Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

Hennessy, Rosanna C.; Glaring, Mikkel Andreas; Frydenlund Michelsen, Charlotte; Olsson, Stefan; Stougaard, Peter
Published in: Genome Announcements

Link to article, DOI: 10.1128/genomea.01251-15

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Hennessy, R. C., Glaring, M. A., Frydenlund Michelsen, C., Olsson, S., & Stougaard, P. (2015). Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity. Genome Announcements, 3(6), [e01251-15]. https://doi.org/10.1128/genomea.01251-15

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Draft Genome Sequence of *Pseudomonas* sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

Rosanna C. Hennessy,\(^a\) Mikkel Glaring,\(^a\) Charlotte F. Michelsen,\(^b\) Stefan Olsson,\(^a\) Peter Stougaard\(^a\)

Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; \(^a\)Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark

Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight into the genetics behind the antifungal activity of this strain.

Pseudomonas spp. are a rich source of secondary metabolites, including bioactive nonribosomal peptides (NRPs) and polyketides (1). NRPs are synthesized in large assembly lines by multidomain modular enzymes known as NRP synthetases (NRPSs). Nunamycin and nunapeptin are two cyclic NRPs synthesized by the Greenlandic isolate *Pseudomonas* sp. In5. Nunamycin shows antifungal activity against the basidiomycete *Rhizoctonia solani*, whereas nunapeptin appears most active against the ascomycete *Fusarium graminearum* and the oomycete *Pythium aphanidermatum* (2). Originally isolated from disease suppressive soil from a potato field in Inneruallik, South Greenland, *Pseudomonas* sp. In5 is therefore a promising potential biocontrol agent against plant pathogens (3, 4). In this report, we describe the annotated draft genome sequence of strain In5, which is part of ongoing research into antimicrobial secondary metabolites and novel biocontrol agents.

The genomic DNA of *Pseudomonas* sp. In5 was isolated from cultures growing in liquid medium. The draft genome was obtained by a combination of paired-end sequencing of a short-insert (500-bp) library and mate-pair sequencing of a large-insert (5-kb) library on an Illumina platform. Quality trimming of sequences and *de novo* assembly were performed using CLC Genomics Workbench version 7.5.1. The assembly resulted in 56 contigs organized in 18 scaffolds covering 7,318,798 bp, and almost the entire genome (99.9%) was covered by 5 large scaffolds. The G+C content was 59.4%. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline and identified 6,236 protein-coding sequences (CDSs) and 66 RNAs. antiSMASH (5) analysis of the genome identified 9 putative secondary metabolite gene clusters, including two NRPS clusters that generate the cyclic peptides nunamycin and nunapeptin, which were recently shown to possess both antimicrobial (2) and anticancer activities (C. F. Michelsen and P. Stougaard, unpublished data). Further in-depth analysis of this genome will increase our understanding of the role and regulation of In5 secondary metabolites during microbial interactions.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LIRD00000000. The version described in this paper is the first version, LIRD01000000.

ACKNOWLEDGMENT

This work was supported by a grant from the Villum Foundation to P.S. (VKR7310). The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES