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Abstract: The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampled-
data systems. Applying the same AFD architecture as for continuous-time systems does not
directly result in the same set of closed-loop matrix transfer functions. For continuous-time
systems, the LFT (linear fractional transformation) structure in the connection between the
parametric faults and the matrix transfer function (also known as the fault signature matrix)
applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the
AFD methods cannot directly be applied for sampled-data systems. Two methods are considered
in this paper to handle the fault signature matrix for sampled-data systems such that standard
AFD methods can be applied. The first method is based on a discretization of the system such
that the LFT structure is preserved resulting in the same LFT structure in the fault signature
matrix as obtained for continuous-time systems. The other method is an approximation method,
where the same structure is obtained for small parametric faults.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Active fault diagnosis, sampled-data systems, parametric faults, controller

parameterization.

1. INTRODUCTION

There exist two groups of fault diagnosis methods, passive
based methods and active based methods. In the first
group, the fault diagnosis is based on passive observations
of the systems. There exist various passive based methods
for both deterministic or stochastic based diagnosis, see
e.g. Basseville and Nikiforov [1993], Blanke et al. [2006],
Campbell and Nikoukhah [2004], Chen and Patton [1998],
Gertler [1998], Gustafsson [2000] for mention some of the
books in this area.

For active based methods, the diagnosis is also based
on observations of the system, but auxiliary inputs are
injected to get a faster diagnosis of faults in the system or
get a diagnosis at a specified time, i.e. when an auxiliary
input is injected at the system at a given time. The area of
active fault diagnosis (AFD) has not been investigated so
much as passive based methods. Some relevant references
in the area of active fault diagnosis are e.g. Ashari et al.
[2011, 2012], Campbell and Nikoukhah [2004], Kereste-
cioglu [1993], Niemann [2006], Simandl and Puncochar
[2009], Zhang [1989].

The focus in this paper is on AFD in sampled-data
systems. The papers mentioned above deals only with
continuous-time or descrete-time system. Fault diagnosis
for sampled-data systems has only been touched briefly
and no detailed analysis had been given. The AFD ap-
proach for closed-loop systems described in Niemann
[2006] and later used in Niemann [2012], Poulsen and

Niemann [2008] depends on the structure in the system. It
is assumed that an LFT representation of the system with
parametric faults is valid. This gives a certain structure
in the closed-loop matrix transfer function that is used
directly in AFD. This matrix transfer function is also
called the fault signature matrix. Based on the structure
in the fault signature matrix, conditions for both fault de-
tection and fault isolation are given, Niemann and Poulsen
[2014a,b].

It is possible to apply the same setup for AFD in sampled-
data system as described in Niemann [2006, 2012], Poulsen
and Niemann [2008]. However, an LFT structure in the
continuous-time system will not in general be preserved
when the system is discretized. The result is that the fault
signature matrix for sampled-data systems does not have
the same structure as for the continuous-time systems. As
a result of this missing structure in the fault signature
matrix for sampled-data system, the fault detection and
fault isolation results known from the continuous-time case
cannot directly be applied in the sampled-data case.

The main contribution in this paper is an analysis of
the fault signature matrix for sampled-data systems. Two
methods are described to transform the fault signature
matrix for sampled-data system into a form that has the
same structure as for the continuous-time systems. This
will allows us to use the AFD results from continuous-
time directly on sampled-data systems. The first method
is based on a dedicated discretization of the continuous-
time system that will preserve the LFT structure. An
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overview of methods that preserve an LFT structure in
the discretization has been described in Toth et al. [2012].
The other method is an approximation method. Here, an
approximation of the continuous-time system for small
parametric faults is derived followed by a discretization.
This follow the lines in the approach described in Niemann
and Poulsen [2014a,b].

Another result of the analysis of AFD for sampled-data
systems, is that it is not a necessary condition, that the
system has an LFT structure. It turns out, that it is
possible to apply the AFD approach on systems that do
not have an LFT structure.

The rest of this paper is organized as follows. In Section
2, the system set-up is given. The YJBK parameterization
is introduced in Section 3 followed by a description of the
fault signature matrix in Section 4. Based on the fault
signature matrix for sampled-data system, an analysis of
the matrix is given in Section 5. In Section 6 include a
discussion of the results including a discussion of relaxing
the condition of an LFT structure in the system. The paper
is closed with a conclusion in Section 7.

