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Summary (English)  

Antibiotic drugs are important in treating bacterial infectious diseases in humans and animals. There 

are severe consequences when infectious bacteria become resistant to antibiotics such as treatment 

failure and even death. Since antibiotics were discovered, their use has been associated with a 

parallel selection for resistant bacteria. Since the hazards related to antibiotic resistance 

development have been recognized, the prudent use of antibiotics has been in focus, especially 

concerning their use in animal production. For many years antibiotics have been, and still are, 

recklessly used in the animal production especially in the form of growth promoters.  Due to the 

associated risks of resistant zoonotic bacteria transmission from animals to humans, it is of interest 

to keep antibiotic use and antibiotic resistance under strict surveillance. 

This PhD study was based on the development of real-time PCR (qPCR) assays that supply an easy 

and rapid method for quantifying antibiotic resistance levels in animal herds. The pig production is 

accountable for a large portion of the antibiotics used for food producing animals in Denmark. 

Therefore, the antibiotic resistance genes included in this study had previously been described in 

association with pig herds, and they encoded resistance to antibiotics used in the Danish pig 

production. 

The first objective had emphasis on the qPCR assays’ design and development. The goal was to 

design 10-20 qPCR assays representing different antibiotic classes that ultimately would be tested 

in a swine herd. A total of 14 assays were developed, representing the following antibiotic classes: 

Tetracycline (tet(A), tet(B), tet(C), tet(M), tet(O), tet(W)), β-lactam (blaSHV family, blaCTX-M-1 

group, blaCMY-2), sulphonamide (sulI, sulII), macrolide, lincosamide, and streptogramin B (ermB, 

ermF), and glycopeptide (vanA).The glycopeptide vanA gene was included as a follow-up to the 

avoparcin growth promoter ban implemented in Denmark in 1995. Besides the 14 antibiotic 

resistance gene qPCR assays, a 16S rDNA assay was also included.  

Manuscript I was an investigation of the affects PCR conditions had on the diversity and prevalence 

of antibiotic resistance genes detected in swine manure.  This work was carried out in Dr. 

Zhongtang Yu’s laboratory at The Department of Animal Science, The Ohio State University, 

Columbus, Ohio. At this point of the first objective, decisions were being made concerning qPCR 

chemistry (probe vs. DNA-binding dye) and mastermix composition. In this study, three cycle 

numbers and 4 MgCl2 concentrations were evaluated for their effect on the diversity and prevalence 

of ribosomal protection proteins (RPPs) in a 3 x 4 factorial design. Significant differences in genetic 

diversity and prevalence of tet genes were found amongst the cycle number and MgCl2 

combinations, and suggested that 35 PCR cycles and 7 mM MgCl2 enabled optimal detection of 

RPP genes in swine manure using the Ribo2_new_FW/Ribo2_RV primer pair. The results 

emphasized the importance of the PCR conditions when performing studies involving tet gene 

prevalence, and when results are interpreted. 

Upon completion of the qPCR assay development and optimization the project progressed to the 

second objective. The second objective was to establish if the qPCR assays could quantify 

antibiotic resistance genes in swine herds by comparing this principle to culture dependent 

antibiotic resistance detection. In order to do so, fecal samples in a swine herd were collected using 

different sampling methods that were also pooled at different levels. The antibiotic resistance levels 

were then determined both by the qPCR assays and coliform colony forming unit (CFU) estimates. 

Furthermore, the different sampling and pooling methods were evaluated. This established the 

qPCR assays’ capacity to quantify antibiotic resistance genes in a swine herd (Manuscript II). In 

order to compare the qPCR principle of antibiotic resistance quantification, 20 of the individually 
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sampled animals were randomly selected and analyzed by qPCR, coliform CFU counts, and colony 

hybridization using probes that correspond to the fragments amplified by the qPCR assays’ primers 

(Manuscript III). This study showed that it is important to define which bacterial population is 

relevant in achieving the specific goal of the antibiotic resistance quantification, and the method 

chosen for antibiotic resistance quantification has a large influence on the results obtained.  

The first and second objectives established that the qPCR assays could be utilized in quantifying 

antibiotic resistance genes in total DNA extracted from swine feces. It was also confirmed that 

qPCR and culture dependent antibiotic resistance estimates represent two completely different 

populations, and cannot be compared directly. Furthermore, pen floor sampling (pooled at stable 

level or not pooled), shoe cover samples (not pooled), and slurry tank samples were evaluated and 

are promising sampling methods when determining antibiotic resistance at herd level. 

The third objective involved the application of the qPCR assays in an animal population that was 

completely distant from the Danish pig production. Fecal samples from wildlife and Massai cattle in 

Tanzania were screened for the presence of the 14 antibiotic resistance genes using the qPCR 

assays. The wildlife and cattle samples were collected in the Ngorongoro Conservational Area 

(NCA) (wildlife and cattle interaction), and wildlife samples from the Mikumi National Park 

(MNP) (cattle are prohibited). Antibiotic resistant coliform bacteria estimates were also determined. 

This study constitutes Manuscript IV and the findings were surprising. The antibiotic resistance 

genes that were found in the cattle were also detected in the wildlife samples, regardless of the 

sampling site. Eight of the antibiotic resistance genes were detected in the samples, the most 

prevalent being tet(W) and blaCMY-2. Due to the nature of the blaCMY-2 antibiotic resistance 

spectrum, and the finding of this gene in 10 of 12 screened samples gives rise to concern. However, 

the finding of the blaCMY-2 gene in the wildlife further substantiates the qPCR assay as this gene was 

not detected in any of the pig samples collected and described in Manuscript II. Nevertheless, 

further studies should be conducted to study the antibiotic resistance gene pool among the wildlife 

in northern Tanzania. 

In conclusion, the 14 qPCR assays developed here successfully quantified antibiotic resistance in 

pig herds, where pen floor sampling (pooled at stable level or non-pooled), shoe cover sampling 

(non-pooled), and slurry tank sampling are promising sampling collection methods. The qPCR 

assays were also capable of detecting antibiotic resistance genes in Tanzanian wildlife and cattle 

samples representing a completely different population than the Danish pig production. Also, a gene 

not detected in the Danish pigs was detected in the Tanzanian wildlife and cattle samples further 

validating the qPCR assay. Generally, our results indicate that there is a large variation in the 

antibiotic gene abundance, regardless of animal species or sampling method. Furthermore, the level 

of antibiotic resistance detected at herd level largely depends on the method used for resistance 

detection.  Additional studies evaluating the sampling methods in several animal herds should be 

tested in order to assist in understanding the antibiotic resistance gene variation. This study 

illustrates the immensity of the antibiotic resistance problem and the necessity for systematic 

surveillance of antibiotic consumption and resistance development at global, national, and local 

scales.  
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Resumé (Dansk) 

Antibiotika er vigtig i behandlingen af bakterielle infektiøse sygdomme hos mennesker og dyr. Det 

kan have store konsekvenser som utilstrækkelig behandling og død når infektiøse bakterier bliver 

resistente imod antibiotika. Siden antibiotika blev opdaget, har brugen af antibiotika været 

associeret med en parallel selektion for resistente bakterier. Siden de farer som er relateret til 

udviklingen af antibiotika resistens blev anerkendt, har forsigtig brug af antibiotika været i fokus, 

især når det angår brugen hos produktionsdyr. I mange år har antibiotika været brugt, og bliver 

stadigvæk, brugt hensynsløst i produktionsdyr især i form af vækstfremmere. På grund af de 

associerede risici for smitte med zoonotiske resistente bakterier fra dyr til mennesker, er det af 

interesse at overvåge antibiotika forbruget og antibiotikaresistens meget nøje.  

Dette PhD projekt var baseret på udviklingen af ”real-time PCR” (qPCR) assays førende til en let 

og hurtig metode til at kvantificere niveauet antibiotikaresistens på besætningsniveau. 

Svineproduktionen står for en stor andel af det antibiotika der anvendes til produktionsdyr i 

Danmark. Derfor omfatter antibiotikaresistensgener der er inkluderet i dette studie nogle som 

tidligere har været beskrevet i sammenhæng med svinebesætninger. Disse gener koder for resistens 

imod antibiotika der bruges i den Danske svineproduktion.  

Det første formål i dette studie havde vægt på qPCR assays design og udvikling. Målet var at 

designe 10-20 qPCR assays, der repræsenterer forskellige antibiotikaklasser, som efterfølgende 

skulle afprøves i en svinebesætning. I alt 14 assays blev udviklet og repræsenteres af følgende 

antibiotika klasser: Tetracyklin (tet(A), tet(B), tet(C), tet(M), tet(O), tet(W)), β-laktam (blaSHV 

familie, blaCTX-M-1 gruppe, blaCMY-2), sulphonamid (sulI, sulII), macrolid, lincosamid, og 

streptogramin B (ermB, ermF), og glykopeptid (vanA). Glykopeptid vanA genet var inkluderet som 

en opfølgning på det avoparcin vækstfremmerforbud der blev implementeret i Danmark i 1995. 

Udover de 14 antibiotika resistensgener qPCR assays, er et 16S rDNA assay også inkluderet.  

Manuskript I beskriver en undersøgelse af de effekter PCR opsætningen havde på diversiteten og 

forekomsten af antibiotikaresistensgener, der blev fundet i svinegylletank. Dette arbejde  blev udført 

i Dr. Zhongtang Yus laboratorium på ”The Department of Animal Science, The Ohio State 

University, Columbus, Ohio”. På dette tidspunkt i forløbet var beslutninger omkring qPCR 

kemiparametre (probe vs. DNA-bindende farve) og mastermix sammensætning ved at blive truffet. 

I dette studie, blev tre cyklus antal og fire MgCl2 koncentrationer undersøgt for deres påvirkning af 

diversiteten og forekomsten af ”ribosomale protection proteiner” (RPPs) i en 3 x 4 faktorial design. 

Signifikante forskelle i gendiversitet og forekomsten af tet gener blev fundet blandt cyklus antal og 

MgCl2 kombinationerne. Femogtredve PCR cyklusser og 7 mM MgCl2 tillod optimal detektering af 

RPP gener i svinegylle ved brug af Ribo2_new FW/Ribo2_RV primer parret. Resultaterne 

understreger vigtigheden af PCR opsætningen når studier, der involverer tet gen forekomsten 

udføres, og når resultaterne fortolkes.  

Efter at qPCR assay udviklingen og optimeringen var afsluttet, fortsatte projektet mod det andet 

formål. Det andet formål var at fastlægge hvorvidt qPCR assaysne kunne kvantificere 

antibiotikaresistensgener i svinebesætninger ved at sammenligne dette princip med 

dyrkningsafhængig kvantificering af antibiotikaresistens. Til det brug blev fæces prøver opsamlet i 

en svinebesætning ved at anvende forskellige prøveopsamlingsmetoder, der også blev poolet på 

forskellige niveauer. Antibiotikaresistensniveauer blev derefter fastlagt både ved qPCR assays og 

coliforme ”colony forming unit” (CFU) estimater. Desuden, blev de forskellige prøveopsamlings- 

og poolingsmetoder evalueret. Dette fastslog qPCR assaysnes, evne til at kvantificere 
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antibiotikaresistensgener i en svinebesætning (Manuskript II). For at sammenligne qPCR 

antibiotikaresistents kvantificerings  princippet blev, 20 af enkeltdyrsprøverne tilfældigt udvalgt og 

analyseret ved qPCR, coliforme CFU estimater og kolonihybridisering. Til kolonihybridisering blev 

der benyttet prober som modsvarede DNA-fragmenter amplificeret af primerne fra qPCR assaysne 

(Manuskript III). Dette studie har vist vigtigheden i, at definere hvilken bakteriel population der er 

relevant for at opnå det specifikke mål af antibiotikaresistenskvantificeringen, og at den metode 

man vælger til at kvantificere antibiotikaresistens har en stor indflydelse på de opnåede resultater.   

 

Det første og andet formål fastslog at qPCR assaysne kunne anvendes til at kvantificere 

antitiobikaresistensgener i total DNA oprenset fra svinefæces. Det blev også her bekræftet at qPCR 

estimater af antibiotikaresistensgenniveauer og dyrkningsafhængig kvantificering af 

antibiotikaresistens repræsenterer to vidt forskellige bakterielle populationer, som ikke kan 

sammenlignes direkte. Derudover er stibundsprøver (poolet ved sektionsniveau eller ikke poolet), 

sokkeprøver (ikke poolet), og gylletanksprøver lovende opsamlingsmetoder, når antibiotikaresistens 

skal bestemmes på besætningsniveau.    

 

Det tredje formål omhandler anvendelsen af qPCR assaysne i en dyrepopulation som var fjern fra 

den Danske svineproduktion. Fæces prøver fra vildedyr og Massai kvæg i Tanzania blev screenet 

for tilstedeværelsen af de 14 antibiotika resistensgener ved brug af qPCR assaysne. Fæcesprøverne 

fra vildedyr og kvæg blev opsamlet i ”Ngorongoro Conservational Area” (NCA), hvor vildedyr og 

kvæg har kontakt, og der blev opsamlet prøver fra vilde dyr fra Mikumi National Parken (MNP) 

hvor der er kvæg forbud. Antibiotikaresistente coliforme bakterieestimater blev også fastlagt. Dette 

studie udgør Manuskript IV, og resultaterne var overraskende. De antibiotikaresistensgener der blev 

påvist i kvæg blev også påvist i vildedyrs prøverne, uanset prøveopsamlingstedet. Otte af de 14 

antibiotikaresistensgener blev påvist i prøverne. De hyppigste var tet(W) og blaCMY-2. På grund af at 

både blaCMY-2 antibiotikaresistens spektrumet og at dette gen blev fundet i 10 af de 12 undersøgte 

fæcesprøver fra vilde dyr, er der grund til bekymring. Dog er fundet af blaCMY-2 genet i prøverne fra 

vilde dyr en yderligere validering at qPCR assayen, da dette gen ikke blev påvist i nogle af 

svinefæcesprøverne der blev undersøgt og beskrevet i Manuskript II. Omfattende undersøgelser af 

antibiotikaresistensgenpoolen blandt vildedyr i det nordlige Tanzania bør derfor udføres.  

 

Det konkluderes, at det med de 14 qPCR assays som er udviklet i dette projekt lykkedes at 

kvantificere antibiotikaresistens i svinebesætninger. Stibundsprøver (poolet på sektionsniveau eller 

ikke poolet), sokkeprøver (ikke poolet), og gylletanksprøver viser sig som lovende metoder til 

indsamling af fæces prøver. qPCR assaysne var også i stand til at påvise antibiotikaresistensgener i 

vildedyr og kvæg fra Tanzania. Disse prøver repræsenterer en anden population end den danske 

svineproduktion. Ydermere, blev et gen, der ikke blev fundet i de Danske svin fundet i de 

Tanzaniske vildedyr og kvæg. Dette validerer det tilsvarende qPCR assay yderligere. Generelt 

indikerer vores resultater, at der er en stor variation i mængden af antibiotikaresistensgener, uanset 

dyreart eller prøveopsamlingsmetode. Derudover afhænger det detekterede niveau af 

antibiotikaresistens på besætningsniveau meget af den metode der anvendes til 

resistensbestemmelse. Yderligere studier der evaluerer prøveopsamlingsmetoder i flere 

dyrebesætninger bør testes for at bidrage til forståelsen for antibiotikaresistensgenvariationen. Dette 

studie illustrerer omfanget af antibiotikaresistensproblemet og nødvendigheden for systematisk 

overvågning af antibiotikaforbrug og resistensudvikling på globalt, nationalt og lokalt plan.  
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Introduction  

Bacterial resistance towards antibiotics is a global problem as there is an ongoing battle between 

development of new drugs and subsequent resistance among the target bacteria. Despite attempts in 

outsmarting the bacteria, e.g. by developing novel drugs with different targets, the bacteria 

eventually succeed due to mutations leading to antibiotic resistance and consequent survival. 

Commensal bacteria may become a reservoir of resistance genes for pathogenic bacteria, where 

antibiotic resistance may consequently spread to zoonotic bacteria such as Escherichia coli, 

Salmonella spp., and Campylobacter spp. possibly complicating disease and challenging treatment, 

if humans become infected 
1
. Furthermore, resistant bacteria can both cause production and 

economic loss in food producing animals and negatively affect animal welfare. Surveillance of 

antibiotic resistance can be a powerful tool in providing information for antibiotic resistance 

containment and for evaluating the effects of an intervention 
2
.  

In 2012, 112.3 tons of antibiotics were used in animals in Denmark where the pig production was 

responsible for 76% of the antibiotic consumption 
3
. It is therefore of interest to evaluate the risk of 

antibiotic resistance spread within food producing animal herds, and to find a method that rapidly 

can give an estimate of the antibiotic resistance at the herd level. Proper detection and surveillance 

of antibiotic resistance enables precaution when choosing a drug for disease treatment. This makes 

it possible to help avoid further resistance development and treatment complications thus both 

increasing animal welfare and decreasing the risk of resistance development in pathogenic bacteria. 

In this project, swine herds are used as a prototype for antibiotic resistance quantification in animal 

herds, and the antibiotic resistance genes are included based on the extent of the antibiotic use in the 

Danish swine industry (For an overview of the included genes see Table S1). 

Aim of the PhD study  

The aim of this thesis is to develop real-time PCR (qPCR) assays that quantify antibiotic resistance 

genes ultimately functioning as a quantitative measure for determining antibiotic resistance at herd 

level. The qPCR assays will be compared to traditional methods for determining antibiotic 

resistance including cultivation of coliform indicator bacteria on selective and indicative media.  

The qPCR assays may be used in attaining a rapid and inexpensive documentation of antibiotic 

resistance levels within animal herds, enabling precise recommendations concerning the use of 

antibiotics in food producing animals. The present thesis focuses on the development and validation 

of the qPCR assays and the proof-of-concept for antibiotic resistance level quantification in swine 

herds using qPCR.  

The project was divided into three main objectives: 

 To develop and optimize qPCR assays that can be used to quantify antibiotic resistance 

genes in a swine herd.  

 To establish if the qPCR assays could quantify antibiotic resistance genes in swine herds by 

comparing this principle to culture dependent antibiotic resistance detection.  

 To apply the qPCR assays in another animal population than swine herds.  
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This thesis contains a chapter providing a general insight in detection and surveillance of antibiotic 

resistance, antibiotic usage and monitoring in Denmark, and a brief description of the pig 

production types in Denmark (Chapter 1). The next section (Chapter 2) describes the mechanisms 

of antibiotic resistance for tetracyclines, β-lactams, sulphonamides, glycopeptide, and macrolide, 

lincosamide, and streptogramin B antibiotics which are those included in the PhD study. Finally 

(Chapter 3) the research activities are provided and the main results and conclusions of this PhD 

study are described and discussed, and future perspectives are summarized.  
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1 CHAPTER 1 – Background 

1.1 Culture dependent detection of antibiotic resistance in animal herds 

The present methods for quantifying the degree of antibiotic resistance within animal herds include 

culture of indicator bacteria that are present in all healthy animals, e.g. Escherichia coli, and 

Enterococcus faecalis, and characterization of these isolates with respect to antibiotic susceptibility 
1,4

. Fecal samples are attained from a random sample of animals, cultured on selective and 

indicative media and susceptibility is determined as Minimum Inhibitory Concentration (MIC) 

value of different antibiotics, or by disk diffusion test (Bauer-Kirby Procedure) 
5
. Alternatively, the

amount of colonies of a given bacterial species that grow at a given concentration of antibiotic can 

be counted giving the number of colony forming resistant units (CFU) per gram feces. Multiple 

plates can be used to enable multiple drug testing.  

Colony hybridization is a growth dependent genotypic method that enables detection of antibiotic 

resistance determinants both in phenotypically resistant bacteria and bacteria not exhibiting 

phenotypic resistance 
6
. In principle, the collected samples are homogenized, diluted, and spread on

indicative and selective plates each containing an antibiotic of interest. The bacterial colonies that 

grow are then replica plated onto a filter where they are lysed with subsequent DNA fixation to the 

membrane. The resulting bacteria colony DNA-prints are then hybridized to a labeled probe 

complimentary to the antibiotic resistance DNA sequence of interest. The results of the 

hybridization are then analyzed by autoradiography 
7
.

These methods only enable investigation of the cultivable fraction of the gut microflora which is 

further narrowed down to the denoted indicator species. This may introduce bias by underestimating 

the antibiotic resistance levels in the true bacterial population and consequently the animal herd 
8
.

The relative numbers of resistant bacteria ((number resistant bacteria/total number of bacteria (both 

resistant and susceptible)) can also change due to changes in the number of resistant bacteria and/or 

changes in the number of total bacteria 
8
.

1.2 Culture independent detection of antibiotic resistance in animal herds 

Due to the cultivable limitations and potential interpretation errors involved in phenotypic antibiotic 

resistance determination, alternative DNA-based methods are increasingly in focus 
9
.  The

advantage of these alternative methods is the capability of detecting antibiotic resistance in slow-

growing or non-cultivable bacteria reflecting the community’s entire gene pool 
8
.

1.2.1 Real-time polymerase chain reaction (qPCR) 

Polymerase chain reaction amplification (PCR) duplicates the amount of DNA after each round of 

amplification where both products and negative and positive controls can be visualized after 

agarose gel electrophoresis 
10,11

. In real-time PCR (qPCR) the amount of DNA is measured after

each cycle of amplification by means of a fluorescent marker so gel electrophoresis is not 

necessary. The increase of fluorescent signal is directly proportional to the number of PCR product 

amplicons generated in each PCR cycle. The use of standard curves enables calculation of the initial 

quantity of genetic material. There are two types of qPCR principles. The first principle entails 

DNA amplification by primers that are complementary to the DNA target, thereafter a fluorescent 
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dye binds to all double stranded DNA products and fluorescence can be detected. Here, it is 

necessary to check for primer dimers and contamination by means of a melting curve analysis as the 

fluorescent dye binds all double-stranded DNA.  

The second principle utilizes a fluorescent probe, which is complementary to the target DNA 

amplified by the primers. The probe binds specifically to the target DNA and once the sequence is 

amplified by the primers and DNA polymerase the fluorescent marker is released actively emitting 

fluorescence. The probe chemistry is more specific than the fluorescent dye as there are three 

specific DNA sequences (two primers and one probe) that must complementarily bind to the target 

DNA in order for fluorescence to be emitted and detected.  

 qPCR has shown useful in quantification of antibiotic resistance genes in fecal samples and fecal 

contaminated environments 
11-13

 and is the selected culture independent method in this study. Due 

to the high similarity between several of the genes, probe based chemistry was used in order to 

heighten the specificity. Ultimately, qPCR may become an alternative e tool in objectively 

measuring the degree of resistance development in the gut microflora and certifying the presence or 

absence of specific antibiotic resistance genes at herd level. While qPCR quantification of DNA 

entails information on the presence and quantity of certain genes, using cDNA may provide further 

information giving an impression of gene activity. 

 

1.2.2 Metagenomics 

Metagenomics is the study of the genetic material of bacterial populations that is directly isolated 

from their natural environment circumventing both isolation and culture of individual bacterial 

species 
14

. DNA sequencing techniques such as “sequence-based metagenomics” enables detection 

and characterization of both known and unknown antibiotic resistance genes 
15-17

. In sequence-

based metagenomics DNA is directly extracted and randomly sequenced from e.g. feces 
18

. The 

randomly sequenced DNA is assumed to represent a fraction of the sample’s entire bacterial 

community. Resistance genes and/or mutations that are known to lead to resistance are subsequently 

identified by comparing the metagenomic sequences to known reference sequences found in 

available databases 
18

.  

A recent study used the sequenced-based metagenomic approach to track changes in microbial 

membership and encoded functions within swine intestinal microbiomes 
19

. The metagenomes 

revealed that the swine harbored several antibiotic resistance genes in the absence of selective 

pressure. However, antibiotic administrations lead to a clear increase in resistance gene abundances, 

which became homogenous over time 
19

. So-called “collateral” effects of antibiotic treatment e.g. 

increases in E.coli populations, and genes encoding functions that may be involved in enhanced 

stability and spread of resistance genes within a microbial community, were also demonstrated 
19

.   

Functional metagenomics entails total DNA extraction from an e.g. fecal sample. After DNA 

extraction, a smaller DNA fragment between 1-3 kilobases is cloned into an indicator bacteria 

strain, such as E.coli, that is susceptible to antibiotics. The successfully transformed bacteria harbor 

the cloned DNA fragment and are consequently resistant to antibiotics. They will therefore grow on 

the antibiotic-containing agar plates. The resistant colonies are then selected and their DNA inserts 

are amplified and sequenced in order to identify the antibiotic resistance genes 
15-17

. This method 

enables rapid insight in novel resistance gene development as well as an understanding of the 

general resistance gene profile of a bacterial community. 
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1.2.3 Flow cytometry 

Flow cytometry can be utilized to count, detect or sort individual fluorescent labeled cells passing in 

a stream through a laser beam. Individual cells can be marked by pre-treatment with specific 

monoclonal antibodies labeled with fluorescent dyes, or they can be incubated with different types 

of dyes that are fluorescent e.g. after intracellular metabolization. This can be utilized in antibiotic 

susceptibility testing. In principle, bacteria that are grown in enrichment broth can then be incubated 

in broths containing a panel of test antibiotics. At the end of the antibiotic incubation period a 

fluorescent dye can then be added followed by flow cytometric analysis.  

In one study, fluorescein diacetate (FDA) (Sigma) was utilized in antibiotic susceptibility testing of 

Mycoplasma tuberculosis 
20

. FDA can freely diffuse across cell walls and membranes of M.

tuberculosis where it is hydrolyzed to free fluorescein. Inactive and nonviable bacteria will have a 

decreased metabolism resulting in less FDA hydrolyzation and less fluorescein than viable cells 

when detected by flow cytometry. A determination of susceptibility can thus be made when 

comparing the fluorescence from control bacteria incubated in broth only to bacteria incubated in a 

panel of test antibiotics. The same principle was also used to test the antibiotic susceptibility in 67 

bacterial strains 
21

.  Here, another dye was used, namely bis-(1,3-dibutylbarbituric acid)

trimethineoxonol (DiBAC4)  (Invitrogen/Life technologies). DiBAC4 accumulates within the 

cytoplasm of depolarized bacteria binding intracellular proteins or membranes resulting in an 

increase in fluorescence compared to viable bacteria 
21

. The advantage with flow cytometry is that it

is rapid and besides testing standard susceptibility it is also possible to investigate morphological 

changes in individual bacterial cells or surface protein expression 
21

.

1.3 Surveillance of antimicrobial resistance 

1.3.1 Reasons for surveillance 

Exposure of a bacterial population to antibiotics increases the potential risk for a selection favoring 

bacteria with antibiotic resistance genes. If these bacteria cause disease, treatment can be 

compromised leading to increased mortality and morbidity with economic consequences associated 

with increased care, diagnostic-, and treatment- costs 
22,23

. Preventing and controlling infections

caused by antibiotic resistant bacteria can be facilitated by monitoring not only the distribution of 

the actual infection, but also the antibiotic resistance patterns. Together, this information may 

support control of disease and prevent further emergence of resistance 
23

. Surveillance of antibiotic

resistance and use can be beneficial in providing the necessary information for antibiotic resistance 

containment by assisting in the choice of antibiotics and treatment regimes. Furthermore, long term 

surveillance is important when evaluating the effects of an intervention 
2
.

1.3.1.1 Surveillance at national level 

Surveillance of antibiotic resistance at national level can facilitate in prioritizing during 

epidemiological implementations concerning diseases caused by antibiotic resistant bacteria and can 

assist in containing antibiotic resistance development. A national surveillance plan involves a 
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national reference laboratory with close epidemiological collaboration 
23

. National surveillance is 

based on monitoring antibiotic resistance in chosen indicator bacteria and pathogenic bacteria 

isolated from clinical specimens that are relevant for the particular country 
23

.  Indicator bacteria, 

veterinary and/or human pathogens, and zoonotic bacteria are systematically isolated from food 

producing animal samples such as cattle, pigs, and poultry 
2,3

. The indicator bacteria samples are 

taken from the intestines at the slaughter house, for example one sample per group of animals 

coming at slaughter 
2
. The number of strains to collect depends on the resistance prevalence, but 

minimum 60 isolates of each bacterial species and preferably up to 250 isolates should be collected 

from each food producing animal type 
2
. The veterinary/human pathogenic bacteria samples are 

included from routine testing in diagnostic laboratories. This data can be included in the national 

surveillance given that the laboratory methods used for bacterial identification and susceptibility 

testing are standardized 
2
. The samples used for surveillance of antibiotic resistance in zoonotic 

bacteria are collected at primary production sites i.e. herds and flocks, where the survey is focused 

on the 5 most frequently isolated serotypes from human infections within the given country 
2
. 

Generally, it is important that the data on antibiotic resistance is consistent in quality where the 

methods used should be based on standardized protocols both at national and local levels. 

Optimally, national antibiotic resistance programs in different countries should be harmonized in 

order to facilitate international surveillance 
2
.  The data collected is summarized in a report and is 

presented as percentages of resistant, intermediate or sensitive strains along with the quantitative 

data from inhibition zones or minimum inhibitory concentration (MIC) values 
2
.  

 

1.3.1.2 Surveillance at herd level 

 

Local antibiotic resistance surveillance is essential as individual herds may not have the same 

antibiotic resistance problems. The data obtained from food producing herds can be used in the 

practicing veterinarians’ decision making concerning both recommendations for optimal antibiotic 

therapy and for management of current resistant problems 
24,25

 .   

