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Accounting for imperfect forward modeling in geophysical inverse
problems — Exemplified for crosshole tomography

Thomas Mejer Hansen1, Knud Skou Cordua1, Bo Holm Jacobsen2, and Klaus Mosegaard1

ABSTRACT

Inversion of geophysical data relies on knowledge about how
to solve the forward problem, that is, computing data from a
given set of model parameters. In many applications of inverse
problems, the solution to the forward problem is assumed to be
known perfectly, without any error. In reality, solving the for-
ward model (forward-modeling process) will almost always
be prone to errors, which we referred to as modeling errors.
For a specific forward problem, computation of crosshole tomo-
graphic first-arrival traveltimes, we evaluated how the modeling
error, given several different approximate forward models, can
be more than an order of magnitude larger than the measurement
uncertainty. We also found that the modeling error is strongly
linked to the spatial variability of the assumed velocity field, i.e.,
the a priori velocity model. We discovered some general tools by
which the modeling error can be quantified and cast into a

consistent formulation as an additive Gaussian observation er-
ror. We tested a method for generating a sample of the modeling
error due to using a simple and approximate forward model, as
opposed to a more complex and correct forward model. Then, a
probabilistic model of the modeling error was inferred in the
form of a correlated Gaussian probability distribution. The
key to the method was the ability to generate many realizations
from a statistical description of the source of the modeling error,
which in this case is the a priori model. The methodology was
tested for two synthetic ground-penetrating radar crosshole to-
mographic inverse problems. Ignoring the modeling error can
lead to severe artifacts, which erroneously appear to be well re-
solved in the solution of the inverse problem. Accounting for the
modeling error leads to a solution of the inverse problem con-
sistent with the actual model. Further, using an approximate
forward modeling may lead to a dramatic decrease in the com-
putational demands for solving inverse problems.

INTRODUCTION

Computation or prediction of geophysical data d given a set of
model parameters m which represents a model of the subsurface, is
referred to as solving the forward problem. In mathematical terms,
the forward problem is defined through a, possibly nonlinear, op-
erator g that relates model parameters m to data d such that solving
the forward problem can be given by

d ¼ gðmÞ. (1)

The associated inverse problem deals with the problem of inferring
information about the subsurface, through the model parameters m
given a set of observed data dobs and the forward model g. The

accuracy of the forward model directly influences the solution to
the inverse problem.
In many important cases, only a more or less accurate approxi-

mation to gðmÞ is available. This introduces an error in the forward
model that will lead to erroneous data calculations. We refer to this
type of error as a modeling error, which is also referred to as the
theoretical error (Tarantola and Valette, 1982a) or the modelization
error (Tarantola, 2005). The modeling error refers to any error re-
lated to solving the forward problem and can be categorized into
at least the following four categories: (1) numerical precision,
(2) choice of physical model, (3) approximate solution of the physi-
cal problem, and (4) incomplete model description.

1) Numerical precision — Computers represent numbers with a
certain precision. Therefore, any computation on a computer
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will be accurate only to a certain precision. In addition, any
solution to a partial differential equation, using e.g., finite-
difference or finite-element solutions, relies on choices of dis-
cretization that affect the accuracy of the numerical solution.

2) Choice of physical model — A complete description of the
physical problem is often not computational viable. Seismic
waves, for example, propagate in a 3D viscoelastic anisotropic
medium. Although methods exist to simulate waveform propa-
gation in such a medium (Saenger and Bohlen, 2004), it may be
computationally too expensive, or complex, to apply for some
problems. Instead, solving the isotropic elastic or acoustic wave
equation may be faster, but it will also introduce a modeling
error. As another example, which we investigate in more detail
later, different physical theories (linear and nonlinear) have
been used to compute first-arrival traveltimes, used in, for ex-
ample, crosshole tomography (see, e.g., Vidale, 1988; Cerveny
and Soares, 1992; Jensen et al., 2000; Spetzler and Snieder,
2004). In this case, a modeling error typically will be introduced
due to the choice of physical model describing the for-
ward model.

3) Approximate solution of the physical problem — A common
type of modeling error stems from the fact that geophysical data
are responses of a 3D earth. A full 3D solution of the forward
problem may be computationally too expensive to apply for
some problems. The inverse problem may be solved based
on faster 1D, 2D, or 2.5D forward models. For example, mas-
sive amounts of 3D airborne electromagnetic data have been
inverted using least-squares-type inversion based on a compu-
tationally very efficient 1D forward model (see, e.g., Viezzoli
et al., 2008). Likewise, Minsley (2011) make use of an
efficient 1D forward model in a probabilistic inversion of air-
borne electromagnetic data. Seismic data can in principle be
inverted based on accurate 3D full-waveform (FW) modeling
(see, e.g., Tarantola, 1988). However, due to computational
demands, inversion of reflection seismic data often relies on
faster 1D forward modeling codes (see, e.g., Buland and
Omre, 2003).

4) Incomplete model description — Yet another type of modeling
error is linked to the parameterization of the inverse problem
and description of the physical system in which data are re-
corded. Christiansen et al. (2011) analyze errors due to an
imperfect system description related to 1D transient electromag-
netic forward modeling and find that such errors can lead to an
error in the estimate of the subsurface layer resistivities that is
an order of magnitude of the true layer resistivities. Cordua et al.
(2008, 2009) discuss and demonstrate how borehole cavities
can lead to significant modeling errors in crosshole georadar
tomography if not accounted for.

Several studies have acknowledged and exemplified that the
choice of forward-modeling code may not only affect the forward
modeling, but also the result of the associated inverse problem. For
example, Cuffin (1981) analyzes the effects related to using an
approximate forward model related to least-squares-type inversion
of electrocardiology data. Lelièvre et al. (2011) analyze the model-
ing error related to first-arrival computation between two different
forward models and show examples of deterministic inversion
based on both forward models. Lekić and Romanowicz (2011) de-
scribe how different sources of Gaussian modeling errors related to

crustal size waveform tomography result in errors larger than typical
measurement uncertainties. Moreover, they discuss that the exist-
ence of a bias in the modeling error may cause the location of
the model with apparent maximum likelihood to be displaced from
the model with actual maximum likelihood. Although the existence
of the modeling error related to geophysical inverse problems is
acknowledged, no formal way of characterizing, and accounting
for, the modeling error in a probabilistic manner is currently known.
This study provides some general tools by which the modeling

error can be quantified and cast into a consistent formulation as an
additive Gaussian observation error. The theory and methodologies
that follow apply to any inverse problem. In the remainder of this
paper, we will though, as an example, consider the modeling
error related to cross-borehole ground-penetrating radar (GPR)
tomography.
First, we demonstrate that the use of an approximate method for

solving the forward problem, of computing the traveltime delay be-
tween a source and a receiver, can lead to modeling errors that are an
order of magnitude larger than typical measurement uncertainty. We
also demonstrate that the magnitude of the modeling error is closely
linked to the type of subsurface heterogeneity.
Then, we propose a method for sampling (that is, providing sev-

eral realizations of) the modeling error related to the difference be-
tween two different forward models. A probabilistic model of the
modeling error is inferred in the form of a correlated Gaussian prob-
ability distribution with mean dT and covariance CT , N ðdT;CTÞ.
This allows accounting for the modeling error as an additive Gaus-
sian observational error.
Finally, we show examples based on crosshole tomography that

demonstrate the effect of disregarding and accounting for the mod-
eling error, respectively.

MODELING ERRORS IN CROSS-BOREHOLE
GPR TOMOGRAPHY

Cross-borehole tomography is a method widely used in geo-
physical prospecting for characterizing small-scale variations of
near-surface environments. Often, the tomographic images are
based on first-arrival traveltimes of seismic or electromagnetic sig-
nals that are propagated between the boreholes. In this study, we
consider an example from GPR cross-borehole tomography. This
method has become popular during the past few decades and has
various applications, such as mapping of tunnels and voids (Moran
and Greenfield, 1993), mapping of bedrock fractures and fracture
zones (Olsson et al., 1992; Lane et al., 1998), estimation of hydro-
logical parameters and delineation of flow paths in the unsaturated
zone (Hubbard et al., 1997; Looms et al., 2008a, 2008b), and delin-
eation of geologic structures and lithologies (Fullagar et al., 2000;
Bellefleur and Chouteau, 2001; Tronicke et al., 2004).
Several sources of modeling error associated with crosshole

georadar tomography have been discussed. Peterson (2001) and
Cordua et al. (2008) list errors introduced in GPR cross-borehole
tomography caused by incorrect station geometry, zero time calibra-
tion, geometric spreading, transmitter radiation pattern, transmitter
amplitude, and high angle raypaths. Cordua et al. (2009) demon-
strate that some of these errors (related to, e.g., cavities in the bore-
hole walls) result in correlated data errors. They also demonstrate
how a model of Gaussian correlated data errors that accounts for
these errors can be empirically set up and used in a probabilistic
inversion approach. Another type of modeling error, which was
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not described by Peterson (2001) and Cordua et al. (2008, 2009), is
associated with the way the forward problem of computing the trav-
eltime between a source and a receiver is solved. We will consider
this type of modeling error in more detail.

