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thing that does the job best until I find the ones that don’t” 
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Abstract 
 

Development of biocatalytic processes is greatly dominated by well-established batch process based 

screening technologies, e.g. glass vials (mL) and microtiter plates (µL). However, there is still a need for 

improvement of currently available technologies and for new technologies enabling relatively easy screening 

and characterization of different process options. For example, small-scale microfluidic platforms enable 

testing of complex process options, by combining multiple process steps in a plug-and-play manner, that are 

difficult to assess with conventional methods. Early in the development of biocatalytic processes, most 

attention is given to developing and modifying the biocatalyst to reach required process targets. However, it 

is important to consider the downstream processing (DSP) early in the process development as well, i.e. the 

downstream costs and limitations to the separation steps will greatly influence the economic viability due to 

the constraints placed on the required process metrics. This thesis will therefore emphasize product recovery 

limitations and requirements in combination with the biocatalyst performance and limitations. Here the 

focus is mainly related to biocatalytic processes where it is found beneficial/necessary to implement in-situ 

co-product/product removal (IScPR/ISPR). For example, through combined operation of reactor and 

separation modules, as such applications require selective separation and sufficient driving force to influence 

the process significantly.  

In recent years, many microfluidic applications have proven useful for process and synthesis development 

within the area of organic synthesis, i.e. flow chemistry. For example, the unique characteristics of the small 

scale enable safer and efficient handling and production of explosive and/or toxic compounds. Furthermore, 

development based on applying microfluidic platforms potentially enables easier introduction of continuous 

process aspects, when suitable. The motivation for this project is to investigate the potential of applying 

microfluidic technologies in the development and testing of biocatalytic processes. Within this thesis, 

microfluidic modules are applied as tools to screen, characterize, and test reactor and separation process 

options. Furthermore, multiple microfluidic modules are combined in order to test complex process 

configurations, i.e. reactor modules combined with separation modules, as a means of narrowing down and 

optimizing the most promising process options.  

Throughout this thesis the applicability of microfluidics, as an integrated part of biocatalytic process 

development, is evaluated based on case studies focusing on the asymmetric synthesis of chiral amines using 

amine transaminases (ATAs). Chiral amines are valuable building blocks for many pharmaceuticals and 

precursors. The application of ATAs for asymmetric synthesis has many advantages, but it is also common 

that there are some challenges. In many cases, it is found beneficial/necessary to apply various process 

engineering strategies, e.g. IScPR and ISPR, to overcome these challenges and ensure the economic feasibility 

of such processes. With economic process feasibility in mind, it can be extremely useful to apply microfluidic 

platforms to enable fast screening and characterization of various process options in order to overcome the 

challenges. Due to the physicochemical properties of the compounds involved in the case studies in this 

thesis, the focus will be on the application/development of liquid-liquid extraction modules to operate in 

combination with reactor modules.  



V 
 

The main outcome of this PhD thesis is knowledge on the potential of applying microfluidics, in combination 

with conventional methods, for the development of biocatalytic processes. More specifically, microfluidics 

will enable testing of complex process options and strategies, which are very difficult to test with 

conventional methods. This is realized by combining microfluidic modules representing different process 

steps in a plug-and-play manner. The advantages and technology constraining disadvantages of microfluidics 

for biocatalytic process development are both identified in this thesis.  

Novel applications of microfluidic development of ATA processes are investigated in detail, i.e. first by 

characterization of single microfluidic process steps (reactor and liquid-liquid extraction modules) and 

afterwards by testing of complex processes by combining multiple microfluidic process steps. This is realized 

by putting in place a microfluidic demonstration system, a plug-and-play combination of a reactor module 

with two liquid-liquid extraction modules and settlers. Another novelty of this thesis, is the application of the 

integrated liquid-liquid extraction steps to both recover the product, using in-situ product removal (ISPR), 

and at the same time feed the main substrate, i.e. in-situ substrate supply (ISSS). Furthermore, guidelines for 

identifying suitable ISPR/IScPR options – and, importantly, for eliminating unfeasible options – for ATA 

processes are proposed. 
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Resumé 
 

Udvikling af biokatalytiske processer er stærkt domineret af veletablerede teknologier der er baserede på 
batchproceskoncepter, f.eks. mikrotiterplader (µL). Der er dog stadig behov for forbedringer af de 
konventionelle og tilgængelige teknologier, samt behov for nye teknologier, der gør det let at screene og 
karakterisere forskellige procesmuligheder. Et eksempel på en sådan ny teknologi er brugen af miniature-
enhedsoperationer til at kontrollere fluider i små kanaler og derigennem teste komplekse procesmuligheder 
der ikke er mulige at teste med konventionelle teknologier. Dette kan opnås ved at kombinere flere 
miniature-enhedsoperationer, på samme måde som man leger med LEGO® (plug-and-play), og derved 
direkte teste kombinerede komplekse procesmuligheder.  

Det er ydermere typisk for den indledende udvikling af biokatalytiske processer, at der bliver lagt vægt på at 
forbedre og modificere den benyttede biokatalysator for at leve op til de økonomiske krav der er for den 
givne proces. Det er dog lige så vigtig i den indledende procesudvikling at inkludere overvejelser om hvordan 
det syntetiserede produkt skal oprenses. Oprensningsomkostningerne og eventuelle begrænsninger vil i høj 
grad påvirke de økonomiske krav og begrænsninger for processer.  

Formålet med denne afhandling er derfor at sætte fokus på vigtigheden af at overveje både ydeevnen og 
begrænsninger af biokatalysatorer og oprensningsprocesser i kombination, som et led i udviklingen af nye 
processer baseret på biokatalyse. I denne afhandling er det primære fokus på biokatalytiske processer hvor 
det er fordelagtigt/nødvendigt at implementere in situ produkt (ISPR) eller biprodukt fjernelse (IScPR). Det 
er specielt fordelagtigt for sådanne ISPR/IScPR applikationer at benytte miniature-enhedsoperationer til at 
teste reaktormoduler i kombination med separationsmoduler, som led i at undersøge effektive måder hvorpå 
inhiberende og ustabile produkter og biprodukter kan fjernes.  

Et centralt element i denne afhandling er at evaluere brugen af miniature-enhedsoperationer, som en 
integreret del af biokatalytisk procesudvikling, baseret på et specifikt casestudie. Casestudiet omhandler 
brugen af amine transaminaser til asymmetrisksyntese af chirale aminer. Chirale aminer er vigtige og 
værdifulde komponenter i produktionen af mange lægemidler. Der er mange fordele ved amine 
transaminaser der gør denne gruppe af biokatalysatorer oplagte til at syntetisere chirale aminer. Der er dog 
samtidig nogle typiske udfordringer relateret til brugen af amine transaminaser, som for eksempel produkter 
der inhiberer og reaktionstermodynamik der ikke er favorable, der gør det udfordrende at bruge amine 
transaminaser i industrien. Disse mange udfordringer gør det i mange tilfælde nødvendigt at overveje 
alternative og komplekse processtrategier som ISPR/IScPR. Det er i den sammenhæng yderst relevant at 
bruge kombinerede miniature-enhedsoperationer til at teste sådanne processtrategier. Specifikt for 
casestudiet i denne afhandling er at de fysiske og kemiske egenskaber af de benyttede komponenter gør det 
oplagt at kigge på miniature væske-væske ekstraktionsmoduler i kombination med miniature-
reaktormoduler. Denne kombination gjorde det muligt at teste et to-trins væske-væske ekstraherings ISPR 
koncept, hvor hydrofobiske og inhiberende aminprodukter effektivt blev ekstraheret og opkoncentreret. 
Ydermere, blev ekstraheringstrinnene brugt til samtidigt at tilføre substrat til reaktionsblandingen. 

Et resultat af denne ph.d.-afhandling er omfattende viden om potentialet for brugen af miniature-
enhedsoperationer, i kombination med konventionelle batchprocesmetoder, til udviklingen af nye 
alternative og komplekse biokatalytiske processer. Derudover, er en generel metode blevet foreslået til at 
identificere egnede ISPR/IScPR koncepter, når nødvendigt, til amine transaminase processer.  
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List of abbreviations 
 

Abbreviation Description 

[AD]/[S] Amine donor excess ratio 

[𝒄𝑷]𝑰 Co-product inhibition 

[𝑷]𝑰 Product inhibition 

Ace Acetone 

ACP Acetophenone 

AD Amine donor 

ADH Alcohol dehydrogenase 

Ala Alanine 

AlaDH Alanine dehydrogenase 

ALS Acetolactate synthase 

API Active Pharmaceutical Ingredient 

Aq. Aqueous 

ATA 
Amine transaminase (EC.2.6.1.X) also known as Transaminase 
(TA) 

BA Benzylacetone 

CAPEX Capital expenses/Expenditure 

CFD Computational Fluid Dynamics 

COP Cyclic olefin polymers 

cP Co-Product 

CST Continuous stirred tank 

CSTR Continuous Stirred Tank Reactor 

DKR Dynamic Kinetic Resolution 

DSP Downstream processing 

E Evaporator 

Enz. Enzyme 

Eq. Reaction equilibrium 

FDH Formate dehydrogenase 

FTIR Fourier transform infrared spectroscopy 

GC Gas chromatography 

GDH Glucose dehydrogenase 

GLE Gas-Liquid extraction 

GMP Good manufacturing practice 

HPLC High Performance Liquid Chromatography 

ID Inner diameter 

Imm. Immobilized 

IScPR In-Situ co-Product Removal 

ISPR In-Situ Product Removal 

ISSS In-situ substrate supply 

LDH Lactate dehydrogenase 



VIII 
 

LFR Laminar Flow Reactor 

Abbreviation Description 

LLE Liquid-Liquid Extraction 

MIR Mid-infrared spectroscopy 

MPPA 1-Methyl-3-phenylpropylamine 

MUO Micro unit operation 

MWD Multiple wavelength detector 

NIR Near-infrared spectroscopy 

OPEX Operational expenses/expenditure 

Org. Organic 

P Product 

P1-P4 Syringe pumps 

PBR Packed Bed Reactor 

PDA detector Photodiode array detector 

PDC Pyruvate decaroboxylase 

PDMS Polydimethylsiloxane 

PEA 1-phenylethylamine also known as methylbenzylamine (MBA) 

PEEK Polyether ether ketone 

PFR Plug Flow Reactor 

PI-diagram Piping and Instrumentation diagram 

PLP Pyridoxal-5'-phosphate 

PMMA Poly methyl methacrylate 

PMP Pyridoxamine-5-'phosphate 

PSE Process systems engineering 

PTFE Polytetrafluoroethylene 

PVA Polyvinyl alcohol 

Pyr Pyruvate 

R Reactor 

R1(a) Reactor module 

R1(b) 1st step LLE 

R1(c) 2nd step LLE 

Raman Raman spectroscopy 

RTD Retention Time Distribution 

S Substrate 

SLE Solid-Liquid Extraction 

SLM Supported liquid membrane 

ss Steady state 

UV Ultraviolet spectroscopy 

W1 Solvent waste 

W2 Aqueous waste 
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Nomenclature 
 

Nomenclature Description Unit 
𝒂 Surface to volume ratio 𝑚2 ∙ 𝑚−3 
𝑨 Area 𝑚2 

[𝑨−] Concentration of non-protonated amine donor 𝑀 
[𝑨𝑫] Amine donor concentration 𝑀 
𝑩𝒐 Bodenstein number − 
𝑪∗ Equilibrium concentration 𝑀 
𝑪𝒊 Concentration of component 𝑖 𝑀 (𝑚𝑜𝑙 ∙ 𝐿−1) 
𝑪𝒂 Capillary number − 
[𝒄𝑷] Co-product concentration 𝑀 
𝒅 Channel depth 𝑚 
𝑫 Taylor dispersion coefficient 𝑚2 ∙ 𝑠−1 

𝑫𝒂𝒃 Diffusion coefficient of solute a in b 𝑚2 ∙ 𝑠−1 
𝑫𝑭 Dilution factor − 
𝒅𝑯 Hydraulic diameter 𝑚 
𝒅𝑷 Spherical particle diameter 𝑚 
𝒅𝒕 Diffusion distance 𝑚 
𝑬𝒊 Uncertainty weight factor matrix − 
[𝑬] Enzyme concentration 𝑔𝑏𝑖𝑜𝑐𝑎𝑡 .∙ 𝐿

−1 
𝐄𝛉,𝐨𝐨 Exit age distribution − 
𝒆. 𝒆. Enantiomeric excess − 
𝑬𝒐 Eötvös number − 

𝑭𝟏, 𝑭𝟐 Aqueous flow rates 𝑚𝐿 ∙ 𝑚𝑖𝑛−1 
𝐅𝐨𝐨 F curve − 
𝑭𝒐 Fourier number − 

[𝑯𝑨] Concentration of protonated amine donor 𝑀 
𝒊 Component nominator − 

𝑰𝑫 Inner diameter 𝑚 
𝒌 Reaction rate constant s−1 

𝑲𝒆𝒒 Reaction equilibrium constant − 

𝒌𝑯 Henry’s law constant 𝐿 ∙ 𝑎𝑡𝑚 ∙ 𝑚𝑜𝑙−1 
𝑲𝑳 Mass transfer coefficient 𝑠−1 
𝑲𝑳𝒂 Overall mass transfer coefficient 𝑠−1 ∙ 𝑚2 ∙ 𝑚−3 