 

1.3.3 Detection of antibiotic resistance development in individual animals 

When assessing the development of antibiotic resistance in individual animals it is common to 

monitor the phenotypic resistance development in chosen indicator and/or pathogenic bacteria, 

depending on the purpose of the study 
26-28

. Samples may be collected from e.g. saliva, skin, nasal 

mucosal membranes or feces prior to, during, and after the antibiotic treatment period. This 

increases the likelihood of gaining sufficient knowledge of the antibiotic resistance status before, 

during, and after treatment.  

 

1.4 Sampling methods for antibiotic resistance determination 

Estimating herd antibiotic resistance levels may facilitate in suitable choice of drug for disease 

treatment ultimately minimizing resistance development and treatment complications. The choice of 

sampling method is crucial because it can introduce bias but is often compromised due to cost and 

time limits. Optimally, sampling should be simple and efficient yet yield accurate and reproducible 

results representative of the target population. Several studies have demonstrated the relevance of 
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the sampling method’s effect on the outcome 
29-31

. Theoretically, when investigating a factor at herd

level sampling each individual animal within the herd is ideal. In practice this is strenuous and time 

consuming. Due to the cost of collecting, transporting, storing, and analyzing the amount of samples 

attained when all individuals within a herd are sampled it is common to collect fewer defined 

composite samples. Pooled samples are a more cost-efficient alternative, especially when testing for 

low prevalence diseases 
32

.  However, pooled samples also have their disadvantages that must be

taken into consideration when defining the amount and type of samples that are to be included in 

each pool. It is important to be aware of false negative tests, for example if an antibiotic resistance 

gene has a low prevalence and there are sufficient numbers of negative samples included in the pool 

then the concentration of the gene is diluted potentially resulting in levels under the specific assay’s 

detection limit. The sensitivity is therefore dependent on the prevalence of the gene, the number of 

samples per pool, the concentration of the gene in samples from positive animals, and the detection 

limit of the assay 
32

. There can also be false positive test results due to cross-contamination during

the sample collection, handling or processing 
32

. It is therefore important to test and optimize the

specific sampling strategy for the determination of herd antibiotic resistance.  

In the present study, different sampling methods were evaluated for antibiotic resistance detection at 

pen, stable, and herd levels (shoe cover sampling, pen floor sampling, laboratory pooling at 

different levels, and slurry tank sampling). The samples were collected at two separate time points 

four months apart (sampling 1 and sampling 2). During sampling 1, a single stable in a pig herd was 

sampled in order to establish an understanding of the antibiotic resistance gene levels in the 

individual animals, pens, and stable. The samples from sampling 1 were individual animal samples, 

pen floor samples, and shoe cover samples (Figure 1). Individual animal sampling was the “gold 

standard” to which the other sampling methods were associated.  

Ind. Animal 

All individual 

animals within 

each pen were 

sampled 

Pen Floor 

Pen floor 

samples were 

sampled within 

each pen 

1 stable 

3 

sampling 

methods 

4 pens 

Shoe cover 

2 shoe covers 

were used in all 

4 pens. This was 

repeated 2 times 

Figure 1 Overview of sampling 1. Three sampling methods were used, Individual animal sampling (Ind. Animal), 

pen floor sampling, and shoe cover sampling. Four pens in 1 stable were sampled.  
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During sampling 2, all stables were sampled in the same pig herd as sampling 1 in order to gain an 

understanding of the antibiotic resistance gene levels in the stables and the herd. The samples from 

sampling 2 include pen floor samples, shoe cover samples, and slurry tank samples (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.1 Shoe cover sampling 

In Denmark, shoe cover sampling (also called sock sampling) is used in the national Salmonella 

control program in broiler flocks. Shoe cover sampling is simple and literally entails pulling a sock 

over a shoe and collecting samples. The samples are collected by walking about in the area to be 

sampled until as much area is covered as possible. The number or sock samples to collect can vary. 

This method is straight forward, cheap and has been shown to be feasible in broiler flocks 
31

.   

 

1.4.2 Pen floor sampling 

Pen floor sampling is currently used in the Danish Salmonella control program in pig herds 
33,34

 and 

entails collecting 5 different fecal samples of about 5 g each within the same pen. The 5 samples are 

then mixed in a single plastic container that is sealed with a tight lid. Theoretically, each of the 5 

subsamples that are collected come from 5 different pigs. The number of pens sampled can be 

varied. 

Figure 2 Overview of sampling 2. Three sampling methods were used, pen floor sampling, shoe cover sampling, 

and slurry tank sampling. Four pens were sampled per stable, and five stables were sampled.  

     
5 stables  

4 pens in each  

Shoe cover 

2 shoe 

covers 

were used 

in all 4 

pens.  

 

Pen Floor 

Pen floor 

samples 

were 

sampled 

within 

each pen 

3 sampling 

methods  

Slurry tank 

 

Samples collected 

 at 3 depths  

(1 m, 1.5 m, 2 m)  

were pooled 

constituting 1 sample. 

This was done 3 times 
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1.4.3 Laboratory pooling 

Laboratory pooling of samples enables collection of the desired amount of samples that are 

thereafter composited in the laboratory thus reducing the number of necessary analyses. Often, a 

1:10 dilution of each sample is made to facilitate subsequent handling and thereafter the desired 

amount of each 1:10 dilution is taken from each sample and then mixed. Samples that were pooled 

and tested in the present study included those from individual animals, pen floor samples, and shoe 

cover samples all of which were pooled to infer resistance levels at stable and/or herd level (Table 

1). 

Table 1 Overview of laboratory pools at pen, stable, and herd levels 

Pool name Samples included 

in laboratory pool 

Number of samples (n) 

All animals All individual animals 

from sampling 1 (digital 

extraction from rectum) 

n=84 

Individual animal pool 

pen 

Pool of individual 

animals within each pen 

(digital extraction from 

rectum) 

Pen 1 n=22 

Pen 2 n=20 

Pen 3 n=22 

Pen 4 n=20 

Pen floor samples Not pooled Sampling 1 n=4 

Sampling 2 n=20 

Pen floor pool stable Pool of pen floor 

samples from pens 1-4 

in each stable 

Sampling 1 n=1 

Sampling 2 n=5 

Pen floor pool herd Pool of pen floor 

samples from each 

stable (1-5) 

Sampling 2 n=1 

Shoe cover samples Not pooled Sampling 1 n=4 

Sampling 2 n=10 

Shoe cover pool stable Pool of the shoe cover 

samples in each stable 

Sampling 1 n=1 

Sampling 2 n=5 

Shoe cover pool herd Pool of shoe cover 

samples from each 

stable (1-5) 

Sampling 2 n=1 

Slurry tank samples Each sample was a pool 

from 3 depths collected 

at the same spot (1m, 

1.5m, and 2m) 

n=3 

Pool slurry Pool of slurry tank 

samples 1-3 

n=1 
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1.4.4 Slurry tank sampling 

Slurry tank sampling is also interesting as the slurry itself may represent a pool of the entire herd, 

potentially representing the antibiotic resistance levels for the past six months as they are often 

emptied twice a year. It has been demonstrated that levels of tetracycline and erythromycine 

resistance genes in slurry tanks from swine farms are not reduced over time 
12,13

. Slurry tank

samples were also collected in the present study, and compared to the herd pools of the shoe cover 

and pen floor samples. 

1.5 Antibiotic usage and monitoring in Denmark 

Denmark is known for pursuing initiatives that minimize antibiotic use in order to reduce resistance 

development and spread through the food chain. For example, in 1995 there was a national ban 

against the use of the antimicrobial growth promoter avoparcin and veterinarians were prohibited 

from profiting off the direct sale of drugs 
35,36

. In 1998, Danish pig and poultry producers

voluntarily ceased use of all antibiotic growth promoters in finisher pigs and broiler chickens. Since 

year 2000, no antibiotics have been used for growth promotion 
35,36

. Danish interventions will be

covered in the following sections, including the veterinary advisory service contract; the yellow 

card initiative; flouroquinolone and cephalosporin use; the Danish Integrated Antimicrobial 

Resistance Monitoring and Research Program (DANMAP). 

1.5.1 Veterinary advisory service contract 

Since July 2010, farmers housing more than either 300 sows, gilts or boars in stables, 3000 feeder 

pigs or 6000 piglets
37

 are obligated to have a veterinary advisory service contract where the

veterinarian must visit the farm minimum 12 times yearly 
38

. The intentions of this contract entail

improving animal welfare, reducing the risk of infectious disease, and optimizing antibiotic usage in 

order to minimize resistance development 
37

. When there is a veterinary advisory service contract,

the veterinarian can prescribe antibiotics for up to 35 days of treatment for pigs less than one year of 

age 
37

. The criteria are that, the veterinarian must find it necessary to continue treatment during a

control visit and the reason is described, plus there must be a mutual agreement between the 

veterinarian and farm owner about the revised treatment plan. The attained information must be 

recorded and registered. 

Typically, a veterinarian issues a prescription and the farmer collects the drug at the pharmacy. The 

pharmacy then registers the drug sale, including the information from the prescription, to an official 

register Vetstat. In Vetstat, 98% of the antibiotics prescribed to pigs are from pharmacy 

registrations. The veterinarians only report to Vetstat directly when they have treated animals 

during a herd visit or if the veterinarian has distributed the drug personally. The information that the 

veterinarian is obligated to record is the veterinarian responsible for the treatment (including 

authorization number), the person responsible for the herd (name and address), the prescribed drug 

(amount, dose, administration, treatment period, withdrawal period and indication), diagnosis,  date 

for drug use, prescription or distribution, and identification of the herd (CHR number) and species 

to be treated (which animals and how many) 
37,39

 . Likewise, the farmer must also register the

animals that are treated, the drug used, date and reason for treatment, dose, administration route, 
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person responsible, and origin of the drug (if not received by a veterinarian directly) 
37,40

. These

registrations must be kept for up to 5 years.   

Any drugs that must be administered by intravenous injection (IV) or fluoroquinolones for injection 

can only be administered by the veterinarian, and it is strictly prohibited to prophylactically treat 

with antibiotics. 

1.5.2 The yellow card initiative 

About 76% of the antibiotics prescribed in Denmark can be ascribed to the pig industry with a 35% 

increase between 2001 and 2009 
3,41

. Therefore, in July 2010, the Danish Veterinary and Food

Association (DVFA) enforced the yellow card initiative which has the following three ranks: yellow 

card, increased supervision, and red card (Figure 3). The initiative is based on threshold levels for 

antibiotic consumption calculated as an average for the preceding 9 months in weaners (7-30 kg), 

finishers (30 kg – slaughter), and finally sows and piglets (including gilts, and boars).  

Figure 3 The yellow card initiative. The green arrows indicate the flow when antibiotic levels are below threshold, and 

the red arrows indicate when the antibiotic levels are above threshold. Modified from www.foedevarestyrelsen.dk 
41

A yellow card is issued if the average antibiotic consumption exceeds the given threshold for one or 

more of the age groups within a nine month period 
41

. Consequently, the farm owner has nine

months to reduce the antibiotic consumption below the threshold. The DVFA can also forbid any 

use or storage of any antibiotics at the farm during these months if the specific antibiotic has been 

prescribed more than once and is to be administered via feed or drinking water. Finally, the DVFA 

may carry out up to several unannounced inspection visits during the time period the issue is in 

effect. 

The increased supervision stage is reached if the farmer has not managed to decrease the antibiotic 

consumption levels below the set threshold by the end of the yellow card nine month period 
41

. The 
increased supervision lasts five months, and enables the DVFA to implement third party veterinary

advice to the farmer on how to reduce the antibiotic consumption levels within a subsequent nine 

month period. Increased supervision can also be issued if the antibiotic 

12 months 12 months 

Pig farm with a veterinary advisory service contract 

Monitoring Phase  
12 months after expiry date of 
the initial 9 month period 

Database selection 
Contact farmer 
Confirm 

Yellow card 
9 months 

Increased Supervision 
5 months + Second 
opinion 

Red Card 
Until consumption is 
below threshold level 

Monitoring Phase  
12 months after expiry date of 
the 5 month period 
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consumption that has been reduced to below the set threshold within the first nine month period 

crosses the set threshold again within 12 months after the expiration of the first nine month yellow 

card period. During increased supervision a concrete action plan including initiatives to decrease 

antibiotic consumption must be made. 

The red card stage is reached when the farmer does not manage to reduce antibiotic consumption 

levels to below the set threshold within a five month period following the second issuing’s nine 

month period 
41

. The farmer must then implement the action plan initiatives, or as a last resort,

reduce the stocking density consequently reducing the antibiotic consumption. The yellow card 

stage prohibitions regarding antibiotic storage and administration also apply to the increased 

supervision and red card stages. 

1.5.3 Flouroquinolones and Cephalosporins 

For the first time in 2007, the World Health Organization (WHO) defined several antibiotics that 

are important for treating certain infections in humans, namely the critical important antibiotics 

(CIA). Among the CIAs listed in 2011 are fluoroquinolones and cephalosporins 
42

.

The veterinary use of fluoroquinolones in Denmark is kept at a minimum due to special guidelines. 

Flouroquinolones may be used, handed out or prescribed for production animals for a maximum of 

5 days and only if a laboratory can confirm that the disease causing agent is resistant to all other 

permitted antibiotics. If there is an acute onset of a disease that demands fluoroquinolone use, the 

treatment can be initiated before the laboratory results are known. However, if the laboratory results 

show that the disease causing agent is sensitive to any other permitted antibiotics, then another drug 

must be used. The Regional Veterinary Officer must be informed about any use of fluoroquinolones 

within production animals within two weeks following treatment termination 
37

.

In June 2010, the Danish Meat Association announced a voluntary two year discontinuation of 

cephalosporin antibiotics. This resulted in a 50% reduction in cephalosporin consumption between 

2009 and 2010 
43

.

1.5.4 The Danish Integrated Antimicrobial Resistance Monitoring and Research Program 

(DANMAP) 

The Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP) is 

a close collaboration between veterinary, food and human health institutes and was established in 

1995. The objectives are to monitor the consumption of antimicrobials in humans and animals; the 

occurrence of antimicrobial resistance in bacteria isolated from food animals, food of animal origin 

and humans; to study associations between antimicrobial consumption and resistance development 

and to identify antimicrobial resistance transmission routes and initiate joint research 
3,44

. The

DANMAP report is published annually describing current national and regional trends in 

antimicrobial use and resistance occurrence. 

The pig samples used in DANMAP 2012 were collected from slaughterhouses that accounted for 

98% of the total number of pigs slaughtered in Denmark during 2012 
44

. The samples were caecum

samples and the number collected from each slaughterhouse was proportional to the number of pigs 

annually slaughtered at the specific slaughter house. The isolated bacteria included: Escherichia 

coli, Enterococcus faecium, Enterococcus faecalis, Campylobacter coli, Campylobacter jejuni and 
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Salmonella spp. where one isolate per farm of each species was included in the DANMAP 2012 

report 
3
.  The bacterial isolates from the pigs may be regarded as representing a stratified random

sample of 98% of the Danish pig population where the prevalence of antimicrobial resistance in the 

bacterial isolates represents an estimate of the true occurrence of resistance in the population. 

After sampling, the bacteria are isolated and identified using selective and indicative media. The 

bacterial isolates are then susceptibility tested (one isolate per bacterial species per farm) using the 

minimum inhibitory concentration (MIC). Multi-resistance is defined as resistance to three or more 

of the antimicrobial classes included in DANMAP 2012 and isolates fully sensitive if susceptible to 

all the antimicrobial agents in the test panel 
3
.

1.6 Pig production in Denmark 

Globally, Denmark is one of the largest pig meat exporters producing approximately 29 million pigs 

on about 4100 farms in 2012 
45,46

. About 90% of the pigs are used for export emphasizing the

significance of the pig production to the national economy 
47

.

1.6.1 Pig production types in Denmark 

There are different pig production types, namely conventional, organic, free range, or special-pig 

production. The main differences between the four reside within the housing system, general 

management practices including feeding and weaning, and rules concerning the use of medicine.  

1.6.1.1 Conventional pig production 

The conventional pig production type is the most common in Denmark where the production must 

occur according to the Danish legislation regarding housing of pigs. All pigs must have access to 

roughage such as straw and that roughage or activation material must be available in the appropriate 

amounts 
48,49

. Conventionally produced pigs are normally weaned at four weeks of age, and can be

weaned up to seven days earlier if they are moved to special stables that are emptied, cleaned, and 

disinfected before a new group of pigs is introduced and that are separated from stables that house 

sows 
50

. Generally, the space demands for the conventional pig production are less in comparison to

the organic and free range production types. 

1.6.1.2 Organic pig production 

The organic pig production sows live in huts on pasture. The piglets are born on pasture and weaned 

at seven weeks of age where they are moved into housing 
51

. The pigs are housed in stables with an

outdoor yard and free access to roughage ad libitum. There are strict rules concerning organic feed 

and the use of antibiotics and other medicine 
47

. Until December 31, 2014 it is allowed to use non-

organic protein feed only if it is not possible to attain strictly organic feed. The amount is 5% per 

animal per calendar year and an obligatory food journal ensures that the limit is not exceeded 
52

.
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After use of medicine, the required withdrawal period is twice as long as the minimum for 

conventional production 
52,53

. Slaughter pigs receiving antibiotic treatment more than once lose their

organic status where both the prescription and treatment with antibiotics must be for the diseased 

animals only 
52

. Additionally, tail-amputation and tooth cutting/filing is prohibited.

1.6.1.3 Free range pig production 

Free range pigs are born in huts on pasture and are weaned and moved to indoor housing at five 

weeks of age 
54

. The stables are open with access to plenty of straw and outdoor areas at all times.

It is prohibited to amputate tails and cut/file teeth. The withdrawal time after medicine 

administration is twice that for conventional production. 

1.6.1.4 Special-pig production 

This production type entails pigs that are specially produced for the Danish market and for export 

such as Antonius, “Bornholmergrisen”, “Den Go’e gris”, and “Grambogårdsgrisen”. These pigs are 

not organic or free range, but their production has several exceptions compared to the conventional 

production type.  



23 

2 CHAPTER 2 – Antibiotic resistance 

2.1 Mechanisms of antibiotic resistance and spread 

Bacterial resistance towards antibiotics can be caused by several mechanisms 
9
:

(i)  Production of an enzyme that can inactivate the antibiotic 

(ii) The production of an enzyme that functions as an alternative to the antibiotic 

target  

(iii) Mutation(s) in the antibiotic target that lead to a reduction in the antibiotic 

binding 

(iv)  Reduced uptake of the antibiotic 

(v)   Active efflux of the antibiotic 

(vi)  Overproduction of the antibiotic target 

(vii) Mechanisms that are not yet recognized 

Not only are there plenty of mechanisms the bacteria utilize in circumventing the effects of 

antibiotics, but once developed, the resistance can spread horizontally to other bacteria 
55

.

Tetracycline, β-lactam, sulphonamide, macrolide, lincosamide, and streptogramin B (MLSB), and 

glycopeptide drugs and the respective bacterial resistance mechanisms will be discussed. The 

tetracycline, β-lactam, sulphonamide, and MLSB antibiotics were included as they are used in the 

swine production in Denmark 
3,56

. The antibiotic classes of choice for different indications in

Danish sows/piglets, weaner pigs, and finisher pigs in 2008 are illustrated in Figure 4 
56

. The

glycopeptide is included because avoparcin was used as a growth promoter in the pig industry, and 

has been banned since 1995. Therefore glycopeptide resistance surveillance may be of special 

interest as the levels are expected to be low. The above mentioned antibiotics also are included 

because of the feasibility of developing qPCR assays for the specific antibiotic resistance genes.  

The genes included in this study are summarized in Table S1 (Appendix I) along with their 

phenotypic resistance, resistance mechanism, mobility, gene linkage, “other”, and references. 

Furthermore, a summary of the antibiotic resistance genes and the bacteria in which they have been 

described is also included (Table S2 Gram positive bacteria, Table S3 Gram negative bacteria 

(Appendix I)). 
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Figure 4 From Jensen et al. (2011) The antibiotic classes of choice for different indications in Danish sow/piglets (a), 

weaner pigs (b), and finisher pigs (c) in 2008. The indication is given as an organ system treated 
56

. 



25 

2.2 Resistance to tetracyclines 

2.2.1 Tetracycline drugs and mode of action 

In 1948, chlortetracycline was described from Streptomyces aureofaciens being the first discovered 

tetracycline antibiotic 
57

 . Since the discovery of chlortetracycline several other tetracycline

antibiotics have been discovered in Streptomyces species and even more semi-synthetically 

produced. The tetracycline antibiotics can be grouped into three generations based on when they 

were developed, namely first generation (1948-1963), second generation (1965-1972), and third 

generation (1993) (Table 2).  

Tetracycline antibiotic’s working mechanism is binding to the bacterial 30S ribosomal subunit 

consequently disrupting protein synthesis. The tetracycline resistance genes either code for efflux 

proteins, ribosomal protection proteins (RPP), inactivating enzymes, or have unknown mechanisms 
57

. Usually, tetracycline resistance in bacteria arises through acquisition of resistance genes by 

means of conjugative plasmids or transposons 
58

. The tetracycline resistance genes are often

associated with other antibiotic resistance genes, especially erm genes that confer resistance 

towards MLSB 
59

. Generally, tetracycline resistance genes are considered unique if there is ≤ 79%

similar amino acid identity to other genes. There are currently 45 known tetracycline resistance 

genes not including recently described mosaic genes such as tet(O/W) and tet(W/O/W) 
60-62

. The

different resistance types will be discussed, except for the unknown mechanism, which is due to 

tet(U) 
63

. An updated overview of the tetracycline resistance genes can be found at

http://faculty.washington.edu/marilynr/ 
62

.

Table 2 Overview of the principle members of tetracycline antibiotic class, modified from Chopra et al. (2001)
57

 

Generation Naturally occurring Semi-synthetic Action and spectrum 

bacteriostatic 

1  (1948-1963) Tetracycline (humans)  

Chlortetracycline (animals)  

Oxytetracycline (animals and humans) 

Demeclocycline  

Lymecycline (humans)  

Rolitetracycline  

Broad spectrum: 

Gram positive bacteria 

Gram negative bacteria 

Chlamydia 

Rickettsia 

Mycoplasma 

Protozoa  

2 (1965-1972) Methacycline  

Minocycline  

Doxycycline (animals and humans)  

3 (1993) Glycylcycline (humans)  

http://faculty.washington.edu/marilynr/
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2.2.2 Tetracycline resistance mechanisms 

2.2.2.1 Drug efflux 

The tet efflux genes code for proteins that actively pump tetracycline out of the cell and generally 

confer resistance to tetracycline, but not minocycline or glycylcyclines 
57

. There are exceptions,

however, including tet(K) and tet(L) that encode proteins mainly associated with resistance to 

tetracycline and chlortetracycline 
57

 and tet(B) that confers resistance to tetracycline and

minocycline but not glycylcyclines. There are 29 known efflux resistance genes which are all 

designated tet genes except for two otr genes and a single tcr gene 
62

. The tetracycline efflux tet

genes are widely dispersed and have been described in various Gram negative, Gram positive, 

aerobic and anaerobic bacteria (Table S1, Table S2) 
63

. The tet efflux genes have a broad

distribution where generally the Gram negative tet efflux genes are found on transposons inserted 

into plasmids or integrons often associated with other antibiotic resistance genes, heavy metal 

resistance genes, and/or pathogenic factors 
57,64

. The Gram positive tet efflux genes are associated

with small plasmids 
64

.

2.2.2.2 Ribosomal protection proteins (RPP) 

The ribosomal protection proteins (RPP) are proteins that protect the ribosomes from the action of 

tetracycline conferring resistance to doxycycline and minocycline 
57

. There are currently 12 known

RPP genes 
62

. The tet(M) gene was originally found in Streptococcus 
65

 and is found in both Gram

positive and Gram negative bacteria, also having the widest host range of all tet genes 
13,58,63

.

Furthermore, tet(M) has been found associated with conjugative transposons such as Tn916 and 

Tn1545, the latter also containing genes that encode resistance towards erythromycin and 

kanamycin 
66

. The tet(O) gene has been associated with conjugative plasmids 
58,67

. Other RPP

encoding genes are Otr(A), and tetB(P). tetB(P) is a RPP gene consisting of the RPP encoding gene 

tetB(P) and an efflux protein encoding gene tetA(P) 
57

. tetA(P) has been found independent of

tetB(P), but tetB(P) has not been found independent of tetA(P) 
57

. The final RPP genes are tet(Q)

and tet(T). The tet(Q) gene is often associated with a large conjugative transposon carrying the 

ermF gene conferring erythromycin resistance 
57

. The tet(W) gene has the second widest host range

within the RPP genes, and has been associated with the conjugative transposon TnB1230 
58,68

.

Three more RPP genes have recently been described, all having ≤ 79% similar amino acid identity 

to the previously described RPP genes, namely tet(32), tet(36), and tet(44) 
69-71

.  Generally, the RPP

encoding genes are often found with conjugative or non-conjugative transposons integrated into the 

chromosome, only rarely are they associated with plasmids 
64

.

2.2.2.3 Enzymes that inactivate tetracycline and other resistance mechanisms 

The following genes all encode enzymes that inactivate tetracycline; tet(X), tet(37), and tet(34) 
57,58

.

So far, these genes have only been described in Gram negative bacteria 
63

.
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2.3 Resistance to β-lactams 

 

2.3.1 β-lactam drugs and mode of action 

Penicillin was accidentally discovered in the late 1920’s by scientist Alexander Flemming being the 

first antibiotic described 
72

.  β-lactam antibiotics work by binding the penicillin binding proteins 

(PBBs) which are involved in the bacterial cell wall synthesis. The β-lactam antibiotics consist of 

penicillins, which include the original penicillins, aminopenicillins, penicillinase resistant 

penicillins, carbapenems, monobactams, β-lactam inhibitors (clavulanic acid, tazobactam, 

sulbactam), and the cephalosporins (Table 3).  

Resistance is caused by mutations in PBPs resulting in reduced affinity, reduced uptake due to 

changes in the cell wall, active efflux, or β-lactamase production 
9
.  

The Ambler class β-lactamase classification is a molecular classification and is based on amino acid 

sequences, dividing the β-lactamases into classes A-D 
9
. Classes A,C and D utilize serine in 

hydrolyzing β-lactams and class B requires zinc ions for hydrolysis of β-lactams 
73

.  There are 

currently >1250 known β-lactamases, with the OXA, TEM, SHV, CTXM, and CMY types being 

the most abundant (http://www.lahey.org/Studies/) 
74

.  

 

2.3.2 β-lactam resistance mechanisms 

2.3.2.1 Class A β-lactamases 

 

In general, the class A β-lactamases consists of the class A serine β-lactamases, extended spectrum 

β-lactamases (ESBL), and the serine carbapenemases. The class A serine β-lactamases includes the 

TEM and SHV types which can only degrade penicillin substrates 
75

. The first plasmid mediated β-

lactamase was identified in E.coli in 1963 (reported in 1965) and was called RTEM (TEM-1) 
76

. 

TEM-2 (encoded by blaTEM-2) is the first derivative of TEM-1, and has a single amino acid 

substitution from the original β-lactamase 
77

. TEM-3 was the first TEM-type β-lactamase to display 

the ESBL phenotype 
78

. The SHV β-lactamase is derived from the chromosomal β-lactamase of 

Klebsiella pneumonia and is now a common plasmidic β-lactamase 
79

. The ESBLs are β-lactamases 

that can hydrolyze penicillins, 3
rd

 and 4
th

 generation cephalosporins and monobactams, but are 

susceptible to β-lactamase inhibitors 
80,81

. ESBLs often arise as a result of amino acid substitution(s) 

in the existing β-lactamases. The most common ESBLs encountered are TEM, SHV, and CTX-M 
79

. Typically, the TEM-1, TEM-2, and SHV-1 spectrums are widened by point mutations resulting 

in single amino acid changes in the β-lactamase, altering the active site of the enzyme 
80

.  The CTX-

M ESBLs probably arose by plasmid transfer from preexisting chromosomal ESBL genes from 

Kluyvera spp., which typically are non-pathogenic organisms 
80

. The CTX-M encoding plasmids 

often contain other multiple resistance determinants, including blaTEM genes, genes encoding 

resistance to aminoglycosides, chloramphenicol, sulphonamides, trimethoprim, and tetracyclines 
75

. 

The serine carbapenemases compose a diverse group of β-lactamases including IMI, KPC, SME, 

and nonmetallocarbepenemases (NMC-A) 
79

.  
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Table 3 Overview of the principle members of the β- lactam antibiotic class 

 

 

Antibiotic agents Action and spectrum 

bactericidal 

   

PENICILLINS 

The original Penicillins 
Benzylpenicillin, 

phenoxymethylpenicillin 

Gram positive bacteria incl. 

Staphylococcus aureus 

Aminopenicillins Amoxicillin, Ampicillin Broad spectrum:  

Gram positive bacteria 

Gram negative bacteria 

Penicillinase resistant 

penicillins 

Methicillin, cloxacillin, 
dicloxacillin, oxacillin 

Gram positive bacteria incl. 
Staphylococcus aureus 

Broad spectrum penicillins 

(carboxypenicillins) 

Carbenicillin, ticarcillin Broad spectrum:  

Gram positive bacteria 

Gram negative bacteria incl. 

