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Abstract 

Filter sand samples, taken from aerobic rapid sand filters used for treating 

groundwater at three Danish waterworks, were investigated for their pesticide 

removal potential and to assess the kinetics of the removal process. Microcosms were 

set up with filter sand, treated water, and the pesticides or metabolites mecoprop 

(MCPP), bentazone, glyphosate and p-nitrophenol were applied in initial 

concentrations of 0.03-2.4 µg/L. In all the investigated waterworks the concentration 

of pesticides in the water decreased – MCPP decreased to 42-85%, bentazone to 15-

35%, glyphosate to 7-14% and p-nitrophenol 1-3% – from the initial concentration 

over a period of 6-13 days. Mineralisation of three out of four investigated pesticides 

was observed at Sjælsø waterworks Plant II – up to 43% of the initial glyphosate was 

mineralised within six days. At Sjælsø waterworks Plant II the removal kinetics of 

bentazone revealed that less than 30 minutes was needed to remove 50% of the 

bentazone at all the tested initial concentrations (0.1-2.4 µg/L). Increased oxygen 

availability led to greater and faster removal of bentazone in the microcosms. After 

one hour, bentazone removal (an initial bentazone concentration of 0.1 µg/L) 

increased from 0.21%/g filter sand to 0.75%/g filter sand, when oxygen availability 

was increased from 0.28 mg O2/g filter sand to 1.09 mg O2/g filter sand. Bentazone 

was initially cleaved in the removal process. A metabolite, which contained the 

carbonyl group, was removed rapidly from the water phase and slowly mineralised 

after 24 hours, while a metabolite which contained the benzene-ring was still present 

in the water phase. However, the microbial removal of this metabolite was initiated 

over seven days. 

Keywords: pesticides; bentazone; removal; kinetics; rapid sand filter; drinking 

water; ground water 

1. Introduction  

In Europe, 70% of the drinking water supply is based on groundwater (Navarrete 

et al., 2008). Unfortunately much of the groundwater is affected by pesticides; for 

example, in 2010, pesticides and metabolites were detected in 25% of active 

waterworks wells and 44% of all monitoring wells in Denmark (GEUS, 2011). 

According to the European Union (EU) Water Framework Directive and 

Groundwater Directive, the concentration of pesticides in drinking water and 

groundwater should not exceed 0.1 µg/L for a single compound, or 0.5 µg/L for the 

sum of all pesticides (European Parliament and Council, 2000; European Parliament 

and Council, 2006). In 2010, these guideline values was exceeded in 4.5% of the 

active waterworks wells in Denmark, and during 1992–2010 the pesticides mecoprop 

(MCPP), bentazone, glyphosate, and the degradation product p-nitrophenol were 

among the 10 most frequently detected pesticides (GEUS, 2011).  

http://dx.doi.org/10.1016/j.watres.2013.09.024
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The herbicide bentazone is used legally in the EU, and as such it is still a potential 

polluter of groundwater resources (Boivin et al., 2004). In Denmark, bentazone is 

used extensively, evidence for which can be found in the fact that 39 tonnes of the 

substance were sold in 2010 (The Danish Ministry of the Environment, 2010). In 

aquifer materials bentazone has low adsorption distribution coefficients, Kd values 

(Clausen et al., 2001) and it is difficult to degrade (Albrechtsen et al., 2001; Broholm 

et al., 2001). Therefore, it can easily be transported in aquifers (Boivin et al., 2004) 

and into groundwater extraction wells. Moreover, bentazone was detected in 2.7% of 

active Danish drinking water abstraction wells from 1992-2010 and exceeded the 

guideline value of 0.1 µg/L in 0.4% of the sampled wells (GEUS, 2011).  

Accordingly, bentazone and other pesticides are prone to enter groundwater-based 

waterworks. Pesticides can be removed from groundwater through the drinking water 

treatment process, e.g. via granular activated carbon (GAC) (Heijman et al., 2002), 

advanced oxidation (Suty et al., 2004) and to some extent membrane biofilm reactors 

(Modin et al., 2008). In Denmark, drinking water supply is based primarily on the 

treatment of groundwater, which involves aeration followed by rapid sand filtration 

(Winter et al., 2003), and the policy is that water utilities close pesticide-

contaminated extraction wells (GEUS, 2011). As a result, pesticide concentrations in 

the inlet water to waterworks do not exceed guideline values.  

The use of biological rapid sand filtration is widespread in Europe (Zearley and 

Summers, 2012). Commonly, drinking water has a residence time in rapid sand 

filters of 7.5 to 12 minutes (Winter et al., 2003); however, this can vary according to  

the load of the filters. A few recent investigations have shown potential for the 

degradation of some pesticides in rapid sand filters utilised in groundwater-based 

waterworks (Corfitzen et al., 2009) and that biological filters used to treat surface 

water are able to remove pesticides after a six-month adaption period (Zearley and 

Summers, 2012). Other studies have shown that pesticide degradation is possible in 

biologically active treatment systems (De Wilde et al., 2008; Turner et al., 2010; 

Baghapour et al., 2013). However, in these systems differ from rapid sand filters in 

the larger amount of present organic matter and in most systems degradation 

dependent on long adaption periods (Baghapour et al. 2013). If pesticides could be 

removed from drinking water by optimising the microbial processes which take place 

in rapid sand filters, this innovation could generate substantial commercial interest 

because of the environmental sustainability and low costs of this treatment (Corfitzen 

et al., 2009). 

