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Abstract 1 

Climate change impact studies are subject to numerous uncertainties and assumptions. One of the 2 

main sources of uncertainty arises from the interpretation of climate model projections. 3 

Probabilistic procedures based on multi-model ensembles have been suggested in the literature to 4 

quantify this source of uncertainty. However, the interpretation of multi-model ensembles remains 5 

challenging. Several assumptions are often required in the uncertainty quantification of climate 6 

model projections. For example, most methods often assume that the climate models are 7 

independent or/and that changes in climate model biases are negligible. This study develops a 8 

Bayesian framework that accounts for model dependencies and changes in model biases and 9 

compares it to estimates calculated based on a frequentist approach. The Bayesian framework is 10 

used to investigate the effects of the two assumptions on the uncertainty quantification of extreme 11 

precipitation projections over Denmark. An ensemble of regional climate models from the 12 

ENSEMBLES project is used for this purpose.  13 

The results confirm that the climate models cannot be considered independent and show that the 14 

bias depends on the value of precipitation. This has an influence on the results of the uncertainty 15 

quantification. Both the mean and spread of the change in extreme precipitation depends on both 16 

assumptions. If the models are assumed independent and the bias constant, the results will be 17 

overconfident and may be treated as more precise than they really are. This study highlights the 18 

importance of investigating the underlying assumptions in climate change impact studies, as these 19 

may have serious consequences for the design of climate change adaptation strategies. 20 

  21 
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1. Introduction 1 

Information on the expected changes in extreme precipitation under climate change conditions is 2 

needed for the design of infrastructure such as dams, bridges and urban drainage. However, these 3 

changes are subject to numerous uncertainties. Uncertainties are introduced at the different steps in 4 

climate change impact studies, i.e. the choice of emission scenario and Global Circulation Model 5 

(GCM) as well as dynamical and/or statistical downscaling method. It is generally recognized that 6 

robust decision-making on climate change adaptation should be based on probabilistic climate 7 

projections that include these sources of uncertainty (Fowler et al. 2007; Tebaldi and Knutti 2007).  8 

Recent studies have addressed and compared the contribution of the various sources of uncertainty 9 

(e.g. Wilby and Harris 2006; Déqué et al. 2007; Dessai and Hulme 2007; Hawkins and Sutton 2011; 10 

Räisänen and Räty 2012). In most cases the authors found, that the inherent uncertainty in climate 11 

models exceeds the uncertainty due to the natural variability, emission scenario, and statistical 12 

downscaling. Nonetheless, the relevance of each uncertainty source varies depending on the 13 

projection horizon. Natural variability and emission scenario become more important when 14 

analysing, respectively, short and long projection horizons (Hawkins and Sutton 2011).  15 

Uncertainty in climate models is often assessed based on a multi-model framework.  Large multi-16 

model ensemble datasets have been produced in recent years. One of the largest datasets of GCMs 17 

is the ensemble recently created in the 5th Coupled Model Intercomparison Project (CMIP5) (Taylor 18 

et al. 2012). In Europe, the PRUDENCE project (Christensen et al. 2007) aimed at addressing the 19 

uncertainties in a multi-model ensemble of Regional Climate Models (RCMs). This work was 20 

continued in the ENSEMBLES project (van der Linden and Mitchell 2009). As part of the 21 

ENSEMBLES project a large dataset of state-of-the-art RCMs was created and made freely 22 

available. Currently, in the CORDEX project (http://wcrp-cordex.ipsl.jussieu.fr/) several ensembles 23 

of RCMs covering the majority of populated areas in the world are being created.  24 
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Multi-model ensembles provide valuable information for estimating the uncertainty in climate 1 

model projections. However, there are still remaining challenges in their interpretation (Knutti et al. 2 

2010). Some of the main challenges are: the limited number of climate models in the ensemble, the 3 

interdependency of climate models, and the lack of consensus on how to evaluate model 4 

performance. Therefore, several assumptions are often needed in climate change studies (Fischer et 5 

al. 2012). For example, most studies assume that the climate models in the ensemble are 6 

independent. This assumption may not be valid since some models share similar or even identical 7 

parameterization schemes as well as submodels with identical code (Masson and Knutti 2011). 8 

Additionally, in the case of ensembles of RCMs, some models are driven by the same GCM 9 

boundary conditions. Another important assumption in climate change studies is the assumption of 10 

constant bias in the climate models. The bias is assumed to be stationary in time, i.e. its change is 11 

considered negligible. This assumption is often used in statistical downscaling and bias correction 12 

methods. However, a recent study by Boberg and Christensen (2012) showed that the bias of 13 

temperature is dependent on the value of the temperature.  14 

In recent years, several probabilistic methods based on multi-model ensembles have been suggested 15 

in the literature, e.g. the Reliability Ensemble Averaging method suggested by Giorgi and Mearns 16 

(2002) and the Bayesian methods suggested by Tebaldi et al. (2004; 2005), Leith and Chandler 17 

(2010), and Buser et al. (2009; 2010). These methods account for some of the challenges in 18 

interpreting multi-model ensembles. The assumption of model independency is discussed in several 19 

studies, e.g. Furrer et al. (2007), Tebaldi and Knutti (2007), Buser et al. (2009; 2010), Knutti et al. 20 

(2010) and Maulet et al. (2012). Although most of these studies discussed the possible invalidity of 21 

this assumption, none of the methods include the model interdependency in the uncertainty 22 

quantification approach. Buser et al. (2009; 2010) addressed the effects of assuming constant bias. 23 

They tested the assumption of constant bias versus the assumption of temperature dependent bias 24 
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and found that the choice of constant or dependent bias assumption largely influenced the results 1 

obtained for future summer mean temperatures. 2 

This study develops a Bayesian framework that accounts for the interdependency and the changes in 3 

the biases of the climate models. The main goal of the study is to develop and analyse a procedure 4 

for the incorporation of these two factors in the uncertainty quantification of climate model 5 

projections. The study addresses the uncertainty in extreme precipitation projections over Denmark 6 

using an ensemble of RCMs. The focus is on extreme precipitation as it is likely to be one of the 7 

most important impacts of climate change in cities (Fowler and Hennessy 1995; IPCC 2012). 8 

Hence, a quantitative assessment of the uncertainty in these projections is needed for the design of 9 

climate change adaptation in cities. Most studies have focused on the uncertainty in mean 10 

precipitation projections at rather large scales (e.g. Giorgi and Mearns, 2002; Fischer et al. 2012), 11 

and only a few studies have assessed the uncertainties in extreme precipitation projections at a 12 

regional scale (e.g. Frei et al. 2006; Fowler and Ekström, 2009).  13 

The next section describes the case study and the data used, followed by the methodology section. 14 

Section 4 presents and discusses the results, and section 5 summarizes the findings and conclusions 15 

of the study. 16 

2. Data and case study 17 

The index selected to represent extreme precipitation in this study is the 95th percentile of 18 

precipitation amount on wet days, hereafter referred to as RRwn95. Wet days are defined as days 19 

with precipitation higher or equal to 1 mm (Peterson 2005). RRwn95 is included in the list of 20 

extreme precipitation indices defined by STARDEX (Haylock and Goodess 2004). Additionally, it 21 

is often used in climate change impact studies focusing on extreme precipitation (e.g. Beldring et al. 22 
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2008; Benestad 2010). In Denmark, under present climate conditions, RRwn95 is approximately 13 1 

mm day-1 in winter and 19 mm day-1 in summer.  2 

The observational dataset used in this study is the gridded precipitation product created by the 3 

