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Summary

Magnetic resonance imaging (MRI) is the de facto modality in neuroimaging
studies, due to its superior image contrast in soft tissue. These studies often
employ automated software pipelines that segments the image into structures
and tissue. This reduces the time needed for analysis as well as statistical bias
that may arise due to disagreements in delineations made by human experts.
One such pipeline is Freesurfer.

This thesis presents results from the intervention study “Preserving cognition,
quality of life, physical health and functional ability in Alzheimer’s disease:
the effect of physical exercise” (ADEX), where longitudinal Freesurfer analysis
was used to obtain segmentations of the hippocampal subfields and cortical
regions in a subgroup of participants before and after a four-month exercise
period. The participants performed moderate-to-high aerobic exercise for one
hour, three times per week. The study hypothesized that the intervention would
lead to reduced loss of tissue in the hippocampus and cortical regions, and
that volumetric changes over time would correlate with cognitive performance
measures. It was not possible to measure any effects in the hippocampus or
cortical regions due to the intervention. However, it was found that exercise load
(attendance and training intensity) correlated with changes in the hippocampus
and in frontal and cingulate cortical thickness. Furthermore, changes in frontal
and cingulate cortical thickness were found to correlate with changes in several
cognitive performance measures, including mental speed, attention and verbal
fluency.

MRI suffers from an image artifact often referred to as the “bias field”. This
effect complicates automatized analysis of the images. For this reason, bias field
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correction is typical an early preprocessing step in many pipelines. Freesurfer
currently employs the popular N3 bias field correction algorithm early in the
pipeline, to solve this problem.

In this thesis, the reader is introduced to generative models for bias field cor-
rection. It is further shown how N3, which has traditionally been described as
a “histogram sharpening” method, actually employs an underlying generative
model, and that the bias field is estimated using an algorithm that is identical
to generalized expectation maximization, but relies on heuristic parameter up-
dates. The thesis progresses to present a new generative model for longitudinal
correction of the bias field, as well as a model that does not require brain mask-
ing or probabilistic, anatomical atlases in order to perform well. Finally, the
thesis presents the realization of these models in the software package “Intensity
Inhomogeneity Correction”, which will be made publicly available.



Resume

Magnetic resonance imaging (MRI) er den dominante billedmodalitet i neu-
roimaging studier givet dens overlegne billedkontrast i blødt væv. Disse studier
benytter ofte automatiserede software pipelines som segmenterer billedet i struk-
turer og væv. Dette reducerer det nødvendige tidsforbrug i analysen s̊avel som
statistisk bias der m̊atte opst̊a p̊a grund af uoverensstemmelser i manuelt ind-
tegnede segmenteringer, lavet af menneskelige eksperter. Én s̊adan pipeline er
Freesurfer.

Denne afhandling omhandler delresultater fra interventionsstudiet “Effekten af
fysisk træning p̊a livskvalitet, fysisk helbred og funktionsevne hos patienter med
Alzheimers sygdom” (ADEX). Longitudinel Freesurfer analyse blev anvendt til
at lave segmenteringer af hippocampus samt kortikale regioner i en undergruppe
af deltagere, før og efter en træningsperiode p̊a 4 m̊aneder. Deltagerne udførte
mellem-til-høj intensitet aerob træning 3 gange ugentligt af en times varighed.
Studiets hypotese var, at interventionen ville medføre mindre vævstab i hip-
pocampus og kortikale regioner, samt at volumetriske ændringer over tid ville
korrelere med ændringer i kognitive m̊al. Det var ikke muligt at p̊avise effekt
af interventionen p̊a hippocampus eller kortikale volumenm̊al. Motionsmængde
(fremmøde samt intensitet) blev fundet at korrelere med ændringer i hippocam-
pus volumen samt med tykkelse af frontal kortex og gyrus cingularis. Ydermere
korrelerede ændringer i frontal kortex og gyrus cingularis tykkelse med æn-
dringer i forskellige kognitive m̊al, herunder mental hastighed, opmærksomhed
og ordmobilisering.

MRI lider under en billedartifakt ofte kaldet “biasfeltet”. Denne artifakt kom-
plicerer automatiseret analyse af billederne. Af denne grund er bias felt korrek-
tion ofte et tidligt preprocesserings skridt i mange pipelines. Freesurfer benytter
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p̊a nuværende tidspunkt den populære N3 bias felt korrektionsmetode tidligt i
sin pipeline for at løse dette problem.

I denne afhanding introduceres læseren til generative modeller af bias felt kor-
rektion. Det vises yderligere hvordan N3, som traditionelt er blevet beskrevet
som en “histogram skærpende” metode, faktisk bygger p̊a en underliggende
generativ model, og at bias feltet estimeres med en algoritme som er lig gen-
eraliseret expectation maximization, men hvor der bruges heuristiske parame-
ter opdateringer. Afhandlingen fortsætter med at præsentere en ny generativ
model af longitudinal korrektion af bias feltet, s̊avel som en model der ikke er
afhængig af hjerne masker eller probabilistiske, anatomiske atlaser for at opn̊a
gode resultater. Endeligt præsenterer afhandlingen realiseringen af disse mod-
eller i software pakken “Intensity Inhomogeneity Correction”, som vil blive gjort
offentligt tilgængelig.



Preface

In 2011 I finished my master studies. At this point in time I had obtained a
highly specialized background within computer graphics, physically-based rend-
ing of images and software engineering. With no medical background and only
very limited proficiency within mathematical modeling and multivariate statis-
tics, it may therefore seem odd that I chose a PhD study that would bring me to
work within these areas. In particular, fields of research covering Bayesian mod-
eling, neuroimaging and clinical MRI studies. However, an interest in learning
new things drove me forward. The study proved a challenge, but it was ulti-
mately a mountain that I was able to climb.

Kongens Lyngby, Denmark, August 2015

Christian Thode Larsen
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Chapter 1

Introduction

This thesis serves as an introduction into a number of topics which were all
central during the performed PhD study. The introduction provides the reader
a) some insight into the background and theory underlying the three, included
papers, should he not already be familiar with the topics, and b) an overview
of the theory that the author had to familiarize himself with throughout. The
topics covered are as a whole a somewhat interesting mix, hence the reason for
the thesis title, which aims to capture how it was necessary to “build a bridge”
between two seemingly different areas of research: one focusing on practical
application of tools for image analysis, and the other on their development.

At the center of the study is magnetic resonance imaging (MRI), as the analysis
of images produced by this technique was explored both from a practical as
well as a theoretical point view. As such, chapter 2 provides a basic insight into
MRI, including the underlying theoretical basics for the technique, a description
of how a broad range of images can be acquired using the technique and finally
some technical challenges associated with the acquisition.

One part of the PhD study was dedicated to longitudinal analysis of MR brain
images acquired under one branch of the national research project “Preserving
cognition, quality of life, physical health and functional ability in Alzheimer’s
disease: the effect of physical exercise” (ADEX). This analysis was performed
using a fairly elaborate processing pipeline “Freesurfer”. The work under this
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project were carried out at the Danish Research Center for Magnetic Resonance
(DRCMR) with co-supervisor Ellen Garde, MD. PhD. and project leader and
professor Hartwig Siebner, MD. PhD. Furthermore, the ADEX study involved
many collaborators, in particular the Memory Disorders Research Group, Dan-
ish Dementia Research Center, Department of Neurology, Copenhagen as well
as the Department of Applied Mathematics and Computer Science, Technical
University of Denmark (DTU). This work is covered in chapter 3 which provides
an introduction to paper A.

The other part of the PhD study was dedicated to the development of methods
for bias field correction, employing Bayesian (generative) models. Bias field
correction is a very important ingredient in most analyses of MRI, and it is one
of the first processing steps in the Freesurfer pipeline. This work was carried
out at DTU with main supervisor and associate professor Koen Van Leemput,
PhD. and in collaboration with the Laboratory for Computational Neuroimaging
at the Athinoula Martinos Center, Massachusetts General Hospital, Harvard
University, Boston, USA1 under the supervision of J. Eugenio Iglesias. This
work is covered in chapter 5, and provides an introduction to papers B and C.

The glue that binds these topics together then is the analysis itself: in order
to motivate it you need a concrete study, in this case the effect of exercise in
patients with Alzheimer’s disease. And to realize it you need the right toolbox,
in this case Freesurfer and bias field correction. This means that practical
studies rely on the application of usable tools for analysis, which motivates
their development. Conversely, by developing the tools we improve the toolbox,
which may allow new studies to be done which were previously not technically
possible, or old studies to be revisited because the tools became better and
more accurate. As such, these two topics are intertwined (development and
application), and one cannot (reasonably) exist without the other.

In the case of this study, theoretical as well as practical development of the tool-
box for image analysis was the realization of computational models for bias field
correction in a software package named “Intensity Inhomogeneity Correction”
(IIC).

Chapters 6 and 7 concludes this thesis by discussing potential for future work, as
well as observations made throughout the study that was not previously covered
in other chapters.

1Including six months of collaboration on-site.



Chapter 2

Magnetic Resonance Imaging

This chapter provides the reader with a brief introduction to MRI. Section 2.1
discusses the working principles behind MRI, and Section 2.2 how the technology
can be used to generate images of very different properties. Given that the
focus of this thesis is analysis of MR images, technicalities such as elaborate MR
physics, details of MR pulse sequences and associated hardware are not covered.
Section 2.1 and 2.2 are generally based on relevant explanations of MRI given
in the note “Introduction to Magnetic Resonance Imaging Techniques” by Lars
G. Hanson. The final Section 2.3 of this chapter describes an artifact inherent
in all MR images, which typically needs to be addressed in some way in order
for automated methods to process the MR data successfully.

2.1 Working Principles

We start this introduction to MRI by considering the main, static magnetic
field in the MR scanner. We refer to this field henceforth as the B0 field. The
strength of the field (magnitude of B0) has unit Tesla (T). The strength of the
B0 field is commonly referred to simply as the “field strength”, e.g., 3T or 7T
on modern scanners. Figure 2.1 shows a modern 7T scanner from Siemens.1

1Illustration from http://www.healthcare.siemens.com

http://www.healthcare.siemens.com
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Figure 2.1: Siemens Magnetom 7T MRI Scanner.

The bearing principle in MRI is that hydrogen nuclei (protons) possess spin
(rotation), which makes them magnetic along the axis they spin around. When
the nuclei are placed within the B0 field, they will precess around it. Precession
is analogous to the rotation of a pendulum around a vertical axis. The precession
frequency of the nuclei is given by the Larmor equation

f = γB0, (2.1)

where γ is a constant (42MHz/T for hydrogen protons). The net-magnetization
M of the nuclei similarly precess around theB0 field until it is aligned. We refer
to this stage as equilibrium and the process as relaxation. The net-magnetization
moves towards equilibrium due to interactions between nuclei at near-collisions.
A simple diagram illustrating precession has been shown in Figure 2.2.2

While the nuclei precess, they emit radio waves (electromagnetic fields that
change in time) with the same frequency as the precession. We refer to this
as the resonance frequency. As governed by the Larmor equation, the higher
the field strength of the scanner is, the higher the frequency and consequent
signal. At full relaxation, the nuclei no longer emit radio waves. Consequently,
to change, preserve or restore precession of the nuclei in order to measure a
signal (continuously), they must be pushed out of equilibrium again. This is
done by applying a second magnetic field by means of transmission coils. We
refer to this field as the B1 field and the process as excitation.

Excitation can be considered intuitively by using a compass as an example:
when the needle (comparable to a single hydrogen proton) has aligned with the
north-direction (the earth’s magnetic field), it is possible to “push” the needle
by placing a magnet close to it. When removed from its vicinity, the needle will

2Illustrations from “Introduction to Magnetic Resonance Imaging Techniques, Lars G.
Hanson (a) and http://i.stack.imgur.com/wJtmZ.jpg (b)

http://i.stack.imgur.com/wJtmZ.jpg
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(a) (b)

Figure 2.2: a) First illustration: the magnetization M of a single nucleus that
precesses around the magnetic, static field B0. b) Three illustrations showing
how the precession of several nuclei leads to a net magnetization M that aligns
with the B0 field at equilibrium.

start to align with the earths magnetic field again. By repeating this process,
it is possible to make the needle oscillate around the north direction. Another
example is that of pushing a person on a swing. By applying energy (pushing)
with the same frequency as the swing, it will swing harder. Conversely, if the
energy is not applied with the same frequency, the effect will be much less
effective. In this example, gravity would correspond to the B0 field.

2.2 Obtaining Images

The magnetic field emitted during the precession of the nuclei, given their net-
magnetization M , can be measured with proper equipment, such as the receive
coils in the MR scanner. Different types of tissue, e.g., white matter (WM),
gray matter (GM) or cerebrospinal fluid (CSF) in the brain, have different con-
sistency, which affects how freely the hydrogen nuclei are allowed to move. As
such, the time it takes for the net-magnetization in each tissue to relax differ.
The relaxation of the nuclei for a given tissue can be considered in terms of
longitudinal magnetization Mz, and transversal magnetization Mxy in a plane
perpendicular to the longitudinal magnetization. Each of these relax on dif-
ferent time scales. Mz relaxes linearly on a timescale referred to as T1. The
transversal magnetization Mxy relaxes exponentially until it reaches M0 on a
timescale referred to as T2.

Applying a pulse sequence (a collection of RF and gradient pulses) is how the
B1 field is created in order to excite the nuclei. Each pulse sequence is composed
by a number of RF and gradient pulses lasting for some duration, in a particular



6 Magnetic Resonance Imaging

Figure 2.3: Images obtained using A) T1-weighed, B) T2-weighed and C) FLAIR
sequences respectively. White matter appear bright in A) but dark in B) and
somewhere in between in C). Conversely, CSF appears dark in A), very bright
in B) and has been fully suppressed in C). The hyperintense blob in B and C
(hypointense in A) is due to a stroke.

order and with some time between them. The composition of the pulse sequence
consequently allows one to manipulate how the nuclei relax along the transversal
and longitudinal axis, i.e., how the different time scales in the image are weighed.
Given the many ways a pulse sequence can be configured, a broad range of
images with intensity and contrast properties can be created, such as

• T1-weighed images that has enhanced contrast with respect to different
tissue types, with WM being very bright, GM intermediary and CSF dark.

• T2-weighed images where the intensity of fluid appears very bright and
tissue is relatively dark.

• FLuid-Attenuated Inversion Recovery (FLAIR) images has fluid nulled
and preserves signal in WM and GM, resulting in intensities falling some-
where between bright and dark.

Figure 2.33 illustrates a T1-weighed, a T2-weighed and FLAIR image respec-
tively.

3http://www.biomedcentral.com/content/figures/1471-2377-11-49-2-l.jpg

http://www.biomedcentral.com/content/figures/1471-2377-11-49-2-l.jpg
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(a) (b) (c)

Figure 2.4: The difference between the effect of the bias field on images recorded
at (a) 1.5T (b) 3T and (c) 7T respectively.

2.3 The Bias Field Artifact

MRI suffers from a particular imaging artifact commonly referred to as “inten-
sity inhomogeneity” or “bias field”, which appears as a low-frequent “noise” in
the image. More specifically, the voxels in the image appear brighter or darker
than they’re supposed to, an effect that sometimes resembles that of a flash-
light. While MRI is actually affected by many bias effects, here we consider only
those that create this “intensity” bias, which is generally assumed to be multi-
plicative within a tissue. This assumption is made in most bias field correction
methods in order to model the bias field effect, which will be elaborated upon
in chapter 5.

The bias field artifact is present at all magnetic field strengths, and is caused
by inhomogeneities in transmit field efficiency and receive field sensitivity. As
the field strength increases (e.g., 7T), so does the effects due to transmit field
efficiency which is dictated by the object being scanned, specifically its shape,
position and orientation, and more generally its permeability and dielectric prop-
erties (the degree to which the spins can be excited). Conversely, the effects due
to the receive field depend more on the (array of) coils being used for reception.
Figure 2.4 illustrates the difference between the effect of the bias field on images
recorded using a 1.5T, 3T and 7T scanner respectively.

Since intensity inhomogeneity negatively impacts any computerized analysis of
MRI data, its correction is highly important. Effects that cannot be corrected
using shimming techniques[Liang and Lauterbur 2000; Chen et al. 2004], need
to be corrected post image acquisition, and methods for doing this are often
applied as one of the first steps in MRI analysis pipelines. One example is the
popular N3 algorithm [Sled et al. 1998] employed in Freesurfer [Fischl et al.
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(a) (b) (c) (d)

Figure 2.5: An illustration of the bias field artifact in a 7T image. From left
to right: a) the uncorrected data, b) the corrected data using the popular N3
bias field correction algorithm, c) estimate of the bias field in gray scale and d)
with heap map coloring.. White matter and gray matter tissues appear much
more homogeneous in the corrected image, with notable improvements in the
temporal lopes, in particular.

2002]. Figure 2.5 shows the effect of the bias field on an image obtained on a
7T scanner, an estimate of the bias field using the popular N3 algorithm and
the corresponding corrected image.

It should be noted that the inhomogeneity resulting from the transmit field is
not multiplicative, although the effects of modeling it as such may be negligible
at field strengths of 1.5T and even 3T, at least for the purpose of segmenta-
tion [Styner and Van Leemput 2004]. MR imaging are affected by many other
artifacts, all of which are discussed in e.g., [Vovk et al. 2007]. More relevant
causes and underlying physics for the bias field effect we are concerned with
here, are discussed in e.g., [Collins et al. 2005]. Furthermore, how the effect
worsens at field strengths of 7T and above are discussed in e.g., [de Moortele
et al. 2005; Wrede et al. 2012].

A Note on Contrast Bias

Inhomogeneities in the transmit field can also cause “contrast” bias, in particu-
lar at high field strengths ≥ 7T, which makes e.g., white and gray matter voxels
in brain MRI isointense (voxel intensities appear similar). Contrast bias is a
problem which cannot be corrected using a multiplicative bias field model, but
can to some extent be solved by using a proper MR sequence for image acqui-
sition. The problem is discussed in greater detail in [Fujimoto et al. 2014]. As
such, an interesting challenge in terms of collaboration between MR physicists
and software engineers is to “solve” the bias field problem by devising pulse se-
quences that minimize contrast bias, and then correcting for the intensity bias
post image acquisition.



Chapter 3

The ADEX MRI Study and
Freesurfer

This chapter describes the ADEX study, its motivation, design and findings, as
well as the tools used to successfully analyze the ADEX MRI data. Particular
emphasis is put on how configuration and use of these tools may have significant
consequences for study outcomes.

Section 3.1 provides the reader with a brief introduction to AD, including its
symptoms, progression, effects on patient, family and caretakers and finally a
current theory on its cause (which is unknown). Section 3.2 presents the study
“Preserving cognition, quality of life, physical health and functional ability in
Alzheimer’s disease: the effect of physical exercise” (ADEX). Most details cov-
ered, such as the selection and screening of patients, randomization procedures
and cognitive and physical testing were not executed in the MRI part of the
study (which is the focus of this thesis). Still, some elaboration is necessary to
present a more complete overview of ADEX and the associated MRI analyses.
In Section 3.3 the brain analysis pipeline Freesurfer, which was used to analyze
the ADEX MRI data, is described. Section 3.4 presents the contributions made
in this thesis within the ADEX MRI study, and Section 3.5 more generally dis-
cusses the study, the data analysis and findings, and other methods of analysis
that could be of interest. The final section describes and exemplifies the im-
portance of proper bias field correction. This serves to motivate the following
chapter 5 on generative models for bias field correction.
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Figure 3.1: A comparison between a healthy brain (left) and a diseased AD
brain (right). Key identifying features are a shrinking of the hippocampus,
severe thinning of the cerebral cortex and enlarged ventricles.

3.1 Alzheimer’s Disease

AD is one type of dementia (cognitive decline over time, leading to impaired
activities in daily life). It is a neuro-degenerative disease, which leads to pro-
gressive atrophy in the brain (tissue “wasting away” due to cell degeneration).
MR imaging studies have shown that atrophy can be observed in the anterior
hippocampus already at a diagnosis of mild cognitive impairment (MCI), sev-
eral years prior to full AD diagnosis. As the disease progresses, shrinkage of
the hippocampus becomes more severe, and atrophy can be observed in other
regions of the brain, in particular the temporal and parietal lobes at full AD
diagnosis[Whitwell et al. 2007]. Other visual characteristics of this brain degen-
eration are general cortical thinning and enlarged ventricles. Figure 3.1 shows
the main differences between a healthy and AD affected brain.1

The hippocampus plays an important role in short and long term memory, and
also spatial orientation. Given the early involvement of the hippocampus in AD,
these functions are progressively impaired over time, and in particular loss of
episodic memory is one of the symptoms first observed [Burns and Iliffe 2009].
As AD progresses, other symptoms may start to emerge, such as rapid mood
changes, behavioral and motivational issues and a failure to take proper care
of one-self. All of these factors contribute to make activities in daily life very
difficult for the AD patient. Furthermore, great strain is put on the people

1https://upload.wikimedia.org/wikipedia/commons/a/a5/Alzheimer’s_disease_

brain_comparison

https://upload.wikimedia.org/wikipedia/commons/a/a5/Alzheimer's_disease_brain_comparison
https://upload.wikimedia.org/wikipedia/commons/a/a5/Alzheimer's_disease_brain_comparison
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Figure 3.2: An illustration of amyloid plague in the brain of a patient with AD.

closest to the patient, including family, friends and caregivers.

The cause of AD is not well understood, and it has no cure. Current phar-
macological treatments of AD exist, but they are symptomatic and at best
may slow the rate of decline[Castellani and Perry 2012]. A number of theories
for the cause of AD have been presented over time. The prevailing theory in-
volves beta-amyloid (Aβ) peptides from the amyloid precursor protein (APP)
as a primary cause of neuro-denegeration, due to their involvement in amyloid
plagues [Hardy and Allsop 1991], which can be observed in AD on a microscopic
level. An illustration of an amyloid plague has been shown in Figure 3.22. The
theory on the involvement of Aβ was updated in 2009 to suggest that the neuro-
degenerative effects are due to a pruning of neuronal brain connections being
triggered by processes related to aging [Nikolaev et al. 2009]. This process is
normally seen in early life while the brain rapidly grows and is controlled by an-
other component of APP (N-APP). Here, Aβ only plays a complementary role,
where the deposition of Aβ may be a triggering factor, whereas other changes
drives the neuro-degeneration. This theory only describes one of several possible
mechanisms; the actual process of neuro-degeneration may be different or more
involved.

Today (2015), around 30 million people have been diagnosed with AD, which
constitutes 60-70% of the patients diagnosed with dementia.3 This makes AD
very costly to society, and together with the lack of a cure and pharmacological
treatment, these factors illustrate why studies into finding alternative ways of
improving activities of daily life in patients with AD, at least for a while, are so
important. Exercise has been suggested as one such way.

2http://library.med.utah.edu/WebPath/jpeg5/CNS090.jpg.
3http://www.who.int/mediacentre/factsheets/fs362/en/ (Dementia Fact Sheet N◦362,

World Health Organization).

http://library.med.utah.edu/WebPath/jpeg5/CNS090.jpg .
http://www.who.int/mediacentre/factsheets/fs362/en/
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3.2 The Effects of Exercise in AD

The ADEX study is to our knowledge the first of its kind to explore the ef-
fects of moderate-to-high aerobic exercise in patients with mild-to-moderate
AD. ADEX was motivated by recent studies on the effects of exercise in healthy
elderly, which suggests effects such as improved cognition [Vreugdenhil et al.
2012; de Andrade et al. 2013] and stimulated brain growth [Colcombe et al.
2006], including increases in hippocampal volume [Erickson et al. 2011] and
pre-frontal and cingulate cortical volume [Ruscheweyh et al. 2011].

For this purpose, approximately two-hundred patients with mild AD were re-
cruited from eight memory clinics4 in Denmark. A non-exhaustive list of in-
clusion criteria was that the participants had a Mini Mental State Examination
(MMSE) score of at least 20, were 50-90 years of age, had regular caregiving and
were in general good health with functional sight and hearing. Conversely, risk
factors that could potentially complicate physical activity, such as neurological,
medical or psychiatric diseases, or alternatively an already high level of aerobic
exercise, all lead to exclusion from the study.

The recruited participants were then randomized into a control and intervention
group following a single-blind, randomized procedure. Cognition of all partici-
pants was assessed using a number of tests at baseline:

• “Symbol Digits Modalities Test” (SDMT): testing mental speed and at-
tention,

• verbal fluency: assessing the number of words (semantic or phonetic) said
from a given category over a fixed time interval,

• “Alzheimer’s Disease Assessment Scale – Cognitive Subscale” (ADAS-
Cog): testing verbal memory (immediately and delayed),

• “Stroop Color and Word incongruent score” (stroop): testing for interfer-
ence in the reaction time when performing a task,

• ”Mini Mental State Examination (MMSE)”: global cognitive function, in-
clusion/exclusion criteria.

The intervention group proceeded to perform sixty-minute exercise sessions
three times weekly for sixteen weeks while the control received usual care.
The sixty minute program was composed of aerobic exercise with a number of

4Copenhagen, Slagelse, Roskilde, Odense, Aalborg, Aarhus, Svendborg and Glostrup.
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Figure 3.3: A number of tools available for exercise during the aerobic exercise
sessions each week.

strength building exercises. Furthermore, several exercises assessing both phys-
ical and functional performance were performed at baseline and at a 16-week
follow-up (non-exhaustive list):

• 6-min Astrand Cycle Ergometer test: assessing maximal oxygen intake
and average heartrate,

• Timed Up and Go (TUG),

• chair stand,

• Timed 10 minute walk, and timed 400 meter walk test,

• Dual task performance measured by performing the 10 minute walk test
and respectively naming the months and counting from 50, backwards.

Figure 3.3 illustrates some of the exercise equipment that the participants had
available for aerobic training during their exercise sessions each week.

At a sixteen week follow-up, both groups received cognitive testing again. The
control group then proceeded to perform the exercise program for four weeks,
whereas the intervention group received treatment as usual. Finally, both groups
received a number of tests at a second follow-up at twenty weeks. The full flow
starting from recruitment and screening and ending at the second follow-up has
been illustrated in Figure 3.4.

The trial went on for five consecutive rounds, running from January 2012 until
June 2014. During each round, all participants from Rigshospitalet, Roskilde
and Odense5 were invited to receive MR scans at Hvidovre Hospital twice, once
at baseline, and once again at follow-up at sixteen weeks. The full details of

5Odense only participated in the MR study during round four and five.
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Figure 3.4: The ADEX study flow for a single round, starting with recruitment
and screening and ending at the second follow-up.

the exercise study and its design were previously described in [Hoffmann et al.
2013].

Whereas the main ADEX study focused on the effects of exercise on cogni-
tion and physical performance, the MRI substudy focused on measuring brain
changes in a subpopulation from the main study. For this purpose, Freesurfer
[Fischl et al. 2002; Fischl 2012; Reuter et al. 2012] was employed, as it is an
excellent tool to obtain measures of both cortical thickness and volume, as well
as subcortical volume of e.g., the hippocampal subfields [Van Leemput et al.
2009].
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3.3 Freesurfer - A Tool for Brain Morphometry

The term morphometry refers to “measurement of shape”. Brain morphometry
is correspondingly concerned with measuring volume and/or structural changes
in the brain. The Freesurfer (FS) processing pipeline measures shape by seg-
menting the brain regions of interest (ROI), such as WM, GM and CSF, as well
as underlying subcortical structures such as the hippocampus. Furthermore,
WM and pial surfaces are also computed, and the cortex is finally parcellated6

into regions, e.g., the sulci or gyri of the frontal cortex using some predefined
regional, cortical atlas [Desikan et al. 2006; Destrieux et al. 2010].

The volume of these are then measured, i.e., by counting voxels, and poten-
tially weighing these given probabilities of belonging to different structures, i.e.,
due to partial volume effects. One example of this is FS segmentation of the
hippocampal subfields, as the hippocampus in particular is severely affected by
partial volume effects. Using the obtained delineations of the WM and pial
surfaces, cortical thickness can also be computed. As such, Freesurfer yields a
wide range of results that are very easily interpretable from a morphometrical
point of view. These can be used to do interesting statistics, such as comparing
if the average size of the hippocampus differs between two groups.

3.3.1 The Cross-sectional Pipeline

Cross-sectional (single time point analysis) FS can be broken down into three
stages, each of which are again composed by a number of steps. Full FS pro-
cessing of a single time point is referred to as the cross. An overview of the
stages and the most important steps in each will be presented in the following7.
The pipeline has been illustrated by Figure 3.5.

Several of the FS steps work on an assumption of WM having a mean intensity
around 110 (GM is generally assumed to be around 75). Given that FS needs
to facilitate segmentation of a vast range of different T1-weighed images due to
i.e., scanners made by different manufacturers (e.g., Siemens, Philips, General
Electrics), of different models and field strengths (to date, FS supports 1.5T and
3T ), and differences in T1-weighed sequencing, FS performs several intensity
normalization steps throughout.

6which is a different way of expressing segmentation.
7Based on the current stable Freesurfer version 5.3, which is fully described at https:

//surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV5.3.

https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV5.3
https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV5.3


16 The ADEX MRI Study and Freesurfer

Figure 3.5: The Freesurfer 5.3 pipeline and its three stages, including the un-
derlying major steps.

Stage 1 - Preparing the Data

This stage is concerned with preparing the data for segmentation. It involves
performing motion correction (if several scans are available of the same subject)
and conforming the data to 256× 256× 256 isotropic 1 mm3 voxels. The data
is then bias field corrected using the N3 algorithm and skull-stripped using the
watershed algorithm (which unless disabled, involves performing a registration
to a brain template with skull in Talairach space to guide the skullstripping)8.

