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FLANGE CURLING IN COLD FORMED PROFILES 

Jeppe Jönsson, Gediminas Ramonas  
DTU Civil Engineering, Technical University of Denmark 

Abstract: The non-linear flange curling phenomenon in cold formed profiles is the tendency 
of slender flanges to deform towards the neutral axis for increasing flexural curvature. Based 
on Braziers work, Winter proposed a simple engineering formula for determination of the lo-
cal flange deformation towards the neutral axis. This formula is used in Eurocode to estimate 
flange curling deformation and give a limit after which flange curling has to be taken into ac-
count, however no method or procedure is given for this. The current work presents a new 
original method, which fits directly into the iterative scheme of Eurocode for determination of 
effective widths and the neutral axis position in flexure of thin-walled cross sections. 
 
1 Introduction 
 
Recently a general analytical model based on a Brazier type analysis [1] has been presented 
by Silvestre [2,3], however it does not fit into the iterative scheme for the determination of the 
flexural properties of thin-walled cross sections with effective widths in compressed flanges.  
 

 
Fig. 1: Flange curling of slender tension flanges 

 
The current work presents a new original flange curling model (FCM), which fits into the it-
erative scheme for determination of the neutral axis position and section properties of thin-
walled profiles with effective widths. The transverse action on the flange is established 
through knowledge of the current curvature of the beam, the magnitude of flange curling de-
formation, the current iterated position of the neutral axis and the axial stress distribution in 
the deformed state. The axial stress distribution in the deformed and flange curled state is 
based on the primary assumption that also flange curled distorted cross sections remain plane. 
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This assumption leads to a simple determination of the non-linear deformation in the flange. 
The presented formulation is based on the principles of Winters formula for flange curling 
and the integration of the approximated stress distribution in the flange. We introduce effec-
tive widths in the tension flange as well as an effective distance from the neutral axis as 
shown in Fig. 1. The introduction of an effective distance from the neutral axis is a novel idea, 
which is a natural result of the demand for equivalence of stress distributions. The formulation 
is developed for tension flanges and since in the case of for slender flanges in compression the 
buckling deformations govern the behavior and the stress distribution in such a way that con-
ventional Winter’s formulas for effective widths can remain unchanged. However in the case 
of wide compression flanges with stiffeners the flange additional investigations are needed. 

Winter [4] was the first to investigate flange curling behavior. His formula is currently 
adopted by Eurocode 3 – Part 1.3 [5]. Bernard et al. [6] performed experiments with three dif-
ferent slender geometries. The results of these tests will be compared to results found using 
the finite element program Abaqus and to results obtained with the FCM proposed in this pa-
per. Lecce et al. [7] focus on the support conditions of the flanges and the variation of stresses 
in the wide flanges caused by the flange curling. Moreover, Lecce was the first to suggest re-
calculation of moment of inertia due to the transversal deflection of the flange. Silvestre [2,3] 
created analytical models to study the flange curling phenomenon in the wide flanges. 
Silvestre also compared his results to the experimental results of Bernard’s and Lecce and 
suggested an analytical model to calculate the effects of nonlinear flange curling. Silvestre 
also proposed the use of an effective width method. The presented FCM and a number of re-
lated models have been developed and investigated by the authors in the master thesis of 
Ramonas [8]. 

 
 

2 Basic theory of the Flange Curling Model (FCM) 
 

The flange curling phenomenon is initiated by the curvature of the beam, which rotates the 
axial flange stresses resulting in an internal action component directed towards the neutral 
axis of the beam as shown in Fig. 2.  

 

 
Fig. 2: Second order transverse load action on the flanges 

 
Equilibrium of the axial stresses σ in a curved flange of thickness t in a beam with constant 
curvature κ gives us that the transverse flange load q is 
 q tσκ=  (1) 
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This equilibrium based transverse load leads to flange curling deflections of the flange. In the 
left part of Fig. 2 we have also shown the middle flange displacements as a dashed curve be-
low the upper flange. Assuming that the end cross sections remain plane (no shear lag) we can 
acknowledge that deflecting the middle part of the flange towards the neutral axis line will 
lead to shortening of the upper flange corresponding to a reduction of the tension strain. Thus 
we assume that the strain and stress distribution over the flange curled cross section remains 
plane and that we can calculate the flange stress using the curling deflection of the flange.  