2. SYSTEM SETUP

Consider the following generalized 2 X 2 system,

y(O) = Coa®)d(®) + Crua@utt)

where t € R, d € R" is a disturbance input vector,
u € R™ the control input signal vector, e € RY? is
the external output signal vector to be controlled, and
y € RP is the measurement vector. Further, the vector 6,
6T = [01,---,0;] describes the parametric/multiplicative
faults in the system. The nominal system is given by 6 = 0.

| { elt) = Geal0)d(t) + GeulO)u(?)
6

Further, let the dynamical system in (1) be controlled by
the following stabilizing sampled-data feedback controller

up = K(2)yk keZ (2)

where the connections between the continuous-time signals
u(t),y(t) and the discrete-time signals uy, yx are given by

Yo = Ty(t)
u(t) = Hrug

where S, is a sampler and H. is a zero order hold with 7
as the sampling period.

A block diagram of the system is shown in Figure 1.

o

H, —1 K(2) S,

Fig. 1. Standard sampled-data system setup.

A more explicit description of the system setup for systems
with parameter faults can be given by including an extra
input and output vector in the system. The above system
is then given by

2= Grpw + Goed + GLu
Yo e = Gepw + Gegd + Geyu (3)

Y = Gy + Gyad + Gyuu
where the connection between the two external vectors w
and z is given by
w =0z (4)
This description is equivalent with the general description

of system with model uncertainties, see e.g. Zhou et al.
[1995].

3. THE YJBK PARAMETERIZATION

The YJBK and the dual YJBK parameterization are
shortly introduced in this section.

The YJBK parameterization was first derived by Youla
et al. [1976a,b] and independently by Kucera [1975]. It
has later been applied in numerous cases in connection
with feedback control, see e.g. Anderson [1998], Boyd
and Barratt [1991], Boyd et al. [1988], Dahleh and Diaz-
Bobillo [1995], Tay et al. [1997], Zhou et al. [1995]. The
YJBK parameterization for sampled-data system has been
considered in Toivonen and Medvedev [2003].

3.1 The YJBK Parameterization

Consider a generalized nominal 2 x 2 system given by
(1) controlled by a sampled-data controller K(z) given
by (2). The discrete-time transfer function from uy to yg
be defined by

Gyu(z) = S:Gyu(s)H~
i.e. the transfer function that the controller look into.

A coprime factorization of the system Gy.(z) and the
controller K(z) are given by:

Gyu(z) = NM~' = M~'N, N,M,N,M € RH«, )
K(z) =Uvt =v7'U, UV,U,VeRH

where the eight matrices in (5) must satisfy the double
Bezout equation given by, see Zhou et al. [1995]:

() (V)= (89 (i) @
“\=-N M NV \ NV -N M

Based on the above coprime factorization of the system
Gyu(z) and the controller K(z), we can give a parame-
terization of all controllers that stabilize the system in
terms of a stable transfer matrix function Q(z), i.e. all

stabilizing controllers are given by Tay et al. [1997] (left
factored form):

K(Q) =V(Q)'U(Q) (7)
where
UQ)=U+QM, V(Q) =V +QN, Q € RHoo

Using the Bezout equation, the controller given either
by (7) can be realized as an lower LFT in the parameter

K(Q) = Ak, Q) (8)

)
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where Jg is given by

(vl vl
JK - < V—l _V—1N> (9)
d - €
o
U U, Yk Y
H, S,
JKi
Q

Fig. 2. Controller structure with parameterization for a
sampled data system.

The closed-loop operator describing the sampled-data
closed-loop system from input d to external output e had
been considered in Niemann and Stoustrup [2004]. It was
shown that the closed-loop operator is an affine operator
of @ as it is in the continuous-time case. The connection
between d and e is given by:

e = Geq(s)d

+Geu(s)H-(U(2) + M(Z)Q(Z))M(z)STGyd(S)C(l )
10
From (10), it is clear that the closed loop operator between
the external input d and the external output e is an affine
operator in Q). Therefore, the closed loop stability will not
be affected as long as @ is selected as a stable transfer
function.

