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Optimal Offering and Operating Strategies
for Wind-Storage Systems With
Linear Decision Rules

Huajie Ding, Student Member, IEEE, Pierre Pinson, Senior Member, IEEE, Zechun Hu, Member, IEEE, and
Yonghua Song, Fellow, IEEE

Abstract—The participation of wind farm-energy storage sys-
tems (WF-ESS) in electricity markets calls for an integrated view
of day-ahead offering strategies and real-time operation policies.
Such an integrated strategy is proposed here by co-optimizing of-
fering at the day-ahead stage and operation policy to be used at
the balancing stage. Linear decision rules are seen as a natural
approach to model and optimize the real-time operation policy.
These allow enhancing profits from balancing markets based on
updated information on prices and wind power generation. Our
integrated strategies for WF-ESS in electricity markets are opti-
mized under uncertainty in both wind power and price predic-
tions. The resulting stochastic optimization problem readily yields
optimal offers and linear decision rules. By adding a risk-aversion
term in form of conditional value at risk into the objective function,
the optimization model additionally provides flexibility in finding a
trade-off between profit maximization and risk management. Un-
certainty in wind power generation, as well as day-ahead and bal-
ancing prices, takes the form of scenario sets, permitting to refor-
mulate the optimization problem as a linear program. Case studies
validate the effectiveness of the strategy proposed by highlighting
and quantifying benefits w.r.t. other existing strategies.

Index Terms—Bidding strategy, electricity markets, energy
storage system, linear decision rules, real-time operation, wind
farm.

I. INTRODUCTION

LTHOUGH experiencing dramatic increase of installed

capacity, wind power meets bottlenecks with integration
into power systems. While it is increasingly accepted that wind
power should directly participate in electricity markets, it faces
substantial financial risks owing to its lack of controllability
and predictability [1], which will result in variable and poten-
tially large balancing costs. The optimal bidding for a wind farm
(WF) participating in the electricity market as a price taker [2]
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or a price maker [3] has been studied for many years. Gener-
ally in those works, the Expected Utility Maximization (EUM)
strategy is fundamental in its simplest or extended forms [2],
[4]. This strategy has the advantage of transparency and of low
computational-costs since having a closed-form solution. In par-
allel, energy storage systems (ESS) are deemed promising for
the support they could provide to WFs thanks to their flexible
charging and discharging capability. The theme of coordinating
wind farms and energy storage systems (abbreviated WF-ESS)
has been the focus of many proposals over recent years. The
main functions of ESS in these studies are to perform arbitrage
in day-ahead markets, as well as to compensate for wind power
deviations from schedule in real-time operation. For instance,
a two-stage stochastic optimization model is described in [5]
to maximize the profit of an WF-ESS in the Spanish electricity
market, also giving general insight on mutual benefits from such
coordination. Optimal offering in both day-ahead and intraday
markets is studied in [6], where the real-time control strategy is
to balance the wind power deviations as well as track the target
residual energy of the ESS. ESS can also help flatten the varia-
tions of WF, as stated in [7]-[9].

Most papers assume that the role of ESS is to compensate for
deviations from a pre-defined operation schedule and to smooth
power output in real-time operation [10], [11]. These overlook
the opportunity of optimizing market participation by optimally
foreseeing how ESS could permit to jointly accommodate
deviations from schedule and perform arbitrage. To prevent
ESS from charging at high-price periods and discharging at
low-price periods when balancing deviations, [12] proposes
a reserve-based operation strategy for ESS, which allows
ESS to balance the deviations of the WF within day-ahead
contracted capacities. However, the day-ahead bidding of
WF is optimized without considering the influence of ESS.
Reference [13] extends this reserve-based strategy and embeds
the balancing strategy into day-ahead optimization, which can
prominently increase the profit of WF-ESS. These methods
focus more on wind power deviations, while they are not very
sensitive to balancing prices. In contrast, if aiming to integrate
complicated real-time control strategies into day-ahead bidding
optimization, traditional methods such as stochastic dynamic
programming suffer from the exponential growth of computing
efforts. Fortunately, linear decision rules permit to define deci-
sions through affine transformation of realizations of uncertain
parameters [14]-[16], hence keeping computational costs low.
In this paper, we propose linear decision rules as real-time
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control strategies, where past, current and updated forecast in-
formation can be fully utilized and linearly combined to obtain
optimal operation policies. This information includes devia-
tions in day-ahead and balancing prices, as well as wind power
generation, from their originally predicted values. Adopting
linear decision rules as the real-time operation strategy permits
to guarantee tractability while accommodating the dynamic
nature of the operational problem [17].

