categories (Fig. 7). In some cases, the process was mainly controlled by 362 

one parameter, while others were governed by multiple parameters. In all, 18 parameters were identified that 363 

govern the important processes (Fig. 8) out of the 100s of input parameters. For example, the process 364 
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“biogas collection” is a contributor to the GWP impact category and the key parameter responsible is the 365 

percentage of methane leakage during collection. Another example is the “WWTP operation” process; its 366 

impacts to GWP are governed by WWTP energy use, FeCl2 use, and NaOH use, which collectively 367 

contribute to more than 90% of the impacts. The implication for technology developers is that, in addition to 368 

reducing the number of relevant processes and parameters, the contribution analysis reveals specific areas 369 

where a system like TRENS may be competitive (i.e. FeCl2 use can be reduced by switching from chemical 370 

precipitation to TRENS for phosphorous removal and recovery). 371 

3.2.6. Perturbation analysis 372 

The results of the perturbation analysis are plotted as SR for each impact category (Fig. 9), where a higher 373 

absolute value of SR means that the impacts category is more sensitive to that parameter. The results show 374 

that some parameters have impacts across a number of categories (e.g. WWTP energy use and sludge water 375 

content), while others are important only to certain categories (e.g. Zn discharge to sea in the Etox impact 376 

category).  377 

Nitrogen and phosphorus can both lead to eutrophication of waterways – nitrogen primarily affects marine 378 

waters while phosphorus affects freshwater – resulting in phytoplankton blooms and subsequent depletion of 379 

dissolved oxygen necessary for other aquatic life (Stoate et al., 2001). When leaching of nitrogen to the 380 

groundwater was increased from 0 to 10% in the fertigation scenario, marine eutrophication increased by 381 

5.5%, with no change in all other categories. Increasing phosphorus leaching in the same scenario from 0 to 382 

10% increased freshwater eutrophication by 3.5%, with less than 0.2% change in all other categories. In 383 

reality, the concern lies with nitrogen leaching since phosphorus has limited mobility in soil (Stoate et al., 384 

2001). These impact changes due to leaching are significant because algae fertilizer performance is still 385 

poorly documented (Shilton et al., 2012). The fertigation scenario showed a 9% decrease in marine 386 

eutrophication under the assumption that nutrients are not lost from the farmland. This benefit may be lost if 387 

nutrient leaching is increased.  388 
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3.3. The use of LCA results to support technology research and development 389 

The results of the base scenario, and the fertigation and aquifer recharge scenarios, show how crucial it is to 390 

assess new technologies in a holistic systems perspective. In the base scenario, most of the impacts of the full 391 

system are due to the WWTP, except for the impact categories ME and ETox. Conversely, in the fertigation 392 

scenario, most of the impacts take place outside the WWTP, with direct WWTP impacts playing a role in 393 

half of the impact categories. If the focus had been limited to the TRENS technology, which is the natural 394 

focus of technology developers, these impacts would not have been recognized.  395 

 396 

For the fertigation scenario, increased toxicity appears to overwhelm the environmental benefits. The 397 

impacts on eco- and human toxicity were primarily related to heavy metals application to soil, and 398 

specifically to zinc and mercury carried in the TRENS effluent. Hospido et al. (2004) also found these metals 399 

to be the main culprits of increased toxicity when wastewater sludge was applied to land. Tangsubkul et al. 400 

(2005) noted that increased impacts on terrestrial environments might be inevitable when selecting a 401 

technology that optimizes recycling of wastewater nutrients, due to the potentially higher metals loading 402 

associated with higher nutrient recovery and reuse. The same findings do not seem to apply for the aquifer 403 

recharge scenario. During aquifer recharge the metals are partitioned to the WWTP discharge and incinerator 404 

ashes where the toxic impact is lower. This highlights that the form and environmental compartment in 405 

which metals are found are crucial. Heavy metals in soil (e.g. zinc) are largely immobile as they are retained 406 

by sorption, thereby reducing the leaching and related toxic effects to ground- and freshwater bodies  407 

(Anderson and Christensen, 1998, Christensen et al., 2000). This suggests that a better understanding of fate 408 

and toxicity of metals in soil is needed in the toxicity impact assessment methods. The LCA thus also 409 

supports that future research should address the heavy metals removal efficiency and reduction strategies in 410 

the TRENS technology, to ensure sustainable wastewater recovery.  411 

Using the perturbation analysis, and knowledge of how TRENS may be applied in full-scale, it is possible to 412 

identify parameters which are both sensitive (large absolute value of SR) and subject to large epistemic 413 

uncertainty. Some examples include (Fig. 9): i) “N fertilizer substitution” has a larger absolute SR than “P 414 
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fertilizer substitution” in multiple impact categories (GWP, AC, TE) and both are related to how much 415 