Nevertheless, investigations into the potential and kinetics of microbial 

degradation and mineralisation of the compounds mecoprop (MCPP), bentazone, 

glyphosate and p-nitrophenol in different rapid sand filters for the treatment of 

groundwater are not available. 

The overall aim of this study is to investigate whether substantial pesticide 

removal, with a special focus on the herbicide bentazone, is possible during the time 
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it takes water to pass through a rapid sand filter. In order to achieve this aim, the 

following issues were investigated:  

 The general removal potential of the pesticides and metabolites MCPP, 

bentazone, glyphosate and p-nitrophenol in different rapid sand filters 

 The removal kinetics of pesticides during contact time with rapid sand filters 

 Whether the removal of pesticides in rapid sand filters leads to complete 

mineralisation 

2. Materials and methods 

Three different experimental laboratory set-ups were used: 

 

Degradation potential of filter sand: Filter sand from three Danish waterworks 

– Islevbro, Sjælsø Plant I and Sjælsø Plant II – was investigated for the removal 

potential of the pesticides mecoprop (MCPP), bentazone, glyphosate, and the 

degradation product p-nitrophenol. 

 

Removal kinetics: Bentazone removal at different initial concentrations was 

investigated with filter sand from Sjælsø waterworks Plant II. The removal was 

investigated intensively over one hour, which is the residence time of the water in the 

rapid sand filter, and the experiment lasted for seven days to investigate for 

mineralisation. 

 

Effect of oxygen: Bentazone removal in the filter sand from Sjælsø waterworks 

Plant II was investigated under enhanced oxygen concentrations. The removal was 

investigated intensively in the initial phase of the experiment (the first few hours), 

and the experiment lasted for two days. 

2.1 Waterworks 

The investigations included filter sand from three different groundwater-based 

waterworks with the water treatment process consisting of the aeration of anaerobic 

groundwater followed by filtration in primary and then secondary rapid sand filters. 

After filtration the treated water is channelled to clean water tanks and subsequently 

distributed. Disinfection is not included in the treatment process. The water quality 

of the treated water complied fully with the (EU) drinking water guideline. Selected 

parameters for water quality can be seen in Table 1. 

Islevbro waterworks, HOFOR, Rødovre, Denmark, has 163 wells and a technical 

production capacity of 1042 m
3
/h. The water quality of the groundwater is 

characterised by reduced conditions in the aquifer, expressed by low nitrate 

concentrations, for instance. Different pesticides, e.g. MCPP and glyphosate, have 

been detected in the extraction wells (Table 1). Groundwater is aerated with 

http://dx.doi.org/10.1016/j.watres.2013.09.024
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corrugated plate aerators, while the average residence time in the sand filter is 10.5 

min.  In these investigations 0.8–1.2 mm quartz sand from the afterfilter’s top layer 

was used.  

Sjælsø waterworks, Nordvand A/S, Hørsholm, Denmark, consists of two separate 

plants, each with a capacity of 400–1000 m
3
/h treating two difference water sources. 

Anaerobic groundwater is extracted from 49 wells. Groundwater which is treated at 

Plant I has low concentrations of nitrate and high sulphate concentrations. In all, 2,6-

Dichlorobenzamide (BAM) and three phenoxy acids have been detected at the 

extraction wells (Table 1). Groundwater is aerated with cascade aerators, and in our 

investigations 3.0–5.0 mm filter sand with anthracit coal from the prefilter’s top layer 

was used. The inlet concentrations of methane and hydrogen sulphide in Plant II 

were high (Table 1), which indicates strongly reduced conditions in the aquifer. 

Therefore, the water was treated in an intensive tray aerator (INKA chamber). No 

pesticides were detected in the extraction wells. In the experiments 3.0–5.0 mm filter 

sand from the prefilter’s top layer was used.  Normal residence time in Plant I’s 

prefilter is 89 min, while it is 56 min in Plant II.  

 

 

Table 1. Water quality data based on information from the waterworks. The range is given for each parameters for the given time 
period for wells and the effluent water from the filters. The waterworks monitors for more than 20 pesticides and degradation 
compounds, but this table only includes detected pesticides. 