Our main contribution consists of describing and evaluating
an integrated strategy for day-ahead offering while accounting
for the optimal operation of ESS at the balancing stage, where
the real-time operation policy for the storage is modelled with
linear decision rules. Optimal decision rules and day-ahead of-
fers can be then obtained jointly. Our proposal is translated into
a stochastic optimization problem where a trade-off is made be-
tween the expected profit maximization and the risk-aversion.
Subsequently, discretization and linearization methods are em-
ployed to eventually obtain the solution of such stochastic op-
timization problems. Like most other works on this topic, our
model neglects degradation costs of ESS,! while being devel-
oped under the assumption of being a price-taker in some Euro-
pean electricity markets, e.g., the Scandinavian Nord Pool. An-
other contribution relates to the quantification of the value of
the residual energy of ESS. Furthermore, a sensitivity analysis
is carried out to analyze the influence of price uncertainty and
temporal correlation of wind power generation on profits. The
Pareto efficient frontier is obtained to illustrate the trade-off be-
tween expected profit and risk.

The paper is organized as follows. Section II briefly in-
troduces the basic rules of electricity markets, as well as our
real-time operation strategy modelled through linear decision
rules. The optimal offering and real-time operation policy is
formulated as an integrated stochastic optimization problem in
Section III. The objective function and constraints are further
reformulated into linear ones to obtain optimal solutions. In
Section IV, an illustrative case of two time intervals is firstly
employed to illustrate the usage of linear decision rules. A com-
parison of the proposed strategy with other popular strategies
is performed. Subsequently, we analyze how price uncertainty
and wind power correlation affect market revenues, while the
parameters such as constraint bandwidths and weighting factors
are studied through a sensitivity analysis. Finally, conclusions
and perspectives for future work are gathered in Section V.

II. LINEAR DECISION RULES FOR STORAGE-BASED
IMBALANCE MANAGEMENT

A. Imbalance Management in Electricity Markets

Generally deregulated electricity markets consist of
day-ahead and balancing market stages. For some power sys-
tems with a large proportion of renewable energies such as
solar and wind power, adjustment or intraday markets may be
of particular interest to correct for foreseen imbalances before
the balancing stage [6]. As the trading amount of intraday
markets is relatively small, it is not considered in this paper.
Related work can be found in [18], [19].

IThe degradation cost could be readily complemented in the objective func-
tion as a linear term.
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Day-ahead markets allow participants to bid for their genera-
tion schedule for the whole time horizons of the following day.
These are cleared 10 to 12 hours prior to the first time interval
for energy delivery of the following day. Such mechanism in-
evitably results in deviations between scheduled and actual gen-
eration, which is particularly severe for stochastic renewable en-
ergy generators [20]. If a deviation from schedule occurs, the
generator should buy or sell up/down regulation services in the
balancing market [ 13]. In this paper we do not consider the pos-
sibility for WF-ESS to additionally participate in ancillary ser-
vice markets. For some electricity markets like the Dutch APX,
balancing prices for up and down regulation services are the
same and determined according to the overall system imbalance.
In other power markets like Nord Pool and the Iberian one, up
and down regulations are settled at different prices depending
on whether their individual imbalance actually helps the system
or not. More detailed descriptions and discussions on balancing
markets can be found in [20]. In this paper, the models are built
and illustrated based on one-price settlement in the balancing
market. We will describe how these may be readily extended to
the case of two-price settlement.

B. Linear Decision Rules for Real-Time Operation Policies

The whole time horizon (one day for example) can be dis-
cretized into T time intervals, usually with 1 hour for each in-
terval and corresponding to the market time units. The state
vector z = [x1...27] € RT stands for the residual energy
of ESS at the end of each time interval. The state variables are
temporally coupled as

T: = Tt—1 + Buy, t=12,...T (1)

where B = [0,7.,—1/n4] and 2z, is the initial residual energy.
u = [p;“, s, p‘ﬂ consists of the ¢th elements of wind power
vector p*, charging power vector p¢ and discharging power
vector p?, where p¥ = [p¥ .. .p&’i]T e RT,p° = [p§ .. .p”’T]T €
RT,p? = [p{...p%] " ¢ R 5, and 7, are charging and dis-
charging efficiencies of the ESS.