Pseudomonas 

 

Combination of penicillins 

incl.  

β-lactamase inhibitors  

Amoxicillin/clavulanate (animals)  

MONOBACTAMS Azetreonam (humans) Gram negative bacteria incl. 

Pseudomonas 

CARBAPENEMS Meropenem (humans), ertapenem 

(humans), imipenem/cilastin 
(humans) 

Gram negative bacteria  

CEPHALOSPORINS/ 

CEPHAMYCINS 

 

1. generation: Cephapirin, 

cefadroxil, cephalexin 

2. generation: Cefuroxime, 

Cefoxitin, cefmetazole 

3. generation: Cefoperazone, 
ceftiofur, cefovecin, cefotaxime, 

ceftriaxone 

4. generation: Cefquinome 

1. generation: Strong activity against 

Gram positive bacteria, moderate 

activity against Gram negative 
bacteria. 

2. generation: Effective against 

Gram positive and Gram negative 

bacteria that are resistant to 1. 
Generation cephalosporins 

3. generation: Moderate activity 

against Gram positive bacteria and 

strong activity against Gram 
negative bacteria. Some are also 

active against Pseudomonas 
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2.3.2.2 Class B β-lactamases 

 

The class B metallo-β-lactamases (MBLs) are zinc ion dependent and therefore have a different 

hydrolytic mechanism than the class A, C, and D serine β-lactamases. The MBLs include: IMP, 

VIM, SPM, and GIM degrading penicillins, cephalosporins and carbapenems also conferring 

resistance to clavulanic acid. The IMP and VIM-families are found mostly associated with integron 

structures and are found in Enterobacteriaceae, Serratia marcescens, Pseudomonas aerogenosa, and 

Actinobacter baumanii species 
82

.  

 

2.3.2.3 Class C β-lactamases  

 

The class C cephalosporinases include AmpC, CMY-2, P99, ACT-1, and DHA-1 and degrade 

cephamycins and 3
rd

 generation cephalosporins but not 4
th

 generation cephalosporins or 

monobactams and also confer resistance to β-lactam inhibitors
80

. In many Enterobacteriaeceae, 

AmpC expression is low but inducible in response to β-lactam exposure 
83

. In E.coli, the ampC gene 

is chromosomal and normally expressed in low amounts not causing clinical resistance. However, 

E.coli can hyper produce AmpC β-lactamases either through mutations in the promoter or 

acquisition of plasmid mediated amp-like genes such as blaCMY-2 
84

.  

 

2.3.2.4 Class D β-lactamases 

 

Class D oxacillinases can hydrolyze oxacillin at a rate that is much more rapid compared to the 

hydrolysis of oxacillin by Ambler classes A and C also conferring resistance to cloxacillin
80

. The 

OXA-1 enzyme (encoded by blaOXA-1) is the most common type in enterobacteria 
79,81

. Furthermore, 

amino acid substitutions in the OXA genes can also confer the ESBL phenotype 
85

.  

 

2.4 Resistance to sulphonamides 

Sulphonamides are synthetic antibiotics that target the enzyme dihydropteroate synthase (DHPS) 

which is involved in the folate biosynthetic pathway, and is required for thymine production and 

bacterial cell growth (Table 4) 
86

. Since 1968, sulphonamides have often been used in combination 

with trimethoprim, targeting dihydrofolate reductase (DHFR) that is involved in the same cellular 

pathways as DHPS 
86

.  

 

 

 



30 

 

 

Table 4 Overview of the principle members of sulphonamide antibiotic class 

 Antibiotic agents Action and Spectrum 

bacteriostatic 

(combination with trimethoprim  bactericidal 

due to synergy) 

Sulphonamides Sulfadimidine, sulfadimethoxine, sulfamerazine, Sulfadiazin, 

Sulfamethizole  

Broad spectrum:  

Gram positive and Gram negative bacteria 

Also active against many protozoa 

 

Marked resistance to sulphonamides has been seen in E.coli, Shigella spp., Staphylococcus aureus, 

and Salmonella spp. 
86

. Chromosomal resistance to sulphonamides is mediated by mutations in the 

DHPS encoding folP gene leading to an amino acid alteration in the wild-type enzyme 
72,86

. Plasmid 

mediated sulphonamide resistance in bacteria is conferred by production of an alternative 

sulphonamide resistant DHPS enzyme encoded by sulI or sulII 
86

. sulI is often linked to other 

resistance genes and is located on transposons of the Tn21 family and sulII has been found both on 

small plasmids of the IncQ family (RSF1010) and pB1 plasmids 
86,87

. Finally, there is sulIII which 

is a variant of sulI that has been identified in Mycobacterium fortuitum and in E.coli, and has 

approximately 40% amino acid similarity with sulI and sulII 
86,88

. 

 

2.5 Resistance to glycopeptides 

 

Vancomycin was the first glycopeptide, described in the late 1950’s originally isolated from the soil 

bacterium Streptomyces orientalis 
72,89

. The Glycopeptide antibiotics exert their effect by binding to 

the D-alanyl-D-alanine side chains of the cell wall peptidoglycan precursor, thus inhibiting 

peptidoglycan chain cross-linking and causing cell death. Their activity is principally limited to the 

Gram positive bacteria as the glycopeptide molecules cannot gain access to the Gram negative 

peptidoglycan layer (Table 5) 
9
.  

 

Table 5 Overview of the principle members of glycopeptide antibiotic class. 

   Antibiotic agents Action and Spectrum 

bactericidal 

Glycopeptides Avoparcin*, vancomycin, 

teicoplanin 

Gram positive bacteria 

* avoparcin animal growth promoter ban implemented in Denmark in 1995 
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The primary glycopeptide resistance mechanism is rebuilding of the peptidoglycan using alternative 

precursors resulting in a lower glycopeptide affinity. The phenotypic VanA resistance is due to a 

different ligase type, D-alanyl-D-lactate, and is caused by the vanA gene cluster 
9,90

. The VanH and

VanX proteins are also products of the vanA gene cluster, and are necessary for VanA phenotypic 

resistance expression which confers resistance to vancomycin and teicoplanin 
9
. Furthermore, the

vanA gene cluster has been associated with the Tn1546 transposon and has also been associated 

with a conjugative plasmid 
90-92

. The phenotypic VanB resistance is due to vancomycin induction of

the vanB gene cluster that confers resistance to vancomycin while susceptibility to teicoplanin is 

maintained 
9
. The VanA and VanB resistance phenotypes are primarily described in Enterococcus

faecalis and Enterococcus faecium, but the more widely distributed vanA gene has also been found 

in other enterococci including Corynebacterium spp., Arcanobacterium haemolyticum, and 

Lactococcus spp. 
90

.

2.6 Resistance to macrolide, lincosamide, streptogramin B (MLSB) 

Erythromycin A was the first macrolide and was discovered in the early 1950s 
72

. Macrolide

antibiotics include erythromycin and tylosin and act by binding the ribosomal 50S subunit 

ultimately inhibiting protein synthesis (Table 6). Macrolide, lincosamide, and streptogramin B 

antibiotics (MLSB) share overlapping binding sites and it is therefore common that resistance is 

conferred to more than one MLS drug.  

Table 6 Overview of the principle members of macrolide, lincosamide, streptogramin B (MLSB) class antibiotics 

Antibiotic agents Action and Spectrum 

bacteriostatic 

General MLSB
Primarily Gram positive bacteria 

Some Gram negative bacteria and few anaerobic bacteria 

Macrolide Spiramycin, tylosin, tilmicosin, 
erythromycin, roxithromycin, 

clarithromycin 

Tylosin: campylobacter and mycoplasma 

Tilmicosin: campylobacter, mycoplasma, actinobacillus pleuropneumoniae 

Lincosamide Clindamycin, lincomycin Clindamycin: Especially anaerobes, Toxoplasmosis 

Streptogramin B Virginiamycin 

Macrolide resistance can be caused by rRNA methylases, rRNA methyltransferases, efflux systems, 

or antibiotic inactivation 
59

. The rRNA methylase encoding erm genes confer resistance to MLSB
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antibiotics by inhibiting antibiotic binding to the ribosome 
12,59,93

. Many of the erm genes are 

associated with transposons where the tetracycline resistance gene tet(Q) is often linked to erm(F) 

and tet(M) to erm(B) 
59,66,94

. There are currently 36 known methylase genes, one methyltransferase 

gene, 21 efflux genes, and 22 inactivating enzyme encoding genes 

(http://faculty.washington.edu/marilynr/ermwebA.pdf) 
95

. The recently developed synthetic 

ketolides and oxazolidinones can also be grouped with MLSB antibiotics, thus resulting in the 

macrolide, lincosamide, streptogramin B, ketolide, and oxazolidone family (MLSKO) family 
93

 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://faculty.washington.edu/marilynr/ermwebA.pdf
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3 CHAPTER 3 – Research activities in this PhD Project 

3.1 General discussion of the results of PhD project 

The overall aim of the PhD project was to develop qPCR assays for simple and rapid quantification 

of antibiotic resistance levels in animal herds. In order to accomplish this goal, the project was 

divided into three main objectives, which are separately discussed in the following sections. 

3.1.1 Objective 1: Manuscript I and II  

The first objective was to design and develop qPCR assays to quantify antibiotic resistance genes in 

animal herds with pig herds as a prototype. The antibiotic classes used in the Danish pig production 

aided the choice of genes to include. A total of 14 qPCR assays were successfully developed, these  

included: tetracycline tet(A), tet(B), tet(C), tet(M), tet(O), tet(W); β-lactam blaSHV family, blaCMY-2, 

blaCTX-M-1 group; sulphonamide (sulI, sulII); MLSB (ermB, ermF); glycopeptide (vanA). A 16S 

rDNA assay was also included for comparative purposes.  

Primer design, DNA quality, thermal profile, and master mix all play an important role in the 

specificity and quality of the qPCR product, and sensitivity of the assay. The primers and probes 

had to be specific for each gene while detecting the antibiotic resistance genes in as many bacteria 

as possible. Therefore, the intended gene sequences were queried in GenBank and those residing in 

pig intestinal commensals used for alignments. The conserved regions were then used for primer 

and probe design. Some antibiotic resistance genes are extremely similar, making it impossible to 

distinguish particular genes using qPCR. For example, the blaCTX-M-1 group contains >30 variants, 

with the blaCTX-M family containing >190 genes 
96

 (Table S1). Therefore, the entire group or family 

for the blaCTX-M-1 and blaSHV were included, respectively. Due to the similarity between genes, 

probe based chemistry was preferred in order to increase the assay specificity. 

PCR optimization is required for each untested PCR assay and includes the buffer system and 

cycling parameters 
97

. The buffer system consists of a mastermix containing magnesium chloride 

(MgCl2), deoxynucleotide triphosphates (dNTPs), primers, DNA polymerase, and the DNA 

template. The effects varying PCR cycle numbers and MgCl2 combinations had on the class and 

proportion of RPP tet genes detected in swine manure using the Ribo2_new_FW/Ribo2_RV 

degenerate primer pair was investigated (Manuscript I). The tested combinations yielded significant 

differences in the diversity of RPP tet genes detected; there was a marked increase in both diversity 

and number of RPP tet genes with increasing cycle number and MgCl2 concentrations. The results 

from this study emphasize the importance of optimizing each untested PCR assay. Both melting and 

annealing temperatures of the primers and template are affected the amount MgCl2 in the PCR 

reactions, and the Taq DNA polymerase utilizes Mg
2+

 for activity 
10,97,98

. It is important to test the 

MgCl2 concentration for each PCR assay because increased concentrations of MgCl2  may improve 

the efficiency of the PCR amplification but can also reduce the specificity, and too little MgCl2 can 

result in no PCR product 
10,97

. The optimal cycle number for the specific PCR reaction depends on 

the amount of starting material in the sample, the primers used, and the efficiency of the PCR assay 
98

. If the cycle number is too low, then there will be no amplified products, but if it is too high non-

specific products may appear 
97,98

. It is therefore important to verify the specificity of any optimized 

qPCR assay. In the current project, this was accomplished by running each qPCR assay against a 

panel of 16 different antibiotic resistant gene amplicons at a concentration of 2x10
4
 copies µl

-1
.  

There were no cross-reactions from any of the qPCR primers (Manuscript II). Ideally, the 

amplicons derived from the qPCR in swine feces should be sequenced in order to confirm the 

product, but this was not possible due to the short amplicon lengths. Therefore, the amplicon 
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lengths were confirmed using the High Sensitivity DNA chip on an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Walbronn, Germany). Each PCR assay contained an internal control for 

inhibition, and both positive- and negative- DNA extraction controls were included for each DNA 

extraction. 

The standard curve enables absolute quantification of gene copy number per gram feces, and were 

created using PCR derived amplicons serially diluted in water. Feces contain inhibitors such as cell 

debris, bacterial proteases and nucleases, and bile salts all of which can affect the sensitivity of a 

PCR assay 
99

. Additionally, it has been previously shown that, for each qPCR assay, matrix and 

extraction method, a separate standard curve should be used to ensure meaningful quantitative 

measurements in specific samples
100

. Therefore, numerous attempts were made to find swine feces 

with low levels of antibiotic resistance genes to use for spiking and standard curve generation. 

Swine fecal samples from conventional pig herds, miniature pigs that had never received antibiotics 

and swine feces that had been treated with gamma radiation as earlier described 
101

 were screened 

for the presence of antibiotic resistance genes. Unfortunately, the levels of antibiotic resistance 

genes in the screened samples were not low enough to enable spiking for standard curve use, and 

the gamma radiation treated feces inhibited almost all the tested assays. As a consequence, water 

was used for standard curve generation and was considered satisfactory as comparable standard 

curves have previously been described 
8,13,102,103

. 

In order to investigate the effect the pig fecal environment had on the quantification of the antibiotic 

resistance genes, template serial dilutions in water were run parallel to pig fecal DNA spiked with 

antibiotic resistance gene template serial dilutions. Using template assures confidence of the 

number of amplicons that are added to start with when preparing the serial dilutions and 

assumptions of gene copy number / positive control bacteria are avoided, which may introduce bias 

if the bacteria lose their plasmid, have different plasmid copy numbers, or shed the antibiotic 

resistance gene during the extraction process 
8
. Discrepancies between the spiked pig fecal DNA 

and the serial dilutions in water have been described 
104,105

. In the present study, the efficiency in 

the spiked DNA from pig feces remained between [0.90;1.10] and R
2
 above 0.99 for all but four  

assays. The lowest efficiency was 0.84 (16S rDNA and tet(M)) and R
2
 was 0.87 for tet(M), and 

therefore not of great concern. Varying inhibition was also observed in the spiked pig fecal DNA 

extracts  (1-4 Cq value increases) however, the dynamic ranges remained linear over a measurement 

range >4 orders of magnitude which is sufficient for genomic DNA. The qPCR performance in 

quantifying antibiotic resistance genes in pig fecal samples was therefore not regarded considerably 

altered. 

 

3.1.1.1 Conclusion 

 

The qPCR assay design procedure including the primers and corresponding probes, the internal 

controls, DNA extraction controls, and reaction mix all ensured a thorough qPCR assay design and 

verification. There were not cross reactions when each assay was tested against a panel of 16 

different antibiotic resistance gene amplicons and the qPCR product lengths from pig feces were 

accurate. We believe that the developed qPCR assays possess the characteristics necessary for 

application to antibiotic resistance gene quantification in pig fecal samples. In addition, Manuscript 

I reports the first study that systematically evaluated the effect of PCR cycle numbers and 

magnesium chloride concentrations on detection of tet genes in swine manure samples. We showed 
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that these two parameters can significantly affect the detection of tet genes in terms of classes 

detected and their proportion. The results emphasize the importance of taking the PCR conditions 

into consideration and optimizing each untested PCR assay. Furthermore, PCR conditions should 

also be taken into consideration upon result interpretation because the PCR conditions can 

significantly affect the analysis results.  

3.1.2 Objective 2: Manuscript II, Manuscript III 

The second objective was to establish if the qPCR assays could quantify antibiotic resistance genes 

in swine herds by comparing this principle to culture dependent antibiotic resistance detection. 

First, swine fecal samples were collected in a single herd using different sampling methods which 

also were pooled at different levels. Second, antibiotic resistance levels were determined by the 

qPCR assays and coliform CFU counts. Third, the different sampling and pooling methods were 

evaluated (Manuscript II). Finally, the principle of qPCR quantification of antibiotic resistance was 

compared to culture dependent methods including coliform CFU counts and colony hybridization 

using probes corresponding to the fragments amplified by the qPCR primers (Manuscript III). 

The swine fecal samples were collected from a single pig herd at two separate time points that were 

four months apart. Samples were collected from four pens within a single stable in sampling 1 and 

were subsequently pooled at different levels. The samples collected included individual animal 

samples, pen floor samples, and shoe cover samples. During sampling 2, samples were collected 

from four pens in each of the five sampled stables. The samples collected were pen floor samples, 

shoe cover samples, and slurry tank samples. These were also pooled at different levels after 

collection. Twenty fecal samples collected from the individually sampled animals were randomly 

selected for analysis with the qPCR and culture dependent methods for antibiotic resistance 

quantification.  

 

3.1.2.1 Antibiotic resistant coliform CFU counts and qPCR gene copy number assessment 

 

When assessing the coliform CFU counts from individually sampled animals within each pen from 

sampling 1, there was a significant difference between pens for the ampicillin resistant coliform 

CFUs (P<0.05). Furthermore, the CFU counts of the individual animal pool pen samples did not 

represent an average of the non-pooled individual animal samples demonstrating that, at pen levels, 

the pooled samples from individual animals were not representative of the individual animals 

(Manuscript II, Figure 1, top). Figure 2 (Manuscript II) shows the relative standard deviations of the 

fecal estimates of the coliform CFU counts and qPCR gene copy numbers. The coliform CFU 

estimates had large relative standard deviations, explaining the variation observed within each 

sampling method. This variation complicated the comparison of different sampling methods 

between pens using coliform CFU counts (Manuscript II, Figure 1, bottom).  

Regarding the qPCR gene copy number estimates from sampling 1,  ermB, ermF, tet(C), tet(O), and 

tet(W) differed significantly between pens (p<0.05 for ermB, tet(C), tet(W); p<0.0001 for ermF and 

tet(O)).  The blaCTX-M-1 group, blaCMY-2, blaSHV family, and vanA antibiotic resistance genes were 

not detected in any samples during sampling 1 and sampling 2. In contrast, the coliform CFU 

counts differed significantly between pens for ampicillin and not tetracycline nor erythromycin. 

These results illustrate major shortcomings of both methods i.e. the CFU counts represent only the 

coliform bacteria which are a fraction of the intestinal population, and the qPCR assays only detect 
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the specific genes that are included. There was no correlation between the total coliform CFU 

counts and the total number of bacteria in the population represented by the 16S copy number 

(R
2
=0.1). This emphasizes how these two methods represent each their population and cannot be 

directly compared. However, the qPCR gene copy numbers had lower relative standard deviations 

compared to the coliform CFU counts meaning that there is less variation in the qPCR gene copy 

estimates compared to the coliform CFU counts (Manuscript II, Figure 2). Therefore, only qPCR 

gene copy number g
-1 

feces were used to assess the different sampling and pooling methods. 

 

3.1.2.2 Sampling method and pooling assessment 

 

For the majority of the genes during sampling 1, the pen floor samples had higher copy number 

estimates compared to the individual animal pen pools (Manuscript II, Figure 3 and Figure S1). 

This could either be due to the dilution effect of pooling 20 ≥ individual samples together, or to the 

pen floor samples being more concentrated due to liquid run-off and/or evaporation. Furthermore, 

the individual animal pen pools were considerably more constant between pens than the individual 

animal samples illustrating how high- and low-level samples can balance each other in a pool 
32

. 

Unfortunately, shoe cover sampling was not conducted at the pen level (one shoe cover per pen) but 

at stable level (one shoe sample in all four pens x4 shoe cover samples). It is therefore not possible 

to compare the shoe cover sampling method with the individual animal sampling or pen floor 

sampling conducted in the four pens included in sampling 1.  

During the second sampling (sampling 2) four pens in five stables were sampled in the same herd as 

sampling 1. The shoe cover samples varied in being higher or lower than the pen floor samples for 

certain genes, which was observed for the same genes in sampling 1 and sampling 2. A lower gene 

copy number per gram feces may occur if there is excess roughage collected during sampling due to 

roughage weight that is attributed as feces. On the other hand, the higher shoe cover sample gene 

copy estimates may reflect that the shoe covers collect fractions of feces that the individual animal 

samples or pen floor samples cannot, thus different bacteria are represented. Moreover, the entire 

pen floor is included during shoe cover sampling, consequently increasing the chances of collecting 

a sample positive for a given gene. 

The sensitivity of a specific assay is dependent on the gene prevalence, the number of samples 

included in the pool, the gene concentration in samples collected from positive animals, and the 

quantification limit of the assay 
32,106

. This is illustrated by samples that were positive originally, 

but became negative after pooling (sampling 1 sulI, sulII, tet(A) ; sampling 2 tet(A), tet(B), tet(C), 

sulII). In contrast, there was apparent consistency in gene copy numbers per gram feces between the 

slurry tank samples, pen floor and shoe cover herd pools for the majority of the assays implying 

stability between the parameters affecting assay sensitivity.  

 

3.1.2.3 Method comparisons for quantitative measurement of antibiotic resistance in swine feces 

 

The principle of culture independent antibiotic resistance quantification using the developed qPCR 

assays was compared to the culture dependent principles. The culture independent methods 

included coliform CFU counts on plates with antibiotics (sulphonamide, tetracycline) and without 
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antibiotics, and colony hybridization using the qPCR amplicons as hybridization probes for 

antibiotic resistance genes. The colony hybridization was performed without antibiotics added to 

the agar enabling comparison with the qPCR estimates i.e. neither bacteria populations were 

subjected to an antibiotic selection pressure. On the other hand, the coliform estimates are based on 

an antibiotic selection pressure in order to select for phenotypic resistance.  

Twenty of the 84 fecal samples from individually sampled animals were randomly selected and 

used for antibiotic resistance determination (Manuscript III). The following antibiotic-resistance 

genes were investigated by qPCR: tetracycline resistance tet(A),tet(B), tet(C), tet(M), tet(O), 

tet(W); sulphonamide resistance sulI, sulII. The gene copy number estimates were then compared to 

corresponding resistant coliform bacteria CFUs. Finally, colony hybridization was used to quantify 

the same tetracycline and sulphonamide antibiotic resistance genes in bacteria using the qPCR 

primers’ amplicons as hybridization probes.  

The antibiotic resistant coliform estimates are phenotypically based as only the antibiotic resistant 

coliforms that grow on the MacConkey plates containing antibiotics are counted. In contrast, the 

colony hybridization enables detection of antibiotic resistance genes in a larger bacterial population, 

namely those that grow on MacConkey without antibiotics and blood agar (BA) anaerobically 

incubated. Despite there being a smaller bacterial population represented in the coliform estimates 

compared to the colony hybridization, there was a higher level of tetracycline resistance observed in 

the coliform bacteria CFU counts compared to the colony hybridization (P<0.0001) (Manuscript III 

Table 2). This suggests that the majority of the tetracycline resistant bacteria are not detected by 

colony hybridization because they do not carry the specific genes that were used as probes, 

illustrating how the method chosen for antibiotic resistance detection has an influence on the results 

obtained. The tet genes detected by qPCR were not detected using colony hybridization on blood 

agar (anaerobic growth) as seen by low BA (anaerobic growth) CH:qPCR ratios (Manuscript III, 

Figure 3a). Either the bacteria containing the genes detected with qPCR are not present on the BA 

plates (anaerobic growth), or a single bacterium may contain more than one of the resistance genes.  

There were also differences in the sulphonamide resistance estimates obtained by the different 

methods (Manuscript III, Table 3), however the qPCR estimates were only significantly different 

from the CFU estimates from plates without antibiotics. The sulI and sulII genes detected by qPCR 

are also represented in the culture dependent methods as seen by the BA (anaerobic) CH:qPCR 

ratios and sulphonamide resistant coliform CFU:qPCR ratios that did not significantly differ 

(P=0.2010) (Manuscript III, Figure 3b). This indicates that when fewer genes cause an antibiotic 

resistance phenotype (sulphonamide vs tetracycline), then there is less discrepancy between the 

resistance genotype and phenotype. 

 

3.1.2.4 Conclusion 

 

Great variation within each sampling method was observed for the coliform CFU counts making it 

difficult to compare different sampling and pooling methods. This variation can be explained by the 

large relative standard deviations seen for each coliform CFU count, indicating that coliform 

bacteria are not a good representative for the general resistance level. The qPCR and culture 

dependent for estimating antibiotic resistance represent each their bacterial population and cannot 

be directly compared. Furthermore, the results show that the method chosen for quantification can 

have an influence on the results obtained. Whether a phenotypic antibiotic resistance estimate is 
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signified by the genotype or not may depend on the number of corresponding resistance 

determinants. The qPCR gene copy estimates in swine feces had reduced relative standard 

deviations compared to coliform CFU counts, and were therefore used to assess the different 

sampling and pooling methods. Furthermore, the qPCR assays allowed simultaneous quantification 

of key antibiotic resistance determinants in total microbiomes of pig fecal samples. We recommend 

either pen floor samples or shoe cover sampling for antibiotic resistance estimation at herd level by 

qPCR. The slurry tank samples were also promising; their gene copy levels were consistent with 

those quantified in the pen floor and shoe cover samples. To our knowledge, this is the first study to 

test different sampling and pooling strategies for antibiotic resistance surveillance using qPCR 

estimation of antibiotic resistance levels in total DNA extracted from swine feces 
29-31

.

3.1.3 Objective 3: Manuscript IV 

The third objective was to apply the qPCR assays in another animal population than swine herds. 

Wild animals have been associated as potential reservoirs of resistant bacteria, and might assist in 

the dissemination of resistant bacteria throughout the environment 
107

. Fecal samples collected from

wildebeest, zebra, and buffalo in Tanzania were screened for the presence of antibiotic resistance 

genes using the developed qPCR assays; the level of resistant coliform bacteria was also 

determined. The first sampling site was the Ngorongoro Conservation Area (NCA) where the 

Massai shepherds migrate with their short horned zebu cattle, interacting with the wildlife through 

grazing and at water holes 
108,109

. Further south from NCA is the Mikumi National Park (MNP)

where the Massai are prohibited to migrate with their cattle so the wildlife does not interact with 

cattle.   

Eight of the 14 antibiotic resistance genes were detected in the wildlife and cattle samples. No 

wildlife samples from NCA or MNP were positive for antibiotic resistance genes not detected in the 

cattle. The cattle were all positive for tet(W), ermF, sulI, and blaCMY-2. tet(A), tet(M), tet(O), and 

sulII were also detected in minimum one of the four cattle samples (Manuscript IV, Table 2). On the 

other hand, the tet(A), tet(M), tet(O),  genes were detected the cattle but not wildlife samples. The 

Buffalo M13 sample had a relatively low amount of 16S rDNA implying that there may not have 

been sufficient DNA for qPCR gene detection as this was the only sample that was negative for all 

the tested antibiotic resistance gene determinants. 

There were few samples displaying phenotypic resistance without having a corresponding antibiotic 

resistance gene encoding the resistant phenotype. For example, the Buffalo M15 sample had 

phenotypic sulphametizole resistance, but neither sulI nor sulII were detected. This can be 

explained by another sulphonamide resistance encoding gene causing the resistant phenotype for 

example, sulIII or a mutated DHPS encoding folP gene 
86,87

.

The most concerning finding was the presence of the blaCMY-2 cephalosporinase encoding gene in 

10 of the 12 screened samples. A study in Denmark revealed that the blaCMY-2 was present in 

samples collected from broiler flocks where the administration of cephalosporins had been banned 

for 10 years 
110

. This illustrates the persistence of the blaCMY-2 gene within a population despite the

absence of cephalosporin selection pressure. Furthermore, blaCMY-2 is found on plasmids associated 

with transposons and multiple antibiotic resistance genes that spread both clonally and horizontally 
75,110

. This emphasizes the role of blaCMY-2 in the spread of resistance. 
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3.1.4.1 Conclusion 

The detection of blaCMY-2 was of great importance for two reasons. First, the nature of the blaCMY-2 

antibiotic resistance spectrum itself and the finding of this gene in 10 of 12 screened wildlife 

samples gives rise to concern. Second, this gene was not detected in any of the pig samples 

collected previously during this project. Therefore the finding of the blaCMY-2 gene in the wildlife 

further substantiates the qPCR assay. Based on these results, further studies should be conducted to 

study the antibiotic resistance gene-pool among the wildlife in northern Tanzania in depth. It is 

important to minimize excessive antibiotic use in order to reduce selection of antibiotic bacteria 

both among humans, livestock, and wildlife. 



40 

 

 

3.3 Future perspectives 

This PhD thesis mainly focuses on the development of qPCR assays, and their initial test in order to 

establish a principle of qPCR quantification of antibiotic resistance genes in animal herds. Future 

studies must be conducted in order to investigate the qPCR method’s ability to quantify fluctuations 

in antibiotic resistance.  