Danish Meteorological Institute known as Climate Grid Denmark (CGD). This gridded dataset has a 4 

spatial resolution of 10 x 10 km and it is based on approximately 300 stations (Scharling 1999). 5 

Daily precipitation data is available for the period 1989-2010.  6 

The climate model output used is daily precipitation from an ensemble of 15 RCMs from the 7 

ENSEMBLES project (van der Linden and Mitchell 2009). These 15 RCMs are all the models from 8 

ENSEMBLES available at a temporal resolution of 0.22° (approximately 25 km) and covering the 9 

time period 1950-2100. This ensemble contains 11 different RCMs driven by 6 different GCMs (see 10 

Table 1). Thirteen RCMs use the same rotated pole grid system, while two models (RM5.1 and 11 

RegCM) use a Lambert conformal grid system. Daily precipitation data from the RCMs for the time 12 

periods 1989-2010 and 2081-2100 for all the 66 land grid points covering Denmark are used in this 13 

study. The future period considered here is the same as the one used in the Special Report on 14 

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 15 

(IPCC 2012). 16 

In order to be able to compare the indices obtained from the observational dataset and the RCMs, 17 

the values of RRwn95 estimated for each of the grids in the CGD have been re-interpolated to the 18 

0.22° rotated pole grid system. The method used for this purpose is the natural neighbour 19 

interpolation method suggested by Sibson (1980; 1981). Additionally, and for the same reason, the 20 

two models using the Lambert conformal grid system have been re-interpolated to the rotated pole 21 

grid system using the same interpolation method. 22 

TABLE 1 SHOULD GO HERE 23 
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3. Methodology 1 

The methodology followed in this study is a Bayesian framework based on the approach presented 2 

by Tebaldi et al. (2004; 2005). They suggested a Bayesian statistical model that combines 3 

information from a multi-model ensemble and observations. The statistical model was used to 4 

determine probability distributions of future temperature change for 22 land regions. Here, the 5 

approach has been modified to include the interdependency and the change in bias of the climate 6 

models. A frequentist approach could have also been used (after a re-parameterization of the model) 7 

to estimate the uncertainty in the parameters of the statistical model defined here. The discussion on 8 

frequentist versus Bayesian frameworks is generally recognized and on-going (e.g. Wilks 2006; 9 

Beven 2010). One important difference between the two frameworks is in the interpretation of 10 

probability. In the frequentist view, probability represents the likelihood of an event that would be 11 

found if it was possible to take a large number of samples (Beven 2010). In the Bayesian view, 12 

probability represents the degree of belief on the occurrence of an uncertain event (Wilks 2006). 13 

According to Tebaldi et al. (2005) Bayesian methods are a natural way to represent uncertainty in 14 

the context of climate change projections. We agree with this view, and we interpret the 15 

probabilities found here as a degree of belief given the limited amount of data. Therefore, and 16 

because our statistical model is mainly inspired by Tebaldi et al. (2004; 2005), we apply a Bayesian 17 

approach to estimate the uncertainty in the model parameters. Nonetheless, we compare the results 18 

of the Bayesian analysis with a frequentist approach. The estimation of the parameters using the 19 

frequentist approach is described in Appendix B.   20 

This section introduces the Bayesian statistical model as well as the methods used to estimate the 21 

interdependency and change in bias of the climate models.  The methods described are applied to 22 

the index RRwn95 separately for winter (December to February) and summer (June to August) 23 

season. The analysis is also carried out considering the whole year; this is referred to as annual 24 
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period in the results section. For clarity, the subscript to indicate seasons is not included in the 1 

mathematical expressions. 2 

a. Bayesian statistical model 3 

In a Bayesian framework probability distributions are explicitly used for quantifying the uncertainty 4 

in parameters. In this study we apply Bayesian inference, where statistical interpretations about a set 5 

of parameters, Θ, are made in terms of the conditional probability on the data, D. Following Bayes’ 6 

rule the conditional probability of Θ depending on D can be expressed as: 7 

     ΘDΘDΘ ppp      (1) 8 

where p(Θ|D) is the posterior distribution, p(Θ) is the prior distribution and p(D|Θ) is the likelihood 9 

function (or sampling distribution). 10 

For the purpose of our study here, Θ is the set of parameters of a statistical model. As in Tebaldi et 11 

al. (2004; 2005), the statistical model is constructed based on the assumption that the values of 12 

RRwn95 estimated from the observations and the climate models are normally distributed. The main 13 

difference between the approach suggested here and the approach by Tebaldi et al. (2004; 2005) is 14 

that the climate models are assumed to follow a multivariate normal distribution instead of 15 

independent univariate normal distributions. The use of a multivariate normal distribution allows us 16 

to take into account the interdependency between the climate models.  17 

A multivariate normal distribution is defined for the climate models for both present and future time 18 

periods. The mean of the multivariate normal distributions is considered to be the “true mean” plus 19 

the common bias of the climate models. Additionally, a univariate distribution is defined for the 20 

observations with mean equal to the “true mean” and a known variance. Then, the statistical model 21 

for RRwn95 can be expressed as: 22 
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where M is the total number of climate models; X and Y are vectors of length M containing the 2 

values of the RRwn95 Xm and Ym for all the climate models m = 1, ..., M for present and future 3 

conditions, respectively; XObs is the value of RRwn95 estimated from the observations; μ and ν are 4 

scalars that represent the “true mean” of RRwn95 for present and future conditions; β and λ-1 are 5 

scalars representing, respectively, the common bias and variance of the climate models for present 6 

conditions; α and θ are introduced to account for the fact that the bias and the variance might 7 

change from present to future; R is the correlation matrix of the climate models assumed to be 8 

constant from present to future; σObs
2

 is the variance of the observations. Xm, Ym and XObs are 9 

estimated as the average of RRwn95 over all grid points in the study area. In the following, R, α, and 10 

σObs
 are considered as known. Procedures for assessing these three terms will be given in the 11 

following sections. From Eq. (2) it follows that the likelihood of the data given a set of parameter 12 

values can be estimated as: 13 

        211 ,;,)(;,)(; ObsObsMM Xfffp  RR   1Y1XΘD      (3) 14 

where fM is a multivariate normal probability density function with dimension M, and f is a 15 

univariate normal probability density function;. 16 

The prior distribution, p(Θ), can be expressed as the product of the marginal prior distributions of 17 

all the parameters. For the parameters related to the mean values (μ, ν, and β) the prior distribution 18 

is assumed to be a univariate normal distribution, while a gamma distribution is assumed for the 19 

parameters related to the variances (λ and θ). This selection of prior distributions is based on the 20 

natural conjugate prior families, i.e. the distributional forms for the likelihood and the prior are 21 
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conjugate. Table 2 summarizes the distribution and distribution parameters (hyperparameters) 1 

chosen for each of the parameters. The values of the hyperparameters have been determined to 2 

ensure that marginal prior distributions carry little information. This implies that the data available 3 

are the main factor defining the posterior distribution. Uninformative priors are chosen because we 4 

assume that “a priori” we do not have any knowledge on the distribution of the parameters. Hence, 5 

the parameters chosen for the priors should not affect the results, as long as the prior distributions 6 

are uninformative. The selection of the distributions and their parameters is inspired by the prior 7 

distributions chosen by Tebaldi et al. (2004; 2005) and Buser et al. (2009; 2010).  8 