According to linear decision rules, the power vectors of
WEF-ESS are determined by the affine function of day-ahead
and balancing price forecast error, as well as wind power
forecast error, i.e.,

][] [BE Da Di] [art)
AR R e et

and can be denoted as p = p+D4. p is the nominal power vector
and 4 is the vector consisting of forecast error for day-ahead
prices Axde, balancing prices An"*, and wind power genera-
tion Ap™. The affine matrix D consists of 9 sub-matrices, which
link power adjustments with forecast error of wind power and
prices. Take D}, for example, it represents the influence of bal-
ancing price forecast error on wind power adjustment. We also
denote D* = [Dy,, D}, Dy;|, D¢ = [Dg,, D5, D5, ;| and
Dt = [Dga, th,fo] f}, which are sub-matrices making up
the matrix D for later use. In the day-ahead optimization, as the
forecast of wind power and prices are formulated by scenarios,
the forecast error in (2) is the difference between the value of
each scenario and their mean value.
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Fig. 1.

As shown in Fig. 1, linear decision rules are adopted for
both day-ahead optimization and real-time operation. Denoted
by 7%, 7" and p*, the forecast vectors of day-ahead prices,
balancing prices and wind power are made 12-36 hours before
the dispatch. These data are fed to the optimization model to
obtain the optimal offering, p**¢, as well as the parameters of
the linear decision rules, p, D. Then p and D are applied to the
real-time operation. At time interval ¢, realizations of day-ahead
prices, w%®, some balancing prices and wind power of the op-
erating day, «"%, p*, are known, Whlle the intraday forecasts of
balancing prices and wind power 7%, p“/ are updated. These
data together with the day-ahead forecasts are used to determine
the power output of WFs and ESS during real-time operation.
Take the wind power in hour ¢ for example, its decision is ob-
tained as follows:

T
pt :pt +ZDdatz( ?G_IE(%?G))
i=1
+ZDrtt1 i ~Tt Z D’I‘tij ~Tt)
j=t+1

+ZDM” (£ (57)) +ZDMUA[E< )

j=t
3)

Decision procedure and control of WF-ESS based on linear decision rules.

where Dy, , ; is the element at row ¢, column i in matrix Dy, .
In addition, AF (7%) = E (77') — E (") and AF (57 ) =
E (ﬁ;”f) - E (ff;”f) Unlike the notation in Fig. 1, the super-
! } and {%;t}
are omitted in (3) for the sake of succinctness. The charging
or discharging decisions for ESS are made in a similar manner,
simply replacing the up-script ‘w’ of p and D in the above with
‘e’ or ‘d’.

The decision about power output at any time interval con-
sists of four parts, as in (3). The first part is the nominal power
Dy, determined from the day-ahead offering stage. The second
part corresponds to the influence of the day-ahead price fore-
cast error, while the last two parts (corresponding to the last two
lines) are for the influence of the forecast error in the balancing
prices and real-time available wind power generation. When it
comes to real-time, the day-ahead prices {Wf“} for the whole
time horizon are known. However, the balancing prices {#]*}
and the available wind power {p}} are only accessible for the
past hours, {i =1... t}. Consequently, those for the following
intervals, {i =t + 1,..., T}, should be substituted with the ex-

pectation of updated forecast {E (77%)} and { E (5" ) } to ob-

tain the deviations. It should be noted that for each time interval,
the latest updated 7", p*/ are used.

scripts indicating occurrence of update for {ﬁ;’
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Stochastic parameters are commonly dealt with by con-
straining their potential realizations within specific uncertainty
sets, around their expectation [ 14]. Although the polyhedronis a
good choice to describe uncertainty sets, if the given prices and
wind power forecasting error were too large, the only feasible
matrix D would be an all-zero matrix. Then the strategy could
not react to the real time information, and the strategy on linear
decision rules would lose its value. In order to prevent this from
happening, the formulation of uncertainty sets is tightened here,
which will result in the decision vector v violating the operation
constraints of WF-ESS systems during operation. The violation
comes from the fact that D and p are pre-determined, while &
is a random vector, which cannot be completely simulated by
scenarios, or perfectly formulated by polyhedral constraints due
to above-mentioned reasons. Consequently, a checking through
a saturation block is necessary to constrain the charging and
discharging power of ESS. As illustrated in Fig. 1, the charging
and discharging power of ESS obtained through linear decision
rules, as well as state of charge (SoC) is fed to the saturation
block, to prevent the ESS from over-charging or over-dis-
charging. At any time, the charging and discharging power
should be limited so as not to drive the residual energy out of
the allowable ranges at the next time interval. Consequently, the
charging threshold is min {ﬁc, M}, and the discharging

e At
threshold is min {ﬁd, E”AE;‘“‘“ nd}. As the saturation block

changes the power output only in extreme situations, which
occurs rarely, it does not have much influence on the overall
profit. Consequently, the saturation block is not included in the
optimization model.

