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Summary

Algebraic curves are used in many different areas, including error-correcting
codes. In such applications, it is important that the algebraic curve C
meets some requirements. The curve must be defined over a finite field
Fq with q elements, and then the curve also should have many points over
this field. There are limits on how many points N(C) an algebraic curve
C defined over a finite field can have. An invariant of the curve which
is important in this context is the curve’s genus g(C). Hasse and Weil
proved that N(C) ≤ q + 1 + 2

√
qg(C) and this bound can in general not

be improved. However if the genus is large compared with q, the bound
can be improved. Drinfeld and Vladut showed the asymptotic result:

A(q) := lim sup
g(C)→∞

N(C)

g(C)
≤ √q − 1.

The quantity A(q) is called Ihara’s constant. If q is a square, it is known
that A(q) =

√
q− 1, while the value of the A(q) is unknown for all other

values of q.

In this thesis, we study a construction using Drinfeld modules that pro-
duces explicitly defined families of algebraic curves that asymptotically
achieve Ihara’s constant. Such families of curves can also be described
using towers of function fields. Restated in this language the aim of the
project is to find good and optimal towers. Using the theory of Drin-
feld modules and computer algebraic techniques, some new examples of
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good towers are obtained. We analyse towers of Drinfeld modular curves
describing certain equivalence classes of rank 2 Drinfeld modules. Using
rank 3 Drinfeld modules further examples of good towers are produced.



Resumé

Algebraisk kurver anvendes i forskellige omr̊ader, blandt andet fejlretten-
de koder. I s̊adanne anvendelser er det vigtigt at den algebraiske kurve C
opfylder nogle krav. Kurven skal være defineret over et s̊akaldt endeligt
legeme Fq med q elementer, og s̊a skal kurven ogs̊a have s̊a mange punkter
som muligt over dette endelige legeme. Der er dog grænser p̊a hvor man-
ge punkter N(C) en algebraisk kurve C defineret over et endeligt legeme
kan have. En invariant af kurven som er vigtigt i denne sammenhæng er
kurvens genus g(C). Hasse og Weil har vist at N(C) ≤ q+ 1 + 2

√
q g(C)

og denne grænse kan generelt ikke forbedres. Men hvis genus bliver stort
i forhold til q, kan grænsen forbedres og Drinfeld og Vladut har vist det
asymptotiske resultat:

A(q) := lim sup
g(C)→∞

N(C)

g(C)
≤ √q − 1.

Konstanten A(q) kaldes for Ihara’s konstant. Hvis q er et kvadrat, vides
at A(q) =

√
q− 1, mens værdien af A(q) er ukendt for alle andre værdier

af q.

I denne afhandling undersøges en konstruktion vha. Drinfeld moduler
som producerer eksplicit beskrevne familier af algebraiske kurver som
asymptotisk opn̊ar Ihara’s konstant. S̊adanne familier af kurver kan ogs̊a
beskrives som t̊arne af funktionslegemer. Omformuleret til dette sprog
handler projektet om at find gode og optimale t̊arne. Vha. teorien af
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Drinfeld moduler samt komputer algebraiske tekniker, angives en del nye
eksempler af gode t̊arner. Der analyseres ogs̊a t̊arne af Drinfeld modulære
kurver som beskriver visse ækvivalensklasser af rang 2 Drinfeld modu-
ler. Ved brug af rang 3 Drinfeld moduler produceres nogle eksempler,
samt nogle t̊arne som er beslægtet ved teori af rang 3 Drinfeld moduler,
undersøges.
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Chapter 1

Introduction

Given a polynomial f(X1, ..., Xn) ∈ Z[X1, ..., Xn], the question of how
many solutions (x1, ..., xn) ∈ Zn the Diophantine equation f(x1, ..., xn) =
0 can have, has been a central and important one in the history of math-
ematics. For example, consider the equation

an + bn = cn,

where a, b, and c are positive integers. When n = 2, there are infinitely
many solutions. Such a solution (a, b, c) is called a Pythagorean triple,
describing the three integer-side lengths of a right triangle. There are
several elementary proofs for the solutions and interesting stories around
this problem. For n > 2 Fermat’s Last Theorem stated in 1637 that there
is no solution for this equation. The theorem challenged mathematicians
more than 350 years until A. Wiles gave a correct proof in 1995. Along
with the beautiful proofs and elegant results, many branches of math-
ematics appeared from such a simple question, from classical number
theory to modern algebra and algebraic geometry. Nowadays we find
applications of algebra and number theory frequently in our daily life.
This thesis deals with such a question in the area of algebraic curves over
finite fields.



2 Introduction

1.1 What is a good tower of function fields?

Let K be a field and C be an algebraic curve over K. In this thesis we
assume that such a curve C is absolutely irreducible, nonsingular and
projective. For detailed definitions and facts on algebraic curves we refer
to for example [Ful]. A point whose coordinates belong to K is called K-
rational (or rational). If K has infinite elements, the number of rational
points of C might be infinite, but for applications in for example coding
theory and cryptography one usually considers algebraic curves defined
over a finite field. In that case, the number N(C) of K-rational points
is always finite. Such a curve C defined over a finite field K has two
important invariants: its genus g(C) and its number N(C) of K-rational
points. The question of how many rational points a curve C of genus g(C)
defined over a finite field can have, has been a central and important one
in number theory. One of the landmark results in the theory of curves
defined over finite fields was the theorem of Hasse and Weil, which is the
congruence function field analogue of the Riemann hypothesis. As an
immediate consequence of this theorem one obtains an upper bound for
the number of rational points of such a curve in terms of its genus and the
cardinality of the finite field. More precisely the Hasse–Weil inequality
states that, for a curve C defined over the finite field Fq with q elements,
one has

N(C) ≤ q + 1 + 2g(C)
√
q.

For interesting applications, one would like to consider algebraic curves
defined over a fixed finite field with N(C) as large as possible. The Hasse–
Weil bound is not optimal when the genus g(C) is large compared with
the cardinality of the finite field. In order to investigate the asymptotic
behaviour of the number of rational points N(C) compared to the genus
g(C), one is interested in Ihara’s constant

A(q) := lim sup
g(C)→∞

N(C)

g(C)
,

where C runs over all algebraic curves over Fq. By Hasse–Weil bound,
A(q) ≤ 2

√
q. This was improved by Drinfeld and Vladut [VD83] that

A(q) ≤ √q− 1 over any finite field Fq. On the other hand, Ihara [Iha81],
Tsfasman, Vladut and Zink [TVZ82] used modular curves to show that
A(q) ≥ √q − 1 for square q. As a result it is known that A(q) =

√
q − 1

if q is square, unknown otherwise.
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To investigate the quantity A(q), it is natural to consider families F/Fq =
(C0, C1, ...) of algebraic curves over Fq with genus tending to infinity. As
there exists a one-to-one correspondence between algebraic function fields
and non-singular irreducible projective curves, many geometric concepts
can be transferred to the algebraic context and vice versa (see [Ful]). In
this thesis, we will stay in the domain of algebraic function fields. We
will investigate towers of function fields F/Fq = (C0, C1, ...) with full
constant field Fq.

One of the most important measure of the ‘quality’ of such a family F/Fq
is its limit λ(F/Fq) which is defined by

λ(F/Fq) := lim
i→∞

N(Ci)

g(Ci)
.

One can see that 0 ≤ λ(F/Fq) ≤ A(q). Then a non-trivial lower bound
for Ihara’s constant A(q) can be obtained by a family F/Fq with positive
limit. Such a family F/Fq with positive limit is called good. Moreover
if λ(F/Fq) = A(q), the tower F/Fq is called optimal.

1.2 How to construct good towers?

In [Iha81] Ihara used Shimura curves to show that A(q) ≥ √q − 1 for
square q. About the same time and independently, Tsfasman, Vladut
and Zink [TVZ82] used elliptic modular curves and Shimura curves to
show that A(q) ≥ √q − 1 for q = p2 and q = p4 where p is a prime
number. However, these curves are in general not easy to describe by
explicit equations. Another approach due to Serre [Ser83] uses class field
theory in order to prove the existence of curves of arbitrary high genus
with sufficiently many rational points, which shows A(q) > 0. Also this
construction is not explicit. The concept of explicit towers was first
introduced by Garcia and Stichtenoth [GS95] and [GS96b]. For example,
the optimal tower in [GS96b] was defined as a sequence of function fields
(Fi)i≥0 over Fq2 such that F0 = Fq2(x0) and Fi+1 = Fi(xi+1) where

xqi+1 + xi+1 =
xqi

xq−1i + 1
for i ≥ 0.
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Because of its recursive construction, we say that the tower is recursive
and satisfies the recursive equation

Y q + Y =
Xq

Xq−1 + 1
.

An example over a cubic finite field is the tower of van der Geer and van
der Vlugt [vdGvdV02] which was defined recursively by

Y 2 + Y = X + 1 +
1

X
.

This tower over F8 has limit 3/2. Another example of a tower over cubic
finite fields is the one of Bezerra, Garcia and Stichtenoth [BGS05b] which
was defined recursively by

1− Y
Y q

=
Xq +X − 1

X
.

This tower over Fq3 has limit 2(q2 − 1)/(q+ 2). Up to present, many ex-
plicit good and optimal towers have been introduced. A big breakthrough
in the area of towers of function fields is the one given by Bassa, Beelen,
Garcia and Stichtenoth [BBGS15]. They introduced a tower F/Fqn for
any n ≥ 2 and recursively defined by

Trj

(
Y

Xqn−j

)
+ Trn−j

(
Y qj

X

)
= 1, (1.1)

where n > j > 0 with gcd(j, n) = 1 and Tra(T ) := T + T q + · · ·+ T q
a−1

for any a ∈ N. The tower’s limit satisfies

λ(F/qn) ≥ 2

(
1

qn−j − 1
+

1

qj − 1

)−1
.

Problems: It is not clear how one can find such explicit equations in
order to construct good towers as the ones given above. Moreover, com-
puting the limits for those towers requires complicated and technical
calculations.

One way is using computer for searching good candidates. In [LMSE02]
a non-deterministic algorithm was performed to search for explicit equa-
tions that recursively define asymptotically good tame towers over some
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small characteristics. Essentially, the algorithm checks if the ramifica-
tion locus is finite and the splitting locus is not empty. The algorithm in
[LMSE02] was refined in [MW05] by putting more sufficient conditions
for the construction and providing new techniques for the implementa-
tion. The idea of using computer search for construction towers with
different defining equations were proposed in [L0̈7] and graph theory was
used to study the ramification and the splitting structure.

Various new tame towers have been then exhibited by computer search.
Generally, tame towers have the advantage that the genus computation
is simple. In [GSR03], by studying the asymptotic behaviour of the num-
ber of rational places in tame towers, Garcia, Stichtenoth and Rück pro-
duced several good towers of Fermat type and of quadratic extensions. In
[BB05] Beelen and Bouw explained the optimal tower in [GSR03] by con-
sidering the Picard–Fuchs differential equations in characteristic p and
applied their study to towers of modular curves to find new asymptoti-
cally good towers.

In this thesis we deal with the Problems using the theory of Drinfeld
modular curves. In [Elk98, Elk01] Elkies used the theory of classical,
Shimura and Drinfeld modular curves to produce explicit optimal tow-
ers. Moreover, he observed that the optimal towers constructed by Garcia
and Stichtenoth [GS95, GS96a, GS96b, GST97] all arose from reductions
of elliptic modular curves, Shimura modular curves, or Drinfeld mod-
ular curves. Based on these examples, he predicted that all optimal
towers arise from reductions of such kinds of modular curves, known as
the Elkies’ modularity conjecture (see [Elk98, ‘Fantasia’]). In [Gek04]
Gekeler showed that any (elliptic or Drinfeld) modular curves of Hecke
type are optimal.

One of the key strengths of using Drinfeld modules is that it looks promis-
ing to construct good towers over any non-prime finite field Fqn with
n ≥ 2. An example of using Drinfeld modules of rank n to construct good
towers over any non-prime finite field Fqn is the recent work of Bassa,
Beelen, Garcia and Stichtenoth [BBGS15]. As a Drinfeld modular expla-
nation for their new tower (defined by Equation (1.1)), a subtower was
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addressed and satisfied a recursive equation

(Y + 1)Nn

Y Nj
=

(X + 1)Nn

Xqn−jNj
, (1.2)

where n > j > 0 with gcd(j, n) = 1 and Nj = (qj − 1)/(q − 1) for j ≥ 1.

Situation: For all these constructions based on the theory of Drinfeld
modular curves mentioned above, the simplest case of Drinfeld A-modules
is considered, namely when the base ring A is the polynomial ring Fq[T ]
and the fixed place ∞ of the function field Fq(T ) of the ring Fq[T ] has
degree δ = 1.

Challenge: One can ask if the situation can be extended to other base
rings A and other values of δ.

The most important contribution of this thesis is to give an ex-
ploration of this challenge.

1.3 Our contributions

This thesis is written in manuscript style. Chapters 3, 4 and 5 consist of
three articles which have been written and submitted during the Ph.D.
study. The articles corresponding to Chapter 3 and Chapter 4 have
appeared. The one from Chapter 5 is under review. They share a certain
background and references, therefore some modifications were made in
those chapters compared to the published versions to avoid overlap.

Chapter 2 gives the general background for the articles which appear
in subsequent chapters. We start with an overview on the number of
rational places of a function field over a finite field. Then definitions and
basic properties of towers of function fields are introduced. A definition
and properties of Drinfeld modules are briefly given, especially the no-
tion of a Drinfeld modular curve is introduced as the main tool for the
explicit construction of the towers. Some examples are given to illustrate
definitions and facts. Specially, Example 2.20 presents the idea of how
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to obtain a modular relation similar to Equation (1.2) from isogenous
Drinfeld modules to define recursive towers.

In Chapter 3 we elaborate further the ideas of Elkies in [Elk98] and
[Elk01]. We show how the defining equations for the towers can be read
off from the modular polynomial. To illustrate this, we work out the
equations for a few cases of Drinfeld modular towers over the ring A =
Fq[T ]. Propositions 3.1 and 3.3 will explain how a Drinfeld modular curve
corresponds to such a relation like Equation (1.2). In the last section of
the chapter, we study a variation where the ring A is replaced by the
coordinate ring of an elliptic curve with 5 points. We illustrate the ideas
by going through this specific example in detail. As a result, a tower
with limit at least 1 over F210 will be introduced.

Chapter 4 deals with the theory of Drinfeld modular curves over any
possible base ring A and values of δ. We write down an explicit formula
for the genus of the Drinfeld modular curve x0(n) (see Theorem 4.2) and
investigate the number of rational points on its reduction (see Theorem
4.4). Consequently, a lower bound for the limit of (reductions of) Drin-
feld modular towers (x0(nk))k is proved (see Theorem 4.5). It turns out
that good reductions of Drinfeld modular towers are always good, when
defined over a proper constant field, but not always optimal. We also
give a recursive description of such towers in Section 4.4. The theory
presented in this chapter fully explains the behaviour of a Drinfeld mod-
ular tower given in the last section of Chapter 3. Furthermore, an explicit
recursive description of an optimal Drinfeld tower over F28 that has not
been considered in the literature before is given in Section 4.5. This fur-
ther demonstrates that explicit descriptions of Drinfeld modular towers
are not restricted to the case that the base ring A is the polynomial ring
Fq[T ].

In Chapter 5, we compute the exact limit of the tower in [BBGS15]
when it is defined over cubic finite fields. To do this, we examine the
subtower satisfying Equation (1.2). We will prove that the tower’s limit
equals 2(q2 − 1)/(q + 2) and discuss the relationship between several
towers.

Chapter 6 discusses some further developments and future work.
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The Appendix A presents the Magma computations supporting Section
4.5.



Chapter 2

Background

This chapter gives the general background. More technical and topic-
focused preliminaries can be found in the articles which appear in the
later chapters. Through out this thesis we denote by Fq the finite field of
cardinality q and by p the characteristic of Fq. We are interested in func-
tion fields over Fq having many rational places with respect to its genus.
In this chapter we give some background on towers of function fields and
Drinfeld modules, from which good towers can be obtained explicitly.
For basic concepts and facts about algebraic function fields (such as the
definitions of function fields, places, divisors, rational places, genus, ram-
ification, the Riemann-Roch theorem, the Hurwitz genus formula, etc.)
and towers we refer to Stichtenoth’s book [Sti09] and his survey article
[GS07], about Drinfeld modules we refer to Goss’ book [Gos96].
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2.1 Rational places of function fields

2.1.1 Function fields and places

Let K be any field. An algebraic function field F of one variable over K,
denoted by F/K, is a finite algebraic extension of the rational function
field K(x) for some element x ∈ F which is transcendental over K. Such
a function field F/K can be obtained as F = K(x, y) by adjoining a root
y of an irreducible polynomial in K(x)[T ] to K(x).

The set K̃ of elements in F which are algebraic over K is called the field
of constants of F/K. If K = K̃ we say that K is algebraically closed in
F or K is the full constant field of F .

A valuation ring of a function field F/K is a ring O ⊆ F such that
K ( O ( F and if z ∈ F then either z ∈ O or z−1 ∈ O. A valuation
ring of a function field is a local ring; i.e., it has a unique maximal ideal.

A place P of a function field F/K is the maximal ideal of a valuation ring
O of F/K. Then the residue class ring O/P is a field, denoted by FP .
Moreover, FP is a finite vector space over K, whose dimension dimK FP
is called the degree of the place P , denoted by degP . The set of places
of F is denoted by PF . A place of degree one is called rational.

Example 2.1 (Rational function field). The simplest algebraic function
field over K is the rational function field F = K(x), where x is tran-
scendental over K. Given an irreducible monic polynomial p(x) ∈ K[x],
then

Op(x) :=

{
f(x)

g(x)
| f(x), g(x) ∈ K[x] and p(x) - g(x)

}
is a valuation ring of K(x)/K with maximal ideal

Pp(x) :=

{
f(x)

g(x)
| f(x), g(x) ∈ K[x], p(x)|f(x) and p(x) - g(x)

}
.

The residue class fieldOp(x)/Pp(x) is isomorphic toK[x]/(p(x)) and degPp(x) =
deg p(x). There is another valuation ring of K(x)/K, namely

O∞ :=

{
f(x)

g(x)
| f(x), g(x) ∈ K[x] and deg f(x) ≤ deg g(x)

}
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with the maximal ideal

P∞ :=

{
f(x)

g(x)
| f(x), g(x) ∈ K[x], deg f(x) < deg g(x)

}
.

Rational places of K(x)/K consist of places of type Px−α with α ∈ K
and P∞. We also denote by (x = α) the place Px−α, the zero of x − α,
and by (x =∞) the place P∞, the pole of x.

2.1.2 Ihara’s constant A(q)

We are interested in function fields over a finite field; i.e., K is some finite
field Fq. Let F be a function field with full constant field Fq. Assume
that the L-polynomial of F factors as

L(t) =

2g(F )∏
i=1

(1− αit),

where αi are complex numbers. Then

N(F ) = q + 1−
2g(F )∑
i=1

αi.

The Hasse–Weil theorem states that |αi| =
√
q for all i = 1, ..., 2g(F ).

Therefore N(F ) is bounded in terms of g(F ) and q by

N(F ) ≤ q + 1 + 2g(F )
√
q. (2.1)

See [Sti09, Chapter 5] for more detailed proofs. Ihara showed in [Iha81]
that if N(F ) reaches this upper bound then g(F ) can not exceed (q −√
q)/2. If we fix the finite field, in order to get function fields with large

N(F ), the genus g(F ) has to be large also. This leads us to investigate
the asymptotic behaviour of the ratio N(F )/g(F ) for function fields of
large genus. For this reason, Ihara introduced the quantity

A(q) := lim sup
g(F )→∞

N(F )

g(F )
,

where F runs over all function fields over Fq. The quantity A(q) plays
an important role in coding theory and cryptography. For example, by
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using algebraic geometry codes [Gop81] on curves defined over Fq, one
can get the Algebraic Geometry Code bound [TVZ82]

R+ δ ≥ 1−A(q)−1,

where R = k/n is the transmission rate and δ = d/n is the relative
minimum distance of the code with length n→∞.

By Hasse–Weil bound (2.1), A(q) ≤ 2
√
q. This was improved by Drinfeld

and Vladut [VD83] that

A(q) ≤ √q − 1 over any finite field Fq.

On the other hand, Ihara [Iha79], Tsfasman, Vladut and Zink [TVZ82]
used modular curves to show that A(q) ≥ √q−1 for square q. As a result
it is known that

A(q) =
√
q − 1 if q is square.

In particular, for squares q ≥ 49 the Algebraic Geometry Code bound
gives us

R+ δ ≥ 1− 1
√
q − 1

,

which is better than the Gilbert–Varshamov bound in a certain interval
(see [TVZ82]).

The exact value of A(q) is still an open question for non-square q. There
are some lower bounds for A(q). By using class field theory, Serre [Ser83]
showed that there exists a constant c > 0 such that A(q) > c · log q for
all q. Zink [Zin85] using degenerations of Shimura curves showed that

A(p3) ≥ 2(p2 − 1)/(p+ 2),

for p prime. The Zink bound was generalized to any prime power q by
Bezerra, Garcia and Stichtenoth [BGS05b] as

A(q3) ≥ 2(q2 − 1)/(q + 2). (2.2)

Recently, it was shown [BBGS15] by explicit construction that for q = pn

where p is prime and n > 1,

A(pn) ≥ 2

(
1

pdn/2e − 1
+

1

pbn/2c − 1

)−1
. (2.3)

In particular when n is even, one retrieves the result by Ihara, Tsfasman,
Vladut and Zink. And for n = 3 one obtains Zink’s bound.
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2.2 Towers of function fields

To give a good lower bounds for A(q) one is naturally led to towers of
function fields.

Definition 2.2. A tower over Fq is an infinite sequence F = (F0, F1, · · · )
of function fields such that for all i ≥ 0 we have 1 < [Fi+1 : Fi] < ∞,
Fi+1/Fi is separable, Fq is the full constant field of Fi and the genera
g(Fi)→∞ for i→∞.

Proposition 2.3. Let F = (F0, F1, · · · ) be a tower over Fq. For a fixed
integer j ≥ 0, the following limits exist:

ν(F/Fj) := lim
n→∞

N(Fn)

[Fn : Fj ]
and γ(F/Fj) := lim

n→∞

g(Fn)

[Fn : Fj ]
.

Proof. (see [Sti09, Lemma 7.2.3 ]).

The quantities ν(F/Fj) and γ(F/Fj) are called the splitting rate and the
genus of the tower F over Fj , respectively. One has that

0 ≤ ν(F/Fj) ≤ N(Fj) and 0 < γ(F/Fj) ≤ ∞ for j ≥ 0.

Then the following limit exists

λ(F) := lim
i→∞

N(Fi)

g(Fi)
,

since it equals ν(F/Fj)/γ(F/Fj) for any j ≥ 0. The quantity λ(F) is
called the limit of the tower F .

By definition of λ(F) and A(q) one gets 0 ≤ λ(F) ≤ A(q). A tower
F over Fq is called (asymptotically) good if λ(F) > 0, otherwise it is
called (asymptotically) bad. A good tower with λ(F) = A(q) is called
(asymptotically) optimal. One can see that if for some j ≥ 0, the genus
γ(F/Fj) is finite and the splitting rate ν(F/Fj) is strictly positive, then
the tower F is good. In order to study the genus and the splitting rate
of a tower, it is often sufficient to investigate the notions of ramification
locus and splitting locus.
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Definition 2.4. Let F = (F0, F1, · · · ) be a tower over Fq and P be a
place of Fj for some integer j ≥ 0.

• We say that P is ramified in the tower F if for some n > j there
exists a place Q of Fn lying above P such that Q|P is ramified ; i.e.,
the ramification index satisfies e(Q|P ) > 1. The set of places of Fj
ramified in F is called the ramification locus of F over Fj , denoted
by Ram(F/Fj).

• Assume that P is a rational place. We say that P splits completely
in the tower F if P splits completely in all extensions Fn/Fj for
n > j; i.e., there are exactly [Fn : Fj ] places of Fn above the place
P and they are rational places of Fn. The set of rational places of
Fj splitting completely in F is called the splitting locus of F over
Fj , denoted by Split(F/Fj).

The splitting locus is a finite set which maybe empty. The ramification
locus maybe finite or infinite. The following proposition gives us some
ingredients to get good towers.

Proposition 2.5. [Sti09, Theorem 7.2.10] Let F = (F0, F1, · · · ) be a
tower over Fq and j be a fixed non-negative integer. Then the following
holds

(i) The splitting rate satisfies ν(F/Fj) ≥ | Split(F/Fj)|.

(ii) Assume that the ramification locus Ram(F/Fj) is finite and that
for each place P in Ram(F/Fj) there exists a real number bP such
that for all n > j and for all places Q of Fn lying above P , the
different exponent d(Q|P ) is bounded by

d(Q|P ) ≤ bP · e(Q|P ).

Then the genus γ(F/Fj) is finite and

γ(F/Fj) ≥ g(Fj)− 1 +
1

2

∑
P∈Ram(F/Fj)

bP · degP.
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(iii) Now we assume that the splitting locus Split(F/Fj) is non-empty
and that Tower F satisfies conditions in item (ii). Then the tower
F is asymptotically good, and its limit satisfies

λ(F) ≥ 2| Split(F/Fj)|
2g(Fj)− 2 +

∑
P∈Ram(F/Fj) bP · degP

> 0.

Let b := max{bP | P ∈ Ram(F/Fj)}, then the tower F is called b-
bounded.

Good towers which appear in the literature are of the following three
types:

1. class field towers (see among others [Ser83, NX01]),

2. modular towers (see among others [Iha81, Elk98, Elk01, TVZ82]),
and

3. explicit towers (see among others [GS95, GS96b, GSR03, BGS05b]).

By an explicit tower we mean a tower F = (F0, F1, · · · ) where each
function field Fi is given by explicit polynomial equations. For practical
applications in coding theory and cryptography one needs an explicit de-
scription of the underlying function fields and of their Fq-rational places.
Here we will mainly deal with explicit towers. Even more, the explicit
description of the function fields F0, F1, ... in the tower F will often have
the following very simple shape.

Definition 2.6. Let F = (F0, F1, · · · ) be a tower of function fields over
Fq, where F0 = Fq(x0) is the rational function field. We say that the
tower F is recursive if there exist a polynomial f(X,Y ) ∈ Fq[X,Y ] and
functions xn ∈ Fn such that:

(i) f(X,Y ) is separable in both variables X and Y ;

(ii) Fn+1 = Fn(xn+1) with f(xn, xn+1) = 0 for all n ≥ 0.
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We also say that the tower F is given by the equation f(X,Y ) = 0 or
that F is defined recursively by the polynomial f(X,Y ). For a recursive
tower F = (F0, F1, · · · ), main information about F is already contained
in the field F1 = Fq(x0, x1).

Definition 2.7. Let F be a recursive tower over Fq given by the polyno-
mial f(X,Y ) = 0. Then its basic function field is defined as F = Fq(x, y)
where x is a transcendental element over Fq and y satisfies the relation
f(x, y) = 0.

To explore the ramification and the splitting structure of the whole tower
one needs to investigate these structures in both field extensions F/F(x)
and F/F(y).

Remark 2.8. Many towers in the literature are usually defined by re-
cursive equations of form g(Y ) = h(X) where g(Y ) = g1(Y )/g2(Y )
and h(X) = h1(X)/h2(X) are rational functions over Fq. Then the
polynomial f(X,Y ) in Definition 2.6 can be obtained as f(X,Y ) =
g1(Y )h2(X)− g2(Y )h1(X).

Let F = (F0, F1, ...) be a tower and P be a place of Fj for some j ≥
0. If there exists a place Q of Fn for some n > j such that Q|P is
wildly ramified (i.e., the characteristic of Fq divides the ramification index
e(Q|P )), then P is said to be wildly ramified in the tower F . Otherwise,
the place P is said to be tame in F . A tower in which there exists at
least one wildly ramified place is called wild, otherwise it is called tame.

Example 2.9. In [GS96b], Garcia and Stichtenoth defined a tower G =
(G0, G1, ...) of function fields over Fq2 satisfying G0 = Fq2(x0) and Gi+1 =
Gi(xi+1) with

xqi+1 + xi+1 =
xqi

xq−1i + 1
for i ≥ 0.

It is an explicit wild tower recursively defined by equation

Y q + Y =
Xq

Xq−1 + 1
. (2.4)

Let Ω := {α ∈ Fq2 | αq +α = 0}. Here are some interesting properties of
the tower G:
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(i) The extension Gi+1/Gi is Galois of degree [Gi+1 : Gi] = q for all
i ≥ 0.

(ii) The place (x0 = ∞) of G0 is totally ramified in the tower G; i.e.,
there is only one place Q of Gn lying above (x0 =∞) with ramifi-
cation index e(Q|(x0 =∞)) = qn.

(iii) The ramification locus is Ram(G/G0) = {(x0 = β) | β ∈ Ω∪{∞}}.

(iv) The splitting locus is Split(G/G0) = {(x0 = α) | α ∈ Fq2 \ Ω}.

(v) The tower G is weakly ramified (see [Sti09]); i.e., for any places Q
of Gn and P of G0 with Q|P , the different exponent is given by
d(Q|P ) = 2(e(Q|P )− 1).

Therefore the tower is 2-bounded, and by Proposition 2.5 the tower’s limit
satisfies λ(G) ≥ q − 1. Then by Drinfeld-Vladut Bound, λ(G) = q − 1;
i.e., the tower G is asymptotically optimal.

Let G = (G0, G1, · · · ) and F = (F0, F1, · · · ) be two towers of function
fields. We say that G is a subtower of F if for each integer i ≥ 0 there
exists an integer j ≥ 0 such that Gi ⊂ Fj .

Proposition 2.10. [Sti09, Proposition 7.2.8.] If G is a subtower of F
then λ(G) ≥ λ(F). In particular, if the tower F is asymptotically good
(resp. optimal), then any subtower G of F is also asymptotically good
(resp. optimal).

Some of the towers in the literature are related to each other.

Example 2.11. Let F = (F0, F1, ...) be the tower over Fq2 introduced
in [GS95] where F0 = Fq2(x0) and for i ≥ 0, Fi+1 = Fi(zi+1) where zi+1

satisfies
zqi+1 + zi+1 = xq+1

i , with xi = zi/xi−1 for i ≥ 1.

Then the tower G in Example 2.9 is actually a subtower of the tower F .
In fact, one has

zqi+1 + zi+1 = xq+1
i =

zq+1
i

xq+1
i−1

=
zq+1
i

zqi + zi
=

zqi
zq−1i + 1

. (2.5)
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It follows that the subfield Fq2(z1, ..., zi+1) ⊆ Fi+1 is isomorphic to the
field Gi in the tower G, and hence G is a subtower of F . That gives
another proof for the optimality of the tower in [GS95].

Example 2.12. In [BBGS15] Bassa, Beelen, Garcia and Stichtenoth
introduced a new tower F/Fqn for any n ≥ 2 and recursively defined by

Trj

(
Y

Xqn−j

)
+ Trn−j

(
Y qj

X

)
= 1,

where n > j > 0 with gcd(j, n) = 1 and Tra(T ) := T + T q + · · ·+ T q
a−1

for a ∈ N. (In the special case n = 2 and j = 1 one recovers the recursive
representation of the optimal tower F in Example 2.11.) The tower’s
limit satisfies

λ(F/Fqn) ≥ 2

(
1

qj − 1
+

1

qn−j − 1

)−1
.

For a fixed finite field Fqn it may give several towers over Fqn with distinct
limits due to the choice of q and the choice of j < n. The best lower
bound comes from choosing q = p and j = bn/2c, see Inequation (2.3).

2.3 Drinfeld modules

It is not clear how one can find such explicit equations in order to con-
struct good towers like in Examples 2.9, 2.11 or 2.12. Moreover, com-
puting the limits for those towers requires very complex and technical
calculations. This thesis uses the theory of Drinfeld modular curves to
solve such problems.

In this section, we will give a general definition of a Drinfeld module
and of a Drinfeld modular curve that will be used in the remainder of
the thesis. The definition and the theory of these modules were given
by V. Drinfeld in the mid-seventies (see [Dri74, Dri77]). A comprehen-
sive treatment of Drinfeld modules can be found in the treatise of Goss
[Gos96]. See also [Gek86] for a more detailed exposition on Drinfeld mod-
ular curves. Our aim is to supply the reader with some basic definitions
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and facts which are used later in the articles. Many beautiful and deep
applications have already been discovered. However, the subject remains
young and is under active development.

2.3.1 Preliminaries

Let F be a function field with constant field Fq and∞ be a fixed place of
degree δ ≥ 1. Let A ⊂ F be the ring of all elements of F whose only poles
are at ∞. Prime ideals of A can be identified with places of F distinct
from ∞. For an ideal n ⊂ A we define |n| := |A/n| and deg n := logq |n|.
In case n = (a) is a principal ideal, we write deg a := deg(a). Note that
for a ∈ A = Fq[T ], deg a is the usual degree of a as a polynomial in T . Let
L be an extension field of F together with a homomorphism ι : A → L.
The kernel of ι is called the A-characteristic of L. Let L{τ} be a non-
commutative polynomial ring generated by the Frobenius endomorphism
τ satisfying τa = aqτ for all a ∈ L. An element f(τ) =

∑r
i=0 aiτ

i

of L{τ} is associated with an additive polynomial f(X) =
∑r

i=0 aiX
qi .

This makes it possible to evaluate elements of L{τ} at elements of L,
the algebraic closure of L. Define D(f) := a0 the constant term of f . If
ar 6= 0, we define deg f(τ) = r.

Definition 2.13. A Drinfeld A-module (or a Drinfeld module if the ring
A is known) over L of rank r ∈ N+ is an injective ring homomorphism

φ : A→ L{τ}
a 7→ φa,

such that for some a ∈ A, φa 6= ι(a)τ0 and for all a ∈ A, deg φa = r deg a
and D(φa) = ι(a).