𝑲𝑴
𝑺 , 𝑲𝑴

𝑨𝑫 Michaelis parameters 𝑀 
𝑳 Length 𝑚 

𝑳𝒂𝒒 Length of aqueous slugs 𝑚 

𝑳𝒐𝒓𝒈 Length of organic slugs 𝑚 

𝐥𝐨𝐠 𝑷 Octanol-water partition coefficient − 
𝒎 Mass 𝑔 

𝑴 (𝑴𝒘) Molecular weight 𝑔 ∙ 𝑚𝑜𝑙−1 𝑜𝑟 𝑘𝐷𝑎 
𝒏 Number of components − 

𝑵𝒊,𝒙 Flux of component i in the x direction 𝑚𝑜𝑙 ∙ 𝑚−2 ∙ 𝑠−1 
𝑷 Pressure 𝑃𝑎 
[𝑷] Product concentration 𝑀 
𝑷∗ Purity % 
𝑷𝑪𝒊 Partitioning coefficient of component 𝑖 − 
𝒑𝑲𝒂 Acid dissociation constant − 
𝑷𝒗𝒂𝒑 Vapor pressure 𝑚𝑚𝐻𝑔 
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Nomenclature Description Unit 

𝒒 Volumetric flow rate 𝑚3 ∙ 𝑠−1 
𝒓 Reaction rate 𝑚𝑜𝑙 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔𝑒𝑛𝑧 
𝑹 Ideal gas constant 8.31 𝐽 ∙ 𝐾−1 ∙ 𝑚𝑜𝑙−1 
𝑹∗ Recovery efficiency % 

𝑹𝑮 Radius of gyration Å 
𝑹𝒆 Reynolds number − 
[𝑺] Substrate concentration 𝑀 
𝑺𝟏 Solvent flow rate 𝑚𝐿 ∙ 𝑚𝑖𝑛−1 
𝒔𝒊 Selectivity for component 𝑖 − 

𝑺𝑻𝒀 Space-Time-Yield 𝑔𝑃 ∙ 𝐿
−1 ∙ 𝑠−1 

𝒕 Time 𝑠 
𝑻 Temperature 𝐾 𝑜𝑟 ℃ 
𝑻𝒃 Boiling point ℃ 
𝑻𝑭 Flash point ℃ 
𝒗 Linear flow rate 𝑚 ∙ 𝑠−1 
𝑽 Volume 𝑚3 
𝒗𝟎 Fluid velocity based on an empty channel 𝑚 ∙ 𝑠−1 

𝒗𝒂𝒗𝒈 Average linear flow rate 𝑚 ∙ 𝑠−1 

𝒗𝐦𝐚𝐱 Maximum linear flow rate 𝑚 ∙ 𝑠−1 
𝑽𝒎𝒂𝒙 Maximum reaction rate 𝑚𝑜𝑙 ∙ 𝑚𝑖𝑛−1 ∙ 𝑔𝑒𝑛𝑧 
𝑽𝒙 Discretized reactor volume 𝑚3 
𝑾𝒆 Weber number − 
𝑾𝒙 Discretized biocatalyst loading in reactor 𝑔 
𝒙 Length direction and fragment length 𝑚 
𝒙 Number of elements in discretization − 

𝑿𝒊𝒏𝒉 
Parameter applied to determine the loss in initial enzyme 
activity 

%𝑙𝑜𝑠𝑠 ∙ 𝑔𝑃
−1 ∙ 𝐿 

𝜷 
Channel specific parameter for estimation of the Taylor 
dispersion coefficient (48 for a tube) 

− 

𝜺 Particle porosity − 
𝜼 Viscosity 𝑃𝑎 ∙ 𝑠 
𝝁 Dynamic viscosity 𝑘𝑔 ∙ 𝑚−1 ∙ 𝑠−1 
𝝆 Density 𝑘𝑔 ∙ 𝑚−3 
𝝈 Surface tension 𝑁 ∙ 𝑚−1 
𝝉 Dimensionless residence time − 

𝝉𝒎𝒊𝒙 Characteristic diffusion controlled mixing time 𝑠 
𝛉 Mean residence time − 

𝜽𝒏,𝒊 Measurement uncertainty 𝑀 
𝜽𝒓𝒆, 𝜽𝒂𝒅 Receding and advancing contact angle, respectively ° 

𝝓 Thiele modulus - 
𝚫𝑮 Gibbs free energy of formation 𝑘𝐽/𝑚𝑜𝑙 
𝚫𝑷 Pressure drop 𝑃𝑎 
𝚫𝑷𝑳 LaPlace pressure 𝑃𝑎 
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Chapter 1  

Introduction 
 

1.1 Background and motivation 

The increasing academic and industrial interest in biocatalytic processes (chemical reactions catalyzed by an 

isolated enzyme, immobilized enzyme, or whole cells containing one or more enzymes) is to a large extent 

driven by the need for selective chemistry [1]. Even more noteworthy is that such selectivity is achieved with 

enzymes under mild reaction conditions. While high selectivity may be easily achievable using biocatalysis, 

for implementation in industry, it is also necessary to develop processes that are sufficiently efficient, which 

sometimes is a challenge, in order to be economically feasible. For example, in the scientific literature it has 

been proposed that for a pharmaceutical intermediate, a product concentration of 50 g/L as a minimum must 

be achieved and a high yield of product on biocatalyst (termed biocatalyst yield) must be achieved as well 

[2,3]. The exact threshold values depend on the type of biocatalyst, the ease of separation and the industry 

sector (or more accurately the value of the product relative to the cost of the substrate). However, almost 

without exception, a new biocatalytic process studied in the laboratory will not fulfill these requirements, 

since enzymes are usually evolved to convert natural substrates at low concentrations.  

This presents an interesting challenge for process chemists and engineers, since the wish to implement 

processes with new (non-natural) substrates at high concentrations can only be addressed by a concerted 

development effort with a combination of biocatalyst modification and process modification [4]. To date 

there are many examples where modification of the biocatalyst and the process has led to successful 

industrial implementation [1,3,5,6]. This is a strong indicator and motivator that it is indeed possible to either 

modify poorly performing biocatalysts, or to optimize the process, or to combine biocatalyst modification 

and process optimization, to reach economically viable process targets.  

This work is solely focusing on the process aspects of the biocatalytic process development, e.g. application 

of advanced strategies combining reactor modules with separation modules to overcome severe inhibition 

and low solubility of reaction species. During the process development there are many options, e.g. reactors 

and recovery methods, to choose from and different routes to solve a given problem [7]. It is many times the 

case that processes are focused on the performance of the biocatalyst, which ultimately can come as a 

compromise of the efficiency of the following DSP [8]. While some process solutions are more effective than 

others, and some are easier to implement than others, there remain many choices to be made. Furthermore, 

in many cases, at an early development stage it is not clear where to put the research effort and which 

direction to focus the process. 

It is therefore highly desirable to specify generic methods and develop/apply new technologies for high 

throughput screening and testing of complex process options, e.g. reactors combined with separation 

methods, to facilitate this decision process. The ultimate goal is to find optimal process solutions and to reach 

fast exclusion of infeasible options.  

To address this problem, one potential vision for the future could be a systematic procedure for automated 

data collection, followed by testing of a more limited number of alternatives at a miniature scale, such that 
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operations can be carried out with a reduced reagent inventory and potentially even in parallel. Indeed, such 

schemes already exist for chemical synthetic systems [9], and while the level of complexity involved with a 

biocatalytic process is frequently greater, it is also frequently the case that biocatalytic processes give 

economic benefits. At the very least, testing at miniature scale would enable more process options, both 

complex and simple, to be evaluated in a shorter time, due to the automated control and the easy plug-and-

play combination of microfluidic modules. Combined with process modeling techniques [10], microfluidics 

could provide a way to map the solution space for a given biocatalyst and enable design decisions to be made 

more rapidly and with greater confidence.  
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1.2 Scope, aim and specific thesis goals 

The scope of this thesis is the application of microfluidic technologies and methods as novel tools to aid in 

accelerating the development of biocatalytic processes. The main aim and novelty of this work is the 

application of microfluidic technologies and methods for characterization of biocatalytic processes and 

testing of complex process options, when needed, that are difficult to test with conventional batch based 

methods. This will enable the characterization of single process steps and also multiple process steps in 

combination, e.g. reactors combined with separation operations. The rationale for selecting the miniaturized 

technology is to reduce the quantity of expensive and/or scarce resources needed for evaluation of potential 

process options, and to have experiments performed in an automated manner. Furthermore, this type of 

technology should make it easier to consider more complex process options, i.e. processes with in-situ 

product removal (ISPR), and should potentially yield easier development of continuous biocatalytic processes 

as well.  

Specifically in this thesis, there is focus on the application of microfluidics for development of amine 

transaminase (ATA) processes for the asymmetric synthesis of chiral amines. Unfavorable thermodynamics 

and severe inhibitory effects from both substrates and products typically challenge ATA processes. Therefore, 

such biocatalytic processes often benefit from the implementation of ISPR and/or IScPR strategies. This 

makes it an ideal case study for applying microfluidics to test complex process options, i.e. ISPR by liquid-

liquid extraction (LLE). Therefore, the goal of this thesis is to apply combined microfluidic modules to intensify 

ATA processes by putting in place a two-step LLE ISPR strategy that selectively removes the amine product 

during the reaction course. 

The following objectives are addressed in this thesis: 

 Demonstration of the application of microfluidic modules to characterize and evaluate individual 

process steps for ATA processes, i.e. reactor modules and liquid-liquid extraction modules. 

 Combination of microfluidic modules, in a plug-and-play manner, to test complex process options 

and process steps, i.e. intensification of ATA processes by putting in place ISPR based on a two-step 

LLE strategy. 

 Application of the LLE modules as a substrate supply strategy in combination with the product 

removal, to address the issue of low aqueous substrate solubility, rather than applying complex 

reaction media to increase the solubility. 

 Investigation of the possibility of putting in place on-line and in-line analytical methods to avoid 

manual sample handling and increase the data throughput from the microfluidic systems. 

 Reflection on how the knowledge obtained in the microfluidic systems can be applied for scale-up 

when suitable, and highlighting specific conditions when scale-out (numbering-up) is more suitable.   

Though the focus of this project is on the development and application of miniaturized platforms and 

toolboxes for development of ATA processes, it is believed that microfluidic technologies and methods are 

easily applicable to other biocatalytic processes as well.  
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1.3 Thesis structure 

This PhD thesis includes 9 chapters, covering theoretical and practical aspects of the application of 

microfluidic platforms for development of biocatalytic processes. The main content of the different chapters 

is as follows: 

Chapter 1 provides an overview of the content, motivation and goals of this thesis. 

Chapter 2 gives a general introduction to biocatalysis in the chemical industry, with focus on application of 

amine transaminases (ATAs). Special emphasis is given to the advantages and motivation for applying ATAs 

for synthesis of chiral amines and an overview of general limitations and the reaction mechanism is provided. 

Furthermore, the motivation for considering microfluidics in development of such processes is identified. 

Chapter 3 gives an introduction and a general overview on microfluidics, where basic microfluidic mixing 

theory is presented and discussed. In addition, this chapter aims at identifying the potential of applying 

microfluidic modules for development of complex biocatalytic processes with ISPR.  

Chapter 4 presents and discusses development considerations for ATA processes assisted by implementation 

of ISPR/IScPR strategies. Emphasis is put on the use of common separation metrics that are suitable to 

determine when putting in place ISPR/IScPR is appropriate. In relation to this, a review was performed on 

commonly applied ISPR/IScPR strategies and implementation strategies. 

Chapter 5 describes experimental work focused on characterizing microfluidic packed bed reactors (PBRs), 

containing two ATA mutants, i.e. ATA-50 and ATA-82, entrapped in a polyvinyl alcohol (PVA) matrix. For the 

characterizations, a HPLC system was modified to operate as an on-line HPLC to completely avoid manual 

handling of small sample volumes.  

Chapter 6 describes experimental work focused on selecting a suitable solvent for extracting a chiral amine 

product from a reaction mixture and characterization of two microfluidic extraction steps. The 

characterization was performed to get an idea about the partitioning and to ensure that equilibrium was 

achieved in each of the two LLE steps.   

Chapter 7 demonstrates the ability to put a microfluidic system together in a plug-and-play manner to test 

an ISPR system. The system combines the micro PBR module with two-step micro LLE modules that were 

characterized in chapter 5 and chapter 6, respectively. The combined system truly highlights how easily 

relatively complex process options can be tested by applying automated microsystems.   

Chapter 8 contains a discussion mainly on how the knowledge obtained in microsystems can be applied 

across scales to fulfill industrial production requirements in terms of throughput. The discussion will focus 

on when to perform conventional scale-up, i.e. from µL to m3, and when to perform scale-out (numbering-

up), i.e. moving from one module to a large number of identical modules in parallel in order to ensure 

sufficient product throughput.  