III. FORMULATION OF THE OPTIMAL OFFERING STRATEGY

When determining the optimal day-ahead offering, the
WEF-ESS should not only pursue the higher expected profit
but also reduce the potential risk. In our strategy, the risk is
formulated by conditional value at risk (CVaR), and is co-opti-
mized with the expected profit through linear combination. The
optimization problem can be formulated as,

max 4E (5(6.8)) + (1) CVaR, (5(6,8)) 4a)
st 9(6,6) <0 (4b)

where 8 = {p**®, D,p} are decision variables. p"“ is the vector
of day-ahead offers p’’e. It should be noted here that as the
wind-storage system adopts the price-taker strategy, it will bid at
zero or slightly negative prices to guarantee itself to be cleared
out and to get paid at the cleared prices. Consequently it only
needs to determine the optimal quantity to offer. The objec-
tive function considers the expectation and risk of the WF-ESS
profit, while (4b) constrains power of WF and ESS, residual en-
ergy of ESS, and offering quantities.

The constraint set g (6,8) < 0 is built to guarantee the
feasibility of solutions for any realization of & within a
certain neighborhood of the forecast value dy. The uncer-
tainty set is defined as H§ < h, where H = [I57, —IgT}T,
h=[0T1,, -6 14;] "dy. 5% and 5~ are up/down deviation
factor to the forecast value. 37, 137 are a 3T-dimensional unit

IEEE TRANSACTIONS ON POWER SYSTEMS

matrix and a 37 x 1 column vector with all elements set to 1,
respectively. Constraints in (4b) include

Erin < (0,8) < Frax (5)
p°<D+p <p° (6)
p? <D+ <7 (7
0<D¥s+p" <p*/ (8)

0<p<CY ©)

Equation (5) limits the residual energy of ESS at each in-
terval within allowable ranges [Fuin, Fmax]- The same goes for
the charging and discharging power of ESS, as in (6) and (7),
with lower and upper levels of charging and discharging power,
[1_?6,1_70} and []_Jd,]_)d} , respectively. Moreover, considering the
possibility of curtailing wind power generation, (8) indicates
that the actual wind power output will not exceed the real-time
forecast value, p*/. The offered amount should be nonnega-
tive as the role of WF-ESS is a generator in the market, and the
amount should be below the allowable integration capacity of
WF-ESS, C*%, given by (9). In references such as [16], compo-
nents of the decision matrix D, such as Dy, are set as lower
triangular matrices as future information is not available at any
given time. However here, future information is substituted with
updated forecast values for the balancing price and wind power
related matrices. Hence corresponding matrices do not have to
be lower-triangular. Moreover, the day-ahead price related ma-
trices, such as Dj,, is not lower triangular as day-ahead prices
have already been determined before operation.

A. Details of the Objective Function

The objective of WF-ESS is to maximize total profit from
both day-ahead and balancing stages. Besides the expected
profit, risk is another imfortant issue to consider in the man-

agement of WF-ESS. E ( 5 (6, 4)

driven by the uncertainty of 4, while CVaR, <§ (9,5)) is
CVaR at the confidence level of c.

The objective function controls the trade-off between the ex-
pectation and CVaR with a parameter vy € [0, 1]. Setting y = 0
yields the totally risk-averse case. Increasing the value of
makes the strategy more risk-neutral, with eventually v = 1
representing the completely risk-neutral case. More specifically,
the profit S (6, §) can be expressed as

T

§(6.8) =) [Fep + 7" (" —p

t=1

) denotes the expected profit

%)) + 72 AE (10)

where p¢* is the joint output of WF-ESS at time interval ¢, and
p2%t = [1, — 1,1] u;. The profit consists of three parts. The

first part 73¢pbd is the profit from day-ahead offering, while
the second part 77" (pg“* — pt'?) is the profit or penalty from
the balancing market.

The last term in (10) is the so-called energy value. Unlike
most papers where residual energy of ESS at the end of the
scheduling horizon is either overlooked or anchored within an
acceptable deviation from initial level [13], we use the concept
of energy value to reflect the value of the residual energy in ESS,
since the residual energy has the potential to yield profits by

generating (discharging) in following horizons. It is inspired by
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an essential concept, water value in hydro-power management,
which relates to the marginal cost of water in the reservoirs, and
is equal to the replacement value of other general generators or
average market prices in ideal cases. Energy value introduced
here is to reflect the influence of residual energy on the daily
profit. Consequently, for the sake of simplicity, the final residual
energy deviation of ESS, AE = xp — =, is assigned a price,
7 to reflect its value, and the resulting energy value is consid-
ered in the objective function of (10). Substituting (2) into (10),
the stochastic profit function can be reformulated as
"))

56,8 =" [(Dw + D —D‘f) 5+ (ﬁ“’ +97 -
+ (%da 7 )pb’d FFEAE )

—d —rt - -
where 7 and 7" are vectors of 73 and 77¢.