Forward models for first-arrival traveltime
computation

The forward problem related to traveltime tomography consists
of computing the time between emitting a seismic or electromag-
netic waveform at a source location and the first-arrival time of the
propagating waveform recorded at a receiver. By first arrival, we
specifically mean the first-break arrival time. Many methods exist
to solve the forward problem. Here, we briefly discuss some of the
most widely used methods to solve the forward problem related to
traveltime computation. Subsequently, we will refer to a specific
choice of forward model using a subscript to g as defined in the
following.
The forward models defined below will be discussed and com-

pared by considering three different reference velocity models of
size 6 × 3 m, with a source located at S ¼ ð0.5 m; 1.5 mÞ and a
receiver located at R ¼ ð5.5 m; 1.5 mÞ (see
Figure 1, top).
Model a is a constant velocity model with a

velocity of 0.14 m∕ns (Figure 1a, top). Model
b is a realization of a Gaussian random field with
mean velocity of 0.14 m∕ns, variance of 1.44e–4
ðm∕nsÞ2, and an exponential covariance model
with a direction of maximum continuity of 10°
below horizontal, a maximum correlation length
of 20 m, and a minimum correlation length of
2 m (see Figure 1b, top). Model c is a realization
of a random function inferred from a binary-
channel-based training image, generated using
single normal equation simulation (SNESIM),
Strebelle (2002). The velocity outside the chan-
nels is 0.1273 m∕ns, and it is 0.1673 m∕ns
inside the channel. The mean velocity is
0.14 m∕ns (see Figure 1c, top).
The first-arrival sensitivity kernels corre-

sponding to each of the considered forward mod-
els for each of the three considered reference
models are computed using SIPPI (Hansen et al.,
2013b) and visualized below each velocity
model in Figure 1, where black indicates positive
sensitivity (an increase in velocity will cause a
decrease in the traveltime) and red indicates neg-
ative sensitivity. The sensitivity kernel is the first-
order Fréchet derivative of the forward model
with respect to a given velocity model.

High-frequency (ray) approximation (gSR; gBR)

The simplest forward model for comput-
ing first-arrival traveltimes relies on a high-
frequency approximation of the wave equation,
often referred to as the ray approximation. The
traveltime is found as the delay caused by the sig-
nal traveling along the fastest raypath connecting
a source and a receiver. This traveltime can be

efficiently computed using the eikonal solution to the wave equa-
tion (e.g., Vidale, 1988). We will refer to this as the bending
ray forward model gBR, which is nonlinear because the raypath de-
pends on the velocity model. A further simplification is to assume
that the raypath follows a straight line between the source and
receiver. This leads to the linear straight-ray forward model gSR,
which has probably been the most widely used forward model
in traveltime tomography (e.g., Cordua et al., 2008). The model
gSR is identical to gBR in case the velocity field is homogeneous.
The second and third rows in Figure 1 show the sensitivity kernels
related to the gSR and gBR forward models for the three reference
models.

Finite-frequency (fat-ray) approximation (gSFR; gBFR)

The ray approximation has become popular because it is simple
and computationally cheap. However, the frequency of a propagat-
ing wave is always band limited, which results in scattering effects
that are not accounted for by the ray approximation. Therefore, so-
called fat rays have been considered. For fat rays, the traveltime is
sensitive not only to the traveltime delay along the fastest raypath,

Figure 1. Top row: reference velocity models (a) homogeneous, (b) realization of a
Gaussian model, and (c) realization based on multiple point statistics inferred from
a training image. White reflects a high velocity, and black reflects a low velocity. Each
column shows the sensitivity kernels associated with the forward models gSR, gBR, gSFR,
gBFR, gBorn, and gFW. For the sensitivity kernels, black indicates positive sensitivity and
white indicates negative sensitivity.
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but to an area around the raypath (see, e.g., Marquering et al., 1999;
Dahlen et al., 2000; Jensen et al., 2000; Spetzler and Snieder, 2004;
Buursink et al., 2008). For a single-frequency source wavelet, the
sensitivity kernel consists of alternating regions of positive and neg-
ative sensitivity, known as Fresnel zones (Woodward, 1992). Most
of the sensitivity for a band-limited source lies within the first Fres-
nel zone (Jensen et al., 2000) because higher order Fresnel zone
sensitivity tend to cancel out. Several empirical models have been
suggested that describe a sensitivity kernel based on the first Fresnel
zone (Cerveny and Soares, 1992; Jensen et al., 2000; Husen and
Kissling, 2001). Here, we specifically make use of the description
proposed by Jensen et al. (2000) to compute a sensitivity kernel
reflecting the first Fresnel zone. We will refer to this nonlinear ker-
nel, where the sensitivity is dependent on the velocity model, as the
bending Fresnel forward model gBFR. We will also consider a re-
lated linear kernel, obtained by assuming a constant velocity field,
and we refer to this as the straight Fresnel forward model, gSFR.
The fourth and fifth rows in Figure 1 show the sensitivity kernels
related to the gSFR and gBFR forward models for the three reference
models.

The Born approximation (gBorn)

Using the Born approximation (considering first-order scatter-
ing), an exact analytical expression for the sensitivity kernel for
a point source can be derived for seismic (Marquering et al.,
1999; Dahlen et al., 2000; Jensen et al., 2000; Spetzler and Snieder,
2004; Liu et al., 2009) and electromagnetic wave propagation
(Buursink et al., 2008; Liu et al., 2009). Here, we will make explicit
use of the formulation of the sensitivity kernels given by Buursink
et al. (2008), and we refer to it as the Born forward model gBorn.
The sixth row in Figure 1 shows the sensitivity kernels related to

the gBorn forward model for the three reference models. Note that, as
opposed to the previously considered sensitivity kernels, regions of
positive and negative sensitivity are visible. The Born approach is
only strictly valid for a homogeneous velocity model, and while
sensitivity kernels in principle can be computed for velocity models
with small velocity contrasts, the Born approach will fail for larger
velocity contrasts. We therefore only consider the sensitivity kernel
associated with a homogeneous velocity model. This type of for-
ward model is then linear for a constant velocity, independent of
the actual velocity variations. Note also that sensitivity kernels as-
sociated with the Born approximation typically do not reflect the
sensitivity of the first-break arrival (as we make use of to determine
the traveltime in this paper) but the time delay associated with maxi-
mum crosscorrelation between the observed and simulated wave-
field. We still consider the sensitivity kernels based on the Born
approximation here because they have previously been used to in-
vert traveltime data recorded as first-break arrival (see e.g., Buur-
sink et al., 2008; Liu et al., 2009).

Waveform modeling and first-arrival picking (gFW)

Perhaps the most precise, and time consuming, approach to solve
the forward problem is to use FW modeling, followed by picking
the first-arrival time. We refer to such a forward model as the FW
forward model gFW. Specifically, we use 2D finite-difference wave-
form modeling (Ernst et al., 2007) with a Ricker source wavelet
with a peak frequency of 100 MHz. First-break arrival times are
automatically picked using the method proposed by Molyneux

and Schmitt (1999). The first-order Fréchet derivative, i.e., the sen-
sitivity kernel, related to the gFW forward model is estimated using
the perturbation approach (McGillivray and Oldenburg, 1990).
Here, each model parameter is perturbed slightly and the resulting
residual traveltime is compared to the traveltime related to the refer-
ence model. From this, the local gradient, i.e., the first-order Fréchet
derivative, can be computed. The resulting sensitivity kernel ob-
tained using the perturbation approach for the three considered
reference models is shown in the bottom row in Figure 1.
Even if the gFW-type forward model is the most precise way of

computing traveltimes we consider here, it is in itself associated
with modeling errors as compared to actual observed traveltimes.
The finite-difference-based waveform modeling code is 2D iso-
tropic and is second-order accurate in space and time. One could
choose a 3D anisotropic code for increased accuracy and higher
order finite-difference schemes for improved modeling accuracy.
Note that the sensitivity kernels associated with the gSR, gBR,

gSFR, gBFR, and gBorn forward models completely define the forward
model with respect to the given reference models because the full
Fréchet derivatives are completely given by the first-order Fréchet
derivative. This is not the case for the gFW forward model, which is
sensitive to higher order scattering. The sensitivity kernels shown in
the bottom row in Figure 1 are only the first-order Fréchet deriv-
atives, and hence only sensitive to first-order scattering.
From Figure 1, it is evident that the sensitivity kernels differ,

based on the underlying assumptions. The fat ray (gSFR, gBFR)
and Born-(gBorn) forward models only consider first-order scatter-
ing, although in reality, higher order scattering may occur. The high-
frequency forward models (gSR, gBR) do not consider scattering
effects at all. Using any of these considered forward models will
result in a possible different traveltime than that obtained through
the finite-difference calculation.
Other forward models for traveltime computation can also be ex-

amined (e.g., Tromp et al., 2005; Lelièvre et al., 2011). Our goal
here is not to discuss the validity of each type of forward model,
but to describe that using any type of forward model will lead to
different modeling errors affecting the computed traveltimes.