3.2 The Dual YJBK Parameterization

Equivalent, there exist also a parametrization of all sys-
tems stabilized by one controller, i.e. the dual YJBK
parametrization. The parametrization is given by Tay
et al. [1997] (the left factored form):

Gyu(S) = M(S)7'N(S) (11)
where

N(S)=N+SV, M(S)=M+ SU, S € RHoo

An LFT representation of (11) is given by:

where Jg is given by
NM~t Mt
JG - ( M71 M1U> (13)

It can be shown that the dual YJBK matrix transfer
function S can be calculated by using the primary YJBK
parameterization. It turns out that S is given by a LFT:

S = Fu(Jr, Gyu(S)) (14)

The dual YJBK parameterization is the basis for the fault
diagnosis considered in the rest of this paper.

4. THE FAULT SIGNATURE MATRIX

The connection between the dual YJBK matrix transfer
function S and the fault parameters 6 has been considered
in details for continuous-time systems, see e.g. Niemann
[2003, 2006]. This connection is given by:

S(0) =T3,00(1 — Ty 90) ' Toyp
where T; 9 € RHo, © =1,2,3 are given by
Tl,@ = sz + quUMGyw
TZ,@ = quM

Ts0 = MGy

(15)

The strong connection between the parametric faults 6 and
the dual YJBK matrix transfer function S(6) given by (15)
and the importance in active fault diagnosis is evident. The
dual YJBK matrix transfer function S(#) is in this context
also named as the fault signature matrix.

(15) is valid for continuous-time systems and discrete-time
systems but not for sampled-data system. The reason is
that the derivation involves both continuous-time as well
as discrete-time elements. For continuous-time systems
(and also for discrete-time systems), the derivation of
the fault signature matrix S(6) is based on the following
relation:

Gyu(S) = Gyu(0) (16)
or L

M7 IN+M*SI+MUS) M~

= Gyu + Gyl — G,,0) G,
where G, (S) is given by (11). In the sample-data case,
first we need to consider the system G, () given by:
Gyu(0,2) = S:Gyu(0)H - (17)
or
Gyu(0,2) = S (Gyu + Gyuwd(I — GL00) ' GLu) My

= 8,GyuHyr + S Gyul(I — Gony0) ' GouH,

(18)
For sampled-data systems, (11) is given by:
S:Gyu(S)Hr = Gyu(2) + M'S(I+ MT'US) "M}
(19)
where Gy, (S) is considered as the real system, i.e.
S:Gyu(S)H, = Gyu(0, 2). Rewriting (19) gives:

S =MG(8,2)(M+US) (20)
or
S =MG,2)(I-UMG(,2)"*M (21)
where .
G(0,2) = S;Gyu(S)H, — Gyu(2)
(22)
= S, Gyl — G.u0) G,
or
G0,z) =M 'SI+M'US) M (23)

Using (22) in S given by (21) gives the following fault
signature matrix for sampled-data systems:

S(0) = MS,Gyub(I — G.00) 'GLuH,

x (I —UMS,Gyud(I — G,u0) 'GoH,) "M
(24)
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The fault diagnosis matrix for sampled-data system S(6)
given by (24) is a non-linear function of the parametric
faults 6 as in the continuous-time case. However, the fault
signature matrix for sampled-data systems is not as simple
as it is in the continuous-time case.

5. ACTIVE FAULT DIAGNOSIS

The fault signature matrix given above for the sampled-
data case will now be analyzed with respect to active fault
detection as well as active fault isolation in MIMO system.

Before an analysis of the fault signature matrix S(6) is
given, let’s consider the closed-loop system shown in Fig.
2. The block diagram without @ is shown in Fig. 3.

o

Jr

Ef +—— te———— Tk

Fig. 3. Controller structure with the YJBK parameteriza-
tion architecture for a sampled data system.