TABLE 2 SHOULD GO HERE 9 

A Markov Chain Monte Carlo (MCMC) algorithm is applied using Gibbs sampling to infer the 10 

posterior distribution (Gelman et al. 2003). In the Gibbs sampler the value of each parameter is 11 

estimated conditional on the value of all the other parameters using the marginal conditional 12 

probabilities. The conditional probability distributions are shown in Appendix A. A burn-in period 13 

has been used in the MCMC to account for the effect of the starting distribution. As suggested in 14 

Gelman et al. (2003) the first half of the iterations has been discarded. Additionally, the sequence 15 

has been thinned by keeping only one in 15 iterations to avoid dependency within the MCMC. The 16 

independency of the sequence and the convergence of the algorithm have been assessed following 17 

the guidelines in Gelman et al. (2003). For this purpose, 5 sequences of length 100,000 iterations 18 

(after the burn-in period) have been considered. 19 

The approach defined here necessarily relies on a number of subjective assumptions. Two 20 

simplifications considered here contrast with the approaches suggested in the literature, e.g. Tebaldi 21 

et al. (2004; 2005) and Buser et al. (2009; 2010). These are: the use of the same variance and bias 22 

for all the climate models. 23 
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The use of the same variance has been applied for two main reasons. Firstly, the focus of this study 1 

is not to estimate the reliability or weighting of the individual climate models, which would require 2 

considering different variances as suggested by Tebaldi et al. (2004; 2005). Currently, there is no 3 

consensus on the best approach to weight climate models (Knutti et al. 2010; Weigel et al. 2010), 4 

and some of the approaches suggested lead to virtually equal weights, e.g. the approach suggested 5 

in the ENSEMBLES project (Christensen et al. 2010). Secondly, by considering the same variance 6 

for all climate models it is possible to derive the conditional probability for each parameter, which 7 

allows us to use Gibbs sampling.  8 

The bias in the climate models is assumed to be the sum of a common bias and an individual bias, 9 

i.e. for the present period the common bias is β and the individual bias of the model m is Xm - β - μ. 10 

Along with the common bias, the same change in bias α is used for all the climate models. This 11 

differs from the individual biases considered in Buser et al. (2009; 2010). Several studies have 12 

shown that climate models have common biases in the simulation of precipitation (e.g. Boberg, et 13 

al. 2010; Sunyer et al. 2013a).  A drawback of using a common bias is that the individual biases for 14 

the present and future period are assumed independent. This assumption is questionable, but 15 

comparable to the simple model defined in Tebaldi et al. (2004). Here we use this simple model to 16 

illustrate the effects of the interdependency of RCMs and change in bias in the uncertainty 17 

quantification, but further work could focus on identifying such a bias and testing its importance. 18 

The use of common variance and bias reduces the number of parameters significantly. This allows 19 

better identification of model parameters considering the available data. If different parameters 20 

were used for each climate model, the number of parameters would be 2(M-1) higher than in the 21 

statistical model described above, i.e. the statistical model would have 33 parameters instead of 5 22 

parameters. It is not clear how these simplifications affect the results. A possible effect of using a 23 

common bias is that if the RCM biases are very different, the uncertainty in β will be large. This 24 
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will affect the uncertainty in μ and ν, probably by increasing their uncertainty. A similar effect 1 

could occur when applying the same variance in all the models. 2 

b. Variables considered known in the Bayesian statistical model 3 

1) Observed variance 4 

The variance of RRwn95 estimated from the observations, σObs
2, is considered known in the 5 

Bayesian model. Since RRwn95 is given by the regional average of the indices calculated for each 6 

grid point, the variance σObs
2 can be estimated as the average of the variances for the individual grid 7 

points divided by the total number of independent grid points in the region. For each grid point i, σi
2 8 

is calculated by applying the jackknife resampling technique (Miller, 1974; Wilks, 2006), where the 9 

index is recomputed n times using a sub-set of the data which excludes one year of data each time 10 

(n is the number of years in the sample). 11 

As described in Bretherton et al. (1999), the number of independent grid points in the region can be 12 

estimated by dividing the total number of grid points with the decorrelation length defined as the 13 

distance between independent observations. It can be estimated using semivariograms as the 14 

distance at which the semivariance levels off. Here, we use the semivariograms and the 15 

methodology used in Sunyer et al. (2013a,b) to estimate the decorrelation length of the  16 

observational dataset.  17 

It must be noted that here the observed variance, σi
2, is considered to represent the sampling error in 18 

the estimation of RRwn95 rather than a measure of natural variability as in Tebaldi et al. (2004; 19 

2005). Natural variability is not explicitly included in the model as done in Buser et al. (2009; 20 

2010). The model defined in Eq. (2) considers two stationary time slices, control and future period, 21 

i.e. the value of RRwn95 in one time slice does not depend on time. Decadal variability is also not 22 

included in the analysis and cannot be estimated with the data available. Longer observation records 23 



Page 13 of 13 
 

and a reformulation of the model in Eq. (2) would be required to be able to introduce decadal 1 

variability in the analysis. Different ways to define the observed variance exist and one must be 2 

aware that the choice of model may influence the results. 3 

2) Interdependency of RCMs 4 

As described in the previous section, the interdependency of the climate models is included in the 5 

Bayesian approach through the correlation matrix of the climate models, R. This is estimated using 6 

the approach suggested by Pennell and Reichler (2011) to assess the amount of independent 7 

information in an ensemble of climate models. The approach is based on the idea that two models 8 

are not independent because they lead to different results but because they follow different paths to 9 

reach the results. Hence, according to Pennell and Reichler (2011), a suitable approach for assessing 10 

the independency of the climate models is to statistically analyse their errors.  11 

A metric, d, that represents the error of the climate models for present conditions is used to estimate 12 

R. The metric is calculated separately for all the grid points of each climate model. It is estimated 13 

from the values of the individual model error and the ensemble average error, which again are 14 

estimated from the value of RRwn95 obtained from the climate models and the observations for the 15 

present time period. The individual model error is estimated by subtracting the observed values 16 

from the climate model values, and dividing this difference by the standard deviation of the 17 

observations. The standard deviation of the observations at each grid point is estimated as the 18 

interannual variability. The ensemble average error is estimated as the average of the individual 19 

model errors. The metric is then calculated by removing from the individual model error the part 20 

present in the ensemble average error. This is done using the correlation, r, between the individual 21 

model errors and the ensemble average error. For each grid point, i, and climate model, m, the 22 

metric, di,m, is estimated as: 
**

,, immimi ered  , where e*
i,m and *

ie are the standardized values of the 23 
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individual model error and the ensemble average error, respectively. More details on the method 1 

used to estimate d can be found in Pennell and Reichler (2011) and Sunyer et al. (2013a). 2 

The matrix R is then estimated from the values of d obtained for each climate model. The elements 3 

of R are the correlation coefficients corr(d·,m, d·,n), where d·,m  and d·,n are the vectors containing the 4 

value for all the grid points of the models m and n, respectively. In the Bayesian approach the 5 

absolute values of the matrix R are used in the multivariate normal distribution for both present and 6 

future. Hence, it is assumed that a negative correlation also implies that the models are 7 

interdependent. 8 

3) Change in bias 9 

In the statistical model defined in Eq. (2), the possible change in bias is accounted for by the term α. 10 