Chapter 9 highlights the main findings and concludes the thesis. Furthermore, some open challenges are 

identified and future perspectives are briefly discussed. 
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1.4 Contributions 

Throughout this project, a lot of feedback was given at various conferences, seminars, project meetings and 

through collaborations established in the course of the project. These actions gave important input and 

provided inspiration to the conclusions of this PhD thesis. The following subsections lists the events that 

contributed to this work. 

  

1.4.1 Publications 

Below a list of journal publications, either completely or partially resulting from the work described in this 

thesis, is provided. In addition, the publications are attached in appendix A. 

 Krühne U., Heintz S., Ringborg R. H., Rosinha I. P., Tufvesson P., Gernaey K. V. & Woodley J. M., 

2014, Biocatalytic process development using microfluidic miniaturized systems, Green Processing 

and Synthesis, 3(1), 23-31. 

 

 Krühne U., Larsson H., Heintz S., Ringborg R. H., Rosinha I. P., Bodla V. K., Santacoloma P. D. G. A., 

Tufvesson P., Woodley J. M. & Gernaey K. V., 2014, Systematic development of miniaturized 

(bio)processes using Process Systems Engineering (PSE) methods and tools, Chemical and 

Biochemical Engineering Quarterly, 28(2), 203-214. 

 

 Mitic A., Heintz S., Ringborg R. H., Bodla V. K., Woodley J. M. & Gernaey K. V., 2013, Applications, 

benefits and challenges of flow chemistry, Chimica Oggi, 31(4), 4-8. 

 

1.4.2 Oral presentations 

Provided here is a list of oral presentations given at conferences during this PhD project. The presentations 

focused on presenting the findings of this PhD project. 

 

 Heintz S., Ringborg R. H., Rehn G., Börner T., Grey C., Adlercreutz P., Krühne U., Gernaey K. V. & 

Woodley J. M., 2015, Microfluidics for development and testing of ISPR options for the synthesis of 

chiral amines using ω-transaminases, Transam 2.0: Chiral amines through (bio)catalysis, 4-6 of 

March, Greifswald, Germany.  

 

 Heintz S., Krühne U., Woodley J. M. & Gernaey K. V., 2015, Process intensification of ω-transaminase 

processes applying microfluidics, 3rd International Conference on Implementation of Microreactor 

Technology in Biotechnology (IMTB2015), 10-13 May, Opatija, Croatia. 
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1.4.3 Poster presentations 

Provided here is a list of poster presentations given at conferences during this PhD study. The presentations 

focused on highlighting the findings in this PhD project. 

 Heintz S., 2014, Challenges and opportunities of product recovery technologies for ω-transaminase 

processes, Bioprocess Engineering Course, 21-27 September, Supetar Island Brac, Croatia. 

 

 Heintz S., Ringborg R. H., Rosinha I. P., Tufvesson P., Krühne U., Woodley J. M. & Gernaey K. V., 2014, 

Challenges and opportunities of product recovery technologies for ω-transaminase processes, 

CHISA/PRES 2014, 23-27 August, Prague, Czech Republic. 

 

 Heintz S., Krühne U., Woodley J. M. & Gernaey K. V., 2014, Microfluidics for the development of 

biocatalytic processes with in-situ(co-) product removal, 13th International conference on 

microreaction technology (IMRET(, 23-25 June, Budapest, Hungary. 

 

 Heintz S., Woodley J. M., Krühne U. & Gernaey K. V., 2013, Enzymatic process intensification across 

scales, 2nd International Conference on Implementation of Microreactor Technology in Biotechnology 

(IMTB2013), 5-8 May, Cavtat, Croatia. 

 

 Rosinha I. P., Ringborg R. H., Heintz S., Tufvesson P., Schürmann M., Lavinia P., Wohlgemuth R., 

Krühne U., Gernaey K. V. & Woodley J. M., 2013, Miniaturized experimental toolbox for ω-

transaminase technology (BIOINTENSE), 1st International Symposium on Transaminase Biocatalysis, 

28 February- 1 March, Stockholm, Sweden. 
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Chapter 2  

Biocatalysis overview 
 

In this chapter, a general introduction is given on the topic of biocatalysis in the chemical industry, where the 

general benefits and challenges are highlighted. The chapter serves as an introductory chapter to the topic 

of applying microfluidics for development of advanced and complex biocatalytic processes. Furthermore, this 

chapter gives a general overview of the application of amine transaminases (ATAs) for the synthesis of high 

value optically active chiral amines, with emphasis on advantages and challenges. The challenges, e.g. 

inhibition and unfavorable thermodynamics, are highlighted to identify where microfluidics can aid in the 

development of such processes. 
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2.1 Introduction 

In recent years, the number of applications of biocatalysis in the production of fine chemicals and 

pharmaceuticals has increased tremendously [3,5–7,11,12]. The term biocatalysis refers to the application of 

isolated enzymes, immobilized enzymes or whole cells containing one or more enzymes as catalysts for 

chemical reactions [1]. Many times biocatalysis is integrated as an intermediate step in the overall synthesis 

route, where the majority of the steps are chemical [13]. The majority of industrial applications of biocatalysis 

is somewhat related to the synthesis of pharmaceuticals and fine chemicals, with a trend towards 

applications for production of bulk chemicals [1,14–16]. Furthermore, as biocatalysis has matured 

tremendously in recent years it has broadened the potential application scope of biocatalysis [7]. 

The increased interest for industrial biocatalysis is motivated by the many advantageous features that 

biocatalysts are generally known for, e.g. exquisite selectivity, mild operating conditions, less process steps, 

high atom efficiency and safety [5,15,17–20]. Additionally, depletion of non-renewable resources and 

increasing political pressure on the chemical industry to promote sustainability also motivates increased 

focus on alternatives, like biocatalysis, in the chemical industry [18,19,21,22]. Furthermore, the continuous 

discovery and isolation of a variety of enzymes from biological sources and the development of enzyme 

libraries (toolboxes) has enabled a broad application range of biocatalysts compatible with a multitude of 

operational conditions.  

Despite the many advantages and tremendous progress in the development of biocatalysts and biocatalytic 

processes, there are still common challenges that need to be resolved. The most common challenge is the 

ability, in due time, to tune the chosen biocatalyst to perform sufficiently efficient at the required process 

conditions [20,23] and/or the ability to modify the process to be compatible with the available biocatalyst 

[8]. For example, in the pharmaceutical industry the time to market has to be as short as possible [1], which 

will cause compromises to be made in terms of achievable biocatalyst and process performance. Table 2.1, 

gives an overview of common advantages and challenges associated with biocatalysis for organic synthesis.  

Therefore, there is a need to explore new technologies and methods that can aid in accelerating the 

development of biocatalysts and biocatalytic processes. The application of microfluidic technologies in the 

development has the potential to aid in both accelerated and systematic high throughput characterization 

and testing of promising biocatalysts and process options (automation, parallelization and small 

consumptions of available resources) [4]. Hence, the aim in this chapter is to give a general introduction to 

different elements that play an important role in the development of biocatalysts and biocatalytic processes, 

and to identify the potential role of microfluidics in that development process. Special emphasis is put on the 

production of chiral amines through biocatalysis based on amine transaminases (ATAs), which is chosen as 

the case study in this thesis. 
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Table 2.1: Overview of common advantages and challenges associated with biocatalysis for organic synthesis. 

Advantages: 

- Stereo- & regio-selectivity 
- Mild operating conditions (T, P, pH) 
- Reduced process steps 

(e.g. avoid (de-)protection steps) 

- Versatile in operating media 
(e.g. Aqueous and/or solvents) 

- Few by-products 
- Biodegradable 
- Reusable 
- Safe operation 

Challenges: 

- Compatibility with required conditions: 
(Low activity and stability under non-natural conditions) 

1) High/low pH 
2) High/low temperatures 
3) Solvents 
4) High substrate concentrations (Inhibition/toxicity) 
5) High product titers (Inhibition/toxicity) 

- Unfavorable thermodynamics 
- Solubility of substrates (Aqueous) 
- Biocatalyst development time 
- Selectivity not guaranteed 
- Interfacing process steps 

1) Chemical and biocatalytic process step compatibility 
2) Biocatalytic process step and separation method compatibility 
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Figure 2.1: Overview of the application area of microfluidics focused on in this work, i.e. as a technology coupling the biocatalyst 
characterization and application that ultimately will aid in guiding further development of the biocatalyst and the process. 
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2.2 Microfluidics in biocatalytic process development 

In the development and application of biocatalysis for chemical synthesis, there is a multitude of aspects that 

needs to be considered, which in a simplified manner can be divided into three categories: 1) Biocatalyst 

application; 2) Biocatalyst production; and 3) Biocatalyst development. This multitude of different aspects 

makes it highly relevant to consider new methods and technologies for robust development of biocatalytic 

processes. One such technology can at least in part be microfluidics, where – at least in this PhD thesis – the 

focus of microfluidics is directed to the characterization of biocatalysts and process scenarios (illustrated in 

Figure 2.1). 

 

Biocatalyst application: 

Implementation of biocatalytic based process steps in chemical synthesis is motivated by the ability of the 

biocatalyst to perform a complex synthesis in a simple manner and with high selectivity, which fulfills 

economic requirements [5]. The value of the final product of the biocatalytic process steps relative to the 

operational costs (OPEX: substrates, media, biocatalyst, labor and energy) partly determines the economic 

constraints of the process. The economic constraints are also influenced by the capital cost of equipment, 

e.g. reactors and separation units, needed to perform the specific synthesis step and ensure final product 

quality. 

Specifying the economic targets is a rather complex task, and it is highly dependent on how the biocatalytic 

process step is implemented. For example, if the biocatalyst is performing poorly, resulting in low space-time 

yields (g/L/h), low product titer (g/L) and low biocatalyst productivity (gP/gbiocat), then it is necessary to 

consider how to improve the biocatalyst (biocatalyst development) and/or the process (depends on process 

flexibility) to reach the required economic feasibility targets [2,7,8,15]. It is outside the scope of this work to 

go into detail with specifying economic requirements for biocatalytic process steps in chemical synthesis.  

 

Biocatalyst production: 

Another aspect is the cost impact of the applied biocatalyst. The cost impact of the biocatalyst is determined 

by the cost to produce, recover and formulate a biocatalyst with a specific performance [2,24]. In contrast to 

the biocatalyst application, the biocatalytic production method is rather fixed, i.e. fermentation with a 

suitable production host (microorganism). 

The following recovery and final formulation of the biocatalyst is highly dependent on how the biocatalyst 

will be applied and how the production host expresses the biocatalyst, i.e. intracellularly or extracellularly. 

For extracellularly expressed biocatalysts, a crude biocatalyst liquid extract can be achieved by removing the 

cells from the culture broth, e.g. filtration or centrifugation. The biocatalyst can then be further purified 

and/or immobilized dependent on the process needs. For intracellularly expressed biocatalysts, the 

biocatalyst can be applied as whole cells (whole cells, lyophilized whole cells, immobilized whole cells), which 

can be recovered by filtering the culture broth. Alternatively, it might be required to disrupt the cells and 

either apply the crude cell lysate or further purify the biocatalyst before direct application or immobilization. 



 
 

11 
 

Immobilization of the biocatalyst, when considered beneficial and necessary, can be done by a multitude of 

different methods [25,26]. The method of choice for a specific application depends both on the form of the 

recovered biocatalyst and the nature of the immobilization technique relative to the application. For 

example, whole cells can be immobilized by flocculation [27] or different forms of the biocatalyst can be 

entrapped in or onto a porous solid support [25].  

 

Biocatalyst development: 

Before producing and applying the biocatalyst, in a feasible manner, extensive efforts are needed to develop 

and characterize the biocatalyst, the production host and the process [8,15]. As highlighted in the two 

previous sections there are many choices to be made, which has to be based on the process and knowledge 

obtained from identifying the performance of available and modified biocatalysts (e.g. through protein 

engineering or directed evolution [7]). The development is a labor-intensive and iterative cycle that can 

benefit from high-throughput technologies such as microfluidics. The exact role of microfluidics in this 

context is for extensive characterization of developed biocatalysts, formulations and process options to serve 

as an input for further development of the biocatalyst and identify economic feasibility. This aspect of 

microfluidics in the development of biocatalytic processes is illustrated in Figure 2.1.  

In general, the aim of the iterative biocatalyst and process characterization is to map the optimal operational 

window and requirements. Additionally, the extensive characterization enables the possibility of identifying 

dominating limitations to both the process and the biocatalyst. It is important to be thorough and focus the 

characterization relative to what is required to investigate (you get what you screen for) [28,29]. Listed below 

are some general aspects and parameters that in many cases need to be considered in the characterization 

of novel biocatalysts and biocatalytic processes [5,14]. 

 

Biocatalyst characterization: 

- Kinetics 

- Inhibition 
- Stability 
- Reaction conditions: T, P, pH 
- Co-factor recycle/regeneration 
- Solvent compatibility: 1- /2-phase 
- (substrate scope) 

Process characterization: 

- Reactor 
Thermodynamics 
Flow dynamics 
Operational requirements relative to 
biocatalyst: titer (gP/L), STY (gP/L/h), Yield 
(%), biocatalyst productivity (gP/gbiocat.). 

