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Taylor’s hypothesis cannot, however, be used if there is no mean wind. 
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DTU Wind Energy E–0008(EN) 

Forord 

I denne rapport præsenteres en teori samt en praktisk metode til fjernmåling af turbulens i det 
atmosfæriske grænselag.  
 
Metoden baserer sig på målinger med en jordbaseret vind lidar. 
 
Vind lidaren er i dette tilfælde udstyret med et scannende prisme hvorved lidaren kan opereres i 
den såkaldte ”Velocity Azimuth Display” (VAD) scanning mode, det vil sige, lidaren kan med sin 
laserstråle fokuseret på den ønskede målehøjde scanne vinden rundt på en cirkel over jorden. 
Samtidig registrerer vind lidaren den i målepunktet øjeblikkelige vindvektors projektion i den 
skannende laserstråles retning. 
 
Med udgangspunkt i lidarens Doppler-skift bestemte radiale vindhastighedskomponenter udvik-
les en metode til bestemmelse af ”Dissipation-rate” af turbulensen fra målehøjden. 
 
Resultat har praktisk betydning for remote sensing baseret måling af atmosfærisk turbulens 
(dissipation rate), især for tilfælde hvor vindhastigheden i målehøjden er for lav til at ”Taylors 
frozen turbulence hypothesis” kan bringes i anvendelse til omregning mellem tid og rum, eller 
frekvens og bølgetal.  
 
    
 
 
DTU Risø Campus, August 2012 
 
Torben Mikkelsen 
Professor in Remote Sensing for Wind Energy 
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Summary 

This report presents a theory and a practical method for remote measurement of turbulence in 
the atmospheric boundary layer. 
 
The method is based on measurements from a single ground-based scanning wind lidar. 
 
The wind lidar is equipped with a scanning prism devise by which the lidar may be operated in 
the so-called "velocity azimuth display" (VAD) scan mode, that is, the lidar is able to move or 
scan its laser beam focused to the desired measuring height on a full circle or a part hereof 
above the ground. While scanning the wind lidar measures the projection of the instantaneous 
wind vector at the focus point along the scanning laser beams direction. 
 
A theory including a practical approximation is derived that relates the lidars measured radial 
wind speed between two small-displaced arc-scans to the dissipation rate of the turbulence at 
the measurement height. 
 
The findings have practical implications for remote sensing-based measurements of atmospher-
ic turbulence (dissipation rate) for cases where the mean wind speed at the measurement 
height is too low to for Taylor's frozen turbulence hypothesis to apply for conversion between 
time and space, or frequency and wave number. 
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Abstract The theoretical basis for determining the dissipation ε, by measuring the ve-
locity structure function with a CW-laser anemometer has been derived in the case of calm
wind conditions. If there is a well defined mean wind speed the structure function can be
obtained by having the laser beam pointing in one direction and measure a time series of
the Doppler wind velocity component along the beam. Applying Taylor’s hypothesis the
structure function can be calculated. This technique was discussed by Kristensen et al.
(2011). Taylor’s hypothesis cannot, however, be used if there is no mean wind. Then it
is necessary to “create” a mean wind by turning the laser beam. Since the instrument is
not moved the beam will describe a cone which could be a VAD-scanning. In any case
the measured velocity components will not be parallel and this implies that the measured
structure function will contain a term which is proportional to the total variance. The
theoretical expression for the line-filtered structure function is derived in two equivalent
ways, one in physical space and one in wave-number space, of which the last can be re-
liably evaluated by numerical integration. Also a practical approximate equation, derived
in the physical space, is presented.
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1 Introduction

In a previous study (Kristensen et al. 2011) we discussed the theory for determining the
velocity structure function by means of a CW-laser anemometer with its beam pointing in
one particular direction. This was a slight generalization of the work by Smalikho (1995).
The basic idea is to determine a time series of the Doppler velocity component along the
direction of the beam. Assuming Taylor’s hypothesis we may then obtain the structure
function and, in turn, the rate of dissipation ε of specific kinetic energy. The condition for
a successful application of Taylor’s hypothesis is that there is a mean-wind speed which
is sufficiently large. Under calm or nearly calm conditions this hypothesis does not lead
to satisfactory results. In this case the beam must move in order to “create” a mean wind.
Here we discuss the VAD (Velocity Azimuth Display) technique for obtaining a constant
velocity flow through the measuring volume. Figure 1 shows the setup. The laser beam
forms the angle ϕ with the ground and moves to describe a cone with a vertical axis. A
point on the beam at a fixed distance from the laser describes a circle. On the base of the
cone is shown an isosceles triangle with the vertex α defined by the laser beams at two
different times. On each beam the measuring volume is indicated. The distance from the
laser to the center of this volume is R. In the following we may safely assume that the
wind speed U is much smaller than Rα̇ cosϕ. The same basic approach was suggested
by Banakh et al. (1999). Their theoretical derivation is outlined in much less detail than
we will present in the following.

2 VAD geometry

Inspection of Fig. 1 shows that the distance between the measuring centers of the two
beams is the chord

m = 2R cosϕ sin(α/2). (1)

m/2
m/2

i2

i1
b+

b−

α/2α/2

m/2
m/2

i2

i1
b+

b−

Figure 1. Sketch of the VAD geometry from two different points of view. The directions of
the two beams are defined by the unit vectors b− and b+. The chordm between the centers
of the measuring volumes is shown. On the base of the cone is shown an isosceles triangle
with the vertex α and the base with the length m. We use a Cartesian coordinate system
defined by the orthogonal unit vectors (4)–(6). The two vectors i 1 and i2 are shown.
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We may simplify the derivation of the structure function for the VAD measurement by
working in the plane, defined by two laser beams. Figure 2 is a plane figure defined by
the two generators defined by b− and b+.

R

Δ/2 −Δ/2

i2

i1b+ b−

Figure 2. The geometry in the plane defined by b− and b+. The chordm is shown.

The angleΔ between them is given by the equation

m = 2R sin(Δ/2). (2)

so that

Δ = 2 arcsin
(
cosϕ sin(α/2)

)
. (3)

A Cartesian coordinate system is then defined by b− and b+ as follows

i1 = b− + b+

|b− + b+| , (4)

i3 = b− × b+

|b− × b+| , (5)

and

i2 = i3 × i1. (6)

In the coordinate system defined by (4), (6) and (5) we have

b− = cos(Δ/2) i1 − sin(Δ/2) i2 (7)

b+ = cos(Δ/2) i1 + sin(Δ/2) i2. (8)

6 DTU Wind Energy E–0008(EN)



3 The Line Filtered Velocity Field

We consider only isotropic turbulence with zero mean velocity. The velocity field in the
point

x = x1 i1 + x2 i2 + x3 i3 (9)

is

u(x) = u1(x) i1 + u2(x) i2 + u3(x) i3. (10)

The laser anemometer measures the Doppler velocity component v along its beam direc-
tion b with the line weighting function (Smalikho 1995)

h(μ, λ) = 1

πR

μ

μ2
(

1 − λ

R

)2

+ 1

, (11)

which has its maximum at the distance λ = R from the laser and the full width half
maximum (FWHM)

� = 2
R

μ
. (12)

Moreover

μ = k0a
2
0 /R (13)

is a dimensionless parameter expressed in terms of R, the wave number k 0 of the laser
light and the exit radius a0 of the laser aperture. Typical values are R ∼ 100 m, k 0 ∼
4×106 m−1, and a0 ∼ 2×10−2 m. We thus considerμ to be about 15. In order to be able
to carry out the calculations in the following, we replace the range 0 < λ < ∞ by −∞ <

λ < ∞. Indeed the filter (11) is normalized over the latter interval. Kristensen et al.
(2011) outlined tools to estimate the normalization error by this approximation. They
found it to be about 2% for μ = 15 . The width � in (12) can be assumed small compared
to R. In fact � is assumed smaller than the velocity integral scale which, in turn, is about
the measuring height R sinϕ (Kristensen et al. 1989). Therefore the velocity turbulence
may be considered locally isotropic. The line filtered velocity is in our approximation

v =
∞∫

−∞
h(μ, λ)v0(λ) dλ, (14)

where

v0(λ) = b · u(λb), (15)

with b representing b− or b+.