The assays from this project are in the process of being used in a larger study including five pig 

herds in Denmark that have been subjected to different antibiotic treatment regimes. Here a better 

understanding of the antibiotic resistance gene pool fluctuations may come to light, as these pigs 

were sampled prior to, during, and after antibiotic treatment.  However, the quantified antibiotic 

resistance gene levels need to be understood in order to define for example if certain levels are a 

potential risk.  In order to do so, it may be necessary to conduct initial studies that include parallel 

analysis of antibiotic resistance using several methods.   

If the qPCR assays prove to be sensitive enough, it may be possible to certify herds free for certain 

types of antibiotic resistance or at least to categorize them according to their antibiotic resistance 

levels. This could be valuable information when considering animal trade but may also aid the 

choice of antibiotics for disease treatment. Nevertheless, more assays should be developed in order 

to ensure as many genes can be detected as possible.   

Despite the global focus on antibiotic resistance and the associated hazards, there is a lack of 

epidemiological studies concerning the antibiotic resistance gene pools in animal herds. Future 

studies could include monitoring the antibiotic resistance genes in piglets from their birth (including 

a sample from the sow) and throughout their progression in the herd. This may enlighten when the 

antibiotic genes are acquired and their fluctuations can be monitored over time. The finding of 

antibiotic resistance genes both in pigs that had never received antibiotics and wildlife in Tanzania 

emphasizes the need for an understanding of antibiotic resistance gene dynamics not only among 

animal herds but also wildlife.  
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Table S1 An overview of the antibiotic resistance genes included in the present study, and their phenotypic resistance, resistance 

mechanism, mobility, gene linkage, “other” information, and references. 

Antibiotic 

resistance 

genes 

Relevant 

resistance 

Resistance 

mechanism 

Mobility Linked to other genes Other Ref. 

tet(A) tetracycline efflux protein Gram negative 

bacteria: 

transposons inserted 

in plasmids or 

integrons i.e. RP1 

and Tn1721 

 

Gram negative bacteria: 

antibiotic resistance genes 

heavy metal resistance 

genes 

pathogenic factors 

 

 57,63,64,72,11

1-115 

tet(B) tetracycline 

minocycline 

efflux protein Gram negative 

bacteria: 

transposons inserted 

in plasmids or 

integrons i.e. 

pSC101 and 

Tn10  

 

Gram negative bacteria: 

antibiotic resistance genes 

heavy metal resistance 

genes 

pathogenic factors 

 

 63,72,112,116 

tet(C) tetracycline efflux protein Gram negative 

bacteria: 

transposons inserted 

in plasmids or 

integrons i.e. 

pRAS3 and Tn1403 

 

Gram negative bacteria: 

antibiotic resistance genes 

heavy metal resistance 

genes 

pathogenic factors 

 

 63,72,117,118 

tet(M) doxycycline 

minocycline 

ribosomal 

protection 

Conjugative 

transposons i.e. 

Tn916  

Tn1545 

Tn1545: erythromycin 

and kanamycin resistance 

genes 

often linked to ermB 

 59,63,66,72, 

112 

tet(O) doxycycline 

minocycline 

ribosomal 

protection 

Conjugative 

plasmids i.e. 

piP1433, pUA466 

Other antibiotic resistance 

genes 

 63,72,112,119,

120 

tet(W) doxycycline 

minocycline 

ribosomal 

protection 

Conjugative 

transposon 

i.e. TnB1230 

Other antibiotic resistance 

genes 

 63,68,72,112 
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ermB macrolide 

lincosamide 

streptogramin B 

ketolides  

oxazolidinones 

rRNA 

methylase 

 Plasmids 

i.e.pSE20, pTE44 

and associated with 

transposon Tn917 

often associate with other 

antibiotic resistance genes 

encoding for i.e. 

resistance to 

Chloramphenicol, 

streptomycin, 

aminoglycoside, and 

tetracycline genes 

especially tet(M) 

 59,72,93,95, 

121,122 

ermF macrolide 

lincosamide 

streptogramin B 

ketolides  

oxazolidinones 

rRNA 

methylase 

Plasmids i.e. pBF4 

and associated with 

transposon Tn4352 

often associate with other 

tetracycline resistance 

genes especially tet(Q) 

 59,72,93,95, 

121,122 

 

 

 

sulI 

 

 

 

sulphonamide 

 

 

 

 

alternative 

DHPS 

 

 

 

Plasmids often 

associated with 

transposons i.e. 

Tn21 or integrons 

 

 

 

other antibiotic resistance 

genes encoding resistance 

to i.e. streptomycin, 

trimethoprim, ampicillin, 

kanamycin, 

chloramphenicol, and 

tetracycline 

  

 

 

123-127 

sulII sulphonamide 

 

alternative 

DHPS 

small non-

conjugative 

plasmids i.e.pBP1, 

p9123 and RSF1010  

or large conjugative 

plasmids i.e. pGS05 

other antibiotic resistance 

genes encoding resistance 

to i.e. streptomycin, 

trimethoprim, ampicillin, 

kanamycin, 

chloramphenicol, and 

tetracycline 

 87,124,128 

blaCTX-M-1 

group 

 

β-lactams 

ESBL* 

β-lactamase Conjugative 

plasmids and non-

self-transmissible 

plasmids: 7-430kb 

size range i.e. 

IncFII, IncN, IncI1, 

and IncL/M 

chromosomal in 

Kluyvera associated 

with Insertion 

sequences  i.e. 

ISEcp1 

 

blaTEM genes, genes 

encoding resistance to 

aminoglycosides, 

chloramphenicol, 

sulphonamides, 

trimethoprim, and 

tetracyclines 

CTX-M-1 group 

>30 variants: 

1,3,10,12,15,22,

23,28,29,32,33,

42… 

CTX-M family  

> 119 types 

74,96,129-131 
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blaCMY-2 β-lactams** AmpC-like 

β-lactamase 

Conjugative or non-

conjugative 

plasmids often 

associate with 

transposons/integro

ns 

other antibiotic resistance 

genes encoding resistance 

to i.e. chloramphenicol, 

tetracycline, 

streptomycin, gentamicin 

and tobramycin 

 75,132-136 

 

blaSHV  

family 

 

β-lactams 

blaSHV-1: 

penicillins 

blaSHV- > 1: 

ESBL* 

 

β-lactamase 

 

chromosomal in  

Klebsiella 

conjugative 

plasmids i.e. p453, 

pKOX105 often 

associated with 

transposons  

 

 

 

antibiotic resistance genes 

encoding resistance to i.e. 

quinolones, 

aminoglycosides and 

trimethoprim 

 

SHV family 

 > 175  

types 

 

74,137-141 

vanA vancomycin 

teicoplanin 

alternative 

peptidoglycan 

precursor 

conjugative 

plasmids i.e. pIP816 

often associated 

with transposons i.e. 

Tn1546 

other antibiotic resistance 

genes encoding resistance 

to i.e. erythromycin, 

ampicillin, and 

tetracycline 

vanA cannot 

confer 

resistance to 

vancomycin 

alone, other 

genes in the 

vanA operon 

must also be 

acquired to 

produce the 

substrate for 

VanA 

90,92,142-147 

* ESBL: β-lactamases that can hydrolyze penicillins, 3
rd

 and 4
th

 generation cephalosporins and monobactams, but are 

susceptible to β-lactamase inhibitors. 

** AmpC Cephalosporinase: Degrade cephamycins and 3
rd

 generation cephalosporins but not 4
th

 generation 

cephalosporins or monobactams and also confer resistance to β-lactam inhibitors. 
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Table S2 The antibiotic resistance genes included in the present study and their Gram positive bacterial host spectrum found in current literature (tet(A)57,63,64,72,111-115, tet(B)63,72,112,116, 

tet(C)
63,72,117,118, tet(M)59,63,66,72,112, tet(O)63,72,112,119,120, tet(W)63,68,72,112, ermB59,72,93,95,121,122, ermF59,72,93,95,121,122, sulI123-127, sulII 87,124,128, blaCTX-M-1 group74,96,129-131,  blaSHV family74,137-141, 

 blaCMY-2
75,132-136, vanA90,92,142-147 ). The black boxes denote the given gene has been described in the corresponding bacteria. 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV family blaCMY-2 vanA 

Abiotrophia    +           

Actinomyces    +  +  +       

Aerococcus    + +  +  + +     

Arcanobacterium      + +       + 

Arthrobacter    +     + +     

Bacillus    +  + +  + +    + 

Bacterionema    +           

Bifidobacterium (anaerobic)    + + +         

Brevibactium          +     

Carnobacterium         +      

Catenibacterium (anaerobic)    +           

Caullulomonas              + 

Clostridium (anaerobic)    +  + + +       
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Table S2 continued 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV family blaCMY-2 vanA 

Corynebacterium    +   + +  +     

Enterococcus    + +  + +  +    + 

Erysipelothrix    +           

Eubacterium    + +  + +       

Fusobacterium (anaerobic)      +         

Gardnerella    +    +       

Gemella    + +  +        

Granulicatella    +           

Lactobacillus    + + + + +       

Lactococcus    +           

Listeria    +           

Microbacterium    +           

Micrococcus       +        

Mobiluncus (anaerobic)    + +   +       
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Table S2 continued 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV family blaCMY-2 vanA 

Mycoplasma     +           

Paenibacillus    +          + 

Planococcus         + +     

Pediococcus       +        

Peptostreptococcus (anerobic)    + +  + +       

Roseburia      +         

Rothia       +        

Ruminococcus       + +       

Staphylococcus     + + + + +      + 

Streptococcus    + + + + +       

Streptomyces    +  +         

Ureaplasma    +   +        

Weisella         + +     
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Table S3 The antibiotic resistance genes included in the present study and their Gram negative bacterial hosts found in current literature (tet(A)57,63,64,72,111-115, tet(B)63,72,112,116, tet(C)
63,72,117,118, 

tet(M)59,63,66,72,112, tet(O)63,72,112,119,120, tet(W)63,68,72,112, ermB59,72,93,95,121,122, ermF59,72,93,95,121,122, sulI123-127, sulII 87,124,128,  blaCTX-M-1 group74,96,129-131,  blaSHV family74,137-141, blaCMY-2
75,132-136, vanA90,92,142-147 ). 

The black boxes denote the given gene has been described in the corresponding bacteria. 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV blaCMY-2 vanA 

Acidaminococcus (anaerobic)      +         

Acinetobacter + +  +   +  + +     

Actinobacillus  +   +          

Aeromonas + + + +     +      

Aggregatibacter  +     + +       

Anaerovibrio (anaerobic)     +          

Afipia    +           

Agrobacterium          +     

Bacteroides (anaerobic)    +  + + +       

Bordetella +  +      +      

Brachybacterium    +           

Brevundimonas  +             

Butyrivibrio (anaerobic)     + +         

Burkholderia            +   
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Table S3 continued 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV blaCMY-2 vanA 

Campylobacter     +          

Capnocytophaga (anaerobic)        +       

Chlamydia   +            

Chryseobacterium +              

Citrobacter + + +    +    +  + +  

Comamonas          +     

Edwardsiella +   +     +      

Eikenella    +           

Enterobacter + + + +   +        

Erwinia  +             

Escherichia + + + +   +  + + + + +  

Flavobacterium +   +           

Fusobacterium (anaerobic)    + +  + +       

Francisella   +            

Haemophilus  +  +   + +  +     
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Table S3 continued 

           Antibiotic resistance gene 

Genera 

tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV blaCMY-2 vanA 

Halomonas   +            

Kingella    +           

Klebsiella + + + +   +  + +  + +  

Kluyvera           +    

Kurthia    +           

Laribacter +              

Mannheimia  +             

Megasphera (anaerobic)     + +         

Mitsuokella (anaerobic)      +         

Moraxella  +             

Morganella         +   +   

Neisseria  +  + + + + +       

Pantoea  +  +   +        

Pasteurella  +  +      +     

Photobacterium  +  +           
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Table S3 continued 

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV blaCMY-2 vanA 

Psychrobacter     +          

Plesiomonas + +             

Porphyromonas (anaerobic)     +  + +       

Prevotella (anaerobic)    + +   +       

Proteus + + +    +      +  

Providencia  +             

Pseudoalteromonams    +           

Pseudomonas + + + +   +  + + + +   

Psychrobacter         + +     

Ralstonia    +           

Roseobacter  + +            

Salmonella + + +      + + + + +  

Selenomonas (anaerobic)    + +   +       

Serratia + + + +   +    + +   

Shewanella  +  +           
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Table S3 continued  

           Antibiotic resistance gene 

Genera tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaCTX-M-1 group blaSHV blaCMY-2 vanA 

Shigella + + +     + + +     

Stenotrophomonas         + + +    

Subdoligranulum (anaerobic)     +          

Treponema  +     + +       

Variovorax +              

Veillonella (anaerobic) +   + +   +       

Vibrio + + + +      +     

Wolinella       + +       

Yersinia  +             
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Abstract 19 

PCR is routinely used in detection of antibiotic resistance genes including different classes of tet and 20 

erm genes. It remains unknown how PCR conditions affect detection of resistance genes in terms of 21 

genetic diversity and prevalence. In this study, numbers of PCR cycles and MgCl2 concentrations were 22 

evaluated for their effect on the diversity and prevalence of the tet genes that encode ribosomal 23 

protection proteins (RPPs) in composted swine fecal samples using the degenerate 24 

Ribo2_new_FW/Ribo2-RV primer pair. Three cycle numbers and 4 MgCl2 concentrations were tested 25 

in a 3 x 4 factorial design. A clone library was constructed for each PCR condition combination, and 26 

randomly selected clones were sequenced to determine the genetic diversity and relative distribution of 27 

RPP tet genes. Significant differences in genetic diversity and prevalence of tet genes were found 28 

among the tested cycle numbers and MgCl2 concentration combinations. The results suggest that 35 29 

PCR cycles and 7 mM MgCl2 allow for optimal detection of the tet genes in swine feces using the 30 

Ribo2_new_FW/Ribo2-RV primer pair. These results suggest that PCR conditions should be taken into 31 

consideration when PCR conditions are chosen for ecological studies of tet genes and when the results 32 

are interpreted.  33 

 34 

 35 

 36 

 37 

 38 

 39 
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Introduction  40 

Polymerase chain reaction (PCR) has been the choice of method to specifically and rapidly detect the 41 

presence and genetic diversity of genes of interest, including genes encoding antibiotic resistance in 42 

microbiome samples (Manuzon et al. 2007, Alali et al. 2009). Because it allows for detection of target 43 

genes carried by both culturable and nonculturable microbes, PCR can provide more accurate detection 44 

of the target genes than cultivation-based methods. However, a number of factors, such as primer 45 

design, amount and quality of the template DNA, PCR thermal profile, and reaction mix, can affect the 46 

specificity and quality of the PCR product, and thus sensitivity of the PCR assay. Most PCR assays are 47 

optimized to amplify the target gene producing the specific product, and the essential components of 48 

the PCR optimization include the buffer system and cycling parameters (Harris and Jones 1997). The 49 

buffer system consists of a reaction mix of magnesium chloride (MgCl2), deoxynucleotide 50 

triphosphates (dNTPs), primers, DNA polymerase, and the DNA template. Additional components 51 

such as bovine serum albumin which attenuates amplification inhibition, or dimethyl sulfoxide (or 52 

glycerol, betaine, etc.) which reduce formation of secondary structures are often added to the reaction 53 

mix to improve PCR efficiency. MgCl2 concentration plays an important role in PCR, as the melting 54 

and annealing temperatures of the primers and template are affected by Mg
2+

. Furthermore, Taq DNA 55 

polymerase utilizes Mg
2+

 for activity (Williams 1989, Innis et al. 1990, Harris and Jones 1997). It is 56 

important to consider and test the MgCl2 concentration for each specific PCR assay, as increased 57 

concentrations of MgCl2  may increase the efficiency of the PCR amplification but can also reduce the 58 

specificity, while too little MgCl2 can result in little or no PCR product (Williams 1989, Harris and 59 

Jones 1997). The optimal cycle number for specific PCR depends on the amount of template used, the 60 

primers used, and the efficiency of the PCR assay (Innis et al. 1990). For a given amount of DNA 61 
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template, if the cycle number is too low, then there will be little or no amplified products, but if it is too 62 

high non-specific products may form (Innis et al. 1990, Harris and Jones 1997). 63 

 When a class or family of related genes is detected together using PCR and a 'pair of ‘universal’ 64 

primers, the detection of different genes within that class or family can be skewed. In a previous study, 65 

it was noted that Fibrobacter succinogenes, a species of major cellulolytic bacteria in the rumen, could 66 

not be detected by PCR using a pair of universal bacterial primers that matches the 16S rRNA gene of 67 

that species perfectly (Larue et al. 2005). In a recent study, we also repeatedly failed to detect 68 

Methanobacterium in samples collected from anaerobic digesters by using a pair of Archaea domain-69 

specific primers though the primers matched the 16S rRNA gene sequences of this genus, and qPCR 70 

using genus-specific primers revealed high abundance of this genus (Li, Chen and Yu 2014). Class- 71 

and group-specific primers have been commonly used in detecting the presence and diversity of 72 

antibiotic resistance genes, including tet genes and erm genes ((Aminov, Garrigues-Jeanjean and 73 

Mackie 2001, Aminov et al. 2002, Smith et al. 2004, Aminov and Mackie 2007, Peak et al. 2007, 74 

Knapp et al. 2010). We hypothesized that PCR conditions, particularly numbers of PCR cycles and 75 

MgCl2 concentrations, can affect detection of individual antibiotic resistance genes, skewing 76 

characterization of the resistome actually present in a microbiome. To test this hypothesis, we 77 

evaluated the effect of numbers of PCR cycles and MgCl2 concentration on the detection of tet genes 78 

that encode ribosomal protection proteins (RPPs). The previously published degenerate primer pair 79 

Ribo2-FW/Ribo2-RV detects 7 classes of RPP tet genes, namely tet(B(P)), tet(M), tet(O), tet(Q), tet(S), 80 

tet(T), and tet(W), and they have successfully been used in detecting RPP tet genes in various samples 81 

(Huys et al. 2005, Yu et al. 2005, Sharma et al. 2009). In the present study, the forward primer (Ribo2-82 

FW) was altered so that the primer pair can detect the tet(32), tet(36), and tet(44) RPP genes which 83 

were discovered after the original Ribo2-FW/RV primers were designed (Melville et al. 2001, Whittle 84 
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et al. 2003, Abril, Brodard and Perreten 2010). Because this primer pair allows 10 different classes of 85 

RPP tet genes to be detected simultaneously, it can be useful in targeted metagenomic analysis of RPP 86 

tet genes. In the present study, the potential effects of different MgCl2 concentrations and PCR cycle 87 

numbers on diversity and proportional distribution of RPP tet genes were systematically examined 88 

using a factorial design. Our results showed that both of the parameters can have significant effect on 89 

the RPP tet genes that can be detected. The findings of the present study may help design future studies 90 

and aid in interpretation of results.  91 

 92 

Materials and Methods 93 

Samples  94 

Swine manure samples were collected from the swine farm of Agricultural Technical Institute of  The 95 

Ohio State University, which is a conventional research farm utilizing tetracyclines for growth 96 

promotion, disease prevention or therapy. The swine manure samples were composted as previously 97 

described and have been used in a previous study to investigate the successions of tet and erm genes 98 

during composting (Wang et al. 2012). Briefly, a total of 3.3 kg swine manure was compost treated for 99 

48 days. Fifty gram compost samples were collected on days 0, 17, and 48 and subsequently stored at -100 

80°C prior to further analysis. Metagenomic DNA was extracted using the repeated bead-beating plus 101 

column purification (RBB+C) method as described previously and the DNA integrity was confirmed 102 

by agarose (0.8%) gel electrophoresis (Yu and Morrison 2004, Yu et al. 2005, Wang et al. 2012). In the 103 

present study, all the samples were pooled to create an ‘average’ sample with diverse classes of 104 

tetracycline genes for PCR detection.  105 
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Primers 106 

The primer sequences, targets, annealing temperatures, and amplicon lengths are given in Table 1. 107 

Since the original primers Ribo2-FW and Ribo2-RV were published, three new classes of RPP tet 108 

genes, tet(32), tet(36) and tet(44), have been discovered. To expand the inclusiveness of the original 109 

Ribo2 primers, the sequences used to design the original Ribo2-FW and Ribo2-RV primers (Aminov, 110 

Garrigues-Jeanjean and Mackie 2001) were aligned with the tet(32), tet(36), and tet(44) sequences 111 

(respective accession numbers AJ295238, AJ514254, and FN594949) using ClustalX (Thompson et al. 112 

1997). Then the new alignment of the RPP tet genes was aligned with the original Ribo2 primers. The 113 

Ribo2-RV matched the three new classes of RPP tet, but 2 of the 3 bases at the 3’ end of the Ribo2-FW 114 

primer did not match the tet(32), tet(36), and tet(44) sequences. Thus, the Ribo2-RW was modified by 115 

introducing two degenerate bases at the 3’ end. The modified Ribo2-FW primer (referred to as 116 

Ribo2_new_FW) was evaluated for specificity using BLASTn and analyzed for formation of secondary 117 

structure and primer dimers using the Integrated DNA Technologies SciTools Oligoanalyzer 118 

(Integrated DNA Technologies, Inc., Coralville, IA). Both RPP tet primers, Ribo2_new_FW and 119 

Ribo2-RV, were synthesized by Sigma-Aldrich (St. Louis, MO, United States).  120 

PCR amplification of RPP tet genes 121 

All PCR was performed using a 50 µl reaction volume with the same conditions except for varying 122 

MgCl2 concentrations and thermal cycle numbers. All the PCR contained the same amount (4.83 ng per 123 

reaction) of the same pooled DNA samples. Four MgCl2 concentrations (1.75 mM, 3 mM, 5 mM, and 7 124 

mM) and three numbers of PCR cycles (20, 30 and 35) were tested in a 4 x 3 factorial design that 125 

resulted in 12 different combinations of PCR cycles and MgCl2 concentrations. Each PCR was run in 126 

duplicate along with a single non-template control with water replacing the DNA template. The 127 
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following cycling conditions were used (Yu et al. 2005): Initial denaturation for 4 minutes (min) at 128 

94°C, followed by 5 cycles of touchdown PCR consisting of 30 sec at 94°C, 30 sec at 57°C with 1°C 129 

cycle
-1

 decrement, and 60 sec at 72°C. Thereafter, there were 20, 30 or 35 cycles of PCR, each cycle 130 

consisting of 30 sec at 94°C, 30 sec at 52°C and 90 sec at 72°C. There was a final elongation of 7 min 131 

at 72°C.  132 

Cloning and sequencing 133 

One clone library was constructed for each combination of cycle number and MgCl2 concentration that 134 

yielded the expected band (30 cycles x 5 mM MgCl2, 30 cycles x 7 mM MgCl2, 35 cycles x 3 mM 135 

MgCl2, 35 cycles x 5 mM MgCl2, and 35 cycles x 7 mM MgCl2). The amplicons were cloned using the 136 

TOPO TA cloning
®
 kit for sequencing (Invitrogen, Life technologies, Grand Island, NY, United States) 137 

following the One Shot® Chemical Transformation Protocol. To maximize ligation efficiency, the 5-138 

minute room temperature incubation step was extended to 15 minutes and 2 µl fresh PCR product was 139 

used. Clones were spread on Luria-Bertani (LB) plates containing 50 mg ml
-1 

ampicillin (Sigma-140 

Aldrich, Saint Louis, MO, USA) and incubated for 24 hours at 37°C. Sixty colonies from each clone 141 

library were randomly picked and inoculated into 5 ml LB broth with 50 mg ml
-1

 ampicillin and grown 142 

overnight at 37°C. Positive clones were identified by growth in ampicillin based on the amp resistance 143 

gene on the pCR
®
4-TOPO

®
 plasmid (Invitrogen, Life technologies, Grand Island, NY, United States). 144 

 Plasmid DNA extraction was performed using the QIAprep Miniprep kit (QIAGEN, 145 

Germantown, Maryland, United States) following the manufacturer’s instructions. Positive clones that 146 

contained the tet insert were confirmed by PCR using the M13 primers (Invitrogen, Life technologies, 147 

Grand Island, NY, United States). Sanger sequencing was performed on clones using DTCS Quick 148 

Start Kit (Beckman Coulter, Brea, CA, United States) on the Beckman GeneomeLab sequencer. A 5-149 
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minute heat treatment at 65°C was preformed prior to the cycling sequencing reaction per Beckman 150 

protocol recommendations, and 5 mM M13f primer was used for sequencing. Base calling was 151 

manually verified and poor sequences were discarded. The ends of each sequence read with poor base 152 

calling were trimmed off using BioEdit (Ibis Biosciences, Carlsbad, CA, United States). The sequences 153 

compared to GenBank sequences using Blastx to determine sequence identity to known tet genes in 154 

GenBank. The sequences that matched known tet genes were imported to Geneious version 5.6.4 155 

(Geneious, Auckland, New Zealand) for alignment and tree construction. Trees were constructed using 156 

the Neighbor-joining method for each clone library. The sequence of ribosomal 5s binding protein L5 157 

of Thermus flavus (GBIS77826.1) was used as the outgroup to root the tree. The trees were exported in 158 

Newick format for use in UniFrac analysis (Lozupone and Knight 2005). Based on weighted UniFrac 159 

analysis, the UniFrac Significance test was used to determine if the different PCR conditions (cycle 160 

numbers and MgCl2 concentrations) resulted in different detection (genetic diversity and proportion) of 161 

RPP tet genes.   162 

 163 

Results and Discussion 164 

No PCR amplicons were detected on agarose gels when only 20 cycles (excluding the five 165 

touchdown cycles) of PCR were performed at any of the four MgCl2 concentrations tested (data not 166 

shown). The abundance of RPP tet genes present in the pooled samples (containing both composted 167 

and uncomposted swine manure) might be too low to produce a visible PCR band after 25 cycles of 168 

PCR amplification. The expected PCR amplicons were not found at 30 cycles with 1.75 mM or 3 mM 169 

MgCl2 and at 35 cycles with 1.75 mM MgCl2 (data not shown).  These results suggest that 1.75 mM 170 

MgCl2 may be too low a concentration for reliable PCR detection of RPP tet genes in swine fecal 171 
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samples using the Ribo2_new_FW/Ribo2-RV primers. The other combinations of PCR cycle numbers 172 

and MgCl2 concentrations (referred to as Cn/M combinations) yielded the expected PCR amplicons and 173 

the three new classes of RPP tet genes were also detected using the Ribo2_new_FW/Ribo2-RV primers 174 

(Figure 1). The new primer Ribo2_new_FW may be used in future studies to allow detection of all 175 

known classes of RPP tet genes.  176 

Different numbers of high-quality tet sequences were obtained from the different Cn/M 177 

combinations, ranging from 41 to 55 (Figure 1). To compare the proportions of all the detected tet gene 178 

classes among the Cn/M combinations, the proportion of all the detected tet gene classes were 179 

normalized to a sum of 100% for each Cn/M combination. Differences in diversity (the classes 180 

detected) and relative abundance (proportions) were found among the different Cn/M combinations 181 

(Figure 1 and Table 2). As hypothesized, the number of RPP tet gene classes detected increased with 182 

increasing PCR cycles and MgCl2 concentrations, with four, six, seven, eight and nine classes of RPP 183 

tet genes detected at 30/5, 30/7, 35/3, 35/5, and 35/7, respectively. The 35/5 combination yielded four 184 

DNA sequences that did not match tet genes. Interestingly, no non-specific sequences were found with 185 

the other Cn/M combinations including the least stringent 35/7 combination. This suggests that the 186 

increase in cycle number and MgCl2 concentration would necessarily increase the likelihood of non-187 

specific amplicons. UniFrac Significance test revealed significant differences in the detection of RPP 188 

tet genes with respect to numbers of classes detected and their relative abundance among the Cn/M 189 

combinations (Table 2).   190 

The classes of tet genes detected and their proportions were affected to different degree by the 191 

different combinations of the PCR cycle numbers and the MgCl2 concentrations (Figure 1). The tet(M), 192 

tet(32) and tet(36) genes were detected in all the PCR cycle number and MgCl2 combinations with 193 

tet(M) being the most predominant class followed by tet(36) and tet(32) in all the Cn/M combinations. 194 
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The high tet(M) prevalence may be attributed to tet(M) being found in both Gram-positive and Gram-195 

negative bacteria and having the broadest host range of all tet genes (Yu et al. 2005). The tet(S) was 196 

not detected in the pooled swine manure samples by any of the Cn/M combinations, while tet(O) and 197 

tet(Q) became detectable at 30 cycles when MgCl2 concentration was
 
increased from 5 to 7 mM. At 35 198 

PCR cycles, the increase in MgCl2 concentration from 3 to 7 mM also resulted in detection of increased 199 

tet gene classes. At 5 mM MgCl2, simply increasing PCR cycle numbers from 30 to 35 enabled four 200 

additional classes of tet genes to be detected (W, O, B/P, and T). At 7 mM MgCl2, the increase in PCR 201 

cycle numbers from 30 to 35 also resulted in detection of three additional classes of tet genes that were 202 

otherwise not detected. Variations in cycle number and MgCl2 concentration also affected the 203 

proportion of the tet genes detected but to a different extent for different tet gene classes. For instance, 204 

the 2 mM increase (from 5 to 7 mM) in MgCl2 concentration at 30 cycles increased the proportion of 205 

tet(44) and tet(36) at the expense of tet(32). At 35 cycles, increase in MgCl2 concentration also affected 206 

the proportion of the tet gene classes detected but to different degrees for different tet gene classes. 207 