B. Reformulation of the Objective Function
CVaR is defined as in [20],

1 VaR, (s)
CVaR, (s) =E{s|s < VaR, (s)} = —/ sp(s)ds
0

(12)

where S (8, 8) is denoted by s for convenience. p (s) is the prob-
ability density function of the random variable s and VaR,, is
defined as
VaR, () =min{VeR: P(s <V)>a} (13)
where P (s) is the cumulative distribution function of s.
Such definition of VaR can make it difficult to handle CVaR.
Inspired by the work of [21], we define a simpler function
1
F(s,v,oz)zv—}——/ (s—v)p(s)ds (14)
o s<u
whose maximum with regard to (w.r.t) v can be used as CVaR.

Here we provide a simple explanation. Detailed and strict proof
can be found in [22], [23]. The derivative of (14) w.r.t v is

i)y 1T e
<wv

v o

By equating it to 0, we can obtain that VaR maximizes F
(s,v,a) w.rt v (the second order derivative of F w.r.t v as
=1 p(v) is negative). Furthermore, the maximum of function F°
(s,v,a) w.r.t v is equal to CVaR.

In our optimization problem formulation, uncertain prices
and wind power output in the objective function are represented
by scenarios. Define {2 as the set of scenarios, p,, as the proba-

bility for scenario w, and »_ p, = 1, then the expectation can
wel)

E (5(9,5)) =3 puSe

weN

be formulated as

(15

where
S, =, [(Dw +D?—

+ (-

D))
)prd—l-ﬂEAE

n"? is the realization of the real-time price under scenario w,

while the same goes for the variables such as 8, 7%, 7% and
AFE,,. Equation (14) can be discretized as:
- 1
CVaR,, (5(6,6)) =v+= 3 pulSe - 16
a (0,8)) =v+ = pulSu—v (16)

wWEN

where [#] = min{x, 0}. By introducing the slack variables
{zw}, we can linearize (16) as

CVaR, (5(9,5)) v+l gz

wed
Zw S Sw -
2z, < 0.

amn

Substituting (15) and (17) into (4a), the objective function can
be reformulated linearly as

1
YY" puSe + (1) (v =) p> (18a)

max
a
weN we
st. 2z, <S5, —v, z,<0 (18b)
S, =m, [(D“’ + D7 - ) 5., + (13’” +p° —ﬁc)}
+ (xde — x7t) phid L PAE,, VweQ (180

C. Reformulation of Constraints

Constraint (5) can be reformulated as
Ir
Iy
(19)

where I4, 7 is a T-dimensional lower triangular matrix with all
elements as 1. Similarly, constraint (6) to (8) can be reformu-
lated as

2oly + Igem (Tlcﬁc - ,%dﬁd)

<[ 1rEmax }
~Lier (D= LDY)5) |~

- 1TEmin

Ir | Iy c [ 1rp°
Dy < 20
AT A R B I
It | 4 It d [ 1rp?
|:IT:|p +|:IT:|D5§ _*]-TZ_Jd 21
Ir 1w . [D¥—[0,0, 1] 10,0, 1] do
{_IT] +[ o }5< 00, 1] )

Furthermore, constraints (19)—(22) can be reformulated in
order to eliminate the random variable 4 and to have finite car-
dinality through duality theory, as performed by [16]. More
specifically, these constraints can be presented in an abstract
way as ¢' § < g with any & satisfying HJ < h. This yields

max | € & < (23)
s Vst Ho<h: pf =1

where g is the dual variable associated with the constraints. Ac-
cording to duality theory, (23) is equivalent to

3 p>0
s.t.pTh <gq

p H=c (24)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

D. Final Form and Possible Extensions

Finally, the whole problem is formulated in a linear way as,
(18a)

s.t. (18b), (18¢)
(19) — (22) in form of (24).

max

It should be noted that the formulation above is based on the
one-price balancing market, while this can be readily extended
to the two-price case. This is done by replacing the profit S (6, §)
in (10) with the following one,

i [%dapbzd ~rt+ UP + 7T w] + %EAE
t=1 . (25)
pg{w o pt pout pbzd
pt aptp >0
where ﬂ[t’L,ﬂfrt are up- and down-regulation prices and

pt ,p;T are positive and negative deviations between actual
output and day-ahead offer. Either p¢* or p,” should be 0 due
to the optimization requirement. This characteristic ensures
that p* or p;¥ can precisely represent the down-regulation
and up-regulation power capacity. Detailed proof can be found
n [24], where a similar reformulation was proposed and em-
ployed. However, for the sake of simplicity and transparency,
the solution approach presented above and the following case
studies are both based on the one-price balancing market case.