   Islevbro  Sjælsø Plant I  Sjælsø Plant II 

Dry filter sand        
TOC* mg/g  2.71  78.8  0.517 

        

   Wells Effluent 

water 

 Wells Effluent  

water 

 Wells Effluent  

water 

Water   2010-2011 2011-2012  2011-2012 2012  2011-2012 2012 

Oxygen mg/L  0.23-2.2 7.3  0.31-0.62 -  0.25-0.44 - 

Nitrate mg/L  0.018-3.7 2.57  0.043-0.378 -  <0.03-0.061 - 

Nitrite mg/L  0.005-0.017 0.06  <0.0016-0.012 <0.0016-0.0079  <0.0016 <0.0016-0.0077 

Ammonium mg/L  0.251-0.97 0.10  0.38-0.77 <0.004-0.01  0.92-1.26 <0.004 -0.016 

Manganese mg/L  0.028-0.1 -  0.005-0.22 <0.001-0.003  0.012-0.054 <0.001 

Iron mg/L  0.01-3.6 0.3  0.2-4.3 <0.01-0.02  0.38-2.6 <0.01-0.05 

Sulphate mg/L  67-160 33.1  9-58 -  <0.5-14 - 

Hydrogen sulphide mg/L  0.012-0.02 -  0.01-0.04 -  0.03-1.19 - 

Methane mg/L  0.01-0.13 -  0.06-0.5 -  1.13-9.2 - 

BAM* µg/L  0.014-0.076 -  <0.01-0.018 -  < 0.01 - 

4-CPP* µg/L  0.016 -  <0.01-0.11 -  < 0.01 - 

DCPP* µg/L  0.02-0.20 -  <0.01-0.014 -  < 0.01 - 

2,6-DCPP* µg/L  - -  <0.01-0.025 -  <0.01 - 

MCPP* µg/L  0.04-0.13 -  - -  - - 

Glyphosate µg/L  0.022 -  - -  - - 

Phenol mg/L  - -  - -  < 0.05 - 

NVOC* mg/L  2.33 2.41  2.2-3.5 1.7-3.9  2.1-3.9 2.7-4.5 

Conductivity at 12°C mS/m  - -  65-108 -  66-82 - 

Alkalinity meq/L  5.12-7.18 5.4  - -  - - 

pH   7-7.9 -  - -  - - 

- no data available 

 * TOC = Total organic carbon;  BAM = 2,6-Dichlorobenzamide;  4-CPP = (RS)-2-(4-chlorophenoxy)propionic acid; DCPP = (R)-2-(2,4- 

dichlorphenoxy)propionic acid; 2,6-DCPP = 2-(2,6-dichlorphenoxy)propionic acid; MCPP = (RS)-2-(4-Chloro-2-methylphenoxy)propanoic acid; 

NVOC = Non-volatile organic carbon  
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Table 2. Information on investigated pesticides and metabolites 

 Mecoprop Bentazone Glyphosate p-Nitrophenol 

Type and use of 

pesticide The phenoxy acid is a 
herbicide used in 
agriculture, horticulture and 
for domestic purposes. 
Partially banned in Denmark 
in 1997. (The Danish 
Ministry of the Environment, 
2011; Buss et al., 2006) 

 

Herbicide used in cultivated areas, which 
is legally used in the European-Union. 
(EU pesticide database, 2013; Boivin et 
al., 2004) 

The trade name is Roundup and 
it is the most sold herbicide for 
weed control in agriculture, 
silviculture, urban areas 
worldwide. (Woodburn, 2000; 
Borggaard and Gimsing, 2008) 

Metabolite of the 
insecticide parathion, 
which is banned in the 
Europe Union (GEUS, 
2011; Schilmann et al., 
2009; The Council of the 
European Communities, 
1991; The Commission of 
the European 
Communities, 2001) 

 

Detection in active 

Danish drinking 

water wells 1992-

2010 (GEUS, 2011) 

 

2.5% 2.7% 1.7% 3.2% 

≥0.1µg/L  

(GEUS, 2011) 

 

0.1% 0.4% 0.0% 0.0% 

Sorption in aquifer 

sediment 

Mobile  

(Agertved et al., 1992; Tuxen 

et al. 2000) 

Mobile 

(Clausen et al., 2001; Boivin et al., 2004) 

Low mobility  

(Vereecken, 2005) 

Mobile 

(Nielsen et al., 1996) 

Volatility, KH 

(M/atm) 

Non-volatile 

4.65E+05 

(EU Pesticide Database, 

2013) 

Non-volatile 

1.41E+06 

(EU Pesticide Database, 2013) 

Non-volatile 

4.83E+08 

(EU Pesticide Database, 2013) 

Non-volatile 

7.79E+04 

(Tremp et al., 1993) 

Degradability Degraded weakly under 

anaerobic conditions 

(Janniche, 2010) 

Difficult to degrade in aquifers 

(Albrechtsen et al., 2001; Broholm et al., 

2001) 

Degradable under aerobic and 

anaerobic conditions  

(Borggaard and Gimsing, 2008; 

Rueppel et al., 1977) 

Degraded in aerobic 

aquifers  

(Nielsen et al., 1996) 

Radiochemicals     

Position of 14C-label Ring-14C 

 

Carbonyl-14C 

 

Benzene-ring-U-14C 

 

Phosphonomethyl-14C 

 

14C(U) 

 

 

  

  

Radio-chemical 

purity (%) 

> 95 97.96 99 99 > 99 

Specific activity 

(mCi/mM) 

23 44 20 50 77 

Solvent of stock 

solution 

Acetonitrile Methanol Methanol Sterile water Ethanol 

Producer Izotop, Institute of Isotopes 

Co., Ltd., Hungary 

Izotop, Institute of Isotopes Co., Ltd., 

Hungary 

ARC American Radiolabled 

Chemicals, Inc., USA 

ARC American Radiolabled 

Chemicals, Inc., USA 

 

2.2 Chemicals 

In order to investigate the potential of filter sand to degrade pesticides, four 
14

C-

labelled pesticides (mecoprop, bentazone, glyphosate and p-nitrophenol), each of 

which was among the 10 most frequently detected pesticides during 1992-2010 

(GEUS, 2011), were selected due to their properties (Table 2). [Carbonyl-
14

C-

]bentazone was used in the experiments, and unless otherwise noted it is referred to 

as ‘bentazone’ throughout this research. In cases where stock solutions of the 
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Table 3. Initial conditions in the microcosms in the different experiments. Added amount of filter sand and water appear as well 
as the initial concentration of the added pesticides. 