In the limit μ → ∞ where the filter function is so narrow that the averaging line reduces
to a point, we have

h(∞, λ) = δ(λ− R) (16)

DTU Wind Energy E–0008(EN) 7



For the two laser-anemometer beams we have

v− =
∞∫

−∞
h(μ, λ)v−

0 (λ) dλ, (17)

v+ =
∞∫

−∞
h(μ, λ)v+

0 (λ) dλ, (18)

where

v−
0 (λ) = b− · u(λb−) = cos(Δ/2) u1(λb

−)− sin(Δ/2) u2(λb
−) (19)

v+
0 (λ) = b+ · u(λb+) = cos(Δ/2) u1(λb

+)+ sin(Δ/2) u2(λb
+). (20)

Following Banakh et al. (1999) we want to derive an expression for the line filtered struc-
ture function

D =
〈(
v+ − v−)2

〉
. (21)

This quantity can be written

D = 〈v−2〉 + 〈v+2〉 − 2〈v−v+〉. (22)

We must therefore evaluate

〈v−2〉 =
∞∫

−∞
h(μ, λ′) dλ′

∞∫
−∞

h(μ, λ′′) dλ′′ 〈v−
0 (λ

′)v−
0 (λ

′′)〉, (23)

〈v+2〉 =
∞∫

−∞
h(μ, λ′) dλ′

∞∫
−∞

h(μ, λ′′) dλ′′ 〈v+
0 (λ

′)v+
0 (λ

′′)〉, (24)

and

〈v−v+〉 =
∞∫

−∞
h(μ, λ′) dλ′

∞∫
−∞

h(μ, λ′′) dλ′′ 〈v−
0 (λ

′)v+
0 (λ

′′)〉. (25)

in terms of the maximum point R of h(μ, λ) and the dimensionless filter parameter μ.
Defining

D0(Δ, λ
′, λ′′) = 〈v−

0 (λ
′)v−

0 (λ
′′)〉 + 〈v+

0 (λ
′)v+

0 (λ
′′)〉 − 2〈v−

0 (λ
′)v+

0 (λ
′′)〉, (26)

we have

D = D(μ,Δ) =
∞∫

−∞
h(μ, λ′) dλ′

∞∫
−∞

h(μ, λ′′) dλ′′D0(Δ, λ
′, λ′′). (27)

8 DTU Wind Energy E–0008(EN)



4 Physical Space

We can evaluate (23) – (25) in terms of the covariance tensor Rij (r) = 〈ui(x)uj (x + r)〉
which, in the case of isotropy, can be written

Rij (r) = [RL(r)− RT (r)] rirj
r2

+ RT (r) δij , (28)

where r = |r | and RL(r) and RT (r) are the longitudinal and lateral covariance, respec-
tively. The relation (28) implies

Rij (−r) = Rij (r) (29)

Rji(r) = Rij (r) (30)

From the relations (19) and (20) it follows that

〈v−
0 (λ

′)v−
0 (λ

′′)〉 = cos2(Δ/2) R11((λ
′′ − λ′) b−)+ sin2(Δ/2) R22((λ

′′ − λ′) b−)

− 2 cos(Δ/2) sin(Δ/2) R12((λ
′′ − λ′) b−), (31)

〈v+
0 (λ

′)v+
0 (λ

′′)〉 = cos2(Δ/2) R11((λ
′′ − λ′) b+)+ sin2(Δ/2) R22((λ

′′ − λ′) b+)

+ 2 cos(Δ/2) sin(Δ/2) R12((λ
′′ − λ′) b+), (32)

and

〈v−
0 (λ

′)v+
0 (λ

′′)〉

= cos2(Δ/2) R11(λ
′′b+ − λ′b−)− sin2(Δ/2) R22(λ

′′b+ − λ′b−). (33)

Using (28) we obtain

〈v−
0 (λ

′)v−
0 (λ

′′)〉 = 〈v+
0 (λ

′)v+
0 (λ

′′)〉 = RL(|λ′′ − λ′|). (34)

It takes a little more effort to evaluate (33). We note that the argument in R 11 and R22 is

r(λ′, λ′′) ≡ λ′′b+ − λ′b− = (λ′′ − λ′) cos(Δ/2) i1 + (λ′ + λ′′) sin(Δ/2) i2 (35)

and, consequently,

r2(λ′, λ′′) = (λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2). (36)

By use of (28) and (35) we get

DTU Wind Energy E–0008(EN) 9



〈v−
0 (λ

′)v+
0 (λ

′′)〉 =

[RL(r(λ′, λ′′))− RT (r(λ
′, λ′′))] (λ

′′ − λ′)2 cos4(Δ/2)− (λ′ + λ′′)2 sin4(Δ/2)

r2(λ′, λ′′)

+ RT (r(λ
′, λ′′))[cos2(Δ/2)− sin2(Δ/2)]. (37)

This equation can be re-arranged to become

〈v−
0 (λ

′)v+
0 (λ

′′)〉 = RL(r(λ
′, λ′′)) cosΔ−

[RL(r(λ′, λ′′))− RT (r(λ
′, λ′′))] λ′λ′′ sin2Δ

(λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2)
. (38)

Inserting (34) and (38) in (26) we get

D0(Δ, λ
′, λ′′) = 2[RL(|λ′′ − λ′|)− RL(r(λ

′, λ′′)) cosΔ]

+ 2[RL(r(λ′, λ′′))− RT (r(λ
′, λ′′))] λ′λ′′ sin2Δ

(λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2)
. (39)

We wish to express (39) in terms of the structure functions

DL(ρ) = 2[RL(0)− RL(ρ)] (40)

and

DT (ρ) = 2[RT (0)− RT (ρ)], (41)

where RL(0) = RT (0) are the variance of one velocity component. The equivalent to
(39) then becomes

D0(Δ, λ
′, λ′′) = 2(1 − cosΔ)RL(0)+DL(r(λ

′, λ′′)) cosΔ−DL(|λ′′ − λ′|)

+ [DT (r(λ′, λ′′))−DL(r(λ
′, λ′′))] λ′λ′′ sin2Δ

(λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2)
. (42)

We may now apply the standard expressions for the structure function for locally isotropic
turbulence. They are

DL(r) = 27

55
�

(
1

3

)
α ε2/3 r2/3 (43)

10 DTU Wind Energy E–0008(EN)



and

DT (r) = 36

55
�

(
1

3

)
α ε2/3 r2/3, (44)

where ε is the rate of destruction of specific kinetic energy, also just called the dissipation,
and α the Kolmogorov constant. According to Kristensen et al. (1989) this constant is
approximately 1.7. Inserting (43) and (44) with r given by (36), (42) can be written

D0(Δ, λ
′, λ′′) = 2(1 − cosΔ)RL(0)

+ 9

55
�

(
1

3

)
α ε2/3

{
3

[
[(λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2)]1/3cosΔ− |λ′′ − λ′|2/3

]

+ λ′λ′′ sin2Δ

[(λ′′ − λ′)2 + 4 λ′λ′′ sin2(Δ/2)]2/3
}
. (45)

Introducing the dimensionless integration variables ξ ′ = λ′/R and ξ ′′ = λ′′/R in (27) we
get

D(μ,Δ) = 2(1 − cosΔ)RL(0)

+ 9

55
�

(
1

3

)
α(εR)2/3

∞∫
−∞

h∗(μ, ξ ′) dξ ′
∞∫

−∞
h∗(μ, ξ ′′) dξ ′′

×
{

3
[
[(ξ ′′ − ξ ′)2 + 4ξ ′ξ ′′ sin2(Δ/2)]1/3 cosΔ− |ξ ′′ − ξ ′|2/3

]

+ ξ ′ξ ′′ sin2Δ

[(ξ ′′ − ξ ′)2 + 4ξ ′ξ ′′ sin2(Δ/2)]2/3
}
, (46)

where

h∗(μ, x) ≡ Rh(μ,Rx) = 1

π

μ

μ2(1 − x)2 + 1
. (47)

In the point limit μ → ∞ we can use (16) in the form h∗(∞, ξ) = δ(ξ − 1) which gives

D(∞,Δ) = 2(1 − cosΔ)RL(0)

+ 36

55
�

(
1

3

)
α ε2/3(2R sin(Δ/2))2/3

1 + 7 cosΔ

8
(48)

When Δ 
 1 the second term on the right-hand side approaches

DT (RΔ) = 36

55
�

(
1

3

)
α ε2/3 (RΔ)2/3 (49)

DTU Wind Energy E–0008(EN) 11



which is just the structure function of the velocity component perpendicular to the dis-
placement vector given by (44). This part is not surprising. The first term is a correction
for the two displaced velocity components for not being quite parallel, but forming the
angle Δ with one another.

There is no simple and general theory for the determination of the variance RL(0). It can
only be estimated empirically on basis of experimental field observations e.g., data from
the so-called Minnesota experiment (Haugen et al. 1971). We return to this subject in
section 6.