Stage 2 - Computing Segmentations and Surfaces

In stage 2, the first step computes a transformation to a template space con-
taining a probabilistic atlas over subcortical structures. The intensity of WM
is then normalized using a number of predetermined WM control points in the
atlas space. Following this, the initial registration is used to initialize a second
one using the normalized data as input. A number of preparation steps are then
run (e.g., removal of neck), and the data is finally segmented into subcortical
structures using a Bayesian approach (generative model). The data is then nor-
malized a second time using the previous normalization as input9, and finally a
segmentation of WM is computed10.

After subcortical and WM segmentation, a filled WM volume is computed,
which is used to initialize tessellation (generating a triangular mesh) of the WM
segmentation. The mesh is then smoothed and inflated, given that the cortex is
assumed to behave like a piece of paper which has been curled together, in order
to resemble a brain. These assumptions are key in simplifying the computational
analysis of surfaces and associated steps.

8Brainmask editing takes place here.
9Manual control point insertion takes place prior to this normalization

10Manual WM editing takes place after this step.
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Topological errors (e.g., holes or triangles that cross each other) are then fixed
using a number of steps and the final, corrected mesh is used to compute the
final white matter surface, which is again smoothed and inflated in preparation
for stage 3.

Stage 3 - Parcellating the Pial Surface and Computing Morphometrics

The already inflated surface is further inflated to resemble a sphere. This step
is a prerequisite for the following registration to a cortical atlas space. Cortical
regions following the Desikan-Killiany and Destrieux atlases are then mapped
onto the surface. Finally, the pial surface itself is generated, and a broad range
of morphomometrics are calculated, such as volume for subcortical structures
and cortical, regional volume and thickness.

3.3.2 Longitudinal Analysis

FS also supports longitudinal analysis of several time points of the same sub-
ject. This is essentially an extension of the cross-sectional pipeline, where cross-
sectionally processed time points are used to generate a common subject specific
template, also commonly referred to as the base. All time point images are it-
eratively co-registered via rigid transformations to a voxel-wise median image,
creating an unbiased subject reference space and template that represents the
average subject anatomy across time [Reuter et al. 2010; Reuter et al. 2012]

The subject template image is then processed mainly with the regular FS
pipeline, to localize and estimate average subject anatomy, which is then used
for a common initialization of the subsequent processing (fine-tuning) of the
individual time points [Reuter et al. 2012]. This common initialization greatly
removes variability in measurements, such as the white matter segmentations or
cortical surface construction, and significantly increases measurement reliability.
Each of these final runs in each time points are referred to as the long.

The longitudinal approach has the advantage that bias due to asymmetry in the
registration is avoided, as all timepoint analyses are performed within a common
space of reference (the template), rather than by registering everything to the
baseline. Consequences of processing and interpolation bias were previously
discussed in e.g., [Fox et al. 2011; Thompson and Holland 2011]. An additional
advantage of using a subject specific template for initialization is that manual
editing (where necessary) can often be performed on the template image, rather
in all or a selection of individual time points.
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3.3.3 Editing

A significant part of the work done throughout this PhD study revolved around
collaborating with as well as supervising two experienced readers at DRCMR
for the purpose of using FS (editing) and Freeview (the FS inspection and
editing software interface). This in turn required first formalizing a training
environment (composed by a few of the initial ADEX scans), where both readers
practiced FS editing before actual work began on the whole dataset. Throughout
the ADEX project, multiple discussions and supervising sessions where held in
order to help guide both readers in how to handle FS editing given particular
problematic segmentations of some ADEX scans, which proved both difficult
and time consuming due to the quality of the data.

This section describes the three manual editing operations that may be necessary
in order to obtain proper subcortical segmentations as well as delineations of
the pial and WM surfaces. All resources, including more detailed descriptions
of the editing as well as the included illustrations, are all available online on the
FS wiki11.

Brainmask Editing

In cases of dura or skull that borders brain tissue without separating voxels (i.e.,
containing CSF), FS may fail to segment the pial surface correctly. This results
in the pial surface being grown into the dura or skull. This error is corrected
by editing the brainmask, which is effectively how FS limits how far the pial
surface can be grown.

After editing the brainmask using an overlay of pial and WM surfaces as a
guideline, and removing voxels that were incorrectly classified as cortex, FS can
be rerun. At this point, the pial surface will be properly aligned. Often, it
is not necessary to remove all of the ’offending’ voxels, and FS delineates the
surfaces correctly after just a few voxels have been removed. The process has
been illustrated in Figure 3.6.

Control Point Insertion

In some cases FS fails to segment the WM properly, and barring problematic
data due to e.g., lesions, this is typically a result of non-optimal normalization.

11https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/

FreeviewWorkingWithData/FreeviewEditingaRecon

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewWorkingWithData/FreeviewEditingaRecon
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewWorkingWithData/FreeviewEditingaRecon
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(a) (b)

Figure 3.6: The pial surface (red outline) has not been delineated properly be-
cause bordering skull/dura leads to neighboring voxels with similar intensities,
leading to error in segmentation of voxels. By editing the brainmask and rerun-
ning FS from that stage, the pial surface aligns itself nicely. a) Before editing
the brainmask, b) after FS processing.

The solution is to insert a number of control points (CP) in voxels of WM in
the problematic region. The intensities in the voxels where CP’s where inserted
helps to steer the overall normalization, and often the segmentation will be more
accurate after processing the data again.

There are cases where CP insertion will result in a failure to improve normal-
ization and the following segmentations. One, if CP’s are inserted in GM, these
voxels will be considered WM and the contrast betwen the two tissue types
will be washed away after normalization, effectively ruining the following seg-
mentations. Two, if contrast is already bad, due to e.g., severe lesions, FS will
already have a hard time to normalize the data, which means CP insertion will
not help. The reason is that the problematic voxels look like GM voxels due to
their low intensity, even though the human eye will safely classify them as WM.
CP insertion has been illustrated in Figure 3.7.

White Matter Segmentation

Lesions can be particular problematic for FS, because they sometimes resem-
ble GM in T1-weighted images. This often results in subcortical voxels being
segmented as cortex, leading to WM and even pial surface delineations deep
within WM. The problem has been illustrated in Figure 3.8. The solution is to
fill these voxels in the WM segmentation, effectively making them appear as if
they are WM. Of course, this is not correct biologically, but since FS does not
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(a) (b) (c)

Figure 3.7: WM intensities have not been properly normalized, which results in
a WM surface (blue outline) that is inaccurately delineated. One typical cause
of this is when the bias field has not been corrected properly, or if the data has
poor contrast. Control points are inserted, FS is rerun from that point in the
pipeline, and the problem is solved. a) before insertion of control points, b)
after insertion but before FS processing, c) after FS processing.

segment lesions12, treating such voxels as WM is the only way for the program
to generate the WM and pial surfaces successfully.

A problem with a similar outcome is when skull is incorrectly segmented as WM
outside of the brain. The problem has been illustrated in Figure 3.9. As before,
the solution is to remove the offending voxels in the WM segmentation, and
then rerun FS. This problem can also be handled by editing the brainmask as
previously described. However, since the problem here is principally different
from that in the brainmask case, it is technically more correct to edit the WM. It
is not clear if handling the problem in one way or the other has any noteworthy
effects on the final segmentations.

Longitudinal Editing

Editing in longitudinal FS processing is essentially the same as is done for single
time points, with the advantage that it is often sufficient to simply edit the
subject-template (base) which affects all time points in the subsequent long
runs. A detailed overview of how to do these edits, and what can be skipped, is
available on the FS wiki online13. After edits to the subject-template (base) and
in some situations the initial cross runs, no further editing should be necessary
in the final long runs.

12FS does label dark voxels within subcortical structures as hypointensities. While this is a
trademark of lesions in T1-weighed images, it should not be confused with lesion segmentation.

13https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalEdits

https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalEdits
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(a) (b)

Figure 3.8: a) A lesion in the brain leads to voxels which are (correctly) identified
as non-WM. However, the hole is segmented as GM, which leads to incorrect
delineation of the WM (blue outline) and pial (red outline) surfaces. b) To
correct this, the hole is filled out in the WM segmentation (semi-transparent
red color).

In the ADEX project, we chose a more conservative approach of editing brain-
masks and control points in the crosses, omitting the white matter segmentation
as this is recomputed in the base. Then, further editing of brainmasks, control
points and white matter segmentation took place in the base if necessary. This
is generally recommended, as high quality segmentation in the cross results in
better initialization of the base, which in general should translate to fewer edits
necessary in the base.

3.4 Contributions

This section discusses the main contributions done in the ADEX MRI study.

3.4.1 ADEX MRI Study Outcomes

The main hypothesis of the ADEX MRI study was that moderate-to-high aer-
obic exercise would have beneficiary effects in areas of the brain known to be
affected by AD in a population of patients with mild-to-moderate AD. In par-
ticular in the hippocampus, where exercise has previously been shown to be
effective in a population of healthy elderly [Erickson et al. 2011], but also on
cortical regional thickness.

As presented in paper A, it was not possible to show that the changes in brain
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(a) (b)

Figure 3.9: An example of FS failing to delineate the pial surface properly
because bordering skull/dura leads to neighboring voxels with similar intensities.
The separation is consequently not detected by FS properly. By editing the
brainmask and rerunning FS from that stage, the pial surface aligns itself nicely.
a) Before editing the WM, b) after editing the WM, but before generating new
surfaces.

measures (subcortical volume, cortical thickness) were significantly different be-
tween the control and intervention groups over a 16 week period. One possible
explanation for this is the duration of the study; 16 weeks may be too little to
differentiate groups based on atrophy rates. This seems likely when considering
that a) [Erickson et al. 2011] showed effects, but after a full 1-2 years and b)
the effects where shown in a healthy population. Another possibility is that
the study suffers from bad data quality and too few participants in the MRI
subpopulation, as 13 subjects left the study prematurely, 9 were excluded due
to poor MRI data quality (severe motion artifacts), 6 were further excluded
due to problems processing the data with FS and finally 1 was excluded due to
error in processing outcomes. Even so, there’s a number of points that arguably
qualifies the study as a success.

First, it is the first study (to our knowledge) of its kind to explore the effects
of exercise in a population of patients with AD using MRI techniques. The
significance of this is the establishment of a reference for future exploratory
studies on the effects of exercise in AD (possibly also other pathologies). Given
that the exercise duration is a likely reason for the study outcomes, it would be
highly interesting to pursue a similar study where the effects of exercise were
recorded over a longer period, e.g., 1-2 years.

Second, the MRI study did show significant, positive correlations between how
efficiently the exercise group did their aerobic exercise14 and both changes in
hippocampal volume and frontal cortical thickness. This finding supports pre-

14See the paper for details
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Figure 3.10: Largest positive correlations between changes in the frontal cortex
and the SDMT cognitive test scores.

vious studies on the effects of exercise on brain growth [Colcombe et al. 2003;
Colcombe et al. 2006; Ruscheweyh et al. 2011] in healthy elderly, and easily
complements the argument of 16 weeks being too little: “exercise does work,
you just need to do it longer”.

Third, separate from the effects of exercise, significant, positive correlations
were shown between changes in frontal, cortical sulci and gyri thickness and
changes in cognitive performance scores for mental attention (SDMT) and verbal
fluency (VFT). The frontal cortex is known to associate with these types of
cognition, and as such, the finding agrees with previous literature. The two
largest correlations for specific gyri and sulci of the frontal cortical gyri and
sulci thicknesses, and the cognitive SDMT and VFT test scores respectively
have been illustrated in Figures 3.10 and 3.11.
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Figure 3.11: Largest positive correlations between changes in the frontal cortex
and the VFT cognitive test score.

Somewhat pragmatically, it can be argued by inference given two and three that
since exercise does seem to have an effect on brain volume (including frontal,
cortical thickness), and since changes in this area positively correlates with
cognition, stimulating brain growth by means of exercise should have a positive
effect on cognition. Even if this relationship hasn’t been proven directly in this
study, the message is clear: “go out there, and get that exercise done”.

3.4.2 Formalizing the use of Freesurfer at DRCMR

This study was the first to use a full, extensive, longitudinal FS analysis at
DRCMR. This has resulted in a lot of experience using the tool, which may help
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(a) (b)

Figure 3.12: a) Pial (yellow outline) and WM (blue outline) surfaces displayed
with coronal (top left), axial (bottom left) and sagittal (top right) views, to-
gether with a 3D representation of the pial surface (bottom right). b) The same
brain displayed with labels in different colors for subcortical structures and cor-
tical regions (Destrieux atlas). The brain is visibly affected by atrophy in the
cortex with visibly enlarged ventricles.

to encourage its use in future studies and to improve the quality and reliability
of reported measures. Figure 3.12 shows segmentations and surfaces obtained
using FS for one patient in the ADEX study.

More practically, part of the contribution also involved teaching and supervis-
ing relevant staff in its use, in particular collaborating with and teaching two
clinicians that did all editing during the FS data processing.

3.5 Discussion

This section presents some considerations about the employed methodology
in the ADEX study, in particular emphasizing the importance of having a
proper “toolbox”, and perhaps even more important, using the tools correctly.
Throughout the section, interesting topics for future work are suggested.

3.5.1 Alternative Techniques for Brain Morphometry

Voxel-based morphometry (VBM) can (to some extent) be considered an alter-
native to FS-based analysis, and is done by statistically comparing the image
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volume at each voxel within a region of interest (ROI) following a registration
into some common template space, rather than measuring e.g., volume of a
whole structure such as the hippocampus. Which method to use depends on
preference, but more impotantly on what the goal of the study is.

VBM as a technique is highly dependent on the methods chosen for registration,
and (as previously mentioned) if these are not accurate, and in particular if
they do not properly account for asymmetry bias, findings may be significantly
affected [Bookstein 2001]. However, considering that these problems have been
addressed in recent work, this is likely less of an issue today. Speaking in favor
of VBM is the fact that good registration can be obtained relatively fast today.
This is advantageous in studies with large populations, potentially with multiple
time points available per subject.

One of the merits of Freesurfer is its ability to get good measures of both struc-
tural volume and cortical thickness. FS has shown to have at least comparable
accuracy to that of “ground truth” manual segmentations and delineations of
brain structures and surfaces. Furthermore, given that the pipeline is automated
(barring the manual edits that can be necessary when data quality is bad), it
does not suffer from the variation that is introduced when different people an-
notate the brain image. The downside is that it takes FS between 12 and 16
hours to process a single volume on a modern PC.

Here, FS was chosen because it aligned really well with “both sides” of the PhD
study, as e.g., both hippocampal (subfield) volume and cortical thickness was
of interest, and because bias field correction and its application in FS were to
be studied. Future VBM analysis of the ADEX data could be of interest, but
given the inability to show differences between groups with FS, and also given
the size of the population as well as the data quality (which increases the risk
of error in registration to the template space), it is doubtful any noteworthy
effects would be discovered.

Another reason to use FS for data analysis is that it generates actual surfaces
which can be used for surface-based analysis, something which VBM does not
do. Further considering that the longitudinal analysis presents an abundance of
accurate segmentations within the same space of reference for the time points
of each subject, FS lends itself well to extending the study into areas which
depend on these ROI to be defined. As an example, a study of the ADEX data
measuring tissue perfusion (blood flow) using arterial spin Labeling (ASL) has
begun at DRCMR. This study can utilize the readily available FS segmentations
at no additional expense.
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3.5.2 Freesurfer: a Supervised, Generative Segmentation
Method

Interestingly, FS segmentation of subcortical structures (e.g., WM) is based on
a generative modeling approach (such models in general are elaborated upon in
chapter 5), where some of the associated parameters, i.e., mean values of WM
and GM, have fixed values. Consequently, for the pipeline to work successfully
the tissues must have their intensities normalized to these values (previously
described), which in turn depends on accurate placement of CPs (both manually
and from the atlas).

The reason why this is interesting is because it is not difficult to estimate all
parameters, including mean tissue intensities, when a generative model is em-
ployed to segment the data, in particular when a probabilistic atlas is already
available for the tissues or subcortical structures. In FS, such an atlas as well
as the necessary transformation between the image and the atlas space is avail-
able, and to some extent already used. Works were all model parameters are
estimated from the data are e.g., [Van Leemput et al. 1999b; Zhang et al. 2001].

Furthermore, the work by [Ashburner and Friston 2005] showed how atlas reg-
istration, bias field correction and tissue classification can be combined into one
unified model. As will be clear in the following chapter, this model is intimately
related to the ones employed for the purpose of bias field correction in this the-
sis. For now, it is sufficient to mention that FS might very well benefit from
transitioning from decoupled registration, bias field correction and segmenta-
tion steps, into a more unified approach. This is currently being considered for
future releases of the pipeline.

3.5.3 The Importance of Proper Bias Field Correction

The N3 algorithm depends on a distance hyper-parameter, which defines how
smooth the bias field estimate should be. In FS, this hyper-parameter is con-
trolled using a “-3T” hyper-parameter, which should always be enabled when
processing 3T data [Boyes et al. 2008]. In the process of running longitudi-
nal FS, it came to our attention that FS does not inherit the 3T N3 hyper-
parameters from the cross-sectional analysis. Before we discovered this, the
base template generation and longitudinal analysis were consequently run using
hyper-parameters tuned for 1.5T.

Whereas results using the 1.5T bias field correction hyper-parameters showed
no significant effects or correlations in the ADEX study, the picture changed
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drastically when the 3T hyper-parameters where introduced and FS rerun, which
lead to the results discussed in section 3.4.1 as well as the included paper.
This serves to highlight just how important good bias field correction is, and
consequently motivates why research into better models for bias field correction
methods should be pursued. While the work performed on bias field correction
models (unfortunately) did not reach a stage where it could be included in
clinicial studies (such as the ADEX study), this research is the focus of chapter 5.



Chapter 4

Bias Field Correction
Literature and Validation

In chapter 5, we will mainly discuss a particular generative modeling approach
to bias field correction. We also touch briefly upon the N3 algorithm, which is
the de facto standard for bias field correction and has the advantage that no a-
priori information about the image is necessary. However, many other methods
for bias field correction exist. Overall, we can partition these methods into three
distinct model groups, although closer inspection reveals that they are, in fact,
quite similar:

• Generative model-based methods seek to maximize the posterior proba-
bility of a set of unobserved variables (including the bias field) given the
image. These models will be covered more in depth in chapter 5.

• Heuristic methods seek to estimate the bias field using more “ad hoc”
approaches such as image filtering, surface fitting or histogram matching.
These methods typically make strong assumptions about how the bias field
affects the image.

• Hybrid methods fall somewhere in between; they can be shown to employ
or relate to an underlying probabilistic model, but may not optimally
optimize the involved parameters.
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In the following sections 4.1, 4.2 and 4.3 we discuss some of the more well-known
and/or recent methods. We then progress to discuss a number of longitudinal
models for bias field correction when several time point scans of the same subject
are available in section 4.4. In the final Section 4.5, we discuss a number of
popular ways to validate bias field correction, also covered within the presented
literature. The overview presented here is not exhaustive. For a more complete
or supplementary overview, a number of works review the literature [Velthuizen
et al. 1998; Styner and Van Leemput 2004; Belaroussi et al. 2006; Vovk et al.
2007] and/or evaluate performance for a number of bias field correction methods
[Arnold et al. 2001].

4.1 Generative Model-based methods

As previously described, methods that use these models are probabilistic and
explicitly try to maximize an objective function which describes the posterior
probability of observing the data. This typically involves representing the un-
derlying uncorrupted data with a mixture of Gaussians model, where each voxel
is assumed to originate from some unknown label (e.g., a tissue class). The bias
field is represented by a linear combination of basis functions, which in the case
of EM-based optimization is fit to the residual data, obtained by subtracting
the uncorrupted data estimate from the observed data. This specific approach
will be discussed in depth in chapter 5.

[W. M. Wells et al. 1996] combines a model for tissue classification and bias field
correction where means and variances for a number of tissue classes are assumed
known. The data is log-transformed prior to parameter estimation such that
the bias field can be assumed additive, and optimization is performed using an
expectation maximization (EM) algorithm.

Given the assumptions of a-priori known label means and variances, a training
phase is necessary prior to correction. [Held et al. 1997] further implement
a Markov random field (MRF) model on the labels in order to minimize the
effect of noise in the tissue classification. This (and the use of MRF models
in general, within a generative framework) results in a complication of the EM
parameter optimization. Similarly, [Guillemaud and Brady 1997] revise the
model by [W. M. Wells et al. 1996] such that voxel intensities that are not
likely to belong to any of the tissue labels (represented by a “garbage” label)
are modeled by a uniform distribution, scaled by a user defined parameter.
This results in bias field estimation that only takes place with respect to voxels
that fall within tissue labels. However, as before the method suffers from a
dependency on a training phase.
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[Van Leemput et al. 1999a] show how bias field correction and tissue classi-
fication can be integrated in a three-step algorithm where all parameters of
the model are fully estimated. They further show how to extend the model
to include multi-channel data, and how to integrate filtering of voxels contain-
ing only background noise, which are typically removed prior to correction using
data preprocessing. The noise is assumed to follow a Rayleigh distribution [Gud-
bjartsson and Patz 1995]. Finally, they show how to account for slice-by-slice
constant offsets in multi-sclice 2D MRI images. As before, the data is log-
transformed such that the bias field can be modeled as an additive effect, here
using a linear combination of polynomials. Optimization is performed using a
generalized expectation maximization algorithm (GEM) due to interdependent
model parameters.

[Ashburner and Friston 2005] show how image registration using a deformable
tissue atlas can be combined with tissue classification and bias field correction
in one, unified model. Here, parameter estimation is performed in the original
data domain using a combination of EM (mixture model) and the Levenberg-
Marquardt algorithm (registration, bias field correction). The bias field is here
modeled using a linear combination of cosine basis functions.

4.2 Heuristic Methods

A number of methods attempts to remove low-frequency components in the
image, assumed to be the bias field effect, by means of low-pass filtering tech-
niques. Some of the published literature on such methods are [Axel et al. 1987;
Brinkmann et al. 1998; Cohen et al. 2000].

Some methods seek to estimate the field by fitting spatially smooth basis func-
tions to the image data directly, i.e., thin plate splines to a number of image
reference points selected by the user within a tissue [Dawant et al. 1993], or
fourth-order polynomials to a collection of homogeneous regions obtained using
an iterative thresholding of image gradients, which are then combined to com-
pute and obtain a global fit for all regions [Meyer et al. 1995]. [Brechbühler
et al. 1996] obtains a bias field estimate using a second-order Legendre poly-
nomial representation of the bias field. The estimate is found by minimizing
an energy function over the residual of the observed data minus the bias field
estimate and a number of class means, which are predetermined by the user.

[Likar et al. 2001] seeks to minimize the entropy of the bias field corrupted image
taking into account both multiplicative bias and additive noise, describing both
using linear combinations of normalized polynomials respectively. The method
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relies on a mean intensity-preserving condition between the uncorrected and
corrected image, and optimal parameters are those that minimize the entropy,
using a combination of optimization techniques (Powell’s and Brent’s methods).
Similarly, [Mangin 2000] follows a similar approach, but only consider the mul-
tiplicative field which is modeled using splines with adaptable control points.
Optimization is performed using a stochastic algorithm that relies on a fast
annealing schedule.

[Li et al. 2009] presents a variational level set approach to bias field correction
and segmentation, which utilizes a k-means clustering algorithm to partition the
data into regions in the image domain. The method works under the assumption
that the regions are separable, such that the bias field can be estimated inde-
pendently within each region. Following estimation, the estimates are combined
in order to obtain a global bias field.

More recently, [Adhikari et al. 2014] seek to estimate the bias field of 2D MRI
images by fitting a Gaussian surface to each of the gradient maps for a number
of homogeneous intensity regions, which are identified by identifying image his-
togram peaks. The bias field estimate is then obtained by taking the average of
the Gaussian surfaces.

None of these approaches differentiate between smooth variations in the image
due to biological variance within a tissue or the bias field, which makes them
susceptible to removing biological information from the image.

4.3 Hybrid methods

The N3 algorithm [Sled et al. 1998] falls somewhere in between the generative
model-based and heuristic methods. The method claims to be non-parametric,
but as shown in [Larsen et al. 2014], the method does, in fact, employ a para-
metric, generative model where some of the involved parameters are estimated
using a heuristic updating scheme. As previously discussed, the method has the
advantage that it can be applied to any MRI without prior information about
the image.

[Tustison et al. 2010] present N4ITK as an evolution of N3, which replaces
the cubic b-spline smoothing scheme from N3 with a more elaborate scheme
where control points are allowed to adapt to the image. Interestingly, from a
generative model point of view, the updates for the bias field coefficients are
the only part of N3 that is “correct”, relative to the model. Given that N4ITK
replaces the smoothing scheme, this model should be considered closer to the
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heuristic models than N3. Whether the more heuristic approach of N4ITK is
an advantage or not, is yet to be fully explored.

[Pham and Prince 1999] presents a fuzzy segmentation scheme that combines
tissue classification with bias field correction. The method seeks to minimize an
objective function defined as the two-norm between voxel and class intensities
weighed with a membership value. Interestingly, this approach is very similar to
generative models, as the membership values bears resemblance to the posterior
probabilities of class assignments in generative models.

Similarly, [Ahmed et al. 2002; Liew and Yan 2003; Ji et al. 2011] modify or ex-
tend the fuzzy c-means segmentation scheme in order to improve performance,
but otherwise preserve the core scheme of the method. Some of these methods
appear quite heuristic in their respective paper presentations, but are neverthe-
less listed here for consistency with respect to the fuzzy c-means algorithm. Note
that the work by [Li et al. 2009] previously described bears a lot of resemblance
to these methods. However, it seems that they try to distance themselves from
the fuzzy c-means algorithm, for which reason they have been listed separately.

[Shattuck et al. 2001] formulates a bias field estimator using the conditional
probability of observing the data given the bias field effect and a number of
global tissue parameters (mean and variance) which are estimated by automated
analysis of the image histogram. Based on an assumption of a (small) regionally
constant bias field, sample bias field values are then obtained within uniformly
positioned regions over the image, by minimizing a cost function on the residual
between the observed regional data and corresponding “true” data histograms.
These sample values are then smoothed to obtain a global bias field estimate
using a regularized least squares fit of cubic b-splines that have been penalized
on their bending energy.

4.4 Longitudinal Model-based Methods

The previous methods only consider models for cross-sectional bias field correc-
tion – cases where only one time point scan of the subject is available. More
recently, attention has shifted towards how the bias field artifact is best esti-
mated for longitudinal data, i.e., when there is more than one time point scan
of the same subject.

[Lewis and Fox 2004] presents a model that corrects for the differential bias field
between time point scans for the same subject. The method assumes a pairwise
rigid registration before difference bias field estimation. The method does not
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account for the bias field which is common to the subject time point scans.

Similarly, [Modat et al. 2010] introduces a model for correction of the difference
bias field between time point scans within a non-rigid registration framework,
using normalized mutual information as the optimization metric.

[Ashburner and Ridgway 2013] present a solution where diffeomorphic and rigid-
body registration to an anatomical tissue atlas is combined with differential bias
field estimation, following the spirit of a unified model for parameter estima-
tionas as presented in [Ashburner and Friston 2005].

4.5 Validation of Bias Field Correction Perfor-
mance

Validation of any bias field correction method is generally challenging, as no
ground truth bias field is available unless synthetic or simulated images are used.
One popular extensible hybrid Bloch equation and tissue template simulation
based MRI simulator was presented by [Collins et al. 1998; Kwan et al. 1999].
This simulator is used to synthesize the images that are available in the online
database “Brainweb”1. These images were used to train and validate the default
N3 algorithm parameters and performance.

Most of these MRI simulators typically depend on precomputed bias fields which
are then scaled up or down to simulate differences in field strength. Alterna-
tively, the simulators make assumptions about or approximations to the MR
physics. In the event of synthetically generated data, the bias field effect is
typically modeled as a simple multiplicative effect given a sum of only a few
spatially smooth basis functions, e.g., cosines, which is then applied to a ground
truth template image. In most cases, these simulated bias fields are at best
crude approximations to the bias field effect in real MRI, which makes their
use in bias field correction performance validation questionable. It should be
noted that at least one simulator [Stöcker et al. 2010] is known to produce very
accurate MRI simulations. However, the computations are extensive, and to our
knowledge requires several hours of computation in order to produce just one
simulated 3D MRI image.

In any case, considering that MR images typically receive bias field correction
as a preprocessing step in an automated segmentation pipeline2, it is more

1http://brainweb.bic.mni.mcgill.ca/brainweb/.
2Unless it is jointly estimated during segmentation in a unified model.

http://brainweb.bic.mni.mcgill.ca/brainweb/
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relevant to look at quantitative performance metrics that can be used on real
images to determine correction quality indirectly, or alternatively by looking at
segmentation performance explicitly.

4.5.1 Indirect Measures

Relevant quantitative metrics are the coefficient of variation (CV) which is typ-
ically measured within WM in brain MRI, as this tissue is assumed to be very
homogeneous. The CV is defined as the standard deviation over the mean

CV =
σ

µ
. (4.1)

Whereas the CV in WM may be a good measure of homogeneity, it does not
consider how well the intensities in WM and GM separate, which is of much
greater importance for automated segmentation algorithms. The coefficient of
joint variation (CJV) [Likar et al. 2001] takes this into account by relating the
standard deviation of two sets of intensities to their respective means

CJV =
σ1 + σ2

|µ1 − µ2|
, (4.2)

e.g., WM and GM in brain MRI. The CJV between WM and GM is the primary
quantitative performance measure for bias field correction used in this thesis.
Other indirect performance metrics include the entropy E of the normalized
image histogram H

E = −
N∑

n=1

Hn log(Hn). (4.3)

Any bias field correction algorithm should lower the entropy of the image, as
the bias field increases the variance of the image intensities within homogeneous
tissue (which leads to increased entropy). However, entropy is non-trivial to use
as a performance metric when comparing methods, as it relies heavily on the
binning of the histogram; slight variations in the distributions of the intensities
(peaks and span) may affect the histogram such that the binning does not
capture the shape of the distribution properly. Finally, just as the CV measure,
entropy does not consider separation between tissue intensities.