Such differential effect was also observed for the increase in PCR cycle number. For example, at 5 mM 208 

MgCl2 concentration, the increase in PCR cycles from 30 to 35 increased the proportion of tet(44) and 209 

tet(T) while decreasing that of tet(M). Differences in internal sequences among the tet gene classes may 210 

be one factor that contributes to difference in amplification efficiency and thus detection and 211 

proportion. In addition, a degenerate primer contains a pool of different primers. The proportion of a 212 

particular primer sequence within that pool can also affect primer annealing kinetics and subsequent 213 

amplification efficiency.     214 

The original Ribo2-FW/RV primer pair was used in PCR analysis of swine manure that used 2 215 

mM MgCl2 and 25 PCR cycles (Aminov, Garrigues-Jeanjean and Mackie 2001). In that study, only 216 

three classes of RPP tet genes, tet(M), tet(O), and tet(W), were found. In another study using the 217 
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original primer set, 1.75 mM MgCl2 and 5 touchdown PCR cycles followed by 30 cycles of regular 218 

PCR were used in qPCR to quantify total RPP tet genes (Yu et al. 2005). Due to the alteration in the 219 

forward primer and the different sample types, the results from those studies cannot be directly 220 

compared to the results of the present study. Nevertheless, the current results indicate that together with 221 

touchdown cycles, increasing the cycle number to 35 and MgCl2 concentration to 7 mM may help 222 

detect the RPP tet genes present in samples without false negative results or compromising the 223 

specificity. In addition, although the effects of PCR cycle numbers and MgCl2 concentrations, among 224 

other factors, are conceivable, the results of the present study demonstrate the importance of 225 

conducting pilot studies investigating PCR assay parameters, such as cycle number and MgCl2 226 

concentration, in order to establish the optimal conditions to accurately depict the resistome. 227 

Furthermore, interpretation of research results within one study and comparison of results among 228 

different studies should be exercised with caution because the PCR conditions used can significantly 229 

affect the analysis results. 230 
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Figure legend 304 

Figure 1. The classes of RPP tet detected in the swine manure and their proportion using different PCR 305 

cycle numbers and MgCl2 concentrations. a) 30 cycles and 5 mM MgCl2 (n=47), b) 30 cycles and 7 306 

mM MgCl2 (n=41), c) 35 cycles and 3 mM MgCl2 (n=51), d) 35 cycles and 5 mM MgCl2 (n=49), e) 35 307 

cycles and 7 mM MgCl2 (n=55). For comparison purpose, the proportions of the individual classes of 308 

RPP tet genes detected was normalized so that the total RRP tet gene summed to 100%. 309 

 310 

 311 

 312 
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Table 1 PCR primer sequences, targets, annealing temperatures, and amplicon length 313 

Primer Class targeted Primer sequence 5’3’ Annealing 

temperature °C 

Amplicon 

size (bp) 

Reference 

Ribo2_new_FW M, O, W, P, Q, S, T, 32, 36, 44 IYYIAAYCCDTWYTGGGC 

Touchdowna 233 

(Aminov, Garrigues-Jeanjean 

and Mackie 2001) 

Ribo2_RV M, O, W, P, Q, S, T, 32, 36, 44 TCIGMIGGIGTRCTIRCIGGRC This study 

314 



 

16 

 

Table 2 Matrix showing of the UniFrac Significance test   315 

Cn/M* 30/5 30/7 35/3 35/5 35/7 

30/5  0.3600 0.3670 0.0600 0.0000 

30/7   0.0300 0.3100 0.1000 

35/3    0.0000 0.0000 

35/5     0.0200 

35/7      

 316 

*Cn/M: PCR cycle number/MgCl2 concentration (mM). 317 

 318 
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Abstract 38 

Aims: To develop and validate 14 qPCR assays for antibiotic resistance gene quantification, and to compare 39 

estimation of antibiotic resistance levels in a swine herd using these qPCR assays and traditional quantification 40 

of resistant coliform indicator bacteria. 41 

Methods and Results: The validated qPCR assays were used to quantify antibiotic resistance genes in total 42 

DNA from 84 swine fecal samples that were obtained using a selection of different sampling and pooling 43 

methods. Results were compared to resistance levels determination by use of coliform indicator bacteria. The 44 

results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in 45 

individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays 46 

accurately quantified antibiotic resistance genes when comparing individual sampling and pooling methods. 47 

Conclusions: This study has validated qPCR assays that can be used to quantify antibiotic resistance genes in 48 

total DNA extracted from swine feces. The results indicate that regardless of the sampling and/or pooling 49 

method, there is a great deal of variation in the antibiotic resistance gene abundance within individual animals, 50 

pens, stables, and herds. This variation should be evaluated in greater detail. 51 

Significance and impact of the Study: The use of qPCR is a promising tool in antibiotic resistance surveillance 52 

as it can capture variation between samples that is not detected by use of indicator bacteria. 53 

Keywords: qPCR, swine, herd, feces, Genomic-DNA, sampling, pooling 54 

55 

56 

57 

58 
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Introduction 59 

Antibiotic resistance in pathogenic bacteria is an increasing problem challenging disease treatment in humans 60 

and animals globally (Aarestrup 1999, McGowan Jr 2001, World Health Organization 2002). Resistant bacteria 61 

survive in the presence of high concentrations of antibiotics due to genetic alterations, of which the most feared 62 

are transferrable resistance genes (Roberts 1996, van den Bogaard and Stobberingh 2000, Chopra and Roberts 63 

2001, Normark and Normark 2002, Aminov and Mackie 2007, van Hoek et al. 2011, Canton, Gonzalez-Alba 64 

and Galan 2012). 65 

It is important to minimize antibiotic use in intensive agricultural practices where widespread antibiotic 66 

use is common e.g. in the pig production, as such use can have severe consequences for human health. As 67 

resistance is selected for in both commensal and pathogenic bacteria during antibiotic treatment, it is of major 68 

concern if commensal bacteria become a reservoir of antibiotic resistance genes for pathogenic bacteria (Sunde 69 

et al. 1998, Aarestrup 1999, van den Bogaard and Stobberingh 2000, Schwarz, Kehrenberg and Walsh 2001). 70 

Resistance genes can spread from commensal bacteria to zoonotic bacteria or to human-specific pathogens; if 71 

humans are infected with these bacteria or pathogens, this may complicate disease control and challenge 72 

treatment (van den Bogaard and Stobberingh 2000). Other significant consequences that can be ascribed to 73 

antibiotic resistance include production and economic losses and negative effects on general welfare (McGowan 74 

Jr 2001, World Health Organization 2002). 75 

Surveillance of the presence of antibiotic resistant bacteria in individuals, populations and/or the 76 

environment facilitates risk management and may also support correct choice of drug for disease treatment. The 77 

traditional phenotypic methods for surveillance of antibiotic resistance in populations rely on cultures of 78 

indicator bacteria such as Escherichia coli, Enterococcus spp., Salmonella spp., and Campylobacter spp.. 79 

However, they neglect the remaining intestinal microflora and potentially underestimate the true antibiotic 80 

resistance levels in the bacterial community (Alali et al. 2009). 81 

The amount of resources put into the development of nucleic acid-based methods utilizing total bacterial 82 

community DNA for antibiotic resistance detection has increased vastly (Fluit, Visser and Schmitz 2001, Alali et 83 
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al. 2009). These methods enable detection and quantification of antibiotic resistance, also in the slow-growing or 84 

non-cultivable bacteria that are neglected by the current phenotypic methods. Multiple target genes of interest 85 

can easily be targeted within the community where bacteria could be sharing resistance determinants thus 86 

reflecting the entire gene pool (Alali et al. 2009). Furthermore, it may also be possible to detect resistance genes 87 

earlier than is possible using phenotypic methods as cultivation of fast-growing bacteria such as Escherichia coli 88 

or Salmonella can take 1-2 days and for cultivation of slow-growing bacteria like Mycobacterium tuberculosis 89 

can take up to several weeks (Schmieder and Edwards 2012). In contrast, nucleic acid-based detection of 90 

antibiotic resistance can provide results within hours (Schmieder and Edwards 2012), and may also be 91 

quantitative. Real-time PCR (qPCR) enables quantification of the amount of genetic material in the sample. This 92 

principle has been used to quantify antibiotic resistance genes in fecal samples and fecal contaminated 93 

environments (Yu et al. 2005, Chen et al. 2007, Alali et al. 2009, Knapp et al. 2010). 94 

At present, no good strategy has been published for quantification of resistance levels in animals at herd 95 

level. When designing such a strategy, it is important to consider the combination of sampling and analytical 96 

methods in order to gain representation of the true resistance level, whilst a feasible time frame and economic 97 

resources must be maintained.  98 

The aim of the study was to develop and validate qPCR assays for antibiotic resistance quantification in 99 

swine herds that ultimately can contribute to antibiotic resistance surveillance. In the absence of a golden 100 

standard, herd level antibiotic resistance estimates by qPCR and resistance levels in coliform bacteria were 101 

compared in swine fecal samples collected at different levels (with and without pooling) and subsequently 102 

compared to each other. A total of 14 antibiotic resistance determinants were included in the qPCR and 103 

compared to the level of phenotypic resistance to sulphametizole, erythromycin, ampicillin, and tetracycline 104 

among coliform bacteria, representing the antibiotic classes that are commonly used in pig production in 105 

Denmark. Furthermore, sampling strategies were assessed including individual animal sampling, pen floor 106 

sampling, shoe cover sampling, slurry tank sampling, and laboratory pooling of the samples.  We hypothesize 107 

that the qPCR assays will quantify antibiotic resistance genes in swine feces and detect differences in resistance 108 
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levels between sampling and pooling methods not detected by phenotypic resistant coliform colony forming unit 109 

(CFU) counts. 110 

Materials and Methods 111 

Sample collection 112 

Pig fecal samples were collected from a single feeder pig operation in Denmark at 2 separate time points 113 

(sampling 1 and 2) that were 4 months apart. The collected samples, their sizes and corresponding pools are 114 

summarized in Table 1. 115 

During sampling 1, fecal samples were collected from a single stable (stable 1) within the feeder pig 116 

operation. In the stable, 4 pens (pens 1 -4) were randomly chosen, and within these 4 pens all pigs (pen 1 n=22, 117 

pen 2 n=19, pen 3 n=21, pen 4 n=19; total n=84) were individually sampled by digitally extracting feces from 118 

the rectum. Furthermore, each of the 4 pens was sampled by pooling 5 separate samples of feces from the floor 119 

of each pen (pen floor samples, n=4). Four shoe cover samples were also collected in the same 4 pens. Two 120 

people each wore a pair of blue disposable polypropylene shoe covers (SEPA, Hilleroed, Denmark) and the pen 121 

area was covered by walking throughout the entire pen in a systematic snake formed pattern thus covering as 122 

much of the pen floor as possible. The same shoe covers were repeatedly used in all 4 pens and were removed 123 

when walking between pens. 124 

During sampling 2, a total of 5 stables were sampled (stables 1–5; Table 1). Again, 4 pens were 125 

randomly chosen in each stable and sampled (n=20). The pen floor samples and shoe cover samples were 126 

collected in each stable as described above with the exception that 2 shoe cover samples were collected for each 127 

stable (pen floor samples n=20; shoe cover samples n=10) instead of 4. Furthermore, slurry tank samples were 128 

taken at 1 m, 1.5 m, and 2 m depths from 3 sampling spots that were spaced approximately 50cm apart. One ml 129 

from each of the 3 depths was mixed for each corresponding sampling spot and homogenized by vortexing. Each 130 

slurry tank sample thus consisted of a pool of the 3 depths (denoted as slurry tank 1, slurry tank 2, and slurry 131 

tank 3; total n=3). 132 
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All samples were collected in plastic containers with tight lids or sealed plastic bags and were placed in 133 

coolers immediately after sampling. They were then stored at 5ºC until analysis in the laboratory the following 134 

day. Thereafter, all samples were frozen at -80ºC. 135 

136 

Sample Processing 137 

The non-sampled shoe cover weight was subtracted from the sample shoe cover weights, and defined amounts of 138 

PBS buffer were added to the sampled shoe covers. This dilution was corrected for in the statistical calculations. 139 

The shoe cover samples were then vigorously vortexed for 1 minute in order to extract as much sample from the 140 

shoe cover as possible. Thereafter, each shoe cover was strung to extract the remaining liquid. A 10
-1

 dilution 141 

was made from the resulting solutions by mixing 1 ml of the shoe cover sample solution with 9 ml PBS buffer. 142 

143 

Pooled samples were created in the laboratory as outlined in Table 1 and consisted of: 1) Pool of all individual 144 

animals from sampling 1 (All Animals), 2) Pools of animals within each pen (individual animal pool pen), 3) 145 

Pool of pen floor samples from pens 1-4 in each stable (pen floor pool stable), 4) Pool of the shoe cover samples 146 

in each stable (shoe cover pool stable), 5) Pool of pen floor samples from each stable (pen floor pool herd), 6) 147 

Pool of shoe cover samples from each stable (shoe cover pool herd), 7) Slurry tank samples (pool slurry). Before 148 

pooling the samples in the laboratory, a 10
-1

 dilution of the sample was made by suspending 1 g of feces in 9 ml 149 

PBS buffer. The pool samples were made by mixing 1 ml of the 10
-1

 resolution for each corresponding sample 150 

included in the pool. 151 

152 

CFU counts of coliform bacteria 153 

Ten-fold dilutions from each sample were made in PBS buffer. One drop (20 µl) of each dilution was carefully 154 

placed on MacConkey plates (Oxoid) without and with antibiotics (Ampicillin (16 mg l
-1

); Erythromycin (32 mg 155 

l
-1

); Sulphametizole (256 mg l
-1

); Tetracycline (16 mg l
-1

)) and incubated at 37°C for 24 hours. 156 

157 
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DNA extraction for quantification by qPCR 158 

DNA was extracted from the 10
-1

 dilutions. Sample preparation consisted of homogenization of the 10
-1

 dilutions 159 

by vigorous vortexing with a 5 mm stainless steel bead (Qiagen, Copenhagen, Denmark). Thereafter, 350 µl of 160 

the 10
-1

 dilutions was transferred to a new eppendorf tube and put on ice. The samples were then lyzed for 1 161 

minute (15 Hz at room temperature) in a Tissuelyser II (Qiagen, Copenhagen, Denmark) followed by 162 

centrifugation for 90 seconds at 10000 rpm. The supernatant (300 µl) was transferred to a new eppendorf tube 163 

and 20 µl Proteinase K (Promega, Roskilde, Denmark) was added (not on ice). The samples were then 164 

immediately loaded into the QiaSymphony robot using the QiaSymphony DSP Virus/Pathogen Mini Kit 165 

(Qiagen, Copenhagen, Denmark) according to the manufacturer’s instructions. The final elution volume was 85 166 

µl. 167 

Both a negative and positive DNA extraction control was run in parallel with the samples during each 168 

DNA extraction. The negative extraction control was water, and the positive extraction control was a modified 169 

pig feces sample positive for the majority of antibiotic resistance genes included in this study. The genes that 170 

were not present in this sample, defined as having a cycle number (Cq)>30 in qPCR, were spiked into the sample 171 

by adding 100 µl 10
5
 amplicons µl

-1
 to a final volume of 1500 µl extraction control. This corresponded to Cq 172 

values between 20 and 30. 173 

174 

Primers and probes 175 

Primers (Table 2; Table S1) for resistance genes were synthesized by TAG Copenhagen A/S (Frederiksberg, 176 

Denmark) and for 16S rDNA by DNA Technology A/S (Aarhus Denmark). Probes (Table 2) were synthesized 177 

by Applied Biosystems (Life Technologies, Naerum, Denmark). 178 

The available antibiotic resistance determinant sequences were retrieved from GenBank (during 2011-179 

2012), narrowed down to pig intestinal commensals, and finally aligned using ClustalX (Thompson et al. 1997). 180 

The conserved regions were used for primer and probe design using Primer3Plus Web Interface (Free Software 181 

Foundation, Boston, MA, USA). Previously published primers with annealing temperatures of 60-61° C and 182 



9 

probes with annealing temperatures of approximately 70° C were used and modified if necessary (Table 2). 183 

Potential primer and probe sequences were used to query GenBank DNA sequences using Basic Local 184 

Alignment Search Tool nucleotide (BLASTn) to determine specificity. The primer and probe sequences that 185 

matched the desired antibiotic resistant determinants were analyzed using Integrated DNA Technologies 186 

SciTools Oligoanalyzer (Integrated DNA Technologies, Inc., Coralville, IA, USA). Wherever necessary, 187 

degenerate bases were introduced into the primer/probe sequences to match all the sequences in the alignments. 188 

189 

Generation of amplification standards 190 

Amplicon standards from antibiotic resistance genes included in the present study were derived from bacterial 191 

strains or pig fecal samples (Table S2). The bacterial strains positive for tetracycline and beta-lactam antibiotic 192 

resistance determinants were kindly provided by Yvonne Agersø (National Food Institute (DTU-FOOD), 193 

Lyngby, Denmark), those positive for sulphonamide resistance determinants and ermB by Anette M. Hammerum 194 

(Statens Serium Institut (SSI), Copenhagen, Denmark), the bacterial strain positive for ermF by Stefan Schwarz 195 

(Friedrich-Loeffler-Insitut (FLI) Neustadt-Mariensee, Germany), and the strain positive for vanA from Luca 196 

Guardabassi (Faculty of Medical and Health Sciences (SUND), University of Copenhagen). The fecal samples 197 

were provided by The Veterinary Institute, The Technical University (DTU-VET), Frederiksberg, Denmark. 198 

Total DNA was extracted from the bacterial strains using Invitrogen-easy DNA kit (Invitrogen, Life 199 

Technologies, Naerum, Denmark) and from the fecal samples as described for the fecal samples collected for 200 

qPCR analysis. The amplicons were generated using the primers in Table S1 using a T3000 thermocycler 201 

(Biometra, Göttingen, Germany). The PCR Mastermix for tet(B), tet(C), tet(M), tet(O), tet(W), sulI, sulII, and 202 

ermB amplicon generation had the following concentrations per 25 µl reaction volume: 250 µM deoxynucleotide 203 

triphosphates (dNTPs), 1X buffer, 1.5 mM MgCl2, 0.5 µM of each forward (FW) and reverse (RV) primers, 1.25 204 

U Platinum® Taq DNA Polymerase (Invitrogen, Life Technologies, Naerum, Denmark) plus 2 µl DNA. Cycling 205 

conditions were: Initial denaturation for 4 min at 95º, followed by 30 cycles PCR, each cycle consisting of 15 sec 206 

at 94º, 30 sec at 58º and 60 sec at 72º. There was a final extension for 5 min at 72º. 207 
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tet(A) amplicons were generated in a 25 µl reaction volume containing 250 µM dNTPs, 1X buffer, 1.50 208 

mM MgCl2, 0.5 µM of each FW and RV primers, 1.25 U Platinum® Taq DNA Polymerase (Invitrogen, Life 209 

Technologies, Naerum, Denmark) plus 2 µl DNA. Cycling conditions were: Initial denaturation of 5 min at 210 

95ºC, followed by 23 cycles of PCR, each cycle consisting of 30 sec at 95ºC, 30 sec at 62ºC, and 45 sec at 72ºC. 211 

There was a final elongation of 7 min at 72ºC (Guardabassi et al. 2000, Saenz et al. 2004, Costa et al. 2008). 212 

ermF amplicons were generated in a 25 µl reaction volume containing 250 µM dNTPs, 1X buffer, 1.75 213 

mM MgCl2, 0.5 µM of each FW and RV primers, 1.25 U Platinum® Taq DNA Polymerase (Invitrogen, Life 214 

Technologies, Naerum, Denmark) plus 2 µl DNA. Cycling conditions were: Initial denaturation of 10 min at 215 

95ºC, followed by 45 cycles of PCR, each cycle consisting of 15 sec at 94ºC, and 30 sec at 60ºC. 216 

16S amplicons were generated in a 50 µl reaction volume containing 0.1 mM dNTPs, 1X buffer, 1.5 mM 217 

MgCl2, 1.3 µg n
-1

 log each FW and RV primer, 0.01 U Platinum® Taq DNA Polymerase (Invitrogen, Life218 

Technologies, Naerum, Denmark) plus 2 µl DNA. Cycling conditions were: Initial denaturation of 3 min at 219 

94ºC, followed by 35 cycles of PCR, each cycle consisting of 1 min at 94ºC, 1 min at 55 ºC, and 30 sec at 72ºC. 220 

There was a final elongation for 5 min at 72 ºC. 221 

blaCTX-M-1 group, blaSHV family, blaCMY-2 and vanA amplicons were generated as previously described 222 

(Hasman et al. 2005, Archambault et al. 2006, Agersø et al. 2012). 223 

Amplicon lengths were confirmed by gel electrophoresis and gene copy numbers were calculated after 224 

DNA quantification by UV spectrophotometry using a NanoDrop 3300 (Thermo Scientific, Wilmington, DE, 225 

USA). The identity of all standard amplicons were further verified by sequencing from both ends using the 226 

BigDye®Terminator v3.1 Sequencing Kit on a 3130 Genetic sequencer (Applied Biosystems, Life 227 

Technologies, Naerum, Denmark). 228 

The standards for copy number determinations were prepared by serially diluting PCR product 229 

amplicons in nuclease-free yeast tRNA (1:100 tRNA dilutions of 10 mg mL
-1

 (Applied Biosystems, Life 230 

Technologies, Copenhagen, Denmark)). The limit of quantification (LOQ) was defined as the lowest point in the 231 
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amplicon standard serial dilution where all triplicates were positive. The limit of detection (LOD) was defined as 232 

the lowest concentration in the amplicon standard serial dilution where at least 1 of the triplicates was positive. 233 

234 

Internal amplification control generation for qPCR assays 235 

Internal control amplicons (ICA) consisting of lambda (λ) phage DNA flanked by the forward (FP) and reverse 236 

(RP) primer sequences of the respective antibiotic resistance genes were included in the respective qPCR assay 237 

as an internal amplification control (IC). The primers used were the antibiotic resistance qPCR assay primers 238 

(Table 2) with a λ phage DNA sequence added to the 3´end (extra sequences 5’-3’direction: FP 239 

ATGAATATGACCAGCCAAC, RP TTCACGCAGGGGAAATATCTTTC) (Angen et al. 2011). The ICAs were generated 240 

on a T3000 thermocycler (Biometra, Göttingen, Germany) in a reaction volume of 50 µl with 50 µM MgCl2, 1X 241 

Buffer, 10 µM dNTPs, 50 µM of each forward and reverse primers, 1.25 U Platinum® Taq DNA Polymerase 242 

(Invitrogen, Life Technologies, Naerum, Denmark), and 1 µL λ DNA (1 ng µl
-1

)(Invitrogen, Life Technologies, 243 

Naerum, Denmark). The cycling conditions were: 5 min incubation period at 94°C followed by 10X touchdown 244 

cycles from 58°C, each touchdown cycle consisting of 1 min at 94°C, 1 min at 58°C, and 1½ minute at 245 

72°C.Thereafter, there were 5 cycles, each with 1 min at 94°C, 1 min at 48°C and 1½ min at 72°C followed by 246 

8X touchdown cycling from 48 °C, each touchdown cycle consisting of 1 min at 94°C, 1 min at 48°C and 1½ 247 

min at 72°C. Next there were 12 cycles, each with 1 min at 94°C, 1 min at 40°C, and 1½ min at 72°C. Finally, 248 

there was an elongation of 10 min at 72°C. 249 

The ICA length of 690 bp was verified by gel electrophoresis and the ICA was serially diluted to 10
-11

. 250 

All antibiotic resistance gene qPCR assays were run on Rotorgene thermocyclers (Rotorgene Q-5plex and 251 

Rotorgene Q (Qiagen, Copenhagen, Denmark) with a λ DNA easy probe (Applied Biosystems, Life 252 

Technologies, Naerum, DK) and ICA added to the mastermix. In order to determine the concentration of ICA to 253 

use as an internal control the following was tested: 5 separate mastermixes with ICA PCR product dilutions 254 

within 10
-3

 to 10
-11

 and 1 “no internal control” were tested against the lowest 3 concentrations detectable by the 255 

respective antibiotic resistance gene qPCR assay. The ICA dilutions that did not inhibit the respective antibiotic 256 
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resistance gene qPCR assays were used as the internal controls, where the λ DNA easy probe was detected on 257 

the yellow channel (530-555 nm) and the antibiotic resistance gene qPCR probes on the green channel (470-510 258 

nm). 259 

260 

Quantification of antibiotic resistance genes in pig fecal samples by qPCR 261 

The qPCR amplicon sequences generated from pig fecal DNA were validated. Due to the short amplicon lengths 262 

sequencing attempts failed. Therefore, the amplicon products were confirmed using the High Sensitivity DNA 263 

chip on an Agilent 2100 Bioanalyzer (Agilent Technologies, Walbronn, Germany). The qPCR assays were also 264 

tested for cross reaction by running each qPCR assay against a panel of 16 different antibiotic resistant gene 265 

amplicons at a concentration of 2x10
4
 copies µl

-1
.  266 

Quantitative PCR amplifications for the quantification of tet(A),tet(B), tet(C), tet(M), tet(O), tet(W), 267 

ermF, ermB, sulI, sulII, blaCTX-M-1 group, blaCMY-2, blaSHV family, vanA and 16S in total DNA extracted from pig 268 

fecal samples were performed with Rotorgene thermocyclers (Rotorgene Q-5plex and Rotorgene Q, 72-well 269 

rotor 1-72) (Qiagen, Copenhagen, Denmark). The mastermixes are depicted in Table 3 and cycling conditions 270 

were: 10 min incubation period at 95 ºC followed by 45 cycles of PCR, each cycle consisting of 15 sec at 94 ºC 271 

and 30 sec at 60 ºC with a single fluorescence reading at green and yellow channels at the end of the extension 272 

stage. Each sample was tested in duplicate, along with a single point from the tenfold dilution series of the 273 

specific standard in triplicate, a single negative template control (NTC) that was 23 µl mastermix and 2 µl water, 274 

and 1 positive and negative DNA extraction control. 275 

Quantification was performed using standard curves obtained from the PCR generated positive controls. 276 

The following samples were screened where none contained low enough levels of the tested antibiotic resistance 277 

genes to be spiked for standard use (data not shown): 20 individual pigs from a single herd, 1 individual pig from 278 

20 different herds, and feces from miniature pigs that never had received antibiotics. A final attempt was made 279 

by treating pig fecal samples with gamma rays as earlier described (Hoelzel et al. 2010). Unfortunately, the 280 

gamma ray-treated feces inhibited almost all the assays that were tested (data not shown). Therefore, the qPCR 281 
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standards were created by serially diluting the target gene templates in nuclease-free yeast tRNA (Applied 282 

Biosystems, Life Technologies, Copenhagen, Denmark)). 283 

284 

The impact of pig fecal environment on quantification 285 

The impact of pig fecal environment DNA on the quantification of the respective antibiotic genes was tested by 286 

running nuclease-free yeast tRNA template serial dilutions in parallel to pig fecal DNA spiked with antibiotic 287 

resistance gene template serial dilutions. 288 

289 

Statistical analysis 290 

All figures and statistical tests were completed using R software (Version 3.0.1). Differences in gene copy 291 

numbers gram
-1

 feces and in coliform bacteria CFU counts between pens from sampling 1 were calculated using 292 

Kruskal-Wallis rank sum test. 293 

294 

Results 295 

Coliform bacteria counts in fecal samples and application to assess sampling and pooling strategies 296 

CFU counts of coliform bacteria were chosen as the phenotypic indicator of antibiotic resistance in the collected 297 

swine fecal samples. Figure 1 (top) shows a boxplot over the CFU counts of resistant coliform bacteria in the 298 

individual animals within the 4 pens from sampling 1. Erythromycin and sulphonamide had the lowest CFU 299 

counts median values. Tetracycline’s levels were also low, but a large variation was observed in pens 1 and 2. 300 

There was a significant difference between pens for the ampicillin resistant CFUs only (P<0.05; data not shown). 301 

Next, the pooled samples of individual animals within pens were considered (Figure 1, top, solid 302 

circles). The individual animal pool pen samples on the plates without antibiotics were relatively close to the 303 

median in all pens, except pen 3 where the pool was above the 75
th
 quartile. Generally, the individual animal 304 
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pool pen samples were largely dispersed compared to the median of corresponding non-pooled individual animal 305 

samples. This was most prominent in the erythromycin, sulphonamide, and tetracycline groups.   306 