Boberg and Christensen (2012) suggested a procedure that uses the area-averaged monthly bias 11 

from the RCMs driven by re-analysis data to study biases of RCM simulations. Here we suggest to 12 

modify the procedure and use the value of RRwn95 estimated by the RCMs driven by GCMs and 13 

compare with observations at each grid point to calculate the bias, because the main objective is to 14 

study the biases of the projected values of RRwn95. The procedure is based on two main steps. First, 15 

for each grid point, i, and RCM, m, the bias, ABiasm,i, is estimated as Xm,i-XObs,i. Then, a linear 16 

regression is estimated between ABias·,· and XObs,·, i.e. all the climate models are used to estimate 17 

the linear regression. It must be noted that this approach ignores the fact that the grid points are 18 

correlated. This is expected to have minor influence on the linear regression.  19 

The slope parameter of the linear regression, A, is subsequently used to estimate the change in the 20 

bias, α. Linear regressions are derived for the two seasons and annual data, i.e. a different value of α 21 

is used for winter, summer and annual period. α depends on the constant A and the parameters β, μ, 22 

and ν. α is estimated from the linear regression and Eq. (2) as: 23 
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    (4) 1 

Eq. (4) is used in the MCMC to estimate α in each iteration. It is assumed that the estimated 2 

structure of the bias over the region and the linear regression approach can be used to describe the 3 

change in bias in the future. More elaborate procedures could be developed to assess the possible 4 

change in bias under future conditions. The simple procedure presented here is considered 5 

appropriate to illustrate the effects of change in bias on the uncertainty in climate projections.   6 

4. Results 7 

The results of this study are presented in three parts. First, the main results regarding the 8 

interdependency and the change in bias of the RCMs are described. Second, the results from the 9 

uncertainty quantification are presented and discussed. In the last part, the effects of considering the 10 

interdependency and the bias are investigated. All the results are presented for RRwn95 for winter, 11 

summer and annual period.  12 

a. Interdependency and change in bias of RCMs 13 

The interdependency of the RCMs has been analysed using the correlation matrix, R. The average 14 

of all the elements in R (without considering the diagonal) is 0.25 in winter, 0.20 in summer and 15 

0.27 in the annual period. The minimum and maximum correlations found are 0 and 0.68 in winter, 16 

0 and 0.74 in summer, and 0 and 0.80 in the annual period, respectively. The average values for the 17 

three periods are similar, with the average for the summer period slightly lower. The maximum 18 

value found is slightly higher in the annual period. The maximum correlations found for each period 19 

correspond to different RCM-GCM combinations. In winter the highest correlation is found for two 20 

RCM-GCMs with different RCM and GCM (RCA-HadCM3 and RACMO-ECHAM5); in summer 21 

for two RCM-GCMs driven by the same GCM (RegCM-ECHAM5 and HIRHAM-ECHAM5); and 22 

 


 
A

1
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in the annual period for two RCM-GCMs from the Hadley centre (HadRM3Q16-HadCM3Q16 and 1 

HadRM3Q0-HadCM3Q0).  2 

The pairs of RCM-GCMs leading to correlations higher than 0.6 are compared for the three periods 3 

to assess whether high correlation between the RCM-GCMs arises from the same RCM driven by 4 

different GCMs, or vice versa. In the winter period, high correlations are obtained for five pairs of 5 

RCM-GCMs, three pairs of RCM-GCMs with the same RCM but different GCMs, and two pairs of 6 

RCM-GCMs with different RCMs and GCMs. In the summer period, high correlations are found 7 

for two pairs of RCMs driven by the same GCM and for three pairs of RCM-GCMs with different 8 

RCMs and GCMs. In the annual period, high correlations are found for four pairs of RCM-GCMs 9 

with the same RCM and different GCMs, two pairs with different RCMs and GCMs, and one pair 10 

of two RCM-GCMs from the Hadley centre. In general, there are more combinations with the same 11 

RCM but different GCMs leading to high correlations than different RCMs driven by the same 12 

GCM. In addition, some RCM-GCMs using different RCMs and GCMs also lead to high 13 

correlations. This indicates that other factors than the RCM or GCM used have a large influence on 14 

the correlation between RCM-GCMs. A detailed analysis of these factors is outside the scope of this 15 

study and is not addressed further here. 16 

The results show that the RCMs are interdependent and that there are no significant differences 17 

between the degree of interdependency for the summer, winter and annual period. It must also be 18 

noticed that in the three periods some RCMs are found to be uncorrelated. A more detailed analysis 19 

of the interdependency of this ensemble of RCMs over Denmark can be found in Sunyer et al. 20 

(2013a). 21 

The change in bias is estimated using the bias of the RCMs over the region. Figure 1 shows the 22 

linear regression found between the bias and the observations for winter, summer and annual 23 
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period. The figure shows both the linear regression fitted for each of the RCMs individually and the 1 

linear regression fitted considering all the RCMs together. For all three periods, all the individual 2 

linear regressions show a decrease and a shift in the sign of the bias for increasing precipitation. The 3 

negative slope from the linear regression considering all the RCM-GCMs together is more 4 

pronounced in the summer period. The values of the slope, A, from the linear regression that will be 5 

used in the MCMC to estimate α are -0.54, -0.78 and -0.57 for winter, summer and annual period, 6 

respectively.  7 

FIGURE 1 SHOULD GO HERE 8 

For both seasons and the annual period, the correlation found between the RCMs and the bias 9 

depending on the precipitation value point towards the invalidity of assuming independency and 10 

constant bias. Hence, it is important to include these two results in the uncertainty quantification. 11 

The results show that there is a similar interdependency of the RCMs for the three periods, but that 12 

the change in bias is more pronounced for the summer period.  13 

b. Uncertainty quantification 14 

This section presents the probability distributions estimated for the parameters of the statistical 15 

model described in the methodology section. The convergence and autocorrelation of the outputs 16 

from the Gibbs sampling have been analysed, leading to the conclusion that convergence was 17 

reached and that the outputs are not autocorrelated (results not shown). Hence, the results from the 18 

sampling algorithm can be used to estimate the marginal and joint posterior distributions of the 19 

parameters.  20 

First, the assumption of normal distributions in Eq. (2) is analysed. Figure 2 compares the values of 21 

X and Y with theoretical values from a normal distribution. For simplicity the interdependency of 22 
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the RCMs is not considered here. All the values of X and Y fall within the 95% confidence limits, 1 

and hence they can be considered to approximately follow a normal distribution.  2 

FIGURE 2 SHOULD GO HERE 3 

Figure 3 shows the marginal posterior and prior distribution for each of the parameters for winter, 4 

summer, and annual period. The values of RRwn95 found for each of the RCMs and the 5 

observations are also shown. For all the parameters and for all three periods, the prior and the 6 

posterior distributions are noticeably different. This shows that the data inputs to the model (X, Y, 7 