Modeling errors in first-arrival traveltime
computation

We will now analyze the modeling error caused by using a spe-
cific choice of forward model. The effect of different kinds of vari-
ability in the model space is investigated based on 26 reference
models that are grouped into three types of models and shown
in Figure 2, models 1–26:

• Increasing Gaussian variance. Models 1–10 (Figure 2, top
row) are realizations of the same Gaussian random field de-
fined by an exponential covariance model with horizontal
range of rhor ¼ 15 m, vertical range of rver ¼ 2 m, mean
velocity of 0.14 m∕ns, and with an increasing standard
deviation of σ ¼ ½0; 0.0040; 0.0057; 0.0069; 0.0080; 0.0089;
0.0098; 0.0106; 0.0113; 0.0120� m∕ns. Thus, the variability
is increasing, and the spatial correlation lengths are kept
constant.

• Increasing Gaussian spatial correlation length. Models
11–20 (Figure 2, middle row) are realizations of the same
Gaussian random field defined by an exponential covari-
ance model with mean velocity of 0.14 m∕ns, constant stan-
dard deviation of σ ¼ 0.0120 m∕ns, but with increasing
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horizontal range of rhor ¼ ½0.01; 1.12; 2.23; 3.34; 4.45; 5.56;
6.67; 7.78; 8.89; 10.0� m, assuming a constant anisotropy of
factor of rhor∕rver ¼ 5. Thus, the variance is the same, but the
spatial correlation lengths are increasing.

• Increasing multiple-point variability. Models 21–26 (Fig-
ure 2, bottom row) are realizations of a multiple-point-based
statistical model inferred from the binary training image of
Figure 3 (taken from Strebelle, 2000). The actual realization
is generated using SNESIM (Strebelle, 2002). The location
of the channel structure is the same for all six models, but
the velocity within the channel is decreasing as vchannel ¼
½0.13; 0.12; 0.11; 0.10; 0.09; 0.08� m∕ns, while the velocity
in the region outside the channel increases as voutside ¼ ½0.15;
0.16; 0.17; 0.18; 0.19; 0.20� m∕ns. Thus, the relative veloc-
ity contrast at the channel edges is increasing.

For all of these 26 models, a “reference” traveltime data set, texact,
is computed by assuming that the “exact” forward model gexact is
given by the gFW forward model described above. As a reference
geometry, we consider 11 source and 41 receiver locations in the left
and right boreholes, respectively, as shown in Figure 2, model 1.
Only traveltimes related to raypaths dipping less than 45° are used,
to mimic a real situation (Looms et al., 2008b). Each traveltime data
set consists of 331 traveltimes. In addition, the traveltimes obtained
using the different approximate forward models related to the gSR,
gBR, gSFR, gBFR, and gBorn, will be computed and referred to as tSR,
tBR, tFR, tBFR, and tBorn, respectively. This will allow quantification
of the modeling error as the difference in traveltime due to using the
approximate forward models and the exact forward model.
Figure 4 shows corresponding modeling error in the form of the

mean and standard deviation of the error introduced by a specific
choice of kernel for the 331 traveltime estimates for each of the 26
considered models. The actual data behind Figure 4 are shown in

Tables 1–3. The mean can be thought of as a bias, the average mean
difference in traveltime, and the standard deviation reflects the mag-
nitude of the modeling error.
Figure 4 (top row) illustrates clearly that for a homogeneous

model (model 1), all kernels perform equally well. This is no sur-
prise because the kernels are normalized such that the integral of
each kernel is the ray length between the source and the receiver.
More importantly, it clearly shows that as the subsurface variability
increases, the absolute value of the mean and the standard deviation

Figure 2. Twenty-six reference models. (Top row) Models 1–10 of type A (increasing variance). (Middle row) Models 11–20 of type B
(increasing correlation length and constant variance). (Bottom row) Models 21–26 of type C (increasing velocity contrast for a binary velocity
model). The location of receivers (stars, to the left) and sources (circles, to the right) is denoted on model 1. See the text for more details.

Figure 3. Bimodal training images, used to generate the realizations
shown in Figure 2, models 21–26. From Strebelle (2000).
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of the modeling error also increase using any of the approximations.
A similar pattern can be seen for models 21–26, in which the veloc-
ity contrast in the binary velocity field is increasing. The absolute
value of the mean and the standard deviation is significantly higher
considering the discrete velocity models of models 21–26, than the
models based on Gaussian statistics in models 1–10.
Figure 4 (middle row) shows the influence on the bias and vari-

ance of the modeling error for increasing spatial correlation lengths.
The high-frequency approximations (ray sensitivities) are relatively
more influenced by the changing correlation length than those
based on Fresnel volumes. Notice that intermediate spatial wave-
lengths of the subsurface structures provide a larger modeling error
than very high and low correlation lengths. The Fresnel volume sen-
sitivities are less sensitive to the subsurface variability than the ray
sensitivities because these sensitivities integrate the velocities of a
larger volume of the subsurface.
Using the gBR forward model (high-frequency approximation to

the wave equation) provides the fastest traveltime estimates because

the traveltime is computed along the fastest raypath between the
transmitter and receiver. This is seen as a negative bias in the mod-
eling error. The magnitude of the bias changes from zero (when the
velocity model is constant) to more than −2 ns for the velocity
model with channels and maximum velocity contrast, model 26,
Figure 4.
Modeling errors related to Gaussian variability of the velocity

structures (models 1–20) provide a mean error up to 0.6 ns and
a standard deviation of up to 0.6 ns. On the other hand, the modeling
errors related to variability in the binary velocity structures (models
21–26) provide a mean error up to 12 ns and a standard deviation of
up to 8 ns.
Measurement errors in a typical GPR cross-borehole data set are

~ 0.2–0.8 ns. Thus, for Gaussian-type velocity models, the model-
ing error can be up to the order of the uncertainty of the noise
model. For the binary velocity distribution, the modeling error
has the potential to be more than an order of magnitude larger than
the noise model.

Figure 4 clearly demonstrates that the model-
ing error inherent in cross-borehole tomography
can be significant, as compared to the measure-
ment uncertainties. Furthermore, Figure 4 shows
that the magnitude of the modeling error is
closely linked to subsurface variability. As the
subsurface variability increases, so does the mag-
nitude of the modeling error.
In the following, we will propose a method

to quantify the modeling error in a prob-
abilistic framework. We will generate a sample
of a probability distribution describing the
modeling error and suggest how to account
for such a modeling error when solving inverse
problems.

MODELING ERROR AND INVERSE
PROBLEM THEORY

The methodology we will propose originates
from a probabilistic formulation of inverse prob-
lem theory (see Tarantola, 2005). The solution to
a probabilistically formulated inverse problem is
a probability density obtained by combining all
available states of information. Prior information
on the model and data parameters, obtained inde-
pendently, can in general be represented by the a
priori probability distribution ρðd;mÞ. Informa-
tion about the relation between data and model
parameters can in general be represented by
the theoretical probability density Θðd;mÞ. The
combined information is given by the joint pos-
terior probability defined in the joint data and
model space manifold D ×M:

σðd;mÞ ¼ k
ρðd;mÞΘðd;mÞ

μðd;mÞ : (2)

The presence of μðd;mÞ in equation 2 represents
the homogeneous state of information that en-
sures that the parameterization is invariant to

Figure 4. Observed mean (left) and standard deviation (right) of difference in
traveltimes between the traveltimes obtained using the exact forward model tSR and
approximate traveltime estimates tSR, tBR, tFR, tBFR, and tBorn, for velocity models
of types A (models 1–10, top row), B (models 11–20, middle row), and C (models
21–26, bottom row).
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changes in the coordinate system. Equation 2 is the most general
way to define the solution to an inverse problem in a probabilistic
framework (see, e.g., Tarantola and Valette, 1982b; Mosegaard and
Tarantola, 2002). One may wish to infer information about the
model parameters m through the posterior marginal distribution
of m as given by

σMðmÞ ¼
Z
D
ddσðd;mÞ: (3)

If it is assumed that ρMðdÞ is obtained independently of ρMðmÞ
such that ρðd;mÞ ¼ ρDðdÞρMðmÞ and one assumes the theoretical
probability density can be given by

Table 1. Observed mean (top) and standard deviation (bottom) of difference in traveltime between the traveltime picked from
finite-difference data and the traveltime computed from sensitivity kernel models of type A.