It is practical to introduce the normalized structure function

D∗(μ,Δ) = D(μ,Δ)− 2(1 − cosΔ)RL(0)

α(εR)2/3
. (50)

We showed in Kristensen et al. (2011) that if the laser beams were parallel the structure
function would up to second order in Δ be a sum of a term proportional to Δ 5/3 and of
a term proportional to Δ2. This leads us to the conjecture that (50) up to second order in
Δ2 can be written

D∗(μ,Δ) = a(μ)Δ5/3 + b(μ)Δ2. (51)

This conjecture is confirmed in appendix A. Here it is shown that D ∗(μ,Δ) for small Δ
has this asymptotic expansion with the coefficients given by

a(μ)= �2(1/6) (1+μ2)1/3

50π(2μ)2/3
[(2√

3+9μ)cos(v(μ))−3(
√

3μ−2)sin(v(μ))], (52)

where

v(μ) = 2

3
arccot(μ) (53)

and

b(μ) = − 9

55
�(1/3)

4 + μ2

(μ/2)2/3
. (54)

When μ is large the following applies to (52)

a(μ) ≈ 9�2(1/6)

50π22/3
μ. (55)

For μ = 16 the error by using (55) instead of (52) is about 0.2 %.

5 Wave-Number Space

Our main result (46) is a complicated double integral and its evaluation is, from a prac-
tical point of view, rather problematic. However, we shall formulate the same result as
integration in wave-number space with the advantage that the final numerical integration
is essentially just a single integral. This admits a much faster and more reliable evaluation
of D∗(μ,Δ). First we note that

Rij (ρ) =
∞∫

−∞
dk1

∞∫
−∞

dk2

∞∫
−∞

dk3Φij (k) e ik·ρ , (56)

12 DTU Wind Energy E–0008(EN)



where

Φij (k) = E(k)

4π k4

[
k2δij − kikj

]
(57)

is the spectral tensor for isotropic turbulence. Here we cannot use the common expres-
sion´for the streamwise velocity spectrum, pertaining to local isotropy,

FL(k) = 9

55
αε2/3k−5/3 (58)

because it is not bounded when k → 0. Instead we shall use the von Kármán spectrum
(von Kármán 1948)

FL(k) = 9

55

αε2/3

(q2 + k2)5/6
, (59)

where q is a wave number characterizing the integral turbulence scale. This spectrum is
not based on physical observations but is used only for mathematical convenience. It is
finite for all wave numbers and coincides with (58) in the inertial subrange, and this is all
what is needed for the following analysis. We use the relation

E(k) = k3 d

dk

(
1

k

dFL
dk

)
(60)

to obtain the corresponding energy spectrum

E(k) = αε2/3 k4

(q2 + k2)17/6
. (61)

We note that the variance of the longitudinal velocity component RL(0) is obtained by
integrating (59) with the result

RL(0) =
∞∫

−∞
FL(k) dk = 9

55
B(1/2, 1/3)

αε2/3

q2/3
, (62)

where B(m, n) = �(m)�(n)/�(m + n) is the beta function.

We go back to (31)–(33) and note that we need to consider only the combinations (i, j) =
(1, 1) and (i, j) = (2, 2). Further, we need not to consider k 3 in the exponential since
neither b− nor b+ contains i3. This means that the triple integral (56) can be reduced to
a double integral for R11(ρ), R22(ρ), and R12(ρ). In other words,

R11(ρ)=αε
2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2 e ik·ρ
∞∫

−∞

k2
2 + k2

3

(q2 + k2
1 + k2

2 + k2
3)

17/6
dk3

= 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 3k2

1 + 11k2
2

(q2 + k2
1 + k2

2)
7/3

e ik·ρ , (63)

DTU Wind Energy E–0008(EN) 13



R22(ρ)=αε
2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2 e ik·ρ
∞∫

−∞

k2
1 + k2

3

(q2 + k2
1 + k2

2 + k2
3)

17/6
dk3

= 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 11k2

1 + 3k2
2

(q2 + k2
1 + k2

2)
7/3

e ik·ρ , (64)

and

R12(ρ)= − αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2 e ik·ρ
∞∫

−∞

k1k2

(q2 + k2
1 + k2

2 + k2
3)

17/6
dk3

= − 16

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
k1k2

(q2 + k2
1 + k2

2)
7/3

e ik·ρ . (65)

Details in the derivation are given in Appendix B.

Introducing the dimensionless parameters

Q = qR (66)

and

K = κR (67)

(B 29) and (B 30), in view of � = 2R/μ, become

〈v2〉 = α(εR)2/3
4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

× 1

2π

π/2∫
0

(3Q2 + 7K2 − 4K2 cos(2θ)) exp

(
−2K

μ
cosθ

)
dθ, (68)

and

〈v−v+〉 = α(εR)2/3
4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

× 1

2π

π/2∫
0

((3Q2 + 7K2) cosΔ− 4K2 cos(2θ)) cos(2K sin θ sin(Δ/2))

14 DTU Wind Energy E–0008(EN)



exp

(
−K
μ

{| cos(θ +Δ/2)| + | cos(θ −Δ/2)|}
)

dθ. (69)

It would be informative to check if the equations (B 27)–(B 30), combined by (22) to the
final result, in the case of point measurements are consistent with (48). In other words,
we let � → 0 and μ� = 2R. The variances (B 27) and (B 28) become, not surprisingly,

lim
μ→∞〈v2〉 = α(εR)2/3

4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

1

2π

π/2∫
0

(3Q2 + 7K2) dθ

= 9

55
B(1/2, 1/3)

α(εR)2/3

Q2/3
= 9

55
B(1/2, 1/3)

αε2/3

q2/3
= RL(0) (70)

according to (62). We can now write

〈v2〉 = lim
μ→∞ 〈v2〉 + (〈v2〉 − lim

μ→∞ 〈v2〉)

= RL(0)− α(εR)2/3
4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

× 1

2π

π/2∫
0

[3Q2 + 7K2 − 4K2 cos(2θ)]
[
1 − exp

(
−2K

μ
cos θ

)]
dθ (71)

The last term pertains to the small-scale, locally isotropic turbulence and we then let Q,
which is is a dimensionless wave-number measure of the large-scale turbulence, be zero.
We thus conclude that

〈v2〉 = RL(0)− α(εR)2/3
27

55
�

(
1

3

) (μ
2

)−2/3
. (72)

The corresponding result for (69) is

lim
μ→∞ 〈v−v+〉 = α(εR)2/3

4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

× 1

2π

π/2∫
0

((3Q2 + 7K2) cosΔ− 4K2 cos(2θ)) cos(2K sin θ sin(Δ/2))dθ =

α(εR)2/3
2

55

B(1/2, 1/3)

�(7/3)
Q−1/3 sin1/3(Δ/2)

×{
4K1/3(2Q sin(Δ/2)) cosΔ−Q[sin(Δ/2)+sin(3Δ/2)]K2/3(2Q sin(Δ/2))

}
. (73)
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HereKν(x) is the modified Bessel Function of the second kind. For assumed small values
ofQ and finite values ofΔ we can expand (73) in a power series inQ. This results in the
following expression

lim
μ→∞ 〈v−v+〉 = 9

55
B

(
1

2
,

1

3

)
αε2/3 cosΔq−2/3

− 18

55
�

(
1

3

)
αε2/3(2R sin(Δ/2))2/3

1 + 7 cosΔ

8
+O(q4/3). (74)

We use (62) on the first term on the right-hand side and clear the O(q 4/3)-term to zero:

lim
μ→∞ 〈v−v+〉 = RL(0) cosΔ

− α(εR)2/3
18

55
�

(
1

3

)
(2R sin(Δ/2))2/3

1 + 7 cosΔ

8
(75)

Inserting (75) together with (70) in (22), we retrieve the formula (48) for point measure-
ments.