4.5.2 Segmentation Performance

The Dice metric is a popular way to evaluate segmentation performance, which
can also be used to measure bias field correction quality. The data is prepro-
cessed with a bias field correction method, and automated segmentations are
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then obtained. These are then compared to some ground truth segmentation,
typically obtained manually by human experts. The Dice metric is defined as

S = 2
n(A ∩B)

n(A) + n(B)
, (4.4)

where n(x) denotes the number of voxels belonging to structure x, and A and
B are the automated and manual segmentations respectively.

Cortical thickness can be used as a measure of robustness if several scans are
available of the same subject, given the assumption that a good bias field correc-
tion algorithm should produce similar images of the same subject, after correc-
tion. In this thesis, we use Freesurfer [Fischl 2012] to obtain both measures of
cortical thickness as well as segmentations of subcortical structures and tissue.



Chapter 5

Generative Bias Field
Correction Models

This chapter introduces the reader to the underlying theory that is necessary
to understand the relationship between generative (Bayesian) modeling and the
popular N3 bias field correction algorithm, as presented in paper B, and further
the generative framework for bias field correction that is presented in paper C.
Section 5.1 introduces the reader to fundamental concepts in generative model-
ing. This involves providing a number of examples that shows how data can be
generated from said models, and these are then extended to account for data
that has been affected by a bias field. Section 5.2 describes how parameters
of the generative models can be estimated, which is based on the expectation-
maximization (EM) algorithm. In section 5.3 presents a formalized approach
for designing an algorithm for bias field correction, and extends parameter es-
timation to the cases where generalized expectation-maximization (GEM) is
necessary. Section 5.4 extends the presented generative modeling framework to
include cases where several time points of the same subject is available. Sec-
tion 5.5 presents the contributions made within generative modeling of bias field
correction in this study, including papers B and C, and Section 5.6 concludes
the chapter by discussing a number of topics related to these two papers, as well
as potential for future work.
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5.1 Generative Modeling

This section first establishes the basic concept of a probability density function.
A number of generative models are then explained, exemplified and subsequently
extended, starting with a simple example using a single Gaussian distribution,
that is then extended to a Gaussian mixture which can describe an MR image.
This model is then further extended to include the bias field artifact. Finally,
this leads to a description of the full generative framework for bias field correc-
tion which is presented in paper C.

5.1.1 Probability Density Functions

Consider some continuous, random variable d. The probability for d to take a
certain value can be expressed in terms of a probability density function p(d|θ)
(PDF), where θ defines a number of parameters (possibly none) that shapes
the distribution of d. In order for this function to be a proper PDF it must be
normalized, such that its integral is equal to one

∫
p(d|θ) dd = 1. (5.1)

The definite integral of the PDF over the interval d ∈ [a, b] defines the probability
for d to fall within that interval

P (d ∈ [a, b]|θ) =

∫ b

a

p(d|θ) dd. (5.2)

If the interval is defined only in terms of b such that P (d ∈ [−∞, b]|θ), we refer
to this as the cumulative distribution function (CDF).

Here, we rely exclusively on the Gaussian (normal) distribution with PDF

N (d|θd) =
1√

2πσ2
exp

(
− (d− µ)2

2σ2

)
, (5.3)

which depends on two parameters, the mean and variance θd = (µ, σ2) of the
distribution. The PDF and CDF of a Gaussian distribution with predetermined
parameters have been illustrated in Figure 5.1.

5.1.2 A Basic Generative Model

As implied by its name, a generative model randomly generates data d. This
data which is observable depends on parameters θd that are typically unob-
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Figure 5.1: A Gaussian probability density function with mean µ = 0 and
variance σ2 = 1 (a), and its cumulative distribution function (b).

served (hidden). The generative model specifies the joint distribution over the
observations and parameters, which for a single observation (sample) d is given
by

p(d,θd) = p(d|θd)p(θd), (5.4)

which is composed of the likelihood of observing data given the (hidden) param-
eters, and the prior probability of observing the parameters.

Given a vector d = (di, . . . , dN ) containing a number of N samples from the
model, and assume that they are conditionally independent given the parame-
ters, the generative model is

p(d,θd) =

N∏

i=1

p(di|θd)p(θd). (5.5)

This implies that if the parameters θd have been fully observed for some distri-
bution of observable data, the shape of the histogram of the generated data will
approach the observed data given enough samples.

As will be clear in the section 5.2, the generative framework is very powerful,
as it allows us to estimate values for the unobserved parameters θd. For now,
we assume that all parameters have been fully observed (denoted θ̂d) which
corresponds to letting the distribution of p(θd) be generated by a delta function

p(θd) = δ(θd − θ̂d), δ(x) =

{
∞, x = 0

0, otherwise.
(5.6)
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This simplifies following examples where we demonstrate how data is generated
by means of sampling.

Histogram Approximation

For a number of ordered points [z1, z2 . . . zM+1] that defines M intervals, a
histogram is the count of occurrences that is observed for the random variable
d within each interval for a total of N observations (samples) of d

Hj =
∑

d∈[zj ,zj+1]

1, j = 1, . . . ,M. (5.7)

The normalized histogram can be considered an approximation to the probabil-
ity density function given the definite integral over M intervals spanned by the
set of ordered points z1, z2, . . . , zM+1

H̃j =
Hj∑M

j′=1Hj′
≈ Pj =

∫ zj+1

zj

p(d|θ) dd, (5.8)

assuming that the span of [z1, z2 . . . zM+1] is sufficiently wide, such that

M∑

j=1

Pj ≈ 1. (5.9)

If we draw enough samples, their distribution will be statistically similar to that
of the PDF, as illustrated by the histogram. This has been illustrated for the
same Gaussian distribution as in the previous example, using N = 10, N = 100
and N = 1000 samples in Figure 5.2. The actual value of d we generate is
practically given by e.g., the center of the bin it falls within for each sample.

5.1.3 The Gaussian Mixture Model

We can model distributions of more complex data by using a linear superposition
(mixture) of L Gaussians, each with its own µl and variance σ2

l . In order to use
this model, we first need to introduce the concept of labels.

We consider a scenario where each voxel i ∈ {1, . . . , N} in the image d =
(d1, . . . , dN )T belongs to one of L possible labels li ∈ {1, . . . , L} with some
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Figure 5.2: a) The histogram of a Gaussian distribution obtained using 10
samples (a), 100 samples (b) and 1000 samples (c). As more samples are used,
the shape of the histogram resembles the Gaussian distribution better.

certainty. I.e., the probability for observing a label image denoted l where all
voxels belong to the same label, and given some parameters θl is

p(l|θl) =

N∏

i=1

p(li|θl), (5.10)

where we have assumed that the occurrence of a label in a voxel is conditionally
independent from the rest. We further consider the case where a given label
occurs with the same relative frequency πl in each voxel

p(li|θl) = πli , (5.11)

i.e., the probability for observing li is given by a discrete number of L proba-
bilities stored in the parameter vector θl = (π1, . . . , πL), each of which satisfies

0 ≤ πl ≤ 1 and together
∑L
l=1 πl = 1.

We assume that the intensity in a voxel is generated from a Gaussian distribution
associated with label li

p(d|li,θd) = N (di|µli , σ2
li), (5.12)

which results in the following likelihood for observing the data d given an image
composed of the same label l, as well as the associated Gaussian parameters θd

p(d|l,θd) =

N∏

i=1

p(di|li,θd) (5.13)

where again we have assumed conditional independence between voxels, i.e.,
given some label li the model generates intensities in a voxel independently of
the labels in other voxels.
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Figure 5.3: A Gaussian mixture with predetermined parameters for a log-
transformed 3T MRI and L = 3, corresponding to CSF, GM and WM re-
spectively in brain MRI.

Finally, by summing over the probabilities for observing p(d|l,θd) for each label,
we obtain the likelihood function for d given all model parameters θ

p(d|θ) =

L∑

l=1

p(d|l,θd)p(l|θl) (5.14)

=

N∏

i=1

L∑

l=1

N (di|µl, σ2
l )πl, (5.15)

with parameters θ = (θTd ,θ
T
l )T = (µ1, . . . , µL, σ

2
1 , . . . , σ

2
L, π1, . . . , πL)T . Here,

πl is also referred to as the mixing coefficient, as it weighs each Gaussian in
the linear superposition of Gaussians such that unit area under the curve of the
PDF is preserved, i.e., respecting Equation 5.1.

Since the model encodes no spatial information about the distribution of the
intensities generated in the image, it can be seen as a way to approximate
the histogram. A mixture composed of L = 3 Gaussians with predetermined
parameters for a 3T log-transformed MRI have been illustrated in Figure 5.3.
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5.1.4 Modeling MR Images with a Bias Field

At this point we are ready to discuss how we can include the bias field effect in
a generative model. First, we assume that the bias field effect that we try to
model is multiplicative. This assumption is actually only an approximation, as
the field is known to be discontinuous across tissue borders. Regardless, it leads
to a simplified model that has shown to work well when the goal is to correct
data for the purpose of segmentation [Styner and Van Leemput 2004].

Using d̂ to denote the observed intensity of a voxel, b̂ to denote the effect due
to the bias field, û to denote the underlying “true” intensity and finally n̂ to
denote noise due to acquisition, we have

d̂ = b̂û+ n̂. (5.16)

To simplify the model, we further assume that we can ignore the effects of n̂ and
log-transform the data d = log(d̂), as it simplifies the model [W. M. Wells et al.
1996; Van Leemput et al. 1999a; Zhang et al. 2001]. Using d = (di, . . . , dN )
to denote all log-transformed voxel intensities of an MR image, and similarly
b = (b1, . . . , bN )T to denote the corresponding (log-transformed) gains due to
the bias field, we have

d = u+ b, (5.17)

where u = (u1, . . . , uN )T are the intensities of the “true”, underlying intensities
that are not affected by the bias field. It is worth mentioning that other models
have been proposed on how to best model the bias field effect, of which [Vovk
et al. 2007] provides an excellent overview.

For now, we assume that the shape of the bias field b is known. Given mixture
model parameters θd = (µ1, . . . , µL, σ

2
1 , . . . , σ

2
L, π1, . . . , πL)T , we have

p(d|θd) =

N∏

i=1

L∑

l=1

N (di − bi|µl, σ2
l )πl. (5.18)

Note that the mixture model describes the underlying “true” distribution of u,
and the forward model is that of Eq 5.17: the data we observe is generated
by sampling our mixture model to obtain u (a), and then adding the bias b.
Figure 5.4 (approximately) illustrate how the histogram of the generated data
would appear at each step.

It should be mentioned that the histograms were not obtained by sampling,
but rather by bias field correcting a real image, but regardless, the example is
analogous. It can be seen how adding the bias field results in a histogram that
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Figure 5.4: The (log-ingensity) histogram of MRI data after (a) and before (b)
bias field correction using a mixture model of L = 6 Gaussians, which have
been overlaid (green lines) together with their sum (red line).The histograms
are approximately analogues to first generating data u, and then adding bias b
(b).

becomes wider. This is the reason why bias field correction methods (e.g., the
N3 algorithm) claim to sharpen the histogram; it is the obvious consequence of
removing the bias.

It’s important to realize that an image generated by the model will only resemble
that of the observed one in terms of its statistical content (the histogram), as
the voxel intensities are modeled to be independent on their spatial position.
Spatial information about voxel intensities is typically encoded by defining a
distribution using a probabilistic atlas, such that each voxel has its own set
of probabilities for belonging to each label, e.g., WM, GM and CSF in the
brain. Whereas a model utilizing a probabilistic atlas will generate more realistic
images, this simpler, purely intensity-based model has the advantage that it is
not only limited to images where label priors are available, which is typically
the case for brain MRI, but not e.g., the abdomen.

Modeling a Smooth Bias Field

So far, we have not discussed how to model the shape of the bias field b. As
we’re working under the assumption of a smooth and slowly varying field over
the image, one way to model this is to use a linear combination of smooth basis
functions, such as splines, low order polynomials, or cosine functions. Using this
bias field model, we have for M basis functions φ = (φi,1, . . . , φi,M )T evaluated
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at voxel i and with coefficients c = (c1, . . . , cM )T

bi =

M∑

m=1

cmφi,m, (5.19)

or, in matrix notation,

b = Φc. (5.20)

The bias field coefficients c are assumed to be generated by a prior distribution
p(c). Consequently, in its most general form, the generative bias field model
is composed of both parameters for the mixture model as well as the bias field
coefficients θ = (µ1, . . . , µL, σ

2
1 , . . . , σ

2
L, π1, . . . , πL, c1, . . . , cM ).

Practically, Φ is computed by evaluating the one-dimensional basis functions of
choice along each of the three dimensions of the MR image. Assuming an MR
image of dimensions Nx×Ny×Nz and a total of M = MxMyMz basis functions
where Mx, My and Mz are the number of basis functions evaluated along each
of the three dimensions respectively, the matrix Φ contains the full number of
basis functions evaluated for all voxels. Φ is obtained by the Kronecker product

Φ = Φx ⊗Φy ⊗Φz, (5.21)

with e.g. the matrix Φx defined as

Φx =




φ1,1 φ1,2 . . . φ1,Mx

φ2,1 φ2,2 . . . φ2,Mx

...
...

. . .
...

φNx,1 φNx,2 . . . φNx,Mx


 . (5.22)

Basis functions are generally chosen based on preference or because they have
desirable properties. Theory does not suggest that one type of basis function
leads to better bias field correction than another, as the model only assumes
smoothness. All basis functions that will be described in the following meet this
assumption.

Cosines have the nice feature that they have global support, meaning that they
span the entire image. This prevents against numerical issues due to estimation
of the basis function coefficients in areas of the brain which has been masked
out. Cosine basis functions are computed according to (e.g, for cosine basis
function m along the dimension of x):

φx,m = ω(m) cos
( π

2X
(2x− 1)(m− 1)

)
, m = 1, 2, . . . ,M (5.23)
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with

ω(m) =





1√
X
, m = 1√

2
X , 2 ≤ m ≤M,

where M is the number of basis functions, x denotes the position of i =
1, 2, . . . , Nx voxels along the dimension of x, and X is the position of voxel
Nx.

Splines have local support, meaning that they may be more adaptable to varia-
tions in the image. Using one of several equally valid definitions, cubic b-splines
are computed according to (e.g., for spline m along the dimension of x):

φx,m =

4∑

s=0

−1s

h3

(
4

s

)
[x− λm−s]3 ω (x− λm−s) , (5.24)

with

ω(k) =

{
1, k ≥ 0

0, k < 0,

where λm−s is one of Mx+3 knot locations and h is the distance between them.
This is the spline scheme used in [Sled et al. 1998].

Because the support of a given spline might not cover a sufficient number of
foreground voxels to perform the estimation of its coefficient, regularization
may be necessary.

Polynomials were not explored in this thesis, but have previously been used
in e.g.,[Van Leemput et al. 1999a].

Cubic b-splines were predominantly explored throughout this work, in order
to maintain comparability with the N3 algorithm. Cosine basis functions are
described here for completeness, in part due to the nice feature of full support
with makes them a complementary choice next to cubic b splines, and in part
because they’re used in SPM[Ashburner and Friston 2005]. Examples of cosine
and cubic spline basis functions have been illustrated in Figure5.5

5.1.5 A Unified Model for Bias Field Correction

By expressing the model for bias field correction in terms of the joint probability

p(d, l,θ, c) = p(d−Φc|l,θd)p(l|θl)p(θd)p(θl)p(c), (5.25)
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Figure 5.5: Cosine basis (a), and B-spline (b) functions in one dimension.

θl ∼ p(θl)

l ∼ p(l|θl) =
∏N
i=1 p(li|θl)

θd ∼ p(θd)

u ∼ p(u|l,θd) =
∏N
i=1 p(ui|li,θd)

c ∼ p(c)
b = Φc
d = u+ b

Table 5.1: Generative model of bias field corrupted MRI data.

where p(d−Φc|l,θd) is the probability for observing the true underlying image
u = d − Φc given all model parameters and labels, p(l|θl) the probability of
observing a label given the label parameters, and finally p(θd), p(θl), and p(c)
are prior distributions on the parameters themselves, we have a very powerful
generative framework in place which allows us to create much more complicated
models than before. This is done simply by choosing appropriate distributions
– or combinations thereof – for each of the involved PDFs.

Figure 5.6 shows a directed graph that describes the full generative bias field
correction framework, which serves as the basis for the models presented in
paper C. Circles illustrate latent variables, whereas shaded circles are those
that are observed. In this thesis, we only consider uniform priors of the form
p(θd) ∝ 1 and p(θl) ∝ 1. This is a typical approach, but the significance is that
we do not have to represent them this way. It follows that the ability to express
everything as distributions and then modify as needed by choosing appropriate
PDFs, is one of the key advantages of using generative models. The full list of
distributions have been described in table 5.1.
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Figure 5.6: A directed graph showing the full generative model for bias field cor-
rection. The shaded circle illustrate the observed variable (bias field corrupted
data), whereas the rest are latent variables.

5.1.6 Useful Priors

The prior distributions of l, θl, θd and c yield a very powerful mechanism
for controlling/informing our model. In the following, we briefly discuss these
priors, in particular on the distribution of the bias field coefficients and labels,
as they are of particular relevance in bias field correction.

Label Priors

As previously described in Section 5.1.3, we do not make any a-priori assump-
tions about the distribution of labels when we let the label prior equal the rela-
tive frequency for a label to appear in a voxel, on average, p(li|θl) = πl. In this
case, we are modeling the image solely in terms of its histogram. Typically, this
is relevant when we do not have an anatomical atlas available. For example, in
brain MRI a very simple model using a Gaussian mixture of L = 3 labels can be
used to represent WM, GM and CSF, as was shown in Figure 5.3. It is possible
to further impose a label prior p(l|θl) on this model by means of a probabilistic
tissue atlas, and this would most likely improve bias field correction, but it is
not required. Furthermore, since any distribution can be expressed by a super-
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(a) (b) (c)

Figure 5.7: A probabilistic tissue atlas of CSF (a), GM (b) and WM (c).

position of (more) Gaussians, we can model the same data by setting L = 200
and choosing appropriate parameter values θd = (µ1, . . . , µL, σ

2
1 , . . . , σ

2
L)T . This

is how data is generated in the model behind the N3 algorithm [Larsen et al.
2014], where l no longer has any anatomically meaningful interpretion – it is
purely abstract.

Anatomical atlases are of particular interest in the context of labels. We can
inform the model about label probabilities using a discrete distribution (since
we have a finite number of labels)

p(li|θ) = Ail, (5.26)

Where Ail is the probability for a voxel i to belong to label l, satisfying 0 ≤
Ail ≤ 1 and

∑L
l=1Ail = 1. As an example, Fig 5.7 illustrates a probabilistic

tissue atlas of observing each of the three labels: WM, GM and CSF. The
atlas is from SPM, and used in the old segment method of the software, based
on [Ashburner and Friston 2005].

In cases where we use such atlases, it is sometimes of interest to model u using
separate mixture models for each label l, each composed of its own superposition
of Kl gaussians:

p(u|l,θd, ) =

N∏

i=1

Kl∑

k=1

N (ui|µlk, σ2
lk)πlk. (5.27)

This addresses concerns where the intensities of each tissue or structure repre-
sented by label l does not follow a single Gaussian distribution. Typically, a few
Gaussians (two or three) in each mixture is enough to model each label well.



50 Generative Bias Field Correction Models

Mixture Model Parameter Priors

Regularization on the values that the parameters can take can be imposed by
choosing appropriate distributions for p(θd). As mentioned we generally assume
p(θd) ∝ 1. Although not a topic of focus in this work, for computational reasons
it may be of (particular) interest to regularize the Gaussian variance.

Bias Field Coefficient Priors

While cubic B-spline basis functions may require regularization, explicit regu-
larization in the bias field prior can also protect against basis functions that are
too flexible. A convenient prior on the bias field coefficients is

p(c) ∝ exp(−λcTΨc), (5.28)

where Ψ is a positive semi-definite regularization matrix. Some works (e.g., [Van
Leemput et al. 1999a]) use a uniform prior instead, since the polynomial basis
functions by themselves are smooth and require no regularization. [W. M. Wells
et al. 1996] use the identity matrix for the basis functions, and depends solely
on the expression for Ψ to obtain smooth functions.

Of particular interest to us is an M ×M regularization matrix that penalizes
the bending energy of a basis function φ of the form

Jp(φ) =
1

V

∫

Rp

P∑

i=1

P∑

j=1

[
∂2φ

∂ui∂uj

]2

du, (5.29)

where φ is the basis function that is evaluated, u = [x, y, z] is the position the
function is evaluated at, P is the dimensionality of the image data, and V is the
volume of the region of interest.

Cubic b-splines: the bending energy regularization matrix (three-dimensional
case P = 3) is defined as

Ψ =
∑

αx,αy,αz≥0
αx+αy+αz=2

2

αx!αy!αz!
Ψ(αx)
x ⊗Ψ(αy)

y ⊗Ψ(αz)
z , (5.30)

with elements e.g., for Ψ
(αx)
x

ψ
(α)
i,j =

1

V

∫

D

= φ
(α)
i (x)φ

(α)
j (x) dx, (5.31)



5.2 Maximum A Posteriori Probability (MAP) Model Parameter Estimation51

where e.g., φ
(α)
i (x) denotes the α’th derivative of the i’th basis function evalu-

ated at x. The region D can be expressed in terms of the knot locations

D =
[
λ

(x)
0 , λ

(x)
Mx−3

]
×
[
λ

(y)
0 , λ

(y)
My−3

]
×
[
λ

(z)
0 , λ

(z)
Mz−3

]
, (5.32)

and V is the volume of D. This is the regularization employed on the splines
in the N3 algorithm. The definitions used here were presented in [Sled et al.
1998], with minor modifications in notation. [Shackleford et al. 2012] presents
analytical derivations that can be used for practical implementations of Equa-
tion 5.31.

5.2 Maximum A Posteriori Probability (MAP)
Model Parameter Estimation

We now turn our attention to the cases where we need to estimate the model
parameters from the data, which is typically the problem we need to solve.
Specifically, we look for the maximum a posteriori parameters, i..e, those that
are most probable to have generated the data we observe.

5.2.1 Bayes’ Theorem

Bayes’ Theorem states

p(θ|d) =
p(d|θ)p(θ)

p(d)
, (5.33)

and consequently
p(θ|d) ∝ p(d|θ)p(θ). (5.34)

This forms the basis for estimating the parameters of any generative model.

The maximum a posteriori (MAP) parameters are given by

θ̂ = argmax
θ

[p(θ|d)] = argmax
θ

[p(d|θ)p(θ)] (5.35)

= argmax
θ

[log p(θ|d)] = argmax
θ

[log p(d|θ) + log p(θ)] , (5.36)

where we refer to log p(d|θ)+log p(θ) as the objective function. This problem is
then maximized choosing an appropriate optimizer. One such is the Expectation
Maximization (EM) algorithm [Dempster et al. 1977; Minka 1998] which is very
suitable for models that encompass labels that are unobserved. The reason for
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the log-tranformation is mostly practical, as it simplifies mathematical analysis
and protects against numerical issues in implementations. The transformation
is valid, because the logarithm is a monotonically increasing function of its
argument. Somewhat intuitively described, this means that the transformation
will not change the “peaks of the parameter landscape”, which we need to
traverse when we estimate the optimal parameters.

5.2.2 Expectation Maximization

EM iteratively builds a lower bound ϕ(θ|θ̃) of the objective function that touches
it at the current estimate θ̃ of the model parameters (E step), and subsequently
improves ϕ(θ|θ̃) with respect to the parameters (M step). This procedure au-
tomatically guarantees to increase the value of the objective function at each
iteration, which is a highly desirable property in an optimizer.

The lower bound is formulated by means of Jensen’s inequality. The inequality
states

log

(
L∑

l=1

wlxl

)
≥

L∑

l=1

wl log(xl), (5.37)

which satisfies wl ≥ 0 and
∑L
l=1 wl = 1 for any value of xl. Consequently, we

have

log p(d|θ) + log p(θ) = log

(
N∏

i=1

[
L∑

l=1

p(di − bi|l,θ)p(l|θ)

])
+ log p(θ)

=

N∑

i=1

log

[
L∑

l=1

p(di − bi|l,θ)p(li|θ)

]
+ log p(θ)

=

N∑

i=1

log

[
L∑

l=1

wli

(
p(di − bi|l,θ)p(l|θ)

wli

)]
+ log p(θ)

≥
N∑

i=1

[
L∑

l=1

wli log

(
p(di − bi|l,θ)p(l|θ)

wli

)]
+ log p(θ)

︸ ︷︷ ︸
ϕ(θ|θ̃)

.

(5.38)

The lower bound must satisfy two conditions to be valid. The first condition is
that the it should touch the objective function at the current parameter estimate

ϕ(θ̃|θ̃) = log p(d|θ) + log p(θ), (5.39)
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and the second, that it should never exceed the objective function

ϕ(θ|θ̃) ≤ log p(d|θ) + log p(θ),∀θ. (5.40)

The second condition is already met, given the use of Jensen’s inequality. It can
be shown [Minka 1998] that the first condition is met by choosing the weights wil
such that they describe the posterior probability p(l|di, θ̃) for a voxel to belong
to any of the l Gaussians (we soft-assign the voxels):

wil = p(l|di, θ̃) =
p(di − b̃i|l, θ̃)p(l|θ̃)

∑L
l′=1 p(di − b̃i|l, θ̃)p(l|θ̃)

. (5.41)

Computing the posterior consequently constructs the lower bound (E-Step).
Given the partial derivatives of the lower bound with respect to each of the in-
volved parameters θ̃ (still assuming that the bias field coefficients c are known),
and setting these to zero, we obtain corresponding update equations that can
be used to maximize the lower bound (M-Step).

The objective function is then iteratively maximized by alternating between the
E-step and M-step. This process has been illustrated for the objective function
in Figure 5.8 [Van Leemput and Puonti 2015] (using a uniform prior p(θ) ∝ 1 for
the parameters, as this simplifies the example but does not change its validity).

5.3 Building a Bias Field Correction Algorithm

In the following we consider just one bias field correction model to exemplify how
a bias field correction algorithm is built using GEM for parameter estimation.
More advanced models have been covered in paper C. The process can be broken
down into the following four steps

1. Define model.

2. Derive lower bound and expression for weights (posterior label probabili-
ties).

3. Derive expressions the involved parameter updates.

4. Defining the algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Estimation of the maximum a-posteriori parameters θ̂ using the
Expectation Maximization algorithm is done by alternating between construct-
ing the lower bound to the objective function in the E-step (a, c, e), and then
estimating the parameters that maximize the lower bound in the M-step (b, d,
f). The process alternates until the parameter estimates have converged. The
objective function is represented by a full line, and the lower bound with a bro-
ken line. Here we assumed p(θ) ∝ 1, which means that we only need to estimate
the maximum likelihood (ML) parameters of the likelihood function p(d|θ).
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5.3.1 Defining the model

We consider the general model where all parameters are unknown and needs
to be learned, i.e., θ = (µ1, . . . , µL, σ

2
1 , . . . , σ

2
L, π1, . . . , πL, c1, . . . , cM ). We use

a cubic B-spline basis of M functions to model the bias field b = Φc, and
we penalize curvature of the bias field using p(c) ∝ exp(−λcTΨc). Keeping
the label and mixture parameter priors uniform p(θd) ∝ 1 and p(θl) ∝ 1, the
objective function is (with constant terms referred to in the following by k)

log p(θ|d) =

N∑

i=1

log

(
L∑

l=1

N (di − bi|µl, σ2
l )πl

)
− λcTΨc+ k. (5.42)

5.3.2 Deriving the Lower Bound

The model yields the following lower bound

ϕ(θ|θ̃) =

N∑

i=1

[
L∑

l=1

wil log

(N (di − bi|µl, σ2
l )πl

wil

)]
− λcTΨc+ k, (5.43)

with weights (label probabilities) in each voxel:

wil =
N
(
di − bi|µ̃l, σ̃2

l

)
π̃l∑L

l′=1N (di − bi|µ̃l′ , σ̃2
l′) π̃l′

. (5.44)

Writing out and rearranging the terms of ϕ(θ|θ̃) yields

ϕ(θ|θ̃) =− 1

2

L∑

l=1

[
1

σ2
l

N∑

i=1

wil(di − µl − bi)2 + log(σ2
l )

N∑

i=1

wil

]

+

L∑

l=1

[
log(πl)

N∑

i=1

wil

]

−
L∑

l=1

[
N∑

i=1

wil log(wil)

]

− λcTΨc

− N

2
log(2π). (5.45)
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When parameters are interdependent, as in the case of the bias field coefficients
c and the mixture model parameters, optimization is no longer possible using
the EM algorithm. However, optimization of one with respect to a given set
of the other is closed form. As such, optimal parameters can be estimated by
fixing the coefficients and updating the mixture parameters, and vice versa.