IV. APPLICATION RESULTS

In this section, case design is firstly introduced in IV.A. Then
two case studies are carried out. The first case with two time
intervals is presented in IV.B, which aims for a more lucid
demonstration of the proposed integrated strategy, especially the
linear decision rules. Furthermore, the second case study with
24 time intervals compares profits brought by different strate-
gies in IV.C, and sensitivity analyses of related parameters are
performed in IV.D.

A. Case Design

Both case studies are based on realistic data from the Nord
Pool market [25] and wind farms in Denmark [26], [27]. Per-
unit data of wind power forecast scenarios are provided by [28]
and translated into actual data by multiplying C,,. These 100
scenarios are applied to optimization, and also used to fit dis-
tributions of wind power at each time interval. Then quantities
of wind power scenarios for evaluation of strategies and sen-
sitivity analyses are generated based on these distributions, as
performed in [13].

Day-ahead prices and up/down-regulation prices are from the
DK-West area in the Nord Pool market during January Ist to
10th, 2014. Because the Nord Pool is of two-price balancing
market, up/down-regulation prices are different and one or the
other of them is equal to the day-ahead price at any specific time
interval. So we take the different one as the balancing price in
the one-price balancing market. Similarly, price scenarios are
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TABLE 1
PARAMETERS OF THE WF-ESS SYSTEM
Te Md Emin [MWh] Emaz [MWh]
0.95 0.95 10 50
Eo p° [MW] P [MW] Cw [MW]
30 10 10 100

necessary for both optimization and strategy evaluation, and
they are generated as

7l =71 (L+ 0aaf)

it =77t (1+ 0048) (26)
where 784, 77t are actual data of the day-ahead and balancing
prices at time interval ¢. £ is a random variable which obeys
the standard normal distribution £ ~ N (0, 1), and 4, and 7.
are the standard deviations for day-ahead and balancing prices.
The energy value of an ESS is updated every day and set as
the average spot price, as stated in most papers in the field of
hydro-generator [29]. Parameters of ESS are listed in Table I.
In following case studies, primary parameters are set as: v =
0.9, AT = A~ =0.1,64, = 0.2,0,; = 0.3 and o = 0.05.

B. An Illustrative Case

In this case, the first two intervals of wind power and price
data generated in IV.A are apphed The optimal solutlon is

pY = [52.9,59.3]" .p° = [5,5]" = [5,5]",D =
217 0 i 015 217 wi
[ 0o —234]'Pe = [ 217 o0 }’Dw B
1

0 ? , while D%, D¥f D p¥f D Dt are all

zeros. From the results we can see scheduled wind power is
independent from prices, while charging and discharging power
of ESS only depend on balancing prices.

Assume that wind power forecast error Ap* = [6,7] MW,
day-ahead price forecast error Aw® = [1,2] EUR/MWh
while balancing price forecast error Ax"

[-1,1] EUR/MWh. According to (3), charging and

discharging power of intervals can be expressed as

Py = 52.9+1x6=>58.9 MW

Py = 59.3+1x7=663MW

p{= 5+ (-217) x (1) = 7.17T MW

p5= 5+ (-2.34) x 1 = 2.66 MW
pi=5+0.15x (—1) + (—2.17) x 1 = 2.68 MW
ph= 514 (-2.17) x (—1) = 7.17 MW.

Since simultaneous charging and discharging is prohibited
and p¢ > pd, the actual discharging power of the first 1nterval
p1 is 0, while the amended charging power is pl =pi— pl
4.49 MW. Then in the second time interval, as p§ < pd 2 the
amended charging power p5 = 0 and discharging power p2 =
pd — pS = 4.51 MW. The power decision procedure of WF and
ESS can be extended to cases of more time intervals.
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Fig. 2. The distributions of profit over scenarios for all strategies, based on
10000 scenarios.

C. Profit Comparison

The profit earned by the proposed strategy is compared with
some other commonly adopted strategies. Strategy 1 is used as a
benchmark, which bids the forecast value and generates without
any curtailments for a wind farm operating alone. Strategy 2 is
the Expected Utility Maximization (EUM) strategy, where the
WEF bids the optimal quantile of wind power forecast and gen-
erates without any curtailment [2]. In both strategies, the WF
works alone without the ESS. Strategy 3 is the Filter Control
Strategy (FCS) [11], where the ESS is utilized to compensate
for the deviations between wind power output and day-ahead
bidding to reduce the deviation penalty cost. Strategy 4 is the
proposed linear-decision-rules one.

