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Design of manufacturable 3D extremal elastic

microstructure

Erik Andreassen∗, Boyan S. Lazarov, Ole Sigmund

Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels
Allé, Building 404, Denmark

Abstract

We present a method to design manufacturable extremal elastic materials.
Extremal materials can possess interesting properties such as a negative Pois-
son’s ratio. The effective properties of the obtained microstructures are
shown to be close to the theoretical limit given by mathematical bounds,
and the deviations are due to the imposed manufacturing constraints. The
designs are generated using topology optimization. Due to high resolution
and the imposed robustness requirement they are manufacturable without
any need for post-processing. This has been validated by the manufactur-
ing of an isotropic material with a Poisson’s ratio of ν = −0.5 and a bulk
modulus of 0.2% times the solid base material’s bulk modulus.

Keywords: topology optimization, auxetic material, microstructure,
additive manufacturing, inverse homogenization

1. Introduction

The focus of this paper is on the design of elastic three-dimensional ma-
terials with periodic microstructures manufacturable by additive manufac-
turing techniques like selective laser sintering (SLS) (see Kalpakjian et al.,
2010, for a description of the technique). The microstructures are built from
a single material with voids, and effective material properties are found by
numerical homogenization (Guedes and Kikuchi, 1990). The designs are ob-
tained using topology optimization without any post-processing by requiring
their performance to be insensitive with respect to uniform variations of the
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geometry like erosion or dilation (over- or under-etching). The requirement
for robustness leads to the definition of a minimum length scale in the topol-
ogy (Wang et al., 2011), and therefore any imperfections with dimensions
smaller than the defined length scale, which might appear due to uncertain-
ties in the production process, do not significantly affect the effective material
properties on macroscale.

The topology optimization method is an iterative design process, which
optimizes a material distribution in a given design domain with respect to a
specified objective function and a set of constraints. It is utilized in a broad
range of problems varying from pure mechanical designs (e.g. aerospace
structures (Krog et al., 2004)) to designs in electromagnetics and photonics
(e.g. Jensen and Sigmund, 2011). A popular introduction to the method
can be found in (Sigmund, 2000b), while a thorough description is given in
(Bendsøe and Sigmund, 2003). Already in (Sigmund, 1994) it is shown that
topology optimization can be used to design materials with a prescribed elas-
ticity tensor by inverse homogenization. Several papers followed on the design
of elastic materials (e.g. Swan and Kosaka, 1997; Theocaris and Stavroulakis,
1998) as well as (Sigmund, 2000a), where a new class of extremal compos-
ites were presented. Gibiansky and Sigmund (2000) demonstrate the method
on the design of three-phase elastic materials, and Sigmund and Torquato
(1999) extend this to obtain designs with prescribed thermal and electro-
thermal properties. Designs optimized for multiple properties, such as fluid
permeability and stiffness are shown by Guest and Prévost (2006).

The application of topology optimization to design structural materials
is an active field of research. Recent examples are given by Coelho et al.
(2011), who demonstrate how a multi-scale formulation can be used to design
a trabecular bone section, and Diaz and Sigmund (2010), who apply topology
optimization to design a so-called metamaterial with negative permeability
(electromagnetic). A thorough review of microstructure design by topology
optimization is given by Cadman et al. (2012).

Here, the procedure is exemplified by considering the design of manu-
facturable extremal elastic materials and negative Poisson’s ratio materials
(auxetic materials). Several examples of two-phase two-dimensional struc-
tures with negative Poisson’s ratio exist in the literature. Milton (1992) is
the first who found a family of two-dimensional materials with Poisson’s ratio
arbitrarily close to −1 within the framework of laminated elastic materials.
Later, Sigmund (2000a) shows that topology optimization can be applied to
the design of both two- and three-dimensional isotropic materials with nega-
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tive Poisson’s ratio. However, the obtained designs are not always manufac-
turable due to the thin hinge connections in the microstructure. Topology
optimization can also be applied to decrease Poisson’s ratio between two of
the principal directions (Sigmund et al., 1998; Schwerdtfeger et al., 2011) for
anisotropic materials.