- Product recovery 
Driving force ([C]) 
Selectivity 
Capacity 
Rate kinetics 
Recovery 

In some cases, one may fail to modify the biocatalyst sufficiently and thereby severe process limiting 

challenges need to be overcome in alternative ways. For example, in cases of severe inhibitory effects from 

the products it can be beneficial to consider the implementation of process strategies to continuously remove 

inhibitory products during operation, i.e. in-situ product removal (ISPR). Such alternative process strategies 

can also be useful to investigate in cases, where groups of products with similar physicochemical properties 

need to be synthesized and the biocatalyst is inhibited. Development and testing of such alternative 
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processes can be difficult with conventional batch process based technologies. It is believed that microfluidics 

can enable easy testing of such untraditional and potential complex ISPR process options, and thereby 

contribute greatly to the development of novel and efficient biocatalytic processes. 

 

2.3 Chiral amines 

A promising application of biocatalysis is for the synthesis of chiral compounds, e.g. chiral amines. Chiral 

compounds are present in a vast number of, presently available and applied, active pharmaceutical 

ingredients (APIs) making such compounds highly demanded and valuable [30,31]. Listed in Table 2.2 are 

examples of such chiral amine compounds. Emphasized in the table is chiral amines that can be achieved 

through amine transaminase (ATA) synthesis routes, which is the focus of this work.  

A still remaining challenge in the synthesis of such chiral compounds is the number of process steps required 

and the selectivity of the applied chemistry [30]. This drives the motivation for simpler synthesis routes with 

exquisite selectivity, which indeed can be achieved through biocatalysis.  

 

Table 2.2: APIs containing chiral amines, which can be achieved using amine transaminase synthesis steps. 

APIs Structure Comments Refs. 

Labetalol 

 

Application: α- and β-adrenoceptor 
blocking activities 

(antihypersensitives) 
 

Four possible stereoisomers, where 
the (R,R) form has the highest API 

potency (also called dilevalol) 

[32]* 

Sitagliptin (Januvia®) 

 

Application: Antidiabetic 
 

The (R) stereo isomer is required, 
which can be synthesized directly 

from prositagliptin ketone in 
>99.95% e.e. 

[33] 

(S)-(+) amphetamine 
(dextroamphetamine) 

 

Application: ADHD and narcolephsy [34] 

(R)-3,4-dimethoxy-
amphetamine 

(3,4-DMA) 
 

Application: Psychedelic drug [34] 

(S)-aminotetralin 

 

Applications: Parkinson’s disease, 
depressions, cardiovascular problems 

[35] 

* In this work the main focus is related to synthesizing 1-methyl-3-phenylpropylamine (MPPA) from benzylacetone catalyzed by 

amine transaminases (ATAs). MPPA is a key building block in the synthesis of Labetalol. 
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2.3.1 Routes to chiral amines  
There are numerous routes to chiral amines, both chemical and biocatalytic. The choice of synthesis route is 

greatly dominated by the availability and cost of the starting material and the complexity of the synthesis 

route. In the scientific literature, common chemical and biocatalytic routes are highlighted for the synthesis 

of primary chiral amines. These routes are: 

Chemical routes to chiral amines are [36–38]: 

 Reductive amination (single step) from enantio pure imines 

 Reductive amination (multistep) from ketones incorporating chiral alcohol formation  

 Crystallization of diastereomeric salts of chiral carboxylic acids  

Biocatalytic routes to chiral amines are [34,36,39,40]: 

 Amine transaminases for asymmetric synthesis 

 Amine transaminases for dynamic kinetic resolution (DKR) and deracemization 

 Oxidases for DKR and deracemization  

 Hydrolases for DKR and deracemization  

 Hydrolases for kinetic resolution 

 Imine reductases for asymmetric synthesis  

In Figure 2.2, an overview is given of the commonly identified biocatalytic routes to primary chiral amines 

and their corresponding substrates. 

 

Figure 2.2: Commonly identified biocatalytic routes to chiral amines. 1) Resolution by lipases. 2) Asymmetric synthesis by amine 
transaminases (ATAs), these biocatalysts can also be applied for resolution and deracemzation. 3) Asymmetric synthesis by amine 
dehydrogenases, which conceptually can also be applied for resolution and deracemization. 4) Resolution by amine oxidases. 5) 
Asymmetric synthesis by imine reductases. R1 and R2 can be a variety of side groups, e.g. alkyl or aryl groups, which is dependent 
on the substrate scope of the given biocatalyst [41,42]. 

 

2.3.2 Amine transaminases (ATAs) 
In this work, it was decided to focus on the synthesis of primary chiral amines by applying amine 

transaminases (ATAs, EC. 2.6.1.X). ATAs are highly versatile biocatalysts that can both be applied for DKR, 
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deracemization and asymmetric synthesis of a variety of chiral amines [41,43–45]. The motivation for 

focusing on ATAs is related to this versatility in combination with ATAs ability to synthesize enantiomerically 

pure amines directly from prostereogenic ketones [46]. Furthermore, compared to chemical routes, ATAs are 

not dependent on potentially toxic and scarcely available metal catalysts and the chiral amine is synthesized 

in one step. 

In the scientific literature, there is some confusion on the name of these enzymes, and especially on the use 

of the name in a consistent manner. For example, some people call them transaminases (TAs) and others call 

them the aminotransferases (ATAs), which for historical reasons can be explained by IUPAC changing their 

recommendation from aminotransferases to transaminases in 1992 [47]. However, recently it has been 

argued that amine transaminases (ATAs) is a more correct name [45]. Here it is decided to apply the name 

amine transaminase (ATA).  

ATAs belong to the enzyme class of transferases and have catalytic activity for the transfer of an amine group 

from an amine donor to an acceptor ketone [44]. The transfer is facilitated by the co-factor pyridoxal 5’-

phosphate (PLP), which is converted to pyridoxamine-5’-phosphate (PMP) and back to PLP during the 

catalytic cycle [44]. The automatic recycle of the co-factor is of great importance as co-factor recycle 

strategies do not need to be considered.  

Commonly, ATAs are further divided into two subcategories that are α-amino acid amine transaminases (α-

ATAs) and ω-transaminases (ω-ATAs). The general reaction scheme of the two subcategories are shown in 

Scheme 2.1. The subcategory α-ATAs is named according to the ability to catalyze the transfer of an amine 

group between α-amino acids and corresponding keto-acids. The subcategory ω-ATAs is named according to 

the ability to transfer an amine group from an amine donor onto a carbonyl moiety of an amine acceptor, 

whereby at least one of the two substances is not an α-amino acid or an α-keto acid [44]. This definition will 

be applied throughout this work. In the scientific literature, it is also argued that ω-TAs transfer amine groups 

from ω-amino acids that are more distant from the carboxylic group [45]. Recently, it has been proposed that 

amine transaminases is the correct naming of the group of ATAs that are independent of the presence of 

carboxylic groups [31,39,43,45,46,48,49]. The reaction scheme of amine transaminases is the same as the 

one for ω-transaminases, just with different side groups. 

 

Scheme 2.1: Generalized reaction schemes of α-amino acid amine transaminases (Top, α-ATAs) and ω-amine transaminases 
(Bottom, ω-ATAs) for asymmetric synthesis of chiral amines. R1 and R3 are H, alkyl, aryl or alkene groups. R2 and R4 are H, alkyl, 
aryl, arylalkyl, alkene or carboxyl groups. Specifically for ω-ATAs, if R4 is a carboxyl group then R2 should not be a carboxyl group 
and vice versa. 

 

α-ATA 

ω-ATA 
PLP 

PLP 
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2.3.3 Amine transaminase mechanism 
ATAs are known to follow a ping pong bi bi reaction mechanism [50,51], which consists of two half reactions. 

Generally for ATAs, PLP is believed to be bound in the active site as a Schiff base to lysine (internal aldimine: 

E-PLP) [51]. During the ATA reaction, the amine group from the amine donor binds to PLP and result in the 

formation of PMP (E-PMP) and the corresponding ketone product (cP) from the amine donor (first half 

reaction) [52]. Thereafter, the ketone substrate binds to the formed PMP and the ketone group is replaced 

with the amine group of PMP, resulting in the regeneration of PLP (E-PLP) (second half reaction). In Figure 

2.3, the general reaction mechanism of ATAs is shown. Included in the figure are four complexes that indicate 

inhibitory effects from substrates and products of the reaction, i.e. E-PLP-S, E-PLP-cP, E-PMP-AD and E-PMP-

P. Application of ω-ATAs for asymmetric synthesis of chiral amines is known to be heavily influenced by 

(competitive) inhibition of the keto substrate and corresponding amine product [50]. 

The small and large pockets in the active site dictate the variety of amine donors and ketone substrates that 

can bind in the active site of ATAs (substrate scope). At the same time these pockets are also directly 

responsible for the regio- and stereo selectivity of ATAs [53,54].   

 

E-PLP

E-PMP

E-PLP-S

E-PMP-P

E-PLP-cP

E-PMP-AD

E-PLP-AD
E-PMP-cP[   ]

E-PLP-P
E-PMP-S[   ]

cP

S

P

AD

 

Figure 2.3: King-Altman representation of the amine transaminase reaction mechanism. Adapted and modified from Al-Haque et 
al. [50]. 

 

2.3.4 Challenges 

Despite the many valuable features of ATAs, making it an interesting choice as an industrial synthesis route 

to optically active chiral amines, and despite the tremendous progress with these enzymes, there are still 

some common challenges that need to be overcome. The most common of these challenges are the 
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inhibitory effects from the products and substrates, sometimes toxic effects on the enzyme (denaturation), 

and low aqueous solubility of the ketone substrates. Furthermore, many times for the asymmetric synthesis 

of chiral amines, the thermodynamics are unfavorable in the desired direction [24].  

The tremendous developments in protein engineering tools and methods, e.g. directed evolution, have 

indeed made it possible to overcome the majority of such challenges and to a great extent fit novel 

biocatalysts to the desired application and process [7]. However, protein engineering is still considered a 

time- and labor-intensive task that cannot solve all the challenges, e.g. unfavorable thermodynamics.  

Therefore, in some cases it may be beneficial and faster to consider implementation of process engineering 

strategies, such as in-situ product removal (ISPR) to overcome severe product inhibitory effects and shift 

unfavorable thermodynamics. ISPR refers to the continuous selective removal of products during the reaction 

course.  ISPR strategies are fast to implement, compared to protein engineering, as they commonly are based 

on conventional separation methods. The latter methods are well known and well-established, and are driven 

by differences in physicochemical properties and concentration gradients (ISPR and IScPR strategies will be 

discussed in detail in chapter 4). 

The challenge of implementing ISPR/IScPR strategies is the ability to test and evaluate the practical feasibility 

of such a strategy, which is difficult to do with conventional methods and equipment. This challenge is 

addressed in this work by considering the application of microfluidics, in a plug-and-play manner, for 

performing such advanced and complex testing of novel and alternative process concepts. Microfluidics is 

introduced in chapter 3. A supplement to the microfluidic experimental platform is the development and 

application of robust kinetic models of the ATA reaction mechanism. Such kinetic models can be applied to 

set targets and requirements for considered ISPR concepts based on scenario analysis, i.e. the impact of the 

product removal efficiency on the biocatalyst performance. It was outside the scope of this work to apply 

available kinetic models from the literature [50] or to develop new general kinetic models for ATA reactions. 
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Chapter 3  

Microfluidics for biocatalytic process 

development 
 

The following chapter has been written as a joint chapter with Rolf H. Ringborg. This was done, as microfluidic mixing 

effects are a core element in both our theses and by combining efforts a more comprehensive understanding was 

achieved. 

 

Application of microfluidics in the development of biocatalytic processes, where the main advantage is the 

low consumption of scarce and valuable resources has great potential. However, exploiting this potential 

fully requires a fundamental understanding of the dominating phenomena and effects at the microfluidic 

scale.  

It is therefore the aim here to give an overview of these dominating phenomena and effects in order to 

highlight how to exploit them in the development of biocatalytic processes. Special emphasis is given to 

microfluidic mixing/mass transfer effects, which is considered the most important feature for successful 

application of microfluidics for development of biocatalytic processes. Furthermore, the concept of 

combining microfluidic modules in a plug-and-play manner is described and introduced as a novel option for 

testing complex biocatalytic process strategies that otherwise are very difficult to test with conventional 

methods. Biocatalytic process concepts that are complex are of interest as potential solutions for biocatalytic 

processes that are particularly challenging to operate as conventional batch processes. 
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3.1 Introduction 

Microfluidics is in this context referred to as the analysis, control and manipulation of fluids in geometrically 

constrained channels, having characteristic dimensions in the micrometer range [55,56]. Microfluidics can be 

classified as a sub-category of flow chemistry, which covers continuous reactions conducted in microreactors, 

and is currently being considered an improvement and greener alternative compared to conventional batch 

processing in organic synthesis [57,58]. Furthermore, it has several times been pointed out that the use of 

microfluidics is in accordance with the 12 principles of green chemistry [59,60], in terms of improved safety 

[55,61], reduced waste generation [62] and energy efficiency to name a few metrics [63]. All these features 

are also considered requirements of efficient processes [58].  