The comparisons are carried out using 10000 test scenarios
in a Monte Carlo simulation framework. The distributions of
profit over all the scenarios for the strategies are demonstrated
in Fig. 2, while the mean values of profits obtained by strategies
are also listed on the figure. Several conclusions can be reached
from the comparison. Firstly, when the WF operates alone, the
EUM strategy can help enhance the profit (compare Strategy 1
and Strategy 2). Secondly, the FCS does not have obvious ad-
vantages over the EUM strategy, which confirms the conclusion
in paper [13] that only with proper control strategy can ESS
bring satisfactory profit. Thirdly, the proposed control strategy
has the best economic profit as the probability distribution shifts
right obviously, which increases the profit of wind farm by over
11%.

D. Sensitivity Analysis

Parameters of the model will significantly influence the re-
sult of the formulations. Two key parameters, bandwidth of the
uncertainty, AT — A~ and the weighting factor + are firstly
studied in this section. The uncertainty bounds of prices and
wind power are defined by the polyhedral formulation Hd < h,
where kb is equal to the product of dy and the vector of positive

. . . .
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
BandWidth

0.5 I I I I

Fig. 3. Sensitivity analysis of bandwidth of robust optimization.
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Fig. 4. The Pareto frontier of the profit (all the feasible region is under the blue
curve).

and negative parameters At and A~. Consequently we define
AT — A~ as the uncertainty bandwidth and investigate its in-
fluence on final results. It can be seen from Fig. 3 that with the
increase of uncertainty bandwidth, the expectation and CVaR of
profit decreases monotonously. This is because that a larger un-
certainty bandwidth requires the solution be feasible for more
possible realizations of uncertain scenarios, which narrows fea-
sible region of the optimization problem. Consequently it is nat-
ural that the optimality of the formulation decreases with the
shrinking feasible region.

Another essential parameter of the formulation is the
weighting factor v, which makes the trade-off between the
expected profit and risk. As explained in IIL.A, a larger
implies a more risk-neutral strategy. Table II shows that an
increasing weighting factor can better guarantee the expected
profit but sacrifices the CVaR. The value selection of v depends
on the attitude of the WF-ESS to risk and each value of v maps
to one point of the Pareto efficient frontier in Fig. 4, which
means there does not exist any solution which can make both
expectation and CVaR better off at the same time.
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TABLE 11
SENSITIVITY ANALYSIS OF WEIGHTING FACTOR
vy Expectation [KEUR] CVaR [KEUR]
0 42.28 40.38
0.1 42.33 40.38
0.2 42.34 40.38
0.3 42.42 40.35
0.4 42.47 40.32
0.5 42.63 40.19
0.6 42.82 39.97
0.7 42.87 39.86
0.8 42.95 39.63
0.9 43.10 38.58
1.0 43.14 37.21
28.5
= = =strategy2
— strategy3
‘‘‘‘‘ strategy4 432

Unit profit [EUR/MWh]
Unit profit [EUR/MWh]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Standard deviation of day-ahead prices ¢ i

26.5 .

Fig. 5. Influence of day-ahead price forecast error on the unit profit. (double
y-axis is used. Results of Strategy 2 and 3 read from the left axis while that of
Strategy 4 reads from the right one. It is the same for Fig. 6).

Next, we analyze the impact of day-ahead and balancing
prices uncertainty, and temporal correlation of wind power gen-
eration on profit. As a large number of scenarios are generated
simulating the uncertain parameters, the overall wind energy
for each scenario relating with different parameters may not be
the same. For the sake of fairness, the item unit profit proposed
in [13] is used in this paper.

As shown in (26), 04, and o4 can be set to adjust the variance
of the prices at each time interval, namely 04,8 ~ N (0, U?za)
and 042 ~ N (O, aft). The uncertainty of prices goes up with
the increase of o4, ¢, . It should be noted that since the prices
are constrained to be non-negative, the price expectation will
increase with the variance.

It can be concluded from Figs. 5 and 6 that profits of all strate-
gies go up with the increase of price (both day-ahead prices and
real-time prices) forecasting variance. Furthermore, by com-
paring these two figures one can find that Strategy 4 is more
sensitive to the real-time prices.