XObs, σObs, R, and A) exert the main influence on the posterior distribution.  8 

For the winter period, XObs lies well within the range of the values from the RCMs, while for the 9 

summer and annual periods most of the RCMs have smaller values than the observations. The larger 10 

difference between RCMs and observations found for the summer period is likely to be due to the 11 

nature of extreme events in summer, which are mainly caused by convective precipitation. RCMs 12 

are better at representing extreme events caused by frontal precipitation than convective 13 

precipitation (e.g. Herrera et al. 2010; Fowler et al. 2005). In agreement with the results found here, 14 

several studies have shown that RCMs have larger biases and inter-model differences in the summer 15 

period (Frei et al., 2006; Kendon et al. 2008; Fowler and Ekström, 2009).  16 

For the three periods, the posterior distributions of μ are sharp compared to the individual values 17 

from the RCMs. This is because the standard deviation estimated for the observations is 18 

considerably smaller than the spread of the values from the RCMs. For the summer and annual 19 

period this is also due to the influence of the bias in some RCMs. σObs is 0.20, 0.30 and 0.15 mm 20 

day-1 for winter, summer and annual period, respectively. Small values of σObs lead to less 21 

uncertainty in the parameter μ. Conversely, all the values of the RCMs are encompassed in the 22 

posterior distribution of ν. This is a combined effect of the fact that the value of σObs does not affect 23 
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this parameter and that all the RCMs have the same weight. It must also be noted that the median of 1 

the distributions increases from present to future for both winter and annual periods, but decreases 2 

for the summer period.  3 

The bias found for the RCMs is centred on approximately 0 mm day-1 for the winter period (the 4 

median is -0.01 mm day-1). For the summer and annual period, the medians of the bias are -2.25 and 5 

-1.86 mm day-1, respectively. The uncertainty in this parameter is larger for the summer and annual 6 

period than for the winter period. The values of the 5th and 95th percentiles are -1.28 and 1.14 mm 7 

day-1 for the winter period, -4.68 and 0.40 mm day-1 for the summer period, and -3.74 and 0.16 mm 8 

day-1 for the annual period. This shows that the RCMs have a tendency towards underestimation of 9 

extreme precipitation for both the summer and the annual period. This is likely due to the 10 

underestimation of extreme events caused by convective precipitation as discussed above. The 11 

distributions for these two periods resemble bimodal distributions, where one mode corresponds to 12 

a negative bias and the other is approximately at 0 mm day-1. This is likely due to the fact that the 13 

distribution of the bias is dependent on both the values found for present and future climate. For the 14 

present climate the bias found is negative, while in the future climate due to the lack of observations 15 

the bias tends to 0 mm day-1.  16 

The distribution of λ, which represents the reliability (the inverse of the variance) of the RCMs for 17 

present climate, varies depending on the period. Both the median and the spread are higher for 18 

winter than for summer and annual period. This reflects a lower reliability of the RCMs for these 19 

two periods. The lowest values are found for the summer period. This is due to the larger 20 

differences between the RCMs for this period. The median of the posterior distribution of λ for the 21 

winter period is 0.63 mm-2 day2. This corresponds to a standard deviation of 1.27 mm day-1, which 
22 

is considerably higher than the estimated standard deviation of the observational dataset. The same 23 

is observed for the summer and annual period, where the median of λ corresponds to a standard 24 
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deviation of 3.03 mm day-1 and 2.32 mm day-1, respectively. These results are in agreement with the 1 

general perception that the reliability of the observations should be higher than for the RCMs.  2 

The distribution of θ, which represents the change in the reliability from present to future climate, 3 

also varies depending on the period considered. The median for the winter period is 1.02, pointing 4 

to a small change in the reliability. However, the values range from a decrease to an increase in the 5 

reliability (5th percentile of 0.41 and a 95th percentile of 2.65). As in the case of λ, lower values and 6 

lower uncertainty are found for the summer and annual period. The medians are 0.41 and 0.44, the 7 

5th percentiles 0.17 and 0.18, and the 95th percentiles 1.03 and 1.10 for the summer and the annual 8 

period, respectively. For these two periods, most of the values are lower than one. This is caused by 9 

the larger inter-model differences in the future period and shows the decrease in the reliability of the 10 

RCMs. 11 

Figure 3 also shows the mean of the parameters obtained using the Bayesian and frequentist 12 

approach; the values for all the parameters are virtually the same except for β in winter and θ. A 13 

more detailed comparison and description of the differences between the two approaches can be 14 

found in Appendix B. 15 

FIGURE 3 SHOULD GO HERE 16 

The marginal posterior distributions of the parameters provide information about the uncertainty 17 

and the expected value of the parameters. Moreover, the joint posterior distribution of the 18 

parameters provides information about the relation between the parameters. Figure 4  shows the 19 

histogram for each of the parameters and the scatter plot of all the combinations of pairs of 20 

parameters for the summer period. It also shows the correlation coefficient for each pair of 21 

parameters.  22 
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The mean values for present and future conditions are practically uncorrelated. This is due to the 1 

small contribution of the RCMs in the distribution of μ compared to observations, and differs from 2 

the correlation between the values for the present and future obtained from the RCMs. These two 3 

parameters (μ and ν) have a negative correlation with β. This result follows both from Eq. (2) and 4 

from the analysis of the conditional probability of β (see Appendix A). The conditional probability 5 

shows that for small values of μ and ν the bias will be positive (i.e. RCMs overestimate), while for 6 

large values the bias will be negative (i.e. RCMs underestimate). This is also in agreement with the 7 

values found from the analysis of change in bias.  8 

The three parameters μ, ν, and β are not correlated with the parameters λ and θ. However, it can be 9 

observed that for high values of λ the range of μ, ν, and β decreases. The same relation is observed 10 

between these parameters and θ. This can be interpreted as: the uncertainty in μ, ν, and β is low 11 

when the reliability in the RCMs is high (high values of λ and θ). The same interpretation can be 12 

drawn from the analysis of the conditional probabilities. The parameters λ and θ also show the 13 

expected relationship. For higher values of λ, smaller values of θ and vice versa. Similar 14 

correlations were obtained for the winter and annual period (results not shown). 15 

When using the priors shown in Figure 3 some posterior values of ν are negative, which cannot be 16 

interpreted physically. The probability of obtaining a negative value is very low (approximately 17 

0.2%) and could be avoided by using slightly more informative priors.  18 

FIGURE 4 SHOULD GO HERE 19 

c. Effect of interdependency and change in bias 20 

The previous section analyses the uncertainty and joint distribution of the parameters in the 21 

statistical model. This section focuses on the effects of taking into account the interdependency and 22 

change in bias of the RCMs. A set of tests using different assumptions have been defined for this 23 
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purpose. First, three tests considering either independency or interdependency and change in bias or 1 

constant bias are carried out. Then, a total of 45 tests are run using different levels of 2 

interdependency and change in bias of the RCMs. The main output analysed from these tests is the 3 

change in RRwn95 from present to future. This change, referred to as change factor (CF), is defined 4 

as the relative change between μ and ν, i.e. CF = ν/μ. The value of CF has been estimated in each of 5 

the iterations of the MCMC runs from which the distribution of CF has been derived.  6 

Figure 5 shows the results from the first three tests: (1) the RCMs are independent and the bias 7 

constant, (2) the RCMs are interdependent and the bias constant, (3) the RCMs are interdependent 8 

and the bias changes from present to future. This last test is the one for which the results have been 9 

analysed in detail in the previous section. In the test assuming that the RCMs are independent, R is 10 

set equal to the identity matrix. Similarly, in the tests where the bias is assumed constant A is set to 11 

0 (i.e. α equal to 1). Figure 5 shows the marginal posterior distributions for μ, ν and, CF for the 12 

three different tests for winter, summer, and annual period.  13 

For μ, the posterior distributions obtained for the three tests are similar. The median as well as the 14 