Theoretically, all achievable effective elastic material tensors can be gener-
ated using so-called pentamode material microstructure (Milton and Cherkaev,
1995), which possess parts connected by infinitely thin hinges. These the-
oretical designs can hardly be produced, and their manufacturability for a
modified version with a finite extent is explored in a recent paper by Kadic
et al. (2012). The topology optimization procedure presented here ensures
manufacturability of the resulting microstructure. Furthermore, we demon-
strate that the optimized robust designs can reach the mathematical bounds
for three-dimensional isotropic materials in certain cases.

In the next section the mathematical formulation of the optimization
problem for the minimization of Poisson’s ratio is stated. A slightly mod-
ified formulation that can be used to optimize for other extreme material
properties is explained as well. In Section 3 the method used to achieve
manufacturable designs is described and illustrated. The optimized struc-
tures are presented and discussed in Section 4 together with measurements
on a manufactured version of the isotropic negative Poisson’s ratio material.

2. Optimization problem formulation

The objective and the constraints in the design process are calculated
by extracting material properties from the macroscale elasticity tensor. The
material is constructed by repeating a unit cell in all spatial directions. The
design is periodic and the effective elasticity tensor is obtained using numeri-
cal homogenization (e.g. Guedes and Kikuchi, 1990). A compact description
of the process is included in Appendix A.

The unit cell is discretized using first-order finite elements. A design vari-
able is associated with each element, which takes values between zero (void)
and one (element filled with material). A modified SIMP scheme (Bendsøe
and Sigmund, 2003), with a constant penalization factor of 3, is used to
interpolate between void and solid in each finite element. The continuous
design variables are updated by a standard topology optimization approach.
A full description of the method is outside the scope of the current paper
and here only the steps important to the design of material microstructures
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are discussed in details. A compact educational implementation of a typical
topology optimization procedure can be found in (Andreassen et al., 2011).

2.1. Minimizing Poisson’s ratio

The optimization problem for minimizing the effective Poisson’s ratio ν∗

can be stated as:

min
ρ

: ν∗ Poisson’s ratio

s. t.: Kχi = f i, i = 1, .., 6 Homogenization equations
K∗ ≥ aK, Bulk constraint∑
i,j

(
Ciso

ij − C∗
ij

)2
(Ciso

11 )
2 ≤ ε, i, j = 1, ..., 6 Isotropy constraint

1

|Υ|
∑
e

(veρe) ≤ V, e = 1, ..., N Volume constraint

0 ≤ ρe ≤ 1, e = 1, ..., N Element densities
(1)

where ρ is a vector of element densities, and ν∗ is the effective Poisson’s ratio
extracted from the homogenized elasticity tensor. K is the finite element
stiffness matrix for the discretized unit cell and χi are the displacement
vectors corresponding to six (three in 2D) different unit load cases f i (for
more details see Appendix A). K∗ is the homogenized bulk modulus, K
is the bulk modulus of the solid phase, a is the required minimum ratio
between bulk modulus of solid material and microstructure. C∗

ij and Ciso
ij are

entries in the homogenized constitutive matrix and a corresponding isotropic
constitutive matrix, respectively. ε is a small number (e.g. 10−5), |Υ| is the
volume of the considered unit cell, ve is the volume of each finite element in
the unit cell, ρe is the corresponding density, and V is the ratio between the
allowed solid material volume and the total unit cell volume.