From Fig. 5 we can see that the expected profits of different
strategies have similar increase (1.5 EUR/MWh) when the un-
certainty of day-ahead prices goes up. The reason is that the day-
ahead bidding is determined and submitted before the day-ahead
prices clearance, and day-ahead prices only affect the profit in
the day-ahead market. Consequently, different strategies have
similar increase of profit. When it comes to the balancing prices,
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Fig. 6. Influence of balancing price forecast error on the unit profit.
TABLE III
IMPACT OF TEMPORAL CORRELATION OF WIND POWER
GENERATION ON THE VALUE OF ESS
-1 -0.8 -0.6 -0.4 -0.2 0
Unit advantage 3917 3905 3909 3910 3.90 3911
[EUR/MWh]
0.2 0.4 0.6 0.8 1.0
Unit advantage 3918 3.897 3913 3.892 3.923

[EUR/MWh]

as Strategy 4 can effectively react to the real-time information,
the occasional peak prices can be fully utilized to enhance the
profit. On the contrary, other strategies neglect the price fluctua-
tions, and take charging and discharging actions only depending
on the wind power generation. So the joint generation is unre-
lated with the balancing prices, thus resulting in the profit less
sensitive to the balancing prices.

The influence of temporal correlation of wind power is
studied. It can be observed from Fig. 2 that Strategy 2 and 3
have very close profit distribution, Strategy 2 is chosen as the
representative to compare with Strategy 4. Another motivation
of this choice is that it is the best strategy where wind farm
works alone. Consequently the advantage of Strategy 4 over
2 reveals the value of ESS in the wind farm participating
electricity markets.

Table III shows that the increased profit brought by per MWh
of wind energy through the proposed strategy (notated as unit
advantage) remains steady with the increase of temporal corre-
lation of wind power generation. This can be explained by that
as the linear decision rules consider not only wind power but
also day-ahead and balancing prices, the ESS can leave proper
energy space to charge at lower prices or discharge at higher
prices in the future, instead of only compensating for the wind
power output deviations of current time interval. Consequently,
the temporal correlation of wind power does not have much im-
pact on the strategy. In other words, the ESS has guaranteed
value cooperating with a WF using our proposed strategy.

Finally, we investigated the influence of the capacity and the
initial residual energy of ESS on the daily profit of WF-ESS
systems. From Fig. 7 one can see that both the expected value
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Fig. 7. Influence of the ESS capacity on the profit.

TABLE IV
IMPACT OF INITIAL RESIDUAL ENERGY OF ESS ON THE PROFIT
o [MWh] 5 10 15 20 25
E [KEUR] 47.39 47.42 47.45 47.47 47.49
CVaR [KEUR] 38.05 38.08 38.06 38.04 38.05
o [MWh] 30 35 40 45 50
FE [KEUR] 47.49 47.47 47.44 47.38 47.31
CVaR [KEUR] 38.05 38.06 37.98 37.97 37.94

and the CVaR go up almost linearly with the increase of the
capacity of ESS. It is natural because larger ESS implies more
arbitrage capability of the WF-ESS system. As we do not study
the optimal sizing problem, the investment cost of the ESS is not
considered. It is also interesting that the daily profit of WF-ESS
is not sensitive to the initial residual energy in ESS (shown in
Table 1V). This results from the introduction of term energy
value in the objective function, which helps counteract the in-
fluence of daily energy deviation on the profit as expected.

V. CONCLUSION

This paper proposed and evaluated an integrated strategy for
WF-ESS to optimally define offers as a price taker in day-ahead
markets and operation policy at the balancing stage, based on
linear decision rules. The strategy was modelled as a stochastic
optimization problem taking uncertainty of market prices and
wind power generation into account. The concept of energy
value was additionally introduced to consider the value of the
residual energy of ESS in the objective function. The objective
function controls the balance between expected profit and risk
aversion.

Case studies based on realistic data compared unit profits of
different strategies, and showed substantial advantages of the
proposed one (up to 12%) over other existing offering and oper-
ation strategies. Sensitivity analyses illustrated that the strategy
can make better use of balancing price information. This indi-
cates that the advantage of the proposed strategy would be more
prominent in case of more uncertain and dynamic prices. Be-
sides these nice features of our approach, it is also robust to

temporal correlation in wind power generation and the initial
residual energy in the storage system. Furthermore, the Pareto
efficient frontier was obtained to illustrate that the WF-ESS
could tune its strategy based on risk preferences and then make
a trade-off between the expected profit and risk.

Further work should relax the price-taker assumption and
focus on price-maker strategies of WF-ESS. Other approaches
to the design of integrated strategies should also be investigated,
e.g., ones in a multi-stage stochastic programming framework.
Meanwhile, since renewable energy generation sources and en-
ergy storage within a portfolio may certainly be distributed, the
integrated offering strategy proposed here may be extended to a
case with network constraints, and in a distributed optimization
framework.
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