Model 1 2 3 4 5 6 7 8 9 10

gSR 0.0039 0.0522 0.0995 0.1474 0.1956 0.2439 0.3221 0.3408 0.3894 0.4385

gBR 0.0039 0.0240 −0.0778 −0.1192 −0.1569 −0.1843 −0.1919 −0.2550 −0.2927 −0.3192
gSFR 0.0039 0.0509 0.0976 0.1450 0.1929 0.2408 0.3186 0.3370 0.3853 0.4341

gBFR 0.0039 0.1157 0.0891 0.1083 0.1311 0.1623 0.2048 0.1926 0.2088 0.2289

gSR 0.0071 0.1220 0.1829 0.2366 0.2881 0.3389 0.4417 0.4399 0.4899 0.5406

gBR 0.0071 0.1229 0.1733 0.2132 0.2525 0.2763 0.3458 0.3182 0.3335 0.3476

gSFR 0.0071 0.0448 0.0783 0.1121 0.1472 0.1823 0.2437 0.2545 0.2907 0.3279

gBFR 0.0071 0.0755 0.1130 0.1395 0.1767 0.2131 0.2629 0.2571 0.2871 0.3074

Table 2. Observed mean (top) and standard deviation (bottom) of difference in traveltime between the traveltime picked from
finite-difference data and the traveltime computed from sensitivity kernel models of type B.

Model 11 12 13 14 15 16 17 18 19 20

gSR 0.1928 0.3939 0.4749 0.5047 0.5103 0.5051 0.4940 0.4813 0.4671 0.4525

gBR −0.6096 −0.9277 −0.7865 −0.6687 −0.5810 −0.5119 −0.4584 −0.4153 −0.3854 −0.3602
gSFR 0.1760 0.3718 0.4613 0.4949 0.5020 0.4973 0.4865 0.4738 0.4597 0.4451

gBFR 0.5761 0.5449 0.4647 0.3947 0.3560 0.3266 0.2977 0.2825 0.2611 0.2414

gSR 0.1561 0.4604 0.5625 0.6023 0.6063 0.5946 0.5775 0.5589 0.5404 0.5224

gBR 0.3225 0.4778 0.4940 0.4724 0.4302 0.4060 0.3994 0.3753 0.3523 0.3389

gSFR 0.0926 0.1204 0.2014 0.2656 0.2958 0.3092 0.3138 0.3143 0.3115 0.3075

gBFR 0.1535 0.3583 0.4164 0.4201 0.4031 0.3990 0.3885 0.3765 0.3541 0.3390

Table 3. Observed mean (top) and standard deviation (bottom) of difference in traveltime between the traveltime picked from
finite-difference data and the traveltime computed from sensitivity kernel models of type C.

Model 21 22 23 24 25 26

gSR 0.3291 1.3800 3.1480 5.3911 8.1279 11.3291

gBR −0.3353 −0.7892 −1.0850 −1.3806 −1.7341 −2.3468
gSFR 0.3417 1.4055 3.1874 5.4457 8.1997 11.4211

gBFR 0.1025 0.0566 0.1464 −0.1471 −0.3225 −1.0073

gSR 0.4675 1.3678 2.5801 3.9235 5.6202 7.9703

gBR 0.3663 0.6693 0.9500 1.7261 3.2388 5.8750

gSFR 0.2856 1.0039 1.9777 3.0595 4.5127 6.6988

gBFR 0.4330 0.8110 1.2512 1.8678 3.2283 5.7053
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Θðd;mÞ ¼ θðdjmÞμMðmÞ; (4)

where μMðmÞ is the marginal probability density μMðmÞ ¼
∫ dmμðd;mÞ, then the solution to the inverse problem, of inferring
information about the model parameters through the marginal a pos-
teriori probability σMðmÞ, is given by

σMðmÞ ¼ kρMðmÞLðmÞ; (5)

where k is a normalization constant and the likelihood function
given by

LðmÞ ¼
Z
D
dd

ρDðgðmÞÞθðdjmÞ
μDðdÞ

; (6)

where ρDðdÞ describes measurement uncertainties, typically re-
lated to the instrument recording the data, θðdjmÞ is a probabilistic
formulation of the forward modeling that describes the probability
of a set of calculated data given a model m. This probability dis-
tribution is based on a probability distribution ΛðdjmÞ that de-
scribes the uncertainty related to the forward calculation (i.e., a
set of calculated data) and a (possibly uncertain) forward relation
d ¼ gðmÞ. In the following, we will refer to the probability dis-
tribution ΛðdjmÞ as the modeling error. Based on modeling error,
the probabilistic description of the forward modeling is given
as θðdjmÞ ¼ Λðd − gðmÞÞ.
Figure 5 provides a graphic illustration of θðdjmÞ andΛðdjmÞ for

a simple 1D inverse problem. In Figure 5a, the red line reflects an
error-free theoretical relation d ¼ gðmÞ, which implies that no

modeling error is present as shown in Figure 5e. In this case,
the modeling error is expressed by a delta function, ΛðdjmÞ ¼
δðdÞ. Figure 5b reflects a case in which modeling error is present
in the forward modeling. Figure 5f shows the corresponding prob-
ability distribution reflecting the modeling errors ΛðdjmÞ ¼ θðdþ
gðmÞjmÞ. Note that, in this general case, the modeling error is de-
scribed by a non-Gaussian distribution that is not centered around
the theoretical relation d ¼ gðmÞ, except atm ¼ 0where there is no
modeling error.
For the remainder of the text, we will consider inverse problems

whose solution is given by equation 5 and we will assume that the
homogeneous probability density can be approximated by a con-
stant, such that μDðdÞ ¼ k. For more details on the homogeneous
probability density function (pdf) (see, e.g., Mosegaard and Taran-
tola, 2002).

Accounting for the modeling error

In general, it is not straightforward to evaluate the modeling error
ΛðdjmÞ and hence perform the integration of equation 6.
At one extreme, the modeling error can be infinitely high, which

means that any observed data will lead to the same constant like-
lihood LðmÞ ¼ k. In such a case, no information can be inferred
from observed data and the a posteriori probability will be identical
to the a priori probability σMðmÞ ¼ ρMðmÞ.
Another extreme is to completely ignore the modeling error.

Disregarding the modeling error amounts to assuming a perfectly
known noise-free relation between m and d. In such a case, the
modeling error is described by a delta function, and we have

Figure 5. Schematic illustration of the modeling error. (a) In case of no theoretical errors, θðdjmÞ is given by the red line d ¼ gðmÞ and (e) the
associated modeling error is given by ΛðdjmÞ ¼ δðdÞ. (b) A general description of θðdjmÞ and (f) the corresponding modeling error, ΛðdjmÞ.
(c) θρðdjmÞ in case of a (approximate) stationary modeling error ΛρðdjmÞ as seen in (g), obtained in the vicinity of ρMðmÞ (dotted line).
(d) θρðdjmÞ in the case of an approximate stationary Gaussian modeling error ΛρðdjmÞ ¼ N ðdT;CTÞ, as seen in (h), obtained in the vicinity of
ρMðmÞ (dotted line). The yellow curve reflects the maximum of the distribution θρðdjmÞ.
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θðdjmÞ ¼ δðd − gðmÞÞ (see equation 1.92 in Tarantola [2005] and
Figure 5a), which reduces equation 6 to

LðmÞ ¼ ρDðgðmÞÞ: (7)

Evaluation of equation 7 only requires the choice of a probability
model that describes the measurement uncertainty. If such measure-
ment uncertainty can be described by a Gaussian model, with mean
dd (which is often set to zero) and covariance Cd, the likelihood can
be expressed as

LðmÞ¼ρDðmÞ

¼k exp

�
−
1

2
ðgðmÞ−dobs−ddÞtC−1

d ðgðmÞ−dobs−ddÞ
�
:

(8)

If significant modeling errors in reality exist, such as indicated by
θðdjmÞ in Figure 5b, and ΛðdjmÞ in Figure 5f, then clearly ignoring
such errors may lead to significant artifacts in describing the
forward model and hence the solution to the inverse problem
σMðmÞ. This will be further investigated and exemplified in a case
study.

Accounting for Gaussian modeling errors

In the special case in which the modeling error can be described
by a Gaussian probability density, with mean dT and covarianceCT ,
N ðdT;CTÞ, one can account for the measurement uncertainties and
modeling error through addition of the covariance models describ-
ing measurement uncertainties Cd and modeling errors CT (gener-
alized after Tarantola [1986], p. 58):

LðmÞ ¼ k exp

�
−
1

2
ðgðmÞ − dobs − dDÞ

t
C−1

D ðgðmÞ

− dobs − dDÞ
�
; (9)

where CD ¼ CD þ CT and dD ¼ dd þ dT . Equation 9 is thus iden-
tical to equation 8 except that Cd is replaced by the combined
covariance model CD and a bias correction dD is introduced.
This means that one does thus not need to explicitly perform the

integration of equation 6. In addition, equation 9 is valid for linear
and nonlinear inverse problems, as long as the modeling error and
the measurement uncertainty can be described by Gaussian statis-
tics, in the form of N ðdT;CTÞ and N ðdd;CdÞ. If a valid Gaussian
distributed modeling error can be established, then it can easily be
used by many types of existing inversion algorithms that can ac-
count for Gaussian measurement uncertainties.
In the following, we will derive and test methods to approxi-

mate the modeling error as an additive correlated Gaussian error.
First, we suggest methods for generating a sample of the modeling
error, that may or may not be Gaussian distributed. Then, we sug-
gest how to infer a Gaussian distributed modeling error based on
such a sample from the probability distribution describing the mod-
eling error.