5.3.3 Deriving the Parameter Updates

We obtain the following parameter updates:

Label mean (µl):

dϕ(θ|θ̃)

dµl
= − 1

σ2
l

N∑

i=1

wil(di − µl − bi) = − 1

σ2
l

(
N∑

i=1

wil(di − bi) + µl

N∑

i=1

wil

)
,

which yields the following update

µl ←
∑N
i=1 w

i
l(di − bi)∑N
i=1 w

i
l

. (5.46)

Label variance (σ2
l ):

dϕ(θ|θ̃)

dσ2
l

= − 1

2σ2
l

(
N∑

i=1

wil +
1

σ2
l

N∑

i=1

wil(di − µl − bi)2

)
,

thereby obtaining the update

σ2
l ←

∑N
i=1 w

i
l(di − µl − bi)2

∑N
i=1 w

i
l

. (5.47)

Label Frequency (πl):

For π we have the condition that
∑L
l=1 πl = 1. Using a Lagrange multiplier, we

have

Λ(πl, λ) = ϕ(θ|θ̃)+λ

(
L∑

l=1

πl − 1

)
=

L∑

l=1

log(πl)

(
N∑

i=1

wil

)
+λ

(
L∑

l=1

πl − 1

)
+k.

Taking partial derivatives yields

dΛ

dπl
=

1

πl

N∑

i=1

wil + λ,
dΛ

dλ
=

L∑

l=1

πl − 1.
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Setting each partial derivative to zero yields

L∑

l=1

πl = 1, πl = − 1

λ

N∑

i=1

wil .

To determine the value for λ that fulfills the condition
∑
l πl = 1 we substitute

the second expression into the first and obtain

λ = −
N∑

i=1

L∑

l=1

wil = −N

with
∑
l w

i
l = 1,∀l. Substituting this expression into the previously obtained

expression for πl we obtain the following parameter update

πl ←
∑N
i=1 w

i
l

N
. (5.48)

We see that the label frequency is a sum over the posterior label probabilities
in all voxels – we estimate the prior probability for observing the label l.

Bias Field Coefficients (c)

We have

ϕ(θ|θ̃) = −1

2

L∑

l=1

1

σ2
l

∑

i

wil

(
di − µl −

∑

m

cmφ
i
m

)2

− λc>Ψc+ k,

which can be rewritten into the following regression problem1

ϕ = −1

2
‖ S 1

2 (r −Φc) ‖2 −λc>Ψc+ k,

where we defined

sil =
wil
σ2
l

, si =

L∑

l=1

sil, S = diag(si), d̄i =

∑L
l=1 s

i
lµl∑L

l′=1 s
i
l′
, r = d− d̄.

Taking the partial derivative yields

dϕ

dc
= −Φ>SΦc+ Φ>Sr − 2λΨc,

which results in the following update (a regularized least-squares fit)

c← (Φ>SΦ + 2λΨ)−1Φ>Sr. (5.49)

1The rearrangement of terms is not entirely trivial, but omitted for brevity.
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An estimate of the bias field is then obtained with b̃ = Φc. The equations
reveal that the bias field estimate is obtained by smoothing the residual intensi-
ties r, which are the difference between the expected “true” voxel intensities d̄
produced by the model and the observations d. We further see that voxels that
belong to Gaussians with wide variance (represented by the matrix S), have less
weight in the regularized least-squares fit that yields the bias field coefficients.

5.3.4 Defining the Algorithm

By updating only some or all of the parameters once and in the M-step, and
then recomputing the E step, a generalized Expectation Maximization (GEM)
algorithm is obtained. The algorithm still guarantees an increase in the objective
function at every iteration - the lower bound is just never fully maximized before
the posterior is recomputed.

We assume that the most accurate bias field estimates are obtained when the
mixture model fits the data as closely as possible; the more accurate we model
the true underlying intensities u = d − b, the more accurate our expectations
and consequent bias field estimates become. A single bias field coefficient update
given these residuals will in turn affect our estimate of the distribution of u,
which means that we need to refit the mixture model.

Following these guidelines, we design the algorithm:

1. Initialize the algorithm (set parameter estimates to some initial values,
e.g., the bias field is assumed initially flat b = 0, Gaussian means are
equidistantly spaced over the span of the data, some appropriate values for
variance are chosen, e.g., the squared mean spacing and label frequencies
are set to be equal πl = 1/l).

2. Fit the mixture model to the current estimate of the “true” data u = d−b
by alternating between updating the posterior and the mixture model
parameters until an appropriate convergence has been obtained.

3. Fit the bias field coefficients once.

4. Repeat 2-3 until global convergence.

Convergence of the parameter estimation can be determined by e.g., evaluating
the absolute or relative change in the objective function per iteration, or alter-
natively by evaluating the change in the standard deviation of two consecutive
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bias field estimates subtracted (which is related to the change in the objective
function, as the bias field estimates depend on the parameters).

This algorithm design has been used throughout the work performed in this
study, and it has proven to yield good results. Ultimately, the algorithm simply
defines one way to traverse parameter space in order to reach a maximum of the
objective function. This means that the order and arrangement of the parameter
updates may affect both what maximum value of the objective function we find
(we’re never guaranteed to reach the global maximum), and also how many
updates we need to perform.

Of particular interest is the variance, which can be interpreted both as how
certain the model is about the intensities it generates given some label, and also
as a way to control the speed of the algorithm. The greater the variance of
each label is, the larger the step size between iterations becomes, i.e., parameter
values differ more between two consecutive iterations. This affects how fast the
algorithm converges, but also how accurate the bias field estimate is. As such,
we see that by increasing the number of labels in the model, and if we allow the
variance of these labels to update, we also make the algorithm slower because
the steps taken during optimization become smaller. One way to get around
this is to fix the variance to a user-defined value, which is exactly what the N3
algorithm does with its fwhm parameter: by reducing its value, “accuracy”, or
model certainty, is increased at the expense of speed [Sled et al. 1998].

5.4 Bias field correction of longitudinal scans

We can extend our bias field correction framework to take advantage of the
information shared between images when longitudinal scans of the same subject
are available. We will henceforth assume that the images at T different time
points t = 1, . . . , T have been brought to a common coordinate frame, by means
of a rigid groupwise registration algorithm, e.g.,[Reuter et al. 2010; Reuter et al.
2012]. We first describe the model for T = 2 time points, and then show how
the model is easily extended to consider T > 2.

5.4.1 Model

For two time points, the corresponding images are denoted y1 = (y1,1, . . . , y1,N )T

and y2 = (y2,1, . . . , y2,N )T , where N is the number of voxels. We first assume
that an (unobserved) shared image ȳ = (ȳ1, . . . , ȳN )T has been generated by a
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Gaussian mixture model

p(ȳ|θ) =

N∏

i=1

p(ȳi|θ), (5.50)

p(ȳ|θ) =

L∑

l=1

N (ȳ|µl, σ2
l )πl, (5.51)

where θd = (µ1, . . . , µL, σ
2
1 , . . . , σ

2
L, π1, . . . , πL)T . We then assume that each

time point has been generated by adding zero-mean gaussian noise with variance
σ̄2 to ȳ and then separate bias fields bt = Φct, i.e., for time point t = 1

p(y1|ȳ, c1) =
∏

i

p(y1,i|ȳi, c1), (5.52)

p(y1,i|ȳi, c1) = N (y1,i − b1,i|ȳi, σ̄2). (5.53)

Apart from acquisition noise, the variance σ̄2 also explains potential differences
between the two images due to changes in tissue over time, as well as errors in
the registration.

5.4.2 Parameter Optimization

The only difference between the two time points are the Gaussian noise added to
y and the independent bias fields. Therefore, the two images can be represented
as a weighed average image u that contains the “common” signal and a difference
image v that only contain noise and the differential bias with respect to u.

The transformation from y1 and y2 to u and v can be obtained using a simple
transformation matrix T

(
ui
vi

)
=

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)

︸ ︷︷ ︸
T

(
y1,i

y2,i

)
. (5.54)

Note that we chose T to be orthonormal such that T TT = I, since this simplifies
the following analysis. For now, we consider a scenario where p(θ) ∝ 1. The like-
lihood of observing u and v given the full set of parameters θ = (σ̄2,θd, c1, c2)T
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is

p(ui, vi|θ) =

∫

yi

p(ui, vi|ȳi,θ)p(ȳi|θ) dȳi

=

∫

yi

p(y1,i, y2,i|ȳi,θ)p(ȳi|θ) dȳi

=

∫

yi

N (y1,i −Φic1|ȳi, σ̄2)N (y2,i −Φic2|ȳi, σ̄2)p(ȳi|θ) dȳi

=

∫

ȳi

N (ui −Φicu|ȳi, σ̄2)N (vi −Φicv|0, σ̄2)p(ȳi|θ) dȳi

=N (vi −Φicv|0, σ̄2)

L∑

l=1

(∫

ȳi

N (ui −Φicu|ȳi, σ̄2)N (ȳi|µl, σ̄2
l ) dȳi

)
πl

=N (vi −Φicv|0, σ̄2)︸ ︷︷ ︸
p(vi|σ̄2,cv)

L∑

l=1

N (ui −Φicu|µl, σ2
l + σ̄2)πl

︸ ︷︷ ︸
p(ui|θ̃d,cu)

, (5.55)

where we have used
(
y1,i −Φic1 − ȳi
y2,i −Φic2 − ȳi

)
= T−1

(
ui −Φicu − ȳi
vi −Φicv

)
,

and p(ui, vi|ȳi,θ) = p(y1,i, y2,i|ȳi,θ) since det(T ) = 1. Here θ̃d is the same as
θd but with re-parameterizations σ̃2

t = σ2
t + σ̄2. Finally, we can rewrite the

likelihood as:

p(u,v|θ) =
∏

i

p(ui, vi|θ) (5.56)

=
∏

i

p(vi|σ̄2, cv)

︸ ︷︷ ︸
p(v|σ̄2,cv)

∏

i

p(ui|θ̃d, cu)

︸ ︷︷ ︸
p(u|θ̃d,cu)

. (5.57)

The MAP parameters are therefore given by

θ̂ = argmax
θ

[p(θ|u,v)] = p(v|σ̄2, cv)p(u|θ̃d, cu)p(θ) (5.58)

= argmax
θ

[log p(θ|u,v)] = log p(v|σ̄2, cv) + log p(u|θ̃d, cu) + log p(θ), (5.59)

which shows that the parameters for u and v can be estimated separately.
Taking partial derivatives of the objective function and setting to zero we obtain
the following parameter updates for cv and σ̄2:

cv =
(
ΦTΦ

)−1
ΦTv, (5.60)
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σ̄2 =

∑N
i=1(vi −Φicv)

2

N
, (5.61)

which is closed form. The parameters cu and θ̃d can be estimated from the
weighed average image u by means of GEM as described in Section 5.2.

Once both bias field components cu and cv have been computed, the M bias
field coefficients for the original images c1,1, . . . , c1,M , c2,1, . . . , c2,M cain be ob-
tained simply be a transformation back from the u,v space: (c1,m, c2,m)T =
T−1(cu,m, cv,m)T . The equations show that each image is affected by a global
bias field that is common to both, and a difference field that is unique to each
image.

5.4.3 Prior on the Bias Field Parameters

When we have non-uniform priors on the bias field p(c1) and p(c2) with the same
quadratic form and same covariance matrix, we can show similar to before that
they are independent with respect to u and v. We incorporate a Gaussian prior
on the bias field coefficients as before: p(c) ∝ exp(−cTΨc). We further assume
that the prior is applied to the coefficients of each time point independently:
p(c1, c2) = p(c1)p(c2). We consider an example where we have only one basis
function, although it is also valid for M > 1 basis functions. We denote the
resulting variance ψ, which yields the following joint probability

p(cu, cv) ∝ exp

[
−
(
c1
c2

)T (
ψ 0
0 ψ

)(
c1
c2

)]

∝ exp

[
−
(
cu
cv

)T
(T T )−1

(
ψ 0
0 ψ

)
T−1

(
cu
cv

)]

∝ exp

[
−
(
cu
cv

)T (
ψ 0
0 ψ

)(
cu
cv

)]

∝ exp(−c2uψ)︸ ︷︷ ︸
p(cu)

exp(−c2vψ)︸ ︷︷ ︸
p(cv)

,

using TT T = I, i.e., we penalize the bias field coefficients in the u,v space the
same way as in the original image space.

Deriving the lower bound of Equation 5.59 and setting partial derivatives to zero,
we obtain the following bias field coefficient update for the difference image v

cv =
(
ΦTΦ + λ2σ̄2Ψ

)−1
ΦTv, (5.62)
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We see that the updates for cv and σ̄2 now are interdependent, which means
they need to be estimated similar to GEM. This is easily done by alternating be-
tween fixing one and updating the other and vice versa, until some convergence
criterion, e.g., the relative change in variance goes below some threshold. As
before, the parameters for the common image u can be estimated using GEM.

5.4.4 More Than Two Time Points

The only difference between having more than two time points is that T − 1
images vt, t = (1, 2, . . . , T − 1) that form a linear combination of the original
images need to be computed, whereas u remains the weighed average of all time
points. The challenge is to pick the correct orthogonal T matrix that changes
basis of the measurements such that we obtain these images. We can obtain
this matrix using Gram-Schmidt orthogonalization.

5.5 Contributions

In this section the contributions within generative modeling of bias field correc-
tion are presented. Section 5.5.1 presents paper B, where we showed how the
popular N3 algorithm can be formulated using a generative model. We then
present the contributions of paper C in Section 5.5.2. Section 5.5.3 summarizes
the longitudinal model for bias field correction that was previously discussed,
and Section 5.5.4 discusses the software for bias field correction “IIC” that was
implemented as a result of all contributions.

5.5.1 N3 Unveiled: A Heuristic MAP Estimator

In [Larsen et al. 2014] (paper B), we presented how the popular N3 bias field
correction algorithm can be explained as a generative model that uses L = 200
Gaussians to model u, but where mixture model parameters (π) are estimated
by means of a heuristic update, in particular a regularized least-squares fit.

Whereas we initially expected that N3 bias field correction would suffer due
to the non-optimal parameter estimation, our experiments revealed that the
mixture model fits obtained are in fact reasonable, and that bias field esti-
mates, corrected data and corresponding mixture model fits to the histogram
are comparable between N3 and EM when the hyper parameters (number of
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Figure 5.9: Illustrations of bias field correction of a 7T MR image: uncorrected
data (a), estimated bias field and corrected data using N3 (b,c) and EM with
L = 6 Gaussians (d,e), histogram fits at convergence using N3 (f) and EM (g)
(green curves represent individual mixture components, red curve represent the
full mixture model).

basis functions M , and the smoothing regularization λ) are tuned properly.
This has been illustrated in Figure 5.9. Similarly, we showed that performance,
measured by means of the CJV were comparable between the models for tuned
hyper-parameters.

However, we observed that computational speed of the bias field correction was
3-6 times faster when we fit a mixture model composed of few Gaussians (e.g.,
L = 3, 6, 9) to the data using GEM, as compared to the L = 200 Gaussians
fitted using the heuristic in N3 (using our own implementation in Matlab).

5.5.2 A Unified Model for Bias Field Correction

This work had a number of goals:

• To present a unified, generative model for bias field correction that is
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highly configurable. We already discussed the model in Section 5.1.5.
Details on how the model can be configured, and the relative merits and
weaknesses of each configuration, have been elaborated in paper C.

• To introduce a version of the model that also accounts for spatial proximity
when the likelihood for a voxel to belong to a label is determined. The
model is inspired by SLIC superpixels [Achanta et al. 2012] and aims to
remove the need for brainmasking and the use of probabilisitic atlases,
both of which are particularly important at high field strengths ≥ 7T.

• To evaluate performance of the model configurations using a number of
measures.

Given the bias field correction literature presented in chapter 4, it appears that
this framework is unique, in the sense that no other works have proposed a fully
generative model for bias field correction which fulfills the following conditions:

• fully utilizes GEM for the optimization of all involved parameter estimates,

• allows for, but does not require, the use of a probabilistic atlas.

Supervoxels

Paper C presents a specific model instantiation of the generative framework
which takes into account that close spatial proximity between voxels make them
more likely to have been generated from the same label. The model instantiation
was inspired by SLIC Superpixels [Achanta et al. 2012], and bears a lot of
resemblance to the model presented in [Greenspan et al. 2006].

Specifically, we consider a multivariate Gaussian distribution where the covari-
ance matrix is constrained to be non-zero along the diagonal only, such that
each dimension is independent. We then define the likelihood of observing both
the intensity and spatial position of a voxel given a label:

p(ui|l,θd) = N (ui|l,µl,Σl) , (5.63)

with θd = (µ1, . . . ,µL,Σ1, . . . ,ΣL)T and exploiting notation, as ui = (di −
bi,x

T
i )T now is a vector containing the “true” intensity as before as well as

the spatial location xi. µl is the mean of the multivariate distribution, and
Σl = diag(σ2

l,intensity, σ
2
l,x, σ

2
l,y, σ

2
l,z) is the covariance matrix which encodes the

spread of intensities and spatial positions for each supervoxel, separately for
each dimension. We found that this model performed well when the spatial
variance for all supervoxels was kept fixed to the initialized values.
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(a) (b)

Figure 5.10: A 3T dataset segmented with the supervoxel mixture model using
an initial grid spacing of 50mm.(a) outline, (b) filled segmentations of super-
voxels.

Figure 5.10 illustrates a segmentation of a 3T image into the most probable
supervoxels argmaxl w

i
l . In this configuration, σ2

νI was fixed to the squared
distance between centroids at initialization (50mm2). The supervoxel model
and its parameter estimation are elaborated upon in paper C.

Evaluating Bias Field Correction Performance

Paper C contains an extensive test setting for a large number of bias field cor-
rection configurations. The model configurations were compared in terms of the
CJV between gray an white matter, following leave-one-out cross-validation of
the optimal regularization hyper-parameter (λ) value leading to the best mean
CJV in the training set. We generally observed superior performance when
employing supervoxels or a tissue atlas for correction, both at 3T and 7T.

We also measured robustness of the configurations by measuring the difference
in cortical thickness given FS segmentation of a 3T scan-rescan data set com-
posed of two coregistered time point scans per subject, taken between two days
and six months apart. However, this did not translate to better robustness when
measuring performance using cortical thickness in FS. Whereas some scans were
acquired some months apart, the result suggests that the FS software is mostly
sensitive towards configuration of the bias field (number of basis functions, reg-
ularization) as was shown in [Zheng et al. 2009], whereas the employed mixture
model is less important as long as the mixture model fit is reasonable.
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Figure 5.11: Box plot showing cross-sectional vs. longitudinal model perfor-
mance. (a) Measured using CJV between white and gray matter, and (b) differ-
ence in estimated cortical thickness in a 3T dataset composed of subjects with
two time point scans each. Lower values equates to better performance. The
red line represents the mean, while the blue box covers one standard deviation
of the data and the red box covers the 95% confidence interval of the mean. The
optimally corrected scan, as measured by the CJV, was fed to Freesurfer in order
to obtain the cortical thickness measures. The illustrated model configurations
all used L = 6 Gaussians, and measured were obtained after correction using
(for both figures) a foreground-background mask (FB-Free-L6 and FB-Free-L6-
Long) and a Freesurfer generated mask (FSM-Free-L6 and FSM-Free-L6-Long).

5.5.3 Longitudinal Bias Field Correction

The model for longitudinal bias field correction presented in section 5.4 is the
most recent contribution in this study. Originally intended to go into paper C,
it was decided to present the model here, as there is still experimental work to
be done to verify the performance of the model, and further to limit the extend
of paper C which was already very extensive. The model is to our knowledge
the only one to correct for both the bias field that is common to all time point
scans, as well as the difference bias field between scans.

Figure 5.11 shows cross-sectional vs. longitudinal model performance on a 3T
dataset composed of subjects with two time point scans each, using L = 6
Gaussians in the mixture model. Performance was measured using CJV between
white and gray matter, and cortical thickness difference. As seen, there is no
difference in performance between the cross-sectional and longitudinal model.
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(a) (b)

(c) (d)

(e)

Figure 5.12: 2D histograms (normalized) of two coregistered and bias field
corrected time point scans of the same subject: (a) data corrected using the
cross-sectional model, (b) joint probability distribution of the data using the
cross-sectional model, (c) data corrected using the longitudinal model, (d) joint
probability distribution of the data given the longitudinal model, (e) uncor-
rected data. The longitudinal model (d) is clearly a more realistic model for the
underlying data u.
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Figure 5.12 show 2D histograms of the uncorrected and corrected time point
scans for a single subject using the cross-sectional and longitudinal correction, as
well as histograms of corresponding mixture models. The figure clearly illustrate
how the longitudinal model is a more realistic model, as it takes advantage of
the fact that the data arises from the same underlying image (the same subject),
and not from two entirely separate subjects (the assumption underlying cross-
sectional correction).

5.5.4 The Software: Intensity Inhomogeneity Correction

All models presented here and in papers B and C were implemented in a Matlab
software package named “Intensity Inhomogeneity Correction” (IIC). A lot of
focus during this study revolved around completing the software, such that it
would be a usable alternative to e.g., the N3 algorithm. To our knowledge,
it is the only available software of its kind to offer bias field correction using
generative models, in Matlab, and without a dependency on registration to a
target template (e.g., [Ashburner and Friston 2005]). The software is complete
with descriptions and help text, and is highly configurable. Paper C offers a
more complete overview of the model configurations that can be used for bias
field correction. Finally, a fair amount of time was spent to make the method
run efficiently, emphasizing speed and limiting memory consumption wherever
possible.

Efficient estimation of the bias field coefficients

The separability of the basis functions in Equation 5.21 can be exploited. It is
not necessary to explicitly compute the Kronecker product Φ listed in Equa-
tion 5.21, which is costly, both in terms of computational time and memory
consumption. However, one only has to compute Φx, Φy and Φz as well as
their respective Hadamard products Φx ◦Φx, Φy ◦Φy and Φz ◦Φz. These are
then used in a number of 1D filtering operations to obtain ΦTSΦ and ΦSr
that are both necessary in order to estimate the bias field coefficients:

c← (Φ>SΦ + 2λΨ)−1Φ>Sr.

This approach only requires a fraction of memory compared to computation of
the full Kronecker product, and it is much faster. The details of this operation
can be inspected in the software, which involves a lot of matrix juggling using
reshape and permute.
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5.5.5 Brainmasking in Freesurfer

Studies, e.g.,[Boyes et al. 2008] have shown that brainmasking is important for
the quality of the bias field correction. FS uses the N3 for bias field correction,
but in the current version 5.3, the brainmask is not used. Due to the results
found in this thesis, the upcoming Freesurfer version 6.0 has the pipeline re-
arranged such that bias field correction is done using N3 with a brainmask and
with tuned bias field hyper-parameters.

5.6 Discussion

5.6.1 N3: A Box of Secrets

To verify our hypothesis about the model underlying N3, it was necessary to
make our own N3 implementation in Matlab, and then compare results to the
original N3 implementation. This proved challenging, in particular with re-
spect to the cubic B-spline smoothing scheme and associated bending energy
regularization, which is used to model the bias field. Furthermore, the N3 im-
plementation is composed of several details not mentioned in the original article,
which further complicated the process of verifying that it is indeed based on a
generative model. In the following, we discuss some of the observations we made
about the original N3 implementation throughout our analysis.

First, the regularized least-squares fit, used to fit the mixture model to the data,
results in negative mixture model coefficients. This is not valid in a Gaussian
mixture model, for which reason these negative coefficients are zeroed in the
algorithm. This in turn results in a non-optimal fit. This was already presented
in [Larsen et al. 2014], and has been illustrated in Figure 5.13.

Second, (also mentioned in the paper) after the bias field estimate is expo-
nentiated back to the original intensity domain (following convergence of the
algorithm), the estimate is smoothed one more time using the same bias field
hyper-parameters that were used during bias field estimation. This is a vio-
lation of the model, as the smoothing only yields optimal bias field coefficient
estimates in the log-domain of the data. The result is a bias field estimate that
is no longer optimal. At least in our tests, this operation penalized performance
(measured by CJV between WM and GM).

Third, N3 suffers from a minor numerical underflow in the binary that performs
the regularized least-squares fit of the basis functions to the residual. This does



5.6 Discussion 71

(a) (b) (c)

Figure 5.13: Regularized least-squares fitting of the mixture model to the his-
togram in N3, before zeroing of negative values of π (a,b), and after (c).

not violate the model, because it just results in a shift in the voxel intensities
which corresponds to scaling the intensity of the bias field slightly up, but
otherwise preserves its shape. This problem proved to be very subtle, and
resulted in extensive debugging of our Matlab code as well as the original N3
binaries, before the problem was fully identified. In our experiments in papers
B and C, we used our own implementation of the N3 smoothing scheme for all
model configurations, as it does not suffer from numerical problems.

Fourth, N3 uses some fitting of Legendre polynomials to extend the bias field
estimate into voxels that were masked out during the fit. We did not investigate
the impact of this on performance, as we made sure that only voxels within the
mask were used for our tests. In any case, voxels that have been bias field
corrected using these Legendre bias field estimates are most likely not optimal.

These particularities makes it somewhat of a dilemma to use the N3 algorithm,
although it has proven to work well. Following the rationale of “the proof is in
the pudding”, it can be argued that it is very usable for bias field correction.

5.6.2 Cross-Validating Parameters for the Bias Field

Smoothness on the bias field can be imposed both in terms of the number of
basis functions M , but also by adjusting the regularization hyper-parameter λ.
All tests throughout this study showed that properly tuning the bias field hyper-
parameters are essential in obtaining the best possible bias field correction. This
result is intriguing, because it means that one essentially need to cross-validate
a two-dimensional set of parameters for every new scanner and MR-sequence
that is used for image acquisition. Cross-validation of just one parameter (in
particular the regularization) is very time consuming: one needs to evaluate
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performance, using e.g., the CJV as a proxy2, in a representative set of volumes
from the dataset for a grid interval of parameter test values. The optimal
hyper-parameters can then be determined by using e.g., a leave-one-out cross-
validation strategy. This approach was employed in both papers B and C.

Testing this extensively is obviously not possible to do for every dataset avail-
able in every study, but it does suggest that more work should be spent into
determining optimal hyper-parameters. A lot of studies are quite likely suf-
fering from sub-optimal hyper-parameters and consequent impaired bias field
correction.

5.6.3 Configuring the Unified Model

Whereas there are almost infinite possibilities for configuring the generative
model for bias field correction, only some seem to have significant impact on its
quality. In the following, we discuss those that we believe to be most relevant.

Model Flexibility

Both papers B and C showed that choosing the number of Gaussians (labels)
too small (e.g., L = 3) penalized bias field correction performance. This is a
result of too few degrees of freedom in the model, leading to a poor mixture
model fit. The result is not surprising, as the data is composed of voxels not
only containing WM, GM and CSF, but also partial volume effects and possibly
also skull and dura, depending on the (lack of) skull-stripping. We generally
observed that L = 6 Gaussians were sufficient to obtain a good mixture fit.

If L is chosen too high the model may become too flexible, which may result in
one or several Gaussians that ‘get stuck’ on just a few voxels containing e.g.,
particular high intensities. This may lead to slower bias field correction because
the variance moves towards zero, thereby reducing the size of the steps taken
during each iteration of the optimization. It is further possible for a Gaussian
to collapse entirely (variance becomes zero), which makes the probability for a
voxel to belong to that particular label go to infinity, and in turn breaks down the
optimization. This can be prevented by introducing a prior distribution on the
variance parameter, thereby regularizing the values it can take. Alternatively,
it easily prevented in a slightly less “elegant” way, by ensuring the variance

2Which in turn depends on either manual selection of WM and GM voxels, or alternatively
an automated segmentation like FS.
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never goes below a certain threshold; the parameter simply becomes fixed at
this point.

As presented in paper C, the mixture model can be configured such that the
mean parameters are optimized to be equidistantly spaced, and/or alternatively
so that a single variance is used for all Gaussians. Both of these approaches
help to prevent against these flexibility issues, and are coincidentally similar to
how N3 handles its mixture of L = 200 Gaussians (fixed variance, equidistant
means).

Label Prior

We observed in paper C that informing the model with a tissue atlas helped
to obtain good bias field estimates and that it sped up parameter estimation
considerably. The result is sensible, as the model is much more certain about the
label probabilities in each voxel, and therefore makes more informed (correct)
estimates.

While the performance achieved using a label prior may be negligible at 3T,
we saw that it becomes much more important at high field strengths (e.g., 7T)
where the bias field effect is much more prominent. Again this is sensible, as
a severe bias field will make intensities of different tissues appear similar, and
the prior helps the model to distinguish between them. In a worst case scenario
where the label prior is not used, the gray and white matter voxels may collapse
into the same label, and in this case, performance (CJV) will be worse than the
original data. This may also happen if the data quality is very bad (noise in the
intensities, moving artifacts, etc.).

Interestingly, model configurations similar to N3 – such as equidistantly spaced
means with equal variance – may help to remedy these problems, in the sense
that the bias field estimate never becomes really good (the model cannot dis-
tinguish voxels properly), but it never becomes really bad either (the voxels are
never allowed to fully collapse into one label).

Supervoxels

In Figure 5.10 that illustrates an MR image segmented with supervoxels, we saw
that some take up a major part of the image (e.g., white matter), whereas others
cluster tightly around a few voxels composed of skull or dura. This happens
because the spatial variance was kept fixed (e.g., 50mm2) while variance of the
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Figure 5.14: A 3T dataset segmented with the supervoxel mixture model using
an initial grid spacing of 50mm using fixed mixture model coefficients.

label intensities were allowed to be updated. This makes the model emphasize
voxel intensities over spatial position when the posterior probabilities for a voxel
to belong to a label are computed.