The bulk modulus constraint ensures a minimum stiffness of the mate-
rial. An alternative formulation would be to impose a limit on the effective
Young’s modulus. The isotropy constraint ensures that the material proper-
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ties are isotropic in all spatial directions. Ciso is defined as:

Ciso
ii = (C∗

11 + C∗
22 + C∗

33)/3, i = 1, 2, 3 (2)

Ciso
ij = (C∗

12 + C∗
13 + C∗

23)/3, i, j = 1, 2, 3, i 6= j (3)

Ciso
ii = (Ciso

11 − Ciso
12 )/2, i = 4, 5, 6 (4)

Ciso
ij = 0 else, (5)

where C∗ is the homogenized constitutive matrix. The isotropy constraint
can be changed to a cubic symmetric constraint by substituting Equation (4)
with

Ciso
ii = (C∗

44 + C∗
55 + C∗

66)/3, i = 4, 5, 6 (6)

The nonlinear optimization problem defined by Equation (1) is solved us-
ing the gradient-based Method of Moving Asymptotes (MMA) (Svanberg,
1987) with analytical sensitivity computations. The topology optimization
problem is regularized by a projection scheme combined with the so-called
robust optimization formulation (Wang et al., 2011; Lazarov et al., 2011)
which ensures black and white (0/1) designs with a minimum length scale.
When using a projection approach, it is advisable to gradually increase the
projection parameter β (going from a linear function to a step function), and
we use a continuation scheme similar to the one in Wang et al. (2011); how-
ever, the continuation scheme is only applied after the design has converged
with an initial β = 1. Filters and projection methods are discussed in depth
by Sigmund (2007) and more details on the robust optimization scheme are
given in Section 3.

2.2. Analytic bounds for isotropic materials

By substituting the objective function in Equation (1) with a maxi-
mization of the effective shear modulus G∗ and varying a, or alternatively
maximizing K∗ and having a constraint on G∗, material structures close
to the Hashin-Shtrikman bounds can be found. For an isotropic material
with microstructure consisting of one material with voids the upper Hashin-
Shtrikman bounds (Hashin and Shtrikman, 1963) on the effective bulk K∗

and effective shear modulus G∗ are given as:
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K∗ ≤ 4GKV

4G+ 3K (1− V )
, (7)

G∗ ≤ G+
1− V

6

5G

(K + 2G)V

(3K + 4G)
− 1

G

, (8)

where V is the volume fraction of base material, K the bulk modulus, and
G the shear modulus of the base material. The corresponding lower bounds
are zero. It should be pointed out that the upper limit on K∗ also holds
for cubic symmetric materials. For two-dimensional materials the improved
Cherkaev-Gibiansky bounds (Cherkaev and Gibiansky, 1993) can be used as
well. Berryman and Milton (1988) have presented improved bounds correlat-
ing K∗ and G∗ for two-phase isotropic three-dimensional materials, however,
for the case considered here, where one phase is void, those bounds coincide
with the Hashin-Shtrikman bounds.

3. Manufacturable design

The designs obtained by standard topology optimization without projec-
tion and the requirement for robustness possess gray scale, i.e., design values
between zero and one. Such solutions of the optimization problem require
post-processing before manufacturing. For two-dimensional structures it is
relatively easy to manually correct the design and verify it. However, for
three-dimensional structures, with complex designs, the post-processing and
the verification process can be prohibitive. Therefore, to be of real practi-
cal use when designing microstructures, the topology optimization process
must result in designs ready for manufacturing. A standard smoothing or
thresholding might be necessary to generate an STL-file for the SLS pro-
cess, but preferably no manual decision-making, as this can easily violate the
constraints imposed on the design and decrease performance.

3.1. Isotropic minimum Poisson’s ratio design

The first examples where Poisson’s ratios are minimized are two-dimensional,
as it is relatively easy to illustrate the effect of lack of robustness here. A
base material with ν = 0.3 is considered in the optimization process. De-
signs with density and sensitivity filters obtained without any manufacturing
constraints are shown in Figure 1. The design in Figure 1a is a result of an
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(a) (b)