   Potential of filter sand  Removal 
kinetics 

 Effect of 
oxygen 

Waterworks   Islevbro Sjælsø Plant 
I 

Sjælsø Plant II  Sjælsø Plant II  Sjælsø Plant II 

Filter sand (g)  250 250 250  250  100 

Water  (mL)  100 100 100  100  100 

Initial concentration          

  Mecoprop   (µg/L)  0.38 0.04 0.03  -  - 

  Glyphosate  (µg/L)  - 0.05 0.05  -  - 

  p-Nitrophenol (µg/L)  - 0.16 0.16  -  - 

  [Carbonyl-14C-]Bentazone (µg/L)  0.1 0.1 0.1  0.1/0.5/2.4  0.6 

  [Benzene-ring-U-14C]Bentazone (µg/L)  - - -  0.16  - 

- no data 

pesticides were prepared in an organic solvent, this was stripped off before 

application and the pesticides were dissolved in sterile MilliQ water. To investigate 

pesticide removal at concentrations close to water quality guidelines, pesticides were 

in general added to an initial concentration of 0.1 µg/L (Table 3).  

2.3 Collection of filter sand 

Water was collected from the inlet connecting to the clean water tanks. Filter sand 

was collected from the top 20 cm of the filter bed with a specially designed 

aluminium bucket on an extendable shaft, which was disinfected with 1% 

hypochlorite. The filter sand was transported to the laboratory in an autoclaved 

plastic bag inside a clean bucket. 

2.4 Preparation of microcosms, pH and oxygen concentration 

Within two hours of collecting water and filter sand at the waterworks, 250 g wet 

filter material was transferred with a sterilized spoon to 300 ml serum bottles, which 

had been acid-washed and heated to 555°C for 12 hours. A total water volume of 100 

ml was added, including volumes of dissolved chemicals. At Islevbro set-up with 

inlet water to filters was compared to set-up with outlet water from the filters, 

without any substantial difference in the removal of MCPP (Table 4), and outlet 

water from the filters was used in the following experiments.  

Abiotic controls were set up with filter sand, which was either autoclaved three 

times (20 min, 1 bar and 121
o
C, the microcosms cooled for approx. 30 min – to less 

than 80
o
C – before autoclaving was repeated) or was mixed with sodium azide to a 

concentration of 2 g/L to inhibit all microorganisms. Microcosms were closed with 

Teflon caps and aluminium lids, and they were left at 10
o
C in darkness overnight 

before sampling. Incubation conditions were static. 

The pH remained at 7 during the experiment and the oxygen concentration was 

measured before and after the experiment with an HACH HQ40d oxygen electrode.  

http://dx.doi.org/10.1016/j.watres.2013.09.024
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2.5 Sampling 

Sampling was frequent in the initial stages of the experiments, in order to 

investigate removal behaviour during a period approximately equivalent to the 

residence time in the filter, and lasted for 1–6 hours. In the second phase the removal 

potential of the filter sand was investigated, and sampling was less frequent and 

lasted for 2–13 days after the experiment started.     

The microcosms were spiked with dissolved [
14

C-]pesticide to a concentration of 

0.03-2.4 µg/L (Table 3). When sampling, 3 ml atmospheric air was added to the 

microcosms and the 2–3 ml water samples were collected with a syringe through the 

cap of the microcosms. A 0.25 µm hydrophilic PTFE-filter (Frisenette Aps, 

Advantec
®
, Dismic

®
-13HP, disposable syringe filter unit, diameter: 13 mm) was used 

to remove suspended matter from the water sample.  

The analysis for 
14

C was based on a double vial system, whereby 
14

CO2 produced 

in the collected water sample was stripped off and captured by a base trap (1 ml 2M 

NaOH). Thus the produced 
14

CO2 and the 
14

C-activity of the pesticide in the water 

phase could be quantified. The base traps were set up as described by Janniche et al. 

(2010). The pesticide concentration at a given sampling time was calculated as a 

fraction of the initial concentration and corrected for the removed pesticide during 

sampling (given as 
14

C/
14

C0 (%)). Mineralisation was calculated as the cumulated 
14

CO2 as a fraction of the initial pesticide concentration and corrected for the 

equilibrium to headspace (given as 
14

CO2/
14

C0 (%)).  

Due to frequent sampling in the first 1-6 hours, experiments were processed at an 

ambient temperature (20°C). After this period the microcosms were incubated at 

10°C in darkness. 