A more equal spacing and sizing of supervoxels can be achieved by fixing the
intensity variance and scaling it properly relative to the spatial variance (similar
to what is done in [Achanta et al. 2012]), or to fix the mixture model coefficients
πl = 1/L. Figure 5.14 shows an example of supervoxels fit using the latter
strategy, although preliminary testing has shown this approach to perform worse
than when the spatial variance is kept fixed. Due to time constraints, we did
not fully explore bias field correction using supervoxels configured this way.

In any case, the current configuration proved to work better or comparably to
correction utilizing a tissue atlas. However, this performance comes at the ex-
pense of computational time, as the model suffers from very slow convergence
due to the extensive amount of model parameters. The supervoxel model shows
great promise, and we believe it is possible to further improve correction per-
formance, or at the very least, computational time.

5.6.4 Longitudinal Bias Field Correction

The model covered in section 5.4 assumes a perfect registration between images.
This assumption is easily violated, as no registration algorithm (to our knowl-
edge) guarantees this. It is easy to see why the assumption is critical: if the
images are not perfectly aligned, the information mutual between the images
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will not add up on the same voxels, which consequently will distort bias field
estimates. This assumption, and any differences between images that arise be-
cause it is not met, will be expressed in the intensity variance in the difference
image, together with any differences in biology due to the distance between time
points. How critical this assumption is for achieving good performance is not
yet fully explored, but Figure 5.11 shows, at the very least, that performance
is comparable. Further investigation is necessary, e.g., similar to [Reuter et al.
2012], with more datasets where we are certain about the time line for all scans.

Finally, it is worth mentioning that it is only necessary to fit the mixture model
once to the common signal using the longitudinal model. This saves computa-
tional time, and the gain only increases as time points are added.
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Chapter 6

Future Work

Potentials for future work have already been touched upon in previous chapters.
Here, we summarize and elaborate upon them.

6.1 N4ITK Validation

It is a logical next step to investigate and validate the software and model
underlying the N4ITK algorithm by [Tustison et al. 2010]. They present N4ITK
as an evolution of N3, where the underlying cubic B-spline smoothing scheme has
been adapted with a more elaborate scheme where control points are allowed
to adapt to the image. However, when the generative model behind N3 is
considered, the parameter estimates for the bias field coefficients already follows
the optimal optimization. This means that the smoothing scheme in N4ITK
replaces a valid parameter optimization with a heuristic one, unless the more
elaborate scheme also can be explained in terms of a generative model.

[Tustison et al. 2010] suggest that N4ITK performs better than N3 given the
correlation between bias fields estimated from the Brainweb image generator
for a varying number of noise levels and bias field “strengths”, and the ground
truth. However, the results are not conclusive. First, N3 outperforms N4ITK at
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the (realistic) noise level of 5% for bias fields that have been scaled in amplitude
to field strengths somewhere between 1.5T and 3T.

Second, the default N3 parameters were trained on 1.5T data, exactly the field
strength where the method outperforms N4ITK on the Brainweb data. Ideally,
this training involves cross-validating the optimal distance parameter (num-
ber of cubic B-splines) and regularization hyper-parameter. As presented in
[Larsen et al. 2014], these parameters, in particular the regularization, need to
be re-tuned at different field strengths and scanners in order to obtain opti-
mal performance, and N3 does not perform optimally at 3T using the default
hyper-parameter value. This relationship between the number of basis functions
and regularization, and its effect on bias field smoothness, is not considered by
[Tustison et al. 2010]. As a result, N3 is, in our opinion, not tested in an optimal
way.

Third, the smoothing schemes in the two methods are inherently different, which
means you cannot compare the two using the same control point spacing hyper-
parameter and expect that performance is comparable. Again, the solution is
to employ a cross-validation strategy as suggested.

Finally, the bias fields generated by the Brainweb simulator are not physically
correct. While the test setup with respect to the test data is the same for
both methods, and therefore can be considered “fair”, it remains interesting to
compare the methods (including a true generative model implementation) on
real MRI data, using e.g., the CJV between WM and GM as the performance
measure.

6.2 Improving the Bias Field Model

Smoothing Schemes

Somewhat related to the N3 and N4ITK validation, it could be of interest to
explore how well different smoothing schemes perform given proper tuning, i.e.,
using different basis functions and regularization covariance matrices. Theory
does not suggest that one smoothing scheme is superior to another, as the
only model constraint is that the field must be smooth. However, the shape of
the smoothing “kernel” for a particular voxel will differ between schemes, and
it is therefore possible that one scheme lends itself better to capturing subtle
variations in the bias field.
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Respecting the Underlying Physics

Another aspect to consider is the assumption of an entirely multiplicative field.
We know this assumption to be wrong, but it is not clear exactly how much
it affects correction performance, in particular at high field strengths ≥ 7T.
Therefore, it could be of interest to integrate a more physically correct model
in a generative framework.

6.3 Extending the Supervoxel Model

The supervoxel model was derived relatively late in the course of this PhD study,
which leaves a lot of potential for further research. In particular, the model is
highly configurable, and it has not been uncovered how this should be done
in order to achieve optimal performance. The following configuration aspects
should be considered in this regard:

• Initialization (supervoxel mean spacing, variance and weight).

• The relationship between intensity and spatial variance (should one or
both be kept fixed as is implicitly done in [Achanta et al. 2012], should
one be scaled with respect to the other, etc.).

• Determining if mixture coefficients should be the same and fixed through-
out the optimization process.

Furthermore, the presented model is just a first step in incorporating spatial
proximity between voxels and labels in the model, without depending on Markov
random fields or anatomical atlases. Even though the model already appears to
be very powerful, it may be possible to make the model even more elaborate,
thereby achieving even better bias field correction.

6.4 Computational Speed

Resource consumption is always important. Our current implementation “IIC”
has already been optimized in some aspects, in particular with respect to the
residual smoothing (bias field coefficient estimation). However, the code can
most definitely be improved to consume less memory and run faster. This is
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particularly important when the number of labels is high, as is the case for the
supervoxel model which is currently very slow (computational time and number
of iterations to achieve convergence summarized in paper C).

As previously discussed, the nature of EM results in optimization steps that
always guarantee a better solution than before. For the purpose of resource
consumption, the order and arrangement of the two different components of the
M-step in GEM optimization are important. While it seems reasonable to ensure
that the mixture model has been properly fitted to the data before the bias field
is estimated, there may be certain arrangements that yields particular good
computational performance without impacting correction quality. For example,
it may be enough to fit the mixture model using a fixed number of iterations,
rather than allowing it to fully converge given e.g., the relative or absolute
change in cost per iteration. Another example is model configurations where
the variance is the same for all labels. In these configurations, the smoothing
scheme can be further optimized for an increase in computational speed.

Finally, the current implementation is in Matlab, which is suboptimal. For the
method to be truly useful to research, it has to be implemented in C++ for
improved computational speed and reduced memory consumption. The nature
of this work is mostly practical, but proper code optimization is not trivial.

6.5 Longitudinal Bias Field Correction

The longitudinal model currently performs comparably to it’s cross-sectional
counterpart on one dataset in terms of correction quality. Whereas the model
should always guarantee a decrease in computational time which is linear with
respect to the number of time points corrected, it is yet to be fully determined
how well the model performs, in particular in datasets where time point scans
for each subject are both close and far apart in time, in datasets containing
pathology and in datasets of different field strengths.

The model currently assumes registration prior to correction, which potentially
limits performance and usability. It would therefore be interesting to integrate
registration in a more unified model, which has already been explored to some
extent, i.e., by [Ashburner and Ridgway 2013].
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6.6 Integration in Freesurfer

It is the intention that IIC will make its way into the FS pipeline and re-
place the N3 algorithm. This depends in part on obtaining a successful (re)-
implementation of the software in C++, and also on extensive testing.
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Chapter 7

Conclusion

In this thesis, we presented aspects of both development and application of tools
for MRI analysis, which have lead to a number of contributions within the field
of MRI analysis of the brain.

First, it was presented how the software Freesurfer was used to successfully an-
alyze a dataset obtained in the study ADEX, exploring the effects of moderate-
to-high aerobic exercise in patients with mild-to-moderate Alzheimer’s disease.
While it was not possible to show that four months of exercise leads to a signifi-
cant reduction in brain atrophy or improved cognition, findings did indicate that
exercise correlates with volumetric brain changes, and that changes in frontal
cortical thickness correlate with changes in cognitive performance, measured
using the Symbol Digits Modalities and Verbal Fluency Tests. This work has
been presented in paper A.

Second, it was described how the Freesurfer software relies on the popular bias
field correction algorithm N3. We presented how it is important that the soft-
ware is tuned properly with respect to a number of hyper-parameters, in order
to obtain optimal bias field correction given a number of measures, and how
this may affect study outcomes such as those presented in the ADEX study. We
further showed in paper B how the N3 algorithm can be fully explained within
a generative modeling framework, with specific parameters being updated us-
ing heuristic estimation techniques. We used this, together with an overview of
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current literature on bias field correction to motivate research into generative
models for bias field correction.

Third, the research into generative models for bias field correction has resulted
in a fully developed method for bias field correction in Matlab named “Intensity
Inhomogeneity Correction”, which is freely available, and which can be run
without supplying other input than the MRI data to be corrected. Furthermore,
we present the generative framework underlying the correction method which
is, by itself, a contribution. In the framework we included a new generative
model that encodes spatial proximity between image voxels and label centers
using a Gaussian probability distribution, thereby enabling correction of data
that typically requires an anatomical atlas at high field strengths ≥ 7T. This
work is presented in depth in the paper C manuscript.

Finally, we presented and discussed a model for bias field correction of longi-
tudinal time point scans of the same subject, correcting both the bias that is
common to all scans, and also the bias from the difference image. It is the
intention that this model will be the focus in another journal paper.

In the ideal world, the presented method for bias field correction would have
been implemented in C++ and integrated in the Freesurfer pipeline, thereby
combining application and development of MRI analysis tools and emphasizing
how the two areas depend on each other, as was discussed in the introduction.
However, it was not possible to make this achievement within the timespan
of the PhD study. This, together with a number of proposed suggestions for
further research into bias field correction, are therefore left as future work.
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Abstract 

Background: Studies on healthy elderly have shown that aerobic exercise has a positive effect on 

both brain structure and function. So far studies in patients with Alzheimer's disease (AD) are few 

and results have been inconsistent. In this study, we wanted to assess the relationship between 

aerobic exercise, brain changes measured by MRI and cognitive functioning in patients with AD.  

Methods: As part of a larger randomized controlled trial this MR-sub-study included forty-two 

patients. For both control and exercise group MR and cognitive assessment was performed at 

baseline and after 16 weeks with 60-minutes exercise sessions three times a week. Both 

attendance and intensity were monitored providing a total exercise load. Changes in regional brain 

volumes and cortical thickness were analysed using Freesurfer and volume of white matter 

hyperintensities (WMH) quantified. 

Results: Exercise load showed a positive correlation with changes in volume in the hippocampal 

subfields, as well as frontal, cortical thickness in the exercise group. Changes in frontal, cortical 

thickness correlated with measures of mental speed and attention (SDMT) and verbal fluency in 

both groups. Volume of WMH were associates with changes in hippocampal volume. 

Conclusion: In patients with AD the effect of exercise on hippocampal volume appear to depend 

on training attendance and intensity. The extent of WMH may modify the effect of physical training 

but further studies are needed.  



Introduction 

Alzheimer's disease (AD) is a neuro-degenerative disease, characterized by progressive 

impairment of memory [GM84] and atrophy of specific brain regions, in particular the hippocampus 

[JB07]. Atrophy of the anterior hippocampus can be observed in patients with mild cognitive 

impairment (MCI) as early as three years prior to onset of AD, with increasing involvement of the 

hippocampus as the symptoms progresses [JW07]. 

In addition, atrophy has been observed in the amygdala, entorhinal cortex and fusiform gyrus in 

MCI, progressing to the middle temporal gyrus, posterior temporal lope and parietal lobe in patients 

with AD [JW07].  

The effect of current pharmacological treatments of AD are at best symptomatic [RC12] but recent 

studies suggest that non-pharmacological approaches such as physical exercise may have a 

beneficial effect on cognitive functioning as well as brain structure. 

In healthy elderly both cognition, physical functioning and performance in activities of daily living 

were improved when given a home training program consisting of daily exercises and walking 

[AV12].  Studies including MRI suggest that physical training is associated with increased whole 

brain volume [SC06], less atrophy in frontal, parietal and temporal cortex [SC03] and even an 

increase in grey matter volume in pre-frontal and cingulate cortex [RR11]. In preadolescent 

children Chaddock et al [LC10] showed a relation between basal ganglia volume, enhanced 

cognitive functioning and aerobic fitness while in healthy elderly improvement in memory function 

were associated with increase hippocampal volume [KE11]. 

In patients with AD Andrade et al reports an increase in frontal cognitive function, after following a 

multimodal exercise program for 16 weeks [LA13]. 

Increasing evidence support that exercise benefits brain function and structure but also that there 

are multiple pathways and that age and concurrent pathological processes may modify the effect. 

In a recently published study exercise had a positive effect on neuropsychiatric symptoms and 

cognition in a relatively large group of patients with mild to moderate (KH 2016). To our knowledge, 

this is the first to investigate the effect of continuously supervised moderate to high-intensity 

exercise program in patients with mild to moderate AD. In a sub-study, MRI was performed at 

baseline and 16-week follow-up in order to assess the effect on regional brain volumes. The 

primary outcome measure is hippocampal volume and we hypothesize that in AD patients a 

moderate to intense exercise program will preserve hippocampal volume. 

  



Methods 

Participants and study design 

The primary objective of the ADEX study was to assess the effect of moderate-to-high intensity 

aerobic exercise on cognitive and physical functioning, quality of life and ADL in two-hundred 

community-dwelling patients with mild to moderate AD. The participants were randomized into a 

control and exercise group, the latter performing 60 minutes of moderate-to-high-intensity aerobic 

exercise three times weekly for sixteen weeks. Psychological, cognitive and physical performance 

was assessed before and after the sixteen week period for both groups. The trial ran for 5 rounds 

from 2012 to 2014.  

The procedure for screening, as well as inclusion and exclusion criteria, is described in a recent 

publication [KH13]. In brief, key inclusion criteria included age between 50 and 90 years and a 

Minimal Mental State Examination (MMSE) score of more than 19, whereas exclusion criteria 

included presence of medical and psychiatric diseases, alcohol abuse and regular, weekly high-

intensity exercise. 

A subgroup consisting of seventy-one patients from memory clinics in Copenhagen, Roskilde and 

Odense was invited for brain MRI at baseline and 16 week follow-up. Thirteen of these patients left 

the study prematurely, and sixteen patients were excluded due to poor MRI data quality 

(movement artefacts) (9), data processing problems (6) or notable error in data processing 

outcomes (1), leaving 42 patients for the present study.  

The ADEX trial was approved by the The Committees of Biomedical Research Ethics for the 

Capital Region (Protokol no.: H-3-2011-128) and by the Danish Data Protection Agency (j.no.: 30-

0718). 

MRI acquisition 

Both baseline and follow-up MRI was performed at Hvidovre Hospital, Denmark, using a 3.0-T 

Siemens Tim Trio scanner and included T1-weighed magnetization-prepared rapid gradient echo 

(MPRAGE) (TE 3.04ms, TR 1550ms, FoV read 256mm, FoV phase 100%,  192 slices), T2-

weighed fast spin echo (TE 354ms, TR 3000ms, FoV read 282mm, FoV phase 76.6%, 192 slices) 

and fluid attenuated inversion recovery (FLAIR) (TE 353ms, TR 6000ms, FoV read 282mm, FoV 

phase 85.9%, 192 slices) sequences. 

Data processing 

Regional, cortical thickness and hippocampal volume 

The T1-weighed data was gradient unwarped to correct for spatial distortions [JC06], and then 

processed with version 5.3 of the cross-sectional [BF02] and longitudinal [MR12] Freesurfer stream, 

in order to obtain segmentations of cortical regions defined according to the Destrieux atlas [CD10] 

as well as the hippocampal subfields [KL09],  caudate and putamen. The pipeline was specifically 

tuned to correct for intensity inhomogeneity that can be observed at 3T [RB08, WZ09]. 

In cases where Freesurfer failed to properly delineate the white matter and pial surface, the 

pipeline were manually guided following the steps outline in the Freesurfer documentation 

(http://freesurfer.net/fswiki/FreeSurferWiki). This specifically involved correcting the skull stripping 

to better delineate the pial surface, insertion of control points to guide white matter normalization 

for the purpose of improving white matter segmentation, and finally editing the white matter 

segmentation itself. Two trained readers edited the pipeline; to avoid segmentation bias, one was 



responsible for skull stripping and white matter editing, while the other was responsible for control 

point insertion.  

Finally, overall quality of the longitudinal segmentation output were asserted by experienced raters 

(CTL, KSF, EG). Specifically, the pial and white matter surface outlines, as well as the 

hippocampal subcortical segmentation were visually inspected and consensus reached for all. One 

volume was excluded due to significant segmentation error in the hippocampus. 

To explore regional, cortical effects, gyri and sulci thickness measures obtained from Freesurfer  

were divided into four categories (early, middle, late, and very late) each including areas reported 

to be progressively affected by atrophy from mild cognitive impairment MCI to full AD diagnosis 

[JW09]: 'early' (temporal, precuneus, cingulate), 'middle' (parietal, temporal-occipital, occipital, 

fusiform, parahippocampus) and 'late' (frontal). A 'very late' region composed by the pre and 

postcentral cortex were also defined (supplementary material, table 4).  

Whole and parenchymal brain volume 

Freesurfer also provides measures of brain volume (BV), brain parenchymal volume (BPV), white 

matter volume (WM) and intracranial volume (ICV). Whole brain volume included all segmented 

structures, excluding background and the brain stem. Parenchymal volume further excluded the 

ventricles (lateral, inferior lateral, 3rd, 4th and 5th), CSF and choroid plexus. Brain parenchymal 

fraction (BPF) was obtained by dividing BPV with ICV. 

White matter hyperintensities 

For delineation of white matter hyperintensities (WMH), MPRAGE and T2-weighted images were 

co-registered and re-sliced to the corresponding FLAIR image using a 6 parameter rigid 

transformation. WMH were defined as clearly hyperintense areas relative to surrounding white 

matter on both FLAIR and T2-weighted images and identified by simultaneous inspection of both 

aligned images. For WMH volume local thresholding was applied and WMH volumes for the whole 

brain quantified automatically using the Jim image analysis package, Version 6.0, (Xinapse 

Systems Ltd., Northants, UK, www.xinapse.com). Visual identification and delineation was carried 

out by a single trained rater blinded to clinical information. For nine subjects (five control, four 

intervention) WMH could not delineated due to movement artefacts. 

 Longitudinal and normalized measures 

Longitudinal measures of brain volume, cortical thickness and cognitive scores for each subject 

were computed as the relative change between baseline and follow-up by subtracting baseline 

from follow-up, and dividing the difference with the baseline measure, thereby canceling out within-

subject correlations, as well as accounting for between-subject differences in brain size. 

Throughout the paper, we will refer to the relative change simply as change. 

A normalized WMH measure was obtained by dividing WMH volume with white matter volume. 

Cognitive outcome measures 

Cognitive assessment included the Minimal Mental State Examination (MMSE) for global cognitive 

impairment [MF75], the Symbol Digit Modalities Test (SDMT) for mental speed and attention [AS82] 

(only measurements at 120 seconds included in the analysis), and the Stroop Color and Word Test 

(Stroop) incongruent score for reaction time.  Verbal memory performance was assessed by the 

Alzheimer's Disease Assessment Scale – Cognitive Subscale (ADAS-Cog) [WR84], and verbal 

fluency (VFT) as number of words produced over 1 minute each ([KH15] for details). 



Exercise load (attendance and intensity) 

To assess training attendance and intensity a training log was created. Attendance was logged, 

and attendance ratio defined as number of attended exercise sessions over total number of offered 

sessions. Exercise intensity was based on the per-session average heart rate (HR) recorded using 

continued monitoring during exercise (including rest). Average HR for all sessions was calculated, 

and intensity defined as average HR over maximum expected HR (220 minus subject age).  To 

obtain total exercise load, measures for attendance ratio and intensity was multiplied. 

Statistical analysis 

Brain volume measures 

Separate multivariate models were used to compare changes in volume between groups for the 

hippocampal subfields (model 1), para-hippocampus (model 2), caudate and putamen (model 3). 

Similarly, separate models were used to compare changes in thickness of the cortical gyri and sulci 

respectively for each of the ‘early’, ‘middle’, ‘late’ and ‘very late’ categories previously described.  

For all group tests, Hotellings T2 multivariate test [HH31] was applied. Hotellings T2 eliminates the 

need for testing each individual measure in a model (e.g., each of the hippocampal subfields), and 

consequently the need for performing a multiple comparisons test. This makes the test more 

sensitive and less prone to type II error (false negatives) than e.g., univariate tests with Bonferoni 

correction.  

Since outliers were detected in scatter plots of the variables, a further non-parametric Oja rank test 

[HO04] were performed, using 10.000 permutations, to confirm validity of p-values from Hotellings 

T2 test. 

Correlation tests 

The relationship between changes in hippocampal subfield volume and verbal memory (ADAS-Cog 

measure) was tested with caudate and putamen as a control regions. Also, the relationship 

between changes in frontal and cingulate cortical thickness, and verbal memory, mental speed and 

attention (SDMT, VFT, Stroop) were assessed with pre- and postcentral cortex as a control region. 

The relationship between cognitive measures and changes in volume of caudate and putamen 

were explored with hippocampus as a control volume. Finally, relationship between exercise load 

and changes in hippocampal subfield volume as well as frontal cortical thickness were also 

investigated for the exercise group only. (Details on cortical labels can be seen in the 

supplementary material, table 5). 

All correlation tests were performed by computing the covariance matrix between changes in test 

scores and brain measures, and then testing the nul-hypothesis of zero covariance between the 

two. This yields an overall p-value for the full covariance matrix, but not an r-value. If the overall p-

value was significant, a post-hoc analysis of the correlation for each single brain measure was 

performed, yielding individual r- and p-values.  

Six subjects were excluded from the correlation tests due to missing cognitive scores (one subject 

lADAS-Cog; three subjects SDMT; one subject VFT; six subjects Stroop). 

For all tests, the significance level was 0.05.  Gender, age and baseline WMH were used as 

covariates. Statistics were obtained with SAS Statistical Software version 9.4 and Rstudio 2.15.2 



Results 

No significant differences were found for any baseline characteristics between the control and 

intervention group (Table 1).  

Brain volumes 

In the hippocampal subfield model a significant difference were found for the left fimbria (p=0.012) 

and CA2_3 (p=0.016) which however, could not be found when correcting for multiple comparisons 

(figure 1, table2).  No difference between groups was observed for the parahippocampal or 

caudate and putamen models (table 2). No significant between-group difference in changes in 

regional cortical thickness was found (table 3). 

The normalized WMH measure did not change significantly from baseline to follow-up (p=0.996). In 

both groups WMH was associated with changes in the hippocampal subfield volume (p=0.002), 

specifically presubiculum (r=-0.345, p=0.031), and CA4_DG (r=-0.406, p=0.010), (supplement, 

table 6) as well as changes in both gyri (p=0.048) and sulci (p=0.002) thickness in the 'very late' 

category, and also sulci thickness in the 'middle' category (p=0.0495). Inspection of the individual 

significant gyri and sulci showed the largest correlations with the right post-central gyri (r=0.221, 

p=0.170) in the ‘very late’ gyri, the right post-central sulci (r=0.467, p=0.002) in the ‘very late’ sulci 

category, and the right occipital superior and transversal sulci (r=0.460, p=0.003) in the ‘middle’ 

category. 

Cognitive performance correlations 

Change in the frontal and cingulate cortical thickness correlated significantly with both SDMT 

(p=0.025) and VFT (p=0.026), (table 7, supplement). Specifically, for SDMT a moderate correlation 

was found with change in cortical thickness of the right frontal inferior-orbital gyri (r=0.464, p=0.004) 

and right frontal inferior-triangular gyri (r=0.386, p=0.020). Per-group investigation (figure 2) 

revealed moderate correlations in both regions for the exercise group but not the control group. For 

VFT, correlations was found with cortical thickness changes in the left (r=0.384, p=0.017) and right 

(r=0.328, p=0.044) frontal mid-posterior gyri and sulci. Per-group investigation of this relationship 

(figure 3) revealed significant correlations in both regions for the control group but not the exercise 

group. (table 8, supplement).  

A separate analysis of the correlation between normalized WMH and each cognitive performance 

measure showed a significant correlation with Stroop (r=0.394, p=0.023). Inspection of the 

scatterplot of the measures revealed the correlation to be dominated by two points with no 

apparent overall trend. No significant correlations were found between WMH and the SDMT/VFT 

measures. 

Exercise load correlations 

Exercise load was found to associate significantly with changes in cortical thickness in the frontal 

cortex (p=0.0106), especially for the right frontal inferior sulci (r=0.514, p=0.034). Similarly, a 

significant correlation with changes in volume in the hippocampal subfields (p=0.0091) was found, 

the strongest correlation showing in the right subiculum (r=0.443, p=0.086). 

Discussion 

To our knowledge, this is the first study to explore the effects of supervised moderate-to-high 

intensity aerobic exercise on regional brain atrophy measures in patients with mild to moderate AD.  



Main findings in this study are three-fold. First, exercise load shows a positive correlation with 

changes in volume in the hippocampal subfields, as well as frontal, cortical thickness which 

support that exercise does stimulate brain growth, which agrees with previous findings, e.g., 

[SC03], [SC06] and [KE11]. The group differences in changes in the left fimbria and CA2_3 

hippocampal subfield volume disagree (figure 1). While changes in the left fimbria could suggest 

that exercise stimulates brain growth with measurable effects already after 16 weeks in patients 

with AD, the opposite trend in CA2_3 suggest that the effects are spurious.  

We performed a post-hoc qualitative inspection of changes in hippocampal, caudate and putamen 

volume and regional cortical thickness. Our observations suggested only a minor loss of tissue 

across subjects across a four month period, and furthermore that loss of tissue seems to be less in 

exercise participants. In some cases, the data suggested a slight increase. However, given the 

variation in data and the inability to show significant differences between groups, this remains only 

partially indicative of the effects of exercise.  

Previous literature, e.g., Erickson et al, who showed an effect in global hippocampal volume in 

healthy elderly after 1-2 years of PE [KE11]. Our findings suggests that 16 weeks may not be 

enough to effect duration as well as intensity should be considered when planning exercise 

programs. An alternative explanation for the disagreement is that the control group may have been 

exercising outside of the study, thereby diminishing group differences. 

Second, for all participants, changes in frontal, cortical thickness were associated with SDMT and 

VFT. Cortical thinning have previously been shown to associate with cognitive impairment, e.g., in 

Parkinson’s Disease [BS14], which suggests that a decline in cortical thickness can be used as an 

indicator of progressive cognitive impairment. Our finding that frontal, cortical thickness associates 

with SDMT/VFT cognitive performance measures, is in agreement with this, and more generally 

with literature on the role the frontal cortex has in mental speed, attention and verbal fluency [JA06].  

Given that AD is a neuro-degenerative disease, it would be expected that changes in cortical 

thickness and cognitive measures would be primarily negative. However, no particular decline or 

increase in cortical thickness or cognitive performance were observed for changes in frontal, 

cortical thickness and the SDMT/VFT scores (figure 2 and 3). Further inspection reveals a stronger 

relationship between changes in cortical thickness and SDMT for the exercise group, while the 

control group exhibits the strongest correlation with VFT. 

Third, interestingly, normalized WMH values were associated with changes in hippocampal volume 

as well as regional, cortical thickness in both groups, suggesting that pathology other then AD may 

influence brain structure. WMH are generally regarded a marker of small vessel disease and 

severe WMH an indicator of poor vascular health. Recent findings (presented at AAIC 2015) 

suggest that the presence of WMH may modify the effect of exercise intervention but also that 

exercise may enhance vascular health as well as connectivity. 

A recent study [EL15] have shown that the rate of change in WMH are strongest during conversion 

from MCI to AD diagnosis, and follows the rate of change in hippocampal volume suggesting that 

WMH may play a part in the conversion process. Similarly, Caso et al [CF15] conclude that WM 

degeneration may be an early marker of pathological changes in atypical AD. In line with these 

studies, our finding that the severity of WMH associates with relative changes in the hippocampal 

subfields implies a relationship between WMH and the rate of neuro-degeneration in AD.  

WMH has also been shown to associate with cognitive decline [OC10] and more specifically medial 

temporal atrophy, attention and frontal executive functions [YS11] as well as frontal atrophy and 



reduced delayed recall performance [IM12]. Here, we observed positive correlations between 

WMH and changes in cortical thickness, which is not what we would expect. The finding was made 

predominantly in the cortical control regions, where effects due to AD would be expected to show 

very late. As such, the finding could be spurious, and may again suggest that a four month period 

is not be enough to measure significant differences with controls.  

Although the underlying mechanism is still not completely understood animal studies indicate that 

physical exercise stimulates neurogenesis and formation of brain-derived neuro-protective factor 

(BDNF) [HP05][KN09][MM13]. This relationship between exercise and BDNF has also been 

reported in humans [CC02]. 

Methodological considerations  

The disagreement between findings in the left fimbria and left CA2_3 hippocampal subfields, the 

positive correlations between WMH and regional, cortical thickness suggest some level of 

uncertainty in the statistics, one explanation being noise. Furthermore, the population size after 

drop-outs, data processing and quality assurance in this study was quite small, which affects 

statistical power and consequently increases the likelihood of spurious results. 