We may now evaluate 〈v−v+〉 by determining the residual limμ→∞〈v−v+〉 − 〈v−v+〉.
We have from (69) and the first equation of (73)

lim
μ→∞〈v−v+〉 − 〈v−v+〉 = α(εR)2/3

4

55
B(1/2, 1/3)

∞∫
0

KdK

(Q2 +K2)7/3

× 1

2π

π/2∫
0

((3Q2 + 7K2) cosΔ− 4K2 cos(2θ)) cos(2K sin θ sin(Δ/2))

{
1 − exp

(
−K
μ

{| cos(θ +Δ/2)| + | cos(θ −Δ/2)|}
)}

dθ. (76)

This double integral is convergent in the limit Q = 0, corresponding to local isotropy,
and it can be shown that in this case it can be reduced to a single integral over θ . We have

lim
μ→∞〈v−v+〉 − 〈v−v+〉 = α(εR)2/3

3

55
�

(
1

3

)
μ−2/3 1

2π

π/2∫
0

G(μ,Δ, θ) dθ, (77)

where
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G(μ,Δ, θ) = B(1/2, 1/3) (7 cosΔ− 4 cos(2θ))

×
{

2 cos

(
2

3
arctan

(
2μ sin(Δ/2) sin θ

| cos(θ +Δ/2)| + | cos(θ −Δ/2)|
))

×
[
(| cos(θ +Δ/2)| + | cos(θ −Δ/2)|)2 + 4μ2 sin2(Δ/2) sin2 θ

]1/3

− [2μ sin(Δ/2) sin θ)]2/3

}
. (78)

We can now obtain and expression for D(μ,Δ) by collecting terms as follows. First we
rewrite (22) to

D = 2(〈v2〉 − 〈v−v+〉). (79)

The first term inside the parenthesis is given by (72). The second is determined by refor-
mulating (77) as

〈v−v+〉 = lim
μ→∞〈v−v+〉 − α(εR)2/3

3

55
�(1/3)μ−2/3 1

2π

π/2∫
0

G(μ,Δ, θ) dθ. (80)

Here the first term on the right-hand side is given by (75) so that

〈v−v+〉 = RL(0) cosΔ− α(εR)2/3
3

55
�(1/3)

⎧⎪⎨
⎪⎩

3

24/3
(1 + 7 cosΔ) sin2/3(Δ/2)

+ μ−2/3

2π

π/2∫
0

G(μ,Δ, θ) dθ

⎫⎪⎬
⎪⎭ . (81)

Finally we get

D(μ,Δ) = 2(1 − cosΔ)RL(0)+ α(εR)2/3
3

55
�

(
1

3

)

×

⎧⎪⎨
⎪⎩

3

21/3
(1 + 7 cosΔ) sin2/3(Δ/2)− 18

(μ
2

)−2/3 + μ−2/3

π

π/2∫
0

G(μ,Δ, θ) dθ

⎫⎪⎬
⎪⎭ (82)

or, reformulated by (50),
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D∗(μ,Δ) = 3

55
�

(
1

3

)

×

⎧⎪⎨
⎪⎩

3

21/3
(1 + 7 cosΔ) sin2/3(Δ/2)− 18

(μ
2

)−2/3 + μ−2/3

π

π/2∫
0

G(μ,Δ, θ) dθ

⎫⎪⎬
⎪⎭ . (83)

Again, the limiting result to the second order in Δ and � → 0 becomes identical to (48).
Numerical experiments confirm that (83) with (78) and D ∗(μ,Δ) derived from (46) and
(50) are indeed equivalent. For computational purposes use of (78) and (83) is the better
choice, since the single integral gives faster and more reliable numerical results. However,
a certain computational precision is needed because there is a good deal of cancellation
among the terms in (83).

6 Discussion

The one-component variance RL(0) must be estimated separately because the structure-
function formulation implies that RL(0) relates to eddies larger than those which can be
considered locally isotropic. Consequently, we must use semi-empirical equations based
on observational studies and consider the variance of the vertical velocity as represent-
ing RL(0). For calm conditions with no mean wind the atmosphere is very convective
in which case the convective velocity scale w∗ can be related to the variance and the
dissipation. Following Kristensen et al. (1989) we have

w∗ =
{ g
T

〈wϑ〉0 h
}1/3

. (84)

Here g/T , combining the acceleration of gravity and the atmospheric temperature (in
◦K), is the buoyancy parameter, 〈wϑ〉0 the vertical turbulent flux of potential temperature,
and h the height of the convective boundary layer. Kristensen et al. (1989) have compiled
the relevant empirical relations. Assuming that the measuring height z is much smaller
than h we find that

ε � 0.75
w3∗
h

(85)

and

RL(0) � 1.44w2∗
( z
h

)2/3 � 1.3w2∗
(
R

h

)2/3

. (86)

Here we have assumed that the inclination angle is ϕ = 60◦ so that z = R sin ϕ � 0.87R.
Combining (85) and (86) we get

RL(0) � 1.6 (εR)2/3. (87)

Banakh et al. (1999) arrived at an expression corresponding to (46). Their result forΔ 

1 can, in the notation used here, be written
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D(μ,Δ) = σ 2
e + CK(εR)

2/3

∞∫
0

h∗(μ, ξ ′) dξ ′
∞∫

0

h∗(μ, ξ ′′) dξ ′′

×
{
((ξ ′′ − ξ ′)2 + ξ ′ξ ′′Δ2)1/3 − |ξ ′′ − ξ ′|2/3 + 1

3

ξ ′ξ ′′Δ2

((ξ ′′ − ξ ′)2 + ξ ′ξ ′′Δ2)2/3

}
, (88)

where Banakh et al. (1999) identify CK = 2 as the Kolmogorov constant∗.

By a suitable reformulation in the case Δ 
 1 our result (46) can be written (Appendix
A)

D(μ,Δ) = RL(0)Δ2

+ 27

55
�

(
1

3

)
α(εR)2/3

∞∫
−∞

h∗(μ, ξ ′) dξ ′
∞∫

−∞
h∗(μ, ξ ′′) dξ ′′

×
{
((ξ ′′ − ξ ′)2 + ξ ′ξ ′′Δ2)1/3 − |ξ ′′ − ξ ′|2/3 + 1

3

(ξ ′ξ ′′ − 3
2 (ξ

′′ − ξ ′)2)Δ2

((ξ ′′ − ξ ′)2 + ξ ′ξ ′′Δ2)2/3

}
, (89)

Comparing (88) to (89), where in both cases h∗(μ, ξ) is given by (47), there is one sig-
nificant difference: Banakh et al. (1999) have neglected the term RL(0)Δ2 which is zero
only whenΔ is zero. They have included, however, a term σ 2

e which is an estimate of the
random error of the measured wind speed due to fluctuations of the photo current in the
detector. We have not included a similar term. Another difference is that in the integrand
they have missed the term − 3

2 (ξ
′′ − ξ ′)2 in the parenthesis in the numerator of the last

term. Also, a more detailed comparison would require that we in (89) correctly replace
the lower limits −∞ in the integrals by zero. This would be relevant if μ is very small so
that the integrand stretches far into second and fourth quadrant in the ξ ′ − ξ ′′ plane thus
causing D∗(μ,Δ), defined by (50), to become negative. For example, Fig. 6 in the last
section shows that for Δ = 0.4 � 23◦ D∗(μ,Δ) is negative when μ < 2.

7 Results

We have determined D∗(μ,Δ) by inserting 4 typical values of μ in (83). The one-
dimensional integral is in each case carried out in a range of Δ from 0.001 to 0.1. The
result is shown in Fig. 3 together with the asymptotic result (51). We note that this result
falls slightly below D∗(μ,Δ) given by (83) for the larger values of Δ. To illustrate this
more directly we have determined the relative deviation defined as

χ(μ,Δ) = [D∗(μ,Δ)eq.83 −D∗(μ,Δ)eq.51]/D∗(μ,Δ)eq.83, (90)

which is displayed as functions of Δ for μ = 5, 10, 15, and 20. We note that χ(μ,Δ)
increases with both μ and Δ. A contour plot of χ(μ,Δ) is shown in Fig. 5.
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μ = 5

Δ

D
∗ (
μ
,
Δ
)

0.10.010.001

0.1

0.01

0.001

0.0001

μ = 10

Δ
D

∗ (
μ
,
Δ
)

0.10.010.001

0.1

0.01

0.001

0.0001

μ = 15

Δ

D
∗ (
μ
,
Δ
)

0.10.010.001

0.1

0.01

0.001

0.0001

μ = 20

Δ

D
∗ (
μ
,
Δ
)

0.10.010.001

0.1

0.01

0.001

0.0001

Figure 3. D∗(μ,Δ) defined by (50) for four values of μ. The solid line corresponds to
(83) and the dotted lines to (51).

A more detailed study of (83) shows that this expression can become negative when μ
is sufficiently small. It is worthwhile remembering, as shown by (12), that small values
of μ means that the width of the filter � is larger than the distance R to the center of the
measuring volume. So this peculiarity is hardly of any practical importance. However, we
illustrate in Fig. 6 where in the μ–Δ plane the zero line is. We see that for a given small
value of μ there is an upper limit for Δ to obtain meaningful results. In this connection
it should be emphasized that the structure function cannot be negative, as the definition
(21) shows.