The most practical iteration scheme adopted to find the effective cross section is to iterate 
the position of the neutral axis, based on the current effective buckling widths and on the ef-
fective flange curling widths. The iterated distance from the neutral axis to the edge of the 
flange considered will be denoted by ze and the curvature in the current iteration can be found 
from 

    or     e

e ef

M
Ez EI
σκ κ= =  (2) 

The edge stress and curvature value stays constant within the iteration. To be able to deter-
mine the magnitude of the flange curling load we need to examine the relationship between 
flange curling load, displacements and the flange stresses as shown in Fig. 3a.  
 

 
Fig. 3: Modelling of second order transverse load action on the flanges. 

 
The main assumption of this model is that “distorted cross-sections remain plain”. This 

leads to the assumption that the stresses in the flanges are directly proportional to the distance 
from the neutral axis. As the flange curling begins the deflections toward the neutral axis, the 
axial stresses in the flanges decrease going from the corner joining the flange and the web to-
wards the middle of the flange. The flange stress can thus be determined as a function of the 
distance x from the corner as:  

 ( )( ) 1e
e

u xx
z

σ σ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (3) 

In which eσ is the edge stress and u(x) is the curling displacement determined by the loading. 
The displacements of the flange could be solved though solution of a more complicated dif-
ferential equation in which the loading is displacement dependent. However we will simplify 
the problem as shown in Fig. 3b by assuming that the flange curling load qq is uniform and 
determined by the displacements uq at the quarter points of the flange 1

2 sx b=  as follows 
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σ κ

⎛ ⎞
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⎝ ⎠
 (4) 

The displacements from a uniform flange load qq may be found by assuming that the webs 
stiffen the flange by using the model shown in Fig. 4.  In this model we propose to use 

0.9w ws h= as the length of the side spans. 
 

 
Fig. 4: Curling displacements u(x) based on approximate flange support conditions. 

 
Using ordinary beam statics the flange curling displacements for a uniform load qq may be 
found to be 
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The deflection at the quarter point 2sbξ = can now be found as a function of the uniform 
load as 

 
( )

4

2
57 3 ,   where

4
  

16 1 3q
s

q q q
w s

u C q C
sD b

b ⎛ ⎞
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 (6) 

Where Cq is the flexibility constant for the flange quarter point. Now we are able to extract 
the main non-linear flange curling effect by inserting Eq. (4) into Eq. (6) and isolate the dis-
placements as 

 
1

q e
q

q e e

C q
u

C q z
=

−
 (7) 

Finally we are able to find the approximated uniform flange curling load by insert this into 
Eq. (4) as follows 

 1 q e
q e

e q e

C q
q q

z C q
⎛ ⎞

= −⎜ ⎟⎜ ⎟+⎝ ⎠
 (8) 

With this equation and the use of the fact that the edge load is given by e eq tσ κ=  we can find 
flange curling displacements using Eq. (6) and the flange stress distribution using Eq. (3). 
 
 
3 Effective widths and effective moment arm of FCM 
 
The effective widths bef and the effective moment arm zef can be found by demanding equal 
moment and normal force for the flange curled cross section with the approximate stress dis-
tribution given by the FCM and the stress distribution given by the effective cross section as 
shown in Fig. 1. To be brief the result of the equivalence consideration is that the effective 
moment arm zef and the effective width efb are given by 
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Where the following parameters are have been introduce to ease the calculation: 

 
( )

4

1
1 2

15 1 (3 ) 3
q sw s

w s

q bs b
s b D

β
⎛ ⎞+

= ⎜ ⎟⎜ ⎟+ ⎝ ⎠
 (10) 

 
( )

24

2 2

1 6519 26883968
20160 1 (3 ) 31 (3 )

q s

w s w s

q b
s b Ds b

β
⎛ ⎞⎛ ⎞

= − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠
 (11) 

These equations can be directly introduced into the iterative scheme for determination of ef-
fective cross-section properties. In the iterative procedure the neutral axis position is known in 
each iterative step. The current curvature can be determined from Eq. (2) and the quarter point 
loading from Eq. (8) in which the edge load is determined as e eq tσ κ= . 
 