5th and 95th percentiles for the three tests differ less than 0.1 mm day-1 for all the periods. Larger 15 

differences are found in the distributions of ν. The uncertainty in ν found for the test assuming 16 

independency is smaller than for the other tests. This is due to the fact that less independent 17 

information is considered in the tests assuming interdependency. This leads to a lower reliability in 18 

the RCMs, which in turn leads to higher uncertainty in ν. The effects of assuming constant or 19 

changing bias are also noticed in the distribution of ν. The change in bias has different effects 20 

depending on the season. In winter and annual periods, the median of ν increases due to a more 21 

negative bias. The median of αβ in winter and annual periods is -0.56 and -3.74 mm day-1, 22 

respectively. In the summer period, the bias in the future period (the median of αβ is -2.35 mm day-
23 

1) is approximately equal to the bias in the present period. This leads to values of ν similar to when 24 
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the bias is considered constant. Additionally, for the winter summer and annual period, the 1 

uncertainty in ν increases when the change in bias is introduced. This is due to an increase in the 2 

uncertainty of the bias for the future period. 3 

A similar difference as the one obtained for ν between the three tests is observed in the results for 4 

CF. The uncertainty of this variable is higher for the tests accounting for the interdependency of the 5 

RCMs for all the periods. In addition, the uncertainty is also higher for the test accounting for 6 

change in bias. The median of CF depends on the test. In all seasons, the median of CF in the test 7 

assuming independency is similar to the median estimated directly from the RCMs (for climate 8 

model m, CFm is estimated as Ym/Xm). In the winter period, a larger median is obtained when the 9 

change in bias and interdependency are taken into account. For this season, large differences are 10 

also observed for the 5th and 95th percentiles being: 1.11 and 1.21 for test (1); 1.02 and 1.26 for test 11 

(2); and 1.01 and 1.47 for test (3). Even though the uncertainty in the tests where interdependency is 12 

taken into account is larger, all tests show an increase of extreme precipitation for winter at a 5% 13 

level of significance. 14 

For the summer period, similar differences as in ν are obtained in CF. As in the winter period, the 15 

comparison of the 5th and 95th percentiles points out the differences in the uncertainty of CF being: 16 

0.98 and 1.13 for test (1); 0.78 and 1.25 for test (2); and 0.60 and 1.40 for test (3). For this season, 17 

the tests do not agree on the direction of the change. Similar results are obtained for the annual 18 

period regarding the uncertainty in CF. The values of the median found for this period are 1.09, 19 

1.10 and 1.22 for test (1), (2), and (3), respectively. The 5th and 95th percentile for tests (2) and (3) 20 

vary between a decrease and an increase of extreme precipitation, while the values for test (1) point 21 

to an increase of extreme precipitation. In summary, for the summer and annual period, even though 22 

most of the RCMs point towards an increase in extreme precipitation, the interdependency between 23 
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the RCMs means that (given the information available) a hypothesis of a decrease in extreme 1 

precipitation cannot be rejected on the 5% significance level.  2 

FIGURE 5 SHOULD GO HERE 3 

Appendix B compares the standard errors of μ, ν, and CF and describes the differences between the 4 

two approaches. 5 

The difference obtained for the three tests can be further analysed by considering the joint 6 

distributions of μ and ν. Figure 6 compares the scatter plots obtained for each of the tests. The 7 

correlation between the two parameters is higher for the test where the RCMs are assumed 8 

independent. For example, for the summer the correlation coefficient is 0.32 for test (1) and 0.1 for 9 

test (2) and (3). In other words, for a specific value of μ the range of possible values of ν is larger in 10 

the tests where the interdependency of the RCMs is taken into account. This contributes to the 11 

higher uncertainty of CF found for these tests. Figure 6 also highlights the differences in the 12 

uncertainty for winter, summer and annual period. As shown in Figure 5, for all three tests, the 13 

range of values of ν in the winter period is considerably smaller than the range of values obtained 14 

for summer and annual period. In the case of μ, the range of values obtained for the annual period is 15 

smaller than for the winter and summer period. This is due to the lower variance of the observations 16 

for this period. Additionally, the correlation between μ and ν is higher for the three tests for the 17 

winter period. This shows that, in agreement with the results found in Figure 3 and Figure 5, there is 18 

a lower uncertainty in the winter of CF.  19 

FIGURE 6 SHOULD GO HERE 20 

In order to study in more detail the influence of the interdependency and the changes in the bias, 45 21 

MCMC simulations have been run using different values of R and A. In these simulations, artificial 22 

values of R and A are used. In R, the same correlation coefficients are used for all the pairs of 23 
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RCMs ranging from 0 to 0.8 (all the values in the diagonal are kept equal to 1). The values of A are 1 

set to range between -0.8 to 0.8. The mean and the standard deviation of CF are analysed for each of 2 

these simulations. Due to the use of artificial values of R and A, the results of these 45 simulations 3 

cannot be directly compared to the results of the three tests described above, except in the case of 4 

independency and constant bias (test 1).  5 

Figure 7 summarizes the results of the 45 MCMC simulations for the annual period. The y- and x-6 

axes display the values used to define R and A, respectively. The results show that the uncertainty 7 

in CF is influenced by both R and A. The standard deviation of CF increases for higher values of R 8 

and it decreases for smaller absolute values of A. This is in agreement with the results from the 9 

three tests. The mean CF is also influenced by both R and A, but in this case the main influence is 10 

the value of A. The mean CF decreases for increasing values of A ranging from -0.8 to 11 

approximately 0.4, and it increases for increasing values of A higher than 0.4. The mean values of 12 

CF range from virtually no increase (mean CF equal to 1.03) to an increase of 40%, and the 13 

standard deviation varies from 0.03 to 0.86. The two smallest standard deviations are obtained for 14 

the cases where the models are considered independent and A equal to 0.2 and 0 (test (1)), while the 15 

largest standard deviation is obtained for correlations of 0.8 and A equal to -0.8. 16 

FIGURE 7 SHOULD GO HERE 17 

5. Conclusions 18 

A Bayesian approach based on a multi-model ensemble of RCMs has been developed to assess the 19 

uncertainty in extreme precipitation projections over Denmark. This approach accounts for both 20 

interdependency and linear changes in the bias of the RCMs. The results of the Bayesian approach 21 

are compared to estimates calculated based on a frequentist approach.  22 
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The analyses of the outputs from the RCMs show that, for the region of study, both the assumption 1 

of independency and constant bias are unlikely to be valid. Hence, interdependency and change in 2 

bias are included in the uncertainty estimation. The uncertainty estimated for RRwn95 is higher for 3 

summer than for winter both for the present and future time period. This is due to the higher 4 

reliability in the values of the RCMs for winter and a lower observed variance. The lower reliability 5 

in the summer period is explained by the larger differences between the RCMs and between the 6 

RCMs and the observations. For the annual period, the uncertainty for the present is lower than for 7 

the winter period, but it is higher for the future period. The change estimated from present to future 8 

is more uncertain for the summer and annual period than for the winter. The change in the 9 

distribution median points towards an increase in extreme precipitation for winter and annual 10 

period, and to approximately no change in extremes for the summer period.  11 

The influence of accounting for the interdependency and the change in bias of the RCMs has been 12 

tested. These two assumptions do not affect significantly the distribution of the mean of RRwn95 for 13 

the present. However, they largely affect the distribution for the future period, which again 14 

influences the distribution of the change factor. A higher uncertainty in the change factor is 15 

obtained when the interdependency and change in bias of the RCMs is taken into account.  16 