Figure 1: Minimum Poisson’s ratio design obtained with standard filtering.
In both cases a linearly decaying filter with a radius of 1/10 of the unit cell
side length was used. Other parameters are: a = 0.2%, ε = 10−5, N = 10000,
and V = 35%. (a) Sensitivity filter started from a random distribution of
densities. (b) Density filter started from the design in (a). The box in the
corner encloses one unit cell.

optimization with a random initial distribution of densities. To make the
visual comparison of the microstructures straightforward, the optimizations
for the other 2D designs presented in this initial example (Figure 1b and 2b)
have been run with the design from Figure 1a as an initial guess. Starting
with a random guess results in similar but shifted or flipped designs, obscur-
ing the possibility of direct comparisons. All the three-dimensional designs
presented in Section 4 are results of optimizations with random initial density
distributions. The constitutive matrices for the microstructures in Figure 1
are:

C∗
a = 10−2E·

 1.50 −1.21 0.00
−1.21 1.50 0.00

0.00 0.00 1.35

 , C∗
b = 10−2E·

 0.77 −0.49 0.00
−0.49 0.77 0.00

0.00 0.00 0.63

 ,

(9)
which imply isotropic materials with Poisson’s ratios of

ν∗a = −0.81, ν∗b = −0.64. (10)
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However, the gray transition areas, imposed by the filters, correspond to
porous regions. It is not possible to manufacture these designs without post-
processing, and it is not possible to say a priori how the post-processing will
change the constitutive matrix. Due to the nature of the filters these areas
are more pronounced for the density filter despite that the same filter radius
was used for both cases.

It shall be pointed out that the designs in Figure 1 have been generated
with a constant filter size, as opposed to the designs in e.g. (Sigmund, 1994),
where the filter radius was gradually decreased during the optimization pro-
cess. With a gradually decreasing filter radius both designs would become
black and white, but at the risk of loosing the length scale and potentially
getting one-node hinges (infinitely thin structures). The same holds for the
case where a simple projection is used on top of the filter (Sigmund, 2007;
Wang et al., 2011), as discussed in the next section.

3.2. Black and white design

In Figure 2a the microstructure resulting from an optimization where a
projection is used on top of the density filter is shown. The resulting design
become black and white, and has the constitutive matrix

C∗ = 10−2E ·

 2.81 −2.53 0.00
−2.53 2.81 0.00

0.00 0.00 2.67

 , (11)

implying a Poisson’s ratio of -0.90. The lower bound on the bulk modulus
prevents one node hinges from forming, and, thus, removing a tiny strip of
material from the structure uniformly (eroding it), would decrease the Pois-
son’s ratio further. This is illustrated in Figure 3a, however, at some point
the material would become disconnected, because the hinges are completely
eroded away and connectivity lost. As one can deduce from Figure 3a, this
happens around a volume fraction of 0.33. When the material becomes dis-
connected, it does not make sense to talk about a Poisson’s ratio, but since
we model void as an extremely soft material, it can still be computed. In-
creasing the material in the structure uniformly (dilating it) will make the
hinges less pronounced and this is reflected in a higher Poisson’s ratio in
Figure 3a. Furthermore, the only point on the graph in Figure 3a that sat-
isfies the isotropy constraint is the one we optimized for (V = 35%). How
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to achieve a microstructure that is robust (for both the objective and the
constraints), w.r.t. to removing or adding material, is illustrated in the next
section.

3.3. Robust design

Manufacturable designs can be obtained using the approach suggested
in (Sigmund, 2009; Wang et al., 2011), which is referred to as deterministic
robust formulation. The optimized designs in this formulation are required
to perform equally well if they are eroded or dilated. The objective function
is substituted with

min
ρ

: max (ν∗, ν∗d , ν
∗
e ) , (12)

where ν∗d and ν∗e are the effective Poisson’s ratios of the dilated and eroded
structures, and ν∗ is the effective Poisson’s ratio of the blueprint (intermedi-
ate) design supplied to the manufacturer. The three designs are required to
be isotropic. The filter radius of 0.10 is the same as before, which combined
with the applied projection thresholds ensures a minimum length scale of
0.09 (see Wang et al., 2011). The bulk modulus constraint is applied only on
the eroded case, since it is the weakest of the three structures. The deter-
ministic robust formulation results in a design shown in Figure 2b, with an
effective constitutive tensor