2.6 Removal kinetics – deviations in experimental set-up 

To obtain higher oxygen concentrations in the microcosms, they were purged over 

night with sterile filtered atmospheric air and closed afterwards. When sampling the 

microcosms, sterile pure oxygen was added instead of atmospheric air. To avoid 

clogging, the syringe filters were replaced by a 0.22 µm nylon and GF filter 

(Frisenette Aps, Q-max
®
 GPF Syringe Filters, diameter 25 mm). 

2.7 Effect of oxygen – deviations in experimental set-up 

In this experiment the aeration procedure from ‘Removal kinetics’ was used. 

Furthermore, water-air contact was enhanced by changing incubation conditions 

from static to gently swirling, by placing the microcosms in an orbital shaker during 

the experiment. Oxygen concentration was monitored during the experiment with 

Oxygen-Sensitive Minisensors in the filter sand and by applying a Fibox 3 – a fibre 

optic oxygen meter (Loligo Systems ApS). 

Due to a high concentration of suspended material in the samples, extracted 

volumes were changed to 7 ml four times during the investigations, in order to assure 

http://dx.doi.org/10.1016/j.watres.2013.09.024
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a substantial water sample for further analysis. Additionally, the last sample was pre-

filtered through a 0.45 µm GF/F filter (Whatman syringe filter, GF/F Filter 

membrane with a polypropylene housing, diameter: 25mm). 

2.8 Characterisation of the filter material 

The water content of the filter material was quantified through weight loss after 

24 hours at 105°C. The bulk density of the dry filter sand was found by weighing 40 

ml, without compressing the filter sand. This method could underestimate the actual 

bulk density in the rapid sand filter, but repeated experiments showed variance below 

1%.  

The amount of total organic carbon (TOC) in the filter sands was measured for the 

sample. The TOC analysis was carried out by employing a total element carbon 

analyser (LECO Induction Furnace CS-200) after the removal of carbonates by 

adding 5% sulphurous acid (H2SO3).  

3. Results and discussion 

3.1 Degradation potential of filter sand 

To investigate the potential of filter sand to degrade pesticides, filter sand was 

collected from three waterworks which received water of substantially different 

qualities (Table 1).    

All of the investigated rapid sand filters removed the investigated pesticides 

partially (at Islevbro only MCPP and bentazone were investigated), either by abiotic 

or microbial processes (Table 4), and concentrations in the microcosms decreased 

during the experiment between six and 13 days. MCPP decreased to 42-85%, 

bentazone to 15-35%, glyphosate to 7-14% and p-nitrophenol to 1-3% of the initial 

concentration. Due to the position of the 
14

C-label in glyphosate (Table 2) only a 

complete removal of the compound would be detected – partial degradation to the 

primary metabolite 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid  

(AMPA) would not be detected. The mineralisation of pesticides in terms of 
14

CO2 

production was observed only at Sjælsø Plant II. After six days, 
14

CO2 production 

from bentazone reached 8-14%, glyphosate 42–43% and p-nitrophenol 7-10% of the 

initially added pesticide (mineralisation of MCPP was not detected). Previous 

investigations on the removal of micro pollutants in biological drinking water filters 

for the treatment of surface water also found removal of pesticides at the same 

concentration range after an adaption period of six months. However, these 

investigations showed that nine out of 16 pesticides were recalcitrant to 

biodegradation (Zearley and Summers, 2012). 
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Table 4. Fractionation of 14C-bentazone after incubation with filter material from different filter sands. The fraction of 14C (or 
14CO2) of the initial amount of 14C0 is shown at two selected times.  Data are from microcosms (two replicates) and abiotic controls. The 
removal of MCPP at Islevbro was tested with both outlet water from filter (OW), and inlet water to filter (IW). 

  Fraction of bentazone in water phase (14C/14C0)  
14CO2-production from degradation 

(14CO2/14C0) 

  Microcosms 
Abiotic 
control 

 Microcosms 
Abiotic 
control 

 Microcosms 
Abiotic 
control 

 Microcosms 
Abiotic 
control 

Islevbro  4 hours  13 days  4 hours  13 days 
   MCPP OW  60-61% 64%  42-48% 57-61%  - -  - - 

   MCPP IW  60% 73%  51-57% 73-75%  - -  - - 

   Bentazone  72-74% 81%  26-33% 74-83%  - -  - - 

Sjælsø Plant I  4 hours  6 days  4 hours  6 days 
   MCPP  103% 63%  67-74% 67%  - -  - - 

   Bentazone  62-75% 60%  31-35% 62%  - -  - - 

   Glyphosate  8-9% 9%  7-8% 4%  - -  - - 

   4-nitrophenol  29% 56%  1-3% 22%  - -  - - 

Sjælsø Plant II  4 hours  6 days  4 hours  6 days 
   MCPP*  103% 112%  70-85% 92%  - -  - - 

   Bentazone  59-71% 101%  15-18% 103%  - -  8-14% - 

   Glyphosate  19-20% 17%  9-14% 8%  31-36% -  42-43% - 

   4-nitrophenol  28-33% 102%  3% 96%  4% -  7-10% - 

* low initial concentrations (0.033-0.036 µg/L) – uncertain results. 