mineral fertilizer is offset through application of algae fertilizer. The higher SR for “N fertilizer substitution” 416 

reflects the fact that average nitrogen fertilizer use emits more GHGs (fossil based CO2, N2O) than 417 

phosphorus fertilizer production (Stoate et al., 2001), suggesting that providing a well-defined N substitution 418 

value is more critical than for P substitution. The substitution value is influenced by local soil type and 419 

application methods (Lundin et al., 2000), and is likely to have high uncertainty. ii) “N2O emissions to air” is 420 

a sensitive parameter for GWP impact category associated with high uncertainty because it is influenced by 421 

many factors such as internal recycle rates, aeration efficiency, temperature, influent nitrogen loading, and 422 

sampling challenges (Yoshida et al., 2014b). More critically for TRENS, the interest would be to 423 

characterize emissions during PBR operation since studies have shown N2O production during algae 424 

cultivation (Guieysse et al., 2013). These results identified “N fertilizer substitution” and “N2O emissions” as 425 

priority parameters for the future development of TRENS and similar nutrient recovery processes in terms of 426 

data collection, laboratory testing, and modeling work. 427 

4. Conclusion  428 

Our study has shown the beneficial use of applying a mass and substance centered LCA model, EASETECH, 429 

in the early stage development of a new wastewater resource recovery technology. The main conclusions are: 430 

• Assessing the true performance potential requires considering the consequences of a full-scale 431 

system placed into a specific local geographical context, water demand, and existing WWTP 432 

operations. Relative to status quo, TRENS was shown to reduce impacts by up to 15% for global 433 

warming and 9% for marine eutrophication. High environmental impacts were associated with eco- 434 

and human toxicity categories as a result of the selected end uses of TRENS products, emphasizing 435 

the need for system expansion beyond the water and resource recovery technology itself.  436 

• TRENS primarily improves WWTP performance by reducing nitrogen species in the effluent and 437 

direct nitrogen N2O emissions in the nitrification-denitrification process.  438 
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• The TRENS system benefits are restricted by the limited need for freshwater substitution and 439 

fertilizer needs in the model area, but would increase proportionally with increased demand for 440 

resource substitution. 441 

• The LCA identifies both construction and operation life cycle impacts as areas for improvement, 442 

particularly in PBR design, contrary to the operation life cycle focus assumed for conventional 443 

WWTPs. 444 

• Finally, the LCA results provided feedback to technology developers and specifically TRENS 445 

developers by highlighting subcomponents that warrant better characterization (e.g. N2O emissions 446 

during PBR operation) or evaluation of technology options (e.g. algae cultivation using closed PBR 447 

or open ponds). 448 

Ongoing development is focused on laboratory studies and modeling of the biological treatment system. 449 

However, decision-making and implementation benefits from a broader perspective even in the initial 450 

stages of development.   451 
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Table and Figure captions 647 

Table 1: Operational scenarios for TRENS implementation in the Copenhagen area, Denmark 648 

Table 2: LCI sources and results summary. X denotes where operation and construction is included. 649 

Complete datasets are available in the Supporting Information. 650 

Figure 1: Flow diagram of TRENS system (EBP2R and downstream PBR) implemented as sidestream 651 

process to the existing Lynetten WWTP. Figure created from TRENS (Valverde-Pérez et al., 2014; 652 

Valverde-Pérez et al., 2015) and Lynetten process flow diagrams (Lynettefællesskabet I/S, 2012). Solid lines 653 

show flow of water, dotted lines show sludge or solids flow. 654 

Figure 2: Normalized LCIA impact results are dominated by marine eutrophication and ecotoxicity. Impact 655 

categories abbreviations: Global warming potential (GWP), terrestrial acidification (AC), terrestrial 656 

eutrophication (TE), marine eutrophication (ME), ecotoxicity (ETox), human toxicity - cancer effects (HTc), 657 

human toxicity - non-cancer effects (HTnc), particulate matter (PM), resource depletion - fossil (RD). 658 

Figure 3: Percent contribution of individual processes each impact category for the three operating scenarios 659 

(a) status quo, (b) fertigation, and (c) aquifer recharge. The life cycle phases of construction and operation 660 

are shown separately for the WWTP, but combined for other processes (e.g. TRENS, pipeline). Refer to Fig. 661 