C∗ = 10−2E ·

 2.40 −1.85 0.00
−1.85 2.40 0.00

0.00 0.00 2.12

 , (13)

which corresponds to a Poisson’s ratio of −0.77.
In Figure 3b the dependence of the objective with respect to uniform

dilation or erosion is illustrated. Eroding the design further than the selected
erosion threshold improves the effective Poisson’s ratio. This effect is due to
the bulk modulus constraint. Without it, hinges appear in the eroded design
and the performance deteriorates immediately.

For the design with the objective shown in Figure 3b it seems that only
the dilated structure is active in the min/max objective function, hence,
one might be tempted to select only the dilated case in the optimization
process. However, we have observed that such a reduced formulation can
lead to poor performance since during the first few hundred iterations all
three designs play a role in the design update. Furthermore, the isotropy
constraint is active on all three designs. Since manufacturing tolerances

9



(a) (b)

Figure 2: Negative Poisson’s ratio structures obtained with (a) a projection,
and (b) robust formulation. Parameters are the same as for the designs in
Figure 1, except for the volume constraint in the robust formulation, which
is applied on the dilated design and is set 15 percent higher. The design in
Figure 1a is used as the initial guess.

are taken into account, Poisson’s ratios very close to −1 are not achievable
(pure hinges are prohibited, cf. (Kadic et al., 2012)), however the blueprint
design is manufacturable without any amendments. Materials with Poisson’s
ratios of −1 can be created with mechanism-like structures built from trusses
connected through hinges that do not resist bending; imperfect hinges will
limit the achievable Poisson’s ratio.

As discussed by Wang et al. (2011) a minimum length scale is assured as
long as the topologies of the three designs are the same. Obtaining the same
topologies can be a challenge and difference in the topologies can severely
affect the performance. Including more projections in the optimization ob-
jective can give smoother transition between the designs. This case can be
naturally handled by modeling the projection threshold as a random vari-
able. Such a formulation is presented by Lazarov et al. (2011) and is the
one we implemented and utilized for the three-dimensional designs discussed
in the next section. However, comparing designs from runs with more than
three design realizations and runs with only three design realizations, little
difference was found. Thus, for all the three-dimensional designs presented in
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Figure 3: Graphs illustrating variation of the effective Poisson’s ratio with
respect to erosion/dilation of the designs in (a) Figure 2a - projected design,
and (b) Figure 2b - robust design.

the next section, three designs (eroded, blueprint, and dilated) were included
in the optimization.

4. Three-dimensional design

The two-dimensional designs presented above illustrate how manufac-
turable material designs can be achieved. The approach is directly applica-
ble to three dimensions, with the main issue being the computational cost.
Therefore, the optimization results presented below have been obtained us-
ing a parallel implementation of the optimization process (Aage and Lazarov,
2013).

Our main example is a three-dimensional isotropic negative Poisson’s ra-
tio material, which has been manufactured in polyamid using SLS. Several
three-dimensional designs close to the theoretical limits mentioned in Section
2.2 are presented as well. Finally, we briefly discuss the computational cost.

4.1. Isotropic minimum Poisson’s ratio

The structure is manufactured using polyamid with Poisson’s ratio 0.4,
which is the base material in the optimization process. The 3D material
microstructure resulting from the optimization process is shown in Figure 4.
The effective constitutive tensor is:
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(a) (b)

Figure 4: 3D isotropic microstructure with Poisson’s ratio−0.51. a = 0.125%
is used for the stiffness constraint on the eroded design, while the isotropy
constraint parameter ε is set to 10−5 for all three designs. The solid volume
fraction of the dilated design is constrained to 40%. The initial guess is a
random distribution of densities. (a) One unit cell. (b) 3× 3× 3 unit cells.