∗We maintain that the Kolmogorov constant α � 1.7 pertains to the energy spectrum for locally isotropic
turbulence and suspect that they also find CK = 27/55 �(1/3) α � 2.2.
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μ = 20

μ = 15

μ = 10

μ = 5

Δ

χ
(μ
,
Δ
)

0.10.010.001

0.3

0.2

0.1

0.0

Figure 4. The relative deviation (D∗(μ,Δ)eq.83 −D∗(μ,Δ)eq.51)/D
∗(μ,Δ)eq.83 for se-

lected values of μ.

χ(μ,Δ) = 0.1

χ(μ,Δ) = 0.01

χ(μ,Δ) = 0

μ

Δ

2015105

0.09

0.08

0.09

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Figure 5. Contour plot of χ(μ,Δ).

8 Conclusion

We have, in much detail, derived equations for the determination of the velocity struc-
ture function as measured by one CW-laser anemometer operating in VAD-mode. This
method is useful when the mean-wind speed is zero or very small which may occur un-
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D∗(μ,Δ) > 0

D∗(μ,Δ) < 0

μ

Δ

1086420

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6. Zero line for D∗(μ,Δ) determined from the numerical calculation of (83).

der very convective situations. One very important point is that the measured structure
function consists of two terms, one containing the large scale turbulence, namely the to-
tal variance, and the small scale term. The first term must be determined separately by
other means. We have derived two equivalent expressions for this small-scale structure
function, which have the important dimensionless parameter μ = 2R/�, where R is the
distance from the laser to the center of the weighing function and � is the width (FWHM)
of this function. The first involves a double integration in physical space. However, it
is difficult to obtain accurate integration results. By transforming the equations to wave-
number space by a simple Fourier transform we obtained an alternative formulation which
essentially consists of a single integration. The numerical integration in this case leads to
accurate and reliable results. It was shown that for an angle Δ between the two beams
smaller than about 0.02 � 1◦ it is possible to use a simple equation for the small-scale
part of the structure function. It is given as the sum of two terms, one proportional to
Δ2/3 and one proportional to Δ2 The corresponding coefficients are simple functions of
μ = 2R/�.
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Appendices

A Physical Space, Details

We shall first give a justification of how (89) is obtained from (27) and (45), assuming
Δ 
 1. It would not work just to expand D0(Δ, λ

′, λ′′) in a Taylor series in Δ because
certain expansion coefficients would be unbounded when λ ′′ − λ′ → 0, thus impeding
the subsequent integration. In order to construct a useful approximation to (45) the idea
is to rewrite it as a sum

D0(Δ, λ
′, λ′′) = dreg + dirreg, (A 1)

where dreg contains the terms with boundedΔ expansion coefficients i.e.

dreg = 2(1 − cosΔ)RL(0)− 27

55
�

(1

3

)
αε

2
3 |λ′′ − λ′| 2

3 . (A 2)

The remaining terms in (45) are irregular since they contain r 2(λ′, λ′′) in fractional pow-
ers. We find

dirreg = F

G
, (A 3)

where

F = 9

110
�

(1

3

)
αε

2
3 {6(λ′ 2 + λ′′ 2) cosΔ− λ′λ′′(5 + 7 cos(2Δ))} (A 4)

and

G =
{
(λ′′ − λ′)2 + 4λ′λ′′ sin2

(Δ
2

)} 2
3 = (λ′ 2 + λ′′ 2 − 2λ′λ′′ cosΔ)

2
3 . (A 5)

By expanding dreg andF to the second order inΔ and replacingGwith the approximation

Gapprox = {(λ′′ − λ′)2 + λ′λ′′Δ2} 2
3 . (A 6)

we may construct the approximation

D0(Δ, λ
′, λ′′) = RL(0)Δ2 + 27

55
�

(
1

3

)
αε2/3

×

⎧⎪⎪⎨
⎪⎪⎩

[
(λ′′ − λ′)2 + λ′λ′′Δ2

]1/3 − |λ′′ − λ′|2/3 + 1

3

[
λ′λ′′ − 3

2
(λ′′ − λ′)2

]
Δ2

[
(λ′′ − λ′)2 + λ′λ′′Δ2

]2/3

⎫⎪⎪⎬
⎪⎪⎭ , (A 7)

from which (89) follows immediately. Numerical experiments and theoretical analysis
show that the impact of the error committed in the approximation (A 6) on the double

integral (27) is O(Δ 11
3 ). The mathematical and computational merits of (45) and (A 7)
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are equivalent for small Δ and λ′ �= λ′′; they agree up to but not including the 4th order
in Δ. Moreover they both satisfy the relation

lim
Δ→0

D0(Δ, λ
′, λ′′) = 0, (A 8)

and both give the correct point limit D0(Δ,R,R) in the “diagonal case” λ′ = λ′′ = R,
cf. (48).

Next we shall give an asymptotic analysis ofD(μ,Δ), or ratherD ∗(μ,Δ), which is valid
in the limit Δ → 0. The analysis becomes simpler when we retain the exact denomina-

tor (A 5). If we take (45)), subtract the RL(0) term, and divide by αε
2
3 , the resulting

expression can be written

D∗
0 (Δ, ξ, η) = − 9

110
�

(1

3

){
6|ξ − η| 2

3 − 6(ξ − η)2 + (14ξη − 3ξ 2 − 3η2)Δ2

(ξ2 + η2 − 2ξη cosΔ)
2
3

}
. (A 9)

The corresponding double integral is

D∗(μ,Δ) =
∞∫

−∞

∞∫
−∞

h∗(μ, ξ)h∗(μ, η)D∗
0 (Δ, ξ, η)dξdη, (A 10)

where h∗ is the scaled and normalized filtering function defined in (47). We shall derive
the following asymptotic expansion applying to D ∗(μ,Δ) for small Δ,

D∗(μ,Δ) ∼ c5/3(μ)Δ
5
3 + c2(μ)Δ

2 + c11/3(μ)Δ
11
3 + c4(μ)Δ

4 + · · · , (A 11)

and we shall find formulas for c5/3(μ) and c2(μ). To accomplish this task we shall work
in the complex domain � and split the components of (A 9)–(A 10) and h ∗ as far as
possible in “atoms”, in a way that we shall now describe. The complex decomposition of
h∗ in partial fractions is

h∗(μ, z) = 1

πμ

1

(z − c)(z− c)
= 1

2π i

( 1

z− c
− 1

z− c

)
, (A 12)

where

c = 1 + i

μ
, μ > 0. (A 13)

An important building block for performing the first integration in (A 10) is the integral

I =
+∞∫

−∞

φ(z)

z− c
dz, (A 14)

where

φ(z) = (z2 + η2 − 2zη cosΔ)ν−1. (A 15)

We want to use (A 14) with c = 1 ± i /μ but first it will be taken as a general complex
constant satisfying �(c) �= 0. We assume η ∈ � and consider general real values of ν
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although we are particularly interested in ν = 1
3 . We make a complex factorization of the

quadratic polynomial in (A 15):

z2 + η2 − 2zη cosΔ = (z− a)(z− b), (A 16)

where

(a, b) = η(e iΔ, e− iΔ). (A 17)

By deflecting the contour in (A 14) we can write

I = Im + Ip, (A 18)

where

Im =
a∫

−∞

φ(z)

z − c
dz (A 19)

and

Ip =
+∞∫
a

φ(z)

z− c
dz. (A 20)

Beginning with (A 20) we have

Ip =
+∞∫
a

(z− a)ν−1(z− b)ν−1

z− c
dz. (A 21)

We make the substitution z = c − (c − a)/u and obtain

Ip = (a − c)2ν−2

1∫
0

u1−2ν(1 − u)ν−1
(
1 − u

c − b

c − a

)ν−1
du, (A 22)

which is a hypergeometric integral. Indeed it can be shown that

Ip = �(2 − 2ν)�(ν)

�(2 − ν)
(a − c)2ν−2F

(
1 − ν, 2 − 2ν ; 2 − ν ; c− b

c − a

)
, (A 23)

where F = 2F1 is the usual Gaussian hypergeometric function. Applying the z �→ 1 − z

transform (A 23) becomes after reduction,

Ip = π csc(2πν)
( �(ν)

�(1 − ν)�(2ν)

(a − b)2ν−1

a − c
F

(
1, ν ; 2ν ; a − b

a − c

)

− (a − c)ν−1(b − c)ν−1
)
. (A 24)

Next we consider Im given by (A 19). We have

Im =
a∫

−∞

(z − a)ν−1(z− b)ν−1

z− c
dz. (A 25)
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By substituting z = −u and making the branch interpretation (−1) 2ν = 1 we get