Figure 1 (bottom) depicts the pen floor, shoe cover, and individual animal coliform CFU counts for each 307 

pen from sampling 1. The respective stable pools are also included (pen floor pool stable, shoe cover pool stable, 308 

and individual animal pool stable). There was a general large variation within each sampling method with the 309 

pen floor samples having the most prominent. The pen floor CFU counts were found to be below the pen floor 310 

pool stable for all groups except erythromycin. The shoe cover and individual animal stable pools either lie 311 

among or below their corresponding pen pools. 312 

There was no correlation between the total coliform counts and the total number of bacteria in the 313 

population represented by the 16S copy number (R
2
=0.1; data not shown). Figure 2 illustrates the relative 314 

standard deviations of the fecal estimates of the coliform CFU counts and qPCR gene copy numbers. The qPCR 315 

gene copy numbers have lower relative standard deviations compared to the coliform CFU counts. For example, 316 

when regarding the coliform CFU counts, the estimated relative standard deviation was under 20% for only 50% 317 

of the cases, while the relative standard deviation of qPCR gene copy numbers was under 20% for 90% of the 318 

cases. 319 

320 

Accuracy of qPCR assays 321 

Standard curves for qPCR were generated using the serial dilutions of the amplification standards. The dynamic 322 

ranges of the antibiotic resistance gene assays were all linear over a measurement range >7 orders of magnitude 323 

and 5 orders of magnitude for the 16S rDNA assay (Table S3). The amplicon standard serial dilutions were used 324 

for determining the linear dynamic range where R
2
=0.99, efficiency = [0.90; 1.10] and M≈-3.2.  The efficiencies 325 

of the qPCR assays, determination coefficient (R
2
), dynamic range, quantification - and detection limits are all 326 

summarized in Table S3. 327 
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The qPCR primers did not give unspecific reactions when tested against a panel of 16 different antibiotic 328 

resistance gene amplicons at 2x10^4 copies µl
-1

. The qPCR products generated from pig fecal samples were 329 

accurate when lengths were confirmed using the Agilent 2100 Bioanalyzer (data not shown). 330 

The performance of the qPCR tests was further evaluated using extracted DNA from pig feces for 331 

spiking with antibiotic resistance genes. The efficiency remained between [0.90;1.10] and R
2
 above 0.99 for all 332 

assays except for tet(A) which showed an efficiency of 0.85, tet(M) with an efficiency of 0.84 and R
2
=0.87, sulII 333 

with an efficiency of 0.88, vanA with an efficiency of 0.87, and 16S rDNA with an efficiency of 0.84. Varying 334 

degrees of inhibition were observed when spiking the amplicons in pig fecal DNA extracts (1 to 4 Cq value 335 

increase), indicating a slight assay specific inhibition (data not shown). However, the dynamic ranges remained 336 

linear over a measurement range >4 orders magnitude in the spiked pig feces DNA environment (data not 337 

shown). 338 

339 

Application of qPCR method to assess sampling and pooling strategies 340 

The blaCTX-M-1 group, blaCMY-2, blaSHV, and vanA antibiotic resistance genes were not detected in any samples 341 

during sampling 1 and sampling 2 and were therefore excluded from further analysis and all graphs. 342 

Furthermore, the geometric mean of the qPCR replicates was used for data analysis as the replication error then 343 

became independent of the gene copy number. 344 

Generally, the 16S rDNA levels appeared to be stable regardless of the sampling and/or pooling methods 345 

for sampling 1 and sampling 2 (Figures 3 and 4). The tendencies described for the gene copy estimates in 346 

sampling 1 and 2 did not change after normalization with 16S rDNA (Figures S1 and S2). Therefore, only the 347 

absolute quantifications by qPCR were used for further data analysis. 348 

Figure 3 (top) illustrates the copy number distribution of each gene for all animals sampled within each 349 

pen. Genes such as sulII, ermB, and tet(M) were relatively constant between pens while the genes ermF, tet(A), 350 

tet(C), tet(O), and tet(W) varied in at least 1 of the 4 sampled pens. Generally ermB, ermF, tet(O), and tet(W) 351 
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had higher copy numbers g
-1

 feces compared to sulI, sulII, tet(A)-tet(C), and tet(M). sulI gene copy estimates 352 

were particularly low while tet(B) had levels below the LOQ in pens 2 and 3.  353 

The gene copy numbers of ermB, ermF, tet(C), tet(O), and tet(W) were significantly different between 354 

pens (p<0.05 for ermB, tet(C), tet(W); p<0.0001 for ermF and tet(O)). It appears that pen 1 consistently has 355 

lower gene copy number g
-1

 feces for ermB, ermF, tet(O), and tet(W) compared to pens 2-4 with tet(C) also 356 

having lower gene copy number g
-1

 feces in pen 2 (Figure 3 (top)). ermF in particular varied between pens with a 357 

large variation within pen 2. tet(A) generally had large variations within pens compared to the other genes with 358 

the highest levels in pens 1 and 3.  359 

Figure 3 (bottom) depicts the distribution of each gene within pens 1-4 for the pen floor samples, shoe 360 

cover samples, pen floor pool stable, shoe cover pool stable, individual animal pool pen, and all animals. For all 361 

genes except for ermF and tet(C), there was a tendency for lower gene copy number estimates in the laboratory 362 

pools of individual animals within each pen when comparing to the pen floor samples. The shoe cover sample 363 

estimates were highest for sulI, sulII, tet(B), and tet(M), intermediate for ermB and tet(A), and low for ermF, 364 

tet(O) and tet(W). The shoe cover stable pools were consistently higher than the non-pooled shoe cover samples. 365 

Furthermore, the shoe cover samples were positive for tet(B) in pen 2 where the individual animal samples were 366 

negative. In contrast, there were no ermF individual shoe cover samples above the LOQ but there were positive 367 

individual animal samples in all four pens (Figure 3 bottom). 368 

A comparison of results from sampling 2 including pen floor samples and shoe cover samples is shown 369 

in Figure 4 (top) together with the pooled samples from each category. Each section had up to 4 pen floor 370 

samples (1 from each pen) and 2 shoe cover samples with their respective laboratory pools. For ermB, ermF, 371 

tet(C), tet(O), and tet(W) the shoe cover samples had lower estimates compared to the pen floor samples with the 372 

pools following the same pattern. For sulI, sulII, tet(A), tet(B), and tet(M), however, the shoe cover samples 373 

were higher than the pen floor samples.  374 

Figure 4 (bottom) compares the pen floor and shoe cover pools both at stable and herd levels. The 375 

pooled and individual slurry samples from sampling 2 are also depicted in Figure 4 (bottom). The assays that had 376 
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shoe cover samples with higher levels than the pen floor samples within stables 1-5 from sampling 2 (sulI, sulII, 377 

tet(A), tet(B), and tet(M) (Figure 3 top)) also had higher shoe cover samples in the corresponding stable and herd 378 

level pools (Figure 4 bottom). The slurry tank samples complemented the pen floor and shoe cover herd pools, 379 

although it appeared that 1 of the 3 slurry tank samples was consistently lower than the others for all genes. 380 

Furthermore, sulII became negative at the pen floor herd pool despite having positive values in 2 out of 5 stable 381 

pools, and tet(A) had negative pen floor herd pools for and shoe cover herd pools despite their positive stable 382 

pools. tet(B) had a single positive shoe cover sample in stable 2 (Figure 4 top) with no positive results for stable 383 

pools, herd pools, and slurry tank samples (Figure 4 bottom). tet(C) had positive pen floor samples and pen floor 384 

pool stable samples in all stables except stable 4 (Figure 4 top). The tet(C) pen floor pool herd sample was 385 

positive (Figure 4 bottom), but the shoe cover and slurry tank samples were all negative (Figure 4 top and 386 

bottom). 387 

Discussion 388 

Monitoring the antibiotic resistance patterns of infectious bacteria and their distribution aids 389 

disease prevention and control. Quantification of antibiotic resistance levels facilitates antibiotic resistance 390 

surveillance, ultimately helping to contain and prevent infections caused by antibiotic resistant bacteria. In the 391 

present study, 14 qPCR assays quantifying antibiotic resistant determinants in swine fecal samples were 392 

developed, validated, and compared to antibiotic resistance estimates from coliform bacteria CFU counts. This 393 

was done by applying both methods to swine fecal samples collected using different sampling and pooling 394 

methods. The main findings of our research are that, the qPCR method detected significant differences in 395 

antibiotic resistance where the coliform CFU counts showed no significance. This implicates that the coliform 396 

bacteria were not a good representative for the general resistance level. Furthermore, qPCR gene copy estimates 397 

in swine feces had reduced relative standard deviations compared to coliform CFU counts in the same samples 398 

(Figure 2), and therefore differences in antibiotic resistance levels between samples were more readily detected. 399 
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When observing the coliform CFU counts in individual animals between pens, only a single group 400 

(ampicillin) showed a significant difference in resistant coliform bacteria. In contrast, significance was found in 401 

qPCR gene copy estimates for erythromycin and tetracycline, while no beta-lactamase genes were detected. The 402 

phenotypic ampicillin resistance could be due to other ampicillin resistance encoding genes than those included 403 

in the present study emphasizing a key limit to the qPCR method, namely not all antibiotic resistance genes are 404 

included. In contrast, the phenotypic CFU counts are limited to coliforms representing only a fraction of the 405 

intestinal bacterial population. The lacking correlation between the 16S rDNA gene copy number g
-1

 feces and 406 

the control coliform bacteria CFU counts (R
2
=0.1; data not shown) demonstrates how the two methods represent 407 

each their population. When monitoring antibiotic resistance, it is favorable to quantify the genes by qPCR 408 

instead of relying on phenotypic determination. This ensures that the entire bacterial population is represented 409 

while the denoted genes of interest (and therefore resistance) are also included. This principle is illustrated when 410 

assessing the coliform bacterial CFU counts in individual animals (Figure 1 top). Here, the erythromycin group 411 

had some of the lowest CFU counts overall. This contradicts the gene copy numbers g
-1

 feces for the 412 

corresponding ermB and ermF genes which are 3
rd

 and 4
th
 highest after tet(O) and tet(W) (Figures 3 and 4). A 413 

tentative conclusion from this is that the ermB and ermF genes reside in bacteria found in the intestines other 414 

than coliform bacteria (Gniadkowski et al. 1998, Heritage et al. 1999, Chanawong et al. 2001, Navarro et al. 415 

2001, Baraniak et al. 2002, Li et al. 2007, Jacoby,G. A. 2013). The coliform bacteria CFU estimates may lead to 416 

underestimates of the true antibiotic resistance levels due to the limitations of the chosen indicator bacteria. 417 

The CFU estimates of the individual animal pool pen samples were found not to represent an average of 418 

the non-pooled individual animal samples. This means that, at pen levels, the pooled samples from individual 419 

animals were not representative for the individual animals. There were also variations when comparing different 420 

sampling methods between pens (Figure 1, bottom) making it difficult to find differences between pens using 421 

coliform CFU counts. This is likely due to the large relative standard deviation found for each coliform CFU 422 

estimate (Figure 2). Therefore, only qPCR gene copy number g
-1 

feces were used to assess the different sampling 423 

and pooling methods. 424 
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The qPCR assays in the present study allowed simultaneous quantification of major antibiotic resistance 425 

determinants in entire microbiomes of pig fecal samples. The qPCR products from pig feces were determined 426 

accurate, and there was no cross reaction when each assay was tested against a panel of 16 different antibiotic 427 

resistance gene amplicons. The design of qPCR assays containing internal, positive- and negative-extraction 428 

controls ensured a thorough PCR inhibition and DNA extraction procedure verification. 429 

Assay inhibition in the spiked pig fecal DNA samples compared to water was seen as lower efficiencies 430 

and higher corresponding Cq values in the spiked fecal DNA samples. This discrepancy between DNA from 431 

complex environmental samples has been described and was expected (Bibbal et al. 2007, Koike et al. 2007). 432 

The dynamic range remained linear with a minimum 4-fold magnitude in the spiked pig fecal DNA samples for 433 

all assays (data not shown) and R
2
 remained above 0.99 in all but 1 assay. Therefore, the slight variation seen in 434 

the spiked fecal DNA samples compared to sterile water is not considered to notably alter the assays’ 435 

performance in quantifying antibiotic resistance genes in pig fecal samples. We believe that the DNA extraction 436 

protocol, primer sets, and corresponding probes possess the characteristics necessary for application to antibiotic 437 

resistance gene quantification in pig fecal samples. 438 

The qPCR assays revealed some interesting differences when applied to assess sampling and pooling 439 

strategies within a pig stable. When looking at the samples collected from individual animals, it appeared that 440 

pen 1 consistently had lower gene copy estimates for ermB, ermF, tet(O), and tet(W) compared to pens 2-4 with 441 

tet(C) also having lower estimates in pen 2 (Figure 3 top). These differences in gene copy number g
-1

 feces 442 

between pens were found statistically significant, and could mean that the antibiotic resistance genes do not 443 

easily spread between pens. The apparent variation in tet(A) estimates seen in Figure 3 (top) in pens 1 and 3 is 444 

caused by the graph only illustrating results from positive animals. Thus, few animals had high gene copy 445 

numbers (above 1x10
6
) where for half of them, 1 of the technical replicates was below the LOQ and therefore 446 

had no effect on the graph. This was solely seen for tet(A). 447 
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Bibbal et al. (2007) monitored the blaTEM excretion in pigs and found that the fecal excretion of blaTEM 448 

genes showed large, individual day-to-day fluctuations (Bibbal et al. 2007). Similar fluctuations in gene 449 

excretion could account for variations when quantifying antibiotic resistance genes. Antibiotic resistance is 450 

dynamic as its spread and maintenance is subject to fluctuations in host organism migration and/or persistence, 451 

antibiotic gene migration, and presence of selection pressure (Koike et al. 2007). From the point of excretion the 452 

gene must spread horizontally within the pen’s bacterial population with subsequent spread of the gene 453 

containing bacteria to a new pig. Thus, when collecting for example rectal samples at a single time point, the 454 

level found in all the individual animals within a pen may depend on the time a single animal within the pen has 455 

excreted the specific gene. The individual animal pool pen samples are more uniform than the individual animal 456 

sampling, as all of the animals and their respective antibiotic resistance levels are represented (Figure 3, top). If a 457 

single fecal sample with high levels of antibiotic resistance levels is included in a pool, it will mask the samples 458 

containing lower gene levels. On the other hand, if there also are sufficient fecal samples with low gene levels 459 

then they will dilute the high level sample (Munoz-Zanzi et al. 2000). 460 

One must consider the application of detecting antibiotic resistance gene copy number estimates in 461 

individual animals. For a health hazard to occur there must be intestinal-content contamination during slaughter. 462 

The intestinal content may come from a single animal with high levels of a specific antibiotic resistance gene, or 463 

from several animals with lower gene levels. The risk involved if 1 animal has many genes versus many animals 464 

with few genes must be taken into consideration. Furthermore, if we wish to sample at herd level, then it is not 465 

optimal to implement a method where an individual animal represents the entire herd. Regardless, the results 466 

indicate that the qPCR assays are capable of detecting differences in antibiotic resistance gene copy number g
-1

 467 

feces in individual animals between pens. 468 

For the majority of the genes, the individual animal pen pool resulted in lower gene copy number 469 

estimates when compared to the pen floor samples for each corresponding pen (Figure 3 and Figure S1). This 470 

could be due to the dilution effect of the increased volume in the individual animal pen pools which were 471 

composed from >19 samples compared to the pen floor samples that consisted of 5 individual samples (Munoz-472 
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Zanzi et al. 2006). Furthermore, pen floor samples are collected from older feces that has resided on the ground 473 

permitting liquid evaporation and run off from the feces. This may result in a higher concentration of resistance 474 

genes in the sampled portion of the pen floor fecal sample and can be an advantage when quantifying low 475 

prevalence genes. 476 

During sampling 2, 5 stables were sampled from the same herd as sampling 1. An interesting 477 

observation was that, for some genes the shoe cover samples were lower than the pen floor samples (ermB, 478 

ermF, tet(O), tet(W)) but were higher for sulI, sulII, tet(A), and tet(M). This was observed both in sampling 1 479 

(Figure 3 bottom) and the stable and herd pools from sampling 2 (Figure 4). The shoe cover samples varied in 480 

how much roughage they collected. Thus, if the shoe cover samples with lower gene copy number estimates had 481 

more roughage, the sample would weigh more without the entire weight being attributable to feces. 482 

Consequently, this could result in a low gene copy number g
-1

 feces. In contrast, the shoe cover with high gene 483 

copy number estimates suggest that the antibiotic resistance genes represented in the sample may depend on 484 

which sampling method is used, as different bacteria harbor antibiotic resistance genes while residing in a 485 

specific fecal fraction. The gastrointestinal tract is a complex ecosystem containing at least 400 different 486 

bacterial species residing in regional habitats (Falk et al. 1998). Hence, the shoe cover samples may be capable 487 

of collecting fractions of feces that pen floor or individual fecal samples cannot as the shoe cover samples were 488 

both saturated with liquid and covered with feces after sample collection. Furthermore, the entire pen floor is 489 

covered during shoe cover sampling thus increasing the likelihood of collecting a fecal sample positive for a 490 

given gene. 491 

Several genes tested positive in at least 1 non-pooled sample type which then turned negative after 492 

pooling (sampling 1 sulI, sulII, tet(A) ; sampling 2 tet(A), tet(B), tet(C), sulII). Pooling may increase the risk of a 493 

sample becoming negative, especially if the gene copy number g
-1

 feces initially are relatively low. If there are 494 

sufficient numbers of negative samples included in the pool then the low prevalence gene concentration is 495 

diluted potentially resulting in levels under the assay’s quantification limit (Munoz-Zanzi et al. 2006). This is 496 

contrary to pooling samples that are subsequently enriched, where even low numbers of bacteria can be detected. 497 
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The sensitivity of a specific assay is therefore dependent on the gene prevalence, the number of samples included 498 

in the pool, the gene concentration in samples collected from positive animals, and the quantification limit of the 499 

assay (Munoz-Zanzi et al. 2000, Munoz-Zanzi et al. 2006). A sufficient balance in the mentioned parameters 500 

could explain the apparent consistency in gene copy number g
-1

 feces between slurry tank samples, pen floor and 501 

shoe cover herd pools for the majority of the assays. Other investigations have indicated that larger pool size 502 

increased the likelihood of a pool being contaminated due to sample collection, handling or processing (Munoz-503 

Zanzi et al. 2006). 504 

When choosing a sampling method for antibiotic resistance determination at herd level by qPCR, we 505 

recommend either pen floor samples or shoe cover sampling. Both sampling types were equally sensitive in 506 

quantifying antibiotic resistance genes in swine feces. Pen floor samples were easily attainable and are 507 

representative when pooled at the stable level, but several were negative when pooled at herd level (Figure 4 508 

bottom). In contrast, the shoe cover samples include the entire pen, thus representing more animals and 509 

increasing the likelihood of finding antibiotic resistant determinants when present. Furthermore, fecal fractions 510 

not represented in pen floor samples and individual animal samples may be represented in the shoe cover 511 

samples. However, the shoe cover samples should not be pooled as the stable pools were not representative of 512 

the individual shoe cover samples, and the herd pools were negative for several of the assays.  The slurry tank 513 

samples were also promising; their gene copy levels were consistent with those quantified in the pen floor and 514 

shoe cover samples. The slurry tank contains feces from the entire herd from a time period of approximately 6 515 

months and may therefore give a better illustration of herd antibiotic resistance levels. Further studies should be 516 

conducted where a series of slurry tank samples are taken in several pig herds over a longer time period, for 517 

example 6 months, in order to clarify the dynamics of antibiotic resistance genes in slurry tanks. 518 

This study has validated 14 qPCR assays that can be used to quantify antibiotic resistance genes in swine 519 

feces that were compared with CFU counts of coliform bacteria in the same samples. Sampling and pooling 520 

strategies were also assessed using the qPCR assays. To our knowledge, this is the first study that tests sampling 521 

and pooling strategies for antibiotic resistance surveillance using qPCR determination of antibiotic resistance in 522 
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total DNA extracted from swine feces. Our results indicate that there is a great deal of variation in the antibiotic 523 

gene abundance within individual animals, pens, stables, and herds regardless of the sampling method. This 524 

variation could be systematically evaluated in greater detail using pen floor and/or shoe covering sampling 525 

methods supplemented with parallel slurry tank sampling. 526 
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Table S3 Efficiency, determination coefficient (R
2
), dynamic range, LOQ and LOD for qPCR assays. PDF file. 651 

Figure S1 Sampling 1 16S normalization of gene copy numbers g
-1

 feces. PDF File. 652 

Top: Boxplot showing the distribution of gene copies normalized by 16S for individual animals within pens 1-4 653 

from sampling 1 (pen 1, red, n=22; pen 2, green, n=20; pen 3, purple, n=22; pen 4, blue, n=20). The bottom and 654 

top of the boxes are the first and third quartiles, respectively. The black band inside the box is the median where 655 

the “dotted whiskers” represent the maximum (greatest relative gene copy values, excluding outliers) and 656 

minimum (least relative gene copy value, excluding outliers). The solid circles are the individual animal pool 657 

pen samples within each pen. Each column represents a denoted gene (the respective genes are depicted in the 658 

middle of the figure and are shared for the top and bottom section of Figure S1). 659 

Bottom: The distribution of gene copies normalized by 16S for different sampling and pooling methods from 660 

sampling 1. The sampling methods are given under the bottom figure (Pen floor= pen floor sample; Shoe= shoe 661 

cover sample; Lab = Individual animal sample). The pens are each their colored circle (pen 1, red circle; pen 2, 662 

green circle; pen 3, purple circle; pen 4, blue circle), and the corresponding stable pools are solid black circles.  663 

 664 

Figure S2 Sampling 2 16S normalization of gene copy numbers g
-1

 feces. PDF file. 665 

Top: Copy numbers of genes normalized by 16S for pen floor samples (circles) and shoe cover samples 666 

(triangles) within stables 1-5 (stable 1, red; stable 2, green; stable 3, purple; stable 4, blue; stable 5, pink). The 667 

laboratory pooled samples are included for each stable in their respective color (pen floor pool stable, solid 668 

circle; shoe cover pool stable, solid triangles). Each column represents a denoted gene (the respective genes are 669 

depicted in the middle of the figure and are shared for the top and bottom section of Figure S2). 670 

 671 

Bottom: Copy numbers of genes normalized by 16S for pen floor pool stable samples (solid circles); shoe cover 672 

pool stable samples (solid triangles) for stables 1-5 (stable 1, red; stable 2, green; stable 3, purple; stable 4, blue; 673 

stable 5, pink); Slurry samples 1-3 (white diamond); Pen floor pool herd samples (black solid circle); Shoe cover 674 
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pool herd sample (black solid triangle); Pool slurry (black solid diamond). The sampling methods are given 675 

under the bottom figure (Pen floor= pen floor pool herd; Shoe= shoe cover pool herd; Slurry sample). 676 
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Tables and Figures 696 

Table 1 Overview of the samples collected during sampling 1 and sampling 2 including different sampling methods, and corresponding 697 

laboratory pools at stable and herd levels. 698 

Pool name Sampling 1 

1 stable sampled 

Sampling 2 

5 stables sampled 

Samples included 

in laboratory pool 

Number of samples (n) 

All animals + - All individual animals from 

sampling 1 (digital 

extraction from rectum) 

n=84 

Individual animal pool pen + - Pool of individual animals 

within each pen (digital 

extraction from rectum) 

Pen 1 n=22 

Pen 2 n=20 

Pen 3 n=22 

Pen 4 n=20 

Pen floor samples + + Not pooled Sampling 1 n=4 

Sampling 2 n=20 

Pen floor pool stable + + Pool of pen floor samples 

from pens 1-4 in each 

stable 

Sampling 1 n=1 

Sampling 2 n=1 

Pen floor pool herd - + Pool of pen floor samples 

from each stable (1-5) 

n=1 

Shoe cover samples + + Not pooled Sampling 1 n=4 

Sampling 2 n=10 

Shoe cover pool stable + + Pool of the shoe cover 

samples in each stable 

Sampling 1 n=1 

Sampling 2 n=2 

Shoe cover pool herd - + Pool of shoe cover samples n=1 
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from each stable (1-5) 

Slurry tank samples - + Each sample was a pool  

from 3 depths collected at 

the same spot (1m, 1.5m, 

and 2m) 

n=3 

Pool slurry - + Pool of slurry tank samples 

1-3 

n=1 

699 

700 

701 

702 

703 

704 

705 

706 

707 

708 

709 

710 

711 

712 

713 

714 
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Table 2 PCR primer and probe sequences (forward primer=FP; reverse primer=RP; probe=PR), gene targets, annealing temperatures 715 

(Ann. temp.), amplicon lengths in base pairs (bp), and GenBank sequence accession number (GenBank access. no.). 716 

Primers Gene target Sequence  

(5’  3’) 

Ann. temp. 

(°C) 

Amplicon 

size (bp) 

GenBank 

access. no.* 

Reference 

FP_TETA_2 

RP_TETA_2 

PR_TETA_2 

tet(A) TTGGCATTCTGCATTCACTC 

GAAGGCAAGCAGGATGTAGC 

GATCACCGGCCCTGTAGCCG 

60 

60 

125 

(840-974) 

X00006 This study 

FP_TETB_Aminov** 

RP_TETB_Aminov 

PR_TETB_Aminov_own 

tet(B) TTACGTGAATTTATTGCTTCGG 

ATACAGCATCCAAAGCGCAC 

CGCCGACCAAATCGGTCAGA 

60 

60 

206 

(913-1119) 

NE_013365 (Aminov et al. 

2002) and this 

study 

FP_TETC_6 

RP_TETC_6 

PR_TETC_6 

tet(C) GCCAGTCACTATGGCGTGCT 

CAAGTAGCGAAGCGAGCAGG 

ACTGTCCGACCGCTTTGGCC 

60 

60 

120 

(124-244) 

EU751613 This study 

FP_TETM_7 

RP_TETM_7 

PR_TETM_7 

tet(M) CAACGAGGACGGATAATACGC 

CCATCTTTTGCAGAAATCAGTAGA 

GGTGAACATCATAGACACGCCAG

GA 

60 

60 

191 

(119-311) 

X92947 This study 

FP_TETO_Böck 

RP_TETO_Böck 

PR_TETO_Böck 

tet(O) AAGAAAACAGGAGATTCCAAAAC

G 

CGAGTCCCCAGATTGTTTTTAGC 

ACGTTATTTCCCGTTATCACGGAA

GCG 

60 

60 

75(607-682) AY660531 (Boeckelmann 

et al. 2009) 
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FP_TETW_Smith 

RP_TETW_Smith 

PR_TETW_Smith 

tet(W) GCAGAGCGTGGTTCAGTCT 

GACACCGTCTGCTTGATGATAAT 

TTCGGGATAAGCTCTCCGCCGA 

60 

60 

66 

(411-476) 

AJ222769 (Smith et al. 

2004) 

FP_SUL1_2 

RP_SUL1_2 

PR_SUL1_2 

sulI ACGAGATTGTGCGGTTCTTC 

CCGACTTCAGCTTTTGAAGG 

ACCGGCTCATCCTCGATCCG 

60 

60 

159 

(440-598) 

EU056266 This study 

FP_SUL2_3 

RP_SUL2_3 

PR_SUL2_3 

sulII GATATTCGCGGTTTTCCAGA 

CGCAATGTGATCCATGATGT 

AAGACGGGCAGGCAGATCGG 

60 

60 

141 

(313-453) 

AY360321 This study 

FP_ERMB_Böck 

RP_ERMB_Böck** 

PR_ERMB_Böck 

ermB 

 

GGATTCTACAAGCGTACCTTGGA 

TGGCAGCTTAAGCAATTGCT 

CACTAGGGTTGCTCTTGCACACTC

AAGTC 

60 

60 

86 

(390-476) 

AB563188 (Boeckelmann 

et al. 2009) 

FP_ERMF_KNAPP 

RP_ERMF_KNAPP 

PR_ERMF_OWN 

ermF TCGTTTTACGGGTCAGCACTT 

CAACCAAAGCTGTGTCGTTT 

ATATTGGGGCAGGCAAGGGGTT 

60 

60 

182 

(24-205) 

 

M14730;M17

124; 

M17808;M62

487 

(Knapp et al. 

2010) and this 

study 

FP_vanA_Böck 

RP_vanA_Böck 

PR_vanA_Böck 

 

vanA 

 

CTGTGAGGTCGGTTGTGCG 

TTTGGTCCACCTCGCCA 

CAACTAACGCGGCACTGTTTCCCA

AT 

60 

60 

64(614-705) AF516335 (Boeckelmann 

et al. 2009) 
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FW3_SHV_lahey 

RV5_SHV_lahey 

Pr_SHV_Lahey2 

 

blaSHV family 

 

GCTGGAGCGAAAGATCCACT 

CGCCTCATTCAGTTCCGTTT 

AYGTCACCCGCCTTGACCGC 

 

60 

60 

 

247 

(258-504) 

 

All available 

at 

http://www.lahe

y.org/Studies/ 

 

(Jacoby,G. A. 

2013) and this 

study 

FW3_CMY-2_Lahey 

RV4_CMY-2_Lahey 

PR_CMY-2_Lahey 

 

blaCMY-2 

 

AGACGTTTAACGGCGTGTTG 

TAAGTGCAGCAGGCGGATAC 

TATCGCCCGCGGCGAAAT 

 

60 127 

(260-387) 

All available 

at 

http://www.lahe

y.org/Studies/ 

(Jacoby,G. A. 

2013)and this 

study 

FW_CTX-M-1 

RV_CTX-M-1 

PR_CTX-M-1 

 

blaCTX-M-1 

group 

 

ATGTGCAGYACCAGTAARGTKAT

GGC 

ATCACKCGGRTCGCCXGGRAT 

CCCGACAGCTGGGAGACGAAACG

T 

 

58 335bp X92506 

 

(Birkett et al. 