- no evident tendency in results 

 
For Islevbro and Sjælsø waterworks Plant I, [

14
C-]pesticide was removed from the 

water phase in the abiotic controls, so a part of the pesticide was removed by abiotic 

processes, such as sorption. According to high Henry’s law constants, >10
4 

M/atm, 

volatilisation was not likely to remove the pesticides (Table 2) (EU pesticide 

database, 2013; Tremp et al, 1993; Liss and Slater, 1974). For Sjælsø Plant I the 

removal of MCPP and glyphosate was merely abiotic, since there was no difference 

between abiotic controls and microcosms. However, in all other cases, more 

pesticide was removed in the biologically active microcosms than in the abiotic 

controls. Microbiological removal did not result in immediate mineralisation (
14

CO2 

production), and removal must have been caused by a degradation to a metabolite, 

which was eliminated from the water phase by sorption or volatilisation, or the 

compound was taken up by the microorganism (Nowak et al., 2011). Consequently, 

pesticide removal in the filter sands from Islevbro waterworks and Sjælsø 

waterworks Plant I was caused partially by abiotic and partially by microbiological 

processes.  

At Sjælsø waterworks Plant II, more than 90% of bentazone and p-nitrophenol 

was removed by microbial processes, due to the difference in microcosms and abiotic 

controls, and evident mineralisation was measured for bentazone, glyphosate and p-

nitrophenol (Table 4).Microbiological removal was substantial in this filter, though 

abiotic processes also had an influence especially on the removal of glyphosate 

(Table 4).  

Except for glyphosate, which adsorb to inorganic material (Borggaard and 

Gimsing, 2008; Vereecken, 2005), a high proportion (33–78% over six days) of the 

pesticides at Sjælsø waterworks Plant I was removed by abiotic processes. This was 

probably due to sorption onto the filter material, due to the very high content of TOC 
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(78.8%) (Table 1). However, a major part of the TOC in the filter was anthracite 

coal, which actually has low sorption capacity. At Islevbro, with 2.71% TOC in the 

filter, abiotic removal was lower but substantial (17-43% over 13 days), whereas 

sorption was much lower (0-8% over six days) at Sjælsø waterworks Plant II with a 

quite low content (0.5%) of TOC in the filter samples (Table 1). Thus, the abiotic 

removal of the pesticides was related to TOC content in the filter material, which 

causes sorption. 

The removal potential of bentazone was substantial in all three rapid sand filters 

(Figure 1), and at the end of the experiments the remaining concentration of 

bentazone in the water was less than 33% of the initial concentration (after 13 days, 

filter sand from Islevbro waterworks). The elimination was greatest in microcosms 

with filter material from Sjælsø waterworks Plant II, where the concentration 

decreased to 15-18% after six days. This was evidentially a microbial removal, since 

concentration in the abiotic controls stayed at approximately 100% throughout the 

experiment (Figure 1).  

Since biological removal was more prevalent at Sjælsø waterworks Plant II, the 

removal kinetics and processes for bentazone were investigated further in this rapid 

sand filter. 

 

Fig. 1. Potential for degradation of bentazone with filter sand from three different 

waterworks, shown for the first six hours (A) and the entire experiments (B). Mean 

concentrations and standard deviation are given as a percentage of the initial 

concentration. Initial concentration was 0.1 µg/L in microcosms (duplicates) and 

corresponding abiotic controls. 
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Fig. 2. Removal kinetics investigated at three different initial concentrations in a 

short-term investigation. Microcosms consisted of 250g filter sand and 100 ml water 

from Sjælsø waterworks Plant II. The mean concentrations and standard deviation are 

given as percentage of the initial concentration. Microcosms with an initial 

concentration of 0.1 µg/L (triplicate) are depicted along with two corresponding 

abiotic controls (initial concentration 0.1 µg/L, inhibited in two different ways) and 

two microcosms with initial concentrations of 0.5 µg/L and 2.4 µg/L. 

 

3.2  Removal kinetics 

The removal of bentazone was investigated at different initial concentrations 

during the residence time in the sand filter, which was 56 minutes for Sjælsø 

waterworks Plant II. 

Bentazone was removed rapidly in the microcosms, and the removal was 

microbial because abiotic removal was insignificant (Figure 2). For an initial 

concentration at 0.1 µg/L, mean concentration in the microcosms decreased to 35% 

after only 20 minutes, and after 60 minutes it had dropped further to 12% of the 

initial concentration. At higher initial concentrations bentazone decreased similarly 

but the relative removal rate was slightly slower (Figure 2). During the first hour of 

the experiment the remaining concentration in these microcosms decreased to 35% of 

the initial concentration of 0.5 µg/L and to 39% for an initial concentration of 2.4 

µg/L. The time it took to remove 50% of the bentazone concentration from the water 

phase, i.e. the 50% dissipation time (DT50%), was read off the curves (Figure 2) and 

was less than 30 minutes for all the initially tested concentrations (0.1-2.4 µg/L) 

(Table 5).  
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Fig. 3. Removal kinetics – long-term investigation.  Microcosms with 250g filter sand 

(Sjælsø waterworks Plant II), 100 ml water and an initial bentazone concentration of 

0.1 µg/L (triplicates), 0.5 µg/L (one microcosm) and 2.4 µg/L (one microcosm) were 

investigated along with two different abiotic controls (initial concentration 0.1µg/L).  