C∗ = 10−2Epolyamid


3.42 −1.15 −1.15 0.00 0.00 0.00
−1.15 3.42 −1.15 0.00 0.00 0.00
−1.15 −1.15 3.42 0.00 0.00 0.00

0.00 0.00 0.00 2.28 0.00 0.00
0.00 0.00 0.00 0.00 2.28 0.00
0.00 0.00 0.00 0.00 0.00 2.28

 , (14)

which implies an isotropic material with a Poisson’s ratio of

ν = −0.51 (15)

The only physically realized three-dimensional isotropic material presented in
the literature with a comparable Poisson’s ratio is Lakes’ reentrant foam (see
e.g. Lakes, 1987). However, compared to the presented 3D microstructure,
the foam materials have a much lower bulk modulus. For the polyester foam
in (Lakes, 1987) K∗/K ≈ 10−6 (where K is taken for pure polyester), while
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K∗/K ≈ 2 · 10−3 for the structure in Figure 4. It should be mentioned
that Lakes’ design was a conceptual development - proving that it is indeed
possible to produce negative Poisson’s ratio material - based on insight, and
not the result of an analytical approach.

4.2. Experimental test

To validate the manufacturability of the three-dimensional design the
isotropic negative Poisson’s ratio material is produced in polyamid using an
SLS machine and Poisson’s ratio is measured using a simple compressive test.
A photo of the manufactured structure can be seen in Figure 7. It consists of
8× 4× 4 unit cells, with side lengths of 2 cm. The aspect ratio of 2 is chosen
to reduce the effect of the friction from the end surfaces when the sample is
compressed. Requiring an aspect ratio of 2, a specimen with 8 x 4 x 4 cells
was the biggest that could be manufactured in the SLS machine.

The experimental setup is shown in Figure 5. The loading is provided
by a hydraulic press while extensometers with a sensitivity of 0.01 mm are
used to measure the deformation of the sample along the longest and per-
pendicular lines located at the center of the sample. In the setup the load
on the sample could not be accurately controlled, so to assure full contact
between all surfaces before starting the measurements, a small prestress force
is applied. In order to avoid damage to the structure the load is increased
six times with the aim of achieving maximal vertical strain below one per-
cent. After each load increment the horizontal and vertical deflection values
are recorded. The deflection curves are shown in Figure 6. The two plots
correspond to the two short directions of the sample (the second direction
is obtained by rotating the sample 90 degrees around the long axis and is
perpendicular to the first).

As mentioned earlier the extensometers sensitivity is δ = 0.01 mm, hence
this, being a quantifiable source of measurement error, has been used to
generate the error curves in Figure 6. The upper curve is found by sub-
tracting 2δ from the horizontal displacements and adding 1δ to the vertical
displacements, while the lower curve is found by adding 2δ to the horizontal
displacements and subtracting 1δ from the vertical displacements. Consid-
ering the last measurement point, which has the smallest relative error, the
measured Poisson’s ratio of the material is −0.50 ± 0.03 for both sets of
measurements. Furthermore, there is only one measurement point where
the measured interval for Poisson’s ratio does not contain −0.51. Possible
reason for this behavior is the influence of the boundary conditions. The
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Figure 5: Experimental setup for measurements of Poisson’s ratio.

homogenization theory assumes an infinite extent of the material while the
sample only contains a finite number of unit cell. Other possible sources of
error are the local deformations at the measurement points for the two hor-
izontally aligned extensometer. To compensate for this we positioned them
on two opposite flat areas of the structure. It should be emphasized that
little influence on the measurements is observed if these extensometers were
repositioned, e.g., moved one unit cell vertically or horizontally. The results
presented here are from a single measurement and not an average of several
measurements.