Quantifying modeling error

Generating a sample of the modeling error

Let M ¼ ½m1
0;m2

0; : : : ;mN
0� represent a sample, in the form of

N realizations from an a priori probability distribution ρMðmÞ. Con-
sider two (linear or nonlinear) forward models in the form of an
exact gex and an approximate gapp forward model. Let M represent
N realizations of the prior model ρMðmÞ. The corresponding
data Dex and Dapp related to the exact and approximate forward
models, respectively, can be computed as Dex ¼ gexðmÞ;
Dapp ¼ gappðmÞ.
Each column inDex andDapp contains the data, e.g., dex;i or dapp;i,

related to the ith realization of the a priori probability density
ρMðmÞ. A sample, in the form of N realizations, from the (un-
known) probability distribution that describes the modeling error
ΛρðdjmÞ is now available as

DΛ ¼ Dex − Dapp: (10)

We refer to the obtained sample of the modeling error as a sample
from ΛρðdjmÞ as it is related to the subset of all models defined by
the prior model, ρMðmÞ. To generate a sample of the full modeling
error ΛðdjmÞ one would need to consider any model, independent
of its a priori likelihood. This will in practice not be possible. We
therefore choose to assume stationarity of the modeling error,
around a priori acceptable models, such that the sample of the mod-
eling error obtained is valid in the vicinity of a priori acceptable
models.
Figure 5g illustrates such a stationary modeling error ΛρðdjmÞ

that would be obtained from the general modeling error ΛðdjmÞ
shown in Figure 5f, using the a priori distribution ρMðmÞ shown
on the x-axis in Figure 5c, illustrating θρðdjmÞ. In the vicinity
of the prior model, ΛρðdjmÞ is a good approximation of the general
modeling error ΛðdjmÞ. For models with a small a priori likelihood,
it is also seen that ΛρðdjmÞ does not reflect ΛðdjmÞ very well. Note
how the shape of the distribution of the modeling error is the same
for all values ofm, due to the assumption of stationarity. It is shifted
vertically by a constant bias relative to d ¼ gðmÞ. For well-posed
inverse problems, one should not need consider a priori models with
very low a priori likelihood, and hence ΛρðdjmÞ should be a rea-
sonable approximation of ΛðdjmÞ. If the general modeling error is
in fact stationary as depicted in Figure 5g, then ΛρðdjmÞ will be
identical to ΛðdjmÞ as ΛðdjmÞ will be the same for all m.

Approximate estimation of a Gaussian modeling error

In case the sample Dθ of modeling errors can be seen as a sample
from a Gaussian probability density, we can readily estimate the
mean value dTapp

(the bias) and covariance matrixCTapp
of this Gaus-

sian distribution (ΛρðdjmÞ ¼ N ðdTapp
;CTapp

Þ) by the following
equations:

dTapp
¼ ½d1Tapp

; d2Tapp
; : : : ; dNTapp

�

where diTapp
¼ 1

N

XN
i¼1

ðDi;j
ex −Di;j

appÞ; (11)
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CTapp
¼ 1

N
DdiffD 0

diff where Ddiff ¼ ½Dex − Dapp − DTapp
�;

(12)

and DTapp
¼ ½d 0

Tapp
; d 0

Tapp
; : : : ; d 0

Tapp
�.

Figure 5h illustrates such a Gaussian distributed modeling error
ΛρðdjmÞ ¼ N ðdTapp

;CTapp
Þ as inferred from Dex and Dapp using

equations 11–12, and Figure 5d the corresponding θρðdjmÞ. Again,
due to the assumption of stationarity, as Figure 5c and 5g, the Gaus-
sian distribution of the modeling error is the same for all values of
m, and defined by the variance CT and shifted by a constant dT
relative to d ¼ gðmÞ.
Whether or notN ðdTapp

;CTapp
Þ is a good description of the actual

modeling errorΛρðdjmÞ naturally depends on whether the Gaussian
assumption is valid.

Exact calculation of a Gaussian modeling error in the linear
Gaussian case

For linear Gaussian inverse problems, the forward problem can
be quantified by the forward operator G, such that d ¼ Gm. In ad-
dition, the a priori information on the model parameters is described
by the Gaussian modelN ðm0;CMÞ. Using G,m0, and CM , one can
map the a priori information about the model parameters into an a
priori Gaussian distribution of data N ðdρ;CρÞ, with

dρ ¼ Gm0; (13)

Cρ ¼ GCMG 0: (14)

The symbol Cρ should not be confused with data measurement un-
certainties, but is a description of the covariance between data given
the choice of the a priori covariance model and the forward operator.
Consider an ideal case in which an exact expression of the linear

forward operator is given as Gex. Another approximate linear for-
ward kernel is given byGapp. The difference in data computed using
these two kernels is given by

dex ¼ Gexðm −m0Þ þGexm0

dapp ¼ Gappðm −m0Þ þGappm0

⇓

dex − dapp − ½Gex −Gapp�m0 ¼ ½Gex −Gapp�ðm −m0Þ
⇓ (15)

dex − dapp − dT ¼ ½Gex −Gapp�ðm −m0Þ. (16)

Following equation 16, it is evident that the difference between the
exact and approximate estimates of data dex − dapp is linearly re-
lated to m through the difference between the linear kernels
Gex −Gapp. Following equations 13–14, a complete description
of the Gaussian modeling error N ðdT;CTÞ can now be given as

dT ¼ ½Gex −Gapp�m0; (17)

CT ¼ ½Gex −Gapp�CM½Gex −Gapp� 0; (18)

N ðdT;CTÞ provides an exact description of the modeling error
ΛρðdjmÞ as a result of using the approximate (and linear) kernel
Gapp given a known exact (and linear) kernel Gex and the a priori
information given by N ðm0;CMÞ. This is an exact description of
the modeling error approximated in equations 11–12.

Example of estimating a Gaussian modeling error

The exact method described above applies to linear problems
with a Gaussian prior model and Gaussian data uncertainties.
The approximate method is completely general and provides a sam-
ple of the modeling error. The larger the sample, the better statistics
about the modeling error can be inferred. We will illustrate this for a
linear case in which the exact method can serve as the benchmark.
We consider two linear forward models defined previously where
gSFR shall serve as the “true” forward model and gSR serve as the
approximate forward model.
Figure 6a–6h shows the approximate estimates of the covariance

of a Gaussian modeling error, CTapp
, obtained using equation 12 and

N ¼ 5, 10, 25, 50, 100, 200, 400, and 800 realizations from the
prior model. Figure 6i shows the exact estimate of CTapp

computed
using equation 18. The estimated mean of the Gaussian modeling
error dTapp

obtained using equation 11, is shown in Figure 6j for
N ¼ 10, 400, and 800 realizations and compared to the exact esti-
mate of dTapp

computed using equation 17. Figure 6 illustrates how
the approximate estimates of dTapp

and CTapp
tend toward the exact

estimates of dT and CT as the number of considered a priori real-
izations increases.
So, in this simple linear case, the general nonlinear approach

works well and requires relatively few realizations of the model-
ing error. Below, we approach two more realistic problems with
nonlinear forward models and, for one case, a non-Gaussian
prior model where our general sampling method shows its
potential.

CASES

We have shown (see Figure 4), that the modeling error caused by
the use of an imperfect forward model can be more than an order of
magnitude larger than the measurement uncertainty. We have also
proposed a method to quantify a Gaussian modeling error. Through
two case studies, we will consider the effect of disregarding and
accounting for the modeling error, respectively.
In the first case study, we investigate the effect of disregarding the

modeling error when solving a nonlinear Gaussian inverse problem
as a linear inverse Gaussian problem, using least-squares-type
inversion.
In the second case study, we explore the use of a fast (and

approximate) nonlinear forward model to solve a nonlinear inverse
problem using a non-Gaussian a priori model. In this case, a sample
from the a posteriori probability density is obtained using the ex-
tended Metropolis algorithm.