In 2007, a roundtable with the pharmaceutical industry ranked the most important research topics as being 

continuous processing, bioprocesses and separation and reaction technologies [64]. Hence, it is the focus of 

this work to address these topics and apply microfluidics as a tool in doing so.  

Jensen et al. [62] presented the most recent developments in the microfluidic toolbox and further addresses 

major challenges for the technology. The Jensen group has published many papers regarding the field of 

microscale technology, and most relevant here are the creation of plug flow conditions at microscale [65], 

batch-like reaction time courses [66], automatic reaction optimization [67], and automatic kinetic model 

validation [68]. Furthermore, there is increased focus on the application of microfluidics for multistep 

synthesis systems [69,70] and continuous-flow chemical [71] and biochemical [72] processing, which is 

considered highly relevant as well.  

The application of microfluidics for development of biocatalytic processes has a great potential. In fact, the 

main product resulting from the application of microfluidic process technology is information and 

fundamental knowledge that can be channeled towards accelerated process development. The exception to 

this is when reactions are difficult to control in conventional batch systems, causing microfluidics to be a 

suitable production method [73,74], which is in fact rarely the case for biocatalytic processes. For biocatalytic 

processes, one clear benefit of applying microfluidics is the low consumption of scarce and valuable 

resources, especially in the early development phase where for example only a few milligrams to a few grams 

of the catalyst is available [4]. More importantly, the information gathered per mass of biocatalyst spent is 

much higher in micro-scale reactors. Consequently, investigations that are more detailed can be carried out 

in comparison to conventional lab-scale studies. Furthermore, the small characteristic length scale and the 

large surface-to-volume ratio in microsystems enable faster heat and mass transfer. Compared to larger scale 

equipment this enables better control of concentration and temperature gradients in the microfluidic 

systems [55,63]. 

To fully exploit microfluidics for biocatalytic process development it is essential to have a fundamental 

understanding of the physical effects at the scale of interest. The dimensional effects are the majority of what 

is changing by using microscale technology as opposed to conventional lab scale and large scale equipment. 

In particular the smaller intrinsic volume, large surface to volume ratio and small hydraulic diameter are 

worth mentioning [75].  Microsystems commonly operate in well-defined laminar flow conditions, where 

heat and mass transfer will mainly be governed by diffusion and convection. Especially the mass diffusion 

time in microfluidic modules has a significant impact on the development of biocatalytic processes as it 

dictates the ideality of the mixing in the system. The diffusion time can be calculated by: 

𝜏𝑚𝑖𝑥 =
𝑑𝑡
2

4𝐷𝑎𝑏
                                      (Eq. 3.1) 
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, where 𝑑𝑡[𝑚] is the diffusion distance, 𝜏𝑚𝑖𝑥 [s] is the characteristic mixing time and 𝐷𝑎𝑏 [m2s-1] is the 

diffusion coefficient of solute a in b.  

Therefore, an important tool for understanding the phenomenal behavior at microscale, is to perform 

dimensional analysis which gives insights into opportunities that can emerge from miniaturization. Examples 

of different effects of miniaturization are highlighted in Table 3.1. For example, the short distances in 

microsystems cause the transport times of mass and heat to be shortened, where especially short mixing 

times are important when testing biocatalytic processes. The highly increased surface to volume area gives 

fast energy control and important operation parameters can be regulated precisely. The assumptions of ideal 

(constant) conditions are therefore approached, and modeling of the system will be more accurate.  

Microfluidic systems are expected to form the practical tool that will make us realize high-speed, functional, 

and compact instrumentation [76]. This will aid in improving and accelerating the characterization and 

development of biocatalytic processes. After investigating the effect of miniaturization, different 

dimensionless numbers will be introduced in this chapter, in order to better understand the fluid dynamic 

behavior occurring at this scale. These numbers can also be used to define regions of operation where desired 

behavior can be exploited.   

 

Table 3.1: Highlights of the benefits of miniaturization. 

Parameter Factor change Macroscale Mesoscale Microscale 

Hydraulic diameter dH 1 m 1 cm 100 µm 

Surface d2 1 m2 1 cm2 104 µm2 

Volume d3 1000 L 1 mL 1 nL 

Surface / Volume (m2/m3) d2/ d3 = 1/d 1 102 104 

Diffusion time over d (Dab = 10-5 cm2s-1) d2 8 y 7 h 2.5 s 

Diffusion time over d (Dab = 10-6 cm2s-1)  80 y 70 h 25 s 

Example: in flowing systems     

Linear flow rate d 1 m/s 1 cm/s 1 mm/s 

Re (µ = 0.001 kg m-1 s-1, ρ = 1000 kg m-3 )  106 103 0.1 

Volume / Experiment  >1 m3 ]1000: 1[ mL <<1 mL 

 

In order to get a better feeling for the ranges one applies in the different overall flow regimes, common 

values are given in Table 3.2 and illustrated in Figure 3.1. 

 

Table 3.2: common values for the hydraulic diameter (dH) and the flow rate (q)  

 dH [mm] q [L/min] 

Plug flow 6.4  >100  

Laminar flow 1-3  1-500  

Low-dispersed 
flow 

0.1-0.5  50-400  
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 Figure 3.1: Illustration of common values for different types of flow, Re numbers are indicated by the grey contour.  

 

3.2 Phenomena at the microfluidic level 

A core element in the development of processes is to develop a proper understanding of the transport 

phenomena across scales, i.e. small scale in the development phase and large scale for industrial 

implementation. In order to efficiently use the information collected at the different scales such differences 

must be accounted for.  It is therefore essential to understand the dominating transport phenomena in the 

microfluidic regime, relative to large-scale applications, when applying microfluidics for process 

development.  

The topic of transport phenomena is a well-developed branch of physics with many standardized methods 

to calculate the dominating physical phenomena at the given scale and operational conditions, i.e. through 

dimensionless numbers [77,78]. Here a brief overview is given of common dimensionless numbers that are 

applied to understand the transport phenomena in microfluidics. The dimensionless numbers are crucial 

when dimensioning microfluidic modules for specific applications. 

 

3.2.1 Reynolds number 

The Reynolds number is applied to describe the ratio of momentum forces relative to viscous forces. The 

Reynolds number is calculated by: 

𝑅𝑒 =
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑜𝑟𝑐𝑒

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
=
𝜌𝑣𝑑ℎ

𝜇
=
𝜌(
𝑞

𝐴
)𝑑𝐻

𝜇
              (Eq. 3.2) 
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, where 𝜌 [𝑘𝑔/𝑚3] is the fluid density, 𝑑ℎ[𝑚]is the hydraulic diameter, 𝜇 [𝑘𝑔/(𝑚 ∙ 𝑠)] is the dynamic 

viscosity, 𝑣 [𝑚/𝑠] is the average linear flow velocity in the channel, 𝐴 [𝑚2] is the cross-sectional area and 

𝑞 [𝑚3/𝑠] is the volumetric flow rate in the channel.  

At low Reynolds numbers, viscous forces become dominant, which causes the fluid to move with a laminar 

flow profile, i.e. a parabolic velocity profile. At high Reynolds numbers, the momentum forces become 

dominant causing chaotic mixing effects, i.e. turbulent flow. The two types of flow regime are illustrated in 

Figure 3.2. In the scientific literature different regions of Reynolds numbers are applied to identify where the 

two types of flow regimes are dominant. It is stated in the literature that the different flow regime regions 

are in the ranges of [63,77]:  

Turbulent flow regime:    𝑅𝑒 > 3000 

Transition from turbulent flow to laminar flow:  1500 < 𝑅𝑒 < 3000  

Laminar flow regime:   𝑅𝑒 < 1500 

 

 
 

 

 

 
 

 

Figure 3.2: Overview of flow characteristics and concentration distribution profile scenarios. A) Laminar flow velocity profile. B) 
Turbulent flow velocity profile. C) Laminar flow concentration profile, where convection is dominating over radial dispersion. D) 
Turbulent flow concentration profile, which will appear similar to laminar flow when radial dispersion is dominating. E) Residence 
time concentration profiles of laminar flow and plug-flow dominated systems. 
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In Figure 3.3, the Reynolds number is calculated for a range of tube diameters and flow rates that are 

commonly applied for microsystems. Also highlighted in the figure are the Reynolds numbers, at various flow 

rates, for standard PTFE tubes, which are easily applicable in microsystems. The calculated Reynolds numbers 

clearly indicate that microsystems operate in the laminar flow regime, i.e. 𝑅𝑒 ≪ 1500. In comparison, it is 

common that large-scale systems operate in the turbulent flow regime, which causes some fundamental 

differences in the mixing behavior across scales. This also makes it challenging to scale up processes based 

on knowledge obtained in microfluidic systems, which will be discussed in more detail in chapter 8. 

 

 
Figure 3.3: Left) Reynolds numbers for various inner tube diameters at various flow rates.  Right) Reynolds numbers at various flow 
rates for standard PTFE tube dimensions. 

 

3.2.2 Bodenstein & Fourier numbers 

The Reynolds number only indicates the flow regime at the specified dimensions and flow conditions. 

Therefore, in order to get an idea about the mixing effects and concentration profiles in the microsystem of 

interest at various process conditions, it is essential to consider the Bodenstein, Fourier and/or Péclet 

numbers. The Bodenstein number is applied to describe the ratio of convection relative to that of dispersion. 

The Bodenstein and Péclet numbers both describe momentum transfer relative to molecular mass transfer. 

Consequently, the focus here is solely on the Bodenstein number. The Bodenstein number is described as: 

𝐵𝑜 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
=
𝑣𝐿

𝐃
               (Eq. 3.3) 

, where 𝐃 is the Taylor dispersion coefficient [65,78]. Convection dominates most small scale flow systems 

and as a result the diffusive portion of the expression can be neglected: 

𝐃 = 𝐷𝐴𝐵 +
𝑣2𝑑𝐻

2

4𝛽𝐷𝐴𝐵
≅

𝑣2𝑑𝐻
2

4𝛽𝐷𝐴𝐵
                          (Eq. 3.4) 

, where 𝛽[−] is a channel specific parameter, i.e. 48 for cylindrical channels [65]. 

Large Bodenstein numbers indicate low dispersion and operation will resemble that of a plug-flow reactor. 

At low Bodenstein numbers, dispersion will be dominant and the flow profile will be that of a laminar flow 

reactor. This is illustrated in Figure 3.4, where the flow profile will develop towards parabolic flow if 

convection is dominant (small Bo numbers), whereas radial dispersion will move the behavior towards plug 

flow when diffusion becomes significant. 
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Figure 3.4: Explaining convection with and without diffusion, (a) impulse injected, (b) convection of impulse without diffusion and (c) 
convection of impulse with diffusion 

 

Both concentration profile scenarios and their relative system response times (retention time distributions, 

RTD) are schematically presented in Figure 3.2. The inverse of the Bodenstein number can be said to describe 

the intensity of dispersion, and follows the inverse explanation of the Bodenstein numbers. Nagy et al. [65], 

coupled the Bodenstein number with the Fourier number, the ratio of residence time relative to the time to 

diffuse halfway across the channel, described by: 

𝐹𝑜 =
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
=
4𝐷𝐴𝐵𝜏

𝑑𝑡
2                (Eq. 3.5) 

This coupling made it possible to specify ranges of the Bodenstein number, which resembles plug-flow 

dynamics and the transition to Taylor dispersion/convective flow dynamics. The specified ranges are as 

follows for step changes in the flow rate and/or concentration composition [65]:   

Convective profile:   𝐵𝑜 < 10    (𝐹𝑜 < 0.16 ) 

Large deviations from plug-flow profile:   10 < 𝐵𝑜 < 100  (0.16 < 𝐹𝑜 < 2.1) 

Small deviations from plug-flow profile:  100 < 𝐵𝑜 < 1000 (2.1 < 𝐹𝑜 < 21) 

Plug-flow profile:   1000 < 𝐵𝑜   (21 < 𝐹𝑜) 

Based on the specified regions it was possible to make predictions about the magnitude of dispersion effects 

and the corresponding flow characteristics for different diffusion coefficients. These predictions are 

presented in Figure 3.5, inspired by Nagy et al. [65]. The location of the different regions, relative to residence 

time and tube diameter, is greatly dependent on the diffusion coefficient of the solute. Practically, this means 

that slowly diffusing compounds are prone to having flow dynamics, which are dominated by axial dispersion. 

The main problem of having such flow dynamics is the time it takes to reach steady state, which is greatly 

increased compared to plug-flow dynamics. This can be observed in Figure 3.6.  