Im = −
+∞∫

−a

(u+ a)ν−1(u+ b)ν−1

u+ c
du. (A 26)

Thus, if we write Im = Im(ν, a, b, c) and Ip = Ip(ν, a, b, c) we have obtained the for-
mula

Im(ν, a, b, c) = −Ip(ν,−a,−b,−c). (A 27)

From (A 18), (A 24), (A 27) we deduce that

I = I (ν, a, b, c) = π csc(2πν)

(a − b)(a − c)(b − c)�(1 − ν)

×
(

− (a − b)[(a − c)ν(b − c)ν − (c − a)ν(c − b)ν]�(1 − ν)

+ [(a − b)2ν − (b − a)2ν](b − c)
�(ν)

�(2ν)
F

(
1, ν; 2ν; a − b

a − c

))
. (A 28)

We shall also need the integral

I1 =
+∞∫

−∞
z
φ(z)

z− c
dz. (A 29)

By writing z = c + (z− c) we see that this becomes

I1 = cI + I0, (A 30)

where I was given in (A 28) and

I0 =
+∞∫

−∞
φ(z)dz. (A 31)

Clearly we have

I0 = − lim
c→∞(cI (ν, a, b, c))

(
ν <

1

2

)
, (A 32)

which results in

I0 = I0(ν, a, b) = 21−2νπ
3
2 csc(2πν)((a − b)2ν − (b − a)2ν)

(a − b)�(1 − ν)�( 1
2 + ν)

. (A 33)

It can be shown that

I0

(1

3
, ηe iΔ, ηe− iΔ

)
= 1

2

√
3

π
�

(1

3

)
�

(1

6

)
sin− 1

3Δ |η|− 1
3 . (A 34)

We shall here need the expansion formula

sin− 1
3Δ = Δ− 1

3 + 1

18
Δ

5
3 + O(Δ 11

3 ). (A 35)
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The next step is to expand the first-integral components I in (A 14) and I 1 in (A 29) in
power series in Δ, where we take ν = 1

3 and (a, b) from (A 17). Beginning with I we
multiply by 1/(2π i ) and thus define

J (Δ, c, η) = 1

2π i
I
(1

3
, ηe iΔ, ηe− iΔ, c

)
(A 36)

cf. expression (A 28). We see from this that

J (Δ, c, η) = A1 + A2F

A3
(A 37)

where

A1 = �2(2/3)(−1 + e2 iΔ)η

×{(c− e− iΔη)
1
3 (c − e iΔη)

1
3 − (−c + e− iΔη)

1
3 (−c+ e iΔη)

1
3 }, (A 38)

A2 = 2
2
3
√

3�
(1

3

)
i (−ce iΔ + η) sin

2
3Δ η|η|− 1

3 , (A 39)

A3 = 2
√

3�2
(2

3

)
sinΔ(ce iΔ − η)(−c+ e iΔη)η, (A 40)

and

F = F
(1

3
, 1 ; 2

3
; 2η sinΔ

i (c − η cosΔ)+ η sinΔ

)
. (A 41)

Here we have used the identity

i
2
3 − (− i )

2
3 = i

√
3. (A 42)

By expanding J (Δ, c, η) in powers of Δ up to the second order we obtain

J (Δ, c, η) = a−1/3Δ
− 1

3 + a0 + a5/3Δ
5
3 + a2Δ

2 + O(Δ 11
3 ), (A 43)

where

a−1/3 = − �( 1
6 ) i

2
√
π�( 2

3 )

|η|− 1
3

η − c
, (A 44)

a0 = − i√
3

(c − η)
2
3 − (η − c)

2
3

(η − c)2
(A 45)

a5/3 = �( 1
6 ) i

180
√
π�( 2

3 )

4η2 + 55cη− 5c2

(η − c)3
|η|− 1

3 , (A 46)

and

a2 = 2 i cη

3
√

3

(c − η)
2
3 − (η − c)

2
3

(η − c)4
. (A 47)
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Similarly we have

J1(Δ, c, η) = 1

2π i
I1

(1

3
, ηe iΔ, ηe− iΔ, c

)
. (A 48)

By using (A 30), (A 34)–(A 35), and (A 44)–(A 47) we get the expansion

J1(Δ, c, η) = b−1/3Δ
− 1

3 + b0 + b5/3Δ
5
3 + b2Δ

2 + O(Δ 11
3 ), (A 49)

where

b−1/3 = − �( 1
6 ) i

2
√
π�( 2

3 )

η|η|− 1
3

η − c
, (A 50)

and

b0 = − i c√
3

(c − η)
2
3 − (η − c)

2
3

(η − c)2
, (A 51)

b5/3 = −�(
1
6 ) i (5η2 − 19cη− 40c2)

180
√
π�( 2

3 )

η|η|− 1
3

(η − c)3
, (A 52)

and

b2 = 2 i c2η

3
√

3

(c − η)
2
3 − (η − c)

2
3

(η − c)4
. (A 53)

Proceeding to the second integration in (A 10) we shall use (A 44)–(A 47) and (A 50)–(A
53) to evaluate various expansion coefficients related to individual parts of the expression
(A 9). We begin with the coefficient cyy

0 of Δ◦ in the filtered double integral of

u(ξ, η;Δ) = η2

(ξ2 + η2 − 2ξη cosΔ)
2
3

. (A 54)

By (A 12) we have

c
yy
0 = 1

πμ

+∞∫
−∞

{a0(η)+ a0(η)} η2

(η− c)(η− c)
dη (A 55)

with a0 given in (A 45). We need the identity

(c − η)
2
3 − (η − c)

2
3 =

(
− 3

2
+

√
3

2
i
)
(η − c)

2
3 , (A 56)

which is valid when η ∈ �, �(c) > 0. This gives

a0(η) = 1

2
(1 + i

√
3)(η − c)−

4
3 . (A 57)

We shall evaluate the auxiliary integral

I (α, n) =
+∞∫

−∞
ηn
(η − c)α

η − c
dη, (A 58)
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where n ∈ �, α + n < 0, and �(c) > 0 as in (A 13). The integration path from −∞ to
+∞ is augmented with an infinite semicircle below the real axis going from +∞ back
to −∞. In this way we avoid the irregular singularity c. The contour only encloses the
simple pole η = c. Hence by the Cauchy and Jordan theorems we obtain

I (α, n) = −2π i (−2 i )αμ−n−α(μ− i )n. (A 59)

We obtain by using (A 55), (A 57), (A 58):

c
yy
0 = 1

πμ

(1

2
(1 + i

√
3)I

(
− 7

3
, 2

)
+ 1

2
(1 − i

√
3)I

(
− 7

3
, 2

))
. (A 60)

By inserting (A 59) we get after reduction

c
yy
0 = −2− 1

3μ− 2
3 (μ2 − 1). (A 61)

By the same method we evaluate

c
yy
2 = 1

πμ

+∞∫
−∞

{a2(η)+ a2(η)} η2

(η − c)(η − c)
dη (A 62)

with a2 given in (A 47). By (A 56) this can be written

a2(η) = −1

3
(1 + i

√
3)cη(η − c)−

10
3 . (A 63)

Then

c
yy
2 = 1

πμ

(
− 1

3
(1 + i

√
3)cI

(
− 13

3
, 3

)
− 1

3
(1 − i

√
3)cI

(
− 13

3
, 3

))
, (A 64)

which reduces to

c
yy
2 = −1

6
2− 1

3μ− 2
3 (μ4 − 1). (A 65)

Now we replace the model function (A 54) with

u(ξ, η;Δ) = ξη

(ξ2 + η2 − 2ξη cosΔ)
2
3

. (A 66)

In analogy with (A 55) we want to determine

c
xy
0 = 1

πμ

+∞∫
−∞

{b0(η)+ b0(η)} η

(η− c)(η − c)
dη (A 67)

with b0 given by (A 51). By (A 56) this can be written

b0(η) = 1

2
(1 + i

√
3)c(η − c)−

4
3 . (A 68)

Then

c
xy
0 = 1

πμ

(1

2
(1 + i

√
3)cI

(
− 7

3
, 1

)
+ 1

2
(1 − i

√
3)cI

(
− 7

3
, 1

))
, (A 69)
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which reduces to

c
xy
0 = −2− 1

3μ− 2
3 (μ2 + 1). (A 70)

Proceeding to the coefficient cxy
2 of Δ2 we get similarly:

c
xy
2 = 1

πμ

+∞∫
−∞

{b2(η)+ b2(η)} η

(η − c)(η− c)
dη (A 71)

with

b2(η) = −1

3
(1 + i

√
3)c2η(η − c)−

10
3 . (A 72)