Non-Gaussian prior model

Figure 7a shows a reference velocity model, which is generated
as a realization of Gaussian random field with mean value of
0.14 m∕ns, and a covariance model with the distance decay known
as “spherical” within geostatistics, with a horizontal range of 10 m
and a vertical range of 2 m. From the reference velocity model, a
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reference data set is computed using the forward-type model based
on finite-difference waveform modeling gFW. Waveform data, from
where the traveltime data are picked, are obtained using a Ricker
wavelet with peak frequency of 100 MHz. The recording geometry
is the same as that used in Figure 2, which leads to 331 traveltimes.
In addition, three levels of measurement uncertainties Cd have been
added as uncorrelated Gaussian noise with a standard deviation of 0
(noise-free data), 0.1, and 0.4 ns, respectively (see Figure 7b). For
the remainder of this case study, we will consider uncorrelated
measurement uncertainty only, and we will refer to a model of un-
correlated measurement uncertainty with a standard deviation of,
e.g., 0.1 ns as Cd ¼ I 0.12. We thus consider
the three different data sets as observed data, con-
taminated with different measurement noise.
The true forward problem is nonlinear. Wewill

invert these traveltime data using an approximate
linear straight-ray forward model gSR with a
known Gaussian a priori model N ðm;CMÞ as
used to generate the reference model. As we
make use of an approximation to describe the
forward problem, a modeling error will be intro-
duced. Treated as a linear Gaussian inverse prob-
lem, the solution to the inverse problem is
described by the Gaussian a posteriori probabil-
ity density that can be completely characterized
by the a posteriori mean ~m and covariance model
~CM, N ð ~m; ~CMÞ (see, e.g., Tarantola and Valette,
1982):

~m¼m0þCMGtðGCMG 0 þCDÞ−1
× ðd0 −Gm0Þ; (19)

~CM ¼CM −CMGtðGCMG 0 þCDÞ−1GCM:

(20)

The a posteriori mean model ~m is also the model
with maximum a posteriori probability.

Inversion with no modeling error

Initially, we will disregard the modeling error
(dT ¼ 0 and CT ¼ 0) such that CD ¼ Cd. That
is, we properly account for the three cases of
measurement errors but ignore the modeling er-
ror. The linear inverse problem is solved given
the three data sets using equations 19–20.
Figure 8a–8c shows the corresponding maximum
a posteriori models, ~m, considering Cd ¼ I0 ns2,
I0.1 ns2, and I0.4 ns2, respectively. Figure 8d–8f
shows three realizations from the corresponding
a posteriori probability density.
Using noise-free data, the inversion result is

severely affected by disregarding the modeling
error, Figure 8a and 8d. Within the area of high
ray coverage (in the middle of the model), the
maximum a posteriori model and realizations
from the a posteriori probability density show ab-
normal velocity variation, in terms of magnitude

and spatial variability. This is a result of fitting the modeling error,
which acts as noise, and is not accounted for. To fit the data ac-
cording to the assumption of noise-free data, extreme velocity var-
iations are introduced into the solution space. In addition,
comparing the realizations from the a posteriori probability den-
sity, many of the structures, which are artifacts and a result of fit-
ting modeling noise, seems to be well resolved. A feature is well
resolved if the same feature appears in many realizations of the a
posteriori probability density. Thus, ignoring modeling error in
this case introduces artifacts, which appear well resolved, into
the inversion results.

Figure 6. (a-h) Approximate estimate of CTapp
, obtained using equation 12 for N ¼ 5,

10, 25, 50, 100, 200, 400, and 800 realizations from the a priori pdf. (i) Exact compu-
tation of CT using equation 18. (j) Comparison of dTapp

, obtained using equation 11 for
N ¼ 10, 100, and 800 realizations from the a priori pdf, to computing the exact dT using
equation 17.
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It is of course quite extreme to invert data without assuming any
data noise at all. Considering more realistic measurement uncertain-
ties of Cd ¼ I0.12, the problems referred to above persist. The
maximum a posteriori model in Figure 8b shows a low-velocity
zone at x ¼ 3.5 m, y ¼ 5.5 m, surrounded by a high-velocity zone.
This low-velocity zone seems to be well resolved because it can be
identified on the three realizations from the a posteriori probability
density, Figure 8e. However, compared to the reference model,
Figure 7a, it is evident, that such a feature does not exist and is
an effect of disregarding the modeling error. As the measurement
uncertainty is increased, the effect of disregarding the modeling
error is reduced (see Figure 8c and 8f). However, using Cd ¼
I0.4 ns2, a low-velocity zone still appears as a rather well resolved
feature at x ¼ 3.5 m, y ¼ 5.5 m.

Estimating Gaussian modeling error

To estimate the modeling error caused using the linear straight-
ray approximation gSR 600 realizations from the a priori Gaussian
model N ðm;CMÞ are generated. For each of the 600 models, the
forward response is computed using the ideal forward method gFW,
which provides Dex. Likewise, the approximate linear forward
model gSR is used to calculate the traveltimes in Dapp. Then, a Gaus-
sian distributed modeling error N ðdTapp

;CTapp
Þ can be established

using equations 17–18. Figure 9a and 9b shows the estimated
covariance CTapp

and mean dTapp
describing the inferred Gaussian

distributed modeling error.
It has been assumed that the modeling error can be characterized

by a Gaussian model, as given by equations 17–18. This may not
always be a reasonable assumption. One simple way of checking
whether the Gaussian model is reasonable is to compare actual real-
izations of the modeling error, as obtained in equation 10, to real-
izations of the inferred model of Gaussian modeling error. Figure 9c
compares the actual modeling error (black curve) to one realization
of the inferred Gaussian modeling error (red) for one realization of
the prior model N ðm;CMÞ. A visual comparison suggests that the
estimated modeling variability resembles the expected/computed
variability.
A more formal way to evaluate the Gaussian assumption is

to, for example, evaluate if the χ2-distribution related to the
computed modeling errors DΛ are consistent with the inferred
Gaussian model describing modeling errors N ðdTapp

;CTapp
Þ. If

DΛ ¼ ½dΛ;1; dΛ;2; : : : ; dΛ;N �, then N ¼ 600 χ2 values can be com-
puted as

χ2i ¼ ðdΛ;i − dTapp
ÞtCT appðdΛ;i − dT appÞ: (21)

The distribution of χ2 values related to actual realizations gener-
ated from N ðm;CMÞ will be distributed according to the chi-
squared distribution with M degrees of freedom, where
M ¼ 331 is the number of observed data (i.e., the length of
dTapp

) (Tarantola, 2005). If DΛ is a sample from N ðm;CMÞ, then
the distribution of ½χ21; χ22; : : : ; χ2N � should also be described by a
chi-squared distribution with ND degrees of freedom. Figure 10
compares the distribution of χ2 computed using equation 21, to
the distribution of χ2 obtained from an actual sample of
N ðdTapp

;CTapp
Þ. Note how both distributions are distributed around

χ2 ¼ 331, as should be expected. It is evident that there is no rea-
son to assume that the Gaussian assumption is not valid.

Inversion with modeling error

We now consider inversion of the traveltime data considering
measurement uncertainty Cd and, at the same time, Gaussian dis-
tributed modeling error,N ðdTapp

;CTapp
Þ, using equations 19 and 20.

Inversion results, in the form of the maximum a posteriori model,
and three realizations from the corresponding a posteriori probabil-
ity density, can be seen in Figure 11, which can be directly com-
pared to the results of disregarding the modeling error in Figure 8.
From the realizations of the a posteriori probability density,

Figure 11d–11f, it is evident that spatial variability is similar, using
any of the three considered noise models, and is similar to the spa-
tial variability of the reference model. The resolution decreases as
the measurement uncertainties increase, as should be expected.
Figure 6 illustrates the accuracy of N ðdTapp

;CTapp
Þ as a function

of the sample size. Figure 12 illustrates the effect on the inversion
result, in the form of the maximum a posteriori model, ~m, related to
the sample size used to compute N ðdTapp

;CTapp
Þ. For the present

case, a sample of at least N ¼ 300 realizations are needed to obtain
stable inversion results.
It has been shown that it may be possible to solve a nonlinear

inverse problem, with a Gaussian a priori model, using a fast
approximate linear approach, in a probabilistic sound manner, if
the modeling error caused by using an approximate forward model

can be described by a Gaussian model. The re-
sulting solution to the inverse problem, in the
form of the a posteriori probability density, is
an approximation to the full inverse problem us-
ing the true forward model. This means that
model parameters will be less resolved than if us-
ing the exact forward model. However, the result
may be obtained using a much faster forward
model. Moreover, in this particular case, the lin-
ear assumption provides a means to obtain a full
characterization of the (Gaussian) posterior dis-
tribution using equations 19 and 20, instead of
sampling the posterior distribution of a nonlinear
inverse problem, which would have resulted in a
huge number of forward calculations. An exam-
ple where such a sample problem is considered is
seen in the next section.