Mean values and standard deviation are shown for A) concentration of bentazone in 

the water (
14

C/
14

C0), and B) 
14

CO2 production (
14

CO2/
14

C0) from the degradation of 

bentazone.  

 

Table 5. The 50% dissipation time, DT50%, for bentazone 
was read off the curves in Figure 2 at different initial 
concentrations. 

Initial concentration (µg/L) DT50% (min) 

0.1 13 
0.5 26 
2.4 24 

 

No 
14

CO2 production was observed in the abiotic controls, but it was substantial in 

all microcosms (Figure 3). The mean 
14

CO2 production in the microcosms (initial 

concentration of 0.1 µg/L) was 10.4% after seven days, which means that 
14

C-

labelled carbonyl group was completely mineralised.    
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Fig. 4. Removal of bentazone under high oxygen concentrations. Microcosms with 

100g filter sand (Sjælsø waterworks Plant II), 100 ml water and an initial bentazone 

concentration of 0.6 µg/L (triplicates) were investigated along with the one 

corresponding abiotic control (initial concentration 0.6 µg/L). Mean values and 

standard deviation are shown for A) concentration of bentazone in the water 

(
14

C/
14

C0), and B) 
14

CO2 production (
14

CO2/
14

C0) from the degradation of bentazone. 

 

3.3 Effect of oxygen 

In the experiment ‘Removal kinetics’, oxygen availability was increased and the 

observed removal of bentazone was faster than in the ‘Degradation potential of filter 

sand’ investigation. Since the microbial metabolism and further fate of bentazone in 

soils depend very much on the presence of oxygen (Knauber et al., 2000), it was 

investigated whether differences found in the removal of bentazone between the 

experiments could be explained by the limited availability of oxygen. In rapid sand 

filters found in waterworks, oxygen is easily available to microorganisms. Pure 

oxygen was added, and oxygen availability was increased to 0.28 mg O2/g filter sand 

in ‘Removal kinetics’ compared to an oxygen availability of 0.12 mg O2/g filter sand 
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Fig. 5 Effect of oxygen on the removal of bentazone from the water phase. The 

available amount of oxygen per gram of filter sand was calculated in each 

experiment as the sum of oxygen in the water and the headspace at the start and the 

total added amount during the experiment. The amount of bentazone removed from 

the water phase (
14

C/
14

C0 (%)) per gram of filter sand in the microcosms is shown 

for each of the experiments. The initial concentration of bentazone is given in 

brackets.  

 

in ‘Degradation potential of filter sand’. This increased the removal efficiency of the 

filter sand after one hour at a significance level of 99.95%. However, oxygen 

measurements during the investigations showed that concentrations decreased 

throughout both experiments. The experiment ‘Effect of oxygen’ was set up to 

validate the effect of oxygen on bentazone removal. In this experiment oxygen 

availability reached 1.09 mg O2/g filter sand (Figure 4).  

Increased oxygen availability led to the greater and faster removal of bentazone in 

the microcosms (Figure 5). After one hour, bentazone removal (an initial bentazone 

concentration on 0.1µg/L) increased from 0.21%/g filter sand to 0.75%/g filter sand 

when oxygen availability was increased from 0.28 mg O2/g filter sand to 1.09 mg 

O2/g filter sand. This increased the removal efficiency of the filter sand at a 

significance level of 99.95%. Increasing oxygen availability by a factor of 3.9 

increased the removal efficiency of the filter sand by a factor 3.6.  

The experiment with oxygen availability of 1.09 mg O2/g filter sand was the only 

experiment where oxygen concentration was continuously above 8 mg O2/L. In the 

full-scale rapid sand filter, oxygen concentration was above 8 mg O2/L and the 

removal efficiency of the filter sand in the experiment with oxygen availability of 
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Fig. 6 Removal of ring-bentazone in the water. Microcosms consisting of 250g 

sand and 100 ml water from the rapid sand filter at Sjælsø waterworks Plant II, and 

an initial ring-bentazone concentration of 0.2 µg/L (triplicates) were investigated 

along with two corresponding abiotic controls (initial concentration 0.2 µg/L). 

Mean values and standard deviation are shown for A) concentration of ring-

bentazone in the water (
14

C/
14

C0), and B) for 
14

CO2 production (
14

CO2/
14

C0) from 

the degradation of ring-bentazone. 

 

1.09 mg O2/g filter sand was therefore the best simulation for the full-scale rapid 

sand filter.  

3.4 Complete degradation – investigations of ring-bentazone 

The degradation potential for [benzene-ring-U-
14

C]bentazone (mentioned as ring-

bentazone) was investigated, in order to examine whether the whole bentazone 

molecule would be mineralised during the removal process. 

Very little ring-bentazone was removed during the first hours of the experiment, 

but after seven days the remaining concentration in the microcosms was 18% lower 

than in the abiotic controls (Figure 6), and the total concentration of ring-bentazone 

decreased to 64% of the initial concentration. 
14

CO2 production as a result of 

removing ring-bentazone could not be measured within the timeframe of the 

experiment (Figure 6). The microbial removal of ring-bentazone from the water 

phase therefore did not entail complete mineralisation.  