The methods used to estimate the interdependency and the change in bias are subject to several 17 

assumptions and uncertainties. Therefore, a total of 45 MCMC simulations have been run using 18 

different (artificial) levels of interdependency and change in the bias of the RCMs. The uncertainty 19 

of the change factor increases for higher RCM correlations and it decreases for smaller absolute 20 

values of the change in bias. The mean CF is also influenced by both the interdependency and 21 

change in bias, but mainly by the change in bias.  22 
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The results of this study highlight the importance of the assumptions taken in uncertainty estimation 1 

methods for climate change impact studies. In this case study, the assumption of independency and 2 

constant bias of the climate models has led to lower uncertainty estimates of the change in extreme 3 

precipitation in comparison to the more realistic assumption of interdependency and change in bias. 4 

This highlights the risk of reaching overconfident results, which may lead to overconfident 5 

decisions regarding adaptation to climate change.  6 

The approach presented here addresses some of the assumptions often taken in uncertainty 7 

estimation methods for climate change projections. It suggests a way in which the interdependency 8 

and change in bias can be introduced in the uncertainty quantification of climate model projections. 9 

However, there are still remaining challenges and further work is needed to address some of the 10 

limitations of this approach. The approach could be further extended by relaxing some of the 11 

assumptions such as the constant interdependency of the RCMs from present to future, 12 

independency between individual errors from present to future, the assumption of a common bias of 13 

the RCMs, or the definition of observed variance. Hence, the specific results found here should be 14 

treated with care. The main message of this study is the need to include the interdependency of 15 

climate models and change in bias in the uncertainty quantification of climate change projections.  16 
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APPENDIX A 1 

Full conditional probabilities 2 

The full conditional probabilities for each of the parameters are: 3 
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where aλ and aθ are the shape parameters of the prior distribution of λ and θ, respectively; bλ and bθ 2 

are the  scale parameters of the prior distribution of λ and θ, respectively; μ0 and σ2
μ are the mean   3 

and variance of the prior distribution of μ; ν0 and σ2
ν are the mean and variance of the prior 4 

distribution of ν; β0 and σβ
2

 are the mean and variance of the prior distribution of β; sm,p is the 5 

element [m,p] of the inverse of the correlation matrix of the RCMs, R-1. Ga(a,b) denotes a gamma 6 

distribution with shape a and scale b and N(c,d2) denotes a normal distribution with mean c and 7 

variance d2. 8 

 9 

 10 

  11 
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APPENDIX B 1 

Frequentist approach 2 

To estimate the parameters of the model defined in Eq. (2) using the frequentist approach a re-3 

parameterization of the model is needed. The re-parameterized model considers five parameters: μ, 4 

μX, μY, σX
2, and σY

2 and can be expressed as: 5 

)(~
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),(~

2

2

2

R1Y

R1X

YY

XX
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 6 

The new set of parameters is defined using the parameters in Eq. (2) as: 7 

12
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 8 

Following the frequentist approach the parameters in the re-parameterized model can be estimated 9 

as: 10 

;
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 11 

and the variance of the main estimated parameters ( ̂ , X̂  and Y̂ ) is: 12 

1R1
   

1R1
   

1-T1-T

22
2 ˆ

)ˆvar(;
ˆ

)ˆvar(;ˆ)ˆvar( Y
Y

X
XObs





   13 

Then, the estimates of the parameters in Eq. (2) can be obtained as: 14 
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and the standard error of ̂ , ̂ , and ̂ : 2 
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It must be noted that the standard error of ̂  is estimated assuming independency between ̂ , X̂  4 

and Y̂ , and that the standard error of ̂  assumes independency between ̂  and X̂ . The standard 5 

errors of the parameter estimates ̂  and ̂  can be estimated from the inverse of 2ˆ X  and 2ˆY . From 6 

the re-parameterised model it can be found that the inverse of 2ˆ X ,  i.e. ̂ ,  follows a gamma 7 

distribution with variance: 8 

       1R1 1-T 2
)()(22)ˆ(


 XX XXMSE   9 

The variance of the inverse of 2ˆY  can be estimated in a similar way. The variance of  ̂  can be 10 

estimated using independent draws from these distributions. 11 

Finally, the mean of CF can be found from ̂ / ̂ .  The standard error can be obtained using 12 

independent draws from the distributions of ̂  and ̂ , which follow a normal distribution with 13 

mean ̂  and ̂  and variance  2
ˆ )(SE   and 2

ˆ )(SE  , respectively. 14 

In addition to the difference in the interpretation of probability in the Bayesian and frequentist 15 

approach, there are two other differences to be noted. First, it is not possible to estimate the 16 

probability density function of the parameters from the frequentist approach. Secondly, the 17 
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frequentist approach does not require MCMC or the use of priors which might have an influence on 1 

the results. These differences should be kept in mind when comparing the results of the two 2 

approaches.  3 

Comparison of Bayesian and frequentist approach 4 

The comparison of the results obtained using the frequentist and Bayesian approach helps to address 5 

the influence of the priors and MCMC in the results of the Bayesian approach. Figure B1 shows the 6 

mean and standard error estimated using the frequentist approach and the Bayesian approach for the 7 

three tests (see description of the tests in section 4.c).  8 

FIGURE B1 SHOULD GO HERE 9 

The mean and standard error of μ for the three tests and for the three periods are virtually the same 10 

in the frequentist and Bayesian approach. For the other parameters, the results of the mean and 11 

standard error are also similar, but slight differences are seen between the two approaches.     12 

The largest differences between the mean of ν obtained using the Bayesian and the frequentist 13 

approach is 0.02, 0.4 and 0.03 mm day-1 in winter, summer, and annual period, respectively. In the 14 

case of the mean of β, the largest differences are 0.16, 0.1, and 0.05 mm day-1, in winter, summer, 15 

and annual period, respectively.  The largest differences in the mean of ν and β are obtained for test 16 

(3). A possible reason for the differences in β is the fact that in the re-parameterized model β is 17 

estimated from XObs and X, while in the Bayesian model in Eq. (2) β is also influenced by Y. The 18 

standard errors of ν and β are similar for the two approaches. In some cases it is slightly larger for 19 

the Bayesian approach, and in others it is larger in the frequentist approach (e.g. ν in test (3) in 20 

winter and annual period). 21 
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The mean and standard errors of λ are also very similar in the two approaches. The largest 1 

differences are seen in the mean of θ, which is smaller in the frequentist approach. The largest 2 

difference is obtained for the winter period, in this case the Bayesian approach leads to 1.22 and the 3 

frequentist approach to 1.01 (which is approximately equal to the median of θ in the Bayesian 4 

approach). For this parameter similar differences between the frequentist and Bayesian approach are 5 

obtained for the three tests.  6 

The mean and standard error of CF are similar in the two approaches. As in the case of ν, the largest 7 

difference between the two approaches is found for the mean CF for summer and test (3). In this 8 

case, the Bayesian approach leads to a mean CF of 1.02 and the frequentist approach leads to 1.04. 9 

The differences in the standard errors are similar to the ones found for ν and β. 10 

The influence of the re-parameterization has been assessed by applying the Bayesian inference 11 

technique (use of Gibbs sampling and priors shown in Table 2) defined in section 3 to the re-12 

parameterized model. In this case, the largest difference between the Bayesian and frequentist 13 

approaches in the mean of ν, β, and θ is 0.07 mm day-1, 0.02 mm day-1, and 0.004, respectively.  14 

There are several reasons for which differences in the parameters arise between the two approaches. 15 

These include: the priors selected in the Bayesian approach, the convergence of the MCMC in the 16 