From a clinical perspective, sixteen weeks of exercise are likely not enough to measure effects on 

the same level as e.g., Erickson et al [KE11]. Furthermore, previous findings have been in healthy 

elderly subjects, with a presumably small pathological load. It is very likely the effects of an 

exercise intervention on the brain might be different in patients with AD.   

The subjects in this study were recruited from three different memory clinics. This could pose a 

potential bias in statistics, given that subjects may be treated differently at each center. We did not 

control for this, due to the already mentioned statistical concerns. Furthermore, there is a good 

agreement between the statistics of the control and intervention group as shown in Table 1. Given 

that subjects from all centers using a controlled, randomized process, it seems reasonable to 

assume that differences between subjects due to memory centers even out. 

As described in [MR12], the longitudinal Freesurfer pipeline utilizes cross-sectionally processed 

time points to generate a common template, which is then used as a point of initialization for an 

unbiased analysis of each individual timepoint. This procedure helps to avoid potential bias in the 

outcome measures due to e.g., registration to the baseline time point, as pointed out in [NF11]. 

Furthermore, it increases statistical power because inter-subject variation is reduced. 

Conclusion 

A sixteen week intervention of moderate-to-high aerobic exercise clearly translated to observable 

changes in hippocampal subfield volume and cortical thickness in a group of patients with AD. The 

finding supports evidence that exercise stimulates exercise, which may potentially have a negating 

effect on neuro-degeneration. 

Furthermore, correlations between changes in the frontal cortex and mental speed and verbal 

fluency show that changes in brain volume and cortical thickness does relate to changes in 

cognition. As such, it seems likely that exercise for prolonged periods of time may increase the 

extent to which brain growth is stimulated, thereby leading to a positive effect on cognition and 

ADL in patients with AD. 

Finally, an observed association between the extent of WMH and changes in the hippocampus 

suggest that WMH may be indicative of the rate of neuro-degeneration. It is further suggested that 

this may have a limiting effect on the effectiveness of exercise. 



Future studies should explore the effect of aerobic exercise focusing on a prolonged duration of the 

intervention period, as well as an increase in the number of participants receiving MRI, in order to 

increase statistical power.  
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Table 1: Baseline demographics for all participants and basic volumetric measures for participants in 

the MR sub-study. 

 MR-substudy Main study 

 Control 
(N=20) 

Exercise 
(N=22) 

p-values Control 
(N=93) 

Exercise 
(N=107) 

Age (years), mean (±SD) 69 (7.5) 68 (7.7) 0.681 71.3 (7.3) 69.8 (7.4) 

Gender, male/female (N) 12 / 8 14  / 8 0.809 57/36 56/51 

MMSE, median (±SD) 26.0 (2.3) 26.0 (3.4) 0.712 24.1 (3.8) 23.8 (3.4) 

Hypertension*, N (%) 5 (25) 4 (18) 0.591 35 (37.6) 48 (44.9) 

WMH (mm3 ·103), median (±SD)  0.83 (6.0) 0.86 (6.1) 0.183 N/A N/A 

WMH/WM (10-3),  median (±SD) 6.00 (15.8) 2.80 (12.2) 0.085 N/A N/A 

BV (mm3 ·106), mean (±SD) 1.01 (0.13) 1.11 (0.12) 0.489 N/A N/A 

BPV (mm3 ·106), mean (±SD)  1.00 (0.11) 1.05 (0.11) 0.226 N/A N/A 

BPF, mean (±SD) 0.63 (0.03) 0.64 (0.03) 0.456 N/A N/A 

* Hypertension was defined as ≥140/90 mmHg. 

WMH: White matter hyperintensities, WM: white matter, BV: brain volume, BPV:brain parenchymal volume, 

BPF: brain parenchymal fraction.  

 



 
 
 

Table 2: Difference between control and exercise group in change in volume measures. 

 Left side  
(p-value) 

Right side 
(p-value) 

Test 1 Hippocampus 

    Total hippocampus volume *  0.930 0.266 

    Presubiculum 0.747 0.817 

    Subiculum 0.485 0.469 

    Fimbria 0.012 0.423 

    Hippocampal fissure 0.240 0.583 

    CA1 0.470 0.237 

    CA2_3 0.016 0.299 

    CA4_DG 0.120 0.184 

Test 2  

 Parahippocampus 0.462 0.962 

Test 3  

Caudate 0.128 0.071 

Putamen 0.289 0.779 

 

* Includes the ’hippocampus’ class, which captures voxels that were not put in the other subfield categories. 



  

Table 3: Difference between control and exercise group in change in cortical, regional thickness. 

 Gyri 
(p-value) 

Sulci 
(p-value) 

Early 0.255 0.187 

Middle 0.112 0.623 

Late 0.687 0.126 

Very late 0.121 0.506 

 

 

 



  

Figure 1: Boxplots showing the changes in volume in the left fimbria and left CA2_3 hippocampal 
subfields for the control and exercise groups. 

 



  
  

Figure 2: Correlation between change in the right frontal inferior-orbital/inferior-triangular gyri 
thickness and relative change in SDMT measured at 120 seconds. 

 



  

Figure 3: Correlation between relative change in the left and right cingulate, mid-posterior gyri and 
sulci thickness and relative change in VFT. 
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Supplementary 

Cortical regions (Freesurfer, Destrieux atlas nomenclature) 

 
 
  

Table 4: Gyri and sulci according to known progression of AD partitioned into categories of 'early', 
'middle', 'late' and ‘very late’. 
 

Gyri 

Early temporal (inferior, medial, superior lateral),  
temporal (transversal, plan-polar, plan-tempo),  
precuneus,   
cingulate (transversal+ventral) 

Middle parietal (inferior-angular+supramar, superior),  
occipital-temporal medial (parahippocampal, fusiform)  

Late frontal (inferior-opercular/orbital/triangular, medial, superior)  

Very Late precentral,  
postcentral  

Sulci 

Early temporal (inferior, superior, transverse),  
cingulate-marginalis  

Middle parieto-occipital,  
occipital-temporal lateral,  
occipital (anterior, middle-lunatus, superior-tranversal)  

Late frontal (inferior, middle, superior)  

Very Late precentral (inferior, superior),  
postcentral  

 



 
  

Table 5: Gyri and sulci of the frontal and cingulate cortex, as well as the precentral and postcentral 
cortex.  
 

Effect frontal (inferior, middle, superior) gyri and sulci,  
cingulate (mid-posterior, mid-anterior, anterior) gyri and sulci 

Control precentral gyri,  
postcentral gyri,  
postcentral sulci, 
precentral (inferior, superior) sulci 
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Table 6: Correlations between baseline normalized WMH and change in volume in the hippocampal 

subfields, parahippocampus, caudate and putamen for all study participants. 

 Left side  Right side 

r-value p-value r-value p-value 

Test 1 Hippocampus 

    Sum of all subfields -0.263 0.106 0.147 0.373 

    Presubiculum -0.345 0.031 0.238 0.145 

    Subiculum -0.295 0.068 0.263 0.106 

    Fimbria 0.281 0.083 0.009 0.956 

    Hippocampal fissure -0.225 0.169 -0.313 0.053 

    CA1 -0.098 0.552 0.058 0.726 

    CA2_3 0.042 0.802 0.085 0.607 

    CA4_DG -0.406 0.010 0.132 0.423 

Test 2  

 Parahippocampus -0.058 0.721 0.135 0.407 

Test 3  

Caudate 0.301 0.059 0.204 0.208 

Putamen -0.140 0.390 0.012 0.941 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: correlations between changes in caudate, putamen volume/frontal, cingulate cortical 
thickness and changes in SDMT/VFT/Stroop outcome measures for all participants. 

 

 Effect 
(p-value) 

Control 
(p-value) 

Frontal, cingulate cortex   

 SDMT  0.0246 0.6749 

Stroop 0.8873 0.5966 

VTF 0.0259 0.4788 

Caudate, Putamen  

 SDMT 0.7042 0.1978 

Stroop 0.8424 0.7530 

VTF 0.0801 0.3846 

 



 

 

Table 8: Correlations between relative changes in frontal/cingulate cortical thickness and VFT/SDMT 
outcome measures for all participants. 
 

 VFT 
(r-value) 

VFT 
 (p-value) 

SDMT  
(r-value) 

SDMT  
(p-value) 

Left: 

Frontal inferior sulci 0.037 0.825 0.103 0.549 

Frontal middle sulci 0.182 0.275 0.187 0.275 

Frontal superior sulci 0.249 0.132 0.099 0.566 

Frontal inferior-opercular gyri 0.297 0.071 -0.069 0.690 

Frontal inferior-orbital gyri 0.164 0.326 -0.057 0.743 

Frontal inferior-triangular gyri 0.319 0.051 -0.032 0.854 

Cingulate mid-posterior gyri and sulci 0.384 0.017 0.118 0.494 

Right: 

Frontal inferior sulci 0.174 0.297 0.167 0.324 

Frontal middle sulci 0.276 0.093 -0.179 0.296 

Frontal superior sulci 0.227 0.170 0.208 0.224 

Frontal inferior-opercular gyri 0.269 0.103 0.279 0.104 

Frontal inferior-orbital gyri 0.114 0.494 0.464 0.004 

Frontal inferior-triangular gyri 0.277 0.092 0.386 0.020 

Cingulate mid-posterior gyri and sulci 0.328 0.044 -0.126 0.463 

 
Significant p-values have been highlighted in orange, bold and the corresponding correlations in blue, bold. 
P-values for the individual gyri and sulci regions have not been corrected for multiple comparisons. 
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Abstract. Although N3 is perhaps the most widely used method for
MRI bias field correction, its underlying mechanism is in fact not well
understood. Specifically, the method relies on a relatively heuristic recipe
of alternating iterative steps that does not optimize any particular objec-
tive function. In this paper we explain the successful bias field correction
properties of N3 by showing that it implicitly uses the same generative
models and computational strategies as expectation maximization (EM)
based bias field correction methods. We demonstrate experimentally that
purely EM-based methods are capable of producing bias field correction
results comparable to those of N3 in less computation time.

1 Introduction

Due to its superior image contrast in soft tissue without involving ionizing radia-
tion, magnetic resonance imaging (MRI) is the de facto modality in brain studies,
and it is widely used to examine other anatomical regions as well. MRI suffers
from an imaging artifact commonly referred to as “intensity inhomogeneity” or
“bias field”, which appears as low-frequency multiplicative noise in the images.
This artifact is present at all magnetic field strengths, but is more prominent
at the higher fields that see increasing use (e.g., 3T or 7T data). Since intensity
inhomogeneity negatively impacts any computerized analysis of the MRI data,
its correction is often one of the first steps in MRI analysis pipelines.

A number of works have proposed bias field correction methods that are inte-
grated into tissue classification algorithms, typically within the domain of brain
MRI analysis [1–7]. These methods often rely on generative probabilistic mod-
els, and combine Gaussian mixtures to model the image intensities with a spa-
tially smooth, multiplicative model of the bias field artifact. Cast as a Bayesian
inference problem, fitting these models to the MRI data employs expectation-
maximization (EM) [8] optimizers to estimate some [7] or all [1, 3, 4, 6] of the
model parameters. Specifically tailored for brain MRI analysis applications, these
methods encode strong prior knowledge about the number and spatial distribu-
tion of tissue types present in the images. As such, they cannot be used out of
the box to bias field correct imaging data from arbitrary anatomical regions.
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In contrast, the popular N3 [9] bias field correction algorithm does not require
any prior information about the MRI input. This allows N3 to correct images
of various locations and contrasts, and even automatically handle images that
contain pathology. However, despite excellent performance and widespread use,
its underlying bias field correction mechanism is not well understood. Specifically,
the original paper [9] presents N3 as a relatively heuristic recipe for increasing
the “frequency content” of the histogram of an image, by performing specific
iterative steps without optimization of any particular objective function.

This paper aims to demonstrate how N3 is in fact intimately linked to EM-
based bias field correction methods. In particular, N3 uses the same generative
models and bias field estimation computations; however, instead of using dedi-
cated Gaussian mixture models that encode specific prior anatomical knowledge,
N3 uses generic models with a very large number of components (200) that are
fitted to the histogram by a regularized least-squares method.

The contribution of this paper is twofold. First, to the best of our knowledge,
this is the first study offering theoretical insight into why the seemingly heuristic
N3 iterations yield such successful bias field estimations. Second, we demonstrate
experimentally on datasets of 3T and 7T brain scans that standard EM-based
methods, using far less components, are able to produce comparable bias field
estimation performance at reduced computational cost.

2 Methods

In this section, we first describe the N3 bias field correction method and its
practical implementation. We then present EM-based bias field correction and
the generative model it is based upon. Finally, we build an analogy between the
two methods, thereby pointing out their close similarities.

2.1 The N3 method in its practical implementation

The following description is based on version 1.121 of the N3 method. In order
to facilitate relating the method to a generative model in subsequent sections,
we deviate from the notational conventions used in the original paper [9]. Fur-
thermore, whereas the original paper only provides a high-level description of
the algorithm (including integrals in the continuous domain, etc.), here we de-
scribe the actual implementation in which various discretization, interpolation,
and other processing steps are performed.

Let d = (d1, . . . , dN )T be the intensities of theN voxels of a MRI scan, and let
b = (b1, . . . , bN )T be the corresponding gains due to the bias field. As commonly
done in the bias field correction literature [1, 3, 4, 6], N3 assumes that d and b
have been log-transformed, such that the effect of b is additive. The central idea
behind N3 is that the histogram of d is a blurred version of the histogram of the
true, underlying image due to convolution with the histogram of b, under the

1 Source code freely available from http://packages.bic.mni.mcgill.ca/tgz/.
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assumption that b has the shape of a zero-mean Gaussian with known variance.
The algorithm aims to reverse this by means of Wiener deconvolution and to
estimate a smooth bias field model accordingly. This reversal process is repeated
iteratively, because it was found to improve the bias field estimates [9].

Deconvolution step: The first step of the algorithm is to deconvolve the his-
togram. Given the current bias field estimate denoted b̃, a normalized histogram
with K = 200 bins of bias field corrected data d − b̃ is computed2. The bin
centers are given by

µ̃1 = min(d− b̃), µ̃K = max(d− b̃), µ̃k = µ̃1 + (k − 1)h, (1)

where h = (µ̃K − µ̃1)/(K − 1) is the bin width, and the histogram entries
{vk, k = 1, . . . ,K} are filled using the following interpolation model:

vk =
1

N

N∑

i=1

ϕ

[
di − b̃i − µ̃k

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Defining v̂ as a padded, 512-dimensional vector such that v̂ = (0T156,v
T ,0T156)T ,

where v = (v1, . . . , vK)T and 0156 is an all-zero 156-dimensional vector, the
histogram is deconvolved by

π̂ ← F−1DFv̂. (2)

Here F denotes the 512× 512 Discrete Fourier Transform matrix with elements

Fn,k = e−2πj(k−1)(n−1)/512, n, k = 1, . . . , 512

and D is a 512× 512 diagonal matrix with elements

Dk =
f∗k

|fk|2 + γ
, k = 1, . . . , 512

where γ is a constant value set to γ = 0.1, and f = (f1, . . . , f512)T = Fg. Here
g denotes a 512-dimensional vector that contains a wrapped Gaussian kernel
with variance

σ̃2 =
f2

8 log 2
, (3)

such that

g = (g1, . . . , g512)T , gl =

{
hN ((l − 1)h|0, σ̃2) if l = 1, . . . , 256

g512−l+1, otherwise,
(4)

where f denotes a user-specified full-width-at-half-maximum parameter (0.15
by default), and N (·|µ, σ2) denotes a Gaussian distribution with mean µ and
variance σ2.

After π̂ has been computed by means of Eq. (2), any negative weights are set
to zero, and the padding is removed in order to obtain the central deconvolved
200-entry histogram π̃.

2 A flat bias field: b̃ = 0 is assumed in the first iteration.
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Bias correction step: When the histogram π̃ has been deconvolved, the cor-
responding “corrected” intensity d̃µl

in the deconvolved histogram is estimated
at each bin center µ̃l, l = 1, . . . ,K by

d̃µl
=
∑

k

wlkµ̃k with wlk =
N
(
µ̃l|µ̃k, σ̃2

k

)
π̃k∑

k′ N (µ̃l|µ̃k′ , σ̃2
k′) π̃k′

,

and a “corrected” intensity d̃i is found in every voxel by linear interpolation:

d̃i =

K∑

l=1

d̃µl
ϕ

[
di − b̃i − µ̃l

h

]
, ϕ[s] =

{
1− |s| if |s| < 1

0, otherwise.

Finally, a residual r = d − d̃ is computed and smoothed in order to obtain a
bias field estimate:

b̃ = Φc̃ (5)

where

c̃←
(
ΦTΦ+NβΨ

)−1
ΦTr. (6)

Here Φ is a N ×M matrix of M spatially smooth basis functions, where element
Φi,m evaluates the m-th basis function in voxel i; Ψ is a positive semi-definite
matrix that penalizes curvature of the bias field; and β is a user-determined
regularization constant (the default is β = 10−7).

Post-processing: N3 alternates between the deconvolution step and the bias
field correction step until the standard deviation of the difference in bias esti-
mates between two iterations drops below a certain threshold (default: ς = 10−3).
By default, N3 operates on a subsampled volume (factor 4). After convergence,
the bias field estimate is exponentiated back into the original intensity domain,
where it is subsequently fitted with Eq. (6), i.e., with r = exp(b̃). The resulting
coefficients are then used to compute a final bias field estimate by evaluation of
Eq. (5) with Φ at full image resolution. The uncorrected data is finally divided
by the bias field estimate in order to obtain the corrected volume.

2.2 EM-based bias field estimation

In the following we describe the generative model and parameter optimization
strategy underlying EM-based bias field correction methods3.

3 Several well-known variants only estimate a subset of the parameters considered here
– e.g., in [1] the mixture model parameters are assumed to be known, while [3] uses
fixed, spatially varying prior probabilities of tissue types.
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Generative model: Maintaining the notation d to denote a log-transformed
image and b = Φc to denote a parametric bias field model with parameters c, the
“true”, underlying image d−b is assumed to be a set of N independent samples
from a Gaussian mixture model withK components – each with its own mean µk,
variance σ2

k, and relative frequency πk (where πk ≥ 0,∀k and
∑
k πk = 1). Given

the model parameters θ = (µ1, . . . , µk, σ
2
1 , . . . , σ

2
K , π1, . . . , πK , c1, . . . , cM )T , the

probability of an image is therefore

p(d|θ) =

N∏

i=1

[
K∑

k=1

N (di −
M∑

m=1

cmΦi,m|µk, σ2
k)πk

]
. (7)

The generative model is completed by a prior distribution on its parameters,
which is typically of the form

p(θ) ∝ exp[−λcTΨc],

where λ is a user-specified regularization hyperparameter and Ψ is a positive
semi-definite regularization matrix. This model encompasses approaches where
bias field smoothness is imposed either solely through the choice of basis func-
tions (i.e., λ = 0, as in [3]), or through regularization only (i.e., Φ = I, as in [1]).
The prior is uniform with respect to the mixture model parameters.

Parameter optimization: According to Bayes’s rule, the maximum a poste-
riori (MAP) parameters are given by

θ̂ = argmax
θ

log p(θ|d) = argmax
θ

[log p(d|θ) + log p(θ)] . (8)

By exploiting the specific structure of p(d|θ) given by Eq. (7), this optimization
can be performed conveniently using a generalized EM (GEM) algorithm [8,
3]. In particular, GEM iteratively builds a lower bound ϕ(θ|θ̃) of the objective
function that touches it at the current estimate θ̃ of the model parameters (E
step), and subsequently improves ϕ(θ|θ̃) with respect to the parameters (M
step) [8, 10]. This procedure automatically guarantees to increase the value of
the objective function at each iteration. Constructing the lower bound involves
computing soft assignments of each voxel i to each class k:

wik =
N
(
di −

∑
m c̃mΦi,m|µ̃k, σ̃2

k

)
π̃k∑

k′ N (di −
∑
m c̃mΦi,m|µ̃k′ , σ̃2

k′) π̃k′
, (9)

which yields the following lower bound:

ϕ(θ|θ̃) =
∑

i

[∑

k

wik log

(N (di −
∑
m cmΦi,m|µk, σ2

k)πk
wik

)]
− λcTΨc. (10)

Optimizing Eq. (10) simultaneously for the Gaussian mixture model parameters
and bias field parameters is difficult. However, optimization with respect to the
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mixture model parameters for a given set of bias field parameters is closed form:

µ̃k ←
∑
i w

i
k(di −

∑
m c̃mΦi,m)∑

i w
i
k

, σ̃2
k ←

∑
i w

i
k (di −

∑
m c̃mΦi,m − µ̃k)

2

∑
i w

i
k

(11)

π̃k ←
∑
i w

i
k

N
. (12)

Similarly, for a given set of mixture model parameters the optimal bias field
parameters are given by

c̃←
(
ΦTSΦ+ 2λΨ

)−1
ΦTSr, (13)

with

sik =
wik
σ̃2
k

, si =
∑

k

sik, S = diag(si), d̃i =

∑
k s

i
kµ̃k∑

k s
i
k

, r = d− d̃.

Valid GEM algorithms solving Eq. (8) are now obtained by alternately updating
the voxels’ class assignments (Eq. (9)), the mixture model parameters (Eqns. (11)
and (12)), and the bias field parameters (Eq. (13)), in any order or arrangement.

2.3 N3 as an approximate MAP parameter estimator

Having laid out the details of both N3 and EM-based bias field correction, we
are in a position to illustrate parallels between these two methods. In particu-
lar, as we describe below, N3 implicitly uses the same generative model as EM
methods and shares the exact same bias field parameter update (up to numer-
ical discretization aspects). The only difference is that, whereas EM methods
fit their Gaussian mixture models by maximum likelihood estimation, N3 does
so by regularized least-squares fitting of the mixture model to the histogram
entries. Thus, whereas N3 was conceived as iteratively deconvolving Gaussian
bias field histograms from the data without optimizing any particular objective
function, its successful performance can be readily understood from a standard
Bayesian modeling perspective.

Considering the generative model described in Section 2.2, we postulate that
N3 uses K = 200 Gaussian distributions that are equidistantly spaced be-
tween the minimum and maximum intensity, i.e., the parameters {µk} are fixed
(Eq. (1)). Furthermore, all Gaussians are forced to have an identical variance
that is also fixed: σ2

k = σ̃2,∀k, where σ̃2 is given by Eq. (3). Thus, the only free
parameters in N3 are the relative class frequencies πk, k = 1, . . . ,K and the bias
field parameters c. We start by analyzing the update equations for c.

For the specific scenario where σ2
k = σ̃2,∀k, the EM bias field update equation

(Eq. (13)) simplifies to

c̃←
(
ΦTΦ+ 2σ̃2λΨ

)−1
ΦTr, with d̃i =

∑

k

wikµ̃k, r = d− d̃,
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where wik is given by Eq. (9). When the hyperparameter λ is set to the value
λ = Nβ/2/σ̃2 this corresponds directly to the N3 bias field update equation
Eq. (6), where the only difference is that N3 explicitly computes d̃µl

for just 200

discrete intensity values and interpolates to obtain d̃i, instead of computing d̃i
directly for each individual voxel.

For the remaining parameters π = (π1, . . . , πK)T , N3 implicitly uses a regu-
larized least-squares fit of the resulting mixture model to the zero-padded nor-
malized histogram v̂:

π̂ ← argmax
x

‖v̂ −Ax‖2 + γ‖x‖2, (14)

where A is a 512×512 matrix in which each column contains the same Gaussian-
shaped basis function, shifted by an offset identical to the column index:

A =




g1 g512 . . . g2
g2 g1 . . . g3
...

...
. . .

...
g512 g511 . . . g1


 ,

i.e., the first column contains the vector g defined in Eq. (4), and the remaining
columns contain cyclic permutations of g. To see why Eq. (14) is equivalent to
Eq. (2), consider that because A is a circulant matrix, it can be decomposed as

A = F−1ΛF with Λ = diag(f),

where F and f were defined in Section 2.1. The solution of Eq. (14) is given by

π̂ ←
(
ATA+ γI

)−1
AT v̂ =

(
F−1ΛHFF−1ΛF + γI

)−1
F−1ΛHF v̂

=
(
F−1ΛHΛF + γF−1F

)−1
F−1ΛHF v̂ = F−1

(
ΛHΛ+ γI

)−1
ΛH︸ ︷︷ ︸

D

F v̂,

where AH denotes the Hermitian transpose of A and where we have used the
properties that AT = AH and FH = 512 · F−1.

An example of N3’s mixture model fitted this way will be shown in Figure 1.
The periodic end conditions in A have no practical impact on the histogram fit,
as the support of the Gaussian-shaped basis functions is limited, and only the
parameters of the 200 central basis functions are retained after fitting. Although
this is clearly an ad hoc approach, the results are certainly not unreasonable, and
N3 thereby maintains a close similarity to purely EM-based bias field correction
methods.

3 Experiments

Implementation: In order to experimentally verify our theoretical analysis
and quantify the effect of replacing the N3 algorithm of Section 2.1 with the EM
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algorithm described in Section 2.2 and vice versa, we implemented both methods
in Matlab. For our implementation of N3, we took care to mimic the original
N3 implementation (a Perl script binding together a number of C++ binaries)
as faithfully as possible. Specifically, we used identically placed cubic B-spline
basis functions Φ, identical regularizer Ψ , and the same sub-sampling scheme and
parameter settings as in the original method. Our EM implementation shares
the same characteristics and preprocessing steps where possible, so that any
experimental difference in performance between the two methods is explained
by algorithmic rather than technological aspects.

During the course of our experiments, we observed that N3’s final basis
function fitting operation in the original intensity domain (described in Sec-
tion 2.1, “Post-processing”) actually hurts the performance of the bias field cor-
rection. Also, we noticed that N3’s default threshold value to detect convergence
(ς = 10−3) tends to stop the iterations prematurely. To ensure a fair comparison
with the EM method, we henceforth report the performance of N3 (Matlab) with
the final fitting operation switched off, and with a more conservative threshold
value that guarantees full convergence of the method (ς = 10−5).

For our EM implementation, we report results for mixture models of K = 3,
K = 6, and K = 9 components. We initialize the algorithm with the bias
field coefficients set to zero: c = 0 (no bias field); with equal relative class
frequencies: πk = 1/K,∀k; equidistantly placed means given by Eq. (1) and
equal variances given by σ2

k = ((max(d)−min(d))/K)2,∀k. For a given bias field
estimate, the algorithm alternates between re-computing wik,∀i, k (Eq. (9)) and
updating the mixture model parameters (Eqns. (11) and (12)), until convergence
in the objective function is detected (relative change between iterations < 10−6).
Subsequently, the bias field is updated (Eq. 13) and the whole process is repeated
until global convergence is detected (relative change in the objective function
< 10−5).

MRI data and brain masking: We tested both bias field correction methods
on two separate datasets of T1-weighted brain MR scans. The first dataset was
acquired on several 3T Siemens Tim Trio scanners using a multi-echo MPRAGE
sequence with a voxel size of 1.2 × 1.2 × 1.2 mm3. It consists of 38 subjects
scanned twice with varying intervals for a total of 76 volumes. The second dataset
consists of 17 volumes acquired on a 7T Siemens whole-body MRI scanner using
a multi-echo MPRAGE sequence with a voxel size of 0.75 × 0.75 × 0.75 mm3.
Since N3 bias field correction of brain images is known to work well only on
scans in which all non-brain tissue has been removed [11], both datasets were
skull-stripped using FreeSurfer4.

Evaluation metrics: Since the true bias field effect in our MR images is un-
known, we compare the two methods using a segmentation-based approach. In
particular, we use the coefficient of joint variation [12] in the white and gray mat-
ter as an evaluation metric, measured in the original (rather than logarithmic)

4 https://surfer.nmr.mgh.harvard.edu/
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domain of image intensities, after bias field correction. This metric is defined as
CJV = σ1+σ2

|µ1−µ2| , where (µ1, σ1) and (µ2, σ2) denote the mean and standard devi-

ation of intensities within the white and the gray matter, respectively. Compared
to the coefficient of variation defined as CV = σ1/µ1, which is also commonly
used in the literature [11, 13] and which measures only the intensity variation
within the white matter, the CJV additionally takes into account the remaining
separation between white and gray matter intensities.

In order to compute the CJV, we used FreeSurfer to obtain automatic white
and gray matter segmentations, which we then eroded once in order to limit
the influence of boundary voxels, which are typically affected by partial volume
effects. We observed that the segmentation performance of FreeSurfer was sub-
optimal in the 7T data because this software has problems with field strengths
above 3T. This problem was ameliorated by bias field correcting the 7T scans
with SPM85 prior to feeding them to FreeSurfer.

In addition to reporting CJV results for the two methods, we also report
their run time on a 64bit CentOS 6.5 Linux PC with 24 gigabytes of RAM,
an Intel(R) Xeon(R) E5430 2.66GHz CPU, and with Matlab version R2013b
installed. For the sake of completeness, we also include the CJV and run time
results for the original N3 software (default parameters, with the exception of
the spacing between the B-spline control points – see below).

Stiffness of the bias field model: The stiffness of the B-spline bias field
model is determined both by the spacing between the B-spline control points
(affecting the number of basis functions in Φ) and the regularization parameter
of Ψ that penalizes curvature (β in N3, and λ in the EM method).