2 for abbreviations. 662 

Figure 4: Environmental performance of fertigation with TRENS relative to baseline scenario (a) and the 663 

individual processes that contribute to the change (b). The left plot provides the magnitude of change, while 664 

the right plot provides the reasons for that change. The percentage contribution plot is scaled such that the 665 

sum of all processes is 100%. Refer to Fig. 2 for abbreviations. 666 

Figure 5: Environmental performance of aquifer recharge with TRENS relative to baseline scenario (left) 667 

and the individual processes that contribute to the change (right). Refer to Fig. 2 for abbreviations. 668 
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Figure 6: Relative contributions of construction and operation phase impacts in the B: fertigation scenario 669 

results for (a) the WWTP, (b) TRENS system and (c) pipeline. WWTP impacts are dominated by operation 670 

energy consumption, while TRENS and pipeline are more influenced by materials (plastics) used in the 671 

construction phase. Refer to Fig. 2 for abbreviations. 672 

Figure 7: Contribution of processes to individual impact categories. Any process with a colored block 673 

indicates it contributes >5% to an impact category. 674 

Figure 8: Key parameters identified from contribution analysis 675 

Figure 9: Sensitivity ratios showing the change in model output relative to change in parameter input. 676 

Negative SR indicates that model output responds in the opposite direction as parameter change (i.e. increase 677 

in parameter means decrease in model output). 678 

 679 
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Table 1: Operational scenarios for TRENS implementation in Copenhagen 1 

 2 

 3 

Table 2: LCI sources and results summary. X marks where operation and construction is included. Complete 4 

datasets are available in Supporting Information. 5 

Process Scenario  
Opera
-tion 

Construc-
tion 

WWTP A, B, C 

Site-specific data for the Lynetten WWTP was based on available public 
reports from the local utility for the year 2012 (Lynettefællesskabet I/S, 2012). 
WWTP infrastructure inventory estimated proportional to flow rate using Foley 
et al. (2010).  
 
The WWTP is a 59.3 million m3/year facility, including primary and secondary 
treatment (BNR and phosphorus precipitation), anaerobic digestion, and 
incineration. Energy consumption of 0.51 kWh/m3. Anaerobic digester 
operated with yield of 70% anaerobically degradable carbon to produce biogas 
with 60% methane. Bulk of biogas sent to combustion for heat generation 
(89%), some lost in leaks (3%), and remainder flared (8%). Assumed lifetime is 
30 years. 

X X 

TRENS B, C 

Well-established activated sludge models (ASM) were used for process design 
and optimization (Henze et al., 2000). ASM-2d (Flores-Alsina et al., 2012) and 
ASM-A (Valverde-Pérez et al., 2014) models used to simulate growth of 
activated sludge bacteria in the EBP2R process and green micro-algae in the 
PBR, respectively. Reactor sizing and operating of the EBP2R were based on 
scenario analysis optimization as carried out in Valverde-Pérez et al. (2015), 
while the PBR was designed according to Wágner et al. (2015). Energy usage 
for EBP2R due to aeration, pumping and mixing was evaluated using the 
Benchmark Simulation Model no. 2 (BSM2) guidelines (Gernaey et al., 2014). 
The PBR construction impacts are represented by calculating the mass of low-
density polyethelene (LDPE) plastic needed to construct the horizontal reactor 
panels (Rothermel et al., 2013). PBR operational energy was taken from 
literature for closed, flat-panel PBRs (Jorquera et al., 2010). 
 
Two anaerobic tanks (680 m3 each), one aerobic tank (3150 m3) and a settler 
were constructed. WWTP infrastructure inventory increased by 2.6% 
proportional to increase in reactor volumes. Energy use of WWTP increases by 
0.12 kWh/m3 due to EBP2R side-stream aeration, pumping, and mixing. 
Sludge production increased by 13% due to lower solids retention time. Biogas 
production increased proportionally to sludge production. PBR reactor of 
20,000 m3 requiring 0.015 kg LDPE/m3 and 0.14 kWh/m3 influent. This system 
has an 80% phosphorus recovery (combined for the EBP2R and PBR) and 
produces effluent N-to-P ratio of 17 which is encapsulated in the algae. 

X X 

A. 
Status quo 

Scenario of existing conventional system in Copenhagen, where wastewater is collected and treated at 
a centralized WWTP for organic carbon and nutrient (N and P) removal.  

B. 
Agricultural 
fertigation 

Scenario directly utilizes the TRENS system outputs (algal suspension) for fertigation. This scenario 
involves diverting 10% of the influent WWTP to the TRENS system and requires additional 
infrastructure and energy consumption. The remaining 90% of the WWTP influent is treated in the 
conventional system. Modified WWTP experiences increased sludge and biogas production due to 
lower solids retention time (SRT) in the EBP2R system. Following the TRENS process, the water is 
pumped to the end user through a 25 km pipeline. There is no treatment downstream of the PBR prior 
to use in fertigation. The nutrients contained in the algae acts as a substitute for synthetic fertilizer.  

C. 
Aquifer 
recharge 

Scenario requires the same modifications to the WWTP as in the agricultural reuse application. Algal 
suspension downstream of the PBR is sent to tertiary treatment to separate the microalgae and water, 
so that the water goes on to aquifer recharge basins and the algae biomass is sent to the WWTP for 
dewatering, drying, and incineration.  
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Assumed lifetime is 15 years. 