Example 2.14. Let F = Fq(T ) be a rational function field and∞ be the
pole of T . One gets δ = deg∞ = 1 and A = Fq[T ]. In this case we can
identify ideals of A with monic polynomials and places of F different from
∞ with monic irreducible polynomials. Since Fq[T ] is generated freely as
an algebra over Fq by T , a Drinfeld Fq[T ]-module φ is determined simply
by the element φT . For instance, let L be some extension field of Fq(T )
and ι(T ) = 1. Then a homomorphism φ : Fq[T ]→ L{τ} specified by

φT = −τ2 + gτ + 1
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is a rank 2 Drinfeld Fq[T ]-module of characteristic 〈T − 1〉 over L. The
element φT ∈ L{τ} is associated with the additive polynomial φT (X) =
−Xq2+gXq+X ∈ L[X]. As mentioned before, the element φT determines
φ completely. For example the element φT 2 can be computed by

φT 2 = φTφT = (−τ2 + gτ + 1)(−τ2 + gτ + 1)

= τ4 + (−gq2 − g)τ3 + (gq+1 − 2)τ2 + 2gτ + 1.

Definition 2.15. For an ideal n ⊂ A, we define φ[n] to be the set of
elements x ∈ L such that φa(x) = 0 for all a ∈ n. This set is called the
set of n-torsion points of φ.

If n is coprime with the A-characteristic of L then φ[n] is isomorphic to
(A/n)r as A-modules (see [Ros02, Theorem 13.1.]).

Definition 2.16. Let φ and ψ be two Drinfeld A-modules over L. An
isogeny from φ to ψ over L is a non-zero polynomial λ(τ) in L{τ} satis-
fying λφa = ψaλ for all a ∈ A. If there exists such an isogeny λ between
φ and ψ, we say that φ and ψ are isogenous.

Isogenies exist only between Drinfeld modules of the same rank. An
isogeny λ is called an isomorphism if deg λ(τ) = 0.

Definition 2.17. Let φ, ψ be two isogenous Drinfeld modules with isogeny
λ. If kerλ is a free A/n-module of rank one contained in φ[n] for some
ideal n ⊂ A then λ is called an n-isogeny and we say that φ and ψ are
n-isogenous.

Example 2.18. Let us continue Example 2.14. Assume that λ = τ−u ∈
L{τ} is an isogeny between φ and another Drinfeld module ψ of the same
rank and the same characteristic specified by ψT = h0τ

2 +h1τ + 1. Since
λφa = ψaλ holds for all a ∈ Fq[T ], the following equalities hold

λφT = ψTλ

(τ − u)(−τ2 + gτ + 1) = (h0τ
2 + h1τ + 1)(τ − u)

−τ3 + (gq + u)τ2 + (1− ug)τ − u = h0τ
3 + (h1 − h0uq

2
)τ2 + (1− h1uq)τ − u.

Then h0 = −1,
gq + u = h1 + uq

2
, (2.6)
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and

ug = h1u
q. (2.7)

Multiplying both sides of (2.6) by uq and using (2.7) to cancel the variable
h1, we obtain

(ug)q + uq+1 = ug + uq
2+q,

or

(ug − uq+1)q = ug − uq+1.

This means that ug − uq+1 = α for some α ∈ Fq. Then

g =
α+ uq+1

u
and h1 =

α+ uq+1

uq
for u 6= 0. (2.8)

Since λ(τ) = τ − u is associated with λ(X) = Xq − uX, the kernel of
isogeny λ consists of elements x ∈ L \ {0} satisfying xq−1 = u and x = 0.
In the case of α = −1, from (2.8) one gets gxq−1 − xq2−1 + 1 = 0 and
φT (x) = −xq2 + gxq + x = 0. This means that the element x can be
chosen to be a 〈T 〉-torsion point of the Drinfeld module φ and λ is a
〈T 〉-isogeny.

2.3.2 Explicit towers from Drinfeld modules

Good towers constructed from Drinfeld modules are based on the prop-
erty of ‘good reduction’ of Drinfeld modular curves. In [Gek79] Gekeler
investigated (among other things) the Drinfeld modular curve Y0(n). In
this section, we introduce the notion of Drinfeld modular curve Y0(n) in
the case of A = Fq[T ]. For general rings A see [Gek86]. Since Fq[T ] is
a principal ideal domain, the notation n can be used for both a monic
polynomial and an ideal in Fq[T ].

Definition 2.19. Let n ∈ A = Fq[T ] be a non-zero monic polynomial.
The Drinfeld modular curve Y0(n) contains the points parametrizing iso-
morphism classes of pairs of Fq[T ]-Drinfeld modules of rank 2 together
with an n-isogeny between them.

Example 2.20. Continuing Example 2.18, if we choose α = −1 (corre-
sponds to x a T -torsion point of φ) then the equations relating g, h1 and
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x simplify to

g =
xq

2−1 − 1

xq−1
and h1 =

xq
2−1 − 1

xq2−q
.

Through this correspondence, we parametrize a pair of rank 2 Drinfeld
modules (φ, ψ) together with an isogeny of the form λ = τ − u and a
non-zero T -torsion point in its kernel. This parametrizing set is not the
Drinfeld modular curve Y0(T ) yet. In order to obtain Y0(T ), we need to
consider isomorphism classes of Drinfeld modules. Two Drinfeld modules
φ, ψ with φT = −τ2 + gτ + 1 and ψT = −τ2 + h1τ + 1 are isomorphic
over L if there is a non-zero constant c ∈ L such that cφT = ψT c.
From this condition, we see that the constant c must belongs to Fq2 and

gq+1 = hq+1
1 (In this case, the quantity gq+1 is called the j-invariant1 of

rank 2 Drinfeld module φ). Let Z := xq
2−1, then gq+1 and hq+1

1 simplify
to

gq+1 =

(
xq

2−1 − 1

xq−1

)q+1

=
(Z − 1)q+1

Z

and

hq+1
1 =

(
xq

2−1 − 1

xq2−q

)q+1

=
(Z − 1)q+1

Zq
.

This correspondence now parametrizes the points of Y0(T ).

Adding to Y0(n) so-called ‘cusps’ gives a projective algebraic curve X0(n)
defined over Fq(T ). In general, however this curve will not be absolutely
irreducible. For any prime ideal of A (corresponding to a place of F
different from ∞), one obtains by reduction an algebraic curve defined
over a finite field. In case of A = Fq[T ] and δ = 1, the curve X0(n)
(as well as its reduction modulo any prime P relatively prime to n) is
absolutely irreducible. Denoted by K(2) the quadratic extension field of
a finite field K. By computing the precise formula for the genus and the
number of rational points on reductions of Fq[T ]-Drinfeld modular curves
X0(n), Gekeler showed the following result

Theorem 2.21 ([Gek04]). Let (nk)k∈N be a series of polynomials of A =
Fq[T ] coprime with an irreducible polynomial P ∈ A, and whose degrees

1In general, a rank 2 Drinfeld module φ with φT = ∆τ2 + gτ + ι(T ) has j-invariant
j(φ) := gq+1/∆.
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tend to infinity. Denoted by FP the finite field Fq[T ]/(P ). Then the family
of Drinfeld modular curves X0(nk)/FP attains the Drinfeld–Vladut bound

when considered over F(2)
P .

For example in case of nk = T k and P = T − 1, explicit equations for the
modular curves X0(T

k) were given in [Elk01]. Elkies showed in [Elk01]
that the reduction of the tower of Drinfeld modular curves (X0(T

k))k≥2
at the prime T − 1 is a tower satisfying the recursive equation

y(y + 1)q−1 =
xq

(x+ 1)q−1
. (2.9)

By Theorem 2.21 this is an optimal tower over Fq2 , which was also studied
in detail in [BG04]. Moreover, it is a subtower of the tower defined by
(2.4). Elkies used this fact to explain the modularity of the optimal tower
defined by (2.4).

Example 2.22. One can check that Equation (2.9) satisfies the corre-
spondence in Example 2.20 since they both parametrize Y0(T ). In fact,
let X = x(x+1)q−1 and Y = y(y+1)q−1. Note that xq+1−(x+1)q−1 =
x(x+ 1)q−1. Then we have

(Y − 1)q+1

Y
=

(
y(y + 1)q−1 − 1

)q+1

y(y + 1)q−1
=

(
xq

(x+1)q−1 − 1
)q+1

xq

(x+1)q+1

=

(
xq − (x+ 1)q−1

)q+1

xq(x+ 1)q2−q
=

(
x(x+ 1)q−1 − 1

)q+1

xq(x+ 1)q2−q

=
(X − 1)q+1

Xq
.

In [Elk98, Elk01] Elkies found several equations to construct good towers,
by studying reductions of Drinfeld-, elliptic- and Shimura-modular curves
very explicitly and gave an explanation for the recursive nature of these
towers. We will in Chapter 3 give some more general examples (including
the defining equations in generic A-characteristic 0).

For A = Fq[T ] and δ = 1 the situation has to a large extent been investi-
gated both theoretically and explicitly. However, we will see in Chapter



24 Background

4 that generalizations to other rings A and values of δ are possible and
that in some cases the resulting families of curves can be described by
explicit equations.



Chapter 3

Good towers of function fields

In this chapter, we will give an overview of known and new techniques
on how one can obtain explicit equations for candidates of good towers
of function fields. The techniques are founded in modular theory (both
the classical modular theory and the Drinfeld modular theory). In the
classical modular setup, optimal towers can be obtained, while in the
Drinfeld modular setup, good towers over any non-prime field may be
found. We illustrate the theory with several examples, thus explaining
some known towers as well as giving new examples of good explicitly
defined towers of function fields. Apart from the shortened introduction,
the text of this chapter is as it was published in

[BBN14] A. Bassa, P. Beelen and N. Nguyen, Good towers of function fields,

in Algebraic curves and finite fields, volume 16 of Radon Ser. Comput. Appl.

Math., pages 23–40, De Gruyter, Berlin, 2014.1

1Alp Bassa is supported by Tübitak Proj. No. 112T233. Peter Beelen and Nhut
Nguyen are supported by the Danish National Research Foundation and the National
Science Foundation of China (Grant No. 11061130539) for the Danish-Chinese Center
for Applications of Algebraic Geometry in Coding Theory and Cryptography.
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3.1 Introduction

In [Elk98, Elk01], Elkies gave a modular interpretation for the tower
given in [GS96b] and for all other known optimal recursive towers. More
precisely he showed that all known examples of tame, (respectively wild)
optimal recursive towers correspond to reductions of classical (respec-
tively Drinfeld) modular curves. Moreover, he found several other equa-
tions for such towers, by studying reductions of Drinfeld-, elliptic- and
Shimura-modular curves very explicitly and gave an explanation for the
recursive nature of these towers. Until now many explicitly known, re-
cursively defined towers have a modular explanation. As an example of
this phenomenon, we give a modular interpretation for a good recursive
tower given in [L0̈7].

Elkies showed in [Elk01] that the reduction of the tower of Drinfeld mod-
ular curves (X0(T

n))n≥2 at the prime T −1 is a recursive tower satisfying
the recursive equation

y(y + 1)q−1 =
xq

(x+ 1)q−1
. (3.1)

This is an optimal tower, which was also studied in detail in [BG04]. It is
a subtower of the tower in [GS96b]. In this chapter we elaborate further
on the ideas of Elkies. Note that the recursive equation in Equation (3.1)
has depth one. With this we mean that the variable xn+1 in the (n+ 1)-
th step of the tower is related to only the previous variables xn by the
recursive equation.

We show how the defining equations for these modular towers can be read
off directly from the modular polynomial, and how this, in general, leads
to recursions of depth 2. More precisely, we show that the tower can be
defined by recursive equations which relate in the (n+ 1)-th step of the
tower (for n ≥ 1), the variable xn+1 to both xn and xn−1. With this
approach, finding explicit recursive towers turns out to be an easy task,
once the corresponding modular polynomials are known. To illustrate
this, we work out the equations for a few cases of Drinfeld modular towers.

In the above Drinfeld modular theory was considered over the polynomial
ring Fq[T ]. In the last section of the chapter, we study a variation where



3.2 The Drinfeld modular towers (X0(P
n))n≥0 27

this ring is replaced by the coordinate ring of an elliptic curve. We
illustrate the ideas by going through a specific example in detail.

3.2 The Drinfeld modular towers (X0(P
n))n≥0

In this section we will restrict ourselves to the case of Drinfeld modular
curves. However, the classical case of elliptic modular curves is analogous.
Therefore we will on occasion state some observation for the classical case
also. For more information on Drinfeld modules, the reader is referred to
[Gos96, Ros02]. For more information on Drinfeld modular curves, see
for example [Gek86]. We denote by F the field Fq(T ) and let N ∈ Fq[T ]
be a monic polynomial. The field F will play the role of constant field in
the towers we find. From these, towers with a finite field as a constant
field can be obtained by reducing the defining equations by a suitably
chosen prime element L of Fq[T ]. More precisely, the constant field of
such a reduced tower is FL := Fq[T ]/(L). To describe how to obtain
(unreduced) towers, we will use the language of Drinfeld modules.

Let φ be a Drinfeld module of rank 2 with j-invariant j0 and φ′ be an
N -isogenous Drinfeld module with j-invariant j1. The Drinfeld modular
polynomial ΦN (X,Y ) relates these j-invariants, more precisely it holds
that ΦN (j0, j1) = 0. Thinking of j0 as a transcendental element, we can
use this equation to define a so-called Drinfeld modular curve X0(N). If
we want to emphasize the role of N , we will write j1 = j1(N). It should
be noted that j0 is independent of N , but it will be convenient to define
j0(N) := j0. The function field F(X0(N)) of X0(N) is therefore given by
F(j0(N), j1(N)). Moreover, it is known, see [Bae92], that

[F(j0(N), j1(N)) : F(j0(N))] = qdeg(N)
∏
P |N

P prime

(
1 +

1

qdeg(P )

)
. (3.2)

In principle the work of finding an explicit description of the function field
F(X0(N)) is done, once the modular polynomial ΦN (X,Y ) has been com-
puted. However, for general q the Drinfeld modular polynomial is not
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known explicitly. Even in the case N = T it has only been determined
recently [BB12]. For a given q it can be computed, but this is not al-
ways an easy task, since the coefficients of this polynomial tend to get
very complicated as the degree of the polynomial N increases. However,
following Elkies’s ideas ([Elk98, Elk01]) from the modular polynomial
ΦP (X,Y ) for a fixed polynomial P , the function fields of the Drinfeld
modular curves X0(P

n) can be described easily in an explicit way. The
reason for this is that for polynomials P,Q ∈ Fq[T ] a PQ-isogeny can be
written as the composite of a P -isogeny and a Q-isogeny, which implies
that there is a natural projection from X0(PQ) to X0(P ) or equivalently
an inclusion of function fields F(X0(P )) ⊂ F(X0(PQ)). This implies that
the function field F(X0(P

n)) also contains the function fields F(X0(P
e)),

for any integer e satisfying 1 ≤ e ≤ n, and hence j1(P
e) ∈ F(X0(P

n)).
Defining je(P ) := j1(P

e) for e ≥ 1, we see that je(P ) ∈ F(X0(P
n)) for

1 ≤ e ≤ n. Since j0 is independent of P , we also have j0(P ) = j0(P
n) ∈

F(X0(P
n)). Therefore the field F(X0(P

n)) is the composite of the fields
F(je(P ), je+1(P )) for e = 0, . . . , n − 1. Since P e+1 = PP e, any P e+1-
isogeny can be written as the composite of a P -isogeny and a P e-isogeny.
This means that je(P ) and je+1(P ) correspond to P -isogenous Drinfeld
modules and hence we have ΦP (je(P ), je+1(P )) = 0 for any e between 0
and n−1. We see that F(X0(P

n)) is the composite of n fields isomorphic
to F(X0(P )) = F(j0(P ), j1(P )), the function field of X0(P ). This ob-
servation led Elkies to construct a number of recursively defined towers
(X0(P

n))n≥2 of modular curves in [Elk98, Elk01]. In [Elk98] several mod-
els defined over Q of classical modular curves are given, while in [Elk01]
the reduction mod T − 1 of the Drinfeld modular tower X0(T

n)n≥2 was
described.

We consider the function field of X0(P
n). We have

F(X0(P
n)) = F(j0(P ), j1(P ), . . . , jn−1(P ), jn(P )).

So we can think of F(X0(P
n)) as iteratively obtained from F(j0(P )) by

adjoining the elements j1(P ), j2(P ), . . . , jn(P ), where je+1(P ) is a root
of the polynomial ΦP (je(P ), t) ∈ F(X0(P

e))[t] for 0 ≤ e < n. However,
except for j1(P ) these polynomials are not irreducible. In fact the ex-
tension F(X0(P

2))/F(X0(P )) has degree qdegP by Equation (3.2). This
means that the polynomial ΦP (j1(P ), t) ∈ F(j0(P ), j1(P ))[t] has a factor
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ΨP (j0(P ), j1(P ), t) of degree qdegP such that

ΨP (j0(P ), j1(P ), j2(P )) = 0.

By clearing denominators if necessary, we can assume that

ΨP (j0(P ), j1(P ), t) belongs to F[j0(P ), j1(P )][t].

Then clearly the trivariate polynomial ΨP (X,Y, Z) ∈ F[X,Y, Z] satis-
fies ΨP (je−1(P ), je(P ), je+1(P )) = 0 for all 0 < e < n. The function
field F(X0(P

n)) can therefore be generated recursively by the equations
ΦP (j0(P ), j1(P )) = 0 and ΨP (je−1(P ), je(P ), je+1(P )) = 0 for 0 < e < n.
Note that the depth of the recursion is two in general, meaning that to
obtain the minimal polynomial of je+1(P ) over F(j0(P ), . . . , je(P )) for
e ≥ 1, we need both je(P ) and je−1(P ). We arrive at the following
proposition.

Proposition 3.1. Let P ∈ Fq[T ] be a polynomial and n ≥ 0 an integer.
The function field Gn of the Drinfeld modular curve X0(P

n) is generated
by elements j0, . . . , jn satisfying:

ΦP (j0, j1) = 0,

with ΦP (X,Y ) the Drinfeld modular polynomial corresponding to P and

ΨP (je−1, je, je+1) = 0, for 1 ≤ e < n,

with ΨP (X,Y, Z) a suitable trivariate polynomial of Z-degree qdegP . Con-
sequently, the tower of function fields G := (Gn)n≥0 can be recursively
defined by a recursion of depth two in the following way:

G0 := F(j0),

G1 := F(j0, j1), where ΦP (j0, j1) = 0

and for n ≥ 1

Gn+1 := Gn(jn+1) where ΨP (jn−1, jn, jn+1) = 0.

Remark 3.2. The polynomial ΨP (X,Y, Z) is easy to describe if P is a
prime. In that case degY (ΦP (X,Y )) = qdegP + 1. Since ΦP (X,Y ) is a
symmetric polynomial, it holds that

ΦP (j1(P ), j0(P )) = ΦP (j0(P ), j1(P )) = 0.
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Therefore, the polynomial ΦP (j1(P ), t) ∈ F(X0(P ))[t] has the factor
t − j0(P ). The factor Ψ(j0(P ), j1(P ), t) can be obtained by dividing
ΦP (j1(P ), t) by t− j0(P ). Note that in this case automatically

degt ΨP (j0(P ), j1(P ), t) = qdegP and ΨP (j0(P ), j1(P ), j2(P )) = 0,

as desired. A similar remark holds for the classical case: if p is a prime
number, then the classical modular polynomial Φp(X,Y ) is a symmet-
ric polynomial having degree p + 1 in both X and Y . The polynomial
Φp(j1(p), t) ∈ Q(j0(p), j1(p))[t] has a factor of degree one in t (namely
t− j0(p)) and a factor of degree p.

By [Sch97] X0(P ) is rational if and only if P has degree one or two. In
that case the tower (F(X0(P

n)))n≥1 can be generated in a simpler way.
Let e ≥ 1 and let ue−1(P ) be a generating element of F(je−1(P ), je(P ))
over F. Then je−1(P ) = ψ(ue−1(P )) and je(P ) = φ(ue−1(P )) for cer-
tain rational functions ψ(t) = ψ0(t)/ψ1(t) and φ(t) = φ0(t)/φ1(t). Here
ψ0(t) and ψ1(t) (resp. φ0(t) and φ1(t)) denote relatively prime poly-
nomials. Since F(ue−1(P )) = F(je−1(P ), je(P )), one can generate the
function field of X0(P

n) for n ≥ 1 by u0(P ), . . . , un−1(P ). These gener-
ating elements satisfy the equations ψ(ue(P )) = φ(ue−1(P )) with 1 ≤
e < n, since ψ(ue(P )) = je(P ) = φ(ue−1(P )). Similarly as before,
one can find generating relations of minimal degree by taking a factor
fP (u0(P ), t) of ψ0(t)φ1(u0(P ))−ψ1(t)φ0(u0(P )) of degree qdegP such that
f(u0(P ), u1(P )) = 0. The function field F(X0(P

n)) with n ≥ 1 can then
recursively be defined by the equations f(ue−1, ue) = 0 for 1 ≤ e < n.
We arrive at the following proposition.

Proposition 3.3. Let P ∈ Fq[T ] be a polynomial of degree one or two and
n ≥ 0 an integer. There exists a bivariate polynomial fP (X,Y ) ∈ F[X,Y ]
of Y -degree qdegP such that the function field Gn of the Drinfeld modular
curve X0(P

n) is generated by elements u0, . . . , un−1 satisfying:

fP (ue−1, ue) = 0, for 1 ≤ e < n.

Consequently, the tower of function fields G := (Gn)n≥1 can be defined
by a recursion of depth one:

G1 := F(u0)

and for n ≥ 1

Gn+1 = Gn(un+1) where fP (un, un+1) = 0.
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Finally, if P is a polynomial of degree one, then both X0(P ) and X0(P
2)

are rational. In that case, there exist ue−1(P ), ue(P ) as above and
ve−1(P ) such that F(ue−1(P ), ue(P )) = F(ve−1(P )) for e > 0. Simi-
larly as above, there exists rational functions ψ′(t) and φ′(t) such that
ue−1(P ) = ψ′(ve−1(P )) and ue(P ) = φ′(ve−1(P )). These rational func-
tions have degree qdegP = q, since

[F(ve−1(P )) : F(ue−1(P ))] = [F(ve−1(P )) : F(ue(P ))] = q.

The function field F(X0(P
n)) with n ≥ 2 can then recursively be de-

fined by the equations ψ′(ve(P )) = φ′(ve−1(P )) for 1 ≤ e < n − 1. The
depth of the recursion is one (since the defining equation relates ve(P )
to ve−1(P ) only) and moreover, the variables can be separated in the
defining equations. Since we assume degP = 1, this puts a heavy restric-
tion on the number of possibilities. In fact, without loss of generality
we may assume that P = T . In the next section we will describe this
case in detail, obtaining explicit equations describing the Drinfeld mod-
ular tower F(X0(T

n))n≥2. In the case of classical modular curves, Elkies
in [Elk98] gave, among others, several similar examples by considering
(prime) numbers p such that the genus of the classical modular curves
X0(p) and X0(p

2) is zero. This is the case for p ∈ {2, 3, 5}.

The towers (F(X0(P
n)))n≥0 are also useful for obtaining interesting tow-

ers with finite constant fields, since Gekeler showed the following:

Theorem 3.4 ([Gek04]). Given a prime L ∈ Fq[T ], denote by FL the

finite field Fq[T ]/(L). Moreover, write F(2)
L for the quadratic extension

of FL. The reduction modulo any prime L ∈ Fq[T ] not dividing P of the
tower (X0(P

n))n≥0 gives rise to an asymptotically optimal tower over the

constant field F(2)
L .

The above theorem implies that the tower found in [Elk01], being the
reduction of (X0(T

n))n≥0 modulo T − 1, is asymptotically optimal over

the constant field F(2)
T−1 = Fq2 . Now we will give several examples. Some-

times we do not give all details, since this would fill many pages. Sev-
eral computations were carried out using the computer algebra package
Magma [BCP97]. For example all Drinfeld modular polynomials below
were calculated using Magma. On occasion, we will perform all calcula-
tions sketched above for a reduced version of the tower (F(X0(P

n)))n≥0,
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since the resulting formulas are usually much more compact after reduc-
tion. In all examples in this section, it is assumed that q = 2, while P
will be a polynomial of degree one or two.

Example 3.5 (P = T, q = 2). By [Sch95], the Drinfeld modular poly-
nomial of level T in case q = 2 is given by

ΦT (X,Y ) = X3 + Y 3 + T (T + 1)3(X2 + Y 2) + T 2(T + 1)6(X + Y )

+ T 3(T + 1)9 +X2Y 2 + (T + 1)3(T 2 + T + 1)XY + T (X2Y +XY 2).

The polynomial ΨT (X,Y, Z) can readily be found using Remark 3.2:

ΨT (X,Y, Z) = Z2 + (X + (Y 2 + TY + T (T + 1)3))Z +X2

+ (Y 2 + TY + T (T + 1)3)X + TY 2

+ (T 2 + T + 1)(T + 1)3Y + T 2(T + 1)6.

Using Proposition 3.1, we can in principle now describe the tower of
function fields of the modular curves (X0(T

n))n≥0. However, we can use
Proposition 3.3 to find a recursive description of depth one. First we
need a uniformizing element u0 of F(j0, j1). Using a computer, one finds

u0 =
T 3(T 2j0 + T 2 + T 4 + T 6 + 1 + Tj1 + T 2j1 + Tj0 + j0j1)

(T 3 + j21 + T 2 + j0 + Tj1 + T 3j0 + T 7 + T 4j1 + T 6
.

Expressing j0 and j1 turns out to give a more compact formula.

j0 =
(u0 + T )3

u0
and j1 =

(u0 + T 2)3

u20
.

This means that the variables u0 and u1 satisfy the equation:

(u0 + T 2)3

u20
=

(u1 + T )3

u1
.

However, this is not an equation of minimal degree. As explained before
Proposition 3.3, we can find an equation of degree (in this case) two by
factoring:

(X + T 2)3Y + (Y + T )3X2 = (XY + T 3)(X2 +XY 2 +XY T + Y T 3).

We find that fT (X,Y ) = X2 + XY 2 + XY T + Y T 3. This polynomial
recursively defines the tower of function fields of the modular curves
(X0(T

n))n≥1 as in Proposition 3.3.
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Example 3.6 (P = T 2+T+1, q = 2). The Drinfeld modular polynomial
of level T 2 + T + 1 is given by

ΦT2+T+1(X,Y ) = X5 + Y 5 +X4Y 4 + (T 2 + T + 1)(X4Y 2 +X2Y 4)

+ (T 2 + T + 1)(X4Y +XY 4)

+ T 3(T + 1)3(T 2 + T + 1)(X4 + Y 4)

+ T 2(T + 1)2(T 2 + T + 1)X3Y 3

+ (T 2 + T )(T 2 + T + 1)(T 3 + T + 1)(T 3 + T 2 + 1)(X3Y 2 +X2Y 3)

+ T 3(T + 1)3(T 2 + T + 1)(X3Y +XY 3)

+ T 6(T + 1)6(T 2 + T + 1)2(X3 + Y 3)

+ T 5(T + 1)5(T 2 + T + 1)(T 4 + T + 1)X2Y 2

+ T 6(T + 1)6(T 2 + T + 1)(T 4 + T + 1)(X2Y +XY 2)

+ T 9(T + 1)9(T 2 + T + 1)3(X2 + Y 2) + T 11(T + 1)11XY.

As in the previous example one can use Remark 3.2, to find the trivari-
ate polynomial ΨT 2+T+1(X,Y, Z). Finding a uniformizing element u0 of
F(X0(T

2+T+1)) is somewhat more elaborate. Since such a uniformizing
element fills several pages, it is omitted. Below we will state the reduc-
tion of u0 modulo T and T + 1, so the reader can get an impression of
its form. Once u0 is found, j0 and j1 can be expressed in terms of it. In
this case we find:

j0 =
(u0 + 1)3(u20 + u0 + T 2 + T + 1)

u0

and

j1 =
(u0 + T 2 + T + 1)3(u20 + u0 + T 2 + T + 1)

u40
.

To find the polynomial fT 2+T+1(X,Y ), we need to factor the polynomial

(Y 5 + (T 2 + T + 1)Y 3 + (T 2 + T + 1)Y 2 + (T 2 + T )Y + (T 2 + T + 1))X4+

Y (X5 + (T 2 + T )X4 + (T 2 + T + 1)2X3 + (T 2 + T + 1)3X2 + (T 2 + T + 1)4),

whose factors are XY + T 2 + T + 1 and

fT 2+T+1(X,Y ) = Y 4X3 + (T 2 + T + 1)(Y 3X2 + Y 2X3 + (T 2 + T + 1)Y 2X

+ Y X3 + (T 2 + T + 1)Y X2 + (T 2 + T + 1)2Y ) +X4.

The polynomial fT 2+T+1(X,Y ) recursively defines the tower of function
fields of the modular curves (X0((T

2 + T + 1)n))n≥1 as in Proposition
3.3.
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We consider the reduction modulo T or T+1 of this tower, which by The-
orem 3.4 gives an optimal tower over F4. While a uniformizing element
of F(X0(T

2 +T + 1)) was too long to be stated, over F4(X0(T
2 +T + 1))

it is given by

u0 :=
j40j

3
1 + j40j

2
1 + j40j1 + j40 + j30j

7
1 + j30j

6
1 + j30j

4
1 + j20j

5
1 + j0j

5
1 + j0j

4
1 + j61 + j41

j81
.

Reducing the above found polynomial fT 2+T+1(X,Y ) modulo T or T +1,
we now explicitly find that the polynomial

Y 4X3 + Y 3X2 + Y 2X3 + Y 2X + Y X3 + Y X2 + Y +X4

recursively defines an optimal tower over F4.

Example 3.7 (P = T 2 + T, q = 2). In the previous examples, the poly-
nomial P was a prime, but in this example we will consider the composite
polynomial P = T 2+T . The Drinfeld modular polynomial of level T 2+T
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has Y -degree 9 by Equation 3.2. Using a computer, one finds:

ΦT2+T (X,Y ) = X9 + Y 9 + (X8Y 4 +X4Y 8) + (T 2 + T + 1)(X8Y 2 +X2Y 8)

+ (T 2 + T )(X8Y +XY 8) + (T 6 + T 5 + T 3 + T 2 + 1)(T 2 + T )(X8 + Y 8)

+ (X7Y 4 +X4Y 7) + (T 2 + T )3(X7Y 3 +X3Y 7)

+ (T 5 + T 4 + T 3 + T + 1)(T 5 + T 3 + T 2 + T + 1)(T 2 + T )3(X7 + Y 7)

+ (X6Y 5 +X5Y 6) + (X6Y 4 +X4Y 6) + (T 2 + T + 1)5(X6Y 3 +X3Y 6)

+ (T 7 + T 6 + T 5 + T 4 + T 2 + T + 1)(T 7 + T 3 + T 2 + T + 1)(T 2 + T )(X6Y 2 +X2Y 6)

+ (T 14 + T 13 + T 11 + T 10 + T 7 + T 5 + T 4 + T 2 + 1)(T 2 + T )2(X6Y +XY 6)

+ (T 4 + T + 1)(T 2 + T + 1)(T 2 + T )5(T 8 + T 6 + T 5 + T 4 + T 3 + T + 1)(X6 + Y 6)

+X5Y 5 + (T 2 + T + 1)(T 2 + T )2(X5Y 4 +X4Y 5) + (T 2 + T )2(X5Y 3 +X3Y 5)

+ (T 9 + T 8 + T 7 + T 5 + 1)(T 9 + T 7 + T 6 + T 3 + T 2 + T + 1)(X5Y 2 +X2Y 5)

+ (T 6 + T 5 + T 2 + T + 1)(T 6 + T 5 + 1)(T 2 + T + 1)3(T 2 + T )2(X5Y +XY 5)

+ (T 5 + T 3 + T 2 + T + 1)(T 5 + T 4 + T 3 + T + 1)(T 2 + T + 1)(T 2 + T )5(X5 + Y 5)

+ (T 18 + T 17 + T 16 + T 10 + T 9 + T 4 + T 2 + T + 1)(T 2 + T + 1)2(T 2 + T )(X4Y 2 +X2Y 4)

+ (T 2 + T + 1)2(T 2 + T )7(X4Y +XY 4) + (T 2 + T )8(T 6 + T 5 + T 3 + T 2 + 1)(X4 + Y 4)

+ (T 10 + T 9 + T 8 + T 6 + T 5 + T + 1)(T 2 + T + 1)3X3Y 3 + (T 8 + T 7 + T 2 + T + 1)

· (T 8 + T 7 + T 6 + T 5 + T 4 + T 3 + 1)(T 2 + T + 1)(T 2 + T )2(X3Y 2 +X2Y 3)

+ (T 2 + T + 1)(T 2 + T )4(T 10 + T 9 + T 8 + T 3 + T 2 + T + 1)(X3Y +XY 3)

+ (T 4 + T + 1)(T 3 + T + 1)(T 3 + T 2 + 1)(T 2 + T + 1)3(T 2 + T )3X2Y 2

+ (T 2 + T )10(X2Y +XY 2) + (T 2 + T )10(X2 + Y 2) + (T 4 + T + 1)(T 2 + T )7(X3 + Y 3)

+ (T 3 + T + 1)(T 3 + T 2 + 1)(T 2 + T )6XY + (T 2 + T + 1)(T 2 + T )8(X + Y ) + (T 2 + T )9.

Finding a uniformizing element u0 of F(X0(T
2 + T )) and expressing j0

and j1 in it, we find

j0 =
(u30 + (T 2 + T )u0 + (T 2 + T ))3

u0(u0 + T )2(u0 + T + 1)2
and j1 =

(u30 + (T 2 + T )u20 + (T 2 + T )2)3

u40(u0 + T )2(u0 + T + 1)2
.