 
 

24 
 

 
Figure 3.5: Influence of the diffusion coefficient on the flow dynamics/mixing dynamics of the system. A) fully developed laminar 
flow dynamics, B) large deviations from plug-flow dynamics, C) small deviations from plug-flow dynamics, and D) plug-flow 
dynamics 

 

Enzymes and other proteins are known for having low diffusivities, which as earlier stated makes it time 

consuming to achieve steady state. This problem is repeated for each step change with regard to the enzyme 

concentration. However, it is possible to circumvent this by acquiring a steady state condition profile for the 

enzyme in the system and hereafter only introduce step changes to the substrate composition. In other 

words, the mass balance over the reactor for the enzyme is kept constant. Hereby, it can be assumed that 

the system operation will depend on the substrates diffusion coefficient, as shown in Figure 3.5. The 

substrates applied for enzymatic reactions are commonly very small molecules, and consequently fast 

diffusing molecules. 

Estimation of the time required to reach the initial steady state shows that this time is still highly dependent 

on the specific diffusion coefficient of the investigated enzyme. Significant research efforts have been 

invested into development of quick and robust methods and models for predicting protein diffusion 

coefficients. He et al. [79], for example, included the radius of gyration [80] to the molecular weight 

correlation [81] to get within 15% deviation of most experimentally determined values. The addition of 

gyration radius gives a correction for non-globular shaped proteins, which is for example important in the 

case of rod shaped proteins. The radius of gyration needs to be calculated and should not be looked up as a 

general value. It can be calculated directly from protein database files by applying the HYDROPRO software 

[82]. It is suitable to apply the HYDROPRO software when the protein crystal structure is available, as the 

software not only calculates the radius of gyration, but also directly calculates the diffusion coefficient. For 

globular proteins, it is possible to correlate the diffusion coefficient directly to the molecular weight of the 

protein. The molecular weight correlation [81] and the model including the radius of gyration [79] are defined 

as follows: 
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         𝐷𝐴𝐵 = 8.34 ∙ 10
−11 (

𝑇

𝜇∙𝑀1 3⁄ )  (Eq. 3.6) 

𝐷𝐴𝐵 =
6.85∙10−15𝑇

𝜇∙√𝑀1 3⁄ ∙𝑅𝐺

           (Eq. 3.7) 

, where 𝑇 [𝐾] is the absolute temperature, 𝜇 [𝑃𝐴 ∙ 𝑠] is the dynamic viscosity, 𝑀 [
𝑔

𝑚𝑜𝑙
] is the molecular 

weight and 𝑅𝐺[Å] is the radius of gyration.  

HYDROPRO requires knowledge of the specific volume, 𝜈 [
𝑐𝑚3

𝑔
], which is the inverse density, 𝜌−1. The protein 

density can be estimated by the following correlation [83]: 

𝜌(𝑀) = [1.410 + 0.145exp (−
𝑀

13
)]            (Eq. 3.8) 

, where the molecular weight 𝑀 is expressed in 𝑘𝐷𝑎 units. If the molecular weight exceeds 20 kDa the model 

has been identified to slightly over predict the molecular density.  

Predicted diffusion coefficients from the above-mentioned models and correlations for two transaminases 

are presented in Table 3.3. The two transaminases 3A8U and 4A72 originates from Pseudomonas putida and 

Chromobacterium violaceum, respectively. It was assumed for the calculations that 𝑇 = 303.15 𝐾 (30℃) 

and 𝜂 = 0.001 𝑃𝑎 ∙ 𝑠. 

 

Table 3.3: Predicted diffusion coefficients of two transaminases obtained from various models and correlations. 

PDB 
ID. 

Enzyme 𝑴 𝑹𝑮 
(from hydropro) 

𝝆 Young et al. 
[81] 

He et al. 
[79] 

HYDROPRO 

- - 𝑔/𝑚𝑜𝑙 Å 𝑔/𝑐𝑚3 10−11𝑚2/𝑠 

3A8U ω-ATA-monomer 48916 23.1 1.41 6.91 7.14 7.23 

4A72 ω-ATA-tetramer 205613 40.7 1.41 4.28 4.23 4.49 

 

The Taylor dispersion coefficient described earlier (equation 3.4) can be combined with dispersion models to 

predict the exit age distribution. For open-open systems, where the system boundaries represent similar flow 

dynamics as that of the control volume, the exit age distribution can be described by [84]: 

𝐄θ,oo =
1

√4𝜋𝐃/v𝐿
exp [−

(1−𝜃)2

4𝜃𝐃 𝑣𝐿⁄
]     (Eq. 3.9) 

, where θ [−] is the mean residence time. 

The F curve can then be calculated by:  

𝐅oo = ∫ 𝐄θ,oo
𝜃

0
𝑑𝑡                  (Eq. 3.10) 
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Figure 3.6: F curve as a function of mean residence time accounting for different diffusion coefficients. The curves were calculated 
with v=0.023 m/s, L= 7 m, beta = 48 and ID=200 µM 

 

From Figure 3.6, it is clear that the substrates (D = 10-9 m2/s) and enzymes (D = 10-11 m2/s) move very different 

through the reactor, as expected. The required times to reach steady state have been estimated and can be 

observed in Table 3.4. Levenspiel [84] states that for dispersion numbers above 𝐃/�̅�𝐿 = 0.01 other models 

should be applied to calculate the exit age distribution. For the diffusion coefficient 𝐷𝑎𝑏 = 1 ∙ 10
−11 𝑚2/𝑠, 

the steady state calculation can therefore only be used as a guidance.   

 

Table 3.4:  Required time to reach steady state (ss) dependent on diffusion coefficient. Calculations were done with v=0.023 m/s, L= 7 
m, beta = 48 and ID=200 µM 

Diffusion coefficient  

𝑫𝒂𝒃 [𝒎
𝟐/𝒔] 

Dispersion 
number 𝐃/�̅�𝑳 

95% ss 99% ss Region defined from above 

𝟏 ∙ 𝟏𝟎−𝟗 0.0006 1.06𝜃 1.09𝜃 “plug-flow” 

𝟏 ∙ 𝟏𝟎−𝟏𝟎 0.0066 1.22𝜃 1.32𝜃 Small deviations from plug flow 

𝟒. 𝟓 ∙ 𝟏𝟎−𝟏𝟏 0.015 1.36𝜃 1.52𝜃 Large deviations – mixed flow 

𝟏 ∙ 𝟏𝟎−𝟏𝟏 0.066 2.00𝜃 2.47𝜃 Dispersed flow. 

 

In cases where the dispersion number is high more complex numerical models, i.e. computational fluid 

dynamics (CFD) solving the Navier-Stokes equations, are required to describe the dispersion in the system. 

As an example, such CFD calculations were done for a specific cylindrical tube with the characteristic 



 
 

27 
 

dimensions of 1 mm inner diameter and a length of 10 cm. Various diffusion coefficients were applied and 

the flow rate was fixed to 21 µL/min. The given flow rate was specified as that flow rate was applied for some 

experimental investigations, which are not included in this thesis. The commercial software ANSYS CFX 14.0 

was applied to solve this problem, and the results are shown in Figure 3.7. Additionally, the analytical 

solutions are compared with the step responses of an ideal continuous stirred tank reactor (CSTR) and a plug-

flow reactor (PFR). 

 

 

Figure 3.7: Mapping of compounds with different diffusion velocities, i.e. 𝐷𝑎𝑏 = 1 ∙ 10
−9 𝑚

2

𝑠
 (orange), 𝐷𝑎𝑏 = 1 ∙ 10

−10 𝑚
2

𝑠
 (blue), 

𝐷𝑎𝑏 = 1 ∙ 10
−11 𝑚

2

𝑠
 (light blue) and 𝐷𝑎𝑏 = 1 ∙ 10

−12 𝑚
2

𝑠
 (green), based on CFD simulations. The curves for the two latter diffusion 

coefficients are very similar to one another in the simulated time interval. The length of the simulated tube is in this case 10 cm, and 
the tube has a diameter of 1 mm. The initial concentration was set to 1 𝑘𝑔/𝑚3 and the mass flow rate was specified to be 3.5 ∙
10−7 𝑘𝑔/𝑠. Nomenclature: PFR - plug flow reactor, CSTR - continuous stirred tank reactor, LFR - laminar flow reactor 

 

Regarding the similarities of the dispersion profiles for slowly diffusing solutes presented in the figure, 𝐷𝑎𝑏 ≥

1 ∙ 10−11
m2

s
, it is obviously difficult to distinguish between them in the given modelling framework. However, 

it should be possible to distinguish between them. This can be done by extending the RTD experimental time 

which will cause the difference in the profiles to become more prominent as 𝑡𝑖𝑚𝑒 → ∞. Based on the 

performed experiments the dispersion numbers were also calculated, and the values are presented in Table 

3.5. It can be seen that the numbers are all significantly higher than the boundary specified by Levenspiel 

[84].  
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Table 3.5: Diffusion coefficients, dispersion coefficients and dispersion intensity of the simulation examples in Figure 3.7. 

𝑫𝒂𝒃 𝐃 𝐃

𝒗𝑳
 

𝟏𝟎−𝟗  1.04 ∙  10−6  0.023 

𝟏𝟎−𝟏𝟎 1.03 ∙ 10−5 0.232 

𝟏𝟎−𝟏𝟏 1.03 ∙ 10−4 2.323 

𝟏𝟎−𝟏𝟐 1.03 ∙ 10−3 23.210 

 

3.2.3 Capillary, Eötvös (Bond) and Weber numbers (for two-phase flow) 

Another application in microfluidics is to operate with immiscible fluids, e.g. gas-liquid or liquid-liquid. This 

type of application is beneficial for the development of separation processes and/or biocatalytic processes 

where it is required to feed and/or remove various compounds during the reaction course. The interfacial 

behavior in this type of application can be described through a different set of dimensionless numbers 

[85,86]. Two of the numbers are the Eötvös number (also known as the Bond number) and the Weber 

number. 

The Eötvös number represents the ratio of gravitational forces relative to surface tension forces. It is 

described by:  

𝐸𝑜 =
Δ𝜌𝑔𝑑ℎ

2

𝜎
             (Eq. 3.11) 

, where Δ𝜌 [𝑘𝑔/𝑚3] is the density difference between two immiscible fluids and 𝜎 [𝑁/𝑚] is the surface 

tension.  

The Weber number represents the ratio of the fluids inertia relative to its surface tension. It is described by: 

𝑊𝑒 =
𝜌𝜇2𝑑ℎ

𝜎
            (Eq. 3.12) 

However, the Weber number is usually not the most important dimensionless number for microfluidic 

applications, i.e. the Reynolds number is small for such applications meaning that inertial effects can be 

neglected. Furthermore, the Eötvös number is only essential when operating with two immiscible fluids with 

significant density differences, like gas-liquid systems [87,88]. Besides these two numbers, which are not 

used for microfluidic liquid-liquid applications, there is a third dimensionless number that is commonly 

applied. This is the Capillary number which describes the ratio of viscous forces, shear stresses, relative to 

surface tension forces [88]. The Capillary number is defined by: 

           𝐶𝑎 =
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒
=
𝜇𝑣

𝜎
             (Eq. 3.13) 

The Capillary number is an important parameter for understanding the droplet formation, size and shape in 

microsystems [89]. Dependent on the magnitude of the Capillary number it is possible to predict different 

droplet formation regimes, i.e. squeezing, dripping and jetting [90,91].  The different droplet formation 

regimes are illustrated in Figure 3.8. At low Capillary numbers, e.g. 𝐶𝑎 ≤ 0.01, the system operates in the 

squeezing regime, which causes the formation of slug-like droplets [87,88,90], as shown on top of Figure 3.8. 

Larger Capillary numbers, e.g. 𝐶𝑎 ≥ 0.02, cause formation of dripping droplets, which have a significantly 

lower droplet volume than the slugs [87,88,90], as shown in the center part of Figure 3.8. As the Capillary 

number increases in the dripping regime, the behavior of the system moves towards the jet regime. Here the 

detachment in the dripping regime gradually moves further down the channel. This trend is then further 
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amplified with increasing Capillary number and increasing ratio of the continuous flow phase relative to the 

droplet phase ratio, as shown at the bottom of Figure 3.8. 

 

Figure 3.8: Squeezing (a), dripping (b) and jetting (c) based droplet formation mechanisms. 

 

Dependent on the channel dimensions, flow rates, surface tensions etc. it is possible to achieve different 

types of multi-phase flow patterns in the channels [92]. In addition, modifying the wetting properties of the 

wall surfaces will enable to operate with fluid streams in co- or counter side-by-side flow [93].  Maintaining 

this type of flow is dependent on stabilizing the pressure gradient between the two phases by the Laplace 

pressure at the interface [71]. These different types of flow are sketched in Figure 3.9 [92,94]. The shape of 

the liquid-liquid interphase is dependent on the interfacial tension between the two phases. 

 

Figure 3.9: Overview of different multi-phase flow scenarios: (a) bubble flow, (b) slug flow, (c) transitional slug/churn flow, (d) churn 
flow, (e) annular flow, (f) side-by-side flow. 
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Table 3.6: Overview of important dimensionless numbers and their ranges for various applications. 

 Re Bo Ca Application Comments 

Plug flow >3000 N/A N/A Production  

Laminar flow <1500 <10 N/A 
Transport of 
homogenous 
solution 

Well-defined flow regime and easy to 
simulate through CFD. 