In Figure 8 close-ups of the undeformed and deformed structure are com-
pared. It is clearly visible how the structure contracts in the horizontal
direction when compressed in the vertical direction. As already stated no
post-processing is performed on the structure before sending it to manufac-
turing and an STL-file of the unit cell is available for download from our
webpage www.topopt.dtu.dk/negativePoissonsRatio/unitCell.stl.

Ideally, the experimental test should consist of repeated measurements on
multiple specimens, but due to the manufacturing cost this was not feasible.
However, we encourage other researchers with manufacturing capabilities to
download the STL-file and conduct more advanced experiments.
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Figure 6: Deflection curves from measurements of Poisson’s ratio. In (a) the
sample was rotated 90 degrees around its longest axis compared to (b).

4.3. Theoretical limits

The negative Poisson’s ratio problem is used as a case example, because
it is difficult to obtain a manufacturable design. A negative Poisson’s ratio
material requires a large shear to bulk modulus ratio. The bulk and shear
modulus of the material in Figure 4 are plotted as a point (denoted Fig. 4)
together with the theoretical bounds in Figure 9. It can be seen that the
design is in the lower left corner. Designs can be obtained in the upper left
corner (cf. pentamode Milton and Cherkaev, 1995), however, it will be dif-
ficult to achieve manufacturabiliy for them. Several optimization runs are
performed to verify this conclusion. The resulting bulk and shear moduli of
these extremal materials are also shown in Figure 9. It should be pointed
out that the plot shows the moduli for the middle design which is different
than the mean moduli. For small erosion or dilation it will not change signif-
icantly due to the required robust performance. The hatched area in Figure
9 indicates where isotropic materials with a negative Poisson’s ratio can be
found.

First, consider the designs obtained with an isotropy constraint (ε =
10−5). The unit cells for the material designs corresponding to the points in
the graph are shown in Figure 10. The design corresponding to point a) is just
a disconnected unit cell without any stiffness. Setting constraint on the bulk
modulus and maximizing the shear modulus leads to the designs shown in b),
c) and d), where b) and c) have topologies similar to the negative Poisson’s
ratio cell. Maximizing the bulk modulus and constraining the shear modulus
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2 cm

Figure 7: Manufactured minimum Poisson’s ratio structure.

leads to the designs shown in h), g) and f). Maximizing the bulk modulus
without any constraints results in a Vigdergauz-like cell (Vigdergauz, 1989).

Also included in Figure 9 and 10 are two designs, points i) and j), for
which instead of an isotropy constraint a cubic symmetry constraint was
applied in the optimization (still with ε = 10−5). This is done to illustrate
that even for structures with cubic symmetry the upper left and lower right
corner are unachievable when the requirement for robustness is imposed in
the optimization.

Finally, it should be mentioned that a cubic unit cell is not necessarily
the best choice for design of isotropic materials. In 2D more extremal designs
can sometimes be obtained with a rectangular unit cell (Sigmund, 2000a). In
3D it is not clear what cell shape would be most beneficial. Due to the high
computational cost we have only utilized a cubic unit cell in our numerical
experiments.

4.4. Computational issues

Design of three-dimensional structures requires extensive computational
power, since the number of degrees of freedom explodes (the curse of dimen-
sionality). A two-dimensional problem with 1002 elements will have 20000
degrees of freedom (dofs). In 3D discretizing the unit cell with 1003 elements
equates to three million dofs.
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(a)

(b)

(c)

(d)

(e)

Figure 8: Visualization of the structure deformations. (a) Undeformed unit
cell on left side, (b) deformed version. (d) Undeformed unit cell on right
side, (e) deformed version. (c) Three bottom rows of the sample. The blue
selections indicate the positions of the close ups. The negative Poisson’s
ratio behavior is illustrated by how both sides contract (the black edge area
becomes larger).

The number of iterations in each optimization run varies, but all the
optimization results in this paper took more than 1000 iterations. In each
iteration three state problems are solved (eroded, blueprint, and dilated de-
sign), and an optimization run with 1000 iterations takes approximately 10
hours on 120 CPU cores.