To find fT 2+T (X,Y ), we need to factor a bivariate polynomial of Y -
degree 9. Note that Remark 3.2 does not apply, though it still predicts
the existence of one factor of Y -degree one. The factors turn out to be

XY + T 2 + T,

Y 2X2 + TY 2X + (T 2 + T )Y X + (T 3 + T 2)Y + T 2X2 + T 4 + T 2,

Y 2X2 + (T + 1)Y 2X+ (T 2 +T )Y X+ (T 3 +T )Y + (T 2 + 1)X2 +T 4 +T 2,
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and

Y 4X3 + Y 4X2 + (T 2 + T )Y 4X + (T 2 + T )Y 3X2 + (T 2 + T )Y 3X

+(T 4 + T 2)Y 3 + (T 2 + T + 1)Y 2X3 + (T 4 + T 2)Y 2X + (T 4 + T 2)Y 2

+(T 2 + T )Y X3 + (T 4 + T )Y X2 + (T 6 + T 5 + T 4 + T 3)Y +X4.

The last factor is fT 2+T (X,Y ), since it is the only factor of Y -degree 4.
Considering reduction modulo T 2 + T + 1, we see by Theorem 3.4 that
the polynomial

Y 4X3 +Y 4X2 +Y 4X+Y 3X2 +Y 3X+Y 3 +Y 2X+Y 2 +Y X3 +Y +X4

recursively defines an optimal tower over F16.

3.3 An example of a classical modular tower

In [L0̈7, Section 6.1.2.3] a good recursive tower over the field F74 is given.
The recursive equation stated there is:

y5 =
x5 + 5x4 + x3 + 2x2 + 4x

2x4 + 5x3 + 2x2 + x+ 1
.

We will consider the equivalent tower obtained by replacing x by 3x and
y by 3y. The resulting equation is:

y5 = x
x4 − 3x3 + 4x2 − 2x+ 1

x4 + 2x3 + 4x2 + 3x+ 1
. (3.3)

The proof that the corresponding recursive tower is good can be carried
out by observing that there are places that split completely in the tower
and by observing that the ramification locus of the tower is finite. Since
all ramification is tame (the steps in the tower are Kummer extensions),
the Riemann-Hurwitz genus formula can be used directly to estimate
the genera of the function fields occurring in the tower. In this way one
obtains that the limit of the tower is at least 6. The splitting places of this
tower are not defined over F49, otherwise this would be an optimal tower.
We will show in this section that this tower has a modular interpretation
and obtain a generalization to other characteristics as well.
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Based on the extension degrees, a reasonable supposition is that there
may be a relation to the function fields of the curves X0(5

n)n≥1. In
[Elk98] Elkies found an explicit recursive description of X0(5

n)n≥2: define
P (t) := t5 + 5t3 + 5t− 11, then this tower satisfies the recursive equation

P (y) =
125

P
(
x+4
x−1

) ,
or equivalently

y5 + 5y3 + 5y − 11 =
(x− 1)5

x4 + x3 + 6x2 + 6x+ 11
. (3.4)

The steps in this tower are not Galois, but Elkies notes that the polyno-
mial P (X) is dihedral. More concretely: P (v−1 − v) = −v5 − 11 + v−5.
Since the steps in the recursive tower from equation (3.3) are Galois (note
that the 5-th roots of unity belong to the constant field), we consider the
extension Q(v) of Q(x) defined by 1/v − v = x. Direct verification using
Magma reveals that the function field Q(v, y) contains a solution w to
the equation 1/w − w = y such that

w5 = v(v4 − 3v3 + 4v2 − 2v + 1)/(v4 + 2v3 + 4v2 + 3v + 1).

Therefore we recover equation (3.3). We have shown that the tower
satisfying equation (3.3) recursively, is a supertower of the modular tower
X0(5

n)n≥2. One can say more however. Equation (3.3) occurs in the
literature of modular functions. In fact it occurs in the same form in the
famous first letter that S. Ramanujan wrote 100 years ago to G.H. Hardy.
In it, Ramanujan defined a continued fraction, now known as the Rogers–
Ramanujan continued fraction, and related two of its values by equation
(3.3) (see Theorem 5.5 in [BCH+99] for more details). The Rogers–
Ramanujan continued fraction can be seen as a modular function for
the full modular group Γ(5) and defines a uniformizing element of the
function field Q(X(5)). This means that we can obtain the recursive
tower defined (over Q) by equation (3.3) as a lift of the tower defined
by equation (3.4) by extending the first function field of that tower to
the function field of X(5). Also by direct computation one sees that the
extension Q(ζ5)(w, x)/Q(ζ5)(x) is a Galois extension (it is in fact the
Galois closure of Q(ζ5)(x, y)/Q(ζ5)(x)).

For any prime number p different from 5 the curves have good reduc-
tion, meaning that we may reduce the equations modulo such primes p.
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Extending the constant field to Fq with q = p2 if p ≡ ±1 (mod 5) and
q = p4 if p ≡ ±2 (mod 5), we make sure that the primitive fifth root of
unity is contained in the constant field Fq. Over this constant field, the
tower satisfying the recursive relation (3.3) has limit at least p − 1; i.e.,
the ratio of the number of rational places and the genus tends to a value
larger than or equal to p−1 as one goes up in the tower. This means that
the tower is optimal if p ≡ ±1 (mod 5) and good if p ≡ ±2 (mod 5).

3.4 A tower obtained from Drinfeld modules over
a different ring

Previously we have used Drinfeld modules of rank 2 over the ring Fq[T ] to
construct towers of function fields. In principle, one can consider Drinfeld
modules over other rings and use them to construct towers of function
fields. The theory is however, much less explicit in this case. In this
section, we illustrate the method of constructing towers by studying a
particular example in detail. More precisely, we consider Drinfeld mod-
ules over the ring A := F2[S, T ]/〈S2 + S − T 3 − T 〉. The ring A is the
coordinate ring of an elliptic curve with 5 rational points. We denote
by P the prime ideal of A generated by (the classes of) S and T . This
prime ideal corresponds to the point (0, 0) of the elliptic curve. We will
construct an asymptotically good tower in this setup.

3.4.1 Explicit Drinfeld modules of rank 2

Unlike in the case of Drinfeld modules over the ring Fq[T ] we cannot
directly compute a modular polynomial. In fact, it is non-trivial even to
compute examples of Drinfeld modules φ of rank 2 in this setting. Our
first task will be to compute all possible normalized Drinfeld modules of
rank 2 over A in characteristic P . Such a Drinfeld module φ is specified
by

φT = τ4 + g1τ
3 + g2τ

2 + g3τ (3.5)

and

φS = τ6 + h1τ
5 + h2τ

4 + h3τ
3 + h4τ

2 + h5τ. (3.6)
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The eight parameters g1, . . . , h5 cannot be chosen independently, but
should be chosen such that φS2+S−T 3−T = φ0 = 0 and φTφS = φSφT .
The first condition comes from the defining equation of the curve, while
the second one should hold, since the fact the φ is a homomorphism
implies that φTφS = φTS and φSφT = φST = φTS . In this way one
obtains the following system of polynomial equations for gi and hj . From
the condition φS2+S−T 3−T = 0 one obtains that the gi and hj are in the
zero-set of the following polynomials:

h5 + g3,
h4 + h3

5 + g2,
h3 + h2

4h5 + h4h
4
5 + g1 + g73 ,

h2 + h2
3h5 + h3h

8
5 + h5

4 + g42g
3
3 + g22g

9
3 + g2g

12
3 + 1,

h1 + h2
2h5 + h2h

16
5 + h4

3h4 + h3h
8
4 + g41g

3
3 + g21g

17
3 + g1g

24
3 + g102 g3 + g92g

4
3 + g52g

16
3 ,

h2
1h5 + h1h

32
5 + h4

2h4 + h2h
16
4 + h9

3 + g81g
2
2g3 + g81g2g

4
3 + g41g2g

32
3 + g21g

16
2 g3 + g1g

16
2 g

8
3

+g1g
8
2g

32
3 + g212 + g483 + g333 + g33 + 1,

h4
1h4 + h1h

32
4 + h8

2h3 + h2h
16
3 + h64

5 + h5 + g181 g3 + g171 g
8
3 + g161 g

5
2 + g91g

64
3 + g41g

33
2

+g1g
40
2 + g322 g

16
3 + g322 g3 + g162 g

64
3 + g22g3 + g2g

64
3 + g2g

4
3 ,

h8
1h3 + h1h

32
3 + h17

2 + h64
4 + h4 + g361 g2 + g331 g

8
2 + g321 g

16
3 + g321 g3 + g161 g

128
3 + g91g

64
2

+g21g3 + g1g
128
3 + g1g

8
3 + g802 + g652 + g52 ,

h16
1 h2 + h1h

32
2 + h64

3 + h3 + g731 + g641 g
16
2 + g641 g2 + g161 g

128
2 + g41g2 + g1g

128
2 + g1g

8
2

+g2563 + g163 + g3,
h33
1 + h64

2 + h2 + g1441 + g1291 + g91 + g2562 + g162 + g2,
h64
1 + h1 + g2561 + g161 + g1.

Similarly, the condition φTφS = φSφT gives rise to the following polyno-
mials:

h2
5g3 + h5g

2
3 ,

h2
4g3 + h4g

4
3 + h4

5g2 + h5g
2
2 ,

h2
3g3 + h3g

8
3 + h4

4g2 + h4g
4
2 + h8

5g1 + h5g
2
1 ,

h2
2g3 + h2g

16
3 + h4

3g2 + h3g
8
2 + h8

4g1 + h4g
4
1 + h16

5 + h5,
h2
1g3 + h1g

32
3 + h4

2g2 + h2g
16
2 + h8

3g1 + h3g
8
1 + h16

4 + h4,
h4
1g2 + h1g

32
2 + h8

2g1 + h2g
16
1 + h16

3 + h3 + g643 + g3,
h8
1g1 + h1g

32
1 + h16

2 + h2 + g642 + g2,
h16
1 + h1 + g641 + g1.

One could attempt a direct Groebner basis computation on the ideal
I ⊂ F2[g1, . . . , h5] generated by the above two sets of polynomials, but we
can simplify the system of polynomial equations first. Taking for example
the last of each set of polynomials, p1 := h641 + h1 + g2561 + g161 + g1 and
p2 := h161 +h1+g641 +g1, we find that p3 := p1−p42 = h41+h1+g161 +g41+g1
is an element of the ideal I. Moreover, since p2 = p3 + p43 and p1 =
p3 + p43 + p163 , we can replace p1 and p2 by p3 when generating the ideal
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I. Also we can eliminate the variables hi altogether, since they can be
expressed in terms of g1, g2, g3 using the first five generators of I. After
performing these and similar simplifications, we computed a Groebner
basis of the resulting polynomial ideal in the variables g1, g2 and g3 using
Magma. The resulting Groebner basis contains one irreducible (but not
absolutely irreducible) polynomial involving only g2 and g3 as well as an
irreducible polynomial of degree one in g1. This means that the zero-set
of the ideal I can be interpreted as an irreducible algebraic curve defined
over F2. It turns out to have genus 4.

From the modular point of view, it is more natural to consider isomor-
phism classes of Drinfeld modules. An isomorphism between two Drinfeld
modules φ and ψ is given by a non-zero constant c such that cφ = ψc.
Considering equations (3.5) and (3.6), we see that for normalized Drinfeld
modules φ and ψ we have that c ∈ F4 and that g31, g2, g

3
3, h

3
1, h2, h

3
3, h4, h

3
5

are invariant under isomorphism. Inspecting the Groebner basis compu-
tation performed before, we obtain a polynomial relation between g := g33
and g2 and a way to express all other invariants in these two parameters.
These polynomials are too large to state here, so we will not do so. The
important fact is that we again obtain an irreducible algebraic curve de-
fined over F2 which determines the isomorphism classes of possible rank
2 Drinfeld modules. This modular curve is known to have genus zero and
to be irreducible, but not absolutely irreducible, see [Gek86]. There it is
also shown that the number of components is equal to the class number
hE , over which extension field these components are defined and how the
Galois group of this extension acts on the components. In our case we
obtain that there are 5 components defined over F32 and that the Frobe-
nius map of F32/F2 acts transitively on these five components. One such
component is determined by the following relation between g and g2:

g132 + (α5g + α14)g122 + (α4g2 + α19g + α7)g112 + (α9g3 + α18g2 + α9g + α21)g102
+(α10g4 + α21g3 + α16g2 + α18g + α8)g92 + (α15g5 + α29g4 + α10g3 + α27g2 + α25g + α8)g82
+(g6 + α28g5 + α6g4 + α11g3 + α6g2 + α28g + α9)g72
+(α5g7 + α23g6 + α2g5 + α15g4 + α12g3 + α4g2 + α6g + α25)g62
+(α4g8 + α30g7 + α18g6 + α3g5 + α15g4 + α12g3 + α23g2 + α29g + α10)g52
+(α9g9 + α25g8 + α8g7 + αg6 + α7g5 + α25g4 + α23g3 + α15g2 + αg + α26)g42
+(α4g10 + α27g9 + α15g8 + α11g7 + α5g6 + α26g5 + α18g4 + α9g3 + α11g2 + α30g)g32
+(α9g11 + α30g10 + α10g9 + α15g8 + α12g7 + α6g6 + α2g5 + α26g4 + α15g3 + α6g2

+α13g + α30)g22 + (α10g12 + α16g11 + α4g10 + α12g9 + α18g8 + α28g7 + α2g6 + α9g5

+α3g4 + α8g3 + α10g2 + α17g)g2 + α15g13 + α5g12 + α24g11 + α4g10 + α11g9 + α8g8

+α12g7 + α27g6 + g5 + α23g4 + α19g3 + α8g2 + α24g + 1,

with α5 + α2 + 1 = 0.
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Using this polynomial, we can define a rational function field F32(g2, g).
Since it is rational, there exists a uniformizer u ∈ F32(g2, g) such that
F32(g2, g) = F32(u). Finding such element u can easily be done using
Magma. Note that this element u plays a very similar role as the element
j0 in Section 3.2, since it describes isomorphism classes of rank 2 Drinfeld
modules. The only difference is that now there exist five conjugated
families of isomorphism classes, whereas previously there was only one
such family.

3.4.2 Finding an isogeny

To find a tower, we need to find an isogeny from a given Drinfeld module
to another. That is to say: we need to find two Drinfeld modules φ and
ψ both of rank 2 and an additive polynomial λ such that λφ = ψλ. We
will describe the most direct approach, not using the theory of torsion
points, which would give a faster way to obtain isogenies. We will find
an isogeny λ of the simplest possible form λ = τ − a from φ to another
Drinfeld module ψ specified by

ψT := τ4 + l1τ
3 + l2τ

2 + l3τ

and

ψS = τ6 + t1τ
5 + t2τ

4 + t3τ
3 + t4τ

2 + t5τ.

Since we can describe both φ and ψ essentially using only one parameter,
we can obtain a relation between these parameters and a. More in detail,
always assuming q = 2, we have

λφT = ψTλ (3.7)

and

λφS = ψSλ. (3.8)

The left hand side of equation (3.7) is

(τ − a)(τ4 + g1τ
3 + g2τ

2 + g3τ)

= τ5 + (gq1 − a)τ4 + (gq2 − ag1)τ
3 + (gq3 − ag2)τ

2 − ag3τ,
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while the right hand one is

(τ4 + l1τ
3 + l2τ

2 + l3τ)(τ − a)

= τ5 + (l1 − aq
4
)τ4 + (l2 − l1aq

3
)τ3 + (l3 − l2aq

2
)τ2 − l3aqτ.

Consequently we get 
gq1 − a = l1 − aq

4

gq2 − ag1 = l2 − l1aq
3

gq3 − ag2 = l3 − l2aq
2

−ag3 = −l3aq.

By substitution top down, we can eliminate variables l1, l2, l3 and get

(g1a
q2+q+1+g2a

q+1+g3a+aq
3+q2+q+1)q−(g1a

q2+q+1+g2a
q+1+g3a+aq

3+q2+q+1) = 0

or
aq

3+q2+q+1 + g1a
q2+q+1 + g2a

q+1 + g3a = γ ∈ Fq. (3.9)

Equation (3.9) can be seen as a polynomial in terms of a, u and g3.

Similarly, studying equation (3.8), we obtain

hq1 − a = t1 − aq
6

hq2 − ah1 = t2 − t1aq
5

hq3 − ah2 = t3 − t2aq
4

hq4 − ah3 = t4 − t3aq
3

hq5 − ah4 = t5 − t4aq
2

−ah5 = −t5aq.

Also by substitution, we can eliminate variables ti(i = 1, . . . , 5) and ob-
tain similarly

aq
5+q4+q3+q2+q+1+h1a

q4+q3+q2+q+1+h2a
q3+q2+q+1+h3a

q2+q+1+h4a
q+1+h5a = β

(3.10)
with β ∈ Fq. As hi(i = 1, . . . , 5) can be expressed in terms of g1, g2 and
g3, the equation (3.10) can be seen as a polynomial in a, u and g3 as
well. Choosing β = γ = 1 and computing the greatest common divisor
of the resulting polynomials in equations (3.9) and (3.10) gives rise to an
algebraic condition on a of degree three. As an aside, note that the choice
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β = γ = 1 corresponds to finding a 〈S+1, T +1〉-isogeny. We obtain that
the Drinfeld module ψ can be expressed in terms of u, g3 and a. Now
recall that l31, l2 and l33 can also be expressed in some v ∈ F32(l2, l

3
3). It

turns out that ψ does not correspond to a point in the same family of
φ, but a conjugated one. In this case we need to apply Frobenius three
times to go from the family to which the isomorphism class of φ belongs,
to the family to which the isomorphism class of ψ belongs. Relating the
parameters u and v we obtain that Φ(α, u, v) = 0 with

Φ(α,X, Y ) := (X3 + α24X2 + α4X + α9)Y 3 + (α17X3 + α29X2 +X + α30)Y 2

+(α30X3 + α12X2 + α30X + α17)Y + (α4X3 + α14X2 + α19).

(3.11)

As noted before, the parameter u plays the same role as j0 from Section
3.2. Similarly v plays the same role as j1 and the polynomial Φ(α,X, Y )
can be seen as an analogue of a Drinfeld modular polynomial ΦN (X,Y ).
For completeness, let us note that whereas N was a polynomial before,
its role is now taken by the ideal 〈S + 1, T + 1〉 ⊂ A which implicitly
played a role in the construction of the isogeny λ.

3.4.3 Obtaining a tower

Just as for the towers from Section 3.2, we need a quadratic extension of
the constant field in order to obtain many rational places. From now on
we will therefore work over the field F210 instead of F25 . Let β ∈ F210 be
a primitive element, the α’s of the polynomial (3.11) should be changed
in terms of β using the relation α = β33. We would now like to define a
tower F := (F0 ⊂ F1 ⊂ · · · ) of function fields as follows:

F0 := F210(u0) and for n ≥ 0 Fn+1 := Fn(un+1), (3.12)

with Φ(α8n , un, un+1) = 0. There are two remarks to be made. In the first
place, the reason one needs to take α8n as argument is that in the first
iteration we went from one family of rank 2 Drinfeld modules to another
(namely the one obtained by applying Frobenius three times). In the
next iteration one therefore needs to start at this family. This amounts
to replacing α by α8 in equation (3.11). Iteratively in the (n + 1)-th
step we need to replace α by α8n . The second remark is that in fact
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the polynomial Φ(α8, u1, T ) ∈ F1[T ] is not irreducible. It has the degree
one factor (u0 + α25)T + (α28u0 + α27) and a degree two factor. This
is in perfect analogy with Proposition 3.1. To define the tower more
accurately, we would have to specify this degree two factor and use that to
define Fn if n > 1. A direct computation reveals there is always a totally
ramified place with ramification index two in the extension Fn+1/Fn for
n > 0 and hence that the degree two factor remains irreducible. This
means that all the steps in the tower, except the first one, are Artin–
Schreier extensions.

A careful analysis of the extension F1/F0 reveals the following:

Proposition 3.8. The extension F1/F0 satisfies the following:

1. [F1 : F0] = 3.

2. The place (u0 = β858) is totally ramified; i.e., it has ramification
index 3.

3. The places (u0 = β165), (u0 = β368), (u0 = β523), and (u0 = β891)
are completely splitting.

4. Above each of the places (u0 = β198), (u0 = β330), (u0 = β528), (u0 =
β627), and (u0 = β924) lie two places of F1. One of these two
has ramification index 2 and different exponent 2, the other has
ramification index one.

5. The genus of F1 is 4.

Proof. All this follows by a direct computation, for example using Magma.

The place mentioned, though ramified in the first extension turns out to
split completely in all subsequent extensions. More precisely, denote by
P the place of F1 lying above (u0 = β858). Then one can show that P
splits completely in any of the extensions Fn/F1 for n > 1. Using the
recursive structure of the tower F , it is not hard to show this. Combining
this with part (iii) of the above proposition, this yields the following:
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Lemma 3.9. Let n > 0. The number of rational places of Fn is at least
13 · 2n−1.

Also the genus of the function fields in the tower F can be estimated.
Recall that Fn+1/Fn is an Artin–Schreier extension if n > 0. Using the
recursive nature of the tower and either direct computation or a computer
program like Magma, one can show that all ramification in the extension
F2/F1 is 2-bounded, that is that for any place P of F1 and any place Q
of F2 lying above F1, we have d(Q|P ) = 2e(Q|P ) − 2. The same is true
for the extension F2/F210(u1, u2). By [GS05, Lemma 1] and the recursive
definition of the tower, this means that for any n > 1, the ramification in
the extension Fn/F1 is 2-bounded. By part (iv) of Proposition 3.8, there
are exactly 10 places of F1 that may ramify in Fn/F1. Using Riemann–
Hurwitz and the 2-boundedness of the ramification, we obtain for any
n > 1 that

2g(Fn)− 2 = 2n−1(2 · 4− 2) + deg Diff(Fn/F1)

≤ 2n−16 + 10 · 2 · 2n−1.

Hence we obtain the following:

Lemma 3.10. For n > 1 we have g(Fn) ≤ 13 · 2n−1 + 1.

This shows that the tower F is good. More precisely, we obtain from
Lemmas 3.9 and 3.10 that:

λ(F) ≥ 1.

In other words, the tower defined by equation (3.12) is asymptotically
good.
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Chapter 4

Good families of Drinfeld
modular curves

In this chapter we investigate examples of good and optimal Drinfeld
modular towers of function fields. Surprisingly, the optimality of these
towers has not been investigated in full detail in the literature. The cur-
rent work can be seen as a continuation and solidification of the work
started in Chapter 3 to explicitly define families of Drinfeld modular
curves. We also give an algorithmic approach on how to obtain explicit
defining equations for some of these towers and in particular give a new
explicit example of an optimal tower over a quadratic finite field. Nu-
merical experiments are presented in Appendix A. Apart from the intro-
duction, the text of this chapter is kept as it was published in

[BBN15] A. Bassa, P. Beelen and N. Nguyen, Good families of Drinfeld modular

curves, LMS Journal of Computation and Mathematics 18, 699–712 (2015)
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4.1 Preliminaries

To put this work into the right context of Drinfeld modular curves, we
briefly recall some notions that we will use in the remainder of the chap-
ter. Let F/Fq be a function field with full constant field Fq and let P be
a place of degree d. Then we denote by FP the residue field of P . It is a
finite field with |FP | := qd elements. For an integer e ≥ 1, we denote by

F
(e)
P the algebraic extension of FP of degree e. In the theory of Drinfeld

modules and Drinfeld modular curves one singles out a place P∞ of F
(playing the role of a place at “infinity”) and defines the ring A as the
ring of all functions in F regular outside P∞. We will denote the degree
of P∞ by δ.

For a non-zero monic polynomial n ∈ Fq[T ] Gekeler investigates in [Gek79]
(among other things) the Drinfeld modular curve Y0(n). The points on
this curve parametrize isomorphism classes of pairs of Fq[T ]-Drinfeld
modules of rank 2 together with an n-isogeny between them. Adding
so-called cusps gives a projective algebraic curve X0(n) defined over F
that in general however will not be absolutely irreducible. In case n = 1,
the number of cusps is seen to be (δ · h(F ))2 while X0(1) has δ · h(F )
components [Gek86, VI.5]. Here h(F ) denotes the class number of the
function field F . This implies that the number of absolutely irreducible
components of X0(n) equals δ · h(F ). Equivalently, the number of com-
ponents is equal to h(A), the cardinality of the ideal class group of the
ring A. By considering the action of the ideal class group of A, one sees
that the cusps are distributed equally among the absolutely irreducible
components of X0(1), which implies that any such component contains
exactly δ · h(F ) cusps. We will denote by x0(n) an absolutely irreducible
component of X0(n). For any prime ideal of A (corresponding to a place
of F different from P∞), one obtains by reduction an algebraic curve de-
fined over a finite field. In case of A = Fq[T ] and δ = 1, the curve X0(n)
(as well as its reduction modulo any prime P relatively prime to n) is ab-
solutely irreducible. By computing the precise formula for the genus and
the number of rational points on reductions of Fq[T ]-Drinfeld modular
curves X0(n), Gekeler [Gek04] showed that for a series (nk)k∈N of poly-
nomials of A coprime with an irreducible polynomial P ∈ A, and whose
degrees tend to infinity, the family of Drinfeld modular curves X0(nk)/FP
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attains the Drinfeld–Vladut bound when considered over F
(2)
P . In case

nk = T k and P = T−1, explicit equations for the modular curves X0(T
k)

were given in [Elk98], while some more general examples (including defin-
ing equations in generic A-characteristic 0) were given in Chapter 3. For
A = Fq[T ] and δ = 1 the situation has therefore to a large extent been
investigated both theoretically and explicitly. However, we will see that
generalizations to other rings A and values of δ are possible and that in
some cases the resulting families of curves can be described by equations
explicitly.

4.2 Genus calculation of x0(n)

In this section we will compute the genus of (an irreducible component
of) the modular curve X0(n). We put no restriction on the choice of
function field F and place P∞. A recipe for this genus computation is
given in [Gek86] using results from [Gek79]. The recipe was carried out
in [Gek86] in case n is a prime ideal. We will in this section carry out the
computations for any ideal n. The computations in [Gek79, Gek86] are
carried out over the field C∞, which is the completion of the algebraic
closure of the completion of F at P∞. For our purposes one therefore
needs to check that the genus of x0(n) does not change when changing
the constant field. For A = Fq[T ], this result is contained in [Sch97]. In
our case, note that the only points that ramify in the cover X(n)/X(1)
are the elliptic points of X(1) and the cusps of X(1). The residue field
of a cusp is isomorphic to the Hilbert class field of F [Gek86, Thm. 1.9
(ii), p.81], while the residue field of an elliptic point is a subfield of the
Hilbert class field of Fq2F [Gek86, Prop. 2.2, p.83]. In either case, the
residue field is a separable extension of the field F . Using Corollary 3.4.2
from [Gol03], we see that the argument given in [Sch97] carries over to
our situation.

One of the ingredients in the genus expressions of x0(n) involve the L-
polynomial of the function field F , which we will denote by P (t). Note
that P (1) = h(F ), the class number of F . The following functions will
also be useful:

Definition 4.1. Let n ⊂ A be an ideal and suppose that n = pr11 · · · prss ,
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for prime ideals p1, . . . , ps and positive integers r1, . . . , rs. Writing qi :=
|pi| = |A/pi|, we define

ϕ(n) := |(A/n)∗| =
s∏
i=1

qri−1i (qi − 1),

ε(n) :=

s∏
i=1

qri−1i (qi + 1).

and

κ(n) :=

s∏
i=1

(q
[ri/2]
i + q

ri−[ri/2]−1
i ),

where [r] denotes the integral part of a real number r.

Using these notions, we will obtain that

Theorem 4.2. Let A and n be as above. In particular suppose that
n = pr11 · · · prss , for prime ideals p1, . . . , ps and positive integers r1, . . . , rs.
Then we have

g(x0(n)) = 1 +
(qδ − 1)ε(n)P (q)

(q2 − 1)(q − 1)
− P (1)δ(κ(n) + 2s−1(q − 2))

q − 1
+ η,

where η = −P (−1)2s−1q/(q + 1) if δ is odd and all prime divisors of n
are of even degree, η = 0 otherwise.

Note that [Gek86, VII. 5.13] (the case that n is a prime ideal) is a special
case of this theorem.

The recipe outlined in [Gek86] consists of the following ingredients: first
compute the genus of x0(1), then consider the cover x0(n)/x0(1). Since
(like in the case of classical modular curves) this cover is not Galois
in general, one studies a Galois cover x(n)/x0(1) first. The curve x(n)
is an irreducible component of the modular curve X(n), whose points
correspond to isomorphism classes of A-Drinfeld modules φ of rank 2
together with an isomorphism of φ[n] with (A/n)2. Note that X0(1) =
X(1) and that the points on this curve correspond to isomorphism classes
of A-Drinfeld modules of rank 2.
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Since x(n)/x(1) is Galois, so is x(n)/x0(n). The Galois group of the
cover x(n)/x(1), resp. x(n)/x0(n), is given by G(n), resp. H(n) defined
as [Gek86, VII.5]:

G(n) := {γ ∈ GL(2, A/n) : det γ ∈ F∗q}/Z(Fq)

and

H(n) :=

{(
a b
0 d

)
∈ GL(2, A/n) : ad ∈ F∗q

}
/Z(Fq),

with

Z(Fq) :=

{(
a 0
0 a

)
: a ∈ F∗q

}
.

Before proceeding, we calculate the cardinalities of the groups G(n) and
H(n). The latter cardinality is relatively easy, since in that case a ∈
(A/n)∗ and b ∈ A/n can be chosen freely (leaving q − 1 possibilities for
d). Therefore, we have

|H(n)| = |(A/n)∗| · (q − 1) · |A/n|/(q − 1) = ϕ(n)|n|. (4.1)

To count the cardinality of G(n), observe that

|SL(2, A/n)| =
|{γ ∈ GL(2, A/n) : det γ ∈ F∗q}|

q − 1
,

since any nonzero value in Fq of the determinant is taken equally of-
ten when considering elements in {γ ∈ GL(2, A/n) : det γ ∈ F∗q}. By
definition of G(n), we obtain that

|G(n)| = |SL(2, A/n)|.

The cardinality of SL(2, A/n) is well known and can be computed using
the Chinese remainder theorem. This approach gives that if n =

∏
i p
ri
i

for prime ideals pi ⊂ A, then

|SL(2, A/n)| =
∏
i

|SL(2, A/prii )| =
∏
i

|pi|3ri−2(|pi|2 − 1) = ϕ(n)ε(n)|n|,

implying that
|G(n)| = ϕ(n)ε(n)|n|. (4.2)

We now turn our attention again to the Galois cover x(n)/x(1). It was
shown in [Gek86] that the only ramification in this cover occurs above
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the so-called elliptic points (with ramification index q+ 1) and the cusps
of x(1). Moreover, as mentioned before, the number of cusps on x(1)
equals δh(F ). The elliptic points were studied in [Gek86, V.4,VII.5]:
The number of elliptic points on x(1) is 0 if δ is even and P (−1) if δ if
odd, each with ramification index q + 1 in the cover x(n)/x(1). We now
write, just as before, n = pr11 · · · prss for prime ideals p1, . . . , ps of A and
positive integers r1, . . . , rs. Although x(1) contains P (−1) elliptic points
if δ is odd, such an elliptic point does not give rise to ramification in the
cover x(n)/x0(n) if any of the pi has odd degree. If δ is odd and all prime
ideals pi occurring in the decomposition of n have even degree, among
all the points of x0(n) that are lying above a given elliptic point of x(1)
there are exactly 2s that are ramified in the covering x(n)/x0(n) (with
ramification index q + 1). This completely determines the behaviour of
elliptic points as far as their role in the genus computation of x(n) and
x0(n) goes. To describe the behaviour of the cusps, we start by describing
their ramification groups in x(n)/x(1) (following [Gek86, VII.5]):

Lemma 4.3 (Lemma 5.6 [Gek86]). Let

G(n)∞ :=

{(
a b
0 d

)
∈ GL(2, A/n) : a, d ∈ F∗q

}
/Z(Fq).

Then the stabilizers of all cusps of x(n) are conjugate in G(n) to G(n)∞.

This means in particular that the ramification index in x(n)/x(1) of any
cusp equals |G(n)∞| = (q− 1)2|n|/(q− 1) = (q− 1)|n|. The cardinality of
the first, resp. second, ramification group of any cusp is then calculated
in [Gek86, Lemma 5.7] to be |n|, resp. 1. This means that the different
exponent for a cusp equals (q− 1)|n| − 1 + |n| − 1 = q|n| − 2. Combining
this information concerning the ramification groups of the cusps with the
description of the ramification behaviour of the elliptic points, makes the
computation of the genus of x(n) completely feasible using the Riemann–
Hurwitz genus formula. The result (given in slightly less explicit form in
[Gek86, Theorem 5.11]) is:

g(x(n)) = 1 +
(qδ − 1)P (q)

(q2 − 1)(q − 1)
ϕ(n)ε(n)|n| − δP (1)

q − 1
ϕ(n)ε(n). (4.3)

The ramification behaviour of the cusps is more complicated in the cover
x(n)/x0(n). However, in [Gek86, VII.5] (with reference to [Gek79, 3.4.15])
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the total contribution to the Riemann–Hurwitz genus formula for the
cover x(n)/x0(n) of all cusps of x(n) lying above a single cusp of x(1) is
computed to be

(q − 1)−1ϕ(n)(2|n|κ(n) + 2s(q − 2)|n| − 2ε(n)). (4.4)

We now have all the ingredients needed for the proof of Theorem 4.2

Proof. For any point P of x(n), we denote by e(P ), resp. d(P ), the
ramification index, resp. different exponent, in the cover x(n)/x0(n).
Since the only ramified points in the cover x(n)/x(1) are the cusps and
the elliptic points (if these exist), applying the Riemann–Hurwitz genus
formula for the cover x(n)/x0(n) we obtain:

2g(x(n))− 2 = ϕ(n)|n|(2g(x0(n))− 2) +
∑

P cusp
d(P ) +

∑
P elliptic

point

d(P ).