We get

c
xy
2 = 1

πμ

(
− 1

3
(1 + i

√
3)c2I

(
− 13

3
, 2

)
− 1

3
(1 − i

√
3)c2I

(
− 13

3
, 2

))
(A 73)

which reduces to

c
xy
2 = −1

6
2− 1

3μ− 2
3 (μ2 + 1)2. (A 74)

In completion we note that we of course have the identities

cxx
0 = c

yy
0 , cxx

2 = c
yy
2 . (A 75)

Now we determine the coefficients associated with the fractional powers of Δ and begin
with some auxiliary integrals. We have

In(α, c) =
+∞∫
0

tα−1

(t − c)n
dt = �(n− α)

�(1 − α)(n− 1) ! (−c)
α−nπ csc(πα)

(n ∈ �, 0 < α < n, c /∈ �). (A 76)

From this we can derive the integral

φn(α, c) =
+∞∫

−∞

|t|α−1

(t − c)n
dt (A 77)

by treating the intervals (−∞, 0) and (0,∞) separately. We find

φn(α, c) = (−1)n�(n − α)

�(1 − α)(n− 1) ! cn ((−c)
α + cα)π csc(πα)

(n ∈ �, 0 < α < n, c /∈ �). (A 78)

Moreover we need the integrals

ψn(α, c, d) =
+∞∫

−∞

|t|α−1

(t − c)n(t − d)
dt

(n ∈ �, 0 < α < n+ 1, c /∈ �, d /∈ �, c �= d) (A 79)
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for n = 1, 2, 3. We have

ψ1(α, c, d) = π csc(πα)

cd(c− d)
(c((−d)α + dα)− d((−c)α + cα)) (A 80)

ψ2(α, c, d) = − π csc(πα)

c2d(c− d)2

×
{
c2((−d)α + dα)+ (−c)αcd(α − 2)+ cα+1d(α − 2)

− (−c)αd2(α − 1)− cαd2(α − 1)
}

(A 81)

ψ3(α, c, d) = π csc(πα)

2c3d(c − d)3

{
2c3((−d)α + dα)

+ (−c)α+1cd(α − 3)(α − 2)− cα+2d(α − 3)(α − 2)

+2(−c)αcd2(α − 3)(α − 1)+ 2cα+1d2(α − 3)(α − 1)

− (−c)αd3(α − 2)(α − 1)− cαd3(α − 2)(α − 1)
}
. (A 82)

Our first goal is to compute the coefficient cyy
−1/3 for Δ− 1

3 in the filtered double integral
of (A 54). Indeed we have from (A 12)–(A 13):

c
yy
−1/3 = 1

2π i

+∞∫
−∞

{a−1/3(η)+ a−1/3(η)}η2
( 1

η − c
− 1

η − c

)
dη (A 83)

where a−1/3(η) was given in (A 44). We express cyy
−1/3 in terms of the functions φ2 and

ψ1,

c
yy
−1/3 = − �( 1

6 ) i

2
√
π�( 2

3 )

1

2π i

×
{
φ2

(8

3
, c

)
− ψ1

(8

3
, c, c

)
− ψ1

(8

3
, c, c

)
+ φ2

(8

3
, c

)}
, (A 84)

which evaluates to

c
yy
−1/3 = �(1/6)

6
√

3π�(2/3)μ2/3

×
{
3 iμ((− i − μ)

2
3 − ( i − μ)

2
3 − (− i + μ)

2
3 + ( i + μ)

2
3

+ 2((− i − μ)
2
3 + ( i − μ)

2
3 + (− i + μ)

2
3 + ( i + μ)

2
3 )

}
. (A 85)
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By defining

v = 2

3
arccotμ (A 86)

we can reduce (A 85) to

c
yy
−1/3 = (1 + μ2)

1
3�( 1

6 )

6
√

3π�( 2
3 )μ

2
3

((2 + 3
√

3μ) cos v + (2
√

3 − 3μ) sin v) (A 87)

Next we evaluate the corresponding coefficient c yy
5/3 of Δ

5
3 , i.e.

c
yy
5/3 = 1

2π i

+∞∫
−∞

{a5/3(η)+ a5/3(η)}η2
( 1

η − c
− 1

η − c

)
dη (A 88)

Here a5/3(η) was given by (A 46) and can be reformulated as

a5/3(η) = �( 1
6 ) i

180
√
π�( 2

3 )

( 4

η − c
+ 63c

(η − c)2
+ 54c2

(η − c)3

)
|η|− 1

3 (A 89)

Let us write

a5/3(η)+ a5/3(η) = p1 + p2 + p3 (A 90)

where

p1 = 4k|η|− 1
3

( 1

η − c
− 1

η − c

)
(A 91)

p2 = 63k|η|− 1
3

( c

(η − c)2
− c

(η − c)2

)
(A 92)

p3 = 54k|η|− 1
3

( c2

(η − c)3
− c2

(η − c)3

)
(A 93)

k = �( 1
6 ) i

180
√
π�( 2

3 )
(A 94)

Then

c
yy
5/3 = k

2π i
(P1 + P2 + P3) (A 95)

where

P1 = 4
(
φ2

(8

3
, c

)
− ψ1

(8

3
, c, c

)
− ψ1

(8

3
, c, c

)
+ φ2

(8

3
, c

))
(A 96)

P2 = 63
(
cφ3

(8

3
, c

)
− cψ2

(8

3
, c, c

)
− cψ2

(8

3
, c, c

)
+ cφ3

(8

3
, c

))
(A 97)

P3 = 54
(
c2φ4

(8

3
, c

)
− c2ψ3

(8

3
, c, c

)
− c2ψ3

(8

3
, c, c

)
+ c2φ4

(8

3
, c

))
(A 98)
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We can reformulate this in the same way as we did for c yy
−1/3. The result is

c
yy
5/3 = (1 + μ2)1/3�(1/6)�(1/3)

2160π 3/2μ2/3

×
(
(−44 − 51

√
3μ+ 54μ2 + 81

√
3μ3) cos v

+ (−44
√

3 + 51μ+ 54
√

3μ2 − 81μ3) sin v
)
. (A 99)

Now we replace the model function with (A 66) in order to determine the coefficients

c
xy
−1/3 forΔ− 1

3 and cxy
5/3 for Δ

5
3 . By makingΔ → ∞ in (A 9) we infer that

c
xy
−1/3 = c

yy
−1/3. (A 100)

The coefficient cxy
5/3 is given by

c
xy
5/3 = 1

2π i

+∞∫
−∞

{b5/3(η)+ b5/3(η)}η
( 1

η − c
− 1

η − c

)
dη (A 101)

with b5/3(η) as given in (A 52). The evaluation of (A 101) follows the same pattern as for
c

yy
5/3 and the result becomes

c
xy
5/3 = (1 + μ2)

1
3�(1/6)�(1/3)

2160π
3
2μ

2
3

×
{
(64 + 111

√
3μ+ 54μ2 + 81

√
3μ3) cos v

+ (64
√

3 − 111μ+ 54
√

3μ2 − 81μ3) sin v
}
. (A 102)

Finally, we have of course the identities

cxx−1/3 = c
yy
−1/3, cxx

5/3 = c
yy
5/3. (A 103)

We are now ready to assemble all the necessary pieces in order to determine the coeffi-
cients a(μ) = c5/3(μ) and b(μ) = c2(μ) in the asymptotic expansion (A 11). Conferring
with (A 9) we obtain

a(μ) = 9

110
�

(1

3

)

×(6cxx
5/3 − 12cxy

5/3 + 6cyy
5/3 + 14cxy

−1/3 − 3cxx−1/3 − 3cyy
−1/3) (A 104)

and

b(μ) = 9

110
�

(1

3

)
(6cxx

2 − 12cxy
2 + 6cyy

2 + 14cxy
0 − 3cxx

0 − 3cyy
0 ), (A 105)
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which evaluate to (52)–(54). The final asymptotic formula is then

D∗(μ,Δ) ∼ a(μ)Δ
5
3 + b(μ)Δ2. (A 106)

The relative error of this expression tends to zero as Δ → 0. However, the convergence
is not uniform with respect to μ ∈ (0,∞) since we have

|a(μ)| → ∞ as μ → 0, |b(μ)| → ∞ as μ → 0, (A 107)

and

|a(μ)| → ∞ as μ → ∞, |b(μ)| → ∞ as μ → ∞. (A 108)

The best precision of (A 106) is obtained when μ ≈ 1. By a heuristic argument it can
be shown that (A 106) with the coefficients (52)–(54) also holds good for the model (89)
where we have used the approximation sin(Δ/2) ≈ Δ/2.