When bentazone was added to the microcosms, the 
14

C-labelled carbonyl group 

was immediately removed by a microbial process from the water phase (Figure 3 and 

4), which means that either the whole bentazone molecule was removed from the 

water phase or it was broken down and only partially removed. Investigation where 
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the 
14

C-label was positioned in the
 

benzene-ring showed that in the same 

experimental period the benzene-ring was present in the water phase for longer than 

the carbonyl group (Figure 6), which means that the immediate removal was a partial 

removal of bentazone.  Hence, an interpretation of the removal is that the thiadiazine 

group in bentazone must have been cleaved initially by a microbial process. 

Afterwards, a metabolite, which contained the 
14

C from the carbonyl group, was 

removed rapidly from the water phase and later metabolised to 
14

CO2, while 

microbial removal of a metabolite with the benzene-ring was slow or initiated later 

(seven days).  

Removal of bentazone in filter sand has parallels with degradation in soil 

matrixes, in that they are both oxygen-dependent processes (Knauber et al., 2000) 

and removal is initiated by microbial degradation. In soil metabolism the degradation 

of bentazone is explained by hydroxylation of the benzene-ring to 6-OH-bentazone 

or 8-OH-bentazone, or by microbial degradation to anthranilic acid. This is followed 

by incorporating the reactive metabolites into the organic soil matrix (Huber and 

Otto, 1994). This does not correspond with degradation in filter sand – since the 

benzene-ring is detectable in the water phase for longer than the carbonyl group, the 

bentazone molecule must be broken down further before  it can be incorporated into 

the filter sand matrix. Knauber et al. (2000) demonstrated that 12-15% of bentazone 

was immediately mineralised in soil, while 65-85% was hydoxylated by microbial 

activity and bound to the humic matrix. The bound residues were mineralised over a 

longer period (141 days) (Knauber et al., 2000). The sizes of these fractions are 

similar to the results for filter sand, where 8-19% was mineralised and 68-83% was 

removed from the water phase. Bound residues from pesticide degradation in soils 

have recently been found to be incorporated in living biomass (Nowak et al., 2011), 

which could also influence the removal of bentazone metabolites from the water 

phase. 

4. Perspectives 

To our knowledge, there is hardly any existing literature on the degradation of 

pesticides in rapid sand filters used for drinking water treatment. In other technical 

systems  biological removal of pesticides is possible, for instance in treatment of 

surface water, waste water and groundwater. However, the investigated systems 

needed long adaptation periods, from 25 days up to six months (Zearley and 

Summers, 2012; Baghapour et al., 2013; Hunter and Shaner, 2011). Previous studies 

of the degradation of bentazone in in aquifers have likewise shown long adaptation 

time (Albrechtsen et al., 2001; Broholm et al., 2001). Hence, it is extraordinary that 

this study established the microbial removal of bentazone in a rapid sand filter, 

which did not depend on an adaption phase for the microorganisms.  

It was observed that regardless of the initial concentration of bentazone, the 

remaining concentration in the microcosms stalled at approximately 10%. Since it 
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was not possible to degrade the residual part, it could indicate that a more persistent 

metabolite was formed.  

Investigations of ring-bentazone showed that large amounts of metabolites 

containing the benzene-ring were still present in the water phase after seven days. 

The structure of this metabolite was different from bentazone since the removal of 

carbonyl-
14

C-bentazone indicated a radical transformation of the molecule. It is 

important to clarify the properties of the metabolite, in order to assure safe drinking 

water for consumers. Additionally, the production of 
14

CO2 was delayed (six hours to 

seven days) compared to the removal of bentazone, thus indicating that the rapid 

removal of bentazone was only a partial decomposition and led to an accumulation of 

metabolites in the filter.  

5. Conclusion 

The investigations showed: 

 A clear removal potential of the pesticides MCPP, bentazone, glyphosate, and 

p-nitrophenol in rapid sand filters at Danish waterworks. The largest 

microbial removal was observed with filter material taken from Sjælsø Plant 

II. 

 At Sjælsø waterworks Plant II bentazone concentration in the water phase 

decreased as a result of microbial removal to less than 50% of the initial 

concentration within 30 minutes for all tested start concentrations (0.1–2.4 

µg/L). 

 Oxygen concentration was of substantial importance for removal kinetics and 

removal potential of bentazone. Hence, the efficiency of bentazone removal 

by filter sand increased when oxygen availability increased. 

 The rapid removal of bentazone (less than 60 minutes) was due to a microbial 

transformation of the molecule seen in the removal of the 
14

C-labelled 

carbonyl group from the water phase. This transformation was followed by a 

slower mineralisation after 24 hours and complete microbial removal after 

seven days.   

Overall, this study showed that substantial pesticide removal is possible within the 

contact time of rapid sand filters at Danish waterworks, and that rapid removal is 

followed by a slower mineralisation of the compound. Hence, there is a potential for 

microbial removal of pesticides from contaminated groundwater in Danish 

waterworks. This is of commercial interest due to substantial attention given to the 

maintenance of today’s water treatments.  
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