(4.5)
The sum concerning the elliptic points is zero if no such points exist and
therefore: ∑

P elliptic
point

d(P ) = 0,

if δ is even or if there exists pi of odd degree. Otherwise, as we have
described previously, above each of the P (−1) cusps of x(1) lie exactly
2s points of x0(n) that ramify with ramification index q+1 in x(n)/x0(n).
This implies that∑

P elliptic
point

d(P ) =
∑

P elliptic
point

q = P (−1)2sq|n|ϕ(n)/(q + 1),

if δ is odd and all prime divisors of n have even degree.

The summation over the points lying over any of the δh(F ) cusps of x(1)
can be dealt with using Equation (4.4). We obtain that∑

P cusp
d(P ) = δh(F )(q − 1)−1ϕ(n)(2|n|κ(n) + 2s(q − 2)|n| − 2ε(n)).

Substituting these values in Equation (4.5) and using Equation (4.3),
Theorem 4.2 follows.
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4.3 Rational points on reductions of Drinfeld
modular curves

In this section, we combine the previously described genus computation of
the curves x0(n) with the fact that reductions of these curves have many
rational points (when the field of definition is chosen properly). We will
show that for any sequence of ideals (nk)k≥1 such that deg nk →∞ as k →
∞, the corresponding family of reductions of Drinfeld modular curves
(x0(nk))k has good asymptotic properties. In [Tae06] the (reductions of
the) curves x0(n) were also investigated in case n is a principal ideal,
using a different method inspired by [Iha81]. Our approach is to use,
for any ideal n, results from [Gek90] to estimate the number of rational
points on the reduction of x0(n) and to use the explicit genus formula for
g(x0(n)) from the previous section.

While the curves X0(n) themselves are defined over the function field F
(and a component x0(n) over an extension field of F ), a model can be
found that can be reduced modulo prime ideals of the ring A. This re-
duction is known to be good if P ⊂ A is a prime ideal which is coprime
with the ideal n. Thus, reduction modulo P gives rise to a curve (as be-
fore not necessarily absolutely irreducible) that is defined over the finite

field A/P . For convenience we write FP := A/P and denote by F
(m)
P

the degree m extension of FP . In case A = Fq[T ], these reduced Drinfeld

modular curves have many rational points over F
(2)
P (essentially corre-

sponding to supersingular A-Drinfeld modules), but it turns out that in
general the situation is slightly more complicated. As a matter of fact
the supersingular Drinfeld modules in A-characteristic P are in general

defined over the field F
(2e)
P = Fq2de with d = degP and e = ordP , the

order of the ideal P in the ideal class group of the ring A [Gek90, Section
4].

More precisely, in [Gek90] it was shown that for a prime ideal P ⊂ A with
d := degP , the number N(P ) of isomorphism classes of supersingular A-
Drinfeld modules in A-characteristic P equals N(P ) = h1(P ) + h2(P )
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with

h1(P ) :=


δP (1)

(
P (q) (q

δ−1)(qd−1)
(q2−1)(q−1) −

P (−1)
q+1

)
, if d and δ are odd,

δP (1)P (q) (q
δ−1)(qd−1)

(q2−1)(q−1) otherwise,

(4.6)
and

h2(P ) :=


δP (1)P (−1), if d and δ are odd,

0 otherwise.
(4.7)

Each isomorphism class of a supersingular A-Drinfeld module gives rise to
a rational point (which we will call a supersingular point) on the curve

X(1), if the field of definition is taken to be F
(2e)
P . Using the action

given by the class group of A on the absolutely irreducible components
of X(1), one sees that the supersingular points are equidistributed among
all δP (1) components of X(1). These observations enable us to give a
lower bound on the number of rational points on x0(n):

Theorem 4.4. Let n ⊂ A be an ideal prime to the A-characteristic P
and suppose that n = pr11 · · · prss , for prime ideals p1, . . . , ps and positive
integers r1, . . . , rs. Moreover, denote by d := degP and e := ordP . Con-

sider over the finite field F
(2e)
P a component x0(n) of X0(n) and denote by

N1(x0(n)) its number of rational points. Then if d, δ are odd, and deg pi
is even for all i, we have

N1(x0(n)) ≥ ε(n)P (q)
(qδ − 1)(qd − 1)

(q2 − 1)(q − 1)
+ P (−1)2s

q

q + 1
,

while otherwise

N1(x0(n)) ≥ ε(n)P (q)
(qδ − 1)(qd − 1)

(q2 − 1)(q − 1)
.

Proof. All points of x0(n) lying above one of the N(P )/(δP (1)) super-
singular points of x(1) are rational, but not necessarily unramified in the
covering x0(n)/x(1). The reason for this is that the elliptic points are su-
persingular points if (and only if) both δ and d are odd [Gek90, Lemma
7.2]. However, any elliptic point has ramification index either one, or
q + 1 in the cover x0(n)/x(1). Moreover, from [Gek86, V.4,VII.5] we see
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that if δ is odd and all prime ideals pi occurring in the decomposition of
n have even degree, among all the points of x0(n) that are lying above a
given elliptic point of x(1) there are exactly 2s that are ramified in the
covering x(n)/x0(n) (with ramification index q+1). The latter statement
is equivalent to saying that these 2s points of x0(n) have ramification in-
dex 1 in x0(n)/x(1). Counting the number of points of x0(n) lying above
the supersingular points of x(1) now is direct and yields the stated lower
bound on N1(x0(n)).

From Theorem (4.2) we get the following asymptotic result:

Theorem 4.5. Let A be any ring of functions regular outside a fixed
place ∞ of degree δ. Let P ⊂ A be a prime ideal of degree d and order
e and further let (nk)k≥1 be a series of ideals relatively prime to P . The
family of reductions of Drinfeld modular curves (x0(nk))k when defined
over Fq2de satisfies

lim
k→∞

N1(x0(nk))

g(x0(nk))
≥ qd − 1.

Remark 4.6. The lower bound given in Theorem 4.5 is sharp in case P
is a principal ideal, since in this case e = 1 and the given lower bound is
equal to the Drinfeld–Vladut upper bound. If A = Fq[T ] (in particular
δ = 1), the ideal class group of A is trivial, implying that any family
of reductions of Drinfeld modular curves as in Theorem 4.5 has optimal
asymptotic properties. This particular case was shown in [Gek04]. If P
is not principal, the resulting families will be asymptotically good, but
not optimal. Note that in [Tae06] this subtlety is missing.

4.4 A recursive description of a Drinfeld modu-
lar tower

In this section we will illustrate Theorem 4.5 by describing some families
of Drinfeld modular curves (x0(nk))k more explicitly. In case nk = pk

for a fixed prime ideal p of A, this can be done in a recursive way (in
fact p could be any non-trivial ideal, but we will assume primality for
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simplicity). The reason for this is similar to the reasoning presented
in [Elk98, Elk01], but is somewhat more involved due to the fact that
the curves X(1) and X0(p

k) are not absolutely irreducible in general.
Therefore, we go through the argument in the following.

A point on X0(p) corresponds to an isomorphism class [φ, ψ] of a pair
of p-isogenous A-Drinfeld modules of rank 2. Therefore, there are two
possible maps, say π1 and π2, from X0(p) to X(1), see Figure 4.1, since
one can send [φ, ψ] to [φ] or [ψ] (the isomorphism class of φ or that of
ψ). Since a p-isogeny corresponds to a cyclic submodule of the p-torsion
points of φ, the degree of the first map is |p|+1. By symmetry, the degree
of the second map is also |p|+ 1.

The image of a fixed absolutely irreducible component x0(p) of X0(p)
under either π1 or π2, will be an absolutely irreducible component of
X(1), but not necessarily the same one. We denote these components
by x1(1) and x2(1). We can then view x0(p) as a curve lying inside
x1(1) × x2(1). Once an explicit description of the components of x1(1)
and x2(1) is available, the map π1 × π2 : x0(p) → x1(1) × x2(1) defined
by [φ, ψ] 7→ ([φ], [ψ]), can be in principle be used to describe the curve
x0(p) explicitly by equations. However, in practice it is very convenient
to assume that the genera of the components of X(1) are zero. In this
case, a component xi(1) can just be described using a single variable ui,
which one can think of as a j-invariant of an A-Drinfeld module. In this
case a component of X0(p) can be described using a bivariate polynomial
Φ(u1, u2) of bi-degree (|p|+1, |p|+1) (that is, of degree |p|+1 in either of
the two variables u1 and u2). Note that for n = 1, Equation (4.3) states
that

g(x(1)) = 1 + (q2 − 1)−1
(
qδ − 1

q − 1
P (q)− q(q + 1)

2
δP (1) + η

)
, (4.8)

where η = −q(q − 1)P (−1)/2 for δ odd, η = 0 otherwise. As a matter
of fact, this formula was stated in [Gek86, VI.5.8] and was used as a key
ingredient there to showing Equation (4.3). Using Equation (4.8), one
readily sees that g(x(1)) = 0 if F = Fq(T ) and δ ∈ {1, 2, 3} or if F is the
function field of an elliptic curve and δ = 1. For simplicity, we assume
from now on that we are in one of these situations, though the general
considerations below remain valid in the general case as well. However,
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finding explicit equations is only possible if (the function field of) the
curve x(1) can be given explicitly, which is trivial if it has genus zero.

x0(p)

x1(1) x2(1)

Figure 4.1: A correspondence of modular curves.

A description of x0(p
2) (a component of X0(p

2)) can now be obtained
relatively easily. A point on X0(p

2) corresponds to an isomorphism class
[φ1, φ3] of a pair of p2-isogenous A-Drinfeld modules of rank 2. Let µ :
φ1 → φ3 be the corresponding p2-isogeny. Then there exists a A-Drinfeld
module φ2 of rank 2 and p-isogenies λ1 : φ1 → φ2 and λ2 : φ2 → φ3 such
that µ = λ2 ◦λ1. The isomorphism class of [φi] will correspond to a point
on a component xi(1) of X(1). This means that we can map x0(p

2) to
x1(1) × x2(1) × x3(1). Note that both [φ1, φ2] and [φ2, φ3] correspond
to points on X0(p), lying on certain components, say x10(p) and x20(p).
Using the above procedure, we can describe these two components as
the zero set of polynomials Φ1(u1, u2) and Φ2(u2, u3), both of bi-degree
(|p| + 1, |p| + 1). This means that image of the map from x0(p

2) to
x1(1)×x2(1)×x3(1) is part of the zero set of the polynomials Φ1(u1, u2)
and Φ2(u2, u3). However, this zero set turns out to be too large. The
reason for this is that if (φ1, φ2) and (φ2, φ3) are two pairs of p-isogenous
A-Drinfeld modules of rank 2, with p-isogenies denoted by λ1 and λ2, then
λ2◦λ1 is either a p2-isogeny, or has kernel isomorphic to A/p×A/p. Here
we used that p is a prime ideal. The latter case gives rise to additional
elements in the zero set of Φ1(u1, u2) and Φ2(u2, u3). However, this
issue is rather easy to resolve: We work over the function field of x10(p),
which we can construct using the polynomial Φ1(u1, u2). The polynomial
Φ2(u2, u3), viewed as a univariate polynomial in u3 and coefficients in the
function field of x10(p), has degree |p|+ 1 in u3 while the extension degree
of X0(p

2)/X(1) is ε(p2) = (|p| + 1)|p|. Then the polynomial Φ2(u2, u3)
is not absolutely irreducible and has a (for degree reasons necessarily
unique) component of degree |p| in u3. This component can then be used
to construct (the function field of) x0(p

2), also see Figure 4.2.
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x0(p
2)

x10(p) x20(p)

x1(1) x2(1) x3(1)

Figure 4.2: Recursive description of x0(p
2).

Iterating this procedure gives rise to an explicit recursive description of
x0(p

k) for any k ≥ 1. One effectively just increases the size of the pyramid
in Figures 4.1 and 4.2. Note that since X(1) only has finitely many
absolutely irreducible components, ultimately the same components will
start to occur, see Figure 4.3.

· · ·

x10(p
2) · · · x10(p

2)

x10(p) x20(p) · · · x10(p) x20(p)

x1(1) x2(1) x3(1) · · · x1(1) x2(1) x3(1)

Figure 4.3: The pyramid of Drinfeld modular curves.

In case A = Fq[T ], δ = 1, p = T and A-characteristic T − 1, explicit
equations were found in [Elk98]. In this case all curves X(1), X0(p

k) are
absolutely irreducible, so there is no need to keep track of components or
to distinguish between X0(T

k) and one of its components x0(T
k). The

curve X0(T ) can be described using the Drinfeld modular polynomial
ΦT (u1, u2). However, the approach in [Elk98] exploits the fact that the
genera of the curves X0(T ) and X0(T

2) are zero. Compared to our ap-
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proach this means that the ”pyramid” in Figure 4.3 starts at X0(p
2), but

otherwise the recursive description is similar: The points on the curve
X0(T

k) are identified with points in X0(T
2)×· · ·×X0(T

2), while each of
the component curves X0(T

2) can be described using a single parameter
vi. For more details see [Elk98, BBN14].

4.5 An new explicit example of an optimal Drin-
feld modular tower

In Chapter 3 some examples of good towers were found following the
above approach, including one where the function field F was the function
field of an elliptic curve and δ = 1. More precisely, in the latter example
in Chapter 3 one had F = F2(X,Y ) with X transcendental over F2 and
Y 2 +Y = X3 +X, while “infinity” was chosen to be the place at infinity
of this elliptic curve, implying that δ = 1. The ring A is then easily seen
to be F2[X,Y ] ∼= F2[T, S]/〈S2 + S + T 3 + T 〉. A description was given
of the tower X0(p

k) with p := 〈X + 1, Y + 1〉 ⊂ A and A-characteristic
P := 〈X,Y 〉. Note that degP = 1, since P is a rational point on the
elliptic curve, and ordP = 5, since the elliptic curve has 5 rational
points, meaning that the group of rational points is cyclic of order 5. It
was shown in Chapter 3 by explicit computation that the tower X0(p

k)
(in A-characteristic 〈T, S〉) has limit at least 1 when the constant field is
set to F210 . This result is confirmed by Theorem 4.2. In this section we
will in a similar way as in Chapter 3 describe an explicit example of an
optimal tower. Contrary to the example referred to above and motivated
by Theorem 4.2, the choice of A-characteristic P is now made such that
ordP = 1, implying that the resulting tower is optimal. The point with
this example is not to give another optimal tower, but to show an explicit
description is within reach. Such a description is useful for applications
in for example coding theory.

More precisely, we will consider the following setting:

1. F/Fq := F2(X,Y )/F2, where Y 2 + XY + X2 = X and X is tran-
scendental over F2.
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2. A := F2[X,Y ], implying δ = 2.

3. The A-characteristic P is the principal prime ideal 〈X2 +X + 1〉 ⊂
A.

Note that the function field F has genus 0, implying that the L-polynomial
P (t) occurring in the zeta function of F is simply P (t) = 1. Therefore
the curve X(1) has δP (1) = 2 absolutely irreducible components, say
x1(1) and x2(1) both of genus 0 according to Equation 4.8. Since for
the given choice of P we have ordP = 1 (since P is a principal ideal)
and degP = 4, Theorem 4.2 implies that, for any choice of prime ideal
p ⊂ A coprime with the A-characteristic P , the limit of the resulting
family of curves (X0(p

k))k when defined over the finite field F28 equals√
28 − 1 = 15. In other words, the resulting family of curves is optimal

over F28 .

We start by indicating how to describe A-Drinfeld modules explicitly. An
A-Drinfeld module of rank 2 is symbolically determined by

φX = g0τ
4 + g1τ

3 + g2τ
2 + g3τ + ι(X),

φY = h0τ
4 + h1τ

3 + h2τ
2 + h3τ + ι(Y ).

Since we have chosen the principal prime ideal 〈X2 + X + 1〉 as A-
characteristic, we have ι(X)2 + ι(X) + 1 = 0 and, using the equation
of the curve, ι(Y )2 + ι(X)ι(Y ) + ι(X)2 = ι(X). For convenience we will
write

x := ι(X) and y := ι(Y ).

We see that x = ι(X) ∈ F4 and y = ι(Y ) ∈ F16. The remaining coeffi-
cients also satisfy several algebraic relations, stemming from the fact that
φXφY = φY φX and φY 2+XY+X2−X = 0. Indeed, any choice of g0, . . . , h3
satisfying these relations gives rise to a Drinfeld module. The equation
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φXφY = φY φX implies that:

g0h
q4

0 = h0g
q4

0 (4.9)

g0h
q4

1 + g1h
q3

0 = h0g
q4

1 + h1g
q3

0 (4.10)

g0h
q4

2 + g1h
q3

1 + g2h
q2

0 = h0g
q4

2 + h1g
q3

1 + h2g
q2

0 (4.11)

g0h
q4

3 + g1h
q3

2 + g2h
q2

1 + g3h
q
0 = h0g

q4

3 + h1g
q3

2 + h2g
q2

1 + h3g
q
0 (4.12)

g1h
q3

3 + g2h
q2

2 + g3h
q
1 + xh0 = h0x

q4 + h1g
q3

3 + h2g
q2

2 + h3g
q
1 (4.13)

g1y
q3 + g2h

q2

3 + g3h
q
2 + xh1 = h1x

q3 + h2g
q2

3 + h3g
q
2 + yg1 (4.14)

g2y
q2 + g3h

q
3 + xh2 = h2x

q2 + h3g
q
3 + yg2 (4.15)

g3y
q + xh3 = h3x

q + yg3 (4.16)

Note that throughout this section we assume that q = 2. Similarly
the equation φY 2+XY+X2−X = 0 gives rise to algebraic relations. From
Equations (4.16), (4.15) and (4.14), one sees that the three variables
g3, g2, g1 can be expressed in the three variables h3, h2, h1. After elimi-
nating g1, g2, g3 in this way, Equations (4.13), (4.12), (4.11), (4.10) give
rise to pairs of polynomials in h1. These polynomials turn out to have a
very special form: they are linearized polynomials in h1 plus a constant
term. Therefore, we can use the q-linearized variant of the Euclidean
algorithm to eliminate the variable h1 very efficiently, thus avoiding a
lengthy Groebner basis computation. Finally we may use Equation (4.9)
to normalize the leading coefficients g0 and h0 by putting h0 = 1 and
choosing g0 ∈ F4 such that g20 + g0 + 1 = 0. We are then left with an
explicit algebraic equation relating h2 and h3, say f(h2, h3) = 0, with
coefficients in F16. The equation is a bit lengthy, but we state it for the
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sake of completeness:

f(h2, h3) = h30
2 + (xy + x)h29

2 h
3
3 + (y + x)h27

2 h
9
3 + (xy + 1)h26

2 h
12
3 + (y + 1)h25

2

+ (xy + x)h24
2 h

18
3 + (x2y + x2)h24

2 h
3
3 + yh23

2 h
21
3 + (x2y + 1)h23

2 h
6
3 + x2yh22

2 h
9
3

+ (xy + 1)h21
2 h

27
3 + (x2y + x)h21

2 h
12
3 + h20

2 h
30
3 + (y + 1)h20

2 h
15
3 + (xy + 1)h20

2

+ (x2y + x2)h19
2 h

18
3 + yh18

2 h
36
3 + (xy + x)h18

2 h
6
3 + (y + x)h17

2 h
39
3 + (y + x2)h17

2 h
24
3

+ xh17
2 h

9
3 + (x2y + 1)h16

2 h
27
3 + xyh16

2 h
12
3 + h15

2 h
45
3 + (y + 1)h15

2 h
30
3 + xyh15

2 h
15
3

+ (y + x)h15
2 + (x2y + x2)h14

2 h
33
3 + (y + 1)h14

2 h
18
3 + h14

2 h
3
3 + yh13

2 h
51
3 + xyh13

2 h
36
3

+ xh13
2 h

21
3 + (xy + x)h13

2 h
6
3 + (y + x)h12

2 h
54
3 + x2yh12

2 h
39
3 + (x2y + x)h12

2 h
9
3

+ (x2y + x)h11
2 h

42
3 + (y + x2)h11

2 h
27
3 + xh11

2 h
12
3 + h10

2 h
60
3 + (y + x2)h10

2 h
45
3 + xh10

2 h
30
3

+ (y + x)h10
2 h

15
3 + (xy + 1)h10

2 + (xy + x)h9
2h

63
3 + x2yh9

2h
48
3 + (xy + x)h9

2h
33
3

+ (xy + 1)h9
2h

18
3 + (xy + x)h9

2h
3
3 + xyh8

2h
51
3 + (x2y + x)h8

2h
36
3 + (xy + x)h8

2h
21
3

+ (y + x)h8
2h

6
3 + (y + x)h7

2h
69
3 + (y + x2)h7

2h
54
3 + (x2y + 1)h7

2h
39
3 + (xy + 1)h7

2h
24
3

+ xh7
2h

9
3 + (xy + 1)h6

2h
72
3 + xyh6

2h
42
3 + (xy + 1)h6

2h
27
3 + (y + x2)h6

2h
12
3 + xh5

2h
60
3

+ (xy + 1)h5
2h

45
3 + h5

2h
30
3 + (xy + x2)h5

2h
15
3 + (y + 1)h5

2 + (xy + x)h4
2h

78
3 + yh4

2h
48
3

+ (x2y + x)h4
2h

33
3 + (xy + x)h4

2h
18
3 + x2h4

2h
3
3 + yh3

2h
81
3 + xyh3

2h
66
3 + xh3

2h
51
3

+ (x2y + x2)h3
2h

36
3 + xyh3

2h
21
3 + (xy + x2)h2

2h
69
3 + (y + x)h2

2h
54
3 + (y + 1)h2

2h
39
3

+ (y + x)h2
2h

24
3 + (y + x2)h2

2h
9
3 + (xy + 1)h2h

87
3 + h2h

57
3 + x2yh2h

42
3 + (x2y + x2)h2h

27
3

+ (x2y + 1)h2h
12
3 + h90

3 + xh75
3 + h60

3 + x2h45
3 + x2h30

3 + 1.

This equation does not describe the curve X(1), since we did not consider
isomorphism classes of A-Drinfeld modules yet. Therefore, let ψ be an-
other A-Drinfeld module, with the same A-characteristic and normalized
in the same way as φ, defined by

ψX = l0τ
4 + l1τ

3 + l2τ
2 + l3τ + ι(X),

ψY = t0τ
4 + t1τ

3 + t2τ
2 + t3τ + ι(Y ).

An isomorphism between φ and ψ is a non-zero constant c such that
cφ = ψc. By considering for example the leading coefficient of cφY = ψY c
we get cq

4−1 = 1, implying that

t
(q+1)(q2+1)
1 = h

(q+1)(q2+1)
1 ; tq

2+1
2 = hq

2+1
2 ; t

(q+1)(q2+1)
3 = h

(q+1)(q2+1)
3 .

(4.17)

In other words, the quantities h
(q+1)(q2+1)
1 , hq

2+1
2 , h

(q+1)(q2+1)
3 (and sim-

ilarly g11 := g
(q+1)(q2+1)
1 , g22 := gq

2+1
2 , g33 := g

(q+1)(q2+1)
3 ) are invariants

of A-Drinfeld modules.
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Putting h22 := hq
2+1

2 and h33 := h
(q+1)(q2+1)
3 , the previously found equa-

tion f(h2, h3) = 0 relating h2 and h3, gives rise to a relation p(h22, h33) =

0. One simply uses the relations f(h2, h3), h
q2+1
2 − h22, h(q+1)(q2+1)

3 − h33
and eliminates the variables h2 and h3 using a Groebner basis compu-
tation. The resulting relation p(h22, h33) = 0 then defines the Drinfeld
modular curve X(1). This is not immediately clear, since we strictly
speaking only can be certain that the function field generated by h22 and
h33 is a subfield of the function field of X(1). However, again using a com-
puter to perform a Groebner basis computation, one can show that this

subfield already contains the remaining invariants h
(q+1)(q2+1)
1 , g11, g22,

and g33. At first sight it might look as if F16(h22, h33) has index 75 in
F16(h2, h3). With a computer it can be verified that h2 can be expressed
in h22 and h3, implying that the index of F16(h22, h33) in F16(h2, h3) in
fact is only 15, in accordance with the number of possible choices of the
isomorphism c mentioned before Equation (4.17).

So far, we have computed an explicit model for the curve X(1). The the-
ory implies that this curve has two components. Indeed, according to this
prediction, the bivariate polynomial p(t, s) is not absolutely irreducible,
but has two absolutely irreducible factors, say p1(t, s) and p2(t, s), which
turn out to have coefficients in F16. These factors define the curves that
we previously denoted by x1(1) and x2(1).

To start a recursive description of a tower of function fields, we choose
one of the components, say the one defined by p1(h22, h33) = 0 defining
the component denoted by x1(1). Since this curve has genus zero by
Equation (4.8), its function field is rational and can be described using a
parameter u, so F16(h22, h33) = F16(u).

To describe a tower as in the previous section, we need to choose a prime
ideal p. In this section we choose p = 〈X,Y 〉 ⊂ A, which is coprime with
the A-characteristic 〈X2+X+1〉. Since deg p = 1, a p-isogeny λ between
φ and ψ is of the form τ −a. From the isogeny property λφY = ψY λ and
using as before x := ι(X) and y := ι(Y ), we get

t3 = a−q(y − yq + ah3), (4.18)

t2 = a−q
2
t3 + a1−q

2
h2 − a−q

2
hq3. (4.19)

A direct verification shows that if we set t33 = t
(q+1)(q2+1)
3 and t22 = tq

2+1
2
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then t33, t22 satisfy p2(t22, t33) = 0. In other words, the isogeny maps the
component x1(1) of X(1) to the other component x2(1). Similar to the
uniformizing parameter u of x1(1), one can find a uniformizing parameter
v of x2(1). Using the above isogeny relation, we can compute Φ1(u, v) = 0
defining x10(p) like in Figure 4.4.

Fq4(u, h2, h3, a)

λ=τ−a

λφ=ψλ Fq4(v, t2, t3, a)

Fq4(u, h2, h3)

h33=h
(q+1)(q2+1)
3h22=h

q2+1
2

Fq4(v, t2, t3)

Fq4(h22, h33) = Fq4(u) Fq4(v) = Fq4(t22, t33)

Figure 4.4: Defining x10(p) explicitly by Φ1(u, v) = 0.

Similarly, starting with the component x2(1), one finds the relation Φ2(v, w) =
0 defining x20(p). Explicitly, one obtains:

Φ1(u, v) = (u+ (x2y + 1))v3

+ (yu3 + (xy + 1)u2 + x2yu+ (xy + x))v2

+ ((y + x2)u2 + (x2y + 1)u+ (xy + 1))v

+ (y + 1)u3 + xu2 + yu+ x2y + x2,

Φ2(v, w) = (v + xy)w3

+ ((y + x)v3 + x2yv2 + xyv + 1)w2

+ ((y + 1)v2 + v + (y + 1))w

+ (x2y + x)v3 + (y + x)v2 + (xy + 1)v + xy.

Now we can construct the tower of function fields F/F16 = (F0, F1, · · · )
corresponding to the modular tower (x0(p

k))k by

1. F0 = F16(u0),

2. F1 = F0(u1) with Φ1(u0, u1) = 0.

3. Fk = Fk−1(uk) where Φ1(uk−1, uk) = 0 if k odd, Φ2(uk−1, uk) = 0
otherwise.
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As remarked in Section 4.4, for k > 1, the equations Φi(uk−1, uk) = 0
give rise to two possible factors: one of degree one in uk and one of degree
|p| = q = 2. The factor of degree 2 should be chosen when defining the
tower.
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Chapter 5

The exact limit of some cubic
towers

Recently, a new explicit tower of function fields was introduced by Bassa,
Beelen, Garcia and Stichtenoth (BBGS) [BBGS15]. This resulted in cur-
rently the best known lower bound for Ihara’s constant in the case of non-
prime finite fields. In particular over cubic finite fields, the tower’s limit
is at least as good as Zink’s bound; i.e., λ(BBGS/Fq3) ≥ 2(q2−1)/(q+2).
In this chapter, the exact value of λ(BBGS/Fq3) is computed and the re-
lationship between several towers is discussed. To do this, we examine
one of the subtowers of Tower BBGS whose defining equation satisfies

(Y + 1)Nn

Y Nj
=

(X + 1)Nn

Xqn−jNj
, (5.1)

where Ni = (qi − 1)/(q − 1) for i ≥ 1 (see [BBGS15, Equation (38)]).
We also settle a question stated by Ihara in [Iha07]. Apart from the
introduction, the text of this chapter is as it was submitted in

[ABNed] N. Anbar, P. Beelen and N. Nguyen, The exact limit of some cubic

towers, in Arithmetic, geometry, cryptography and coding theory (AGCT 2015),

submitted.
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5.1 The subtower of Tower BBGS

In this section we investigate a subtower of Tower BBGS satisfying Equa-
tion (5.1) over cubic finite fields; i.e., n = 3. We denote Fq3 by F.

5.1.1 The tower Z

In the case of j = 2, Equation (5.1) becomes

(Y + 1)q
2+q+1

Y q+1
=

(X + 1)q
2+q+1

Xq2+q
. (5.2)

This equation is not irreducible. More precisely, the polynomial (Y +
1)q

2+q+1Xq2+q − Y q+1(X + 1)q
2+q+1 has two factors over F(X). One of

them has degree q + 1; namely

F (X,Y ) = Xq+1(Y + 1)q+1 − (X + 1)Xq(Y + 1)q − Y (X + 1)q+1

(5.3)

= Xq+1Y q+1 −XqY q −XqY −Xq −XY − Y,

and the other factor has degree q2. Later we will see that these two
factors are absolutely irreducible (see the proof of Lemma 5.5). We are
going to construct a tower Z/F = (Zi)i≥1 where Zi := F(z1, ..., zi) and
the recursion F (zi, zi+1) = 0 holds for F given in Equation (5.3) for each
i ≥ 1. Then z3 ∈ Z3 satisfies the polynomial equation

zq+1
2 (Y + 1)q+1 − (z2 + 1)zq2(Y + 1)q − Y (z2 + 1)q+1 = 0 . (5.4)

However, the left-hand side in Equation (5.4) is not irreducible over Z2;
in fact it has a factor of degree q given as follows.

(z2Y − 1)

(
z2Y +

1

z1

)q−1
− (z2 + 1)q

z2
−
(
z1 + 1

z1

)q
(5.5)

Iteratively, Tower Z/F = (Zi)i≥1 is defined as a sequence of function
fields satisfying Z2 = Z1(z2), where z1, z2 satisfy Equation (5.3); i.e.,
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F (z1, z2) = 0 and Zi+1 = Zi(zi) for i ≥ 2, where

(zizi+1 − 1)

(
zizi+1 +

1

zi−1

)q−1
− (zi + 1)q

zi
−
(
zi−1 + 1

zi−1

)q
= 0 . (5.6)

If we set α0 := (z1z2 − 1)/(z1 + 1) then from F (z1, z2) = 0 in Equation
(5.3) we get

z1 = (α0 + 1)/αq+1
0 and z2 = αq+1

0 + α0.

As a result, we see that F(α0) = F(z1, z2) = Z2. Consider the tower
C/F = (Ci)i≥0 with C0 = F(α0) and Ci+1 = Ci(αi+1), where αi+1 satisfies
the polynomial

T q+1 − 1

αq+1
i + αi

T − 1

αq+1
i + αi

(5.7)

over F(αi) for all i ≥ 0. In other words, αi+1+1

αq+1
i+1

= αq+1
i + αi. Note that

the polynomial (5.7) has a linear factor; namely T + 1
αi+1 ; and hence for

the construction of Tower C we consider the factor of degree q. We will
see in Lemma 5.1 that for each i ≥ 0 this factor is absolutely irreducible
over Ci since there exists a place totally ramified in Ci+1/Ci lying over
either (α0 = 0) or (α0 =∞). This also implies the absolute irreducibility
of the factor in (5.5) since Tower C is essentially the same as Tower Z;
i.e., Ci−2 = Zi for i ≥ 2 (see Figure 5.1).

(C) C0
q

C1
q

C2
q · · ·

(Z) Z1
q+1

Z2
q

Z3
q

Z4
q · · ·

Figure 5.1: Tower Z/F is the same of Tower C/F as Ci−2 = Zi for i ≥ 2.

Moreover, Polynomial (5.7) defines the dual tower of Caro-Garcia [CG12]
whose ramification was already clarified. With this information we state
the ramification structure of Tower C as follows.

Lemma 5.1 (see [CG12]). The ramification locus of Tower C contains
exactly three places of C0; namely (α0 = −1), (α0 = 0), and (α0 = ∞).
For a place Q of Cn, we set Pi := Q ∩ F(αi) for i = 0, . . . , n. Then the
following holds.
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(i) If Pi = (αi = −1) then Pi+1 = (αi+1 = −1) or Pi+1 = (αi+1 =∞).
In the first case, Pi is unramified in F(αi, αi+1)/F(αi) and Pi+1

is totally ramified in F(αi, αi+1)/F(αi+1) with different exponent q.
However in the second case, both Pi and Pi+1 ramified with rami-
fication index q − 1 in F(αi, αi+1)/F(αi) and F(αi, αi+1)/F(αi+1),
respectively.

(ii) If Pi = (αi = 0) then Pi+1 = (αi+1 =∞). In this case, Pi is totally
ramified in F(αi, αi+1)/F(αi) with different exponent q and Pi+1 is
unramified in F(αi, αi+1)/F(αi+1).

(iii) If Pi = (αi =∞) then Pi+1 = (αi+1 = 0). In this case, both Pi and
Pi+1 are unramified in F(αi, αi+1)/F(αi) and F(αi, αi+1)/F(αi+1),
respectively.

In particular, Figure 5.2 holds.