2007) 

FW_SMI_114 

R_SMI_115 

PR_SMI_116 

16S rDNA CGCGAAGAACCTTACC  

ACTTAACCCAACATTTCAC 

CACGAGCTGACGACAGCC 

60 126 (916-

1041) 

NA The Public 

Health Agency 

of  Sweden 

* GenBank accession numbers for previously published primers and/or probes. For primers and probes designed in this study, a GenBank 717 

accession number representative of those included in the sequence alignments is given. 718 

** Primer modified to fit assay in the present study. 719 

 720 

 721 

 722 

http://www.lahey.org/Studies/
http://www.lahey.org/Studies/
http://www.lahey.org/Studies/
http://www.lahey.org/Studies/
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Table 3 Concentrations of reagents per reaction used in qPCR assays with a total reaction volume of 25µL including 2 µL DNA. 723 

Gene qPCR Mastermix Forward 

Primer 

µM 

Reverse 

primer 

µM 

Probe 

µM 

Λ 

Probe 

µM 

Λ PCR 

pro-

duct 

µL 

Taqman  

Universal 

(Applied 

Biosystems) 

Buffer MgCl2 

mM 

Platinum® Taq 

Polymerase 

(Invitrogen, Life 

Technologies, Grand 

Island, NY, United States)  

U 

dNTPs 

µM 

tet(A) 1X - - - - 0.5 0.5 0.2 0.2 1 

tet(B) _ 1X 3.5 1.25 250 0.5 0.5 0.2 0.2 1 

tet(C) 1X - - - - 0.5 0.5 0.2 0.2 1 

tet(M) - 1X 2.5 1.25 250 0.8 0.8 0.2 0.2 1 

tet(O) 1X - - - - 0.6 0.6 0.2 0.2 1 

tet(W) 1X - - - - 0.9 0.9 0.2 0.2 1 

ermB 1X - - - - 0.5 0.5 0.2 0.2 1 

ermF - 1X 1.5 1.25 250 0.5 0.5 0.2 0.2 1 

sulI - 1X 1.5 1.25 250 0.8 0.8 0.2 0.2 1 

sulII 1X - - - - 0.8 0.8 0.2 0.2 1 

vanA 1X - - - - 0.6 0.6 0.2 0.2 1 

blaCTX-M-1 - 1X 1.5 1.25 250 0.5 0.5 0.2 0.2 1 
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group 

 

blaCMY-2 - 1X 3.0 1.25 250 0.6 0.6 0.4 0.2 1 

blaSHV 

family 

- 1X 3.5 1.25 250 0.6 0.6 0.2 0.2 1 

16S rDNA 1X - - - - 0.9 0.9 0.2 NA NA 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 
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Figure 1 742 

Top: Boxplot showing the distribution of the coliform bacteria CFUs from sampling 1 in individual animals 743 

within pens 1-4 (pen 1, red, n=22; pen 2, green, n=20; pen 3, purple, n=22; pen 4, blue, n=20) on MacConkey 744 

plates (No Ab. = no antibiotics, Amp= ampicillin, Erythro= erythromycin, Sulpha= sulphonamide, Tetra= 745 

tetracycline). The bottom and top of the boxes are the first and third quartiles, respectively. The black band 746 

inside the box is the median and the “dotted-whiskers” represent the maximum (greatest CFU number values, 747 

excluding outliers) and minimum (lowest CFU value, excluding outliers). The solid circles are the individual 748 

animal pool pen samples within each pen. 749 

Bottom: The distribution of coliform bacteria CFUs from different sampling and pooling methods from sampling 750 

1. The sampling methods are given under the bottom figure (Pen floor= pen floor sample; Shoe= shoe cover751 

sample; Ind. animal= Individual animal sample). Each pen is represented by their colored circle (pen 1, red 752 

circle; pen 2, green circle; pen 3, purple circle; pen 4, blue circle), and the corresponding stable pools are solid 753 

black circles. The individual shoe cover samples are empty black circles, and the corresponding stable pool is a 754 

solid black circle. 755 

Figure 2 756 

Empirical cumulative distribution (Fn(x)) plotted against the relative standard deviations of the CFU and gene 757 

copy number estimates illustrating the relationship between uncertainties of calculated estimates and the true 758 

laboratory determined estimates for CFU counts (black) and qPCR gene copy numbers (red), respectively. 759 

Figure 3 760 

Top: Boxplot showing the distribution of gene copies above the limit of quantification, LOQ (grey area=below 761 

LOQ) for individual animals within pens 1-4 from sampling 1 (pen 1, red, n=22; pen 2, green, n=20; pen 3, 762 

purple, n=22; pen 4, blue, n=20). The bottom and top of the boxes are the first and third quartiles, respectively. 763 

The black band inside the box is the median and the “dotted-whiskers” represent the maximum (greatest gene 764 

copy number values, excluding outliers) and minimum (least gene copy number value, excluding outliers). The 765 

solid circles are the individual animal pool pen samples within each pen. Each column represents a denoted gene 766 
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(the respective genes are depicted in the middle of the figure and are shared for the top and bottom section of 767 

Figure 2). 768 

Bottom: The distribution of gene copies above the LOQ (grey area=below LOQ) for different sampling and 769 

pooling methods from sampling 1. The sampling methods are given under the bottom figure (Pen floor= pen 770 

floor sample; Shoe= shoe cover sample; Ind. animal= Individual animal sample). Each pen is represented by 771 

their colored circle for the pen floor and Ind. animal samples (pen 1, red circle; pen 2, green circle; pen 3, purple 772 

circle; pen 4, blue circle). The shoe cover samples are the same 4 shoe covers that were used in all 4 pens 773 

(individual shoe cover samples are empty black circles). The stable pools of the respective sampling method, pen 774 

floor, shoe cover, Ind. animal, are solid black circles.  775 

Figure 4 776 

Top: Copy numbers of genes gram
-1

 feces above the limit of quantification, LOQ (grey area=below LOQ) for 777 

pen floor samples (circles) and shoe cover samples (triangles) within sections 1-5 in sampling 2 (section 1, red; 778 

section 2, green; section 3, purple; section 4, blue; section 5, pink). The laboratory pooled samples are included 779 

for each section in their respective color (pen floor pool stable, solid circle; shoe cover pool stable, solid 780 

triangles). Each column represents a denoted gene (the respective genes are depicted in the middle of the figure 781 

and are shared for the top and bottom section of Figure 3). 782 

Bottom: Copy numbers of genes gram
-1

 feces above the LOQ (LOQ=grey area) for pen floor pool stable samples 783 

(solid circles); shoe cover pool stable samples (solid triangles) for stables 1-5 (stable 1, red; stable 2, green; 784 

stable 3, purple; stable 4, blue; stable 5, pink); Slurry samples 1-3 (white diamond); Pen floor pool herd samples 785 

(black solid circle); Shoe cover pool herd sample (black solid triangle); Pool slurry (black solid diamond). The 786 

sampling methods are given under the bottom figure (Pen floor= pen floor pool herd; Shoe= shoe cover pool 787 

herd; Slurry sample).  788 
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Table S1 Primers used to generate standard amplicons (forward primer=FP, reverse primer=RV). The amplicon size is in number of 

base pairs (bp)  

Primer Target gene Base sequence 5’-3’ Amplicon 

size  
(bp) 

Reference 

tet(A)_std_FW 

tet(A)_std_RV 

tet(A)  GTAATTCTGAGCACTGTCGC 

 CTGTCCTGGACAACATTGCTT 

937 (Guardabassi et al. 2000, Saenz 

et al. 2004, Costa et al. 2008) 

tet(B)_std_FW 

tet(B)_std_RV 

tet(B) ACTTGTCTCCTGTTTACTCCCCTGAGC 

GCCTTATCATGCCAGTCTTGCCAACG 

1142 This study 

tet(C)_std_FW 

tet(C)_std_RV 

tet(C) 
CGCTCATCGTCATCCTCGGCAC 

CAACCCGTTCCATGTGCTCGC 

1091 This study 

tet(M)_std_FW 

tet(M)_std_RV 

tet(M) 
GAAGCGTGGACAAAGGTACAACGAGG 

CGACGGGGCTGGCAAACAGG 
 

1768 This study 

tet(O)_std_FW 

tet(O)_std_RV 

tet(O) 
CTGGCTCACGTTGACGCAGGAAAG 

TATTCGGGCGGCGGGGTTG 

1852 This study 

tet(W)_std_FW 

tet(W)_std_RV 

tet(W) AAAGACGACCTTGACGGAGAGCC 

TCTCGCCAGTAAAGACAACTTCATCC 

1697 This study 

sulI_std_FW 

sulI_std_RV 

sulI 
ATGGTGACGGTGTTCGGCATTCTG 

GATCTAACCCTCGGTCTCTGGCGT 

832 This study 

sulII_std_FW 

sulII_std_RV 

sulII 
CGGCATCGTCAACATAACCTCGGAC 

CGGCTCGTGTGTGCGGATGAAG 

730 This study 

ermB_std_FW 
ermB_std_RV 

ermB 
GGGCATTTAACGACGAAACTGGCT 

ACTTTGGCGTGTTTCATTGCTTGATG 

539 This study 

ermF_std_FW 
ermF_std_RV 

ermF 
TCGTTTTACGGGTCAGCACTT 

CAACCAAAGCTGTGTCGTTT 

182 (Knapp et al. 2010) 

vanA_std_FW 
vanA_std_RV 

vanA 
GAAATCAACCATGTTGATGTAGCA 

TTTGCCGTTTCCTGTATCCGT 

572 (Boeckelmann et al. 2009) 

CMY-2_std_FW 

CMY-2_std_RV 

blaCMY-2 ATGATGAAAAAATCGTTATGC  

GCTTTTCAAGAATGCGCCAGG 

758 (Hasman et al. 2005, 

Archambault et al. 2006, Agerso 

et al. 2012) 



FW_SHV_OS5 

FW_SHV_OS6 

blaSHV 

family TTATCTCCCTGTTAGCCACC 

GATTTGCTGATTTCGCTCGG 

854 (Hasman et al. 2005, 

Archambault et al. 2006, Agerso 
et al. 2012) 

CTX-M-U1_FW 
CTXXM-U2nds_RV 

blaCTX-M-1 

group
ATGTGCAGYACCAGTAARGTKATGGC 

GGGTRAARTARGTSACCAGAAYSAGCGG 

593 (Hasman et al. 2005, Agerso et 
al. 2012) 

8FX 

1407RX 

16S rDNA  AGAGTTTGATCCTGGCTNAG 

 TGACGGGCGGTGTGTACAA 

1392 (Angen, Ahrens and Tegtmeier 

1998) 
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Table S2 Positive controls including bacterial isolates and fecal derived positive controls. 

Species Name Genes Relevant resistance Provider 

NA NA tet(A) Tetracycline PCR amplification from 
swine fecal sample 

E.coli tetB, CSH50:Tn10 tet(B) Tetracycline Yvonne Agersø (DTU-

Food) 
E.coli tetC, D07 pBR 322, Tet tet(C) Tetracycline Yvonne Agersø 

(DTU-Food) 

E.coli tetM HB 101 tet(M) Tetracycline Yvonne Agersø (DTU-
Food)  

E.coli tetO HB 101 tet(O) Tetracycline Yvonne Agersø (DTU-

Food) 
E.coli tetW HB 101 pTnB1230, 

pUTetWup3 

tet(W) Tetracycline Yvonne Agersø (DTU-

Food) 

E.coli sul1, NCTC 50001 sulI Sulphonamide Anette M. Hammerum 
Statens Serum 

Institute(SSI) 

E.coli sul2, NCTC 50020 sulII Sulphonamide Anette M. Hammerum 
(SSI) 

E.faecalis ermB, D516C1 pAD2 ermB MLS Anette M. Hammerum 

(SSI) 
E.coli ermF, Tn4551, original plasmid 

pFD292 cloned into pUC19 (is 

ampicillin resistant) 

ermF (0,7KB) MLS Stefan Schwarz (FLI)  

E.coli CTX-M-1,O149 77-30108-11 blaCTX-M-1 group  ESBL Yvonne Agersø (DTU-

Food) 

E.coli CMY-2,F1 from ESC 1009 data blaCMY-2 AmpC Cephalosporinase Yvonne Agersø (DTU-
Food) 

E.coli SHV-12,F21 from ESC2009 

data 

blaSHV family ESBL  Yvonne Agersø (DTU-

Food) 
E. faecium  vanA, BM4147 vanA Vancomycin Luca Guardabassi (SUND) 

NA NA 16S rDNA NA PCR amplification from 

swine fecal sample 



Table S3 Efficiency, determination coefficient (R2), dynamic range, LOQ and LOD for qPCR assays.

Assay Efficiency R2 Dynamic range 

copies  reaction-1 

LOQ copies g-1 feces LOD copies 

g-1  feces 

tet(A) 0.92 0.99781 1x109-1x101 1x104 1x103 

tet(B) 0.93 0.99942 1x108-1x102  1x105 1x105 

tet(C) 0.96 0.99938 1x108-1x101 1x105 1x103 

tet(M) 1.02 0.99690 1x108-1x101 1x104 1x101 

tet(O) 1.13 0.99875 1x108-1x102 1x105 1x101 

tet(W) 0.89 0.99908 1x108-1x101 1x104 1x101 

ermB 0.91 0.99909 1x109-1x101 1x104 1x102 

ermF 0.94 0.99587 1x108-1x102 1x105 1x104 

sulI 1.03 0.99745 1x108-1x101 1x104 1x103 

sulII 0.92 0.99845 1x108-1x101 1x104 1x103 

vanA 0.78 0.99891 1x108-1x101 1x104 1x103 

blaCTX-M-1 

group 

0.98 0.99673 1x109-1x101 1x104 1x102 

blaCMY-2 0.96 0.99697 1x108-1x102 1x105 1x104 

blaSHV family 0.96 0.99791 1x108-1x101 1x104 1x103 

16S rDNA 0.64 0.99045 1x109-1x105 1x108 NA 
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Introduction 27 

Genetic alterations enable antibiotic resistant bacteria to survive in the presence of high concentrations of 28 

antibiotics. Resistant commensal bacteria in animals may transfer antibiotic resistance genes to zoonotic 29 

bacteria or, upon transmission to the human gut, human specific pathogens. When these pathogens cause 30 

infections of humans, there can be severe consequences for human health (van den Bogaard and 31 

Stobberingh, E. E. 2000). There is increased focus on the spread of resistant bacteria, emphasizing the 32 

significance of minimizing antibiotic use, monitoring antibiotic consumption, and performing 33 

surveillance of antibiotic resistance (van den Bogaard and Stobberingh, E. E. 2000). 34 

The present methods used for estimating the level of antibiotic resistance at population and herd levels 35 

rely on culture of indicator bacteria such as Escherichia coli, Enterococcus spp., Salmonella spp., and 36 

Campylobacter spp. possibly underestimating the antibiotic resistance levels within the entire community 37 

(Alali et al. 2009). Furthermore, interpretation of phenotypic tests such as minimum inhibitory 38 

concentration (MIC) and disk diffusion may be compromised if bacteria are slow growing in a specific 39 

media and/or in the presence of a specific antibiotic (Jorgensen and Ferraro, M. J. 1998, Phillips 1998). It 40 

is therefore of interest to evaluate the risk of antibiotic resistance spread within food producing animal 41 

herds, and identify methods that rapidly give an estimate of the amount of antibiotic resistance genes at 42 

herd level. 43 

To our knowledge, there are currently no validated direct and simple methods for quantifying the amount 44 

of antibiotic resistance at herd level within feeder pig operations. Real-time PCR (qPCR) quantifies the 45 

amount of specific target DNA in a sample, and has previously been used to quantify antibiotic resistance 46 

genes in fecal samples and diverse environments (Fluit, Visser, M. R. and Schmitz, F. J. 2001, Yu et al. 47 

2005, Birkett et al. 2007, Chen et al. 2007, Manuzon et al. 2007, Alali et al. 2009, Boeckelmann et al. 48 

2009, Knapp et al. 2010). Being a nucleic acid-based method, qPCR can target genes within the DNA of 49 

total bacterial communities, reflecting the entire gene pool (Alali et al. 2009). 50 
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We have recently developed a method for quantifying 14 antibiotic resistance genes commonly found in 51 

swine feces (Schmidt, G., Mellerup, A., Christiansen, L. E. et al. 2014). The method was found suitable 52 

for quantifying antibiotic resistance at a herd level and to be more stable than a CFU-based method. In 53 

order to compare the principle of resistance gene quantification by qPCR, the current study initially 54 

quantified selected resistance genes in fecal samples collected from pigs by qPCR. The determined 55 

number of resistance genes was subsequently compared to the corresponding colony forming units 56 

(CFUs) of resistant bacteria from selected indicator groups, which is a method commonly used to 57 

phenotypically estimate levels of resistance. Colony hybridization (CH) was used for further validation by 58 

quantifying the antibiotic resistant bacteria using probes corresponding to the fragments amplified with 59 

the qPCR primers. 60 

Materials and methods 61 

Sample collection 62 

Swine fecal samples were collected from a feeder pig operation in Denmark. Fecal samples were 63 

collected from 4 randomly allocated pens within a single stable. All individual animals within these 4 64 

pens were sampled by digitally extracting feces from the rectum (total 84 samples). The samples were 65 

collected in plastic containers with tight lids and placed in coolers immediately after sampling. After 66 

analysis, samples were stored at -80ºC. Twenty fecal samples were randomly selected from these 84 67 

samples and were analyzed using the different methods. 68 

Quantification of resistant bacteria by coliform CFU counts 69 

Ten-fold dilutions of each sample were made in PBS buffer. One drop (20 µl) of each dilution was placed 70 

on MacConkey plates (Oxoid A/S, Roskilde, Denmark) with and without antibiotics. The antibiotics used 71 

were ampicillin (16 mg
 
l
-1

), erythromycin (32 mg
 
l
-1

), sulphametizole (256 mg
 
l
-1

), and tetracycline (16 mg72 

l
-1

). Once dry, the plates were incubated at 37° for 24 hours.73 
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Colony hybridization 74 

The 20 random fecal samples were analyzed for the presence of antibiotic resistance genes by colony 75 

hybridization, essentially as described by Olsen et al. (1995). Briefly, dilutions of samples were spread on 76 

Hybond-N colony hybridization filters (Amersham) placed on the surface of one MacConkey agar plate 77 

(Oxoid A/S, Roskilde, Denmark) and one blood-agar (BA) plate (Oxoid blood agar base I with 5% calf 78 

blood). Plates were incubated 18 hours at 37 °C. The BA plate was incubated anaerobically in a chamber 79 

using commercially available gas pack (Oxoid A/S, Roskilde, Denmark). Filters were pre-treated for 80 

hybridization as previously described (Olsen et al. 1995), air dried, and sealed in plastic bags at ambient 81 

temperature until hybridization was performed. 82 

Probes consisted of P
32

-labeled PCR fragments, corresponding to the amplicons of the qPCR method 83 

(Table S1). Labeling was performed using either Ready-to-go DNA labeling beads (GE Healthcare, 84 

Brøndby, Denmark) or Rediprime II DNA labelling system (GE Healthcare, Brøndby, Denmark) 85 

according to the instructions given by the supplier. 86 

Hybridization was performed at 65°C in 0.5 M NaPi buffer + 7 % sodium dodecyl sulfate (SDS). After 87 

post-hybridization washes, as described (Olsen et al. 1995), signals were developed using Perkin Elmer 88 

Cyclone Plus system (Perkin Elmer, Skovlunde, Denmark). Colony-filters with proper controls, 89 

consisting of bacteria with known resistance genes (Schmidt, G., Mellerup, A., Christiansen, L. E. et al. 90 

2014) were processed in parallel. 91 

DNA extraction for antibiotic gene quantification by qPCR 92 

DNA was extracted from the fecal samples using 10% dilutions in phosphate buffered saline (PBS) as 93 

described previously (Schmidt, G., Mellerup, A., Christiansen, L. E. et al. 2014). Briefly, the 10% 94 

dilutions were homogenized and 350 µl of the 10% dilution was lyzed for 1 minute 15 Hz
-1

 at room95 

temperature using a Tissuelyser II (Qiagen, Copenhagen, Denmark). After centrifugation for 90 seconds 96 

at 10000 rpm the supernatant was transferred to a new eppendorf tube and 20 µl proteinase K (Promega, 97 
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Roskilde, Denmark) was added. The samples were loaded into the QiaSymphony robot using the 98 

Pathogen complex 200-V5-DSP default IC kit (Qiagen, Copenhagen, Denmark) according to the 99 

manufacturer’s instructions. The final elution volume was 85 µl. Both a negative and positive DNA 100 

extraction control was run in parallel with the samples during each DNA extraction. 101 

Assays for antibiotic resistance 102 

The following antibiotic-resistance genes were investigated by qPCR: tetracycline resistance 103 

tet(A),tet(B), tet(C), tet(M), tet(O), tet(W); sulphonamide resistance sulI, sulII. The primers, internal 104 

controls, PCR conditions, PCR mastermixes, and standard curves used are described elsewhere (Schmidt, 105 

G., Mellerup, A., Christiansen, L. E. et al. 2014). Each sample was tested in duplicate along with a 106 

positive control template in triplicate, and 1 positive and negative DNA extraction control. Furthermore, a 107 

negative template control (NTC) (23 µl mastermix and 2 µl water) was also included. 108 

Statistical analysis 109 

All figures and statistical tests (paired t-test) were performed on the log transformed values using 110 

GraphPad Prism version 5 (La Jolla, CA, USA). The samples that were negative were set to 0.1 for 111 

statistical analysis. 112 

Results 113 

The 20 fecal samples were analyzed for tetracycline and sulphonamide resistance using coliform CFU 114 

counts, colony hybridization, and qPCR (resistance estimates gram
-1

 feces, Table 1). The left part of115 

Figure 1a shows the number of coliform bacteria growing on MacConkey agar plates with tetracycline or 116 

no antibiotics. The right part of Figure 1a shows the number of colonies containing one or more of the 117 

tetracycline resistance genes among bacteria growing on MacConkey agar and on blood agar incubated 118 

anaerobically. The number of tetracycline resistance genes and 16S rDNA found per gram feces are 119 
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shown in Figure 1b. Similar results for the sulphonamide resistance in the fecal samples are shown in 120 

Figure 2(a,b). 121 

The tetracycline and sulphonamide resistant estimates attained using the different methods 122 

were compared, and the p-values are summarized in Table 2 and Table 3, respectively. There was a 123 

significant difference between the numerical estimates of tetracycline resistance by all three methods 124 

(Table 2).  The qPCR tet gene copy number estimate were significantly higher than all colony 125 

hybridization estimates and coliform bacteria estimates both resistant and without antibiotics (P<0.0001). 126 

There was no significant difference between the CH values for bacteria grown on MacConkey agar and 127 

anaerobic growth on blood agar for both sulphonamide and tetracycline. 128 

There were also significant differences between the sulphonamide resistance estimates using 129 

the different methods (Table 3). The number of coliform bacteria on MacConkey agar without antibiotics 130 

was significantly higher than the number of coliform bacteria growing on MacConkey agar added 131 

sulphonamide (P<0.001), and significantly different from the qPCR sulphonamide gene copy number. 132 

Figure 3(a,b) depicts the relationship between the genotypic antibiotic resistance estimates 133 

given as their ratios (MacConkey CH:CFU (red columns); blood agar (BA) CH:qPCR (blue columns); 134 

MacConkey CFU:qPCR (green columns) for tetracycline resistance (a) and sulphonamide resistance (b). 135 

Eight out of the 20 tetracycline MacConkey CH:CFU ratios were close to 100%, meaning that 100% of 136 

the tetracycline resistant coliforms were detected by the colony hybridization. Another 8 ratios were close 137 

to 10% of the tetracycline resistant coliform bacteria being detected by the colony hybridization, and the 138 

remaining 2 close to 1%. In contrast, 4 of sulphonamide resistance CH:CFU ratios were over 100%, 139 

meaning that over 100% sulphonamide resistant coliforms were detected using colony hybridization 140 

(Figure 3b, red columns). Nine sulphonamide CH:CFU ratios were between 10%-100%, with the majority 141 

being close to 10%, 5 were under 10%. 142 
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The ratio between the colony hybridization estimates on BA and the qPCR gene copy 143 

number estimates (CH:qPCR) was very low for tetracycline resistance (Figure 3a, blue columns) ranging 144 

from below 0.01% to 0,1%. The sulphonamide CH:qPCR ratio was larger, with 4 over 100%, 8 above 145 

10%, and the remaining 6 at 1% or above (Figure 3b, blue columns). For tetracycline, the CH:CFU ratio 146 

was significantly higher than the CH:qPCR ratio (P< 0.0001), while there was no difference between 147 

these values for sulphonamide (P= 0,4826). 148 

The tetracycline CFU:qPCR ratios (green columns) varied between animals with the 3 149 

highest between 10% and 100%. The tetracycline CFU:qPCR ratios were significantly different from the 150 

CH:CFU ratios (P<0.0001), and the CH:qPCR ratios (P=0.0101), respectively. There was also a 151 

significant difference between the sulphonamide CH:CFU ratio and the CFU:qPCR ratio (P=0.0291), but 152 

not the CFU:qPCR ratio (P=0.1020). 153 

Discussion 154 

In the present study, antibiotic resistance gene quantification by qPCR was compared to phenotypic 155 

antibiotic resistant coliform CFU counts and antibiotic resistant bacteria by colony hybridization with 156 

probes corresponding to the qPCR primer amplicons. This investigation shows that the method chosen for 157 

quantification has a high influence on the results obtained. 158 

There were highly significant differences between all of the different estimates of 159 

tetracycline resistance obtained using tetracycline resistance coliform counts, colony hybridization on 160 

MacConkey and BA (anaerobic), and the qPCR gene copy number estimates (P<0.0001). This reflects 161 

that the methods measure the antibiotic resistance in different populations and that there might be a 162 

difference between the detection of a gene and a corresponding phenotype. qPCR differs from both 163 

colony hybridization and CFU counts by being a culture independent method. However, the culture 164 

dependent estimates also differed significantly, and can be due to the different bacterial populations that 165 

are represented in each method. The CFU estimates represent the tetracycline resistance in coliform 166 
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bacteria, the MacConkey colony hybridization estimates represent the enterobacteria, while the BA 167 

(anaerobic growth) estimates represent those bacteria that grow on a non-selective agar under anaerobic 168 

incubation. 169 

There was a higher level of tetracycline resistance observed in the coliform bacteria (CFU 170 

counts) compared to the colony hybridization despite there being a smaller bacterial population 171 

represented in the CFU estimates. A tentative conclusion is that the majority of the tetracycline resistant 172 

bacteria are not detected by colony hybridization because they do not carry the specific genes that were 173 

used as probes (Mendez, Tachibana, C. and Levy, S. B. 1980, Khan and Novick, R. P. 1983, Waters et al. 174 

1983, Guillaume et al. 2000, Chopra and Roberts, M. 2001, Roberts,M. C. 2013, Roberts, Schwarz, S. 175 

and Aarts, H. J. M. 2012, van Hoek et al. 2011). This is also supported by the differences between the 176 

CH:CFU ratios (Figure 3a). For the majority of the samples, close to 10% of the tetracycline resistant 177 

coliform bacteria were also detected using colony hybridization on MacConkey plates, a couple had 178 

100%. In contrast, the CH:qPCR ratios were very low (0,01%-0,1%) illustrating how the tet genes 179 

detected by qPCR were not detected using colony hybridization on BA (anerobic growth). This could 180 

reflect that bacteria containing the genes detected using qPCR are not present on BA plates (anaerobic 181 

growth), or a single bacterium might harbor more than one resistance gene (Chopra and Roberts, M. 182 

2001, van Hoek et al. 2011, Roberts,M. C. 2013, Roberts, Schwarz, S. and Aarts, H. J. M. 2012). The 183 

tetracycline CH:qPCR ratios were significantly lower than the CFU:qPCR ratios meaning that the 184 

tetracycline resistant coliforms were more readily detected by the qPCR than the colony hybridization 185 

estimates. This may be due to the fact that there was a selection pressure in favor of tetracycline resistant 186 

coliforms containing tet genes compared to the BA plates that did not contain antibiotics. Therefore, there 187 

may be more genes per bacteria in the coliforms compared to those on the BA plates (anaerobic growth). 188 

There were also significant differences in sulphonamide resistance estimates determined 189 

using the different methods (Table 3), however, regarding the qPCR sul gene copy numbers, they only 190 

differed significantly from the CFU estimates from plates without antibiotics (P=0.0061). The qPCR sul 191 
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estimates that are not significantly different from the culture dependent methods could be due to the fact 192 

that there are few genes that code for sulphonamide resistance compared to for example tetracycline 193 

(Sköld 2000, Roberts, Schwarz, S. and Aarts, H. J. M. 2012). This indicates that when fewer genes cause 194 

an antibiotic resistance phenotype, the chance of detecting the antibiotic resistance is increased and there 195 

will be less discrepancy between the genotype and phenotype. This is supported by the sulphonamide 196 

CH:qPCR and CFU:qPCR ratios that did not significantly differ (P=0.1020). Hence, the sul qPCR results 197 

indicate that the sulI and sulII genes detected are represented in the culture dependent method regardless 198 

of the method used and bacterial population that is represented. Furthermore, if sulI and sulII are present, 199 

even in a complex bacterial population, the qPCR assays are sensitive enough to detect them. This is also 200 

supported by the ratios in Figure 3b where the CH:CFU ratios and the CH:qPCR ratios are very similar. 201 