As recommended in [13], we used a spacing of 50 mm instead of the N3 de-
fault6, as it is known to be too large for images obtained at higher-field strengths.
Finding a common, matching value for the regularization parameter in both
methods proved difficult, since we observed that the methods perform best in
different ranges. Therefore, for the current study we computed average CJV
scores for both methods over a wide range of values. We report results for the
setting that worked best for each method and for each dataset separately7.

4 Results

Figure 1 shows the histogram fit and the bias field estimate of both our N3
implementation and the EM method with K = 6 Gaussian components on a
representative scan from the 7T dataset. In general, the histogram fit works well
for both methods; however for N3 a model mismatch can be seen around the
high-intensity tail. This is the result of zeroing negative weights after Wiener
filtering.

5 http://www.fil.ion.ucl.ac.uk/spm/
6 200 mm, appropriate for the 1.5T data the method was originally developed for.
7 A more elaborate validation study would determine the optimal values on a separate

training dataset; however, this is outside the scope of the current workshop paper.
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Fig. 1. Correction
of a 7T volume
(above) with N3
(top right) and
EM with K = 6
components (bot-
tom right). For
each method, the
estimated bias field,
the corrected data,
and the histogram
fit (green curves
represent individual
mixture compo-
nents, red curve
represent the full
mixture model) is
shown.
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Dataset Average computation time (seconds)

EM (3G) EM (6G) EM (9G) N3 (Matlab) N3

3T 12.7 20.7 29.7 86.0 53.5
7T 50.6 79.2 102.0 415.5 170.8

Table 1. Average computation time for correcting a volume within each dataset.

Figure 2 shows the CJV in the two test datasets, before bias field correction
as well as after, using the EM method (for K = 3, K = 6, and K = 9 compo-
nents), our Matlab N3 implementation, and the original N3 software. Overall,
the EM and N3 (Matlab) methods perform comparably, except for EM with
K = 3 components which seems to have too few degrees of freedom in the 7T
dataset. The original N3 implementation is provided as a reference only; its un-
derperformance compared to our own implementation is to be expected since its
settings were not tuned the same way.

Table 1 shows the average computation time of each method. Due to the much
higher resolution of the 7T data, computation time increased for all methods
when correcting this dataset. In all cases, the EM correction ran three to six
times faster than the N3 Matlab implementation, depending on the number of
components in the mixture. As before, results for the original N3 method are
provided for reference only.
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Fig. 2. Scatter plots showing the CVJ between white and gray matter in the 3T (left)
and 7T (right) datasets. Lower CVJ equates to better performance. The red line rep-
resents the mean, while the blue box covers one standard deviation of the data and the
red box covers the 95% confidence interval of the mean.

5 Discussion

In this paper we have explained the successful bias field correction properties of
the N3 method by showing that it implicitly uses the same type of generative
models and computational strategies as EM-based bias field correction methods.
Experiments on MRI scans of healthy brains indicate that, at least in this ap-
plication, purely EM-based methods can achieve performance similar to N3 at a
reduced computational cost.

Future work should evaluate how replacing N3’s highly constrained 200-
component mixture model with more general mixture models affects bias field
correction performance in scans containing pathology. Conversely, while N3’s
idiosyncratic histogram fitting procedure was found to work well in our experi-
ments, it is worth noting that it precludes N3 from taking advantage of specific
prior domain knowledge when such is available. For instance, the skull stripping
required to make N3 work well in brain studies [11] typically involves registra-
tion of the images into a standard template space, which means that probabilistic
brain atlases are available at no additional cost. It is left as further work to eval-
uate whether this puts N3 at a potential disadvantage compared to EM-based
methods, which can easily take this form of extra information into account [3, 7].
Future validation studies should also include comparisons with the publicly avail-
able N4ITK implementation [14], which employs a more elaborate but heuristic
B-spline fitting procedure in the bias field computations.
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Abstract

Correction for intensity inhomogeneity, also referred to as MRI bias field, is often one of the first steps in pipelines for
computerized analysis of brain MRI data. Most of the successful methods for bias field correction that are used today
depend on probabilistic anatomical atlases, skull stripping or manual user input, or some combination of these in
order to achieve good performance. In this paper we present a unified generative model for MRI bias field correction
that encompasses many well-known methods as special instances. We experimentally compare the performance of
a number of representative methods, using both segmentation-based measures as well as computational speed for
evaluation. We also demonstrate the performance of a novel model instance that takes into account how likely voxels
are to belong to the same structure given their spatial proximity, thereby alleviating the need for brainmasking or the
use of an anatomical atlas.

Keywords: bias field correction, Bayesian inference, generative modeling

1. Introduction

Due to its superior image contrast in soft tissue with-
out involving ionizing radiation, magnetic resonance
imaging (MRI) is the de facto modality in brain stud-
ies, and it is widely used to examine other anatomi-
cal regions as well. MRI suffers from an imaging ar-
tifact commonly referred to as “intensity inhomogene-
ity”, “intensity bias” or “bias field”. The bias field ar-
tifact is present at all magnetic field strengths, and is
caused by inhomogeneities in B1 transmit field effi-
ciency and receive field sensitivity. While the effects
due to the receive field sensitivity depend mostly on
the (array of) coils being used for reception, the ef-
fects due to the transmit field efficiency increase with
field strength (e.g., 7T). The effects due to the transmit
field efficiency are dictated by the object being scanned,
specifically its shape, position, orientation and the tissue
it is be composed of [1, 2, 3]. As a result, while other ar-
tifacts which arise from the MRI acquisition device can
be corrected using shimming techniques [4, 5], the bias
field artifact needs to be estimated for each individual
scan using post-processing techniques.

The bias artifact is commonly modeled as a low-
frequency, multiplicative effect over the image, an as-

sumption that is only an approximation since inhomo-
geneities due to the interaction between subject and the
transmit field lead to discontinuities in the field over
tissue borders. However, the approximation has still
proved very useful at field strengths of 1.5 and 3 Tesla,
at least for the purpose of segmentation [6].

Bias field correction is a critical step in neuroimaging
studies, and is normally performed early in the pipeline,
since it avoids the negative impact of intensity inho-
mogeneities on subsequent computerized analyses. As
such, its success is critical for the robustness of the sys-
tem as a whole, since errors early in the pipeline quickly
grow as they propagate through it.

In this study, we propose a generative framework that
encompasses a large family of bias field correction al-
gorithms, including many existing methods that can be
seen as particular cases of our framework. We also em-
pirically compare the performance of several specific
instances, including a novel method that alleviates the
need for brainmasking or the use of an anatomical atlas.

1.1. Related work

A broad range of MRI bias field correction meth-
ods exist, a detailed overview of which has been pre-
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sented in [7]. From a Bayesian point of view, these
methods employ models which can be divided (roughly)
into three categories. In the first category are genera-
tive model-based methods, where the observed image
is assumed to be generated from a model given some
underlying, unobserved parameters. The parameters of
the model are then estimated by maximizing their pos-
terior probability, given the data. In the second cate-
gory are methods that seek to optimize some heuristic
model, such as the frequency content of the histogram.
In between these two categories are hybrid methods,
which can be shown to employ or relate to an underly-
ing generative model, but where some or all parameters
are obtained using heuristic optimization rather than es-
timating the maximum a-posteriori probability (MAP)
parameters. Whereas some methods admittedly have re-
ceived more interest for the purpose of evaluating bias
field correction performance than others, those that have
proven to work consistently well all rely on one or sev-
eral of the following: probabilistic, anatomical atlases,
skull stripping or manual user input.

Generative models. These methods commonly inte-
grate bias field correction into tissue classification al-
gorithms, modeling the image intensities using a mix-
ture of Gaussians which are combined with a spatially
smooth, multiplicative model of the bias field artifact
[8, 9, 10, 11, 12, 13]. Cast as a Bayesian inference prob-
lem, fitting these models to the MRI data employs the
EM algorithm to estimate some [13] or all [8, 10, 11, 12]
of the model parameters. Specifically tailored for brain
MRI analysis applications, these methods encode strong
prior knowledge about the number and spatial distribu-
tion of tissue types present in the images. As such, they
yield excellent performance when analyzing brain MRI
data, but they cannot be used out of the box to bias field
correct images from other anatomical regions.

Heuristic models. Some methods attempt to remove
low-frequency components in the image, assumed to be
the bias field effect, by means of low-pass filtering tech-
niques [14, 15, 16]. Other methods seek to estimate the
field by fitting basis functions to the image data directly,
i.e., thin plate splines [17], second-order [18] or fourth-
order [19] Legendre polynomials.

Again other methods seek to minimize the entropy of
the bias field corrupted image taking into account both
multiplicative bias and additive noise [20], or consid-
ers only the multiplicative field which is modeled using
splines with adaptable control points [21].

A variational level set approach to bias field correc-
tion and segmentation is presented in [22], which uti-

lizes a k-means clustering algorithm to partition the data
into, and estimate the bias field within, regions in the
image domain. More recently, [23] seek to estimate
the bias field of 2D MRI images by fitting a Gaussian
surface to each of the gradient maps for a number of
homogeneous intensity regions, which are selected by
automated identification of image histogram peaks.

Hybrid models. In between categories we find N3 [24],
arguably the most popular bias field correction method
at present. N3 is publicly available and does not use
any prior anatomical information on the input, so it
can be used for MR scans of any anatomical locations
– even if they include pathology. The method is pre-
sented as a non-parametric method that maximizes the
high-frequency content of the histogram. While this
might seem an arbitrary criterion, we have previously
shown [25] that N3 is actually parametric, and is based
on a generative model which employs a heuristic for pa-
rameter estimation. Also receiving increased interest is
N4ITK [26], an evolution of N3 that inherits all its ad-
vantages, while using a more elaborate and adaptive (yet
heuristic) optimization scheme.

[27] presents a fuzzy segmentation scheme that com-
bines tissue classification with bias field correction. The
method seeks to minimize an objective function defined
as the two-norm between voxel and class intensities
weighed with a membership value. Interestingly, this
approach is very similar to generative models, as the
membership values bears resemblance to the posterior
probabilities of class assignments in generative models.
Similarly, [28, 29, 30] modify or extend the fuzzy c-
means segmentation scheme in order to improve perfor-
mance, but otherwise preserves the core scheme of the
method.

A bias field estimator is formulated by [31] using the
conditional probability of observing the data given the
bias field effect and a number of global tissue param-
eters (mean and variance) which are estimated by au-
tomated analysis of the image histogram. Based on an
assumption of a (small) regionally constant bias field,
sample bias field values are then obtained within uni-
formly positioned regions over the image, by minimiz-
ing a cost function on the residual between the ob-
served regional data and corresponding “true” data his-
tograms. These sample values are then smoothed to ob-
tain a global bias field estimate using a regularized least
squares fit of cubic b-splines that have been penalized
on their bending energy.
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1.2. Contribution

The contribution of this paper is threefold. First, we
present a unifying generative framework for bias field
correction, as well as an associated family of parameter
estimation algorithms to compute the bias field based on
the generalized expectation-maximization (GEM) algo-
rithm. We further describe instances of this model that
correspond to specific bias field correction algorithms,
including the “generative” version of N3 that we pre-
sented in [25].

Second, we present an extension to the framework
that takes advantage of the fact that neighboring voxels
typically belong to the same tissue type. Not consider-
ing this spatial consistency is a limitation of many cur-
rent methods, such as N3. The proposed extension is in-
spired by SLIC superpixels [32] and it aims to substitute
or alleviate the absence of probabilistic atlases, which
are often necessary to obtain good bias field corrections
in cases of severe bias (especially in data at higher field
strengths, e.g., 7T). The extension uses an implicit seg-
mentation of the image into supervoxels in the modeling
of the inhomogeneities, and it can be easily incorporated
to our generative model of bias field correction. More-
over, the extension also makes it unnecessary to mask
the region of interest, a step which is typically required
to maximize the bias field correction performance [33].

Finally, we provide an extensive empirical evaluation
of the different models and corresponding parameter es-
timation algorithms. We quantitatively compare a to-
tal of 12 competing algorithms using longitudinal and
cross-sectional MRI data acquired on 3T and 7T scan-
ners.

The rest of this paper is structured as follows. In sec-
tion 2, we present our unified generative framework. In
section 3, we show how the framework can be used to
instantiate a number of generative bias field correction
models. In section 2.2, we describe relevant parameter
updates pertaining to the model instantiations and their
optimization using the GEM algorithm. We then present
the heuristic parameter optimization scheme to the ba-
sic generative model which is used in the popular N3
algorithm.

In section 4 we present a number of experiments that
tests the performance of the different models for bias
field correction, including speed benchmarks, proxy
performance and finally longitudinal performance in
Freesurfer. Finally, we discuss the different models,
advantages and caveats, results and future work in sec-
tion 5.

2. General framework for bias field correction

In this section, we present the general framework
for bias field correction that we will use throughout
the rest of the paper. First, we describe the generative
model that we assume for the bias field corrupted MRI
data. Then, we propose a GEM algorithm to perform
Bayesian inference on the assumed model, in order to
obtain an estimate of the bias field.

2.1. Generative model
The generative model is summarized in Figure 1 and

Table 1. Let d = (d1, . . . , dN)T be the log-transformed
intensities of the N voxels of a MRI scan of size
Nx × Ny × Nz, and let b = (b1, . . . , bN)T be the corre-
sponding (log-transformed) gains due to the bias field.
Working with log-transformed data is commonplace in
the literature, as it simplifies the mathematical analysis
by transforming the multiplicative field into an additive
one [8, 10, 11, 12]. Therefore, we can write:

d = u + b,

where u = (u1, . . . , uN)T are the intensities of the “true”,
uncorrupted, underlying image intensities.

We now assume that b and u are independently gener-
ated. Since b varies smoothly in space, we use a linear
combination of smooth basis functions, such as cubic
B-splines, low order polynomials, or cosine functions.
This approximation neglects the fact that the bias field
is discontinuous across tissue boundaries, but has been
shown to work well [6]. Using this bias field model, we
have for M basis functions φ = (φi,1, . . . , φi,M)T evalu-
ated at voxel i and with coefficients c = (c1, . . . , cM)T

bi =

M∑

m=1

cmφi,m, (1)

or, in matrix notation,

b = Φc, (2)

whereΦ is obtained by taking the Kronecker product of
matrices composed of Mx, My and Mz separable, one-
dimensional basis functions evaluated at Nx, Ny and Nz

voxels respectively

Φ = Φx ⊗Φy ⊗Φz, (3)

with e.g.,

Φx =



φ1,1 φ1,2 . . . φ1,Mx

φ2,1 φ2,2 . . . φ2,Mx

...
...

. . .
...

φNx,1 φNx,2 . . . φNx,Mx


. (4)
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Figure 1: Generative model of bias field corrupted data. Shaded vari-
ables are observed.

The bias field coefficients c = (c1, . . . , cM)T are as-
sumed to be generated by a prior distribution p(c).

Regarding the uncorrupted intensities u, we assume
that they were generated by a mixture of parametric dis-
tributions p(u|l, θd) governed by a discrete field of labels
l = (l1, . . . , lN)T , which indexes which component gen-
erated the intensity at each voxel. The labels li, which
take discrete values between 1 and L (the total number
of labels), cluster together voxels with similar intensity
properties, and they might or might not have a direct
correspondence with neuroanatomical regions or tissue
types. Each label has an associated vector of parameters
for the corresponding distribution of intensities (e.g.,
mean and variance in case of a Gaussian distribution).
We will group these parameters into a single vector of
parameters θd; they are generated by a prior distribution
p(θd).

The model is completed by a distribution p(l|θl) of
the discrete label field, which depends on parameters
θl with their own prior p(θl). The distribution p(l|θl)
reflects any prior knowledge on the labels, and could
for instance be encoded in a probabilistic atlas, or in a
generic smoothness prior. Finally, we assume that both
p(l|θl) and p(u|l, θd) factorize over voxels:

p(l|θl) =

N∏

i=1

p(li|θl), p(u|l, θd) =

N∏

i=1

p(ui|li, θd),

such that the label li and uncorrupted intensity ui are
generated independently for each voxel.

2.2. Inference with GEM

In this section, we describe a GEM algorithm to es-
timate the parameters in the model above. For conve-
nience, we group all the parameters in a single vector
θ = (θT

l , θ
T
d , c

T )T . Following Bayes’ rule, the maximum
a posteriori (MAP) estimate of the parameters is given

θl ∼ p(θl)
l ∼ p(l|θl) =

∏N
i=1 p(li|θl)

θd ∼ p(θd)
u ∼ p(u|l, θd) =

∏N
i=1 p(ui|li, θd)

c ∼ p(c)
b = Φc
d = u + b

Table 1: Generative model of bias field corrupted MRI data.

by:

θ̂ = argmax
θ

log p(θ|d) = argmax
θ

[
log p(d|θ) + log p(θ)

]
.

(5)
By exploiting the specific structure of p(d|θ), this op-

timization can be performed conveniently using a gen-
eralized EM (GEM) algorithm [34, 10]. In particular,
GEM iteratively builds a lower bound ϕ(θ|θ̃) of the ob-
jective function log p(θ|d) that touches it at the current
estimate θ̃ of the model parameters (E step), and subse-
quently improves ϕ(θ|θ̃) with respect to the parameters
(generalized M step) [34, 35]. This is in contrast with
standard EM, in which the bound needs to be exactly
optimized at each iteration. In any case, both EM and
GEM guarantee that the value of the objective function
is increased at each iteration.

Expanding Eq. 5, we obtain:

log p(θ|d) =

N∑

i=1

log


L∑

l=1

p(di|l, θd, c)p(l|θl)

 . . .

+ log p(θl) + log p(θd) + log p(c). (6)

Constructing the lower bound of this function (E-step)
involves computing soft assignments of each voxel i to
each label l (posterior probabilities). The lower bound
is given by

ϕ(θ|θ̃) =

N∑

i=1

L∑

l=1

wi
l log


p(di|l, θd, c)p(l|θl)

wi
l

 . . .

+ log p(θl) + log p(θd) + log p(c), (7)

with posterior probabilities wi
l

wi
l =

p(di|l, θ̃d, c̃)p(l|θ̃l)∑L
l′=1 p(di|l′, θ̃d, c̃)p(l′|θ̃l)

. (8)

Different GEM algorithms can be obtained by chang-
ing the order in which the sets of parameters are opti-
mized in the M step, or the number of times each set of
parameters is updated before going back to the E step.
Some routes may be more efficient than others, depend-
ing on the computational expense of updating each set
of parameters.
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3. Specific instances

In this section, we present different choices for the
probability distributions in the model that yield differ-
ent bias field correction algorithms. Finally, we present
and interpretation of the popular N3 method within our
general framework.

3.1. Spatially uniform label priors, Gaussian intensi-
ties and Gaussian bias field coefficients

3.1.1. Model
A model that does not have any a priori information

on the anatomy in the image to be segmented, can use a
spatially uniform prior for the labels, and assign a Gaus-
sian distribution to each of the labels. In that case, the
parameter vector θl stores the probabilities πl for each
of the classes, i.e., θl = (π1, . . . , πL)T , where πl ≥ 0 and∑

l πl = 1. The prior distribution on the labels is:

p(li|θl) = πli .

The prior distribution on θl is uniform, i.e., p(θl) ∝ 1.
For the intensities, the parameter vector θd encom-

passes the means and variances of L Gaussian dis-
tributions, one corresponding to each label: θd =

(µ1, σ
2
1, . . . , µL, σ

2
L)T . The likelihood term becomes:

p(di|li, θd, c) = N(di − bi|µli , σ
2
li ),

where N is the Gaussian distribution and bi (which de-
pends on the bias field coefficients c) is given by Equa-
tion 1. As we do for θl, we assume a flat prior distribu-
tion for the parameters θd, i.e., p(θl) ∝ 1.

For the bias field coefficients, we use the quadratic
prior

p(c) ∝ exp[−λcTΨc], (9)

where Ψ is a positive semi-definite regularization ma-
trix. Some works (e.g., [10]) use the special case λ = 0:
the smooth nature of the basis functions ensures that the
estimated bias field is also smooth. Other works ([8])
use the identity matrix for the basis functions and im-
pose smoothness solely through Ψ. However, as shown
in Section 4.1.3, further regularization of the field is im-
portant when using basis functions with limited support,
as the lack of data in the images (e.g., due to the appli-
cation of a brain mask) may lead to indeterminate equa-
tions. Moreover, explicit regularization in the prior can
protect against basis functions that are too flexible.

3.1.2. Inference
Setting the partial derivatives of the lower bound with

respect to each parameter to zero, it can be shown that
the update equations in the M step for this model are:

µl ←
∑N

i=1 wi
l(di − bi)

∑N
i=1 wi

l

, (10)

σ2
l ←

∑N
i=1 wi

l (di − bi − µl)2

∑N
i=1 wi

l

, (11)

πl ←
∑N

i=1 wi
l

N
, (12)

c←
(
ΦT SΦ + 2λΨ

)−1
ΦT Sr, (13)

where we have defined

si
l =

wi
l

σ2
l

, si =

K∑

k=1

si
l, S = diag(si),

d̄i =

∑K
k=1 si

lµl
∑K

k=1 si
l

, r = d − d̄.

In the special case where all diagonal elements of S
are the same S ∝ I, the update for the bias field coeffi-
cients simplifies to:

c←
(
ΦTΦ + 2σ2λΨ

)−1
ΦT r, (14)

with

d̄i =

L∑

l=1

wi
lµk, r = d − d̄.

3.2. Constrained Gaussian parameters

3.2.1. Model
In cases of severe bias or poor data, better bias field

correction may be achieved by constraining the Gaus-
sian parameters in the model in Section 3.1 above, in
order to limit the degrees of freedom of the algorithm.

One possibility is to constrain the means of the Gaus-
sian distributions to be equidistant. In that case, the L
means are determined by two free parameters µ1 and µL:

µl = αlµ1 + (1 − αl)µL, (15)

where αl = (l − 1)/(L − 1).
Another option is to force all Gaussians to have the

same variance, i.e., σ2
l = σ̄2. The global variance σ̄2

can be estimated from the data or set to a fixed prede-
fined value.
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3.2.2. Inference
When the means are constrained to be equidistant, we

rewrite Eq. 7 as a function of µ1, µL and set derivatives
to zero to obtain:

[
µ1
µL

]
←



N∑
i=1

L∑
l=1

wi
lα

2
l

N∑
i=1

L∑
l=1

wi
l(1 − αl)αl

N∑
i=1

L∑
l=1

wi
l(1 − αl)αl

N∑
i=1

L∑
l=1

wi
l(1 − αl)2


×



N∑
i=1

L∑
l=1

wi
lαl(di − bi)

N∑
i=1

L∑
l=1

wi
l(1 − αl)(di − bi)



(16)

The rest of the update equations remain as in Sec-
tion 3.1.

If we constrain the variances to be equal, it is also
necessary to modify the update equation for the vari-
ance:

σ̄2 ←
∑N

i=1
∑L

l=1 wi
l (di − bi − µl)2

N
. (17)

3.3. Probabilistic atlas
3.3.1. Model

The model can be augmented with a probabilistic at-
las of anatomy describing neuroanatomical structures or
tissue types, such as in SPM’s “New Segment” [13].
This enables the algorithm to take advantage of this in-
formation to potentially produce more accurate correc-
tions, though it also limits its applicability to the brain,
or whatever structure the atlas is describing.

When a probabilistic atlas is used, the parameter vec-
tor θl stores the atlas probabilities {Ail}, where Ail is the
a priori probability of observing label l at voxel i ac-
cording to the atlas. The prior distribution on the labels
is then:

p(li|θl) = Ail. (18)

Probabilistic atlases typically use few labels that cor-
responds to the anatomy, e.g., one per tissue type or
structure. For this reason, it may be appropriate to use
a Gaussian mixture to model the intensities correspond-
ing to each label. Therefore, the vector parameter θd in-
cludes, for each label, a predefined number of mixture
components Kl, as well as mixture weights πlk, means
µlk and variances σ2

lk for each component (where l in-
dexes the label and k the mixture component):

θd = (π11, . . . , π1K1 , µ11, . . . , µ1K1 , σ
2
11, . . . , σ

2
1K1
,

. . .

πL1, . . . , πLKL , µL1, . . . , µLKL , σ
2
L1. . . . , σ

2
LK1

)T .

And the likelihood distribution is:

p(di|li, θd, c) =

Kl∑

k=1

πlkN(di − bi|µlk, σ
2
lk).

The model is completed with uniform priors p(θd) ∝ 1
and p(θl) ∝ 1.

3.3.2. Inference
As opposed to the instances of our model described

in previous sections, the use of a Gaussian mixture for
each label requires a slight modification of the E-step (in
addition to the M-step) in order to reflect the uncertainty
about which mixture component generated the intensity
of each voxel given its label. Rather then Eq. 7, the
lower bound now is:

ϕ(θ|d) =

N∑

i=1

L∑

l=1

Kl∑

k=1

wi
lk log


N(di − bi|µlk, σ

2
lk)πlkAil

wi
lk



− λcTΨc,

(19)

where the posteriors now have three indices: voxel, la-
bel, and mixture component. In the E-step, these poste-
riors are computed as:

wi
lk =

N
(
di − bi|µlk, σ

2
lk

)
πlkAil

∑N
l′=1

[∑K′l
k′=1N

(
di − bi|µl′k′ , σ

2
l′k′

)
πl′k′

]
Ail′

.

(20)
Setting the corresponding derivatives to zero, the pa-

rameter updates are given by

µlk ←
∑N

i=1 wi
lk(di − bi)

∑N
i=1 wi

lk

(21)

σ2
lk ←

∑N
i=1 wi

lk (di − bi − µlk)2

∑N
i=1 wi

lk

(22)

πlk ←
∑N

i=1 wi
lk∑N

i=1
∑Kl

k′=1 wi
lk′
. (23)

c←
(
ΦT SΦ + 2λΨ

)−1
ΦT Sr, (24)

with

si
lk =

wi
lk

σ2
lk

, si =

L∑

l=1

Kl∑

k=1

si
lk, S = diag(si),

d̄i =

∑L
l=1

∑Kl
k=1 si

lkµlk
∑L

l=1
∑Kl

k=1 si
lk

, r = d − d̄.
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3.4. Supervoxels

3.4.1. Model
A way of imposing a generic smoothness constraint

in the correction without using a probabilistic atlas,
which limits the applicability to a specific anatomical
location, is using supervoxels. We propose a model
which can be considered a 3-D extension of SLIC Su-
perpixels [32]. Intuitively, the model describes a label
as a cluster of voxels of similar intensities within close
proximity to each other.

More specifically, we consider a multivariate Gaus-
sian distribution where the covariance matrix is con-
strained to be non-zero along the diagonal only, such
that each dimension is independent. We then define the
likelihood of observing both the intensity and spatial po-
sition of a voxel given a label similar to [36]:

p(ui|l, θd) = N (ui|l,µl,Σl) , (25)

with θd = (µ1, . . . ,µL,Σ1, . . . ,ΣL)T and exploiting no-
tation, as ui = (di − bi, xT

i )T now is a vector contain-
ing the “true” intensity as before as well as the spatial
location xi. µl is the mean of the multivariate distribu-
tion, and Σl = diag(σ2

l,intensity, σ
2
l,x, σ

2
l,y, σ

2
l,z) is the co-

variance matrix which encodes the spread of intensities
and spatial positions for each supervoxel, separately for
each dimension. As in previous configurations, we have
p(l|θl) = πl and we assume a uniform prior for the mix-
ture and label parameters p(θd) ∝ 1 and p(θl) ∝ 1.

3.4.2. Inference
The inference algorithm is almost identical to that of

Section 3.1, except we now also need to update the pa-
rameters with respect to the spatial dimensions. Setting
the derivatives of Eq.7 to zero yields:

µl ←
∑N

i=1 wi
lui

∑N
i=1 wi

l

, (26)

where the variance for a single supervoxel along the in-
tensity dimension is

σ2
l,intensity ←

∑N
i=1 wi

l(di − bi − µl,intensity)2

∑N
i=1 wi

l

. (27)

and for each of the spatial dimensions, e.g., for x

σ2
l,x ←

∑N
i=1 wi

l(xi − µl,x)2

∑N
i=1 wi

l

. (28)

Estimation of the bias field coefficients remain un-
changed, as they only depend on the intensities.

3.5. Interpretation of N3 within the proposed frame-
work

Here we describe the popular N3 algorithm as an ap-
proximate solver of the model presented in Section 2.

3.5.1. Model
As presented in [25], N3 uses K = 200 labels

described by Gaussian distributions whose means are
equidistantly spaced between the minimum and max-
imum intensity of the corrected data, i.e., the param-
eters {µl} are fixed. Furthermore, all Gaussians are
forced to have an identical variance that is also fixed:
σ2

k = σ̄2,∀k. Therefore, the only free parameters in this
model are the relative class frequencies πk, k = 1, . . . ,K
and the bias field parameters c. This model is very sim-
ilar to that of Section 3.2.

3.5.2. Approximate Inference
The bias field is computed by alternating between the

estimations of π and c until convergence. Since the up-
dates are approximate and no objective function is ex-
plicitly optimized, there is no guarantee that the algo-
rithm will converge.

Computation of mixture model parameters. The weight
parameters are computed by fitting the distribution
p(u|θ) =

∑L
l=1 pi(ui|l, θd)p(l|θl) to the normalized his-

togram of the current estimate of the bias field corrected
data d − d̃. At each iteration, it is assumed that the cen-
ters of the L means are given by:

µ1 = min(d − b), µL = max(d − b),
µl = µ1 + (l − 1)h, h = (µL − µ1)/(L − 1),

(29)

where h is the bin width. The variance of the Gaussians
is fixed and given by:

σ2 =
f 2

8 log 2
, (30)

where f denotes a user-specified full-width-at-half-
maximum parameter (0.15 by default in N3).