Low dispersed 
flow 

<10 >100 N/A 
Determine 
kinetics 

Laminar flow regime where concentration 
profiles appear similar to plug flow profiles. 

Slug flow 
(sweeping) 

N/A N/A ≤ 0.01 

Study of LLE, 
GLE, ISSS, ISPR, 
individual batch 
reactors 

Formation of slugs is greatly dominated by 
the inlet diameter and the diameter of the 
operating channel – for microfluidic 
channels it is common to talk about 
slugs/droplets for this range of capillaries 

Side-by-side 
flow 

N/A N/A N/A 
Study of LLE, 
ISSS, ISPR 

Note: Requires that the pressure gradient 
is stabilized between the two phases by 
the Laplace pressure and/or by modifying 
the channel hydrophobicity. 

Droplet flow 
(dripping) 

N/A N/A ≥ 0.02 
Study of LLE, 
GLE, ISSS, ISPR 

Similar to slug flow. 

 

In Table 3.6, an overview is given of the different dimensionless numbers, along with ranges that are of 

interest for different applications. The different highlighted applications of interest in relation to the 

development and application of biocatalytic processes are: 

- Plug-flow: Plug-flow mixing characteristics are commonly experienced at large scale (larger hydraulic 

diameters and flow rates) and thereby such flow dynamics are relevant for production purposes. The 

required dimensions and flow rates to achieve plug flow dynamics make this flow regime unsuited 

for development purposes, as it would be too costly. 

- Laminar flow: For development purposes, it is common to operate with laminar flow dynamics, due 

to the small scale and flow rates. This however gives some challenges for scale-up, as the flow 

dynamics change with increasing scale. Transport of homogenous solutions and steady state 

measurements are here the direct application. However, the study of dynamic responses with such 

a flow profile is either relative to the system, or should be corrected by residence time distributions. 

Nonetheless, it is here possible to quickly assess the dynamics of various flows and operating 

conditions on the biocatalyst performance and/or separation. The comparison of similar systems 

with different units can thereby still be quite useful for process optimization. 

- Low dispersed flow: The application of this regime is for simulating plug-flow dynamics of a system. 

As plug-flow reactors has identical behavior as batch reactors, it is here possible to determine kinetics 

in flow.  

- Slug, side-by-side and droplet flow: These microfluidic flow applications are useful for testing and 

optimizing separation based processes, such as liquid-liquid extraction, gas-liquid extraction, ISSS 

and ISPR. Furthermore, droplet and slug flow can also be operated as single reactors making it 

possible to perform high-throughput reaction screening and characterization. A limitation to side-by-

side flow is that its application is restricted to small scale applications and that its main purpose is to 

gain knowledge about mass transfer between phases. It is also dependent on phase separation at 
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the end of the module. The advantage of slug flow over droplet flow is the possibility to apply optical 

analytical methods to follow the progress in the slugs, which is significantly more difficult with freely 

flowing droplets. For development of extraction methods, droplet and/or slug flow applications are 

more appropriate than side-by-side flow. This is because the high throughput characterization of 

such applications is easily adaptable to a broad range of different operating conditions.  

  

3.3 Pressure drop 

When designing a specific microfluidic module it is important to consider the limitations of the pumps 

available to operate the specific system, i.e. not all pumps can operate at high pressure. It is therefore 

important to evaluate the pressure drop in each module and in combined modules. The Hagen-Poiseulle 

equation describes pressure drop in laminar flow with incompressible and Newtonian fluids, where the 

length of the channel is much greater than the diameter [63]. 

Δ𝑃 =
128𝜂𝐿𝑞

𝜋𝑑𝐻
4              (Eq. 3.14) 

, where Δ𝑃 [𝑃𝑎] is the pressure drop across length L [𝑚] of the channel diameter, for a flow 𝑞 [𝑚3/𝑠] of a 

fluid with viscosity 𝜂 [𝑃𝑎 ∙ 𝑠]. As the channel diameter (𝑑𝐻 [𝑚]) decreases, the pressure needed to achieve 

the same flow increases dramatically. In Figure 3.10, the influence of flow rates and channel diameters on 

the pressure drop can be seen for various tube lengths, assuming a maximum allowable pressure drop of 3 

bar, which was indeed the pressure limit of the pumps utilized in this project. 

 

     
Figure 3.10: Representation of a 3 bar pressure drop in microfluidic modules with changing flow rates and diameter at various tube 
lengths, i.e. L1=0.1 m, L2=0.5 m, L3=1 m, L4=5 m, L5=10 m and L6=20 m. Everything to the left of the curves corresponds to regions 
where the pressure drop is higher than 3 bar. 

 

For modules with porous domains, e.g. packed bed reactors, one can apply Erguns equation to describe the 

pressure drop [95]. Erguns equation is defined as: 
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Δ𝑃 = 1.75
𝑣0
2𝜌𝐿(1−𝜀)

𝜀3𝑑𝑝
+ 150

𝑣0𝜂𝐿(1−𝜀)
2

𝜀3𝑑𝑝
2         (Eq. 3.15) 

, where 𝜀 [−] is the particle porosity, 𝑣0 [𝑚/𝑠] is the fluid velocity based on an empty channel, and 𝑑𝑃 [𝑚] 

is the diameter of the spherical particles. However, in many cases it might be difficult to get an exact 

prediction of the pressure drop in porous domains. For example, there can be many variations in packing 

densities, whereas particles come in a range of sizes and shapes, and are rarely completely spherical [96]. 

 

3.4 Microfluidic reactor and separation modules 

The development of biocatalytic processes is greatly dominated by lab scale batch process based 

technologies. Liquid handling at lab scale for batch type experiments requires manual handling. This type of 

liquid handling is directly related to the amount of labor required to run an experiment. Furthermore, 

conducting reaction and separation sequentially in different containers requires that people are available to 

conduct the transfer of liquid. It is clear that this form of experimentation is laborious and requires relatively 

large volumes for every cycle. The alternative is to conduct microfluidic experiments in a continuous fashion 

by connecting reactors with separation directly and by handling the liquids by pumps. The labor requirement 

for constructing such a setup is of course much larger compared to the sequential “batch” lab scale. 

Therefore, such an effort should only be done when more than a couple of experiments are required. Flow 

chemistry has evolved a lot in the recent years, and has moved into microscale and microfluidics, where many 

unit operations have been translated to this scale. It is possible to mix [97], introduce an extraction phase, 

phase separate [98], distil [99], adsorb/absorb [85] and implement optical analytical methods. The available 

microfluidic modules enable the testing of various unit operations in combination (plug-and-play 

combination of the microfluidic modules). An advantage of this type of testing is that it will be possible to 

test complex biocatalytic process options, where reactor modules and separation modules are integrated to 

some extent. In order to understand the simplicity of combining units at this scale, different unit operations 

relevant for biocatalytic processes have been sketched and can be seen in Table 3.7.  

 

Table 3.7: Different unit operations at µ-scale. 

   
Side-by-side flow Mixing Membrane separation 

  

 

Liquid-liquid separator Droplet flow  
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The sketched unit operations can be combined rather easily with a simple interface consisting of tubing and 

fittings. The realization that this is possible makes the hurdle of continuous setup construction less time 

consuming. To illustrate this, a PI diagram (Figure 3.11) describing a generalized process flow for synthesis of 

chiral amines catalyzed by amine transaminases (ATAs) [100] has been translated to microscale unit 

operations (MUO’s), as shown in Figure 3.12. 

 

E

Solvent

R LLE1 LLE2

Solvent 
waste

Product
Substrate

Aq. 
waste

Solvent

Solvent 
waste

Amine donor
Biocatalyst
Co-factor

 

Figure 3.11: Generalized amine transaminase (ATA) process flow chart for synthesis and recovery of chiral amines. The generalized 
scheme consists of a reactor (R), two liquid-liquid extraction steps (LLE1 and LLE2) and an evaporation step (E).  

 

 

 

Figure 3.12: Translation from standard sequential batch processing to microscale unit operations. 
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The concept of modularity is not new, and creating a framework for such modularization has been attempted 

a number of time [101–103]. Projects defined with the specific objective of developing generic approaches 

to somewhat different operating regimes compared to the one investigated in this thesis are summarized in 

the list below. However, applications of such modules in a plug-and-play manner for biocatalytic applications 

has to date only been attempted a few times [70]. 

The European project BIOINTENSE intended to design units with fixed dimensions to fit all purposes for 

biocatalytic applications, and an obviously clear result is that this is impossible. In order to navigate the space 

of microfluidics, as outlined in this chapter, one should be able to manipulate the characteristic dimension, 

length and flow rate of the modules. Commercialization of the technology for flow chemistry, which can be 

adopted to biocatalytic applications, is becoming more widespread and platforms are available such as the 

Lonza flow plate [104], the Syrris system [105], Fluidgent [106] or Chemtrix [107]. The increasing number of 

industrial producers of such systems can be considered as a direct proof of the commercial importance of 

this research, and can be extended to how relevant this work is to the wider world.  Along with the history 

of other international projects, this indicates that this type of work is a relatively high priority in industry.  

 

3.5 Materials and fabrication 

It is from a qualitative point of view nice to work with systems that are easy to manufacture, and from a 

quantitative point of view, systems characterized by complete inertness are important. Polymers are 

relatively easy to manipulate, and 3D printing lightens the burden of constructing a microscale reactor even 

further [108]. It is within such a flexible design space that rapid investigations of geometry can take place. 

Several trade-offs can be observed in Table 3.8. Glass is the preferred material for inert reactor construction, 

and can be made at microscale to have a high pressure rating and fair heat transfer capacity as well. 

Unfortunately, glass has a rather rough surface and adsorption is therefore unavoidable when working with 

proteins. It is possible to work around this by using polyethylene glycol, or by working with an enzyme 

concentration that is high enough to make monolayer surface coverage insignificant. A semi-quantitative 

comparison of different materials is given in Table 3.8. 

 

Table 3.8: Comparison of materials for construction of microreactors  

 
Chemical 

Resistance 

Transparency for 
optical 

measurements 
Heat transfer Prototype cost 

Mass 
produced 

device cost 

Polymers (PDMA, 
PMMA) 

Very Low Good Poor Low High 

Hard Polymers 
(COP, COPF) 

Low Good Medium Medium Low 

Glass (SiO2) High Very good Good High Medium 

Quartz (SiO4) High Excellent Good Very high Medium - High 

Metal (steel) High N/A Very good Medium Medium 

Silicon High N/A Good Very high Medium 

Tubing (PTFE, 
Glass capillary) 

High 
PTFE is IR 

transparent, but 
pathlength is small 

Good Low-medium Low 
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Based on the experience gained from working with microfluidics it has become clear that when experimental 

methods are established and experiments are to be reproduced hundreds of times it is suggested to apply 

microfluidic chip designs. This is exactly what Lab-on-a-chip has been about, i.e. scaling down analysis with a 

fixed method. When the method is being developed and while working with complex fluid dynamics (precise 

droplet flow, side by side flow) or extremely small volumes it is suggested to use ‘standard’ options from chip 

manufacturers. In general, for research purposes, it is desired to be as flexible as possible and unless it is 

required to have optical readout it is suggested to do experiments in tubing. In the latter approach, changing 

the length of the reactor is as simple as cutting a new piece of tubing. 

A decision roadmap for when to use which technique or tool has previously been described, but this was in 

relation to organic chemistry where fast reactions and high temperatures and pressures are present 

[109,110]. The following paragraph will focus on describing where experiments should be conducted in 

relation to the specific goals of a project. Three different goals can be distinguished to categorize the different 

efforts, which are carried out in the course of biocatalytic process development, namely discovery, 

development/optimization and production. For biocatalyst discovery, testing is usually conducted in a binary 

form and for that reason the use of containers in parallel provides an easy accessible platform. In the 

biocatalyst development and optimization phase, it is very important to have proper control of the 

experimental conditions. Microfluidics as described in this chapter, displays these qualities along with small 

resource consumption. Well plates also have small resource consumption, but will to a lesser extent allow 

control over the reaction conditions. These methods require automation for efficient and precise handling of 

the small volumes. In such an automated set-up, samples are directly drawn from the reactors, be it wells or 

channels, and injected into the analysis system. Without this automated handling and analysis ability one 

should probably stick to working on a slightly larger scale, such as small vials (4 mL) in thermoshakers. For 

production is it obvious that the smaller type equipment will have problems handling very large scale 

throughputs. However, with microfluidics one of the major advantages is that one can set up systems in 

parallel, and numbering up can in this way generate a considerable throughput. The main elements of the 

discussion in this last paragraph have been summarized in Table 3.9. 

 

Table 3.9: Considerations on when to use microfluidic technology 

Goals Labscale 
batch 

Well 
plates 

Labscale 
continous 

microfluidic 

Volume >1 mL <400 µL >1mL <1 mL 

Discovery Good Good Bad Bad 

Development and optimization Fair Good Bad - Fair Good + 

Production Fair Bad Good Bad-fair 
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Chapter 4  

Considerations for amine transaminase 

processes assisted by ISPR strategies 
 

The following chapter has been written in the style of an article manuscript. The manuscript is to be submitted to the 

peer-reviewed scientific journal Biotechnology Advances. 