· · · · · ·

(α0 = −1)

e=1

(α1 = −1)
e=d=q

e=1

· · · (αn = −1)
e=d=q

e=q−1

(αn+1 =∞)

e=q−1
e=1

(αn+2 = 0)

e=1

· · ·

(α0 =∞)

e=1

(α1 = 0)

e=1

e=d=q

(α2 =∞)

e=1

e=1

(α3 = 0)

e=1

· · ·

Figure 5.2: Ramification structure of Tower C/F.

In fact Tower C/F = (Ci)i≥0 and Tower BeGS/F = (Bi)i≥1 of Bezerra,
Garcia and Stichtenoth [BGS05b] are essentially the same. More pre-
cisely, it is shown in [CG12] that Ci = Bi for all i ≥ 1. Hence the
exact genus of the function fields in Tower C can be given as follow (see
[BGS05b]).

Proposition 5.2. Let Tower C = (Ci)i≥0 defined as above. Then g(Ci)
is given as follows.
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1. If i ≡ 0 mod 4 then

g(Ci) =
1

2(q − 1)

(
qi+1 + 2qi − 2q

i+2
2 − 2qi/2 + q

)
− i

4
q
i−2
2 (q + 1) .

2. If i ≡ 2 mod 4 then

g(Ci) =
1

2(q − 1)

(
qi+1 + 2qi − 4q

i+2
2 + q

)
− (i− 2)

4
q
i−2
2 (q + 1) .

3. If i ≡ 1 mod 2 then

g(Ci) =
1

2(q − 1)

(
qi+1 + 2qi − q

i+3
2 − 3q

i+1
2 + q

)
− (i− 1)

2
q
i−1
2 .

Remark 5.3. In [Iha07] Ihara formulated a statement concerning the
”basement” of Tower Z. More precisely, he wrote that one could probably
show that F(z1) ∩ F(z2) = F. However from Equation (5.2) we see that
(z1+1)q

2+q+1

zq
2+q

1

= (z2+1)q
2+q+1

zq+1
2

, and hence (z1+1)q
2+q+1

zq
2+q

1

∈ F(z1) ∩ F(z2).

For convenience we set ti := (zi+1)q
2+q+1

zq
2+q
i

for i = 1, 2. Then we have the

following claim, which reveals the precise ”basement” structure of Tower
Z.

Claim 1. (i) F(z1) ∩ F(z2) = F
(

(z1+1)q
2+q+1

zq
2+q

1

)
.

(ii) Tower Z/F has no further sub-basement; i.e., F(t1) ∩ F(t2) = F.

Proof. To prove our claim we use the ramification structure of the places
(t1 =∞) and (t2 =∞) in F(z2)/F(t1) and F(z2)/F(t2), respectively. One
can show the following.

• (z2 = 0) and (z2 = ∞) are the only places of F(z2) lying over
(t1 = ∞) with e((z2 = 0)|(t1 = ∞)) = q + 1 and e((z2 = ∞)|(t1 =
∞)) = d((z2 =∞)|(t1 =∞)) = q2.

• (z2 = 0) and (z2 = ∞) are the only places of F(z2) lying over
(t2 = ∞) with e((z2 = ∞)|(t2 = ∞)) = 1 and e((z2 = 0)|(t2 =
∞)) = d((z2 = 0)|(t2 =∞)) = q2 + q.
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Suppose that F(v) := F(z1) ∩ F(z2) properly contains F(t1). As q + 1
and q2 are relatively prime, (t1 = ∞) can not ramify in F(v)/F(t1).
That is, (t1 = ∞) has to split in F(v) since all two places of F(z2)
lying over (t1 = ∞) are rational. This shows that the extension degree
[F(v) : F(t1)] = 2. This gives a contradiction as 2 and q2 + q + 1 are
relatively prime. This proves item (i).

For the proof of item (ii), suppose that there exists an element u ∈
F(t1) ∩ F(t2) such that F(t1) and F(t2) are separable extensions of F(u).
In this case, we consider the place (z2 = 0) of F(z2). Note that (z2 =
0) ∩ F(u) = (u = α) for some α ∈ F ∪ {∞}. In other words, we have

(z2 = 0)|(t1 =∞)|(u = α) and (z2 = 0)|(t2 =∞)|(u = α) .

Then by transitivity of ramification index and different exponent we ob-
tain that

q2 = (q + 1) [d((t1 =∞)|(u = α))− qd((t2 =∞)|(u = α))] .

This is a contradiction since the right hand side is a multiple of q + 1,
but the left hand side is not.

5.1.2 The tower G

In previous subsection, Tower Z was introduced, which is nothing else
but the dual tower of Caro-Garcia in [CG12]. However, something new
appears when we are trying to figure out the relation between the prod-
ucts z1z2 and z3z4.

Lemma 5.4. The variables z1, ..., z4 in Tower Z satisfy

(z3z4 − 1)q
2+q+1

z3z4
=

(z1z2 − 1)q
2+q+1

(z1z2)q
2 . (5.8)

Proof. Note that z3, z4 also satisfy Equation (5.3); i.e.,

z4(z3 + 1)q+1 = zq+1
3 (z4 + 1)q(z4 + 1)− (z3 + 1)zq3(z4 + 1)q .
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This holds if and only if

(z3 + 1)q+1

zq3
= (z4 + 1)q

(z3z4 − 1)

z4
. (5.9)

On the other hand, expanding Equation (5.3) we get

(z3z4)
q+1 − (z3z4)

q − zq3 − z3z4 − z
q
3z4 − z4 = 0 . (5.10)

Equation (5.10) shows that (z3z4 − 1)q+1 = (z3 + 1)q(z4 + 1). Then
together with Equation (5.9) we obtain the following equalities.

(z3z4 − 1)q
2+q+1

z3z4
= (z3z4 − 1)q

2+q (z3z4 − 1)

z3z4

= (z3 + 1)q
2
(z4 + 1)q

(z3z4 − 1)

z3z4

=
(z3 + 1)q

2+q+1

zq+1
3

.

As the above relation also holds for z1, z2; i.e.,

(z1z2 − 1)q
2+q+1

z1z2
=

(z1 + 1)q
2+q+1

zq+1
1

,

together with Equation (5.2) we obtain the desired result as follows.

(z1z2 − 1)q
2+q+1

(z1z2)q
2 =

(z1 + 1)q
2+q+1

zq
2+q

1 zq
2−1

2

=
(z2 + 1)q

2+q+1

zq
2+q

2

=
(z3 + 1)q

2+q+1

zq+1
3

=
(z3z4 − 1)q

2+q+1

z3z4
.

Now we define a subtower G/F = (Gi)i≥1 of Z/F by setting Gi =
F(z1z2, ..., z2i−1z2i) (see Figure 5.3).

From Lemma 5.4, we see that G/F satisfies the recursive equation

(z2i−1z2i − 1)q
2+q+1

(z2i−1z2i)q
2 =

(z2i+1z2i+2 − 1)q
2+q+1

z2i+1z2i+2
.
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Z1
q+1

Z2
q

Z3
q

Z4
q
· · ·

G1 G2 · · ·

Figure 5.3: The subtower G/F of Z/F.

Let yi = −1/z2i−1z2i for i = 1, 2. From Equation (5.8) we see that

(y1 + 1)q
2+q+1

yq+1
1

=
(y2 + 1)q

2+q+1

yq
2+q

2

. (5.11)

As mentioned before, Equation (5.11) has two factors, one of degree
q + 1, the other of degree q2. We will show that Tower G is recursively
defined by the degree-q2 factor of Equation (5.11). In order to prove that
[G2 : G1] = q2, we will show that [Z2 : G1] = [Z4 : G2] = q + 1.

Lemma 5.5. Let G/F = (Gi)i≥1 be the subtower of Z/F = (Zi)i≥1
defined as above. Then the following holds.

(i) Z2 = G1(z2) and [Z2 : G1] = q + 1.

(ii) Z4 = G2(z2).

(iii) [Z4 : G2] = q + 1 and [G2 : G1] = q2.

See Figure 5.4.

Proof. It is clear that Z2 = F(z1, z2) = F(z1z2, z2) = G1(z2). Multiplying
F (z1, z2) by zq2, we see that z2 satisfies the following polynomial over
F(z1z2).

T q+1 −
(
(z1z2)

q+1 − (z1z2)
q − z1z2

)
T q + (z1z2)

qT + (z1z2)
q , (5.12)

where F is the polynomial given in Equation (5.3). In other words, z2
satisfies a polynomial over G1 of degree q+1. This shows that [Z2 : G1] ≤
q + 1. Now replacing T in Equation (5.12) by z1z2T and then dividing
by (z1z2)

q+1 we obtain the following polynomial.

T q+1 −
(
(z1z2)

q − (z1z2)
q−1 − 1

)
T q + T +

1

z1z2
(5.13)
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Z2 = F(z1, z2) Z3 Z4 Z2i Z2i+2

G1(z2) G2(z2)

G1 = F(z1z2)

q+1

q2

G2 = F(z1z2, z3z4)

q+1

Gi Gi+1

Figure 5.4: Relationship between towers Z/F and G/F.

We see from Equation (5.13) that the place (z1z2 = 0) of G1 satisfies
Eisenstein’s Irreducibility Criterion ([Sti09, Proposition 3.1.15]). This
shows that the extension degree is equal to q + 1, which gives the proof
of (i).

In order to prove that G2(z2) = Z4, it is enough to show that z3 ∈ G2(z2)
(since then z4 = z3z4/z3 also belongs to G2(z2)). From Equation (5.6)
we get u := (z3 + 1)q/z3 ∈ F(z3z4, z2). Then dividing Equation (5.4) by
z3 and using the fact that u ∈ F(z3z4, z2), we get v := (z3 + 1)q+1/z3 also
lies in F(z3z4, z2). As a result, the element z3 + 1 = v/u ∈ F(z3z4, z2) ⊂
G2(z2) and this finishes the proof of (ii).

Since G2 = G1(z3z4) and [G1(z2) : G1] = q + 1, we have [Z4 : G2] =
[G2(z2) : G2] ≤ q + 1. Furthermore, we have [G2 : G1] ≤ q2 since
Equation (5.11) has two factors of degree q + 1 and q2. Then from the
facts that [Z2 : G1] = q+1 and [Z4 : Z2] = q2, we obtain [Z4 : G2] = q+1
and [G2 : G1] = q2.

The proof of Lemma 5.5 still works recursively along the two towers
Z/F and G/F. In other words we see that Z2i = Gi(z2), and the total
ramification of the place (z1z2 = 0) in Z2/G1 implies that the extension
degree is [Z2i : Gi] = q + 1. In summary, we have the following relation
between Tower Z and Tower G.

Corollary 5.6. For all i ≥ 1, we have
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(i) Z2i = Gi(z2) and [Z2i : Gi] = q + 1.

(ii) [Gi+1 : Gi] = q2.

For i = 1, item (ii) also follows from [BBGS15], but for i ≥ 1 it is new.

Remark 5.7. The existence of rational places of Gi+1 for each i ≥ 1
shows that the degree-q2 factor of Equation (5.11) is absolutely irre-
ducible over Gi.

5.2 The exact genus and exact limit of Tower G

The ramification structure of Tower G can be clarified like the ramifica-
tion structure of Tower Z. In this section, for each i ≥ 1 we compute the
exact value of the genus g(Gi). After that the exact limit of the tower is
determined. In this section we denote by F the algebraic closure of Fq3 .

5.2.1 Exact genus g(Gi)

Given the exact value of g(Z2i), the exact value of g(Gi) for each i ≥ 1
can be computed using the Hurwitz genus formula once we know the
ramification and different in the extension Z2i/Gi. Looking at the field
extensions

Gi ⊆ Gi+1 ⊆ Z2i+2 and Gi ⊆ Z2i ⊆ Z2i+2

for i ≥ 1 (see Figure 5.4), the ramification of Z2i+2/Gi+1 can be deter-
mined recursively by studying the ramification in Z2i/Gi and Gi+1/Gi.
For this reason, we first determine the ramification in Z2/G1.

Lemma 5.8. Let G1 = F(z1z2) and Z2 = G1(z2). Then the ramification
in Z2/G1 can be given as follows.

(i) The place (z1z2 = 0) is totally ramified; i.e., the ramification index
is q + 1.
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(ii) There are exactly two places P1, P2 of Z2 lying above P∞ := (z1z2 =
∞) with e(P1|P∞) = d(P1|P∞) = q and e(P2|P∞) = 1.

(iii) (z1z2 = 0) and (z1z2 =∞) are the only ramified places of G1.

Proof. From the proof of Lemma 5.5 item (i), we see that the place
(z1z2 = 0) is totally ramified with ramification index q + 1.

For the proof of item (ii), we set z := 1/z1z2 so that (z1z2 =∞) becomes
the place (z = 0). Then by replacing T in (5.13) by T/zq and then
multiplying by zq

2+q we obtain

p(T ) = T q+1 − (zq + z − 1)T q + Tzq
2

+ zq
2+q+1 . (5.14)

Let y be a root of p(T ). Then Z2 = F(z, y) and by Kummer’s Theorem
(see [Sti09, Theorem 3.3.7]), we conclude that there exist places P1 and
P2 of Z2 lying over (z = 0) such that

z, y ∈ P1 and z, y + 1 ∈ P2 .

Now we show that the ramification index e(P1|(z = 0)) = q. As a result,
we conclude that P1 and P2 are the only places lying over (z = 0) and
e(P2|(z = 0)) = 1. First of all, by the Fundamental Equality (see [Sti09,
Theorem 3.1.11]) we note that e(P1|(z = 0)) ≤ q. We consider

p(y) = yq(y − (zq + z − 1)) + yzq
2

+ zq
2+q+1 = 0 ,

or equivalently( y

zq+1

)q
(y − zq − z + 1) = −z

( y

zq+1
+ 1
)
.

By the Strict Triangle Inequality, we see that vP1

( y
zq+1

)
> 0, further

implying that q · vP1

( y
zq+1

)
= vP1(z) > 0. This shows that e(P1|(z =

0)) = vP1(z) is a positive multiple of q.

Let P = (z = α) for some α ∈ F \ {0}, where z = 1/z1z2 as above.
We consider the minimal polynomial p(T ) of y over F(z) (see Equation
(5.14)) and denote by pα(T ) the polynomial given by

pα(T ) = T q+1 − (z(P )q + z(P )− 1)T q + Tz(P )q
2

+ z(P )q
2+q+1 ,
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where z(P ) = α is the evaluation of the function z at P . Note that pα(T )
has a multiple root in F if and only if α = 0 or α = 1. As a result, we
conclude that each place P = (z = α) for α ∈ F \ {0, 1} is unramified
in Z2/G1. To finish the proof of item (iii), we show that (z = 1) is not
ramified either. For this we replace T by T −1 in Equation (5.14) so that
y + 1 is a root of

T q+1 − (z − 1)q+1T q + (z − 1)qT + (z − 1)q+1 .

Then we replace T by −(z−1)T and then divide by (z−1)q+1; and hence
we obtain the polynomial

T q+1 + (z − 1)qT q − T + 1 .

Note that T q+1 − T + 1 is a separable polynomial. Therefore Kummer’s
Theorem implies that there is no ramification over the place (z = 1).
This finishes the proof of (iii).

To finish the proof of item (ii), we conclude by the Hurwitz genus formula
that the different exponent is d(P1|P∞) = q since Z2 = C0 is a rational
function field.

Now we state the ramification structure of the subtower G/Fq3 . For
convenience we first fix some notation. Let Q be a place of Gn =
F(z1z2, . . . , z2n−1z2n) for some n ≥ 1. We denote by Pi the restriction of
Q to F(z2i−1z2i); i.e., Pi = Q ∩ F(z2i−1z2i) for all i = 1, . . . , n.

Lemma 5.9. Let G/F = (Gi)i≥1 be the tower given as before. The
ramification locus of Tower G consists of exactly two places of G1; namely
(z1z2 = 0) and (z1z2 = ∞). Denoted by ζi = z2i−1z2i for i ≥ 1, the
following holds.

(i) If Pi = (ζi = 0) then Pi+1 = (ζi+1 = 0) or Pi+1 = (ζi+1 = ∞). In
the first case, Pi is unramified in F(ζi, ζi+1)/F(ζi) and Pi+1 is to-
tally ramified in F(ζi, ζi+1)/F(ζi+1) with different exponent q2. In
the second case, Pi is ramified in F(ζi, ζi+1)/F(ζi) with ramifica-
tion index q2 − 1, and Pi+1 is ramified in F(ζi, ζi+1)/F(ζi+1) with
ramification index q2 − q and different exponent q2 − 2.
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(ii) If Pi = (ζi = ∞) then Pi+1 = (ζi+1 = ∞). In this case, Pi is
ramified in F(ζi, ζi+1)/F(ζi) with ramification index and different
exponent q, and Pi+1 is unramified in F(ζi, ζi+1)/F(ζi+1).

In particular, Figure 5.5 holds.

· · · · · ·

(ζ1 = 0)

e=1

(ζ2 = 0)
e=d=q2

e=1

· · · (ζi = 0)
e=d=q2

e=q2−1

(ζi+1 =∞)
e=q2−q

d=q2−2
e=d=q

· · · · · ·

(ζ1 =∞)

e=d=q

(ζ2 =∞)
e=1

e=d=q

· · · (ζi =∞)
e=1

e=d=q

(ζi+1 = 0)
e=1

e=d=q

Figure 5.5: Ramification structure of Tower G/F.

Proof. Let yi = −1/ζi for i = 1, 2, then y1, y2 satisfy Equation (5.11)
defining the dual tower of a tower whose ramification was explored in
[BBGS15]. The ramification of Tower Z was depicted in Figures 2, 3, 4
in [BBGS15], and we read the ramification from right to left.

Theorem 5.10. Let G/F = (Gi)i≥1 be the tower given as before. The
genus g(Gi) of the function field Gi is given as follow.

(i) If i ≥ 1 is odd

g(Gi) =
1

2(q + 1)
[

1

q − 1
(q2i−1 + 2q2i−2 − 2qi − 2qi−1 + q)

− (i− 1)qi−2(q + 1)− 2− q(qi−1 + 1)] + 1 .

(ii) If i > 1 is even

g(Gi) =
1

2(q + 1)
[

1

q − 1
(q2i−1 + 2q2i−2 − 4qi + q)

− (i− 2)qi−2(q + 1)− 2− q(qi−1 + 1)] + 1 .
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Proof. Instead of Tower Z, we work with Tower C using the relation
Ci−2 = Zi. Consider the field extension C2i−2/Gi for i ≥ 1 and compute
the genus of Gi based on g(C2i−2). First note that z1z2 = (1+α0)

q+1/αq0.
As a result, we deduce that

z1z2 = 0 if and only if α0 = −1 ,

and

z1z2 =∞ if and only if α0 = 0 or α0 =∞ .

Then by Lemmas 5.1 and 5.8, we conclude that a place Q of C2i−2 is
ramified in C2i−2/Gi only if Q ∩ F(α0) is (α0 = 0) or (α0 = −1). Hence
we investigate the ramification in these two cases.

(i) Q ∩ F(α0) = (α0 = 0):

(C) (α0 = 0)
e=d=q

Q ∩ C1
e=1 · · · Q · · ·

(G) (z1z2 =∞)

e=d=q

· · · Q ∩Gi

e=d=q

· · ·

Figure 5.6: Case 1: Starting from (α0 = 0) in C0.

From Lemmas 5.1 and 5.9, for each place Q in C2i−2 lying over
(α0 = 0), we have

e(Q|(α0 = 0)) = e((Q ∩Gi)|(z1z2 =∞)) = qi−1 and

d(Q|(α0 = 0)) = d((Q ∩Gi)|(z1z2 =∞)) = q
qi−1 − 1

q − 1
.

By transitivity of the different we conclude that Q is ramified in
C2i−2/Gi with

e(Q|(Q ∩Gi)) = d(Q|(Q ∩Gi)) = q ,

for i ≥ 1. Since the place (α0 = 0) is totally ramified and splits
completely in an alternating way in Tower C, the number of places
of C2i−2 lying over (α0 = 0) is qi−1.
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(C) (α0 = −1)
e=1

Q ∩ C1
e=1 · · · Q · · ·

(G) (z1z2 = 0)

e=q+1 d=q

· · · Q ∩Gi

e=q+1 d=q

· · ·

Figure 5.7: Case 2: Starting from (α0 = −1) in C0.

(ii) Q ∩ F(α0) = (α0 = −1):

A place Q of C2i−2 lying over (α0 = −1) contributes to the ramifi-
cation of C2i−2/Gi for i ≥ 1 if and only if α0(Q) = α1(Q) = · · · =
α2i−2(Q) = −1. However, from Lemma 5.1 there is a unique place
Q with this property.

Using the Hurwitz genus formula and the exact genus of each C2i−2 for-
mulated in Proposition 5.2 we get the exact genus g(Gi) of Gi for each
i ≥ 1.

5.2.2 Exact limit

The exact limit of a tower can be computed if we know the exact genus
and the exact number of rational places of every function field along the
tower like the tower in [vdGvdV02]. However in general it is not easy to
compute these exact values. Here we apply the procedures in [BGS05a]
based on the results in [Bee04] to compute the exact limit λ(G). In order
to apply that approach we have to transform the defining equation of
Tower G into a special form of polynomial, called type A.

A polynomial f(X,Y ) ∈ Fq[X,Y ] is called a polynomial of type A if
f(X,Y ) = ϕ(Y )ψ1(X)− ψ0(X) for some polynomials ϕ(Y ) ∈ Fq[Y ] and
ψ0(X), ψ1(X) ∈ Fq[X] such that ϕ(Y ) and ψ0(X) are monic and of the
same degree with 0 < degψ0 − degψ1 < degϕ. A tower recursively
defined by polynomial of type A is called a tower of type A.

We note that G2 = Fq3(z1z2, z3z4) is rational by Theorem 5.10. There-
fore, we can find a uniformizer element a ∈ G2 such that z1z2 and z3z4
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can be expressed as rational functions in a. Such a uniformizer element
a and rational functions can be computed as follows.

Lemma 5.11. There exists an element a ∈ G2 = Fq3(z1z2, z3z4) such
that z1z2 and z3z4 can be expressed as rational functions in a.

Proof. Let y1 = −1/z1z2, y2 = −1/z3z4, then G2 = Fq3(y1, y2) where
y1, y2 satisfy Equation (5.11). We set

t1 :=
y2 + 1

y2(y1 + 1)
and t2 :=

1

y1
.

Then Fq3(t1, t2) = Fq3(y1, y2) = G2 and Equation (5.11) implies that

tq
2+q+1

1 =
1

y2y
q+1
1

=
y2 + 1

y2(y1 + 1)

(
1

yq+1
1

+
1

yq1

)
− 1

yq+1
1

= t1(t
q+1
2 + tq2)− t

q+1
2 ,

which has two irreducible factors mentioned in previous section. More
precisely, if we set F̃ := tq+1

1 + t1t2 − t2, then

tq
2+q+1

1 − t1(tq+1
2 + tq2) + tq+1

2 = F̃ (t1F̃
q−1 − tq2) = 0 ,

and G2 is defined by the factor t1F̃
q−1 − tq2 = 0, which implies that

F̃ q−1

tq−12

=
t2
t1
. (5.15)

We set a := F̃
t1t2

. Then from the definition of F̃ and Equation (5.15) we
get the following equivalent equations.

F̃

t2
=

tq−12

F̃ q−1
tq1 + t1 − 1

1 =
tq2
F̃ q

tq1 +
t1t2

F̃
− t2

F̃
t2

F̃
=

1

aq
+

1

a
− 1

In other words, from the definition of a, we have

1

t1
=
t2a

F̃
= a1−q + 1− a
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and
1

t2
=
at1

F̃
= a

tq2
F̃ q

= a1−q
2

+ a1−q − a .

Then by using the definitions of t1 and t2 we get

z1z2 = − 1

y1
= −t2 =

−aq2−1

1 + aq2−q − aq2

and

z3z4 = − 1

y2
= 1− t1(y1 + 1) =

−1

aq2−q + aq2−1 − aq2
.

As a result, Tower G starting with G2 can be recursively defined by a
new equation

−aq
2−1

2

1 + aq
2−q

2 − aq
2

2

=
−1

aq
2−q

1 + aq
2−1

1 − aq
2

1

,

or
aq

2

2 − a
q2−q
2 − 1

aq
2−1

2

= aq
2

1 − a
q2−1
1 − aq

2−q
1 , (5.16)

which is the dual of a tower of type A.

Theorem 5.12. Let G = (G1 ⊂ G2 ⊂ · · · ) be the tower given as before.
Then

λ(G/Fq3) = 2(q2 − 1)/(q + 2) .

Proof. Since G2 is rational, Tower G can be started with G2 and recur-
sively defined by equation (5.16). Each α ∈ Fq3 satisfying the equation

αq
2 − αq2−1 − αq2−q − 1 = 0

lies in Fq3 . Hence from Equation (5.16) we can see that such a value
of α ∈ Fq3 describes a place in G2 splitting completely in the tower G.
We observe from Theorem 5.10 (see Figure 5.6) that Gi has qi places
lying over (z1z2 = ∞). Furthermore, the number of places of Gi lying
over (z1z2 = 0) is the same as the number of places of C2i−2 lying over
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(α0 = −1) (see Figure 5.7) which lies in O
(
qi−1

)
by Propositions 2.7 and

2.8 in [BGS05b]. As a result, we see that the places of Gi for i > 1 lying
above the ramification locus of G do not contribute asymptotically to the
splitting rate of G over G2, which is defined by

ν(G/G2) := lim
i→∞

N(Gi)

[Gi : G2]
.

Applying results in [Bee04] we have ν(G/G2) equals the cardinality of
the splitting locus of G over G2, which is defined by

t(G/G2) := #{P a rational place of G2 | P splits completly in G}.

Moreover, from Theorem 5.10 we get that the genus of Tower G over G2

equals

γ(G/G2) := lim
i→∞

g(Gi)

[Gi : G2]
=
q2(q + 2)

2(q2 − 1)
.

Since G/Fq3 is a dual tower of a tower of type A, the same argument in
[BGS05a, Example 5.5.] (when dealing with Tower BeGS) can be applied
to Tower G. More precisely, we have ν(G/G2) = t(G/G2) = q2 and

λ(G/Fq3) =
ν(G/G2)

γ(G/G2)
=

2(q2 − 1)

(q + 2)
.

Corollary 5.13. The exact limit λ(BBGS/Fq3) of Bassa, Beelen, Garcia
and Stichtenoth tower over cubic finite fields equals to

λ(BBGS/Fq3) =
2(q2 − 1)

(q + 2)
.

Proof. The inequality λ(BBGS/Fq3) ≥ 2(q2 − 1)/(q + 2) is shown in
[BBGS15]. On the other hand, λ(BBGS/Fq3) ≤ 2(q2− 1)/(q+ 2) follows
from the fact that G/Fq3 is a subtower of BBGS/Fq3 .

5.3 Conclusion

Tower G introduced in [BBGS15] is related to previously studied towers
over cubic finite fields Fq3 (see Figure 5.8). This relation is used to show
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that the exact limit of Tower G is equal to 2(q2 − 1)/(q + 2). As a
consequence, also tower BBGS/Fq3 has this limit.

(C) C0
q

C1
q

C2
q · · ·

(Z) Z1
q+1

Z2
q

Z3
q

Z4
q · · ·

(G) G1

q+1

q2

G2

q+1

q2 · · ·

Figure 5.8: Relations between the towers.
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Chapter 6

Further developments and
future work

The first two sections of this chapter discuss some further developments
related to the article in Chapter 4. The discussion in the last two sections
is for future work.

6.1 Another optimal tower over F16

In Section 4.5, we successfully constructed an optimal tower F/F28 of
Drinfeld modular curves as an example of Theorem 4.5 when A 6= Fq[T ].
In this section, we introduce another example of an optimal tower over F16

that is still not fully explained with Drinfeld modular theory. This tower
was actually found1 before we could fully prove the theory in Chapter 4;
i.e., at that time we still did not know how to choose the parameters to
get optimal towers of Drinfeld modular curves.

1The tower was found and was presented at Sabancı Üniversitesi, İstanbul during
the Ph.D. external research in the winter of 2013-2014 under the support of Otto
Mønsted Fond.



88 Further developments and future work

We use the same setting and the same construction in Section 4.5 but with
another A-characteristic P . More precisely, we consider the following
setting:

(i) F/Fq := F2(X,Y )/F2, where Y 2 + XY + X2 = X and X is tran-
scendental over F2.

(ii) A := F2[X,Y ], implying δ = 2.

(iii) The A-characteristic P is the ideal 〈X,Y 〉 ⊂ A.

In this case, d = degP = 1, e = ordP = 2 and ι(X) = ι(Y ) = 0. We
consider the rank 2 Drinfeld A-module φ specified by

φX = g0τ
4 + g1τ

3 + g2τ
2 + g3τ,

φY = h0τ
4 + h1τ

3 + h2τ
2 + h3τ.

The Drinfeld module φ is also normalized by putting h0 = 1 and g0 ∈ F4

such that g20 + g0 + 1 = 0. We chose p = 〈X − 1, Y 〉 ⊂ A coprime with P
for p-isogeny of degree one λ = τ − a.

Assume that α is a primitive element of F4. Following the same construc-
tion in Section 4.5 we obtain the tower G = (G0, G1, ...) defined over F4

corresponding to Drinfeld modular curves (x0(p
i))i≥0 where G0 = F4(u0),

G1 = G0(u1) with

u31 + (u0 + 1)u21 + (α2u20 + αu0 + α)u1 + α2u30 + u0 + α2 = 0,

and Gi+1 = Gi(ui+1) with

Ψ(ui−1, ui, ui+1) = 0,

where Ψ is the factor of degree two of

u3i+1 + (ui + 1)u2i+1 + (α2
i u

2
i + αiui + αi)ui+1 + α2

i u
3
i + ui + α2

i , (6.1)

and αi = α2i for i ≥ 1. For having many rational places, we consider the
tower over F16 = Fq2de . We compute the limit of the tower by exploring
the ramification structure and the splitting structure to conclude that
λ(G/F16) ≥ 1.
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Noticing thatG1 = F4(u0, u1) is rational (by computing the genus g(G1) =
0), there exists uniformizers v0 ∈ F4(u0, u1) and v1 ∈ F4(u1, u2) such
that u1 can be expressed as rational functions in v0 and v1. Assume that
u1 = ϕ0(v0)/ϕ1(v0) ∈ F4(v0) and u1 = ψ0(v1)/ψ1(v1) ∈ F4(v1) for some
polynomials ϕi(v0) ∈ F4[v0], ψi ∈ F4[v1]. Finding such polynomials can
be done using Magma for example. In particular, the polynomial

ψ0(v1)ϕ1(v0)− ϕ0(v0)ψ1(v1)

has the following factor

f(v0, v1) := v20v
2
1 + αv20v1 + αv20 + αv0v

2
1 + α2v0v1 + v21 + v1

= (v20 + αv0 + 1)v21 + (αv20 + α2v0 + 1)v1 + αv20.

Dividing f(v0, v1) by (αv20+α2v0+1)2/(v20+αv0+1) one gets the following
equation

T 2 + T =
v20(v20 + αv0 + 1)

α(v0 + 1)2(v0 + α2)2
,

where

T =
v1(v

2
0 + αv0 + 1)

α(v0 + 1)(v0 + α2)
.

We define the tower G′ = (G′n)n≥0 where G′0 = F4(v0) and for n ≥ 0,
G′n+1 = G′n(zn+1) where

z2n+1 + zn+1 =
v2n(v2n + αvn + 1)

α(vn + 1)2(vn + α2)2
(6.2)

and

vn+1 =
α(vn + 1)(vn + α2)zn+1

v2n + αvn + 1
.

By Artin-Schreier extension, at the first level G′1/G
′
0, there are two totally

ramified places of different exponent 2, namely (v0 = 1)|(v1 = 1) and
(v0 = α2)|(v1 = α2). Exploring the ramification locus by backward
substitution, we have

Ram(G/G′0) = {(v0 = γ) | γ ∈ {0, 1, α, α2}}.

More precisely, by using Magma computation we get the ramification at
the first two levels as in Figure 6.1.
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(v2 = 1)

e=d=2

(v2 = α2)

e=d=2

(v2 = 1)

e=d=2

(v2 = 1) (v2 = 0) (v2 = α2)

e=d=2

(v2 = α2) (v2 = α)

(v1 = 1)

e=d=2

(v1 = α2)

e=d=2

(v1 = 1) (v1 = 0) (v1 = α2) (v1 = α)

(v0 = 1) (v0 = α2) (v0 = 0) (v0 = α)

Figure 6.1: Ramification at the first two levels. Along the ramified
places, we denote by e, d their ramification index and their
different exponent, respectively.

So we have G′n+1/G
′
n is weakly ramified for n = 0, 1; i.e., d = 2(e − 1).

Then by [Sti09, Remark 7.4.11.], the tower G′ is 2-bounded.

Noticing that g(G′1) = 1, we can give an upper bound for the genus by
Hurwitz genus formula for n ≥ 1.

2gn − 2 = [G′n : G′1](2g1 − 2) + degDiff(G′n/G
′
1)

2gn − 2 ≤ 0 + 6 · 2 · [G′n : G′1]

gn ≤ 6 · 2n−1 + 1.

Again, for having many rational places we consider the tower over Fq2de =
F16. Assume that β is a primitive element of F16 (in particular α = β5).
The following splitting locus is

Split(G′/G′0) = {(v0 = γ) | γ ∈ {∞, β, β2, β4, β6, β7, β8, β9, β13}}.

The number of rational places is bounded as

N(G′n) ≥ # Split(G′/G′0) · [G′n : G′0]

≥ 9 · 2n for n ≥ 0.

Finally, we observe that the tower G′ is optimal over F16 since

λ(G′/F16) = lim
n→∞

N(G′n)

gn
≥ lim

n→∞

9 · 2n

6 · 2n−1 + 1
= 3 =

√
16− 1.
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Since Tower G defines exactly the Drinfeld modular curves (x0(p
i))i≥0, its

limit can be estimated λ(G) ≥ qd−1 = 1 by Theorem 4.5. Though derived
from Tower G, Tower G′ is defined differently: its recursive representation
(6.2) is not ‘twisted’ like the definition (6.1) of Tower G. It not clear from
the theory of Drinfeld modules why λ(G/F16) ≥ 1 but λ(G′/F16) ≥ 3.