To compute the weights, N3 first computes the his-
togram entries {vl, l = 1, . . . , L} using the following in-
terpolation model:

vl =
1
N

N∑

i=1

ϕ

[
di − bi − µl

h

]
, ϕ[s] =


1 − |s| if |s| < 1
0, otherwise.

Then, the weights of the Gaussians are obtained by the
following regularized least-squared fit:

π← argmax
π
‖v̂ − Aπ‖2 + γ‖π‖2, (31)
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where v̂ is a padded, 512-dimensional vector such that
v̂ = (0T

156, v
T , 0T

156)T , where v = (v1, . . . , vL)T and 0156 is
an all-zero 156-dimensional vector. A in Equation 31 is
a 512 × 512 matrix:

A =



g1 g512 . . . g2
g2 g1 . . . g3
...

...
. . .

...
g512 g511 . . . g1


,

in which each column contains the same Gaussian-
shaped basis function g shifted by an offset identical to
the column index

g = (g1, . . . , g512)T ,

gk =


hN((k − 1)h|0, σ2) if k = 1, . . . , 256
g512−k+1, otherwise.

(32)

Vector g is thus a 512-dimensional vector that contains
a wrapped Gaussian kernel with variance σ̄2.

After π has been computed by means of Eq. (31), any
negative weights are set to zero, and the padding is re-
moved in order to obtain the central 200-entry weight
vector π. Note that this update is analogous to Eq. 12,
though suboptimal in the sense that it does not maxi-
mize the bound in Eq. 7.

Computation of bias field coefficients. Given π, N3
computes expected intensities d̃µl at each bin center
µ̃l, l = 1, . . . , L as:

d̃µl =

L∑

l′=1

wl
l′µl′ with wl

l′ =
N

(
µl|µl′ , σ

2
)
πl′

∑L
l′′=1N

(
µl|µl′′ , σ2) πl′′

.

Predicted “true” intensities in each voxel are then ob-
tained by linear interpolation between the bin center in-
tensities:

d̃i =

L∑

l=1

d̃µlϕ

[
di − bi − µl

h

]
, ϕ[s] =


1 − |s| if |s| < 1
0, otherwise.

These equations are analogous to the E-step of our gen-
eral framework in Section 2, with the difference that d̃µl

has been computed for just L = 200 discrete intensity
values and interpolated to obtain d̃i – instead of com-
puting d̃i directly for each individual voxel.

Finally, a residual r = d − d̃ is computed, and since
the variance is equal for all Gaussians S ∝ I, the bias
field coefficients are updated according to Equation 14.

3.6. Convergence aspects

While this heuristic mixture model fitting approach
has proven to work well in practice, it does not guaran-
tee an increase in the objective function in every itera-
tion. Where EM algorithms use the objective function
to determine convergence, N3 instead uses the standard
deviation of the difference in bias estimates between two
iterations, and terminate when it drops below a certain
threshold (10−3 by default).

4. Experiments and results

In this section, we explore the bias field correction
performance of a number of configurations of our pro-
posed model, including a version where we employ the
heuristic N3 updates for the mixture coefficients.

4.1. Experimental setup

4.1.1. MRI data
We used two different datasets of MRI scans in this

study. The first dataset consists of 38 subjects scanned
twice with time intervals between two days and six
months, for a total of 76 volumes. The data was ac-
quired on several 3T Siemens Tim Trio scanners using
identical multi-echo MPRAGE sequences with a voxel
size of 1.2× 1.2× 1.2 mm3. The sequences were highly
optimized for speed, with a total acquisition time for
both scans below five minutes [37]. Time points from
the same subject were coregistered, prior to correction,
using mri robust template from the Freesurfer 5.3 tool-
box [38].

The second dataset consists of 30 volumes acquired
on a 7T Siemens whole-body MRI scanner equipped
with SC72 body gradients using a custom-made 32-
channel brain receive coil array and birdcage volume
coil for transmit. The data was recorded using a multi-
echo MPRAGE sequence with a voxel size of 0.75 ×
0.75 × 0.75 mm3 using the same acquisition parameters
as in [39]. Due to the higher field strength, these scans
present more severe bias field corruption than the 3T
dataset, and represent a bigger challenge for correction
methods. This dataset is cross-sectional, so each subject
only has a single volume available.

4.1.2. Data preprocessing and parameter initialization
Brainmasks. In order to obtain brain masks for the 3T
data, we first preprocessed all volumes using Freesurfer
[40]. For the 7T data, the FreeSurfer pipeline does not
provide a good mask due to the more intense bias field.
To ameliorate this problem, these scans were first bias
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field corrected using SPM81 and then fed to FreeSurfer
for skull stripping.

If bias field correction is performed without skull
stripping, it is necessary to filter out background voxels.
This is done in order to to avoid estimating the bias field
in voxels containing only noise, as these voxels violate
the proposed model.

To obtain background-foreground masks, we used the
GEM algorithm in Section 3.4 in order to obtain param-
eter estimates for a number of supervoxels fit to a down-
sampled version of the image (4mm resolution), using
an initial supervoxel grid spacing of 50mm. We then
performed Otsu segmentation on the supervoxel inten-
sity means, thereby obtaining the mean intensity thresh-
old value that best separates the supervoxels into back-
ground and foreground classes. Each voxel i was finally
assigned the label of the supervoxel that it most likely
belongs to, i.e., the one that maximizes argmaxl wi

l. As
seen in figure 9, this approach effectively removes back-
ground voxels, while it preserves voxels containing sig-
nal, both brain and non-brain. We found this approach
to work well for both the 3T and 7T data.

Parameter initialization. For all models, we initialized
the bias field coefficients to zero: c = 0 (no bias
field). For the configurations where labels were not con-
strained to equal variance, the Gaussian mixture coeffi-
cients were initialized with equal relative frequencies:
πl = 1/L. In the equal variance configurations, the
normalized histogram (using a number of bins equal to
the number of labels) were used, as preliminary tests
showed slightly better costs at convergence using this
approach. The Gaussian means were placed equidis-
tantly between the minimal and maximal intensities of
the image, and the variances all set to σ2

l = ((max(d) −
min(d))/L)2.

For the configuration using a probabilistic atlas, the
model parameters were initialized differently since each
label is modeled using separate mixtures. First, we as-
sumed a single Gaussian per class and estimated means
and variances, assuming a posterior class probability
equal to the corresponding prior probability. Then, the
means of the mixture components of each class were
initialized by placing them equidistantly in an inter-
val covering three standard deviations from the esti-
mated global mean. The variances were initialized to
the squared, equidistant spacing between means, and the
mixture coefficients for each label to πlk = 1/Kl.

In all cases, the model parameters were estimated in
a downsampled version of the scans (4mm resolution),

1http://www.fil.ion.ucl.ac.uk/spm/

and the estimated bias field coefficients subsequently
used to compute the bias field at full resolution after
convergence.

4.1.3. Smoothness of the bias field
To preserve comparability between all configurations

including the one based on the N3 heuristic parame-
ter updates, we used an explicit implementation of cu-
bic B-spline basis functions that mimics the original N3
method exactly, i.e., for the image dimension x:

φx,m =

4∑

s=0

−1s

h3

(
4
s

)
[x − λm−s]3 ω (x − λm−s) , (33)

with

ω(k) =


1, k ≥ 0
0, k < 0,

where λm−s is one of Mx + 3 knot locations and h is
the distance between them. Since cubic B-splines have
local support, they are adaptable to local variations in
the image.

Because the support of a given b-spline might not
cover a sufficient number of foreground voxels to per-
form the estimation of its coefficient, regularization is
necessary. We followed the N3 algorithm and chose a
regularization matrix that penalizes the bending energy
of the basis functions, generally defined as:

Jp(φ) =
1
V

∫

Rp

P∑

i=1

P∑

j=1

[
∂2φ

∂ui∂u j

]
du, (34)

where V is the volume of the region D, expressed in
terms of the knot locations:

D =
[
λ(x)

0 , λ(x)
Mx−3

]
×

[
λ

(y)
0 , λ

(y)
My−3

]
×

[
λ(z)

0 , λ
(z)
Mz−3

]
. (35)

Practically, we obtain this matrix by defining:

Ψ =
∑

αx,αy,αz≥0
αx+αy+αz=2

2
αx!αy!αz!

Ψ(αx)
x ⊗Ψ(αy)

y ⊗Ψ(αz)
z , (36)

with elements e.g., for Ψ(αx)
x

ψ(α)
i, j =

1
V

∫

D
= φ(α)

i (x)φ(α)
j (x) dx, (37)

where e.g., φ(α)
i denotes the α’th derivative of i’th basis

function with respect to x. As before, our implementa-
tion mimics that of the N3 algorithm exactly.

More generally, smoothness of the bias field is con-
trolled by increasing or decreasing the number of basis
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functions M and the regularization hyper parameter λ.
Whereas the basis functions only allows a finite num-
ber of smoothness levels, the λ hyper parameter in the
prior provides continuous control. While it is possible
to simply set M to a very high number and then con-
trol smoothness using λ, parameter estimation becomes
computationally more expensive as M increases. There-
fore, one strategy for configuring these two parameters
is to first determine the number of basis functions where
the model begins to overfit the data, and then increase
the regularization in order to impose more smoothness.
This is a similar approach to the one used in [33], except
they only considered the number of basis functions.

4.1.4. Optimization scheme and assessment of conver-
gence

In the GEM optimization, the algorithm alternates be-
tween re-computing the posteriors in the E-step and up-
dating the model parameters in the M-step. During the
M-step, the Gaussian parameters are first iteratively up-
dated until the increase in the objective function (Eq. 6)
is lower than < 10−6N (here N is the number of voxels).
In the case of the N3 updates (Section 3.5), this is a non-
iterative process, so no convergence criterion is needed.
After the Gaussian parameters have been updated, the
bias field coefficients are optimized with Eq. 13. Then,
the algorithm begins a new iteration by going back to
the E-step. Global convergence is achieved when the
standard deviation of the difference bias field between
two consecutive iterations is lower than 10−5.

4.1.5. Competing model configurations
A broad range of model configurations were tested:

• FB-FREE-L3: Background - foreground segmen-
tation with supervoxel scheme. Mixture composed
of L = 3 Gaussians with free means, variances and
weights, updated according to Eqs. (10), (11) and
(12) respectively.

• FB-FREE-L6: Same as configuration FB-FREE-
L3 above, but with L = 6 Gaussians.

• FB-FIXEDVAR-L20: Background - foreground
segmentation with supervoxel scheme. Mixture
composed of L = 20 Gaussians with free means
and weights, but a single variance updated accord-
ing to Eq. (17).

• FB-2MEANS-L200: Background - foreground
segmentation with supervoxel scheme. Mixture of
of L = 200 Gaussians fitted using equidistant 2-
parameter mean update given by equation (16) and
fixed variance given equation (30) ( f = 0.15).

Figure 2: The probabilistic tissue atlas from SPM8. From left to right:
CSF, GM and WM.

• FB-N3-L200: Background - foreground segmen-
tation with supervoxel scheme.. Mixture of L =

200 Gaussians fitted with the N3 updates from Sec-
tion 3.5 ( f = 0.15).

• SUPERVOXELS: Supervoxel mixture model, us-
ing a 50mm grid interval initialization of super-
voxel centers. The exact number of Gaussians in
the mixture varies, given how many were left after
background thresholding. The spatial variance was
fixed to the squared spacing between voxel centers
along each dimension for all supervoxels.

• FSM-FREE-L3: Same as FSM-FREE-L3
above, but using brain the brain extraction
from FreeSurfer – rather than the background-
foreground segmentation with supervoxels.

• FSM-FREE-L6: Same as FB-FREE-L3 above,
but with FreeSurfer brain extraction.

• FSM-FIXEDVAR-L20: Same as FB-
FIXEDVAR-L20 above, but with FreeSurfer
brain extraction.

• FSM-2MEANS-L200: Same as FB-2MEANS-
L200 above, but with FreeSurfer brain extraction.

• FSM-N3-L200: Same as FB-N3-L200 above, but
with FreeSurfer brain extraction.

• PROB-ATLAS: Probabilistic atlas model from
Section 3.3. The model uses L = 4 labels, which
correspond to white matter (2 mixture compo-
nents), gray matter (2 components), cerebrospinal
fluid (2 components) and non-brain tissue (3 com-
ponents). The label priors are given by the proba-
bilistic tissue atlas from SPM8, illustrated in Fig-
ure 2, coregistered to the data using FLIRT version
6,[41, 42, 43]. Note that this model does not re-
quire a brain mask; probabilities from the coreg-
istered tissue atlas were used to filter away voxels
more than 99% likely to belong non-brain tissue.
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4.1.6. Measures of performance
Since the true bias field effect in our MR images is un-

known, we use indirect approaches to evaluate the per-
formance of the model configurations: the coefficient
of joint variation (which is a segmentation-based ap-
proach) and the stability of cortical thickness measures
in longitudinal data.

This coefficient of joint variation is defined as CJV =

(σG + σW )/(|µG − µW |), where (µG, σW ) and (µG, σW )
denote the mean and standard deviation of intensities
within the gray and white matter, respectively. There-
fore, this metric requires segmentations for the gray and
white matter. Compared to the coefficient of variation
(defined as CV = σW/µW ), which is also commonly
used in the literature [44, 33], the CJV considers not
only the intensity variation withing the white matter,
but also the separation between the white and gray mat-
ter intensities. The CJV was computed in the original
(rather than logarithmic) domain of image intensities,
after bias field correction.

In the longitudinal data, we use another indirect mea-
sure of performance: assuming that the longitudinal
scans are close in time, the difference between estimates
of cortical thickness (obtained with Freesurfer[40]), can
be used to evaluate robustness of the correction method.
Following the hypothesis that a better bias field correc-
tion will remove more of the bias field, but otherwise
not affect the image, the difference in cortical thickness
should consequently be closer to zero for the better bias
field correction [33].

4.1.7. Experiments
Segmentation based performance with CJV. We bias
field corrected all scans in the 3T and 7T datasets us-
ing the competing model configurations at two reso-
lution levels of the regularization parameter λ, which
describes how much we penalize the flexibility of ba-
sis functions when computing the bias field estimate.
For all tests, we used a distance setting of 50mm be-
tween control points, as presented to be optimal for 3T
data in [33]. This may be insufficient on 7T data, and
whereas a strategy was previously described for deter-
mining the optimal number of basis functions and reg-
ularization in Section 4.1.3, we chose this constraint to
limit the extent of our testing.

For each dataset, we then progressed to choose the λ
values leading to optimal CJV performance using leave-
one-out cross validation for the bias field corrected
scans. This was done by keeping one scan as a test sub-
ject, and the remaining scans in a training set. The mean
CJV were computed for all bias field corrected training
scans for each value of λ, and the λ leading to the lowest

mean CJV across the entire training set were then used
to compute and store the corresponding CJV in the test
scan. This process was then repeated for each subject
in the dataset, and separately for each of the competing
configurations, since the optimal value depends of the
variance of the mixture model, which in turn depends
on the choice of model. The dependence between λ and
the variance stems from the fact that higher variances
lead to less trust (and therefore lower relative weight) in
the fit.

The white and gray matter masks that the CJV re-
quires were automatically obtained with FreeSurfer, and
they were eroded with a spherical structuring element of
radius 1 in order to limit the influence of boundary vox-
els on the metric, as these voxels are typically affected
by partial volume effects.

Differences in cortical thickness for longitudinal data.
We further used the longitudinal 3T data to evaluate the
stability of the cortical thickness estimates across time
points for the different competing models. The cortical
thicknesses were computed with FreeSurfer using the
images corrected using the cross-validated, optimal reg-
ularization parameters. Comparing the thicknesses of
two time points is trivial because FreeSurfer provides a
thickness map in standard coordinates.

Computational efficiency. We also recorded the num-
ber of iterations that each of the competing algorithms
took to converge. Even though directly comparing mod-
els with different numbers of parameters is not possible,
we can still compare equivalent models with different
types of brain masks. Also, we can evaluate the speed
of convergence of N3 against that of GEM using the
same generative model.

4.2. Results

4.2.1. Segmentation based performance with CJV
Table 2 lists the means and standard deviations of the

cross-validated values of λ that lead to the optimal CJV
performance for each model configurations, in each of
the two datasets. In general, the optimal regulariza-
tion λ needed to obtain best CJV performance for each
model configuration was found to deviate very little be-
tween volumes. We observed that more regularization
is necessary when masking the brain using FreeSurfer
than when segmenting the whole head with supervox-
els. This is a consequence of the amount of non-brain
voxels in image: the tighter the mask, the less flexibility
is required to correct the bias field.

Figure 3 shows the CJVs for the different models for
the 3T dataset. We observe that configurations using
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Configurations
Foreground-background Mask Freesurfer Mask
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3T
Reg. (λ) 44.2 (0.4) 32.1 (0.0) 33.6 (0.9) 30.3 (0.7) 32.0 (0.3) 24.2 (0.5) 84.1 (0.2) 80.0 (0.3) 84.1 (0.0) 80.1 (0.4) 47.9 (0.5) 34.1 (0.2)
Seconds 7 (2) 23 (9) 101 (37) 544 (257) 137 (70) 1112 (281) 2 (0) 10 (6) 47 (12) 272 (35) 47 (7) 14 (4)
Iterations 21 (10) 56 (24) 176 (100) 289 (175) 246 (125) 542 (220) 19 (5) 24 (5) 93 (23) 108 (11) 151 (20) 26 (5)

7T
Reg. (λ) 2.1 (0.0) 2.1 (0.0) 2.1 (0.0) 2.1 (0.0) 2.1 (0.0) 2.1 (0.0) 44.7 (0.9) 36.0 (0.5) 40.1 (0.0) 34.1 (0.5) 32.0 (0.4) 9.2 (1.0)
Seconds 13 (4) 55 (16) 237 (37) 2019 (246) 280 (69) 1543 (366) 3 (1) 8 (2) 50 (9) 473 (108) 68 (9) 11 (3)
Iterations 69 (33) 112 (27) 339 (77) 703 (128) 606 (127) 1419 (495) 31 (7) 35 (6) 114 (40) 245 (40) 251 (30) 33 (5)

Table 2: Mean and standard deviation of the optimal regularization parameter value λ (scaled by a factor 10−4 and rounded to one decimal) for each
model configuration and dataset, computed with cross validation; and of computational time in seconds as well as iterations necessary to estimate
the bias field (both rounded).
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Figure 3: Box plot showing the CVJ between white and gray matter in
the 3T dataset. Lower CVJ equates to better performance. The red line
represents the mean, while the blue box covers one standard deviation
of the data and the red box covers the 95% confidence interval of the
mean. The CJV value for each volume in each model were selected
by leave-one-out cross validation of the smoothing regularization (λ),
leading to the best average CJV for the training set.

the tight brain mask provided by FreeSurfer outperform
the equivalent configurations with the supervoxel-based
mask. This finding is in agreement with previous liter-
ature on the importance of masking, e.g., [44]. The fig-
ure also shows that the configuration with a low number
of Gaussian components (L = 3) and free weights and
variances performs considerably worse than the other
configurations. This is due to an insufficient number of
degrees of freedom; performance with L = 6 is satisfac-
tory. The supervoxel mixture model (see sample in Fig-
ure 9) performs comparably to the FreeSurfer masked
corrections, despite the fact that it is independent from
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Figure 4: Box plot showing the CVJ between white and gray matter in
the 7T dataset. Lower CVJ equates to better performance. The red line
represents the mean, while the blue box covers one standard deviation
of the data and the red box covers the 95% confidence interval of
the mean. The CJV value each volume in each model were found
by leave-one-out cross validation of CJV values, given the applied
smoothing regularization.

brain masking. Finally, the configuration using a prob-
abilistic atlas takes advantage of prior knowledge about
the image to produce the lower CJV.

On the other hand, the results for the 7T dataset
(Figure 4) show superior performance of the super-
voxel foreground mask compared over FreeSurfer’s
brain mask.

Figures 5 and 6 show corrected scans, bias field es-
timates as well as mixture model fits after one itera-
tion and at convergence for a single 3T and 7T vol-
ume for all of the FreeSurfer masked configurations,
as well as the supervoxel configuration, all using the
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Figure 5: Illustrations of bias field correction using a number of model configurations, given the optimal regularization
value, for a single 3T volume. From left to right: corrected data, estimated bias field, mixture fit in the first iteration and
at convergence, respectively. Configurations, from top to bottom: FSM-FREE-L3, FSM-FREE-L6 FSM-FIXEDVAR-
L20, FSM-2MEANS-L200, FSM-N3-L200, PROB-ATLAS, SUPERVOXELS. Corrected images and associated bias
fields all have the Freesurfer mask overlaid, for easy comparability.
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Figure 6: Illustrations of bias field correction using a number of model configurations, given the optimal regularization
value, for a single 3T volume. From left to right: corrected data, estimated bias field, mixture fit in the first iteration and
at convergence, respectively. Configurations, from top to bottom: FSM-FREE-L3, FSM-FREE-L6 FSM-FIXEDVAR-
L20, FSM-2MEANS-L200, FSM-N3-L200, PROB-ATLAS, SUPERVOXELS. Corrected images and associated bias
fields all have the Freesurfer mask overlaid, for easy comparability.
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Figure 7: Uncorrected 3T (left) and 7T (right) scans used for the bias
field corrections shown in Figure 5 and 6 respectively.

optimal regularization λ. Figure 5 illustrates how the
data histogram is highly affected by low intensity vox-
els in the SUPERVOXELs configuration, but that the
configurations otherwise result in very similar fits and
corrections. The FSM-N3-L200 configuration appears
to have slightly difficulties in fitting the high intensity
peak, but this does not seem to impact the quality of the
correction. The 7T corrections in Figure 6 show how
the FSM-FREE-L3, FSM-FIXEDVAR-L20 and FSM-
N3-L200 all have problems fitting the (supposed) gray
matter peak. The estimated bias fields are similar for
all configurations, except for the SUPERVOXELS con-
figuration. This indicates that the added information
in the supervoxel generated mask at 7T results in The
uncorrected scans at 3T and 7T corresponding to Fig-
ures 5 and 6 have been shown in Figure 7.

4.2.2. Differences in cortical thickness

Figure 8 shows a box plot of the differences in cortical
thickness between the two time points per subject for
each of the model configurations. It can be seen that the
differences are minor (∼ 0.01mm).

4.2.3. Computational efficiency

Table 2 also shows the average computational time as
well as number of iterations that it took the GEM algo-
rithm to converge for each competing algorithm. The
table reveals that convergence is achieved faster using
a tight brain mask, which was expected, since the op-
timization is only driven by voxels containing relevant
information - rather than outliers outside the brain. It is
also seen that convergence is achieved faster the more
the model is constrained; either by reducing the number
of free parameters (which depends on L), or by con-
straining it using a probabilistic atlas.
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Figure 8: Box plots showing the cortical difference in mm for each
model configuration on the 3T dataset. The red line represents the
mean, while the blue box covers one standard deviation of the data
and the red box covers the 95% confidence interval of the mean.

Figure 9: A 3T dataset segmented with the supervoxel mixture model,
using an initial grid spacing of 50mm. An outline of the segmented
supervoxels is shown to the left, with a filled segmentation to the right.

5. Discussion

Supervoxel model configuration

The supervoxel model extension is highly config-
urable, given its many parameters and how these can
be updated or fixed. Here, we presented results for
one configuration where we kept spatial variance fixed,
thereby allowing proximity between voxel intensities to
dominate the model. A segmentation of the image into
the associated supervoxels has been shown in Figure 9.
As seen, the configuration produces what appears to be
a nice “non-informed” segmentation of the different tis-
sues, which would explain why the model performs as
well as it does.
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Figure 10: A 3T dataset segmented with the supervoxel mixture
model, using an initial grid spacing of 50mm with free variance and
fixed mixture coefficients. An outline of the segmented supervoxels is
shown to the left, with a filled segmentation to the right.

We also experienced with other configurations, in
particular one where we kept the relative label frequen-
cies fixed to equal weight, and then allowed the spatial
variance to update. An example has been shown in Fig-
ure 10. While this leads to nice image segmentations
which bears more resemblance to those shown in [32],
preliminary testing of this configuration using the CJV
measure suggested that it does not lead to the same per-
formance as when we fix the spatial variance and allow
the weights to update. Rather, it performs comparably
to the other configurations that depend on background-
foreground masking. One possible reason for this is
that this configuration is not able to properly take into
account the “garbage in the image”, i.e., the skull and
dura, much similar to the other background-foreground
masked configurations.

Bias field correction performance

Whereas the finding that correction of the 7T data is
best using the background-foreground mask disagrees
with current literature on the importance of masking,
the rest of the results suggest that better correction is ob-
tained when the model is properly constrained, in partic-
ular by using either a brainmask or a probabilistic tissue
atlas.

The supervoxel model configuration shows superior
performance in both the 3T and 7T datasets. The fact
that the model runs independently of both brainmask-
ing and use of an anatomical atlas, speaks in its favor, in
particular in situations where neither is available. How-
ever, the model has a very slow convergence rate, in par-
ticular at 7T. This is a direct result of the number of free
parameters in the model.

Figure 11: Corrected 7T scan using FSM-FREE-L6 (left) and SU-
PERVOXELS (right), displayed using a heat map to enhance varia-
tions in tissue intensities. It appears as if the supervoxel corrected
image is more homogeneous within each tissue, which agrees with
the CJV performance.

As a result, the supervoxel should be seen as comple-
mentary; if no brainmask or anatomical atlas is avail-
able, it provides a nice option. On the other hand, if one
or both of the two are available, either can be used in
favor of obtaining faster convergence.

Masking at 7T
We performed a thorough inspection of the uncor-

rected as well as corrected data, and found that the bias
field effects in a region around the temporal lobes were
particularly severe, leading to very dark voxels. We
concluded that these effects result in a misalignment of
the bias field when parameters are estimated within the
proper brain mask.

Figure 11 shows the data corrected using the FSM-
FREE-L6 and SUPERVOXELS configurations. It ap-
pears that the tissue is much more homogeneous in the
image corrected using the SUPERVOXELS configura-
tion, which agrees with the CJV performance. Further
inspection of the corrected data in Figure 6 suggests that
the brainmasked corrections may actually be overcom-
pensating for the severe bias field effect, whereas this
seem to be alleviated when the model is informed with
more data using the supervoxel generated foreground-
background masks.

To further verify the validity of the 7T data corrected
using the SUPERVOXELS configuration, we also in-
spected the segmentation into supervoxels as well as the
coregistered tissue probability maps. As seen in Fig-
ure 12, it appears that the SUPERVOXELS configura-
tion has done a good job of segmenting the image into
the respective tissues.

Segmentation performance using Freesurfer

There seem to be no clear connection between
the optimal CJV and segmentation performance using
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Figure 12: Left to right: Supervoxel segmentation and WM, GM and CSF probability maps respectively coregistered to the 7T scan. The Probability
maps appear to be in concensus with the supervoxel segmentation.

Freesurfer. One explanation is that the FS pipeline is
so extensive and performs several intensity normaliza-
tion operations, that it is robust towards relatively small
differences in how well GM and WM are separated af-
ter bias field correction. As such, it appears that tuning
the number of basis functions as well as the regulariza-
tion in the bias field model is much more important than
choosing a particular mixture model – provided that the
mixture model fits the data relatively well. Another ex-
planation is any difference in performance is lost be-
cause the intervals between cross-validated regulariza-
tion hyper parameter values were too large.

Future work
It is a logical next step to investigate and validate the

software and model underlying the N4ITK algorithm
by [26]. They present N4ITK as an evolution of N3,
where the underlying cubic B-spline smoothing scheme
has been adapted with a more elaborate scheme where
control points are allowed to adapt to the image. How-
ever, when the generative model behind N3 is consid-
ered, the parameter estimates for the bias field coeffi-
cients already follows the optimal optimization. This
means that the smoothing scheme in N4ITK replaces a
valid parameter optimization with a heuristic one, un-
less the more elaborate scheme also can be explained in
terms of a generative model.

[26] suggest that N4ITK performs better than N3
given the correlation between bias fields estimated from
the Brainweb image generator for a varying number of
noise levels and bias field “strengths”, and the ground
truth. However, the results are not conclusive. First, N3
outperforms N4ITK at the (realistic) noise level of 5%
for bias fields that have been scaled in amplitude to field
strengths somewhere between 1.5T and 3T.

Second, the default N3 parameters were trained on
1.5T data, exactly the field strength where the method
outperforms N4ITK on the Brainweb data. Ideally, this
training involves cross-validating the optimal distance

parameter (number of cubic B-splines) and regulariza-
tion hyper-parameter. As presented in [25], these pa-
rameters, in particular the regularization, need to be re-
tuned at different field strengths and scanners in order
to obtain optimal performance, and N3 does not per-
form optimally at 3T using the default hyper-parameter
value. This relationship between the number of basis
functions and regularization, and its effect on bias field
smoothness, is not considered by [26]. As a result, N3
is, in our opinion, not tested in an optimal way.

Third, the smoothing schemes in the two methods are
inherently different, which means you cannot compare
the two using the same control point spacing hyper-
parameter and expect that performance is comparable.
Again, the solution is to employ a cross-validation strat-
egy as suggested.

Finally, the bias fields generated by the Brainweb
simulator are not physically correct. While the test setup
with respect to the test data is the same for both meth-
ods, and therefore can be considered “fair”, it remains
interesting to compare the methods (including a true
generative model implementation) on real MRI data, us-
ing e.g., the CJV between WM and GM as the perfor-
mance measure.
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