Pipeline B, C 

Operating energy calculated using Hazen-Williams headloss equation with pipe 
coefficient of 140. The distribution pipeline construction inventory considered 
in this study is based on Venkatesh et al. (2009). 
 
25 km pipeline constructed consisting of two parallel pipes 0.579 m in diameter 
and 30 m elevation increase. Infrastructure inventory based on 2292 tons high-
density polyethylene (HDPE) required for pipe production and diesel fuel 
consumption during construction (45 L/m). Operating energy consumption of 
0.025 kWh/m3. Assumed lifetime is 30 years. 

X X 

Irrigation B 

Existing equipment at farms is assumed used for irrigation, thus no additional 
infrastructure is included. Energy consumption for TRENS water irrigation is 
assumed comparable to existing groundwater-based system and small relative 
to energy required for long-distance distribution pumping. Nutrient content for 
fertilizer substitution is 4.6 mg P/L and 33 mg N/L. 

- - 

Pre-
infiltration 
treatment 

C 

Pre-treatment and algae harvesting prior to aquifer recharge scenario is based 
on tertiary treatment data from Pasqualino et al. (2010), which includes 
coagulation/flocculation, filtration, disinfection (UV and chlorination). Energy 
consumption is 0.021 kWh/m3. 

X - 

Infiltration 
basin 

C 

110 000 m2 open basin design based on long-term average infiltration rate of 55 
m/yr (Københavns Energi, 2001) with water depth of 0.5 m. Basin construction 
represented by excavation of 78,320 m3 by hydraulic digger. Infiltration is by 
gravity, so energy consumption is assumed negligible compared to other 
processes. Assumed lifetime is 30 years. 

- X 

 6 
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Figure 1: Flow diagram of TRENS system (EBP2R and downstream PBR) implemented as sidestream 2 
process to the existing Lynetten WWTP. Figure created from TRENS (Valverde-Pérezet al., 2014; Valverde-3 
Pérezet al., 2015) and Lynetten process flow diagrams (Lynettefællesskabet I/S, 2012). Solid lines show flow 4 
of water, dotted lines show sludge or solids flow.  5 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6 

 7 

Figure 2: Normalized LCIA impact results are dominated by marine eutrophication and ecotoxicity. Impact 8 

categories abbreviations: Global warming potential (GWP), terrestrial acidification (AC), terrestrial 9 

eutrophication (TE), marine eutrophication (ME), ecotoxicity (ETox), human toxicity - cancer effects (HTc), 10 

human toxicity - non-cancer effects (HTnc), particulate matter (PM), resource depletion - fossil (RD). 11 

  12 
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 14 

Figure 3: Percent contribution of individual processes each impact category for the three operating scenarios 15 

(a) status quo, (b) fertigation, and (c) aquifer recharge. The life cycle phases of construction and operation 16 

are shown separately for the WWTP, but combined for other processes (e.g. TRENS, pipeline). Refer to Fig. 17 

2 for abbreviations. 18 

  19 
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 21 

Figure 4: Environmental performance of fertigation with TRENS relative to baseline scenario (a) and the 22 

individual processes that contribute to the change (b). The left plot provides the magnitude of change, while 23 

the right plot provides the reasons for that change. The percentage contribution plot is scaled such that the 24 

sum of all processes is 100%. Refer to Fig. 2 for abbreviations. 25 
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 27 

Figure 5: Environmental performance of aquifer recharge with TRENS relative to baseline scenario (a) and 28 

the individual processes that contribute to the change (b). Refer to Fig. 2 for abbreviations. 29 

  30 
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 32 

Figure 6: Relative contributions of construction and operation phase impacts in the B: fertigation scenario 33 

results for (a) the WWTP, (b) TRENS system and (c) pipeline. WWTP impacts are dominated by operation 34 

energy consumption, while TRENS and pipeline are more influenced by materials (plastics) used in the 35 

construction phase. Refer to Fig. 2 for abbreviations. 36 

  37 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 38 

 39 

Figure 7: Contribution of processes to individual impact categories. Any process with a colouredblock 40 

indicates it contributes >5% to an impact category. 41 

  42 
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 44 

Figure 8: Key parameters identified from contribution analysis. 45 

  46 
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Figure 9: Sensitivity ratios showing the change in model output relative to change in parameter input. 48 

Negative SR indicates that model output responds in the opposite direction as parameter change (i.e. increase 49 

in parameter means decrease in model output). 50 

 51 

 52 
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Highlights  

 

• Development of wastewater biotechnology for resource recovery and reuse  

• Recovery via low-SRT EBP2R combined with photobioreactor 

• Water and nutrient reuse in irrigation-fertilisation combined with aquifer recharge 

• Potential environmental impacts assessed using Life Cycle Assessment 

• Key environmental risks linked to heavy metals co-recovered with nutrients 