6.2 Good towers from Drinfeld modules of rank
3

In Chapter 4 the theory of Drinfeld modular curves x0(n) over general
rings A and values of δ to construct good towers was investigated. As
an example, a new explicit tower over F28 was constructed from rank
2 Drinfeld A-modules with A 6= Fq[T ]. In this section, we expand the
construction for a special class of rank 3 Drinfeld A-modules over the
same ring A. As a result we successfully construct a good tower over F26

with limit 3/2.

In general, there is no notion of Drinfeld modular curves x0(n) for Drin-
feld modules of rank r > 2. In [BBGS15], by using a special class of Drin-
feld Fq[T ]-modules, Bassa, Beelen, Garcia and Stichtenoth gave somehow
such kind of Drinfeld modular curves for any rank r ≥ 2. They used that
to give the modularity for their tower. More precisely, they considered
rank r Drinfeld Fq[T ]-modules of characteristic T − 1 of form

φT = −τ r + gτ j + 1 (6.3)

where 1 ≤ j ≤ r. In our example when A 6= Fq[T ], it is less immediate
which kind of rank 3 Drinfeld A-modules can be used.

We use the same setting in Section 6.1 (the same ring A, the characteristic
P = 〈X,Y 〉, ι(X) = ι(Y ) = 0, p = 〈X − 1, Y 〉, p-isogeny λ = τ − a). We
consider a rank 3 Drinfeld A-module φ of form

φX = g0τ
6 + g1τ

5 + g2τ
4 + g3τ

3 + g4τ
2 + g5τ,

φY = h0τ
6 + h1τ

5 + h2τ
4 + h3τ

3 + h4τ
2 + h5τ.

The rank 3 Drinfeld module φ can also be normalized by putting h0 = 1
and g0 ∈ F4 satisfying g20 + g0 + 1 = 0. The variables gi, hj for i, j ∈
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{1, 2, ..., 5} satisfy the linearized relations coming from the curve equa-
tion, φY 2+XY+X2−X = φ0 = 0, and from the commutative property be-
tween X and Y , φXφY = φXY = φY X = φY φX . As a result, all variables
gi can be expressed in terms of hi’s for i ∈ {1, 2, ..., 5}.

In the case of rank r = 2 as in Chapter 4 or Section 6.1, the genus formula
4.8 for the curve x(1) tells us when isomorphism classes of such a rank
2 Drinfeld module can be parametrized in one variable for recursively
defined towers. More precisely, the setting in Section 4.5 with F = Fq(T )
and δ = 2 fitted the conditions for g(x(1)) = 0. The case of rank r > 2 has
not been fully investigated in any ring A yet. Part of such an investigation
for A = Fq[T ] just has been explored in [BBGS15] where the considered
rank r Drinfeld modules are of form 6.3 parametrized by only one variable
g. In order to be able to parametrize isomorphism classes of our rank
3 Drinfeld module φ in one variable with high possibility, we set low-
degree coefficients of φX and φY , which are in this case g5 and h5, zeroes.
Following the same elimination technique in Section 4.5, we can now
reduce four variables h1, ..., h4 into two of them.

Everything then goes exactly the same as the construction in Section 4.5.
Finally, we can also obtain two twisted polynomials to define the tower
F ′ = (F ′0, F

′
1, · · · ) starting with F ′0 = F4(u0).

Φ1(u, v) = (u+ g0)v7 + (g0u
3 + u2 + g0u+ g0)v6 + (u5 + u4 + u3 + g0u

2 + g0u

+ g0)v5 + (u7 + g0u
6 + u5 + g20u

4 + g0u
3 + u2 + g20u+ g0)v4 + (u6 + g20u

5

+ g0u
4 + u3 + g20u

2 + u+ g0)v3 + (g0u
5 + g20u

3 + u2 + g20u+ g0)v2 + (g0u
6

+ u4 + u3 + u+ g0)v + g20u
7 + g0u

6 + u5 + g20u
4 + g0u

3 + u2 + g20u+ g0;

Φ2(v, w) = (v + g20)w7 + (g20v
3 + v2 + g20v + g20)w6 + (v5 + v4 + v3 + g20v

2 + g20v

+ g20)w5 + (v7 + g20v
6 + v5 + g0v

4 + g20v
3 + v2 + g0v + g20)w4 + (v6 + g0v

5

+ g20v
4 + v3 + g0v

2 + v + g20)w3 + (g20v
5 + g0v

3 + v2 + g0v + g20)w2 + (g20v
6

+ v4 + v3 + v + g20)w + g0v
7 + g20v

6 + v5 + g0v
4 + g20v

3 + v2 + g0v + g20 .

By computer we can see that Φi is not absolutely irreducible for i = 1, 2.
It is irreducible only over F4. In order to define the tower from F ′2/F

′
1
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we have to pick one of its irreducible factors at each step. That produces
several towers F ′.

In particular, F ′2/F
′
1 can be of degree 3 or degree 4, since Φ2(u1, u2) has

one factor of degree 3 and the other of degree 4 in F ′1[u2]. If we choose
the degree 4 for F ′2/F

′
1, there will be also either of degree 3 or degree

4 for F ′3/F
′
2. If degree 3 is chosen for F ′2/F

′
1, then F ′3/F

′
2 could be of

degree 1, of degree 2 or of degree 4. Next, if degree 2 is chosen for F ′3/F
′
2

then the degrees 1, 2 and 4 are repeated for F ′4/F
′
3, and so on. Such an

exploration can be computed by using Magma.

We pick one instance of Tower F ′ = (F ′0, F
′
1, ...) of degrees 7-3-2-2-· · · to

compute the limit.

For having many rational places, we consider the tower defined over
Fq3de = F26 . Let α be a primitive element of F26 , we choose g0 = α21

such that g20 + g0 + 1 = 0. By Kummer’s theory, ramified places at the
first level F ′1/F

′
0 are (u0 = 0), (u0 = ∞) and (u0 = g0). Afterwards, the

place (u1 = 1) lying above (u0 = 0) splits completely.

We compute directly by Magma for first few levels and see that the field
extension F ′n+1/F

′
n is weakly ramified for n = 0, 1, 2; i.e., d(Pn+1|Pn) =

2(e(Pn+1|Pn)−1) where Pn denotes a place of function field F ′n for n ≥ 0.
Then by [Sti09, Remark 7.4.11.], the tower F ′ is 2-bounded. There are 10
places of degree 1 and 4 places of degree 2 in Ram(F ′/F ′2). In summary
we get the following upper bound for the genus of the function field F ′n
in the tower F ′.

2g(F ′n)− 2 = [F ′n : F ′2](2g(F ′2)− 2) + degDiff(F ′n/F
′
2)

2g(F ′n)− 2 ≤ 2n−2(2 · 13− 2) + 2(10 · 1 + 4 · 2)2n−2

g(F ′n) ≤ 30 · 2n−2 + 1 for n ≥ 2.

As the places (u0 = g20) and (u0 = 1) split completely in F ′n for n ≥ 1,
and (u1 = 1) splits completely in F ′n for n ≥ 2, we get

N(F ′n) ≥ 2[F ′n : F0] + [F ′n : F1] = (2 · 7 + 1) · 3 · 2n−2 = 45 · 2n−2 for n ≥ 2.

As a result, we observe that the tower is good with limit

λ(F) = lim
n→∞

N(Fn)

g(Fn)
≥ 45

30
= 3/2.
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6.3 The Hasse–Witt invariant in towers

For applications in coding theory, towers of function fields with a pos-
itive limit are useful. Subsequently, other applications of such towers
in coding theory and cryptography were discovered, for instance for the
construction of hash functions, low discrepancy sequences, secret sharing
and multiparty computation. Specifically in some of these new applica-
tions additional properties of towers with positive limits are sometimes
required. More precisely, for the construction of strongly multiplicative
linear secret sharing schemes with positive asymptotic corruption toler-
ance rate, and the construction of fast bilinear multiplication algorithms
in large extensions of a given finite field (see [CCX14]), one is also in-
terested in the so-called p-rank of the function fields occurring in the
tower.

The p-rank γ(F ) of a function field F with constant field Fp, the algebraic
closure of the finite field Fp, is defined as the dimension over Fp of the
group of divisor classes of degree zero of order p. If the function field
is defined over the finite field Fq, we define its p-rank as the p-rank of
the function field FFq, obtained by extending the constant field to the
algebraic closure of Fq. It can be shown that 0 ≤ γ(F ) ≤ g(F ). If
γ(F ) = g(F ), then F is called ordinary. For a tower F = (Fn)n≥0,
we consider the asymptotic behaviour of the ratio γ(Fn)/g(Fn) when
g(Fn)→∞ as

0 ≤ ϕ(F) := lim inf
n→∞

γ(Fn)

g(Fn)
≤ 1.

For applications in cryptography and coding theory mentioned above,
explicit towers with big limit λ(F) and small ‘p-rank’ ϕ(F) are inter-
esting. If q is a square then there exists an optimal tower F/Fq (see
[CCX14, BB10]) such that

ϕ(F) =
1

√
q + 1

. (6.4)

In [CCX14, BB10], the tower of Garcia and Stichtenoth [GS95] was used
to prove Equality (6.4). It is the best known bound for the p-rank over
square finite fields. For non-square finite fields, very few results are known
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for the p-rank of good towers. Only for the tower over cubic finite fields
introduced by Bassa, Garcia and Stichtenoth denoted by BaGS [BGS08],
the p-rank has been computed in [BB10]. More precisely, for q = p3e the
p-rank of the BaGS tower is equal to

ϕ(BaGS/Fq) =
2
(
p+1
2

)e − 2

(pe − 1)(pe + 2)
, (6.5)

where
(·
·
)

denotes the binomial coefficient. In particular, the tower is
ordinary if e = 1.

Computing the p-rank of a tower is a quite difficult task. It is usually re-
quired that such a good tower should have p-Galois steps and precise ram-
ification in order to apply Deuring–Shafarevich theorem to compute the
p-rank. Very few good towers like towers Garcia-Stichtenoth [GS95] or
BaGS [BGS08] have such nice properties. Recently, a new explicit tower
over any non-prime finite fields Fqn has been introduced in [BBGS15],
where a tower F was addressed and recursively defined by

Y qn−1 − 1

Y qj−1 =
Xqn−1 − 1

Xqn−qk ,

with n = j + k and gcd(j, k) = 1. Over cubic finite fields; i.e., n = 3,
a variant of this tower F has Galois steps; and hence its p-rank can
hopefully be computed.

In order to compute the p-rank of a tower, we need to investigate the
ramification structure and compute the genus of the tower. In Chapter
5, a subtower Z = (Fq3(z1, ..., zi))i≥1 of Tower F = (Fq3(x1, ..., xi))i≥1

was fully investigated. Their relationship is given by zi = xq
3−1
i (see

[BBGS15]); that helps in investigating the ramification structure and
computing the genus of the tower F . It seems that the p-rank of this
tower F is smaller than the one of BaGS. In fact, in our current work we
can compute the p-rank of the tower F/Fp3 as

ϕ(F/Fp3) = lim
n→∞

γ(Fn)

g(Fn)
=

p2 + p+ 4

4(p2 + p+ 1)
. (6.6)

So, this tower is not ordinary when q = p3.
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6.4 Drinfeld modular curves having many points

In recent years there has been renewed interest in the construction of
curves over finite fields Fq with many rational points. We refer to [man]
for a long list of references and for a table with the known records in the
genus range g ≤ 50 and small q’s. Admittedly, the fact that a sequence of
curves is asymptotically optimal implies literally nothing for an individual
curve from this sequence. But morally it is a good candidate for a curve
with many points. It seems that reductions of Drinfeld modular curves
X0(n) have not been investigated under this aspect before, and it looks
as if they do in general not give the best results.

In general it is not easy to write down an equation for a Drinfeld modular
curve even in the simplest case of A = Fq[T ]. But the moduli interpreta-
tion allows to predict certain rational points on it. In fact, most rational
points are supersingular. There are also some rational cusps. Others
are rare and not easy to determine. In the case of A = Fq[T ], Gekeler
gave the formula to compute the number of supersingular points and a
lower bound for the rational cusps of the Drinfeld modular curves X0(n).
Schweizer showed in [Sch02] by using such formulas that the reduction
of Drinfeld modular curve X0(T

3(T + 1)2) modulo T − 1 has genus 42
and has at least 122 rational points over F32 . For that it appeared on
the table [man] as one of the best known curves.

In Chapter 3 and Chapter 4 we obtained somehow an algorithm to write
down an explicit equation for a Drinfeld modular curve X0(n). This
can help not only to check Gekeler’s formulas but also to find the exact
number of rational points of X0(n) so that it can produce certain best
curves.



Appendix A

Magma source code

This Appendix gives the Magma sources with outputs of computational
verifications in Section 4.5.

1. Producing relations between the variables from φY 2+XY+X2−X =
0 and φXφY = φY φX .

/* 1_normalize_phi.txt */

/*

Define a normalized rank-2 Drinfeld module over the coefficient ring of the curve

Y^2 + aXY + bX^2 = X over GF(q)

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

/*

in GF(2) only a = b = 1 satisfies T^2 + aT + b is irreducible

*/

a := 1; b := 1;

f:=Y^2 + a*X*Y + b*X^2 - X;

C<Y>:=ext<FX|f>;

L<g0,g1,g2,g3,h0,h1,h2,h3>:=PolynomialRing(C,8);
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F<tau>:=TwistedPolynomials(L);

phiX:=F![X,g3,g2,g1,g0];

phiY:=F![Y,h3,h2,h1,h0];

/*

phiX = g0*tau^4 + g1*tau^3 + g2*tau^2 + g3*tau + X

phiY = h0*tau^4 + h1*tau^3 + h2*tau^2 + h3*tau + Y

*/

phiXY:=phiX*phiY;

phiX2:=phiX*phiX;

phiY2:=phiY*phiY;

phiCurve:= phiY2 + F![a]*phiXY + F![b]*phiX2 - phiX;

Curve:=Polynomial(phiCurve);

L1:=Eltseq(phiCurve);

phiYX:=phiY*phiX;

phiCommute:=phiXY-phiYX;

L2:=Eltseq(phiCommute);

/*

L1 = relations from phi_{Y^2 + XY + X^2 - X} = 0

[

0,

(X*Y + 1)*g3 + (X^2*Y + X^2)*h3,

(Y + X^2)*g2 + g3^3 + g3*h3^2 + h3^3,

(X*Y + X)*g1 + g2^2*g3 + g2*g3^4 + g2*h3^4 + g3*h2^2 + X^2*Y*h1 + h2^2*h3 +

h2*h3^4,

(Y + 1)*g0 + g1^2*g3 + g1*g3^8 + g1*h3^8 + g2^5 + g2*h2^4 + g3*h1^2 + X*h0 +

h1^2*h3 + h1*h3^8 + h2^5,

g0^2*g3 + g0*g3^16 + g0*h3^16 + g1^4*g2 + g1*g2^8 + g1*h2^8 + g2*h1^4 +

g3*h0^2 + h0^2*h3 + h0*h3^16 + h1^4*h2 + h1*h2^8,

g0^4*g2 + g0*g2^16 + g0*h2^16 + g1^9 + g1*h1^8 + g2*h0^4 + h0^4*h2 +

h0*h2^16 + h1^9,

g0^8*g1 + g0*g1^16 + g0*h1^16 + g1*h0^8 + h0^8*h1 + h0*h1^16,

g0^17 + g0*h0^16 + h0^17

]

L2 = relations from phi_XY = phi_YX

[

0,

(X^2*Y + 1)*g3 + h3,

X*g2 + g3^2*h3 + g3*h3^2,

(X^2*Y + X)*g1 + g2^2*h3 + g2*h3^4 + g3^4*h2 + g3*h2^2 + h1,

g1^2*h3 + g1*h3^8 + g2^4*h2 + g2*h2^4 + g3^8*h1 + g3*h1^2,

g0^2*h3 + g0*h3^16 + g1^4*h2 + g1*h2^8 + g2^8*h1 + g2*h1^4 + g3^16*h0 +

g3*h0^2,

g0^4*h2 + g0*h2^16 + g1^8*h1 + g1*h1^8 + g2^16*h0 + g2*h0^4,

g0^8*h1 + g0*h1^16 + g1^16*h0 + g1*h0^8,

g0^16*h0 + g0*h0^16

]

*/

lp:=GCD(L1[#L1],L2[#L2]);

/*

g0^2 + g0*h0 + h0^2

we can choose h0 = 1 for normalized Drinfeld modules. Then g0^2 + g0 + 1 = 0.

Recall that X^2 + X + 1 = 0. We will see that g0 = X or g0 = X^2
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corresponds to 2 components of X(1) later.

*/

L1:=L1[1..#L1-1];

L2[#L2]:=lp;

for i in [1..#L1] do

L1[i]:=Evaluate(L1[i],5,1);

end for;

for i in [1..#L2] do

L2[i]:=Evaluate(L2[i],5,1);

end for;

/*

[

0,

(X*Y + 1)*g3 + (X^2*Y + X^2)*h3,

(Y + X^2)*g2 + g3^3 + g3*h3^2 + h3^3,

(X*Y + X)*g1 + g2^2*g3 + g2*g3^4 + g2*h3^4 + g3*h2^2 + X^2*Y*h1 + h2^2*h3 +

h2*h3^4,

(Y + 1)*g0 + g1^2*g3 + g1*g3^8 + g1*h3^8 + g2^5 + g2*h2^4 + g3*h1^2 +

h1^2*h3 + h1*h3^8 + h2^5 + X,

g0^2*g3 + g0*g3^16 + g0*h3^16 + g1^4*g2 + g1*g2^8 + g1*h2^8 + g2*h1^4 + g3 +

h1^4*h2 + h1*h2^8 + h3^16 + h3,

g0^4*g2 + g0*g2^16 + g0*h2^16 + g1^9 + g1*h1^8 + g2 + h1^9 + h2^16 + h2,

g0^8*g1 + g0*g1^16 + g0*h1^16 + g1 + h1^16 + h1

]

[

0,

(X^2*Y + 1)*g3 + h3,

X*g2 + g3^2*h3 + g3*h3^2,

(X^2*Y + X)*g1 + g2^2*h3 + g2*h3^4 + g3^4*h2 + g3*h2^2 + h1,

g1^2*h3 + g1*h3^8 + g2^4*h2 + g2*h2^4 + g3^8*h1 + g3*h1^2,

g0^2*h3 + g0*h3^16 + g1^4*h2 + g1*h2^8 + g2^8*h1 + g2*h1^4 + g3^16 + g3,

g0^4*h2 + g0*h2^16 + g1^8*h1 + g1*h1^8 + g2^16 + g2,

g0^8*h1 + g0*h1^16 + g1^16 + g1,

g0^2 + g0 + 1

]

*/

for i in [2..5] do

L1[i]:=Factorization(L1[i])[1][1];

end for;

/*

[

0,

g3 + X*Y*h3,

g2 + (X^2*Y + X^2)*g3^3 + (X^2*Y + X^2)*g3*h3^2 + (X^2*Y + X^2)*h3^3,

g1 + (X*Y + 1)*g2^2*g3 + (X*Y + 1)*g2*g3^4 + (X*Y + 1)*g2*h3^4 + (X*Y +

1)*g3*h2^2 + (Y + 1)*h1 + (X*Y + 1)*h2^2*h3 + (X*Y + 1)*h2*h3^4,

g0 + (X^2*Y + X)*g1^2*g3 + (X^2*Y + X)*g1*g3^8 + (X^2*Y + X)*g1*h3^8 +

(X^2*Y + X)*g2^5 + (X^2*Y + X)*g2*h2^4 + (X^2*Y + X)*g3*h1^2 + (X^2*Y +

X)*h1^2*h3 + (X^2*Y + X)*h1*h3^8 + (X^2*Y + X)*h2^5 + Y + X^2,

g0^2*g3 + g0*g3^16 + g0*h3^16 + g1^4*g2 + g1*g2^8 + g1*h2^8 + g2*h1^4 + g3 +

h1^4*h2 + h1*h2^8 + h3^16 + h3,
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g0^4*g2 + g0*g2^16 + g0*h2^16 + g1^9 + g1*h1^8 + g2 + h1^9 + h2^16 + h2,

g0^8*g1 + g0*g1^16 + g0*h1^16 + g1 + h1^16 + h1

]

[

0,

(X^2*Y + 1)*g3 + h3,

X*g2 + g3^2*h3 + g3*h3^2,

(X^2*Y + X)*g1 + g2^2*h3 + g2*h3^4 + g3^4*h2 + g3*h2^2 + h1,

g1^2*h3 + g1*h3^8 + g2^4*h2 + g2*h2^4 + g3^8*h1 + g3*h1^2,

g0^2*h3 + g0*h3^16 + g1^4*h2 + g1*h2^8 + g2^8*h1 + g2*h1^4 + g3^16 + g3,

g0^4*h2 + g0*h2^16 + g1^8*h1 + g1*h1^8 + g2^16 + g2,

g0^8*h1 + g0*h1^16 + g1^16 + g1,

g0^2 + g0 + 1

]

*/

/*

express other variables in h1,h2,h3

*/

temp:=g3 - L1[2];

for i in [3..#L1] do

L1[i]:=Evaluate(L1[i],4,temp);

end for;

for i in [2..#L2] do

L2[i]:=Evaluate(L2[i],4,temp);

end for;

temp:=g2 - L1[3];

for i in [4..#L1] do

L1[i]:=Evaluate(L1[i],3,temp);

end for;

for i in [2..#L2] do

L2[i]:=Evaluate(L2[i],3,temp);

end for;

temp:=g1 - L1[4];

for i in [5..#L1] do

L1[i]:=Evaluate(L1[i],2,temp);

end for;

for i in [2..#L2] do

L2[i]:=Evaluate(L2[i],2,temp);

end for;

temp:=g0 - L1[5];

for i in [6..#L1] do

L1[i]:=Evaluate(L1[i],1,temp);

end for;

for i in [2..#L2] do

L2[i]:=Evaluate(L2[i],1,temp);

end for;

L1;L2;

/*

[

0,

g3 + X*Y*h3,
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g2 + (X*Y + X)*h3^3,

g1 + (Y + 1)*h1 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^7,

g0 + (X^2*Y + 1)*h1^2*h3 + (X*Y + X)*h1*h3^8 + (X^2*Y + X)*h2^5 + (X^2*Y +

X)*h2^4*h3^3 + (X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + Y*h3^15 + Y + X^2,

h1^4*h2 + Y*h1^4*h3^3 + X*h1^2*h3^17 + Y*h1*h2^8 + (Y + X)*h1*h3^24 + (Y +

X^2)*h2^10*h3 + (X*Y + 1)*h2^9*h3^4 + (Y + X)*h2^8*h3^7 + (X*Y +

X^2)*h2^5*h3^16 + (X^2*Y + 1)*h2^4*h3^19 + X*Y*h2^2*h3^25 + (X*Y +

X)*h2*h3^28 + (X*Y + 1)*h3^31 + X^2*Y*h3^16 + (X*Y + X)*h3,

(X^2*Y + 1)*h1^9 + (X*Y + 1)*h1^8*h2^2*h3 + h1^8*h2*h3^4 + (Y +

X^2)*h1^8*h3^7 + h1^4*h3^35 + (X^2*Y + 1)*h1^2*h2^16*h3 + (Y +

X^2)*h1^2*h3^49 + (X*Y + 1)*h1*h2^16*h3^8 + (X^2*Y + 1)*h1*h2^8*h3^32 +

h1*h3^56 + (X^2*Y + X)*h2^21 + (Y + X)*h2^20*h3^3 + (X^2*Y +

1)*h2^18*h3^9 + Y*h2^17*h3^12 + (Y + 1)*h2^16*h3^15 + (Y + X)*h2^16 +

h2^10*h3^33 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (X^2*Y +

1)*h2^4*h3^51 + (Y + X^2)*h2^2*h3^57 + (Y + X)*h2*h3^60 + h2 + (X^2*Y +

X)*h3^63 + X^2*h3^48 + (Y + X)*h3^3,

X^2*h1^18*h3 + (Y + X^2)*h1^17*h3^8 + (X^2*Y + X^2)*h1^16*h2^5 + (X^2*Y +

X^2)*h1^16*h2^4*h3^3 + X*h1^16*h2^2*h3^9 + X^2*h1^16*h2*h3^12 + (Y +

X^2)*h1^16*h3^15 + Y*h1^16 + (Y + X^2)*h1^9*h3^64 + (X*Y +

X)*h1^8*h2^2*h3^65 + Y*h1^8*h2*h3^68 + (Y + X)*h1^8*h3^71 + (Y +

1)*h1^2*h2^32*h3^17 + X^2*Y*h1^2*h2^16*h3^65 + (X^2*Y + 1)*h1^2*h3^113 +

(X*Y + X^2)*h1*h2^40 + X*h1*h2^32*h3^24 + X^2*Y*h1*h2^16*h3^72 + (X^2*Y

+ X^2)*h1*h2^8*h3^96 + (Y + X)*h1*h3^120 + X*h1 + X^2*h2^42*h3 + (Y +

1)*h2^41*h3^4 + X^2*Y*h2^40*h3^7 + X*Y*h2^37*h3^16 + X*Y*h2^36*h3^19 +

(Y + X^2)*h2^34*h3^25 + (X^2*Y + X)*h2^33*h3^28 + (X^2*Y +

1)*h2^32*h3^31 + X^2*Y*h2^32*h3^16 + (X*Y + X^2)*h2^21*h3^64 + (X*Y +

X^2)*h2^20*h3^67 + (Y + X^2)*h2^18*h3^73 + Y*h2^17*h3^76 + (X^2*Y +

X)*h2^16*h3^79 + (X^2*Y + 1)*h2^16*h3^64 + (X^2*Y + 1)*h2^10*h3^97 + (Y

+ X^2)*h2^9*h3^100 + X^2*h2^8*h3^103 + (X^2*Y + X)*h2^5*h3^112 + (X^2*Y

+ X)*h2^4*h3^115 + Y*h2^2*h3 + X^2*h2*h3^124 + (Y + X)*h2*h3^4 + (X^2*Y

+ X)*h3^127 + (Y + X^2)*h3^112 + (X*Y + 1)*h3^7

]

[

0,

0,

0,

0,

0,

(Y + X^2)*h1^4*h2 + (Y + 1)*h1^4*h3^3 + (X*Y + 1)*h1^2*h3^17 + (Y +

1)*h1*h2^8 + X^2*Y*h1*h3^24 + (X*Y + X^2)*h2^10*h3 + (X^2*Y +

1)*h2^9*h3^4 + X^2*Y*h2^8*h3^7 + Y*h2^5*h3^16 + X*Y*h2^4*h3^19 + (X*Y +

X)*h2^2*h3^25 + X^2*h2*h3^28 + (X^2*Y + 1)*h3^31 + (X^2*Y + X^2)*h3^16 +

X^2*h3,

(X^2*Y + X)*h1^9 + (Y + X)*h1^8*h2^2*h3 + (Y + 1)*h1^8*h2*h3^4 + h1^8*h3^7 +

(X*Y + 1)*h1^4*h2*h3^32 + (X^2*Y + 1)*h1^2*h2^16*h3 + X^2*h1*h2^16*h3^8

+ Y*h1*h2^8*h3^32 + h1*h3^56 + h2^21 + (X^2*Y + X)*h2^20*h3^3 + (X*Y +

1)*h2^18*h3^9 + (X^2*Y + 1)*h2^17*h3^12 + Y*h2^16*h3^15 + (Y +

X^2)*h2^16 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (Y + X)*h2*h3^60 + (Y

+ 1)*h2 + (X*Y + X)*h3^48 + (X*Y + X)*h3^3,

(X^2*Y + 1)*h1^18*h3 + Y*h1^17*h3^8 + (X^2*Y + X)*h1^16*h2^5 + (X^2*Y +

X)*h1^16*h2^4*h3^3 + (X*Y + 1)*h1^16*h2^2*h3^9 + X*h1^16*h2*h3^12 +

Y*h1^16*h3^15 + X*h1^16 + (Y + X)*h1^9*h3^64 + X^2*Y*h1*h2^40 +

X^2*Y*h1*h2^32*h3^24 + Y*h1*h2^16*h3^72 + X^2*h1*h2^8*h3^96 + (X*Y +

X)*h1*h3^120 + (X^2*Y + 1)*h1 + (Y + X)*h2^32*h3^16 + (X*Y +

1)*h2^16*h3^64 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^112 + h3^7,
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(X^2*Y + X^2)*h1^4*h3^2 + Y*h1^2*h3^16 + (X^2*Y + 1)*h1^2*h3 + (X*Y +

X)*h1*h3^8 + (X^2*Y + 1)*h2^10 + (X^2*Y + 1)*h2^8*h3^6 + (X^2*Y +

X)*h2^5 + (Y + X)*h2^4*h3^18 + (X^2*Y + X)*h2^4*h3^3 + X^2*h2^2*h3^24 +

(X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + (X*Y + 1)*h3^30 + Y*h3^15 + X^2*Y + 1

]

*/

2. Finding the relation f(h2, h3) = 0 using Groebner basis com-
putation (elimination). The Groebner basis is stored in B.txt,
whose the last element is f(h2, h3).

