

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

The Requirements Editor RED

Störrle, Harald; Kucharek, Maciej

Published in:
Proceedings of the joint track "Tools", "Demos", and "Posters" of ECOOP, ECSA, and ECMFA, 2013

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Störrle, H., & Kucharek, M. (2014). The Requirements Editor RED. In Proceedings of the joint track "Tools",
"Demos", and "Posters" of ECOOP, ECSA, and ECMFA, 2013 (pp. 33-35). Technical University of Denmark.
http://orbit.dtu.dk/files/83225486/tr14_01_Storrle_H.pdf

https://orbit.dtu.dk/en/publications/2edec929-810f-4e5f-861a-f765f3247f44
http://orbit.dtu.dk/files/83225486/tr14_01_Storrle_H.pdf

The Requirements Editor RED

Harald Störrle, Maciej Kucharek

Department for Applied Mathematics and Computer Science
Technical University of Denmark

hsto@dtu.dk, kucharek.maciej@gmail.com

1 Motivation

The Requirements Editor (RED) has been conceived as a tool to support teach-
ing a major Requirements Engineering class at the Technical University of Den-
mark (DTU). The course covers a wide variety of techniques in a hands-on
fashion, from stakeholder analysis and goal modeling via interaction design and
classic textual requirements to UML models. The need of tool support is quite
obvious, but all the tools on the market covered only a small segment of these
techniques, used a different (and often inconsistent) terminology, and were hard
to customize. After several failed attempts to use pre-existing tools, we decided
to build our own. Since this was for a RE course, we did a thorough requirements
analysis up front, using the techniques taught in the course.

2 Goals, Constraints, Requirements

The primary goal of this project clearly is to support the course, in particular,
to help the students understand the course material. This would, indirectly, help
the teacher deliver a better course, and thus help both main stakeholders equally.
As a consequence, we demand that R1 all major topics of the course are covered,
R2that terminology is consistent with the course material, and R3 that students
should be be freed from mechanical tasks, leaving more time for the actual course
contents. Furthermore, since this is a tool that is supposed to be used by up to
70 students each year, it was necessary that R4 the tool would run on all major
platforms, with high degrees of R5 robustness and R6 usability. Finally, it was
clear on the outset that not all desirable features would be implementable in a
single increment, but instead, that many different students would be working on
it over a prolonged period of time, so that R7 maintainability was an important
quality.

3 Project History

Faced with these requirements, we decided to create RED using the Eclipse
Rich Client Platform (ERCP). At the time, Eclipse 3 (Indigo) was the most
recent version, so that was used. A team of two students set out in late 2011 to
create the tool as their joint MSc-thesis project. We created a meta-model of the

ElementRelationship

CommentList

Speci�cationElement

Goal

Vision

Stakeholder

Persona

Requirement

AcceptanceTest

Element

Glossary

GlossaryEntry

Group

Fig. 1. Excerpt of the meta-model of RED.

concepts in RED (see Fig. 1 for an incomplete overview), and deployed a first
version in September 2012.

Reactions to the first version of RED were mixed. While most students ac-
knowledged the need for tool-support, and many saw great potential in RED,
substantial shortcomings were also identified. First, RED had been tested mainly
on Windows machines, and some major bugs and instabilities on MACs and
some Linuxes showed only after a while. Second, RED had no facilities to sup-
port group work: the whole project is stored in one big file which conflicted
with the distributed and asynchronous working style of any teams in our course.
Third, the project was not structured in a way that students could easily con-
tribute to the tool development, fixing bugs or shortcomings on-the-fly. So we
have launched a re-engineering effort to address issues one and three, and new
thesis projects are launched to address issue two, and completing the feature list
to improve the usefulness of RED in the given context.

4 Architecture and Implementation

RED has been created using the latest Eclipse platform available at the time
(Eclipse 3.7 “Indigo”). The main rationale behind for using Eclipse is its proven
ability to create rich, cross-platform applications. Due to its plugin-architecture,
significant leverage through reuse was expected. We also expected beneficial ef-
fects towards maintainability and long-term development by adopting a popular
framework.

RED has been organized in a set of modules, each providing specific bundles
of features: the Core module provides foundational contributions such as the
main layout of the application and the meta-model. It supports a number of
feature-modules, such as Glossary, SpecificationElements and Help. We have also

reused a number of third-party plug-ins, including EPF RichText and AgileGrid,
that increased the code reuse ratio.

5 Features: done, doing, to do

RED offers currently the editors and features shown in the Fig. 2 below. Most
requirements have been addressed completely or largely; some shortcomings have
been identified with regards to internal software quality (which reduces main-
tainability), one major missing features (group-work support), and a number of
minor issues regarding functionality and usability.

Current work focuses on providing functions for comparing, differencing, and
merging RED-files to support group work. We expect this project to complete in
the summer of 2013. Besides this, there is ongoing work to improve the on-line
help function, provide a manual, and turn the project into a proper open source
project to attract more contributions.

Future work will focus on visual editors for (1) goal models, and (2) mod-
els of the structure, boundaries, and collaborations of organizations and systems
(”context editor”); template-driven editors to allow, e.g., to express requirements
compliant with the Common Criteria and some variants of ”agile” requirements
(i.e., user stories), and an editor for traditional table-structured use cases, in-
cluding support for project effort estimation with use case points.

Features
- Administrative & tracing information

for all elements
- Flexible locking (write/comment/read)
- HTML-Report Generation
- Weaving of Model Fragments
- On-line help and serch functions
- Full RTF-editor for all input texts
- Enactment of scenarios

Simple Editors
- Vision
- Stakeholders
- Goals
- Glossary
- Review Remarks
- Model Structure
- Weaving Rel.s
- Scenarios

Complex Editors
- Personas & Scenarios
 * Cartoon-style
 * Prose-style
 * Structured text
- Requirements
 * Prose
 * Test cases
 * Model Fragments

Fig. 2. Overview over the features offered in the current version of RED.