Compared with Fig. 2, € is the input vector to the YJBK
matrix transfer function @ and 7 is the output vector
from . Further, using the relation between the system
and S given by (14), we have directly that:

&k = 5(9)771@

This connection is used directly in active fault diagnosis
for closed-loop systems, where 7, is applied as an auxiliary
input vector. Further, it can be shown that the output
vector €y, is also a residual vector for the system. The fault
detection and isolation is then done by an investigation of
the signature from the auxiliary input vector in the output
vector or residual vector e;. This approach has been
considered in details in Niemann [2006] for continuous-
time systems. In Niemann and Poulsen [2014a,b], the
active fault diagnosis problem for MIMO systems has been
considered with respect to design the optimal auxiliary
inputs and residuals. It should also be noted that the
output vector e will also include signals from the other
external input d in real systems. However, the influence
of the disturbance d on &5 will not be considered in this

paper.

(25)

Let’s start the analysis with considering the fault free case.
From (24), we have directly the following simple relation
between parametric faults and the fault signature matrix:

S(#) =0, for § =0 (26)
This is the same simple condition as in the continuous-time
case, Niemann [2006]. Condition (26) gives a very simple
way to detect parametric faults in the system.

Detection of faults using the active approach is very easy
by using the condition given above. However, detection
of faults in MIMO systems or isolation of faults is more
complicated. To be able to select the correct auxiliary
input 7%, a more detailed analysis is needed. The analysis
will be done with respect to small faults. The reason is
that large faults are reasonable simple to detect and some
cases also possible to isolate. For small faults, the selection
of auxiliary input as well as also the output direction for
MIMO system to be able to both detect and isolate the
faults.

The fault signature matrix given by (24) will be analyzed
in two ways. The first method is based on a discretization
of the continuous time system and then analyzing the fault
signature matrix in discrete-time. The second method is to
make an approximation of the continuous-time system and
then discretize it. Both methods will give a fault signature
matrix with the same structure as known from continuous-
time systems.

5.1 Discretization of G(6)

The first approach is based on a discrete time description
of G(0) given by (23). The continuous-time part of system
has an LFT description given by:

5. { 2(t) = GLpw(t) + Gouu(t)
@) = Guw(t)

where the connection between the two external vectors w
and z is given by

(27)

w =0z

One approach to preserve the LFT structure in the system
through the discretization is describe in Toth et al. [2012].
Here, the discretization is done in every single element
in the system. For doing this, it is assumed that the
parametric fault matrix 6 in our case is constant between
the samplings. The discrete-time version of (27) is given
by:

~ 2k = STszHka + STquHTuk
PIE (28)
Yk = STGy’LUHka)
or _ _
~ 2k = szwk + quuk
DI _ (29)
Y = Gywwk
Using (29) in G(6, z) gives:
G(0,2) = Gyub(I — G.,0)'G, (30)

The fault signature matrix given by (24) is the given by:
S(0) = MGyu(I — G100) G :
o - - (31
(I —UMGy0(I — G10) *Go) ' M
Rewriting (31) gives

S(0) = MGyul(I — (Gow + GouUMGY,)0) " 1GLuM
(32)

The fault signature matrix given by (32) has now the
same structure as for the continuous-time case. The results
from Niemann and Poulsen [2014a,b] can now directly be
applied on the fault signature matrix for the sampled-data
systems given in (32).
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5.2 Approximation of the fault signature matriz

Instead of calculating G(6, z) such that the LFT structure
is preserved, a direct approximation of S(6) can be done.
This approximation is done by making a Taylor expansion
of S(#) around the nominal value of the fault vector 6.
Using the nominal value as 8 = 0, we get the following
linear function of the parametric faults 6;, i.e. S(6) is given

by:
a
S(0) ~ ——5(0)]o=0 | b:
@~ (55,50 )
For calculation the derivative of S, the following matrix
rules are used, Petersen and Pedersen [2008]:

H(XY) = (9X)Y + X (dY)

ox ' = - x1tox)x !

0X;;

Using these rules, the derivative of S(6) is given by:

9s() - 0G(0,2), o= .
7. =M 0, (I-UMG(0,2))"'M

+MG(6,2)(I — UMG(0,2)) "

(33)

= 01045

(34)
9G(0, 2)

00,
%(39) needs to be evaluated in the nominal point, i.e. for

UM—"2"22(I —-UMG(0,2))"'M

0 = 0. Evaluating G(6, z) in 6 = 0 gives directly

G(0) =0

Applying this in (34) reduce 359(:9) to the following simple

equation: ~
05(0) ~ 0G(0, z)
o =M——M
96, |70 20, (35)
The Taylor expansion in (33) is then given by:

9

(36)

K
= Z Slel
i=1
where S; = ML%(&Z)M.