B Wave-Number Formulation, Details

We see from (31)–(33) that there are three different vector arguments ρ which are listed
here for convenience

ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(λ′′ − λ′) b− = (λ′′ − λ′) (i1 cos(Δ/2)− i2 sin(Δ/2)).

(λ′′ − λ′) b+ = (λ′′ − λ′) (i1 cos(Δ/2)+ i2 sin(Δ/2)).

λ′′ b+ − λ′ b− = (λ′′ − λ′) i1 cos(Δ/2)+ (λ′ + λ′′) i2 sin(Δ/2).

(B 1)

The evaluation of (23)–(25) requires the determination of

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ e ik·ρ, (B 2)

with h(μ, λ) given by (11), in all three cases (B 1). We use the relation for real x

∞∫
−∞

h(μ, λ) e i x λ dλ = e i xR exp

(
−R
μ

|x|
)
. (B 3)

Inserting each of the three types of ρ (B 1) into (B 2) we get

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i (λ′′ − λ′) k · b−) =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i (λ′′ − λ′)[k1 cos(Δ/2)− k2 sin(Δ/2)]) =
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∣∣∣∣∣∣
∞∫

−∞
h(μ, λ) dλ exp(i λ[k1 cos(Δ/2)− k2 sin(Δ/2)])

∣∣∣∣∣∣
2

=

exp(−�|k1 cos(Δ/2)− k2 sin(Δ/2)|) , (B 4)

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i (λ′′ − λ′) k · b+) =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i (λ′′ − λ′)[k1 cos(Δ/2)+ k2 sin(Δ/2)]) =

∣∣∣∣∣∣
∞∫

−∞
h(μ, λ) dλ exp(i λ[k1 cos(Δ/2)+ k2 sin(Δ/2)])

∣∣∣∣∣∣
2

=

exp(−�|k1 cos(Δ/2)+ k2 sin(Δ/2)|) , (B 5)

and

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i [λ′′ k · b+ − λ′ k · b−]) =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i [(λ′′ − λ′)k1 cos(Δ/2)+ (λ′ + λ′′)k2 sin(Δ/2)])

=
∞∫

−∞
h(μ, λ′) dλ′ exp

(−i λ′[k1 cos(Δ/2)− k2 sin(Δ/2)])

×
∞∫

−∞
h(μ, λ′′) dλ′′ exp

(
i λ′′[k1 cos(Δ/2)+ k2 sin(Δ/2)]) =

exp(2 i Rk2 sin(Δ/2))

× exp

(
−�

2
[|k1 cos(Δ/2)− k2 sin(Δ/2)| + |k1 cos(Δ/2)+ k2 sin(Δ/2)|]

)
, (B 6)

where the filter length-scale is given by (12).
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To determineD as given by (22) we must, according to (23)–(25) and (31)–(33), evaluate
eight integrals:

I−
11 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R11((λ

′′ − λ′)b−), (B 7)

I−
22 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R22((λ

′′ − λ′)b−), (B 8)

I−
12 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R12((λ

′′ − λ′)b−), (B 9)

I+
11 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R11((λ

′′ − λ′)b+), (B 10)

I+
22 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R22((λ

′′ − λ′)b+), (B 11)

I+
12 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R12((λ

′′ − λ′)b+), (B 12)

I
+/−
11 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R11(λ

′′b+ − λ′b−), (B 13)

and

I
+/−
22 =

∞∫
−∞

h(μ, λ′) dλ′
∞∫

−∞
h(μ, λ′′) dλ′′R22(λ

′′b+ − λ′b−). (B 14)

Using (B 4)–(B 6), we get

I−
11 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 3k2

1 + 11k2
2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)− k2 sin(Δ/2)|), (B 15)

I−
22 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 11k2

1 + 3k2
2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)− k2 sin(Δ/2)|), (B 16)
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I−
12 = − 16

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
k1k2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)− k2 sin(Δ/2)|), (B 17)

I+
11 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 3k2

1 + 11k2
2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)+ k2 sin(Δ/2)|), (B 18)

I+
22 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 11k2

1 + 3k2
2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)+ k2 sin(Δ/2)|), (B 19)

I+
12 = − 16

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
k1k2

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)+ k2 sin(Δ/2)|), (B 20)

I
+/−
11 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 3k2

1 + 11k2
2

(q2 + k2
1 + k2

2)
7/3

exp(2 i Rk2 sin(Δ/2))

× exp

(
−�

2
[|k1 cos(Δ/2)− k2 sin(Δ/2)| + |k1 cos(Δ/2)+ k2 sin(Δ/2)|]

)
, (B 21)

and

I
+/−
22 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 11k2

1 + 3k2
2

(q2 + k2
1 + k2

2)
7/3

exp(2 i Rk2 sin(Δ/2))

× exp

(
−�

2
[|k1 cos(Δ/2)− k2 sin(Δ/2)| + |k1 cos(Δ/2)+ k2 sin(Δ/2)|]

)
. (B 22)
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We may now reformulate (23)–(25) in terms of double integrals over wave numbers. We
get by (31)–(33) and (B 7)–(B 22)

〈v−2〉 = I−
11 cos2(Δ/2)+ I−

22 sin2(Δ/2)− 2I−
12 cos(Δ/2) sin(Δ/2) =

2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 7(k2

1 + k2
2)+ 4(k2

2 − k2
1) cosΔ+ 8k1k2 sinΔ

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)− k2 sin(Δ/2)|) , (B 23)

〈v+2〉 = I+
11 cos2(Δ/2)+ I+

22 sin2(Δ/2)+ 2I+
12 cos(Δ/2) sin(Δ/2) =

2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
−∞

dk1

∞∫
−∞

dk2
3q2 + 7(k2

1 + k2
2)+ 4(k2

2 − k2
1) cosΔ− 8k1k2 sinΔ

(q2 + k2
1 + k2

2)
7/3

× exp(−�|k1 cos(Δ/2)+ k2 sin(Δ/2)|) , (B 24)

and

〈v−v+〉 = I
+/−
11 cos2(Δ/2)− I

+/−
22 sin2(Δ/2) = 2

55
B(1/2, 1/3)

αε2/3

4π

×
∞∫

−∞
dk1

∞∫
−∞

dk2
(3q2 + 7(k2

1 + k2
2)) cosΔ+ 4(k2

2 − k2
1)

(q2 + k2
1 + k2

2)
7/3

cos(μ� k2 sin(Δ/2))

× exp

(
−�

2
[|k1 cos(Δ/2)− k2 sin(Δ/2)| + |k1 cos(Δ/2)+ k2 sin(Δ/2)|]

)
, (B 25)

where we have used the relation 2R = μ�. The quantity D in (22) is determined by (B
23), (B 24), (B 25).

We may reformulate (B 23), (B 24), (B 25) by transforming the double integrals by using
plane polar coordinate as integration variables. The transformation is

⎧⎨
⎩ k1

k2

⎫⎬
⎭ = κ

⎧⎨
⎩ cos θ

sin θ

⎫⎬
⎭ . (B 26)

We get

〈v−2〉 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
0

κdκ

(q2 + κ2)7/3
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×
2π∫
0

(3q2 + 7κ2 − 4κ2 cos(Δ+ 2θ)) exp(−�κ | cos(θ +Δ/2)|)dθ (B 27)

and

〈v+2〉 = 2

55
B(1/2, 1/3)

αε2/3

4π

∞∫
0

κdκ

(q2 + κ2)7/3

×
2π∫
0

(3q2 + 7κ2 − 4κ2 cos(Δ− 2θ)) exp(−�κ | cos(θ −Δ/2)|)dθ (B 28)

or, in a simpler form,

〈v−2〉 = 〈v+2〉 ≡ 〈v2〉 = αε2/3 4

55
B(1/2, 1/3)

∞∫
0

κdκ

(q2 + κ2)7/3

× 1

2π

π/2∫
0

(3q2 + 7κ2 − 4κ2 cos(2θ)) exp(−�κ cosθ) dθ, (B 29)

and

〈v−v+〉 = αε2/3 4

55
B(1/2, 1/3)

∞∫
0

κdκ

(q2 + κ2)7/3

× 1

2π

π/2∫
0

((3q2 + 7κ2) cosΔ− 4κ2 cos(2θ)) cos(μ�κ sin θ sin(Δ/2))

exp

(
−�κ

2
{| cos(θ +Δ/2)| + | cos(θ −Δ/2)|}

)
dθ. (B 30)
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