Figure 7. (a) Reference velocity model (m∕ns). (b) Realizations of the Gaussian models
for Cd, with a standard deviation of 0, 0.1, and 0.4 ns.
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Case B: Accounting formodeling errors in non-linear cross-
borehole tomography, with a non-Gaussian prior model

We will now consider a nonlinear inverse problem with a non-
Gaussian a priori model. Figure 13 shows a clearly non-Gaussian

distributed reference model. It has been generated using the
SNESIM algorithm using the image in Figure 3 as training image,
Strebelle (2000). The velocity within the thin channel structures
is 0.18 m∕ns and the velocity of the background material
is 0.10 m∕ns.

Figure 8. Inversion disregarding modeling error CT ¼ 0. (a-c) Maximum a posteriori model (least-squares mean estimate) for Cd ¼ I0, I0.12,
and I0.42. (d-f) Three realizations from the a posteriori probability density considering Cd ¼ I0, I0.12, and I0.42.
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As for case A, a reference data set is computed using the finite-
difference-based gFW-type forward model. A realization of uncor-
related Gaussian noise with a variance of 0.64 ns2 is added to the
reference data to resemble measurement uncertainty. We now wish
to solve the inverse problem of inferring information about the
velocity distribution, given “observed” traveltime data, and an a pri-
ori model described by the SNESIM algorithm using the training
image in Figure 3. As a “nonperfect” forward model, we consider
the eikonal solution to the wave equation, i.e., the gBR forward
model. In this case, the forward problem is neither linear nor is
the a priori model Gaussian. Therefore, we cannot make use of
least-squares-based inversion as in case A. Instead, we resort to
sampling techniques that, as opposed to providing an analytical de-
scription of the a posteriori probability density, generates a sample
of the a posteriori probability density (Mosegaard and Sambridge,
2002). We specifically make use of a combination of the extended
Metropolis sampler (Mosegaard and Tarantola, 1995), and the

sequential Gibbs sampler (Hansen et al., 2012), as made available
in the SIPPI software package (Hansen et al., 2013a, 2013b).

Quantifying the modeling error

A Gaussian distributed modeling error is estimated in a similar
manner as it was done for case A. Initially, 600 realizations are gen-
erated from the a priori model. For each of the 600 models, the for-
ward response is computed using the ideal forward method, i.e., the
gFW-type forward model, providing Dex. Likewise, the approximate
forward model, based on the eikonal wave equation gBR is used to
calculate the traveltimes in Dapp. Then, we estimate a Gaussian dis-
tributed modeling error N ðdTapp

;CTapp
Þ using equations 11 and 12.

Figure 14a shows the estimated bias dTapp
and Figure 14b the es-

timated covariance CTapp
. Note that the bias itself fluctuates around

1.6 ns, which is significantly higher than the standard deviation of
0.8 ns describing the measurement uncertainty.

Sampling the a posteriori probability density

The extended Metropolis algorithm is run for 120,000 itera-
tions in two cases: Initially assuming no modeling error (dT ¼ 0,
CT ¼ 0), and subsequently we account for the modeling error mak-
ing use of the estimated Gaussian distributed modeling error
(dT ¼ dTapp

;CT ¼ CTapp
). The a priori model is the same in both

cases.
Figure 15a shows a sample of the a priori probability density in

the form of five different independent realizations from the a priori
distribution. It is apparent that the a priori assumption reflects some
high-velocity channellike structures traverse the model parameter
space from left to right, with layers dipping up and down from left
to right. In addition, some of the channel structures are connected. A
corresponding sample from the posterior probability density in the
case of disregarding modeling error is shown in Figure 15b and in
the case of accounting for the modeling error in Figure 15c.
Disregarding modeling error (Figure 15b), reveals that most real-

izations within the posterior sample exhibit the same type of fea-
tures at the same locations. There is relatively little variability
between the individual realizations. The posterior sample shows

Figure 9. (a) Estimated Gaussian distributed modeling error, CTapp
.

(b) Estimated mean of modeling error dTapp
. (c) Actual modeling

error (dotted line) compared to one realization of the inferred mod-
eling error (solid line) for one realization of N ðm;CMÞ.

Figure 10. Distribution of χ2 related to the inferred sample of
modeling error (dΛ) (dashed line) and actual realizations from
N ðdTapp

;CTapp
Þ (solid line).

H14 Hansen et al.

D
ow

nl
oa

de
d 

03
/2

4/
14

 to
 1

92
.3

8.
67

.1
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



considerably more variability between posterior realizations when
accounting for the modeling error (Figure 15c). At a first glance, it
appears as if the posterior sample obtained by disregarding the mod-
eling error provides better resolution (i.e., less variability) of the

solution (i.e., posterior realizations), than the case of accounting
for the modeling error.
This is further highlighted in Figure 16. Figure 16a and 16b

shows the a posteriori probability of locating a channel in the

Figure 11. Inversion accounting for estimated modeling error CTapp
. (a-c) Maximum a posteriori model (least-squares mean estimate) for

Cd ¼ I0, I0.12, and I0.4ns2. (d-f) Three realizations from the a posteriori probability density considering Cd ¼ I0, I0.12, and I0.4 ns2. Com-
pare to Figure 8 to evaluate the effect of considering modeling error.
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individual model parameters. It is apparent that the “image” of pos-
terior probability of a channel, provides a sharper image when dis-
regarding the modeling error (see Figure 16a) than when accounting
for the modeling error (Figure 16b). Figure 16c and 16d highlights
apparently well-resolved areas where the channels exist with a pos-
terior probability higher than 0.999 (blue) and where a channel does
not exist with a posterior probability higher than 0.999 (red), in case
disregarding (Figure 16c), and accounting for (Figure 16d), the
modeling error. Thus, the areas highlighted in Figure 16c–16d rep-
resents model parameters that appear to be close to completely re-
solved by the inversion. It is clear, that the location of channels are
apparently better resolved disregarding the modeling error because
larger areas appear well resolved in Figure 16c, as compared to the
case of accounting for the modeling error (Figure 16d). However, by
comparing Figures 15b and 16 to the reference model, Figure 13, it
is clear that when disregarding modeling error, one locates areas
with high probability of a channel (and high probability of no chan-
nel) that are inconsistent with the reference image. For example, at
location ðx; yÞ ¼ ð3 m; 4 mÞ in Figure 16a, the posterior probability
of a channel is near zero. Yet, we know from the reference image
that a channel is present. On the other hand, when the modeling
error is accounted for through the use of the estimated Gaussian

model N ðdTapp
;CTapp

Þ the apparent inconsistencies between the
posterior samples and the reference model are significantly reduced.
Most all the features in Figure 16b and 16d that appear to be well
resolved, correspond to real features in the reference image.
Note that the Markov chain Monte Carlo calculations spent 200

times more forward calculations (120,000 in all) than the 600 used
for the calibration of the modeling error covariance and bias model.
One forward computation takes around 67 s using gFW and 0.05 s
using gBR. The total actual computation time for the setup consid-
ered here, using the gBR forward model, is ~ 13 h (~ 11 h for sam-
pling of the modeling error, and 2 h for sampling the solution to the
inverse problem). The same 120,000 iterations would take around
three months to complete if gFW was used as the forward model,
indicating a computational speedup of around 166 using gBR along
with a modeling error, compared to using gFW directly. Thus, the
use of fast approximate forward models, while at the same time
quantifying the associated modeling error, has the potential to allow
the use of sampling algorithms with dramatically decreased com-
putational demands.
This second case study illustrates that quantifying the modeling

error using a Gaussian model enables sampling of the a posteriori
probability density for a nonlinear non-Gaussian inverse problem

Figure 12. Maximum a posteriori model (least-squares mean estimate) for Cd ¼ I0, using a sample size of N ¼ 5; 10; 100; 200; 300;
400; 500; 600 to compute N ðdTapp

;CTapp
Þ.
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using an approximate, and fast, forward model in a manner consis-
tent with errors introduced by using the approximate forward
model. This has the potential to allow for using fast forward solvers
of sampling algorithms such as the Metropolis sampler (Hastings,
1970; Mosegaard and Tarantola, 1995) without introducing un-
wanted noise mapping errors related to using an approximate for-
ward model.
Cases A and B have demonstrated that disregarding modeling

error can introduce features in the a posteriori probability density
that appear well resolved, but that are in reality just an effect of
mapping the modeling error into the posteriori probability density,
as apparently well-resolved features. It will not be possible to quan-
tify which features are consistent with the true subsurface, without
solving the inverse problem using the exact forward model with no
associated modeling error. By accounting for the modeling error,
the resolution of the posterior sample is reduced, compared to dis-
regarding the modeling error, but features that appear resolved, ap-
pear to be consistent with the subsurface structures.