The Taylor expansion given by (36) is a general result and

does not require that G,,(0) has a special structure. It

8G(0,2)
20,

requires only that can be calculated.

Now, assuming that G, (f) has an LFT structure, then

6%(5;2) can be calculated. 8%(0 2)

is given by:
0G(6, 2) _ 00
00; 5rGyu 09;

+8:G (I — Go) " Ceny

(I —GLwd) *GouH,

20 (37)
29,

(I - sze)_leuH‘r
Again, using § = 0 in (37) gives:

ell 0
%M:O = STGywiquHr

90; (38)

or ~
0G(0, 2)
00,
where J;; is a quadratic matrix with ”1” at (¢,4) and zero
elsewhere. Let G, and G, be partitioned into k£ columns
and k rows, respectively, given by:

|6’:0 = STGwaiiGZuHT (39)

Gyw - [(Gyw):,l te (Gyw):,k]

(qu)l,: (40)
qu =

(qu)k,:

Using (40) in (39) gives the following equation for the
derivative of G(0, z) with respect to 6;:

dG (9,
#M:o = ST(Gyw):,i(qu)i,:HT (41)
Using (41) in (35) gives:
05(6
aé)\go —o=MS, (Gyw):i(Gon)i Hr M (42)

The Taylor expansion in (33) is then given by:

MZS yw )i,:HToiM
i=1 (43)

k
= S0;
i=1

where S; = M S, (Gyw).i(Gan)iHe M.

The above results are discussed in next section.

6. DISCUSSION OF THE RESULTS

The above section, it has been shown that it is possible to
obtain a fault signature matrix for sampled-data systems
with the same structure as for continuous-time systems.
It is then possible to use the AFD results from the
continuous-time case directly in the sampled-data case.

In the first method described in Section 5.1, a dis-
cretization that will preserve the LF'T structure from the
continuous-time system in the discrete-time system. Here,
it is assumed that the fault matrix 6 is constant between
the samplings. This condition will in general be satisfied as
long as the changes in the parametric faults are reasonable.
Abrupt fault changes can also be handled, there might be
a sample or two where the discrete-time model does not
be exact correct.

The second method described in Section 5.2 is based on
a direct approximation of the continuous-time system for
small faults. This is done by using a Taylor expansion of
the sampled-data fault signature matrix given by (24). By
doing this, we get the same structure for the fault signature
matrix as considered in Niemann and Poulsen [2014a,b)
for continuous-time systems. These fault signature ma-
trices for both the continuous-time case as well as for
the sampled-data case are only valid for small parametric
faults. However, detection and isolation of small paramet-
ric faults can be difficult. Therefore, it is important to be
able to design optimal auxiliary inputs as well as residual
vectors. This is done by using the simplified fault signature
matrices.
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At last, it need to be pointed out, that the fault signature
matrix given by (21) is quite general. Here, there is no
assumption about the structure in the system. It is not
required that it has an LFT structure. The calculation
followed in (35) gives the general partial derivative of the
fault matrix with respect to a parametric fault ;. This
is a general result and is not only valid for sampled-data
systems.

7. CONCLUSION

Active fault diagnosis of parametric faults in closed-loop
sampled-data system has been considered in this paper.
The main focus has been on the fault signature matrix.
It is shown that this central matrix in AFD for closed-
loop systems does not have the same structure as for
continuous-time systems. The missing LFT structure in
the system through discretization has a direct influence on
the structure of the fault signature matrix. Two methods
have been described to obtain the same structure in the
fault signature matrix known from the continuous-time
case. Using dedicated discretization of the system, the
structure in the fault signature matrix can be preserved
for sampled-data systems. The other method is to make
a Taylor expansion of the system and then discretize it.
This will result in a structure in the fault signature matrix
that can be applied directly for both fault detection and
isolation.
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