Furthermore, 14 of the sulphonamide CH:qPCR ratios were close to 10% emphasizing the fact that these 202 

methods represent different populations. The estimates were not significantly different, but only a fraction 203 

of the genes detected using qPCR were detected with colony hybridization on BA (anaerobic growth). 204 

This study emphasizes the importance of defining which bacterial population is relevant in 205 

the specific goal of antibiotic resistance quantification. When the aim is to monitor and quantify antibiotic 206 

resistance at herd level, using a method where a few chosen indicator bacteria represent the resistance in 207 

the intestinal bacterial population let alone the herds’ is not optimal due to the large portion of neglected 208 

bacteria. However, if the aim is to quantify resistance in a known pathogen, it can be an advantage to 209 

cultivate the bacteria and phenotypically test the antibiotic resistance to avoid false negatives if the 210 

resistance is due to another gene than those tested. 211 

There can also be variation between methods that cannot solely be ascribed the bacterial 212 

population, but other confounding influences. For example, the number of resistant coliforms detected 213 

depends on the concentration of antibiotic that is added to the MacConkey agar. Certain antibiotic 214 

resistance determinants may not be sufficient to enable growth at the set resistance breakpoint. 215 

Furthermore, sampling from individual animals also gives rise to variation due to the fluctuations in gene 216 
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excretion that can show large, individual day-to-day fluctuations (Bibbal et al. 2007). Antibiotic 217 

resistance is subject to fluctuations in the migration of its host organism and/or persistence in a given 218 

environment, antibiotic gene migration, and the presence of selection pressure (Koike et al. 2007). 219 

Therefore, when collecting a fecal sample from an individual animal at a given time point, the level found 220 

may depend on the time other animals within the pen excreted the specific gene. 221 

The present study compared antibiotic resistance determination using coliform CFU, colony 222 

hybridization, and qPCR estimates. The results show how the method chosen for quantification has an 223 

influence on the results obtained.  Each method represents a separate bacterial population as indicated by 224 

the significant differences observed between methods. Whether a phenotypic antibiotic resistance 225 

estimate is signified by the genotype or not may depend on the number of corresponding resistance 226 

determinants. Future studies must be conducted to investigate this further. 227 
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Figures and tables 309 

Figure 1 Boxplot showing the distribution of the tetracycline antibiotic resistance estimates in the tested 310 

animals (n=20) using different methods a) left, colony forming units on MacConkey plates without 311 

antibiotics (CFU No antibiotics), colony forming units on MacConkey plates with antibiotics (CFU tet 312 

Mac); right, colony hybridization on MacConkey plates (Colony tet Mac), colony hybridization on blood 313 

agar plates anaerobically incubated (Colony tet BA) b) qPCR gene copy estimates (cc) for tet genes 314 

(qPCR tet sum), qPCR estimates of 16S rDNA in total DNA (qPCR 16S). The top of the box is the upper 315 

quartile and the bottom the lower quartile. The black band inside the box is the median and the 316 

“whiskers” represent the maximum (greatest number values, excluding outliers) and minimum (lowest 317 

CFU value, excluding outliers). The dotted line indicates that the CFU estimates should be read off the 318 

left Y-axis, and the colony hybridization estimates the right Y-axis.  319 

320 

Figure 2 Boxplot showing the distribution of the sulphonamide antibiotic resistance estimates in the 321 

tested animals (n=20) using different methods  a) left, colony forming units on MacConkey plates without 322 

antibiotics (CFU No antibiotics), colony forming units on MacConkey plates with antibiotics (CFU sul 323 

Mac) ; right: colony hybridization on MacConkey plates (Colony sul Mac), colony hybridization on blood 324 

agar plates anaerobically incubated (Colony tet BA) b) qPCR gene copy estimates (cc) for sul genes 325 

(qPCR tet sum), qPCR estimates of 16S rDNA in total DNA (qPCR 16S). The top of the box is the upper 326 

quartile and the bottom the lower quartile. The black band inside the box is the median and the 327 

“whiskers” represent the maximum (greatest number values, excluding outliers) and minimum (lowest 328 

CFU value, excluding outliers). The dotted line indicates that the CFU estimates should be read off the 329 

left Y-axis, and the colony hybridization estimates the right Y-axis.  330 

331 

Figure 3 Histogram showing the ratios between antibiotic resistance estimates from the colony 332 

hybridization from MacConkey agar (CH) and the coliform colony forming units (CFU) (CH:CFU, red); 333 

colony hybridization on Blood Agar anaerobically incubated (CH) and the qPCR (CH:qPCR, blue); CFU 334 

on MacConkey agar and the qPCR (CFU:qPCR, green) for tetracycline (a) and sulphonamide (b) for  the 335 

tested animals (n=20). 336 

337 

338 



15 

339 

340 

341 

342 

343 

344 

345 

346 

347 

348 

349 



16 

Table 1 The results from the coliform colony forming unit (CFU) counts on MacConkey with antibiotics (tetracycline, sulphonamide), and without antibiotics (No antibiotics); colony 

hybridization estimates of sul or tet positive bacteria on MacConkey agar and blood agar (anaerobic growth); qPCR gene copy number estimates given as the sum of the gene copy numbers for 

tet(A), tet(B), tet(C), tet(M), tet(O), tet(W) for tetracycline, and sulI and sulII for sulphonamide. 16s rDNA gene copy number estimates are also included. All results are given gram-1 feces. The 

sample numbers denote the randomly selected pig number. 

Sample 

number 

CFU gram-1 feces on MacConkey Colony Hybridization number of positive bacteria gram-1 feces qPCR gene copy numbers gram-1 feces 

No 

antibiotics 

Tetracycline Sulphonamide Tetracycline 

MacConkey 

Tetracycline 

Blood agar 

anaerobic 

Sulphonamide 

MacConkey 

Sulphonamide 

Blood Agar 

anaerobic 

16S Tetracycline Sulphonamide 

4 4,00E+06 7,50E+06 4,50E+05 4,20E+05 2,40E+05 4,83E+05 4,70E+05 4,28E+09 1,88E+08 9,68E+06 

5 2,68E+05 5,00E+04 6,82E+04 5,00E+03 1,93E+05 1,33E+05 1,75E+04 7,55E+09 1,47E+08 2,64E+06 

7 5,00E+06 7,50E+06 4,55E+04 9,68E+05 5,50E+04 2,75E+04 3,25E+04 5,46E+10 5,71E+08 8,19E+05 

10 4,50E+05 2,50E+05 3,18E+05 3,20E+05 1,73E+05 5,80E+05 4,13E+05 3,55E+09 2,02E+08 1,25E+05 

14 6,76E+04 5,86E+04 5,45E+03 1,23E+05 5,00E+04 5,00E+03 1,50E+04 9,14E+09 1,61E+08 5,10E+05 

18 5,00E+06 5,32E+06 5,00E+03 1,17E+06 1,33E+05 1,25E+04 1,25E+04 5,74E+09 1,53E+08 9,72E+04 

22 4,55E+05 1,73E+05 1,41E+04 5,90E+05 7,23E+05 2,50E+03 7,50E+03 2,88E+08 1,03E+08 4,11E+04 

28 2,18E+05 2,32E+04 6,00E+04 2,50E+04 1,50E+04 1,25E+04 1,50E+04 1,22E+10 8,78E+08 4,29E+05 

32 2,55E+07 2,15E+07 2,52E+05 0,00E+00 0,00E+00 2,50E+04 3,25E+04 2,65E+10 3,43E+08 5,23E+04 

35 4,09E+06 2,32E+06 5,00E+04 2,73E+05 2,08E+05 4,00E+04 2,75E+04 7,00E+10 1,41E+09 1,61E+05 

46 5,91E+05 2,00E+05 4,82E+05 1,25E+05 2,43E+05 1,00E+05 5,50E+04 3,13E+10 8,11E+08 1,55E+05 

49 2,32E+04 1,59E+04 1,05E+04 2,50E+03 5,00E+03 2,50E+03 5,00E+03 8,74E+09 1,45E+08 0,00E+00 

55 4,55E+05 1,86E+05 5,00E+05 1,40E+05 7,25E+04 3,93E+05 1,75E+05 4,11E+09 2,26E+08 1,42E+04 

59 1,50E+05 4,50E+04 1,85E+05 1,25E+04 2,25E+04 3,25E+04 3,50E+04 4,03E+10 6,17E+08 6,84E+04 

64 9,50E+05 7,27E+05 1,00E+05 4,25E+04 2,75E+05 1,68E+05 1,15E+05 1,96E+10 5,09E+08 3,12E+04 

67 2,70E+05 8,18E+04 1,41E+05 8,25E+04 1,03E+05 5,00E+04 2,55E+05 8,20E+09 2,20E+08 0,00E+00 
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70 3,09E+06 2,82E+05 2,30E+05 2,05E+05 2,20E+05 5,00E+04 7,00E+04 5,66E+09 1,78E+08 1,60E+05 

78 6,50E+06 1,40E+07 3,64E+04 0,00E+00 0,00E+00 3,00E+04 1,75E+04 4,60E+10 1,38E+09 1,51E+05 

79 3,00E+05 6,82E+05 2,00E+04 1,00E+04 2,50E+03 6,75E+04 4,00E+04 8,97E+09 6,30E+08 8,68E+04 

82 3,50E+05 3,27E+05 2,50E+05 7,50E+03 1,75E+04 2,35E+05 2,95E+05 3,41E+10 4,70E+08 1,07E+05 
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Table 2 Matrix showing the paired t-test P-values for the different methods for tetracycline antibiotic resistance estimation.  Colony forming 

unit=CFU; No antibiotics=No Ab; colony hybridization on MacConkey= CH MacConkey; colony hybridization blood agar anaerobe=CH 

BA anaerobic growth; qPCR for tetracycline resistance gene  tet(A), tet(B), tet(C), tet(M), tet(O), tet(W)  estimates’ sums. 

CFU No Ab CFU tet MacConkey CH MacConkey CH BA anaerobic qPCR tet genes 

CFU No Ab 0,0178 0,0002 0,0002 < 0.0001 

CFU tet MacConkey 0,0018 0,0043 < 0.0001 

CH MacConkey 0,7939 < 0.0001 

CH BA anaerobic < 0.0001 

qPCR tet genes 
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Table 3 Matrix showing the paired t-test P-values for the different methods for sulphonamide antibiotic resistance estimation. Colony 

forming unit=CFU; No antibiotics=No Ab; colony hybridization on MacConkey= CH MacConkey; colony hybridization blood agar 

anaerobe=CH BA anaerobic growth; qPCR for sulphonamide resistance gene sulI and sulII  estimates’ sums. 

CFU No Ab CFU sul MacConkey CH MacConkey sul CH BA anaerobic 

sul 

qPCR sul genes 

CFU No Ab < 0.0001 < 0.0001 < 0.0001 0,0061 

CFU sul MacConkey 0,0393 0,0304 0,5718 

CH MacConkey sul 0,9664 0,9271 

CH BA anaerobic sul 0,9265 

qPCR sul genes 
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Table S1 qPCR primer and probe sequences (forward primer=FP; reverse primer=RP; probe=PR), gene targets, annealing 

temperatures (Ann. temp.), amplicon lengths in base pairs (bp), and GenBank sequence accession number (GenBank access. no.). 

The probes used in the colony hybridization correspond to the DNA fragments amplified by the qPCR primer pairs. 

Primers Gene target Sequence  

(5’  3’) 

Ann. 

temp. 

(°C) 

Amplicon 

size (bp) 

GenBank 

access. no.* 

Reference 

FP_TETA_2 

RP_TETA_2 

PR_TETA_2 

tet(A) TTGGCATTCTGCATTCACTC  

GAAGGCAAGCAGGATGTAGC 

GATCACCGGCCCTGTAGCCG 

60 

60 

125  

(840-974) 

X00006 This study 

FP_TETB_Aminov** 

RP_TETB_Aminov 

PR_TETB_Aminov_own 

tet(B) TTACGTGAATTTATTGCTTCGG 

ATACAGCATCCAAAGCGCAC 

CGCCGACCAAATCGGTCAGA 

60 

60 

206 

(913-

1119) 

NE_013365 (Aminov et 

al. 2002) and 

this study 

FP_TETC_6 

RP_TETC_6 

PR_TETC_6 

tet(C) GCCAGTCACTATGGCGTGCT 

CAAGTAGCGAAGCGAGCAGG 

ACTGTCCGACCGCTTTGGCC 

60 

60 

120 

(124-244) 

EU751613 This study 

FP_TETM_7 

RP_TETM_7 

PR_TETM_7 

tet(M) CAACGAGGACGGATAATACGC 

CCATCTTTTGCAGAAATCAGTAGA 

GGTGAACATCATAGACACGCCAGGA 

60 

60 

191 

(119-311) 

X92947 This study 

FP_TETO_Böck 

RP_TETO_Böck 

PR_TETO_Böck 

tet(O) AAGAAAACAGGAGATTCCAAAACG 

CGAGTCCCCAGATTGTTTTTAGC 

ACGTTATTTCCCGTTATCACGGAAGCG 

60 

60 

75(607-

682) 

AY660531 (Boeckelmann 

et al. 2009) 

FP_TETW_Smith 

RP_TETW_Smith 

PR_TETW_Smith 

tet(W) GCAGAGCGTGGTTCAGTCT 

GACACCGTCTGCTTGATGATAAT 

TTCGGGATAAGCTCTCCGCCGA 

60 

60 

66 

(411-476) 

AJ222769 (Smith et al. 

2004) 



FP_SUL1_2 

RP_SUL1_2 

PR_SUL1_2 

sulI ACGAGATTGTGCGGTTCTTC 

CCGACTTCAGCTTTTGAAGG 

ACCGGCTCATCCTCGATCCG 

60 

60 

159 

(440-598) 

EU056266 This study 

FP_SUL2_3 

RP_SUL2_3 

PR_SUL2_3 

sulII GATATTCGCGGTTTTCCAGA 

CGCAATGTGATCCATGATGT 

AAGACGGGCAGGCAGATCGG 

60 

60 

141 

(313-453) 

AY360321 This study 

FW_SMI_114 

R_SMI_115 

PR_SMI_116 

16S rDNA CGCGAAGAACCTTACC  

ACTTAACCCAACATTTCAC 

CACGAGCTGACGACAGCC 

60 126 (916-

1041) 

NA The Public 

health agency 

of Sweden 

Solna, 

Sweden 

* GenBank accession numbers for previously published primers and/or probes. For primers and probes designed in this study, a 

GenBank accession number representative of those included in the sequence alignments is given.

** Primer modified to fit assay in the present study. 
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Abstract 28 

In the present study a total of 8 samples collected from interacting wildlife and cattle 29 

(NCA=Ngorongoro Conservation Area) and 4 samples from wildlife not interacting with cattle (MNP= 30 

Mikumi National Park) were screened for the presence of 14 antibiotic resistance genes. All of the 31 

wildlife samples contained antibiotic resistance genes that also were found in the cattle, regardless of the 32 

sampling site. Eight antibiotic resistance genes were detected in the samples, the most prevalent being 33 

tet(W) and blaCMY-2 with the latter being of concern due to the nature of the antibiotic resistance 34 

spectrum. Based on these results, it appears that wildlife, irrespective of contact with domesticated 35 

cattle, constitutes an unexpected reservoir for important antibiotic resistance determinants, and further 36 

studies are indicated to determine the antibiotic resistance gene-pool among the wildlife. 37 

38 
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Introduction 39 

Antibiotic resistance is a global manifestation and has been described in developed and undeveloped 40 

countries and also in a variety of environments both in nature and agricultural surroundings (Koike et al. 41 

2007, Costa et al. 2008, CheeSanford et al. 2009, Poeta et al. 2009, Poeta et al. 2010, Koike et al. 2010, 42 

Goncalves et al. 2013). Bacteria residing in the intestines of humans and animals, such as Escherichia 43 

coli, pose a potential threat to the human population if they carry antibiotic resistance genes as the 44 

bacteria are readily distributed among different environments through water, soil, and food (Skurnik et 45 

al. 2006, Costa et al. 2008). It has been demonstrated that antibiotic-resistant bacteria are released into 46 

the environment from food-producing animals via feces, urine, animal food products and that further 47 

spread can be facilitated by flies feeding on feces and urine (Aarestrup et al. 2000). Infectious diseases 48 

in humans and animals caused by antibiotic resistant pathogenic bacteria are often associated with 49 

treatment failure when the use of antibiotics is essential (Costa et al. 2008). 50 

Human activity in natural environments is increasing as populations grow in size, 51 

ultimately narrowing the human and wildlife proximity (Skurnik et al. 2006, Pesapane, Ponder and 52 

Alexander 2013). As a consequence of this close proximity, infectious diseases are exchanged between 53 

humans and wildlife, where the most threatening are caused by antibiotic resistant bacteria (Benavides 54 

et al. 2012, Pesapane, Ponder and Alexander 2013). Skurnik et al. (2006) found a correlation between 55 

the level of exposure to humans and/or human activities and the prevalence of resistance in wildlife 56 

from environments that had minimal exposure to humans, healthy pets, and farm animals (Skurnik et al. 57 

2006). Furthermore, the tested antibiotic resistant E.coli strain patterns were extremely heterogeneous, 58 

indicating that the presence of resistant strains was not due to clonal spread but to the spread of 59 

antibiotic resistance genes. The antibiotic resistance genes can spread indirectly by transmission of 60 

either the resistant bacteria themselves or horizontal gene-transfer (Skurnik et al. 2006). It has also been 61 
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implied that wild animals can act as reservoirs for resistant bacteria consequently facilitating antibiotic 62 

resistance gene transfer throughout the environment (Dolejska et al. 2007). 63 

In the Ngorongoro Conservation Area (NCA), Tanzania, Massai shepherds migrate with 64 

their short horned zebu cattle interacting with wildlife species such as wildebeest (Connochaetes 65 

taurinus), zebra (Equus burchelli) and buffalo (Syncerus caffer) through grazing and gathering at water 66 

holes (Voeten and Prins 1999, Charnley 2005). South from NCA is the Mikumi National Park (MNP) 67 

where the Massai are prohibited to migrate with their cattle in the park. It is therefore assumed that the 68 

wildlife in MNP have limited contact with cattle, if any. In the present study, fecal samples were 69 

collected from wildlife (wildebeest, zebra and buffalo) and cattle residing in the NCA, while in MNP 70 

fecal samples were only collected from wildlife. The DNA extracted from fecal samples was screened 71 

for the presence of 14 antibiotic resistance encoding genes using qPCR. The level of antibiotic resistant 72 

coliform bacteria was also determined. A study by Katakweba et al. (2013) found tet(W) and sulII genes 73 

in the same animal species. We hypothesize that, if the samples were positive for two antibiotic 74 

resistance genes it is likely that there are more genes, and identical genes will be present in both the 75 

wildlife and cattle samples. 76 

Materials and Methods 77 

Study Area and samples 78 

The samples used in this study (Table 1) were collected in the MNP and NCA areas from Tanzania 79 

(Selemani Katakweba 2013). 80 

Colony forming unit (CFU) counts of coliform bacteria 81 

Ten-fold dilutions from each sample were made in phostphate buffer saline (PBS) and 100 µl of each 82 

dilution was spread on MacConkey plates without and with antibiotics (Ampicillin (16 mg l
-1

);83 
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Cefotaxime (2 mg l
-1

); Sulphametizole (256 mg l
-1

); Tetracycline (16 mg l
-1

)) and incubated at 37°C for84 

24 hours. 85 

DNA extraction 86 

Ten-fold dilutions from each sample were made in phosphate buffer saline (PBS). After thorough 87 

vortexing, 200 µl of the 10
-1

 dilution was used for DNA extraction using the QIA amp DNA Stool Mini 88 

Kit (Qiagen, Copenhagen, Denmark) according to the manufacturer’s instructions. The DNA was eluted 89 

in 200 µl elution buffer and stored at -20°C until analysis (Selemani Katakweba 2013). 90 

Assays for antibiotic resistance 91 

The following antibiotic-resistance genes were studied by qPCR: tetracycline resistance tet(A),tet(B), 92 

tet(C), tet(M), tet(O), tet(W); macrolide, lincosamide, streptogramin B (MLSB) resistance ermB, ermF; 93 

sulphonamide resistance sulI, sulII; beta-lactam resistance blaCTX-M-1 group, blaCMY-2, blaSHV family; 94 

glycopeptide resistance vanA. The primers, conditions, and standard curves used are described 95 

elsewhere (Schmidt et al. 2014 ). Each sample was tested in duplicate along with a positive control 96 

template in triplicate. Furthermore, a negative template control (NTC) (23 µl mastermix and 2 µl water) 97 

was also included. 98 

Results and discussion 99 

One or more fecal samples collected from the NCA wildlife and cattle were positive for 8 out of the 14 100 

antibiotic resistance genes tested, as were several samples collected from the MNP wildlife that had not 101 

interacted with cattle. Table 2 summarizes the gene copy numbers g
-1

 feces for the different antibiotic102 

resistance determinants and for 16S rDNA that is used as a proxy for the overall bacterial population 103 

size. In addition, the isolation of antibiotic resistant coliform bacteria are indicated when present. The 104 

results from this screen give rise to concern of the antibiotic resistance genes residing within the wildlife 105 
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population in the NCA and MNP areas of Tanzania. Wild animals have previously been implicated as 106 

potential reservoirs of resistant bacteria, and might act as vehicles for the dissemination of resistant 107 

bacteria throughout the environment (Jardine et al. 2012). 108 

The cattle were all positive for tet(W), ermF, sulI, and blaCMY-2. tet(A), tet(M), tet(O), and 109 

sulII were also detected in minimum 1 of the 4 cattle samples (Table 2). No wildlife samples from NCA 110 

or MNP were positive for antibiotic resistance genes not also detected in the cattle. The finding of 111 

similar antibiotic resistance gene profiles in the NCA wildlife samples and the cattle was expected as 112 

samples from wildlife were deliberately obtained from animals that were observed grazing in close 113 

proximity of cattle. Three MNP samples from wildlife not interacting with cattle, Buffalo M3, Buffalo 114 

M13, and Buffalo M15, were positive for tet(W) and blaCMY-2, Buffalo M3 was also positive for sulI. It 115 

has been postulated that buffalo and zebras may exhibit a behavior where they are frequently found in 116 

close proximity to staff housing, offices, and lodges. Therefore, the buffalo and zebra may come in 117 

contact with human refuse or even human excretes (Rolland et al. 1985, Selemani Katakweba 2013) 118 

accounting for the antibiotic resistance gene detection in these samples. 119 

With a few exceptions, all samples displaying phenotypic resistance also contained the 120 

corresponding antibiotic resistance gene encoding the resistant phenotype. The Buffalo M13 sample was 121 

the only sample that was negative for all the tested antibiotic resistance gene determinants. However, 122 

this sample had a relatively low amount of 16S rDNA implying that there may not have been sufficient 123 

DNA for qPCR gene detection. In contrast, the Buffalo M15 sample had phenotypic sulphametizole 124 

resistance, but neither sulI nor sulII were detected. This could be due to the presence of another 125 

sulphonamide resistance encoding gene causing the resistant phenotype, for example sulIII or a mutated 126 

DHPS encoding folP gene (Huovinen et al. 1995, Bean, Livermore and Hall 2009). 127 
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The blaCMY-2 gene is reported to be found on plasmids and encodes extended spectrum 128 

cephalosporinases (ESC) that confer resistance to penicillins, beta-lactam-beta-lactamase inhibitor 129 

combinations, and cephalosporins (Li et al. 2007, Jorgensen et al. 2010). The plasmids are often 130 

associated with other multiple resistance genes and transposons, and it has been suggested that the 131 

blaCMY-2 spread is both clonal and horizontal (Li et al. 2007, Agersø et al.2014). This emphasizes the 132 

blaCMY-2 significance in the spread of antibiotic resistance. The location of the blaCMY-2 in positive 133 

strains in the current investigation was not determined, but the amount of samples that tested positive for 134 

the blaCMY-2 gene (10 out of 12) was alarming. A study in Denmark demonstrated that the blaCMY-2 gene 135 

was present in samples obtained from broiler flocks where cephalosporin administration has been 136 

banned for 10 years (Agersø et al. 2014). This shows how the blaCMY-2 gene can persist without the 137 

selection pressure induced by cephalosporin antibiotics. Our data suggests that the wildlife might have a 138 

role as s reservoir for antibiotic resistance genes. If these genes spread from nonpathogenic bacterial 139 

species in the wildlife reservoir to a human or zoonotic pathogen, the consequences can be severe. 140 

Therefore, the finding of blaCMY-2 among 10 of the 12 screened animals gives reason for further 141 

investigation of the antibiotic resistance gene prevalence among the wildlife in the NCA and MNP 142 

areas. 143 

The present study investigated a total of 12 samples collected from wildlife and cattle 144 

(NCA) and wildlife samples not having interaction with cattle (MNP) for the presence of 14 antibiotic 145 

resistance genes. Despite the wildlife at MNP not interacting with cattle, resistance was observed in 146 

these samples. This resistance could arise through birds that migrate between national parks or ingestion 147 

of plants with antimicrobial properties (Adesiyun and Downes 1999, Ushimaru et al. 2007, Radhouani 148 

et al. 2013, Selemani Katakweba 2013). Based on these results, further studies should be conducted to 149 

study the antibiotic resistance gene-pool among the wildlife in northern Tanzania in depth. It is 150 
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important to minimize excessive antibiotic use in order to reduce selection of antibiotic resistant bacteria 151 

both among humans, livestock, and wildlife. 152 
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Table 1 Sampling site in Tanzania (Ngorongoro Conservation Area (CA), Mikumi National Park (NP)), animal species, laboratory 244 
number, and cattle interaction status (+= interaction; -=no interaction) for the fecal  samples included in the present study. 245 

Sampling site Animal species Laboratory number ± Cattle interaction 

Ngorongoro CA Cattle N22 + 

Ngorongoro CA Cattle N23 + 

Ngorongoro CA Cattle N43 + 

Ngorongoro CA Cattle N54 + 

Ngorongoro CA Buffalo N21 + 

Ngorongoro CA Buffalo N58 + 

Ngorongoro CA Zebra N1 + 

Ngorongoro CA Zebra N5 + 

Mikumi NP Buffalo M3 - 

Mikumi NP Buffalo M13 - 

Mikumi NP Buffalo M15 - 

Mikumi NP Wildebeest M16 - 

246 

247 

248 

249 

250 

251 

252 
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Table 2 Resistance genes g-1 feces quantified in total DNA extracted from the following samples: Massai cattle and wildlife from Ngorongoro Conservational Area (N22, N23, N43,253 
N54, N21, N58, N1, N5) or wildlife from Mikumi National Park (M3, M13, M15, M16) in Tanzania. Dark grey sections=antibiotic resistance genes levels were over the assays’ limit of 254 
quantification. Unshaded numbers= resistance genes levels were over the assays’ limit of detection. 0 = no resistance genes detected. The samples with phenotypically resistant coliform 255 
bacteria are denoted with a letter, each representing their antibiotic group (A=Ampicillin, C=Cefotaxime, S=Sulphametizole,T=Tetracycline). 256 

 Genes 

Sample 

Gene copies g-1 feces 

tet(A) tet(B) tet(C) tet(M) tet(O) tet(W) ermB ermF sulI sulII blaSHV 

family 

blaCTX-M-1 

group 

blaCMY-2  vanA 16S 

rDNA 

Phenotypic 

resistance 

Cattle N22 0 0 0 2.57E+03 0 7.03E+04 0 1.27E+05 2.38E+03 0 0 0 2.25E+04 0 3.98E+09 A 

Cattle N23 0  0  0  0  0  2.66E+05 0 1.27E+04 5.49E+02 0 0 0 3.23E+03 0 6.47E+09 T 

Cattle N43 1.03E+04 0 0 0 6.29E+04 3.43E+05 0 1.09E+07 7.90E+04 2.42E+06 0 0 8.54E+03  0 2.01E+09 A 

Cattle N54 0 0 0 0 1.05E+04 1.58E+05 0 2.45E+04 2.46E+02 0 0 0 8.04E+03 0 1.91E+09 

Buffalo N21 0  0  0  0  0  3.63E+03  0 2.31E+04 1.36E+02 0 0 0 6.44E+03  0 1.09E+09 T, A, C 

Buffalo N58 0  0  0  0  0  1.76E+03  0 2.15E+04 4.23E+03 0 0 0 9.73E+03  0 2.02E+09 T, A 

Zebra N1 0 0 0 0 0 5.55E+03 0 0 1.51E+03 0 0 0 6.27E+03  0 8.34E+08 A 

Zebra N5 0  0  0  0  0 2.82E+03  0 8.17E+03 8.01E+02 0 0 0 7.69E+03  0 9.95E+08 T, A, C 

Buffalo M3 0 0 0 0 0 4.72E+04 0 0 8.05E+03 0  0 0 3.83E+03 0 1.38E+09 S, C 

Buffalo M13 0  0  0  0  0  0  0 0 0  0  0 0 0  0 6.72E+07 T, S, A 

Buffalo M15 0  0  0  0  0  3.87E+04  0 0 0  0  0 0 4.62E+03  0 5.01E+08 T, S, A 

WildebeestM16 0  0  0  0  0  5.93E+03  0 0 0  0  0 0 0  0 1.87E+08 T, S, A 
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