/* 2_p_h2_h3.txt */

/*

finding relation between h2 and h3 using Groebner basis computation (elimination)

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

P<h1,h2,h3>:=PolynomialRing(C,3);

L:=[

h1^4*h2 + Y*h1^4*h3^3 + X*h1^2*h3^17 + Y*h1*h2^8 + (Y + X)*h1*h3^24 + (Y +

X^2)*h2^10*h3 + (X*Y + 1)*h2^9*h3^4 + (Y + X)*h2^8*h3^7 + (X*Y +

X^2)*h2^5*h3^16 + (X^2*Y + 1)*h2^4*h3^19 + X*Y*h2^2*h3^25 + (X*Y +

X)*h2*h3^28 + (X*Y + 1)*h3^31 + X^2*Y*h3^16 + (X*Y + X)*h3,

(X^2*Y + 1)*h1^9 + (X*Y + 1)*h1^8*h2^2*h3 + h1^8*h2*h3^4 + (Y +

X^2)*h1^8*h3^7 + h1^4*h3^35 + (X^2*Y + 1)*h1^2*h2^16*h3 + (Y +

X^2)*h1^2*h3^49 + (X*Y + 1)*h1*h2^16*h3^8 + (X^2*Y + 1)*h1*h2^8*h3^32 +

h1*h3^56 + (X^2*Y + X)*h2^21 + (Y + X)*h2^20*h3^3 + (X^2*Y +

1)*h2^18*h3^9 + Y*h2^17*h3^12 + (Y + 1)*h2^16*h3^15 + (Y + X)*h2^16 +

h2^10*h3^33 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (X^2*Y +

1)*h2^4*h3^51 + (Y + X^2)*h2^2*h3^57 + (Y + X)*h2*h3^60 + h2 + (X^2*Y +

X)*h3^63 + X^2*h3^48 + (Y + X)*h3^3,

X^2*h1^18*h3 + (Y + X^2)*h1^17*h3^8 + (X^2*Y + X^2)*h1^16*h2^5 + (X^2*Y +

X^2)*h1^16*h2^4*h3^3 + X*h1^16*h2^2*h3^9 + X^2*h1^16*h2*h3^12 + (Y +

X^2)*h1^16*h3^15 + Y*h1^16 + (Y + X^2)*h1^9*h3^64 + (X*Y +

X)*h1^8*h2^2*h3^65 + Y*h1^8*h2*h3^68 + (Y + X)*h1^8*h3^71 + (Y +

1)*h1^2*h2^32*h3^17 + X^2*Y*h1^2*h2^16*h3^65 + (X^2*Y + 1)*h1^2*h3^113 +

(X*Y + X^2)*h1*h2^40 + X*h1*h2^32*h3^24 + X^2*Y*h1*h2^16*h3^72 + (X^2*Y

+ X^2)*h1*h2^8*h3^96 + (Y + X)*h1*h3^120 + X*h1 + X^2*h2^42*h3 + (Y +

1)*h2^41*h3^4 + X^2*Y*h2^40*h3^7 + X*Y*h2^37*h3^16 + X*Y*h2^36*h3^19 +

(Y + X^2)*h2^34*h3^25 + (X^2*Y + X)*h2^33*h3^28 + (X^2*Y +

1)*h2^32*h3^31 + X^2*Y*h2^32*h3^16 + (X*Y + X^2)*h2^21*h3^64 + (X*Y +

X^2)*h2^20*h3^67 + (Y + X^2)*h2^18*h3^73 + Y*h2^17*h3^76 + (X^2*Y +

X)*h2^16*h3^79 + (X^2*Y + 1)*h2^16*h3^64 + (X^2*Y + 1)*h2^10*h3^97 + (Y

+ X^2)*h2^9*h3^100 + X^2*h2^8*h3^103 + (X^2*Y + X)*h2^5*h3^112 + (X^2*Y

+ X)*h2^4*h3^115 + Y*h2^2*h3 + X^2*h2*h3^124 + (Y + X)*h2*h3^4 + (X^2*Y

+ X)*h3^127 + (Y + X^2)*h3^112 + (X*Y + 1)*h3^7,

(Y + X^2)*h1^4*h2 + (Y + 1)*h1^4*h3^3 + (X*Y + 1)*h1^2*h3^17 + (Y +

1)*h1*h2^8 + X^2*Y*h1*h3^24 + (X*Y + X^2)*h2^10*h3 + (X^2*Y +
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1)*h2^9*h3^4 + X^2*Y*h2^8*h3^7 + Y*h2^5*h3^16 + X*Y*h2^4*h3^19 + (X*Y +

X)*h2^2*h3^25 + X^2*h2*h3^28 + (X^2*Y + 1)*h3^31 + (X^2*Y + X^2)*h3^16 +

X^2*h3,

(X^2*Y + X)*h1^9 + (Y + X)*h1^8*h2^2*h3 + (Y + 1)*h1^8*h2*h3^4 + h1^8*h3^7 +

(X*Y + 1)*h1^4*h2*h3^32 + (X^2*Y + 1)*h1^2*h2^16*h3 + X^2*h1*h2^16*h3^8

+ Y*h1*h2^8*h3^32 + h1*h3^56 + h2^21 + (X^2*Y + X)*h2^20*h3^3 + (X*Y +

1)*h2^18*h3^9 + (X^2*Y + 1)*h2^17*h3^12 + Y*h2^16*h3^15 + (Y +

X^2)*h2^16 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (Y + X)*h2*h3^60 + (Y

+ 1)*h2 + (X*Y + X)*h3^48 + (X*Y + X)*h3^3,

(X^2*Y + 1)*h1^18*h3 + Y*h1^17*h3^8 + (X^2*Y + X)*h1^16*h2^5 + (X^2*Y +

X)*h1^16*h2^4*h3^3 + (X*Y + 1)*h1^16*h2^2*h3^9 + X*h1^16*h2*h3^12 +

Y*h1^16*h3^15 + X*h1^16 + (Y + X)*h1^9*h3^64 + X^2*Y*h1*h2^40 +

X^2*Y*h1*h2^32*h3^24 + Y*h1*h2^16*h3^72 + X^2*h1*h2^8*h3^96 + (X*Y +

X)*h1*h3^120 + (X^2*Y + 1)*h1 + (Y + X)*h2^32*h3^16 + (X*Y +

1)*h2^16*h3^64 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^112 + h3^7,

(X^2*Y + X^2)*h1^4*h3^2 + Y*h1^2*h3^16 + (X^2*Y + 1)*h1^2*h3 + (X*Y +

X)*h1*h3^8 + (X^2*Y + 1)*h2^10 + (X^2*Y + 1)*h2^8*h3^6 + (X^2*Y +

X)*h2^5 + (Y + X)*h2^4*h3^18 + (X^2*Y + X)*h2^4*h3^3 + X^2*h2^2*h3^24 +

(X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + (X*Y + 1)*h3^30 + Y*h3^15 + X^2*Y + 1

];

I:=ideal<P|L>;

B:=GroebnerBasis(I);

Write("B.txt",B);

/*

the last polynomial in B.txt is in h2,h3

*/

3. Finding p(h22, h33) defining X(1) and its two components p1, p2.

/* 3_p_h22_h33_X_1.txt */

/*

finding 2 components of X(1)

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

Q<h2,h3,h22,h33>:=PolynomialRing(C,4);

/*

pick the last one in the Groebner Basis B

*/

pol:=h2^30 + (X*Y + X)*h2^29*h3^3 + (Y + X)*h2^27*h3^9 + (X*Y + 1)*h2^26*h3^12 +

(Y + 1)*h2^25 + (X*Y + X)*h2^24*h3^18 + (X^2*Y + X^2)*h2^24*h3^3 +

Y*h2^23*h3^21 + (X^2*Y + 1)*h2^23*h3^6 + X^2*Y*h2^22*h3^9 + (X*Y +

1)*h2^21*h3^27 + (X^2*Y + X)*h2^21*h3^12 + h2^20*h3^30 + (Y +

1)*h2^20*h3^15 + (X*Y + 1)*h2^20 + (X^2*Y + X^2)*h2^19*h3^18 +

Y*h2^18*h3^36 + (X*Y + X)*h2^18*h3^6 + (Y + X)*h2^17*h3^39 + (Y +

X^2)*h2^17*h3^24 + X*h2^17*h3^9 + (X^2*Y + 1)*h2^16*h3^27 +

X*Y*h2^16*h3^12 + h2^15*h3^45 + (Y + 1)*h2^15*h3^30 + X*Y*h2^15*h3^15 +

(Y + X)*h2^15 + (X^2*Y + X^2)*h2^14*h3^33 + (Y + 1)*h2^14*h3^18 +

h2^14*h3^3 + Y*h2^13*h3^51 + X*Y*h2^13*h3^36 + X*h2^13*h3^21 + (X*Y +
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X)*h2^13*h3^6 + (Y + X)*h2^12*h3^54 + X^2*Y*h2^12*h3^39 + (X^2*Y +

X)*h2^12*h3^9 + (X^2*Y + X)*h2^11*h3^42 + (Y + X^2)*h2^11*h3^27 +

X*h2^11*h3^12 + h2^10*h3^60 + (Y + X^2)*h2^10*h3^45 + X*h2^10*h3^30 + (Y

+ X)*h2^10*h3^15 + (X*Y + 1)*h2^10 + (X*Y + X)*h2^9*h3^63 +

X^2*Y*h2^9*h3^48 + (X*Y + X)*h2^9*h3^33 + (X*Y + 1)*h2^9*h3^18 + (X*Y +

X)*h2^9*h3^3 + X*Y*h2^8*h3^51 + (X^2*Y + X)*h2^8*h3^36 + (X*Y +

X)*h2^8*h3^21 + (Y + X)*h2^8*h3^6 + (Y + X)*h2^7*h3^69 + (Y +

X^2)*h2^7*h3^54 + (X^2*Y + 1)*h2^7*h3^39 + (X*Y + 1)*h2^7*h3^24 +

X*h2^7*h3^9 + (X*Y + 1)*h2^6*h3^72 + X*Y*h2^6*h3^42 + (X*Y +

1)*h2^6*h3^27 + (Y + X^2)*h2^6*h3^12 + X*h2^5*h3^60 + (X*Y +

1)*h2^5*h3^45 + h2^5*h3^30 + (X*Y + X^2)*h2^5*h3^15 + (Y + 1)*h2^5 +

(X*Y + X)*h2^4*h3^78 + Y*h2^4*h3^48 + (X^2*Y + X)*h2^4*h3^33 + (X*Y +

X)*h2^4*h3^18 + X^2*h2^4*h3^3 + Y*h2^3*h3^81 + X*Y*h2^3*h3^66 +

X*h2^3*h3^51 + (X^2*Y + X^2)*h2^3*h3^36 + X*Y*h2^3*h3^21 + (X*Y +

X^2)*h2^2*h3^69 + (Y + X)*h2^2*h3^54 + (Y + 1)*h2^2*h3^39 + (Y +

X)*h2^2*h3^24 + (Y + X^2)*h2^2*h3^9 + (X*Y + 1)*h2*h3^87 + h2*h3^57 +

X^2*Y*h2*h3^42 + (X^2*Y + X^2)*h2*h3^27 + (X^2*Y + 1)*h2*h3^12 + h3^90 +

X*h3^75 + h3^60 + X^2*h3^45 + X^2*h3^30 + 1;

/*

go to isomorphism classes: h22 = h2^(q^2+1), h33 = h3^((q^2+1)*(q+1))

*/

I:=ideal<Q|pol,h33-h3^((q^2+1)*(q+1)),h22 - h2^(q^2+1)>;

GB:=GroebnerBasis(I);

p:=GB[#GB];

/*

The last one p of GB defines Drinfeld modular curve X(1)

*/

Factorization(p);

/*

X(1) has two components

[

<h22^15 + X*h22^14*h33 + (X^2*Y + 1)*h22^14 + X*h22^13*h33^2 + (Y +

X)*h22^13*h33 + (X^2*Y + X^2)*h22^13 + X^2*h22^12*h33^3 + (X^2*Y +

1)*h22^12*h33^2 + (X*Y + 1)*h22^12 + X^2*h22^11*h33^4 + (X^2*Y +

X^2)*h22^11*h33^2 + X^2*Y*h22^11 + h22^10*h33^5 + (Y + X)*h22^10*h33^4 +

(X*Y + X)*h22^10*h33^3 + (X*Y + 1)*h22^10*h33^2 + X*h22^10 + h22^9*h33^6

+ (X*Y + X^2)*h22^9*h33^5 + (X*Y + X)*h22^9*h33^4 + X^2*Y*h22^9*h33^2 +

X*h22^9*h33 + (Y + X)*h22^9 + X*h22^8*h33^7 + (X*Y + X^2)*h22^8*h33^6 +

(X*Y + X)*h22^8*h33^5 + (Y + X^2)*h22^8*h33^4 + X^2*Y*h22^8*h33^3 +

h22^8*h33^2 + (X*Y + X^2)*h22^8*h33 + (Y + 1)*h22^8 + X^2*h22^7*h33^8 +

(X*Y + X^2)*h22^7*h33^7 + (Y + 1)*h22^7*h33^6 + Y*h22^7*h33^4 +

h22^7*h33^3 + (Y + 1)*h22^7*h33 + (X^2*Y + X)*h22^7 + h22^6*h33^9 +

(X^2*Y + 1)*h22^6*h33^8 + (X^2*Y + X^2)*h22^6*h33^7 + (X^2*Y +

X)*h22^6*h33^6 + X*Y*h22^6*h33^5 + X^2*h22^6*h33^4 + (X*Y +

X^2)*h22^6*h33^3 + (X^2*Y + X^2)*h22^6*h33^2 + Y*h22^6 + h22^5*h33^10 +

(X*Y + X^2)*h22^5*h33^9 + (X*Y + 1)*h22^5*h33^7 + h22^5*h33^5 + (X^2*Y +

1)*h22^5*h33^4 + (Y + 1)*h22^5*h33^3 + (Y + X^2)*h22^5*h33^2 +

X^2*Y*h22^5*h33 + X^2*h22^5 + X*h22^4*h33^11 + (X*Y + X^2)*h22^4*h33^10

+ (Y + 1)*h22^4*h33^9 + (X*Y + X^2)*h22^4*h33^5 + (X*Y + X)*h22^4*h33^4

+ (X^2*Y + X)*h22^4*h33^3 + X^2*Y*h22^4*h33^2 + (X*Y + X^2)*h22^4 +

X*h22^3*h33^12 + (Y + X)*h22^3*h33^11 + (X^2*Y + X)*h22^3*h33^9 +

h22^3*h33^7 + Y*h22^3*h33^3 + X*h22^3*h33^2 + (X*Y + X^2)*h22^3*h33 +

(X*Y + X)*h22^3 + X^2*h22^2*h33^13 + (X^2*Y + 1)*h22^2*h33^12 + (Y +

1)*h22^2*h33^11 + Y*h22^2*h33^9 + X^2*h22^2*h33^8 + (X*Y +

X^2)*h22^2*h33^7 + (X*Y + X)*h22^2*h33^6 + X^2*Y*h22^2*h33^4 + (Y +
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X)*h22^2*h33^2 + (X*Y + X)*h22^2*h33 + (Y + X^2)*h22^2 + X^2*h22*h33^14

+ (X^2*Y + 1)*h22*h33^13 + (X^2*Y + X^2)*h22*h33^12 + (X^2*Y +

X)*h22*h33^11 + h22*h33^9 + (X^2*Y + 1)*h22*h33^8 + (X*Y + X)*h22*h33^7

+ (X^2*Y + X)*h22*h33^6 + X^2*Y*h22*h33^5 + X*h22*h33^4 + (X*Y +

X^2)*h22*h33^3 + (Y + 1)*h22*h33^2 + X*Y*h22 + h33^15 + (Y + X)*h33^14 +

(X*Y + 1)*h33^12 + Y*h33^11 + h33^10 + (X*Y + X)*h33^8 + (X*Y + X)*h33^3

+ (X*Y + 1)*h33^2 + 1, 1>,

<h22^15 + X^2*h22^14*h33 + X*Y*h22^14 + X^2*h22^13*h33^2 + Y*h22^13*h33 + (Y

+ X^2)*h22^13 + X*h22^12*h33^3 + X*Y*h22^12*h33^2 + (X*Y + X)*h22^12 +

X*h22^11*h33^4 + (Y + X^2)*h22^11*h33^2 + (X*Y + X^2)*h22^11 +

h22^10*h33^5 + Y*h22^10*h33^4 + (X*Y + 1)*h22^10*h33^3 + (X*Y +

X)*h22^10*h33^2 + X^2*h22^10 + h22^9*h33^6 + X^2*Y*h22^9*h33^5 + (X*Y +

1)*h22^9*h33^4 + (X*Y + X^2)*h22^9*h33^2 + X^2*h22^9*h33 + Y*h22^9 +

X^2*h22^8*h33^7 + X^2*Y*h22^8*h33^6 + (X*Y + 1)*h22^8*h33^5 + (X^2*Y +

X^2)*h22^8*h33^4 + (X*Y + X^2)*h22^8*h33^3 + h22^8*h33^2 +

X^2*Y*h22^8*h33 + (X^2*Y + X)*h22^8 + X*h22^7*h33^8 + X^2*Y*h22^7*h33^7

+ (X^2*Y + X)*h22^7*h33^6 + (Y + X)*h22^7*h33^4 + h22^7*h33^3 + (X^2*Y +

X)*h22^7*h33 + (Y + 1)*h22^7 + h22^6*h33^9 + X*Y*h22^6*h33^8 + (Y +

X^2)*h22^6*h33^7 + (Y + 1)*h22^6*h33^6 + (X^2*Y + 1)*h22^6*h33^5 +

X*h22^6*h33^4 + X^2*Y*h22^6*h33^3 + (Y + X^2)*h22^6*h33^2 + (Y +

X)*h22^6 + h22^5*h33^10 + X^2*Y*h22^5*h33^9 + (X*Y + X)*h22^5*h33^7 +

h22^5*h33^5 + X*Y*h22^5*h33^4 + (X^2*Y + X)*h22^5*h33^3 + (X^2*Y +

X^2)*h22^5*h33^2 + (X*Y + X^2)*h22^5*h33 + X*h22^5 + X^2*h22^4*h33^11 +

X^2*Y*h22^4*h33^10 + (X^2*Y + X)*h22^4*h33^9 + X^2*Y*h22^4*h33^5 + (X*Y

+ 1)*h22^4*h33^4 + (Y + 1)*h22^4*h33^3 + (X*Y + X^2)*h22^4*h33^2 +

X^2*Y*h22^4 + X^2*h22^3*h33^12 + Y*h22^3*h33^11 + (Y + 1)*h22^3*h33^9 +

h22^3*h33^7 + (Y + X)*h22^3*h33^3 + X^2*h22^3*h33^2 + X^2*Y*h22^3*h33 +

(X*Y + 1)*h22^3 + X*h22^2*h33^13 + X*Y*h22^2*h33^12 + (X^2*Y +

X)*h22^2*h33^11 + (Y + X)*h22^2*h33^9 + X*h22^2*h33^8 +

X^2*Y*h22^2*h33^7 + (X*Y + 1)*h22^2*h33^6 + (X*Y + X^2)*h22^2*h33^4 +

Y*h22^2*h33^2 + (X*Y + 1)*h22^2*h33 + (X^2*Y + X^2)*h22^2 + X*h22*h33^14

+ X*Y*h22*h33^13 + (Y + X^2)*h22*h33^12 + (Y + 1)*h22*h33^11 + h22*h33^9

+ X*Y*h22*h33^8 + (X*Y + 1)*h22*h33^7 + (Y + 1)*h22*h33^6 + (X*Y +

X^2)*h22*h33^5 + X^2*h22*h33^4 + X^2*Y*h22*h33^3 + (X^2*Y + X)*h22*h33^2

+ (X^2*Y + 1)*h22 + h33^15 + Y*h33^14 + (X*Y + X)*h33^12 + (Y +

X)*h33^11 + h33^10 + (X*Y + 1)*h33^8 + (X*Y + 1)*h33^3 + (X*Y + X)*h33^2

+ 1, 1>

]

*/

4. Finding uniformizer u for x1(1) and expressing variables
h22, h33 in u, variables h1, h2 in u and h3.

/* 4_u_x1_1.txt *

/*

finding uniformizer u for the first component x1(1) of X(1)

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;
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Q1<h22,h33>:=PolynomialRing(C,2);

p1:=h22^15 + X*h22^14*h33 + (X^2*Y + 1)*h22^14 + X*h22^13*h33^2 + (Y +

X)*h22^13*h33 + (X^2*Y + X^2)*h22^13 + X^2*h22^12*h33^3 + (X^2*Y +

1)*h22^12*h33^2 + (X*Y + 1)*h22^12 + X^2*h22^11*h33^4 + (X^2*Y +

X^2)*h22^11*h33^2 + X^2*Y*h22^11 + h22^10*h33^5 + (Y + X)*h22^10*h33^4 +

(X*Y + X)*h22^10*h33^3 + (X*Y + 1)*h22^10*h33^2 + X*h22^10 + h22^9*h33^6

+ (X*Y + X^2)*h22^9*h33^5 + (X*Y + X)*h22^9*h33^4 + X^2*Y*h22^9*h33^2 +

X*h22^9*h33 + (Y + X)*h22^9 + X*h22^8*h33^7 + (X*Y + X^2)*h22^8*h33^6 +

(X*Y + X)*h22^8*h33^5 + (Y + X^2)*h22^8*h33^4 + X^2*Y*h22^8*h33^3 +

h22^8*h33^2 + (X*Y + X^2)*h22^8*h33 + (Y + 1)*h22^8 + X^2*h22^7*h33^8 +

(X*Y + X^2)*h22^7*h33^7 + (Y + 1)*h22^7*h33^6 + Y*h22^7*h33^4 +

h22^7*h33^3 + (Y + 1)*h22^7*h33 + (X^2*Y + X)*h22^7 + h22^6*h33^9 +

(X^2*Y + 1)*h22^6*h33^8 + (X^2*Y + X^2)*h22^6*h33^7 + (X^2*Y +

X)*h22^6*h33^6 + X*Y*h22^6*h33^5 + X^2*h22^6*h33^4 + (X*Y +

X^2)*h22^6*h33^3 + (X^2*Y + X^2)*h22^6*h33^2 + Y*h22^6 + h22^5*h33^10 +

(X*Y + X^2)*h22^5*h33^9 + (X*Y + 1)*h22^5*h33^7 + h22^5*h33^5 + (X^2*Y +

1)*h22^5*h33^4 + (Y + 1)*h22^5*h33^3 + (Y + X^2)*h22^5*h33^2 +

X^2*Y*h22^5*h33 + X^2*h22^5 + X*h22^4*h33^11 + (X*Y + X^2)*h22^4*h33^10

+ (Y + 1)*h22^4*h33^9 + (X*Y + X^2)*h22^4*h33^5 + (X*Y + X)*h22^4*h33^4

+ (X^2*Y + X)*h22^4*h33^3 + X^2*Y*h22^4*h33^2 + (X*Y + X^2)*h22^4 +

X*h22^3*h33^12 + (Y + X)*h22^3*h33^11 + (X^2*Y + X)*h22^3*h33^9 +

h22^3*h33^7 + Y*h22^3*h33^3 + X*h22^3*h33^2 + (X*Y + X^2)*h22^3*h33 +

(X*Y + X)*h22^3 + X^2*h22^2*h33^13 + (X^2*Y + 1)*h22^2*h33^12 + (Y +

1)*h22^2*h33^11 + Y*h22^2*h33^9 + X^2*h22^2*h33^8 + (X*Y +

X^2)*h22^2*h33^7 + (X*Y + X)*h22^2*h33^6 + X^2*Y*h22^2*h33^4 + (Y +

X)*h22^2*h33^2 + (X*Y + X)*h22^2*h33 + (Y + X^2)*h22^2 + X^2*h22*h33^14

+ (X^2*Y + 1)*h22*h33^13 + (X^2*Y + X^2)*h22*h33^12 + (X^2*Y +

X)*h22*h33^11 + h22*h33^9 + (X^2*Y + 1)*h22*h33^8 + (X*Y + X)*h22*h33^7

+ (X^2*Y + X)*h22*h33^6 + X^2*Y*h22*h33^5 + X*h22*h33^4 + (X*Y +

X^2)*h22*h33^3 + (Y + 1)*h22*h33^2 + X*Y*h22 + h33^15 + (Y + X)*h33^14 +

(X*Y + 1)*h33^12 + Y*h33^11 + h33^10 + (X*Y + X)*h33^8 + (X*Y + X)*h33^3

+ (X*Y + 1)*h33^2 + 1;

F<h22,h33>:=FunctionField(p1);

/*

Genus(F) = 0, moreover, F is rational

Let’s pick one rational place to compute a uniformizer using RiemannRochSpace

*/

P:=InfinitePlaces(F);

/*

[ (1/h33, (X^2*Y*h22^14 + X*Y*h22^12*h33^2 + h22^12*h33 + X*h22^11*h33^2 +

X*Y*h22^10*h33^4 + X*h22^10*h33^3 + h22^10*h33^2 + h22^9*h33^4 +

Y*h22^8*h33^6 + X^2*h22^8*h33^4 + X*h22^7*h33^6 + X*Y*h22^6*h33^8 +

h22^6*h33^7 + X*h22^5*h33^8 + Y*h22^4*h33^10 + X^2*h22^4*h33^9 +

X^2*h22^3*h33^10 + Y*h22^2*h33^12 + X*h22^2*h33^11 + X^2*h22^2*h33^10 +

h22*h33^12 + X^2*Y*h33^14 + X^2*h33^12)/h33^12), (1/h33, ((Y + X^2)*h22^14 +

(X*Y + 1)*h22^13*h33 + Y*h22^12*h33 + X^2*Y*h22^11*h33^2 + (X^2*Y +

X)*h22^10*h33^4 + X^2*Y*h22^10*h33^3 + h22^10*h33^2 + (Y + X^2)*h22^9*h33^5

+ X^2*Y*h22^9*h33^4 + Y*h22^8*h33^5 + X^2*h22^8*h33^4 + X^2*Y*h22^7*h33^6 +

(X^2*Y + X)*h22^6*h33^8 + (Y + X^2)*h22^5*h33^9 + X*Y*h22^5*h33^8 +

Y*h22^3*h33^10 + (X*Y + 1)*h22^2*h33^12 + X^2*h22^2*h33^10 + (X^2*Y +

X)*h22*h33^13 + X^2*Y*h22*h33^12 + Y*h33^13 + X^2*h33^12)/h33^12) ]

Degree(P[1]) = 1

*/
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V,h:=RiemannRochSpace(P[1]);

u:=h(Basis(V)[2]);

Write("u_inf.txt",u);

/*

express h33 in u

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<h33>:=RationalFunctionField(C);

P<h22>:=PolynomialRing(K);

p1:=h22^15 + X*h22^14*h33 + (X^2*Y + 1)*h22^14 + X*h22^13*h33^2 + (Y +

X)*h22^13*h33 + (X^2*Y + X^2)*h22^13 + X^2*h22^12*h33^3 + (X^2*Y +

1)*h22^12*h33^2 + (X*Y + 1)*h22^12 + X^2*h22^11*h33^4 + (X^2*Y +

X^2)*h22^11*h33^2 + X^2*Y*h22^11 + h22^10*h33^5 + (Y + X)*h22^10*h33^4 +

(X*Y + X)*h22^10*h33^3 + (X*Y + 1)*h22^10*h33^2 + X*h22^10 + h22^9*h33^6

+ (X*Y + X^2)*h22^9*h33^5 + (X*Y + X)*h22^9*h33^4 + X^2*Y*h22^9*h33^2 +

X*h22^9*h33 + (Y + X)*h22^9 + X*h22^8*h33^7 + (X*Y + X^2)*h22^8*h33^6 +

(X*Y + X)*h22^8*h33^5 + (Y + X^2)*h22^8*h33^4 + X^2*Y*h22^8*h33^3 +

h22^8*h33^2 + (X*Y + X^2)*h22^8*h33 + (Y + 1)*h22^8 + X^2*h22^7*h33^8 +

(X*Y + X^2)*h22^7*h33^7 + (Y + 1)*h22^7*h33^6 + Y*h22^7*h33^4 +

h22^7*h33^3 + (Y + 1)*h22^7*h33 + (X^2*Y + X)*h22^7 + h22^6*h33^9 +

(X^2*Y + 1)*h22^6*h33^8 + (X^2*Y + X^2)*h22^6*h33^7 + (X^2*Y +

X)*h22^6*h33^6 + X*Y*h22^6*h33^5 + X^2*h22^6*h33^4 + (X*Y +

X^2)*h22^6*h33^3 + (X^2*Y + X^2)*h22^6*h33^2 + Y*h22^6 + h22^5*h33^10 +

(X*Y + X^2)*h22^5*h33^9 + (X*Y + 1)*h22^5*h33^7 + h22^5*h33^5 + (X^2*Y +

1)*h22^5*h33^4 + (Y + 1)*h22^5*h33^3 + (Y + X^2)*h22^5*h33^2 +

X^2*Y*h22^5*h33 + X^2*h22^5 + X*h22^4*h33^11 + (X*Y + X^2)*h22^4*h33^10

+ (Y + 1)*h22^4*h33^9 + (X*Y + X^2)*h22^4*h33^5 + (X*Y + X)*h22^4*h33^4

+ (X^2*Y + X)*h22^4*h33^3 + X^2*Y*h22^4*h33^2 + (X*Y + X^2)*h22^4 +

X*h22^3*h33^12 + (Y + X)*h22^3*h33^11 + (X^2*Y + X)*h22^3*h33^9 +

h22^3*h33^7 + Y*h22^3*h33^3 + X*h22^3*h33^2 + (X*Y + X^2)*h22^3*h33 +

(X*Y + X)*h22^3 + X^2*h22^2*h33^13 + (X^2*Y + 1)*h22^2*h33^12 + (Y +

1)*h22^2*h33^11 + Y*h22^2*h33^9 + X^2*h22^2*h33^8 + (X*Y +

X^2)*h22^2*h33^7 + (X*Y + X)*h22^2*h33^6 + X^2*Y*h22^2*h33^4 + (Y +

X)*h22^2*h33^2 + (X*Y + X)*h22^2*h33 + (Y + X^2)*h22^2 + X^2*h22*h33^14

+ (X^2*Y + 1)*h22*h33^13 + (X^2*Y + X^2)*h22*h33^12 + (X^2*Y +

X)*h22*h33^11 + h22*h33^9 + (X^2*Y + 1)*h22*h33^8 + (X*Y + X)*h22*h33^7

+ (X^2*Y + X)*h22*h33^6 + X^2*Y*h22*h33^5 + X*h22*h33^4 + (X*Y +

X^2)*h22*h33^3 + (Y + 1)*h22*h33^2 + X*Y*h22 + h33^15 + (Y + X)*h33^14 +

(X*Y + 1)*h33^12 + Y*h33^11 + h33^10 + (X*Y + X)*h33^8 + (X*Y + X)*h33^3

+ (X*Y + 1)*h33^2 + 1;

F<h22>:=FunctionField(p1);

load "u_inf.txt";

mh:=MinimalPolynomial(u,K);
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mh;

/*

h22^15 + Y*h22^14 + (X*Y + 1)*h22^13 + (X*Y + X)*h22^12 + (Y + X)*h22^11 +

h22^10 + ((X^2*Y + X)*h33 + Y)*h22^9 + ((Y + 1)*h33 + (X*Y + 1))*h22^8 +

(X*Y + X)*h22^7 + (Y + X)*h22^6 + h22^5 + Y*h22^4 + (X*Y + 1)*h22^3 + (X*Y +

X)*h22^2 + (h33 + (Y + X))*h22 + X*Y*h33 + 1

It is a polynomial in C(h33)[h22]. Rename the variable h22 by u and solve

this polynomial for variable h33

mh:=u^15 + Y*u^14 + (X*Y + 1)*u^13 + (X*Y + X)*u^12 + (Y + X)*u^11 +

u^10 + ((X^2*Y + X)*h33 + Y)*u^9 + ((Y + 1)*h33 + (X*Y + 1))*u^8 +

(X*Y + X)*u^7 + (Y + X)*u^6 + u^5 + Y*u^4 + (X*Y + 1)*u^3 + (X*Y +

X)*u^2 + (h33 + (Y + X))*u + X*Y*h33 + 1;

solve(mh,h33) mod 2; //in Maple

h33:=(X*Y*u^13 + Y*u^14 + u^15 + X*Y*u^12 + X*u^12 + u^13 + X*u^11 + Y*u^11

+ X*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^7 + u^8 + X*u^6 + Y*u^6 + X*Y*u^3

+ Y*u^4 + u^5 + X*Y*u^2 + X*u^2 + u^3 + X*u + Y*u + 1)/(X^2*Y*u^9 + X*u^9

+ Y*u^8 + u^8 + X*Y + u);

*/

/*

express h22 in u

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<h22>:=RationalFunctionField(C);

P<h33>:=PolynomialRing(K);

p1:=h22^15 + X*h22^14*h33 + (X^2*Y + 1)*h22^14 + X*h22^13*h33^2 + (Y +

X)*h22^13*h33 + (X^2*Y + X^2)*h22^13 + X^2*h22^12*h33^3 + (X^2*Y +

1)*h22^12*h33^2 + (X*Y + 1)*h22^12 + X^2*h22^11*h33^4 + (X^2*Y +

X^2)*h22^11*h33^2 + X^2*Y*h22^11 + h22^10*h33^5 + (Y + X)*h22^10*h33^4 +

(X*Y + X)*h22^10*h33^3 + (X*Y + 1)*h22^10*h33^2 + X*h22^10 + h22^9*h33^6

+ (X*Y + X^2)*h22^9*h33^5 + (X*Y + X)*h22^9*h33^4 + X^2*Y*h22^9*h33^2 +

X*h22^9*h33 + (Y + X)*h22^9 + X*h22^8*h33^7 + (X*Y + X^2)*h22^8*h33^6 +

(X*Y + X)*h22^8*h33^5 + (Y + X^2)*h22^8*h33^4 + X^2*Y*h22^8*h33^3 +

h22^8*h33^2 + (X*Y + X^2)*h22^8*h33 + (Y + 1)*h22^8 + X^2*h22^7*h33^8 +

(X*Y + X^2)*h22^7*h33^7 + (Y + 1)*h22^7*h33^6 + Y*h22^7*h33^4 +

h22^7*h33^3 + (Y + 1)*h22^7*h33 + (X^2*Y + X)*h22^7 + h22^6*h33^9 +

(X^2*Y + 1)*h22^6*h33^8 + (X^2*Y + X^2)*h22^6*h33^7 + (X^2*Y +

X)*h22^6*h33^6 + X*Y*h22^6*h33^5 + X^2*h22^6*h33^4 + (X*Y +

X^2)*h22^6*h33^3 + (X^2*Y + X^2)*h22^6*h33^2 + Y*h22^6 + h22^5*h33^10 +

(X*Y + X^2)*h22^5*h33^9 + (X*Y + 1)*h22^5*h33^7 + h22^5*h33^5 + (X^2*Y +

1)*h22^5*h33^4 + (Y + 1)*h22^5*h33^3 + (Y + X^2)*h22^5*h33^2 +

X^2*Y*h22^5*h33 + X^2*h22^5 + X*h22^4*h33^11 + (X*Y + X^2)*h22^4*h33^10

+ (Y + 1)*h22^4*h33^9 + (X*Y + X^2)*h22^4*h33^5 + (X*Y + X)*h22^4*h33^4

+ (X^2*Y + X)*h22^4*h33^3 + X^2*Y*h22^4*h33^2 + (X*Y + X^2)*h22^4 +

X*h22^3*h33^12 + (Y + X)*h22^3*h33^11 + (X^2*Y + X)*h22^3*h33^9 +
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h22^3*h33^7 + Y*h22^3*h33^3 + X*h22^3*h33^2 + (X*Y + X^2)*h22^3*h33 +

(X*Y + X)*h22^3 + X^2*h22^2*h33^13 + (X^2*Y + 1)*h22^2*h33^12 + (Y +

1)*h22^2*h33^11 + Y*h22^2*h33^9 + X^2*h22^2*h33^8 + (X*Y +

X^2)*h22^2*h33^7 + (X*Y + X)*h22^2*h33^6 + X^2*Y*h22^2*h33^4 + (Y +

X)*h22^2*h33^2 + (X*Y + X)*h22^2*h33 + (Y + X^2)*h22^2 + X^2*h22*h33^14

+ (X^2*Y + 1)*h22*h33^13 + (X^2*Y + X^2)*h22*h33^12 + (X^2*Y +

X)*h22*h33^11 + h22*h33^9 + (X^2*Y + 1)*h22*h33^8 + (X*Y + X)*h22*h33^7

+ (X^2*Y + X)*h22*h33^6 + X^2*Y*h22*h33^5 + X*h22*h33^4 + (X*Y +

X^2)*h22*h33^3 + (Y + 1)*h22*h33^2 + X*Y*h22 + h33^15 + (Y + X)*h33^14 +

(X*Y + 1)*h33^12 + Y*h33^11 + h33^10 + (X*Y + X)*h33^8 + (X*Y + X)*h33^3

+ (X*Y + 1)*h33^2 + 1;

F<h33>:=FunctionField(p1);

load "u_inf.txt";

mh2:=MinimalPolynomial(u,K);

mh2;

/*

h33^15 + Y*h33^14 + (X*Y + 1)*h33^13 + (X^2*Y + X^2)*h33^12 + (Y + X)*h33^11 +

h33^10 + ((Y + X^2)*h22 + Y)*h33^9 + ((X*Y + X)*h22 + (X^2*Y + X))*h33^8 +

(X*Y + X)*h33^7 + (Y + X)*h33^6 + h33^5 + X*Y*h33^4 + (X^2*Y + X)*h33^3 +

(X^2*Y + X^2)*h33^2 + (X*h22 + (X*Y + X^2))*h33 + X^2*Y*h22 + X^2

It is a polynomial in C(h22)[h33]. Rename the variable h33 by u and solve

this polynomial for variable h22

mh2:=u^15 + Y*u^14 + (X*Y + 1)*u^13 + (X^2*Y + X^2)*u^12 + (Y + X)*u^11 +

u^10 + ((Y + X^2)*h22 + Y)*u^9 + ((X*Y + X)*h22 + (X^2*Y + X))*u^8 +

(X*Y + X)*u^7 + (Y + X)*u^6 + u^5 + X*Y*u^4 + (X^2*Y + X)*u^3 +

(X^2*Y + X^2)*u^2 + (X*h22 + (X*Y + X^2))*u + X^2*Y*h22 + X^2;

solve(mh2,h22) mod 2; //in Maple

we get

h22 := (X^2*Y*u^12 + X*Y*u^13 + Y*u^14 + u^15 + X^2*u^12 + u^13 + X*u^11 + Y*u^11

+ X^2*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^8 + X*u^7 + X*u^6 + Y*u^6

+ X^2*Y*u^3 + X*Y*u^4 + X^2*Y*u^2 + u^5 + X^2*u^2 + X*u^3 + X^2*u + X*Y*u

+ X^2)/(X^2*u^9 + X*Y*u^8 + Y*u^9 + X*u^8 + X^2*Y + X*u)

*/

/*

express other variables in u

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<u>:=RationalFunctionField(C);
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/*

F(h22,h33)=F(u)

*/

h33:=(X*Y*u^13 + Y*u^14 + u^15 + X*Y*u^12 + X*u^12 + u^13 + X*u^11 + Y*u^11

+ X*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^7 + u^8 + X*u^6 + Y*u^6 + X*Y*u^3

+ Y*u^4 + u^5 + X*Y*u^2 + X*u^2 + u^3 + X*u + Y*u + 1)/(X^2*Y*u^9 + X*u^9

+ Y*u^8 + u^8 + X*Y + u);

h22 := (X^2*Y*u^12 + X*Y*u^13 + Y*u^14 + u^15 + X^2*u^12 + u^13 + X*u^11 + Y*u^11

+ X^2*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^8 + X*u^7 + X*u^6 + Y*u^6

+ X^2*Y*u^3 + X*Y*u^4 + X^2*Y*u^2 + u^5 + X^2*u^2 + X*u^3 + X^2*u + X*Y*u

+ X^2)/(X^2*u^9 + X*Y*u^8 + Y*u^9 + X*u^8 + X^2*Y + X*u);

P3<h3>:=PolynomialRing(K);

F3<h3>:=ext<K|h3^((q^2+1)*(q+1))-h33>;

/*

Degree(F3); =15

this shows that h2 should be in F(u,h3).