DISCUSSION

Computational efficiency

When using sampling methods (e.g., Hastings, 1970; Mosegaard
and Tarantola, 1995) to sample the a posteriori distribution, where
millions of forward models need to be evaluated, the extra cost of
simulating the modeling error may be negligible or at least feasible.
For other types of inverse problems, such as, e.g., flow modeling in
oil reservoirs, where only a limited number of forward calculations
can be evaluated due to computational demands, our approach may
be less feasible. Still, if a simple analysis, based on a few models,
comparing the forward response of a “perfect” forward model, and
one intended to use as the base of an inversion, reveals a significant
modeling error (as compared to the measurement uncertainty), our
conclusion is clear: Either one should make the effort of trying to
quantify the modeling error or, one should not invert the data using
the approximate forward model at all because there will be no way
of ensuring that modeling noise will not be mapped into the solution
of the inverse problem.
An obvious way to reduce the problem of modeling error, if not

accounted for during the inversion, is to improve the forward model,
if this can be done with little extra computational costs.
The method we have used here to simulate modeling error related

to crosshole tomography is, in principle, simple and straightfor-
ward. It could, however, have been performed more efficiently if
we had used the assumption of stationarity of the a priori model.
The traveltime data obtained with the same relative location to each
other will have the same modeling error. For example, the modeling
error related to the traveltime between a source at (1 m, 1 m) and a
receiver at (6 m, 5 m) will be identical to the modeling error related
to a source at (1 m, 5 m) and a receiver at (6 m, 9 m).
Figures 9 and 14 indicate that the inferred bias and covariance

model describing the modeling error possess some smoothness re-
lated to the recording geometry used; i.e., data whose sensitivity
kernels are located close to each other tend to have a high model
error covariance, and those far from each other have a close to zero
model error covariance. This suggests that some approximate esti-
mate of the modeling error could be obtained from a model error
covariance obtained from a subset of the recorded data. We leave it
for future research to explore more efficient ways of characterizing
the modeling error.

Noise versus resolution

We have argued that when a Gaussian distributed modeling error,
related to the use of an approximate forward
model, can be inferred and is valid, then one
can solve the associated inverse problem, without
mapping the errors related to modeling error into
the solution of the inverse problem. To be very
clear: This does not mean that one can obtain
an inversion result using an approximate forward
model while accounting for modeling errors
equivalent to using the full forward model.
The noise model used with the approximate for-
ward model will have a higher magnitude
(caused by the modeling error) than using the full
forward model. When the noise level increases,
the resolution will decrease. Thus, one will not

Figure 13. Reference model, case B.

Figure 14. Estimated Gaussian distributed modeling error. (Left) dTapp
and (right) CTapp
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be able to obtain the same resolution using the approximate forward
model as when using the full forward model. However, as stressed
before, features that appear resolved using the approximate forward
model while accounting for the modeling error will be consistent
with the true subsurface, if the noise model has been adequately
described.

Source of modeling error

In this study, we propose a general approach to generate a sample
of the modeling error. We have applied the methodology to account
for imperfect forward models, but the method can be generalized for
any modeling error for which the cause of the modeling error can be
described by a probability distribution from which realizations can
be generated. To use the method, one must be able to describe the
source of the modeling error and compute the forward response with
and without the source of the modeling error. In the cases investi-
gated here, the source of the modeling error is related to the a priori
model, from which realizations are easily generated using geostat-
istical simulation algorithms.

Correlated errors in tomographic data

Peterson (2001) and Cordua et al. (2008) list various sources of
correlated data errors in tomographic traveltime data. The present
study contributes further to the explanation of the correlated data
errors often observed in tomographic data by describing a consid-
erable source of correlated data errors, namely, the source that orig-
inates from modeling errors related to inadequacies related to the
forward problem. This source of errors has not previously been
described in the work by Peterson (2001) and Cordua et al.
(2008, 2009).
The method presented here can be used to estimate modeling er-

rors stemming from borehole cavities such as those investigated by
Cordua et al. (2008, 2009). The requirements are that one must be
able to describe borehole cavities in a statistical model and one
needs to be able to generate realizations from such a statistical
model such that the associated data errors can be simulated (by
comparing the forward results of models with and without borehole
cavities). In a similar manner, uncertainties about the geometry of
the sources and receivers can also be considered and quantified as a

Figure 15. Five independent realization from the (a) prior, (b) posterior disregarding modeling error, and (c) posterior accounting for modeling
error.

H18 Hansen et al.

D
ow

nl
oa

de
d 

03
/2

4/
14

 to
 1

92
.3

8.
67

.1
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



modeling error, if a statistical model describing such uncertainty can
be formulated.

The Gaussian assumption of the modeling error

We specifically make use of a Gaussian pdf to describe modeling
errors. This is convenient because it allows accounting for the mod-
eling error through addition of the covariance models describing
measurement uncertainty and modeling error. If another type of
parametric probability distribution, as, for example, a Poisson dis-
tribution, better describes the simulated modeling errors DΛ, such a
model should be used instead. The evaluation of the likelihood,
equation 6, then becomes more complex.

Applications

The main application of the method we have proposed is that it
allows the solution of an inverse problem, using an imperfect

forward model, without introducing unwanted artifacts in the sol-
ution to the inverse problem, as demonstrated in cases A and B.
If the prior model and the noise model are Gaussian, then one can

in principle solve such a nonlinear Gaussian inversion problem,
using simple linear least-squares inversion. One needs to use an
approximate linear forward model and check whether the computed
sample of the modeling error can be described by a Gaussian dis-
tributed modeling error. The posterior resolution of the model
parameters will decrease when using the approximation as opposed
to when solving the full nonlinear inverse problem, with no mod-
eling error. This was shown in case A.
Monte Carlo sampling methods can be computationally very ex-

pensive (see, e.g., Cordua et al., 2012). Therefore, one may want to
make use of approximate forward models. Without accounting for
the associate modeling errors, artifacts may be introduced into com-
puted posterior realizations, and the sampling problem may become
hard. The method presented here allows accounting for, at least to
some degree, the modeling error caused by using an approximate
forward model, as demonstrated in case B. This has the potential to
allow much faster, but less accurate, forward models to be used as
part of more efficient Monte Carlo-based sampling methods.
Another possible application, not demonstrated here, is to make

use of an approximate fast forward model to compute an approxi-
mation of the true likelihood function. It has been known for many
years that sampling of a probability distribution can be made more
efficient if we have an easy-to-sample approximation to the distri-
bution we wish to sample. This was exemplified by Mosegaard and
Hansen (2007) who demonstrate the computational efficiency ob-
tained using approximations with a rejection sampler. By quantify-
ing the modeling error as proposed in this paper, any simple forward
model may in this way act as an approximation to the full forward
problem and allow for a potentially much faster sampling algorithm.
It is important to note that when using such an approach, where the
full forward model is only evaluated when allowed by the approxi-
mate and fast likelihood estimate, no reduction in resolution of the a
posteriori probability density will appear. The a posteriori probabil-
ity density (related to the hard inverse problem) will be sampled, as
well as if using only the true forward model, but due to the use of
approximations, the computational efficiency will be increased.

CONCLUSIONS

We have proposed a general way to simulate a sample of the
modeling error due to the use of an imperfect forward model
and/or model description. It can be applied in cases in which a stat-
istical model that describes the cause of the modeling error can be
quantified. If a Gaussian model can describe the variability of a
sample from the modeling error, such a Gaussian model can be
straightforwardly inferred from the sample of the modeling error.
This allows accounting for the modeling error by simple addition
of the covariance model describing data uncertainty and model-
ing error.
We have applied the method to inversion of GPR crosshole trav-

eltime data, using approximate forward models. First, we demon-
strated that the modeling error due to the use of approximate
forward models can be more than an order of magnitude larger than
the measurement error. We demonstrated the use of approximate
forward models to solve a nonlinear inverse problem, with a
Gaussian a priori model, using classical least-squares inversion.
We also demonstrated how a nonlinear inverse problem, with a

Figure 16. (a-b) A posteriori probability of a channel in case (a)
disregarding modeling error and (b) accounting for modeling error.
The black color indicates a probability of one, and the white color
indicates a probability of zero. The red lines reflect the actual lo-
cation of channel borders. (c-d) High probability of channel (blue)
and high probability of “no channel” in case (a) disregarding mod-
eling error and (b) accounting for modeling error. The black lines
reflect the actual location of channel borders.
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non-Gaussian a priori model, could be efficiently solved using the
extended Metropolis sampler with an approximate, and fast, for-
ward model. In both cases, we found that disregarding the modeling
error led to unwanted artifacts in the generated realizations from the
a posteriori probability. If not accounted for, the modeling error will
be mapped into the a posteriori probability density as unwanted fea-
tures, that may appear well resolved, but are an effect of fitting
noise. On the other hand, when accounting for the modeling error,
no apparent unwanted features were noticed in the realizations of
the a posteriori probability density. In fact, the features that ap-
peared resolved when accounting for the modeling error were con-
sistent with the features of the known reference model. Finally, we
demonstrate that increasing the uncorrelated measurement uncer-
tainty in an attempt to account for the modeling error leads to de-
creased resolution, while at the same time artifacts appear in
realizations of the posteriori probability density.
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