 
4 Flange curling analysis of three box-shape profiles 
 
To investigate the influence of the wide flange slenderness three different box-shaped profiles 
have been analysed. The main geometric measures of the box shaped profiles are shown in 
mm in Fig. 5. The widths b of the box shaped profiles has been chosen as 200mm, 400mm 
and 600mm. The thickness of the compression flange has been chosen so that it does not ex-
hibit buckling or flange curling during the analysis.  
 

 
Fig. 5: Box-shape profile with thick lower flange and width b=2bs. 

 
Based on the experiments of Bernard et al. [6] our Abaqus models where originally 4m long 
with symmetrically place supports 1m from the ends. The end sections where load by trans-
verse forces at the webs and the supports where placed as a line support below the thick com-
pression flange. Thus the central 2m of the profile exhibited constant moment. However as we 
found that the length of the central span has an influence on the magnitude of the flange curl-
ing, thus the central constant moment span length L was varied dependent on the width b of 
the analysed profile so that the L/b ratio is equal to 10 or 20, while the 1m length of the end 
cantilevered parts where kept constant. A structured rectangular mesh using S4R elements 
was chosen with element lengths in the range of 1cm to 2.5cm. The material model used in 
the Abaqus model is linear with elasticity modulus of 52.1 10 MPaE = ⋅ and Poisson ratio of 

0.3ν = . The analysis performed includes geometric nonlinear deformation contributions, 
however imperfections have not been included, since they have practically no influence on the 
curling of the tension flange. 
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The calculated normalized flange curling displacement mu h  based on the effective widths 
and effective moment arm of the FCM are compared to the results of the described Abaqus 
model as a function of the normalized flange edge stress e yfσ  in Fig. 6. The yield stress 
used for the normalization is 350MPayf = . The curves are naturally grouped according to the 
b/t ratios of 600, 400 and 200. It is seen that the FCM model behaves correctly and that the 
ideal constant moment situation with flange curling is difficult to model. In Fig. 7 the moment 
normalized by the gross cross-section moment capacity ( )gross/ yM W f has been plotted as a 
function of the normalized edge stress e yfσ . This figure also shows the adequate behaviour 
of the FCM for slender and wide tension flanges. The normalized stress at the midpoint of the 
flange m yfσ  as a function of the stress level is shown in Fig. 8 and it can be seen that the 
FCM catches the overall behaviour quite well in the practical range of profiles. However as 
the mid flange stress level increases and passes its maximum value it is seen that the results 
from the Abaqus models depend on the L/b ratio and therefore shows a large spread of the 
stress results.  

 

 
Fig. 6: FC-displacements as a function of the edge stress for box profiles with various b/t ratios. 

 
 

 
Fig. 7: Moment as a function of the edge stress for box profiles with various b/t ratios. 
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Fig. 8: Mid flange stress as a function of the edge stress for box profiles with various b/t ratios. 

 

 
Fig. 9: Effective width and its position as a function of σe for box profiles with various b/t ratios. 

 

 
Fig. 10: Stress distribution in the flange for b/t=400 using FCM and Abaqus. 

 
 
Plots of the relative effective width and the relative effective moment arm as a function of the 
relative stress level are shown in Fig. 9. It is seen that as the stress level increases the moment 
arm is reduced followed a little later by the reduction of effective width, however as the width 
reduction becomes larger, then the effective moment arm may increase again. In Fig. 10 a plot 
of the stress distributions for two stress levels are shown for the FCM model and compared to 
the stresses of the Abaqus model for the box-shaped profile with b/t=400. It is seen that the 
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stress distribution found in the Abaqus model depends on the L/b ratio and that deviating re-
sults are found at high stress levels and large flange curling deflections. 
 
 
5 Analysis of a liner tray with a wide tension flange 
 
Bernard [6] used the cold-formed standing seam panels consisting of two upstands with sim-
ple folded lips and wide central flanges. These profiles are called Condeck and are used as 
liner trays or so-called Cassettes. The geometry and general dimensions of the specimen con-
sidered in this paper is illustrated in Fig 11a.  