*/

P2<h2>:=PolynomialRing(F3);

poly1:=Factorization(h2^(q^2+1)-h22);

/*

[

<h2 + ((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 +

(X*Y + 1)*u + (X*Y + X))*h3^3, 1>,

<h2 + (X*u^3 + X*Y*u^2 + (X^2*Y + X)*u + (Y + 1))/(u^3 + Y*u^2 + (X*Y + 1)*u

+ (X*Y + X))*h3^3, 1>,

<h2 + ((X^2*Y + X)*u^3 + (X^2*Y + X^2)*u^2 + (X*Y + X^2)*u + X^2)/(u^3 +

Y*u^2 + (X*Y + 1)*u + (X*Y + X))*h3^3, 1>,

<h2 + ((X*Y + X^2)*u^3 + X*u^2 + X*Y*u + (Y + X^2))/(u^3 + Y*u^2 + (X*Y +

1)*u + (X*Y + X))*h3^3, 1>,

<h2 + (X*Y*u^3 + (X^2*Y + X)*u^2 + (X^2*Y + X^2)*u + (X^2*Y + 1))/(u^3 +

Y*u^2 + (X*Y + 1)*u + (X*Y + X))*h3^3, 1>

]

this shows that h2 is infact in F(u,h3).

*/

/*

using p(h2,h3) to check which factor is the right one

*/

h2:=((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 +

(X*Y + 1)*u + (X*Y + X))*h3^3;

h2^30 + (X*Y + X)*h2^29*h3^3 + (Y + X)*h2^27*h3^9 + (X*Y + 1)*h2^26*h3^12 +

(Y + 1)*h2^25 + (X*Y + X)*h2^24*h3^18 + (X^2*Y + X^2)*h2^24*h3^3 +

Y*h2^23*h3^21 + (X^2*Y + 1)*h2^23*h3^6 + X^2*Y*h2^22*h3^9 + (X*Y +

1)*h2^21*h3^27 + (X^2*Y + X)*h2^21*h3^12 + h2^20*h3^30 + (Y +

1)*h2^20*h3^15 + (X*Y + 1)*h2^20 + (X^2*Y + X^2)*h2^19*h3^18 +

Y*h2^18*h3^36 + (X*Y + X)*h2^18*h3^6 + (Y + X)*h2^17*h3^39 + (Y +

X^2)*h2^17*h3^24 + X*h2^17*h3^9 + (X^2*Y + 1)*h2^16*h3^27 +

X*Y*h2^16*h3^12 + h2^15*h3^45 + (Y + 1)*h2^15*h3^30 + X*Y*h2^15*h3^15 +

(Y + X)*h2^15 + (X^2*Y + X^2)*h2^14*h3^33 + (Y + 1)*h2^14*h3^18 +

h2^14*h3^3 + Y*h2^13*h3^51 + X*Y*h2^13*h3^36 + X*h2^13*h3^21 + (X*Y +

X)*h2^13*h3^6 + (Y + X)*h2^12*h3^54 + X^2*Y*h2^12*h3^39 + (X^2*Y +

X)*h2^12*h3^9 + (X^2*Y + X)*h2^11*h3^42 + (Y + X^2)*h2^11*h3^27 +
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X*h2^11*h3^12 + h2^10*h3^60 + (Y + X^2)*h2^10*h3^45 + X*h2^10*h3^30 + (Y

+ X)*h2^10*h3^15 + (X*Y + 1)*h2^10 + (X*Y + X)*h2^9*h3^63 +

X^2*Y*h2^9*h3^48 + (X*Y + X)*h2^9*h3^33 + (X*Y + 1)*h2^9*h3^18 + (X*Y +

X)*h2^9*h3^3 + X*Y*h2^8*h3^51 + (X^2*Y + X)*h2^8*h3^36 + (X*Y +

X)*h2^8*h3^21 + (Y + X)*h2^8*h3^6 + (Y + X)*h2^7*h3^69 + (Y +

X^2)*h2^7*h3^54 + (X^2*Y + 1)*h2^7*h3^39 + (X*Y + 1)*h2^7*h3^24 +

X*h2^7*h3^9 + (X*Y + 1)*h2^6*h3^72 + X*Y*h2^6*h3^42 + (X*Y +

1)*h2^6*h3^27 + (Y + X^2)*h2^6*h3^12 + X*h2^5*h3^60 + (X*Y +

1)*h2^5*h3^45 + h2^5*h3^30 + (X*Y + X^2)*h2^5*h3^15 + (Y + 1)*h2^5 +

(X*Y + X)*h2^4*h3^78 + Y*h2^4*h3^48 + (X^2*Y + X)*h2^4*h3^33 + (X*Y +

X)*h2^4*h3^18 + X^2*h2^4*h3^3 + Y*h2^3*h3^81 + X*Y*h2^3*h3^66 +

X*h2^3*h3^51 + (X^2*Y + X^2)*h2^3*h3^36 + X*Y*h2^3*h3^21 + (X*Y +

X^2)*h2^2*h3^69 + (Y + X)*h2^2*h3^54 + (Y + 1)*h2^2*h3^39 + (Y +

X)*h2^2*h3^24 + (Y + X^2)*h2^2*h3^9 + (X*Y + 1)*h2*h3^87 + h2*h3^57 +

X^2*Y*h2*h3^42 + (X^2*Y + X^2)*h2*h3^27 + (X^2*Y + 1)*h2*h3^12 + h3^90 +

X*h3^75 + h3^60 + X^2*h3^45 + X^2*h3^30 + 1;

/*

=0. OK. The other factors do not give zero.

*/

F2<h2>:=ext<F3|h2 + ((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3

+ Y*u^2 + (X*Y + 1)*u + (X*Y + X))*h3^3>;

P1<h1>:=PolynomialRing(F2);

/*

to find the expression of h1 in h2,h3 we can pick any relations between h1,h2,h3

from relations L1 or L2 in 1_normalize.mag when defining Drinfeld modules

*/

Factorization((Y + X^2)*h1^4*h2 + (Y + 1)*h1^4*h3^3 + (X*Y + 1)*h1^2*h3^17 + (Y +

1)*h1*h2^8 + X^2*Y*h1*h3^24 + (X*Y + X^2)*h2^10*h3 + (X^2*Y +

1)*h2^9*h3^4 + X^2*Y*h2^8*h3^7 + Y*h2^5*h3^16 + X*Y*h2^4*h3^19 + (X*Y +

X)*h2^2*h3^25 + X^2*h2*h3^28 + (X^2*Y + 1)*h3^31 + (X^2*Y + X^2)*h3^16 +

X^2*h3);

/*

[

<h1 + (X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y +

X)*u^4 + (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7, 1>,

<h1^3 + (X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y

+ X)*u^4 + (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7*h1^2 + (Y*u^17 +

(X*Y + 1)*u^16 + (Y + X^2)*u^11 + (Y + 1)*u^10 + (X^2*Y + 1)*u^9 +

X*Y*u^8 + (Y + X)*u^5 + u^4 + (X*Y + X)*u^3 + (X*Y + X)*u^2 + X*u +

(X^2*Y + X))/(u^17 + Y*u^16 + (Y + X^2)*u^14 + (X^2*Y + 1)*u^12 +

X^2*Y*u^10 + (Y + 1)*u^8 + X^2*u^6 + (Y + X^2)*u^4 + (X^2*Y + 1)*u^2 +

Y*u + (Y + 1))*h3^14*h1 + ((X*Y + 1)*u^23 + (X*Y + X)*u^22 + (Y +

X)*u^21 + Y*u^19 + (X*Y + 1)*u^18 + (Y + X)*u^17 + Y*u^16 + X^2*Y*u^14 +

(Y + 1)*u^12 + u^11 + (X^2*Y + X^2)*u^10 + (X*Y + 1)*u^9 + (X^2*Y +

X)*u^8 + (X*Y + 1)*u^6 + (X^2*Y + X)*u^5 + X*Y*u^4 + X*Y*u^3 + (Y +

1)*u^2 + X*u + X^2*Y)/(u^17 + X*Y*u^16 + (Y + X^2)*u^14 + (X^2*Y +

X^2)*u^13 + (Y + X)*u^12 + X^2*Y*u^10 + u^9 + (Y + X^2)*u^8 + X*u^6 +

Y*u^5 + (Y + X^2)*u^4 + (X*Y + X^2)*u^2 + (X^2*Y + 1)*u + (Y + 1))*h3^6,

1>

]

*/
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h1 := (X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y +

X)*u^4 + (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7;

g3 := X*Y*h3;

g2 := (X*Y + X)*h3^3;

g1 := (Y + 1)*h1 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^7;

g0 := (X^2*Y + 1)*h1^2*h3 + (X*Y + X)*h1*h3^8 + (X^2*Y + X)*h2^5 + (X^2*Y +

X)*h2^4*h3^3 + (X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + Y*h3^15 + Y + X^2;

/*

g0 = X^2

*/

/*

check relations L1, L2

*/

g3 + X*Y*h3,

g2 + (X*Y + X)*h3^3,

g1 + (Y + 1)*h1 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^7,

g0 + (X^2*Y + 1)*h1^2*h3 + (X*Y + X)*h1*h3^8 + (X^2*Y + X)*h2^5 + (X^2*Y +

X)*h2^4*h3^3 + (X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + Y*h3^15 + Y + X^2,

h1^4*h2 + Y*h1^4*h3^3 + X*h1^2*h3^17 + Y*h1*h2^8 + (Y + X)*h1*h3^24 + (Y +

X^2)*h2^10*h3 + (X*Y + 1)*h2^9*h3^4 + (Y + X)*h2^8*h3^7 + (X*Y +

X^2)*h2^5*h3^16 + (X^2*Y + 1)*h2^4*h3^19 + X*Y*h2^2*h3^25 + (X*Y +

X)*h2*h3^28 + (X*Y + 1)*h3^31 + X^2*Y*h3^16 + (X*Y + X)*h3,

(X^2*Y + 1)*h1^9 + (X*Y + 1)*h1^8*h2^2*h3 + h1^8*h2*h3^4 + (Y +

X^2)*h1^8*h3^7 + h1^4*h3^35 + (X^2*Y + 1)*h1^2*h2^16*h3 + (Y +

X^2)*h1^2*h3^49 + (X*Y + 1)*h1*h2^16*h3^8 + (X^2*Y + 1)*h1*h2^8*h3^32 +

h1*h3^56 + (X^2*Y + X)*h2^21 + (Y + X)*h2^20*h3^3 + (X^2*Y +

1)*h2^18*h3^9 + Y*h2^17*h3^12 + (Y + 1)*h2^16*h3^15 + (Y + X)*h2^16 +

h2^10*h3^33 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (X^2*Y +

1)*h2^4*h3^51 + (Y + X^2)*h2^2*h3^57 + (Y + X)*h2*h3^60 + h2 + (X^2*Y +

X)*h3^63 + X^2*h3^48 + (Y + X)*h3^3,

X^2*h1^18*h3 + (Y + X^2)*h1^17*h3^8 + (X^2*Y + X^2)*h1^16*h2^5 + (X^2*Y +

X^2)*h1^16*h2^4*h3^3 + X*h1^16*h2^2*h3^9 + X^2*h1^16*h2*h3^12 + (Y +

X^2)*h1^16*h3^15 + Y*h1^16 + (Y + X^2)*h1^9*h3^64 + (X*Y +

X)*h1^8*h2^2*h3^65 + Y*h1^8*h2*h3^68 + (Y + X)*h1^8*h3^71 + (Y +

1)*h1^2*h2^32*h3^17 + X^2*Y*h1^2*h2^16*h3^65 + (X^2*Y + 1)*h1^2*h3^113 +

(X*Y + X^2)*h1*h2^40 + X*h1*h2^32*h3^24 + X^2*Y*h1*h2^16*h3^72 + (X^2*Y

+ X^2)*h1*h2^8*h3^96 + (Y + X)*h1*h3^120 + X*h1 + X^2*h2^42*h3 + (Y +

1)*h2^41*h3^4 + X^2*Y*h2^40*h3^7 + X*Y*h2^37*h3^16 + X*Y*h2^36*h3^19 +

(Y + X^2)*h2^34*h3^25 + (X^2*Y + X)*h2^33*h3^28 + (X^2*Y +

1)*h2^32*h3^31 + X^2*Y*h2^32*h3^16 + (X*Y + X^2)*h2^21*h3^64 + (X*Y +

X^2)*h2^20*h3^67 + (Y + X^2)*h2^18*h3^73 + Y*h2^17*h3^76 + (X^2*Y +

X)*h2^16*h3^79 + (X^2*Y + 1)*h2^16*h3^64 + (X^2*Y + 1)*h2^10*h3^97 + (Y

+ X^2)*h2^9*h3^100 + X^2*h2^8*h3^103 + (X^2*Y + X)*h2^5*h3^112 + (X^2*Y

+ X)*h2^4*h3^115 + Y*h2^2*h3 + X^2*h2*h3^124 + (Y + X)*h2*h3^4 + (X^2*Y

+ X)*h3^127 + (Y + X^2)*h3^112 + (X*Y + 1)*h3^7,

(Y + X^2)*h1^4*h2 + (Y + 1)*h1^4*h3^3 + (X*Y + 1)*h1^2*h3^17 + (Y +

1)*h1*h2^8 + X^2*Y*h1*h3^24 + (X*Y + X^2)*h2^10*h3 + (X^2*Y +

1)*h2^9*h3^4 + X^2*Y*h2^8*h3^7 + Y*h2^5*h3^16 + X*Y*h2^4*h3^19 + (X*Y +

X)*h2^2*h3^25 + X^2*h2*h3^28 + (X^2*Y + 1)*h3^31 + (X^2*Y + X^2)*h3^16 +

X^2*h3,

(X^2*Y + X)*h1^9 + (Y + X)*h1^8*h2^2*h3 + (Y + 1)*h1^8*h2*h3^4 + h1^8*h3^7 +

(X*Y + 1)*h1^4*h2*h3^32 + (X^2*Y + 1)*h1^2*h2^16*h3 + X^2*h1*h2^16*h3^8

+ Y*h1*h2^8*h3^32 + h1*h3^56 + h2^21 + (X^2*Y + X)*h2^20*h3^3 + (X*Y +

1)*h2^18*h3^9 + (X^2*Y + 1)*h2^17*h3^12 + Y*h2^16*h3^15 + (Y +
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X^2)*h2^16 + (X*Y + X)*h2^9*h3^36 + X*h2^5*h3^48 + (Y + X)*h2*h3^60 + (Y

+ 1)*h2 + (X*Y + X)*h3^48 + (X*Y + X)*h3^3,

(X^2*Y + 1)*h1^18*h3 + Y*h1^17*h3^8 + (X^2*Y + X)*h1^16*h2^5 + (X^2*Y +

X)*h1^16*h2^4*h3^3 + (X*Y + 1)*h1^16*h2^2*h3^9 + X*h1^16*h2*h3^12 +

Y*h1^16*h3^15 + X*h1^16 + (Y + X)*h1^9*h3^64 + X^2*Y*h1*h2^40 +

X^2*Y*h1*h2^32*h3^24 + Y*h1*h2^16*h3^72 + X^2*h1*h2^8*h3^96 + (X*Y +

X)*h1*h3^120 + (X^2*Y + 1)*h1 + (Y + X)*h2^32*h3^16 + (X*Y +

1)*h2^16*h3^64 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^112 + h3^7,

(X^2*Y + X^2)*h1^4*h3^2 + Y*h1^2*h3^16 + (X^2*Y + 1)*h1^2*h3 + (X*Y +

X)*h1*h3^8 + (X^2*Y + 1)*h2^10 + (X^2*Y + 1)*h2^8*h3^6 + (X^2*Y +

X)*h2^5 + (Y + X)*h2^4*h3^18 + (X^2*Y + X)*h2^4*h3^3 + X^2*h2^2*h3^24 +

(X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + (X*Y + 1)*h3^30 + Y*h3^15 + X^2*Y + 1;

/*

all are 0. OK

*/

The same procedure applies for finding the uniformizer v for x2(1) and
for variable substitutions by replacing component p1 by p2 and variables
in h’s by t’s.

5. Expressing elements in Figure 4.4.

/* 5_rewrite_D_modules.txt */

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<u>:=RationalFunctionField(C);

/*

F(h22,h33)=F(u)

*/

h33:=(X*Y*u^13 + Y*u^14 + u^15 + X*Y*u^12 + X*u^12 + u^13 + X*u^11 + Y*u^11

+ X*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^7 + u^8 + X*u^6 + Y*u^6 + X*Y*u^3

+ Y*u^4 + u^5 + X*Y*u^2 + X*u^2 + u^3 + X*u + Y*u + 1)/(X^2*Y*u^9 + X*u^9

+ Y*u^8 + u^8 + X*Y + u);

h22 := (X^2*Y*u^12 + X*Y*u^13 + Y*u^14 + u^15 + X^2*u^12 + u^13 + X*u^11 + Y*u^11

+ X^2*Y*u^8 + Y*u^9 + u^10 + X*Y*u^7 + X*u^8 + X*u^7 + X*u^6 + Y*u^6

+ X^2*Y*u^3 + X*Y*u^4 + X^2*Y*u^2 + u^5 + X^2*u^2 + X*u^3 + X^2*u + X*Y*u

+ X^2)/(X^2*u^9 + X*Y*u^8 + Y*u^9 + X*u^8 + X^2*Y + X*u);

P3<h3>:=PolynomialRing(K);

F3<h3>:=ext<K|h3^((q^2+1)*(q+1))-h33>;

P2<h2>:=PolynomialRing(F3);

F2<h2>:=ext<F3|h2 + ((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3
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+ Y*u^2 + (X*Y + 1)*u + (X*Y + X))*h3^3>;

h1 := (X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y +

X)*u^4 + (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7;

g3 := X*Y*h3;

g2 := (X*Y + X)*h3^3;

g1 := (Y + 1)*h1 + (Y + X)*h2^2*h3 + (X*Y + 1)*h2*h3^4 + h3^7;

g0 := (X^2*Y + 1)*h1^2*h3 + (X*Y + X)*h1*h3^8 + (X^2*Y + X)*h2^5 + (X^2*Y +

X)*h2^4*h3^3 + (X*Y + 1)*h2^2*h3^9 + X*h2*h3^12 + Y*h3^15 + Y + X^2;

// =X^2

P1<a>:=RationalFunctionField(F2);

F1<tau>:=TwistedPolynomials(P1);

h0:=1; //normalized

phiX:=F1![X,g3,g2,g1,g0];

phiY:=F1![Y,h3,h2,h1,h0];

/*

choose <X,Y>-isogeny lambda of degree one.

Then lambda divides both phiX and phiY

*/

lambda:=F1![-a,1];

quX,re:=Quotrem(GCD(phiX,phiY),lambda);

Eltseq(re);

Eltseq(lambda*phiY);

Eltseq(phiY*lambda);

/*

[

a^3 + ((X^2*Y + X^2)*u^8 + (X*Y + 1)*u^7 + (X^2*Y + X^2)*u^6 + (X^2*Y +

1)*u^5 + u^4 + X*Y*u^3 + (Y + X^2)*u^2 + (X*Y + X)*u + (X^2*Y +

X^2))/(u^13 + Y*u^12 + (Y + X)*u^9 + u^8 + (X*Y + X)*u^5 + (Y + X)*u^4 +

(X*Y + 1)*u + (X*Y + X))*h3^13*a + (X*Y*u^7 + (Y + X^2)*u^6 + (X*Y +

X)*u^5 + (X*Y + X^2)*u^4 + X^2*u^3 + Y*u^2 + (X^2*Y + X)*u + (Y +

1))/(u^12 + (Y + X)*u^8 + (X*Y + X)*u^4 + (X*Y + 1))*h3^12

]

[

Y*a,

h3*a + X*Y + 1,

((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 + (X*Y +

1)*u + (X*Y + X))*h3^3*a + h3^2,

(X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y + X)*u^4

+ (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7*a + (X^2*Y*u^6 + (Y + 1)*u^4

+ X^2*u^2 + (X^2*Y + X))/(u^6 + (X*Y + 1)*u^4 + (Y + X)*u^2 + Y)*h3^6,

a + ((Y + X^2)*u^8 + (Y + X)*u^2 + (X^2*Y + X))/(u^14 + (X*Y + 1)*u^12 + (Y

+ X)*u^10 + Y*u^8 + (X*Y + X)*u^6 + u^4 + (X*Y + 1)*u^2 + (Y +

X))*h3^14,

1

]

[

Y*a,

h3*a^2 + Y,

((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 + (X*Y +

1)*u + (X*Y + X))*h3^3*a^4 + h3,

(X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y + X)*u^4

+ (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7*a^8 + ((X^2*Y + X^2)*u^3 +

(X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 + (X*Y + 1)*u + (X*Y +

X))*h3^3,
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a^16 + (X*Y*u^4 + (X*Y + 1)*u + X^2*Y)/(u^7 + Y*u^6 + (X*Y + 1)*u^5 + (X*Y +

X)*u^4 + (Y + X)*u^3 + u^2 + Y*u + (X*Y + 1))*h3^7,

1

]

*/

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<v>:=RationalFunctionField(C);

/*

F(t22,t33)=F(v)

*/

t33:=(X*Y*v^13 + X*v^14 + Y*v^14 + v^15 + X*Y*v^12 + X*v^13 + Y*v^11 + v^12

+ X*Y*v^8 + X*v^9 + Y*v^9 + v^10 + X*Y*v^7 + X*v^8 + Y*v^6 + v^7

+ X*Y*v^3 + X*v^4 + Y*v^4 + v^5 + X*Y*v^2 + X*v^3 + Y*v + v^2 + 1)/

(X^2*Y*v^8 + Y*v^9 + X*v^8 + v^9 + X^2*Y + v + 1);

t22 := (X*Y*v^13 + X*v^14 + Y*v^14 + v^15 + X^2*v^12 + X*v^13 + Y*v^12

+ Y*v^11 + X*v^9 + Y*v^9 + v^10 + X*Y*v^7 + Y*v^8 + v^8 + X^2*Y*v^4

+ Y*v^6 + v^7 + v^5 + X^2*Y*v + X^2*v^2 + Y*v^3 + v^4 + Y*v^2 + v^3

+ X)/(X^2*Y*v^9 + X^2*v^9 + X*Y*v^8 + v^8 + X^2*v + X^2 + X*Y);

P3<t3>:=PolynomialRing(K);

F3<t3>:=ext<K|t3^((q^2+1)*(q+1))-t33>;

P2<t2>:=PolynomialRing(F3);

F2<t2>:=ext<F3|t2 + ((Y + 1)*v^3 + (Y + X^2)*v^2 + X^2*Y*v + X)/(v^3

+ (Y + X)*v^2 + (X*Y + X)*v + (X*Y + 1))*t3^3>;

t1 := ((X*Y + X)*v^4 + (X^2*Y + X)*v + (X*Y + 1))/(v^7 + (Y + X)*v^6 + (X*Y

+ X)*v^5 + (X*Y + 1)*v^4 + Y*v^3 + v^2 + (Y + X)*v + (X*Y + X))*t3^7;

l3 := X*Y*t3;

l2 := (X*Y + X)*t3^3;

l1 := (Y + 1)*t1 + (Y + X)*t2^2*t3 + (X*Y + 1)*t2*t3^4 + t3^7;

l0 := (X^2*Y + 1)*t1^2*t3 + (X*Y + X)*t1*t3^8 + (X^2*Y + X)*t2^5 + (X^2*Y +

X)*t2^4*t3^3 + (X*Y + 1)*t2^2*t3^9 + X*t2*t3^12 + Y*t3^15 + Y + X^2;

// =X

P1<a>:=RationalFunctionField(F2);

F1<tau>:=TwistedPolynomials(P1);

t0:=1; //normalized

psiX:=F1![X,l3,l2,l1,l0];

psiY:=F1![Y,t3,t2,t1,t0];

lambda:=F1![-a,1];

quX,re:=Quotrem(GCD(psiX,psiY),lambda);

Eltseq(re);

Eltseq(psiY*lambda);

Eltseq(lambda*psiY);
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/*

[

a^3 + ((X*Y + X)*v^8 + (X*Y + X^2)*v^7 + (X*Y + X)*v^6 + (Y + X^2)*v^5 +

X*Y*v^4 + v^3 + (X^2*Y + 1)*v^2 + (X^2*Y + X^2)*v + (X*Y + X^2))/(v^13 +

(Y + X)*v^12 + Y*v^9 + v^8 + (X*Y + 1)*v^5 + Y*v^4 + (X*Y + X)*v + (X*Y

+ 1))*t3^13*a + ((X*Y + X)*v^7 + (Y + X^2)*v^6 + X*Y*v^5 + v^4 + (X^2*Y

+ 1)*v^3 + (X^2*Y + X^2)*v^2 + (X*Y + 1)*v + X^2*Y)/(v^12 + Y*v^8 + (X*Y

+ 1)*v^4 + (X*Y + X))*t3^12

]

[

Y*a,

t3*a^2 + Y,

((Y + 1)*v^3 + (Y + X^2)*v^2 + X^2*Y*v + X)/(v^3 + (Y + X)*v^2 + (X*Y + X)*v

+ (X*Y + 1))*t3^3*a^4 + t3,

((X*Y + X)*v^4 + (X^2*Y + X)*v + (X*Y + 1))/(v^7 + (Y + X)*v^6 + (X*Y +

X)*v^5 + (X*Y + 1)*v^4 + Y*v^3 + v^2 + (Y + X)*v + (X*Y + X))*t3^7*a^8 +

((Y + 1)*v^3 + (Y + X^2)*v^2 + X^2*Y*v + X)/(v^3 + (Y + X)*v^2 + (X*Y +

X)*v + (X*Y + 1))*t3^3,

a^16 + ((X*Y + X)*v^4 + (X^2*Y + X)*v + (X*Y + 1))/(v^7 + (Y + X)*v^6 + (X*Y

+ X)*v^5 + (X*Y + 1)*v^4 + Y*v^3 + v^2 + (Y + X)*v + (X*Y + X))*t3^7,

1

]

[

Y*a,

t3*a + X*Y + 1,

((Y + 1)*v^3 + (Y + X^2)*v^2 + X^2*Y*v + X)/(v^3 + (Y + X)*v^2 + (X*Y + X)*v

+ (X*Y + 1))*t3^3*a + t3^2,

((X*Y + X)*v^4 + (X^2*Y + X)*v + (X*Y + 1))/(v^7 + (Y + X)*v^6 + (X*Y +

X)*v^5 + (X*Y + 1)*v^4 + Y*v^3 + v^2 + (Y + X)*v + (X*Y + X))*t3^7*a +

(X*Y*v^6 + (X*Y + X^2)*v^4 + (X^2*Y + X)*v^2 + X^2)/(v^6 + (X*Y + X)*v^4

+ Y*v^2 + (Y + X))*t3^6,

a + (Y*v^8 + (X^2*Y + 1)*v^2 + (Y + X))/(v^14 + (X*Y + X)*v^12 + Y*v^10 + (Y

+ X)*v^8 + (X*Y + 1)*v^6 + v^4 + (X*Y + X)*v^2 + Y)*t3^14,

1

]

*/

6. Solving isogenous relations to find the tower equation Φ1(u, v).

/* 6_x01_p.txt */

q:=2;

FX<X>:=GF(q,2);

P<Y>:=PolynomialRing(FX);

f:=Y^2 + X*Y + X^2 - X;

C<Y>:=ext<FX|f>;

K<u,v>:=RationalFunctionField(C,2);

F<a,h3,t3>:=PolynomialRing(K,3);

/*

lambda divides GCD(phiX,phiY) and lambda*phi = psi*lambda

*/
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L:=[

a^3 + ((X^2*Y + X^2)*u^8 + (X*Y + 1)*u^7 + (X^2*Y + X^2)*u^6 + (X^2*Y +

1)*u^5 + u^4 + X*Y*u^3 + (Y + X^2)*u^2 + (X*Y + X)*u + (X^2*Y +

X^2))/(u^13 + Y*u^12 + (Y + X)*u^9 + u^8 + (X*Y + X)*u^5 + (Y + X)*u^4 +

(X*Y + 1)*u + (X*Y + X))*h3^13*a + (X*Y*u^7 + (Y + X^2)*u^6 + (X*Y +

X)*u^5 + (X*Y + X^2)*u^4 + X^2*u^3 + Y*u^2 + (X^2*Y + X)*u + (Y +

1))/(u^12 + (Y + X)*u^8 + (X*Y + X)*u^4 + (X*Y + 1))*h3^12,

h3*a + X*Y + 1 - (t3*a^2 + Y),

((X^2*Y + X^2)*u^3 + (X*Y + X^2)*u^2 + X*u + X^2*Y)/(u^3 + Y*u^2 + (X*Y + 1)*u

+ (X*Y + X))*h3^3*a + h3^2 - (((Y + 1)*v^3 + (Y + X^2)*v^2 + X^2*Y*v

+ X)/(v^3 + (Y + X)*v^2 + (X*Y + X)*v + (X*Y + 1))*t3^3*a^4 + t3)

];

I:=ideal<F|L>;

B:=GroebnerBasis(I);

Write("Buv.txt",B);

/*

we can see that the last one of B is in t3, u, v. More precisely, in t3^15.

*/

t33:=(X*Y*v^13 + X*v^14 + Y*v^14 + v^15 + X*Y*v^12 + X*v^13 + Y*v^11 + v^12

+ X*Y*v^8 + X*v^9 + Y*v^9 + v^10 + X*Y*v^7 + X*v^8 + Y*v^6 + v^7 + X*Y*v^3

+ X*v^4 + Y*v^4 + v^5 + X*Y*v^2 + X*v^3 + Y*v + v^2 + 1)/(X^2*Y*v^8

+ Y*v^9 + X*v^8 + v^9 + X^2*Y + v + 1);

/*

let

g:=the last element of B in terms of t33, u and v;

it is a rational function in u,v

*/

Factorization(Numerator(g));

/*

[

<v + Y + X, 45>,

<u^3*v^2 + (X^2*Y + X^2)*u^3 + (Y + X^2)*u^2*v^2 + (X^2*Y + 1)*u^2*v + u^2 +

Y*u*v^3 + (X^2*Y + X)*u*v^2 + Y*u*v + (X*Y + X)*u + (X^2*Y + X)*v^3 +

Y*v^2 + (X^2*Y + 1)*v + X^2*Y + X, 1>,

<u^75*v^58 + (X*Y + X^2)*u^75*v^57 + (Y + 1)*u^75*v^56 + (X*Y + 1)*u^75*v^55

+ X^2*Y*u^75*v^54 + u^75*v^53 + (X*Y + X^2)*u^75*v^52 + (Y +

...

]

The tower equation is the second one

*/

The same procedure applies for solving isogenous relations to find the
tower equation Φ2(v, w) by replacing component t33 by h33.
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Notations

(x = α) the zero of x− α, page 11

deg n the degree of an ideal n of a ring, page 19

δ the degree of the fixed place ∞, page 19

∞ the fixed place of a function field, page 19

λ(F) the limit of the tower F , page 13

PF the set of places of the function field F , page 10

φ[n] the set of n-torsion points of Drinfeld module φ, page 20

ΦN (X,Y ) Drinfeld modular polynomial, page 27

Ram(F/Fj) the ramification locus of a tower F over one of its func-
tion field Fj , page 14

Split(F/Fj) the splitting locus of a tower F over one of its function
field Fj , page 14

A the ring of functions of a function field F regular outside
a fixed place ∞, page 19

A(q) Ihara’s constant, page 2

FP the residue class field of a place P , page 10
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L{τ} the non-commutative polynomial ring generated by the
Frobenius endomorphism, page 19

N(C) the number of rational places of C, page 2

x0(n) an absolutely irreducible component of Drinfeld modu-
lar curve X0(n), page 48

X0(n), X0(N) (projective) Drinfeld modular curve, page 22

Y0(n), Y0(N) (affine) Drinfeld modular curve, page 21
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