Bayesian approach, and the re-parameterization of the model used in the frequentist approach. 17 

Nonetheless, Figure B1 shows that the differences between the Bayesian and frequentist approach 18 

are small and do not affect the conclusions of this study.  19 

  20 
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Table 1 - List of RCMs used in this study, driving GCMs, and source of the RCMs. 1 

RCM GCM Institute 

HIRHAM5  ARPEGE  

Danish Meteorological Institute  HIRHAM5  ECHAM5  

HIRHAM5  BCM  

REMO  ECHAM5  Max Planck Institute for Meteorology  

RACMO2  ECHAM5  Royal Netherlands Meteorological Institute  

RCA  ECHAM5 

Swedish Meteorological and Hydrological Institute  RCA  BCM  

RCA  HadCM3Q3  

CLM  HadCM3Q0  Swiss Federal Institute of Technology, Zürich  

HadRM3Q0  HadCM3Q0  

UK Met Office  HadRM3Q3  HadCM3Q3  

HadRM3Q16  HadCM3Q16  

RCA3  HadCM3Q16  Community Climate Change Consortium for Ireland  

RM5.1  ARPEGE  National Centre for Meteorological Research in France  

RegCM3  ECHAM5  International Centre for Theoretical Physics  

 2 

  3 
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Table 2 Prior distributions and hyperparameters. In the case of normal distribution the parameters 1 

are the mean and variance. In the case of gamma distribution the parameters are the shape and scale. 2 

Parameter Distribution Mean/Shape Variance/Scale 

μ Normal XObs 1000 

ν Normal )1/()(  AXYX obs  1000 

β Normal 
obsXX   1000 

λ Gamma 0.001 1/0.001 

θ Gamma 0.001 1/0.001 

  3 
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Figure caption list 1 

Figure 1 – Linear regressions between the bias, ABias.,., and observations, XObs,., for winter, summer 2 

and annual period. The grey lines show the linear regressions fitted to each RCM individually, the 3 

black lines show the linear regressions fitted considering the biases of all the RCMs together. The 4 

dots show the values estimated for all grid points and all RCMs. The figure illustrates how α is 5 

estimated from the values of μ, ν, and β. 6 

Figure 2 – X (grey points) and Y (black points) vs. theoretical values of a normal distribution for 7 

winter, summer and annual period. The thick lines show the identity line. The thin lines represent 8 

the 95% confidence limits. 9 

Figure 3 – Figure 3 –Posterior (black line in primary y-axis) and prior (grey shaded area in 10 

secondary y-axis) probability density functions of the five parameters in the model (μ, ν, β, λ, and θ) 11 

for winter, summer and annual period. The grey dots are the outputs from each of the RCMs and the 12 

black dots are the values estimated from the observations. The vertical thick dashed lines represent 13 

the median, while the thin lines represent the 5th and 95th percentiles. The black and grey solid lines 14 

represent the mean obtained using the Bayesian and frequentist approach, respectively. 15 

Figure 4 - Scatter plots for all the pairs of parameters and histograms of the marginal posterior 16 

distributions of each parameter for the summer period. In the diagonal from top left to bottom right: 17 

μ [mm day-1], ν [mm day-1], β [mm day-1], λ [mm-2 day2], and θ [-]. The values of RRwn95 obtained 18 

from the RCMs for present and future period are also shown in the scatter plot for the pair of 19 

parameters [μ, ν]. 20 

Figure 5 – Marginal posterior distributions of μ, ν, and CF for three different tests. The grey dots are 21 

the outputs from each of the RCMs and the black dots are the values estimated from the 22 

observations. The vertical thick line represents the median, while the thin lines represent the 5th and 23 
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95th percentiles. The dotted line indicates CF equal to 1, while the dash-dotted line shows the 1 

median of the CFs estimated from the RCMs in the ensemble. 2 

Figure 6 – Scatter plot for μ and ν for three different tests for the winter, summer, and annual 3 

period. 4 

Figure 7 – Median and standard deviation of CF for a set of tests. The y- and x-axes show the 5 

factors that are multiplied to R and A, respectively. The colour of the circles indicates the 6 

distribution median and the size of the circles indicates the standard deviation. Larger circle sizes 7 

correspond to higher standard deviation. The number 1, 2, and 3 indicate the three tests analysed in 8 

detail 9 

Figure B1 – Mean and standard error of the parameters in Eq. (2) and CF estimated using a 10 

Bayesian (black) and frequentist approach (grey) for the three tests described in section 4.c. The 11 

circles indicate the mean and the lines represent the standard error (the total length of the line is 12 

equal to the standard error).  13 

 14 

  15 
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 1 

Figure 1 – Linear regressions between the bias, ABias.,., and observations, XObs,., for winter, summer 2 

and annual period. The grey lines show the linear regressions fitted to each RCM individually, the 3 

black lines show the linear regressions fitted considering the biases of all the RCMs together. The 4 

dots show the values estimated for all grid points and all RCMs. The figure illustrates how α is 5 

estimated from the values of μ, ν, and β.6 
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 1 

Figure 2 – X (grey points) and Y (black points) vs. theoretical values of a normal distribution for 2 

winter, summer and annual period. The thick lines show the identity line. The thin lines represent 3 

the 95% confidence limits. 4 
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 1 

Figure 3 –Posterior (black line in primary y-axis) and prior (grey shaded area in secondary y-axis) 2 

probability density functions of the five parameters in the model (μ, ν, β, λ, and θ) for winter, 3 

summer and annual period. The grey dots are the outputs from each of the RCMs and the black dots 4 

are the values estimated from the observations. The vertical thick dashed lines represent the median, 5 

while the thin lines represent the 5th and 95th percentiles. The black and grey solid lines represent 6 

the mean obtained using the Bayesian and frequentist approach, respectively. 7 
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   1 

Figure 4 - Scatter plots for all the pairs of parameters and histograms of the marginal posterior 2 

distributions of each parameter for the summer period. In the diagonal from top left to bottom right: 3 

μ [mm day-1], ν [mm day-1], β [mm day-1], λ [mm-2 day2], and θ [-]. The values of RRwn95 obtained 4 

from the RCMs for present and future period are also shown in the scatter plot for the pair of 5 

parameters [μ, ν]. The number shown in the plots is the linear correlation coefficient. 6 

  7 
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 1 

Figure 5 – Marginal posterior distributions of μ, ν, and CF for three different tests. The grey dots are 2 

the outputs from each of the RCMs and the black dots are the values estimated from the 3 

observations. The vertical thick line represents the mean, while the thin lines represent the 5th and 4 

95th percentiles. The dashed line indicates CF equal to 1, while the dash-dotted line shows the 5 

median of the CFs estimated from the RCMs in the ensemble. 6 
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 1 

 2 

Figure 6 – Scatter plot for μ and ν for three different tests for the winter, summer, and annual 3 

period. 4 
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 1 

Figure 7 – Mean and standard deviation of CF for a set of tests. The y- and x-axes show the values 2 

used to define the correlation coefficients in R and A, respectively. The colour of the circles 3 

indicates the distribution mean and the size of the circles indicates the standard deviation. Larger 4 

circle sizes correspond to higher standard deviation.                 5 
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 1 

Figure B1 – Mean and standard error of the parameters in Eq. (2) and CF estimated using a 2 

Bayesian (black) and frequentist approach (grey) for the three tests described in section 4.c. The 3 

circles indicate the mean and the lines represent the standard error (the total length of the line is 4 

equal to the standard error).  5 
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