A simplified profile geometry is used for the calculations and analysis in this work. Fig. 11 
shows the simplified geometry to the right. Bernard [6] made two types of the experiments. 
He examined the behavior of wide flanges in tension and compression under the pure bending 
conditions of the profile. Due to the fact that intermediate stiffeners are omitted in the simpli-
fied geometry, the results only from the tension tests will be used. Bernard [6] examined dif-
ferent number of Condeck profiles connected together side by side. The webs of the flanges of 
the central panels were not able to sway sideways because the webs of the adjacent profiles 
acted in opposite directions and restrained each other. Based on this condition a model has 
been created in Abaqus in which the bottom outstand flanges are restrained agains transverse 
displacements. Fig. 12 represents the deflections of the middle of tension flanges, which were 
caused by the flange curling. The results from Bernard’s experiment are the thin lines. They 
comply with the results of the finite elements analysis. 
 

 
Fig. 11: a) Original and b) simplified geometry of the Condeck profile used in the present work. 

 

 
Fig. 12: FC displacements of Condeck profile compared to Bernard tests and Abaqus. 

 
 

22 22 
60 40 40 

bs=150 bs=150 bs=150 bs=150 

Neutral axis 

300 300 

50
 5 

54
 

7 7 

1 1 12
 

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5

u m
  / 

 h

M / (Wgross  fy ) 

Abaqus, L/b=6.6

FCM

Bernard tension flange 
tests, C3PA, C2PA, C3PA

Winter, EC3

5% h

12 

54
 12

 



Nordic Steel Construction Conference 2012 9 
 
 
6 Analysis of trapezoidal sheeting in positive bending 
 
In the paper by Bernard et al. [6] he also presents results from experiments with a trapezoidal 
sheeting. Pure bending was applied to the sheeting with the upper flange in compression and 
the lower flange in tension. The geometry of one module width of the sheeting is depicted in 
Fig. 13. The upper flange has an intermediate stiffener and the full developed width of this 
flange (“unfolded flange”) is used in the FCM calculations. Bernard used a single sheeting 
panel consisting of three troughs (modules) in his experiments. He made two tests and meas-
ured the deflections of every flange. However, he did not fixed the outer edges of the speci-
mens against the sideways “sway” expansion. For this reason the specimen behavior in his 
tests is not equivalent to that of conventional sheeting with edge seems. The Abaqus model 
which has been used in the present work is however restrained against lateral movement of 
the outer flanges. Since our non-linear Abaqus analysis was performed without imperfections 
the analysis stopped at a load level corresponding to initiation of local buckling in the flat 
widths of the upper flange. In the experiments, FCM and Abaqus analyses the lower flange 
experienced some flange curling deflections. These deformations are relatively small, because 
the flange width has a large influence on the magnitude of the deflections, which are lower 
than 5% of the profile height. Due to this fact the displacement measurements which were 
found by Bernard may be not very precise. In Fig.14 we have shown the deflections found 
using the FCM model and compared these to the experimental test results of Bernard. Fur-
thermore, since Silvestre [3] has also investigated this trapezoidal sheeting profile, we have 
included his results in the plots shown in the figures. 
 

 
Fig. 13: Geometry of trapezoidal profile test by Bernard. 

 

 
Fig. 14: FC displacement in the flanges of the trapezoidal profile 
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6 Conclusions 
 
The proposed flange curling method FCM, which fits directly into the iterative scheme of 
Eurocode [5] for analysis of effective cross-sections, seems to be very promising and it has 
been shown that: 

1. The FCM reproduces the non-linear flange curling displacement behaviour for tension 
flanges for a practical range of slenderness values; 

2. The FCM approximates the stress distribution in the curled flange with reasonable ac-
curacy. 

3. Effective moment arm reduction and effective widths have been given for wide ten-
sion flanges 

4. Stiffeners in tension flanges are taken into account by using the full developed width 
of the flange. 

5. Further research into the use of the FCM for compression flanges is needed.  
However with respect to the last point preliminary investigations show that for compression 
flanges without stiffeners flange curling is not an issue and for flanges with stiffeners flange 
curling can be analysed by using the reduced stress level in the (buckled) stiffener, comχσ , to 
determine and replace the “quarter” point load, i.e.  q comq tχσ κ=  and introduce an effective 
moment arm ,s efz  for the stiffener. It is believed that this FCM method with the derived effec-
tive width will help assessing the carrying capacity of slender liner trays and slender wide 
flanged trapezoidal sheeting. 
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