The time per iteration is not constant, because the solutions of the state
problems are obtained iteratively using a preconditioned conjugate gradient
method (PCG). Its convergence depends on the effectiveness of the sup-
plied preconditioner. The classical preconditioning techniques like incom-
plete factorization, diagonal and block-diagonal scaling cannot ensure a con-
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Figure 9: Hashin-Shtrikman bounds and effective moduli for several topology
optimized designs. The base material properties are the same as for the
structure in Figure 10, and the volume fraction of the blueprint design is
constrained to 33.8% (corresponding to the design in Figure 10). Unit cells
corresponding to the points are shown in Figure 10.

stant number of iterations with increasing number of dofs. To save time in
3D we split the optimization into two parts. First, an optimization with a
coarser mesh (503 elements) is performed. The result of this optimization
is used as an initial guess for the fine mesh optimization. For the design
presented in Figure 4 the number of coarse mesh iterations was around 3000,
while the fine mesh optimization, with the coarse mesh initial guess, needed
less than 500 iterations.

5. Conclusion

Topology optimization is now mature enough for optimization of directly
manufacturable three-dimensional materials. With the presented method
the optimized designs can directly be manufactured without any need for
post-processing. This is especially important when working with three-
dimensional structures, since post-processing is hardly possible without de-
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Figure 10: Unit cells for the extremal microstructures in Figure 9.

creasing performance or violating imposed constraints.
It is relatively easy to optimize for a stiff material, and with the pre-

sented method a one length-scale Vigdergauz like structure is obtained. The
presented formulation can be used to optimize for other extremal elastic mi-
crostructures, such as negative Poisson’s ratio, without any amendments.
This is illustrated with the manufacturing of an isotropic material with a
Poisson’s ratio of −0.5. Finally, it should be pointed out that the extension
to multiphase materials is straightforward, however the resulting structures
would require more complex manufacturing processes.
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Appendix A. Numerical homogenization

Assuming a perfectly periodic material with infinite extent in all dimen-
sions, the effective elasticity tensor can be computed by homogenization (e.g.
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Guedes and Kikuchi, 1990). Here, a description of the numerical procedure
is presented in a compact form together with the gradients of the effective
tensor components with respect to a design variable.

The domain occupied by a single periodic unit cell is denoted with Υ. It
is discretized using finite elements and the stiffness matrix of the discretized
structure (Zienkiewicz et al., 2005) can be written as

K =
N∑
e=1

∫
Ve

BTCeBdVe, (A.1)

where N denotes the finite elements number. The matrix B is the strain-
displacement matrix, Ce is the constitutive matrix for the element, which in
topology optimization will depends on the density of the element, and Ve is
the domain of element e.

To find the effective properties of the material the following finite element
problem is solved with six load cases (three in 2D):

Kχi = f i, i = 1, ..., 6, (A.2)

where the displacement vectors χi are assumed to be Υ periodic, and the
loads f i correspond to unit strain fields computed as

f i =
∑
e

∫
Ve

BTCeε
i, (A.3)

where the unit strains are

ε1 = (1, 0, 0, 0, 0, 0)T , ε2 = (0, 1, 0, 0, 0, 0)T , and so on (A.4)

With the computed displacements, the homogenized constitutive matrix C∗

can be found as

C∗ =
1

|Υ|

N∑
e=1

∫
Ve

(I−Bχe)
T Ce (I−Bχe) dVe, (A.5)

where χe contains six columns corresponding to the six displacement fields,
and I is a six times six identity matrix. The term Bχe can be interpreted as
the strains caused by the non-homogeneous material distribution.

Using the adjoint method it can be shown that the sensitivity of C∗ with
respect to change in an element design variable is:
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∂C∗

∂ρe
=

1

|Υ|

N∑
e=1

∫
Ve

(I−Bχe)
T ∂Ce

∂ρe
(I−Bχe) dVe.
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