 

Asymmetric synthesis of optically pure chiral amines using amine transaminases (ATAs) is a promising process 

pathway, starting from ketone substrates, towards valuable building blocks for many active pharmaceutical 

ingredients and their precursors. However, in many cases, it is necessary to overcome unfavorable 

thermodynamics and inhibitory effects, for example by implementing in-situ product (ISPR) and/or co-

product (IScPR) removal strategies. Implementation of ISPR and IScPR strategies adds significant complexity 

to the process, which gives some challenges in evaluating the feasibility and potential gain related to applying 

such strategies. Therefore, this chapter reviews important considerations and requirements for the 

development of ATA processes with ISPR and IScPR strategies. A simple methodology is proposed to guide 

the selection and/or exclusion of ISPR/IScPR strategies, when required, during the development of ATA 

synthesis routes and processes. Furthermore, an overview is given of the most commonly applied ISPR and 

IScPR strategies for ATA processes and some of the associated challenges. Additionally, evaluation of the 

requirements of various, commonly applied, ISPR and IScPR strategies is provided based upon three case 

studies. The chosen ATA based case studies focus on the asymmetric synthesis of 1-methyl-3-

phenylpropylamine (MPPA) from benzylacetone (BA) using three alternative amine donors, i.e. 1-

phenylethylamine (PEA), isopropylamine (IPA) and alanine (Ala). The case studies represent various 

thermodynamic, inhibitory, and separation related challenges. Hence, they form a good basis for broad 

coverage of the requirements and feasibility of ISPR and IScPR strategies for amine transaminase processes. 

The case studies indicated that the choice of amine donor might improve the thermodynamics of the 

synthesis route and/or reduce inhibitory effects, but there can be tradeoffs in terms of the separation 

efficiency. For example, for the case study with PEA as the amine donor, implementation of ISPR was found 

unsuited because the separation was assessed as being difficult and non-selective. However, for the two 

other case studies, with IPA and Ala as amine donors, it was found feasible to implement an ISPR strategy 

based upon liquid-liquid extraction. 
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4.1 Introduction 

One specific application of biocatalysis, which has received particular attention in recent years, is the 

production of optically pure chiral amines applying amine transaminases (ATAs) [111]. ATAs facilitate the 

transfer of an amine group from a primary amine to a carbonyl compound mediated by pyridoxal-5’-

phosphate (PLP) [39,112]. Chiral amines are valuable building blocks for a vast number of pharmaceuticals 

and precursors [20,113,114].  The advantage of ATAs, is the potential of performing asymmetric synthesis of 

pure chiral amines with enantiomeric excess (e.e.) >99%, under mild reaction conditions [24,115]. 

Furthermore, ATA processes potentially use simplified process pathways, compared to conventional 

chemical synthesis [7,20,116].  Additionally, ATAs are not dependent on the use of scarce, valuable and 

potentially toxic metal catalysts [33], which are many times applied in chemical synthesis routes, and can 

only be accepted in very low concentrations in the final product [117].  

Despite the advantageous features of ATAs for the synthesis of chiral amines, the number of industrial 

applications is still somewhat limited. The limited number of applications is the consequence of the fact that 

ATAs commonly experience toxic and/or inhibitory effects from substrates and/or products, especially at 

high concentrations. For some compounds, e.g. pharmaceuticals, there can also be problems with product 

degradation and/or stability issues [111,118,119].  Furthermore, for the synthesis of non-natural products 

from non-natural substrates it is often experienced that the reaction can be severely challenged 

thermodynamically  [1,7,119].  

All these factors make it difficult and time consuming to develop such biocatalytic processes and ensure 

economic feasibility. Hence, it is therefore necessary to invest significant effort in modifying the biocatalysts, 

e.g. by means of protein engineering. The tremendous developments and achievements in protein 

engineering strategies and techniques have indeed made it possible to develop biocatalysts for specific 

applications and requirements [7,120]. Improving the biocatalyst performance will always be done by 

modifying the biocatalyst and when considered necessary and beneficial, process engineering strategies are 

applied supplementary. Protein engineering is a powerful technology, which can greatly improve the 

biocatalyst performance, e.g. aiming at decreased inhibitory effects from reaction species, broadening the 

substrate scope and/or improving activity and stability [5,7,116].  

Despite the great benefits of protein engineering, it is for example not always easy and fast to overcome 

severe inhibitory effects with that strategy. Moreover, protein engineering will only influence the 

performance of the biocatalyst and not directly influence reaction related issues, e.g. it will not have an 

influence on thermodynamics and/or product degradation. Particularly for such issues, it is required to 

consider various process engineering strategies, such as in-situ product (ISPR) or co-product removal (IScPR), 

which aim to reduce the influence of such limitations and optimize the productivity of the biocatalyst, ideally 

yielding intensified and economically viable processes [118,121,122]. ISPR/IScPR refers to removal of a 

product/co-product from the reaction mixture during the reaction course [5,121]. 

What is specifically investigated in this thesis, is the aspect of applying process engineering strategies, such 

as ISPR and IScPR, as complementary strategies to the modification of the biocatalyst. For ATA process 

applications, ISPR and IScPR are applied to overcome severe (co-)product inhibition and, to some extent, 

unfavorable thermodynamics. Highlighted here are important considerations for the planning and 

implementation of process engineering strategies, and technologies for biocatalytic process intensification. 

Therefore, a focused review of the currently applied ISPR and IScPR strategies for ATA processes is presented 



 
 

39 
 

here. Furthermore, general requirements for the ISPR and IScPR are highlighted and discussed.  Moreover, 

three case studies will be discussed regarding the selection of ISPR/IScPR strategies and their respective case-

specific limitations. 

 

4.2 ISPR/IScPR requirements 

The choice of ISPR and/or IScPR method(s), to overcome inhibitory and toxic effects, is based on removing 

the compound(s) of interest either through additional reaction steps or selectively by conventional 

separation methods during the course of reaction.  

Additional reaction steps, e.g. multi-enzyme cascades (commonly applied as IScPR strategies), are challenging 

to implement and add significant complexity to the following product recovery steps. Conventional 

separation methods are driven by differences in pure component properties, such as solubility or volatility. 

Despite the increased process complexity, it is still considered beneficial to consider the possibility of 

implementing ISPR/IScPR strategies during the process development. For example, considering product 

recovery options and identifying separation limitations can be useful for setting development targets for the 

biocatalyst. 

An overview of important separation metrics, useful for identifying the efficiency and the feasibility of 

ISPR/IScPR strategies, is reported. Moreover, an overview of commonly applied ISPR/IScPR strategies 

specifically for ATA applications is provided. 

 

4.2.1 ISPR and IScPR separation metrics 

The performance of ISPR and IScPR strategies can be reflected in how efficiently the chosen method/strategy 

removes the desired compound, product and/or co-product, from a given reaction mixture.  Hence, it is 

necessary to characterize the performance firstly and then to evaluate the economic viability of a proposed 

process (before considering implementation). The chosen method/strategy can be characterized using some 

general separation metrics, i.e. selectivity, capacity, rate kinetics and stability.  

 

Selectivity: This separation metric indicates how efficiently specific components are separated 

relative to all other components present in the reaction mixture. The selectivity, of any given 

ISPR and/or IScPR method, or for any given separation based downstream processing (DSP) 

method, is highly dependent on the physicochemical properties of the components in the 

reaction mixture. The selectivity of different separation methods can generally be estimated 

as the relative partitioning of each component between the original reaction mixture phase, 

e.g. aqueous, and the separating phase, e.g. organic solvent, resin or gas. This can 

mathematically be expressed by:  

𝑠𝑖 =
𝑃𝐶𝑖

∑ 𝑃𝐶𝑖
𝑛
𝑖=1

             (Eq. 4.1) 

                         𝑃𝐶𝑖 =
[𝐶𝑖]𝑟𝑒𝑚𝑜𝑣𝑒𝑑
[𝐶𝑖]𝑎𝑞

             (Eq. 4.2) 
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, where 𝑠𝑖[-] is the selectivity fraction, 𝑃𝐶𝑖[-] is a unique partitioning coefficient for the ISPR 

method, both for component 𝑖, and 𝑛 is the number of involved components in the mixture.  

It is important to calculate the partitioning coefficients in a standardized way, in order to 

ensure objective comparison of various configurations and methods. Good separation, of the 

single components, is achieved with large partitioning coefficients, i.e. 𝑃𝐶𝑖 ≫ 1. The 

selectivity metric can be useful to determine achievable product purity. At the same time, the 

selectivity can be used to identify the fraction of product which can be recovered and thereby 

give an indication about the permissible costs of the required product purification steps [123]. 

It is desired to achieve selectivity as close to unity as possible, i.e. 𝑠𝑖 → 1, and with good 

partitioning in order to achieve good product recovery.  

Additionally, the selectivity can be applied to evaluate the potential impact of the given 

separation method on the reaction thermodynamics. For example, highly selective separation 

(close to unity) of the main product and/or co-product is a necessity to overcome unfavorable 

thermodynamics.  

 

Removal rate kinetics: The removal rate kinetics is used to describe how fast it is possible to 

remove the desired reaction species. It is important to note that the separation method needs 

to be as fast as the reaction rate, or faster, so optimal process intensification is achieved with 

the chosen ISPR/IScPR method. Hence, it is ideal if the rate of reaction is the rate limiting step. 

If the rate of separation is the rate limiting step it will cause a build-up of inhibitory and/or 

unstable compounds and thereby the system will not operate optimally.  Furthermore, when 

the rate of separation is the rate limiting step it will prolong the time it takes to shift 

unfavorable equilibria, and will thereby delay the time it takes to achieve sufficiently high 

yields. These effects are highlighted in Figure 4.1.  

The rate of removal is related to the flux from the reaction phase into the separation phase, 

i.e. the rate of mass transfer. In addition to the capacity metric, the flux is dependent on the 

area of separation and thereby dictates the required size of the separation unit and thereby 

the related separation costs [123].  
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Figure 4.1: Process effects expressed in terms of rate limitations for the rate of separation relative to the rate of reaction. 

 

Biocatalyst stability: Here, the biocatalyst stability is concerning the direct impact of the 

ISPR/IScPR method on the biocatalyst. For example, will the presence and/or interface to the 

ISPR/IScPR cause increased denaturation of the biocatalyst. The stability of the biocatalyst can 

be tested by comparing the initial activity of the biocatalyst to the remaining activity after 

timely exposure to the separation method at its process conditions. For example, biocatalysts 

are not always compatible with auxiliary phases such as gas and/or organic solvents, causing 

the biocatalyst activity to drastically decrease over a short period of time [7,116]. Therefore, 

testing how the ISPR/IScPR method influences the biocatalyst activity is important to know 

how to operate the process satisfactorily. Such knowledge will be useful for determining the 

implementation strategy (internal/external and direct/indirect), a topic which is discussed in 

detail in section 4.2.3. 

 

Stability of separation: The stability of the actual ISPR/IScPR method is related to the 

performance consistency of the separation method over time, with a certain set of operating 

conditions, e.g. concentrations, fouling, temperature and pH. It is desired to have separation 

methods that are as stable, and consistent, as possible to reduce the costs related to 

maintaining a sufficient separation performance. The performance consistency can be 

determined as a measure of how easily the chosen separation method can be regenerated, 

i.e. loss of relative performance after regeneration. 

Rate of reaction 
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Capacity: The capacity metric gives an indication of the required size of the separation 

method, in order to ensure sufficient component removal during operation. Hence, the 

capacity metric dictates how often it is required to regenerate and/or replace the 

media/material facilitating the separation. Thereby, it has a direct impact on the ISPR/IScPR 

implementation and reaction times. The capacity metric depends on the chosen separation 

methods. For example, the separation capacity of resins, i.e. solid-liquid extraction (SLE), can 

be measured as the total amount of product, which can be retained by a certain amount of 

resins.  

 

The application of the proposed separation metrics in combination with thermodynamic and kinetic data on 

the biocatalyst performance, serves as the foundation for the evaluation of the economic feasibility of 

processes. Additionally, the metrics compose a powerful tool for identifying process bottlenecks, which 

hinder the economic feasibility for different process configurations. The specified metrics can be determined 

by characterizing the desired separation method. However, the characterization is highly dependent on the 

separation method, due to operating differences. 

 

4.2.2 Identification of suitable ISPR/IScPR strategy 

A considerable challenge for the implementation of ISPR/IScPR strategies is to identify and evaluate the most 

feasible process options. Firstly, it is necessary to identify the process limitations that need to be overcome, 

such as unfavorable thermodynamics, inhibition and/or product stability. Thereafter it is important to review 

the significant differences in pure component properties, in order to ensure selective separation, or the 

applicability of cascade reaction systems, which can be beneficial. In Figure 4.2, a methodology is proposed 

for the identification of suitable ISPR/IScPR strategies for ATA applications based on the experienced process 

limitations and differences in pure component properties, which is the driving force for the separation. This 

methodology is inspired by previously published work by De Wever et al. [124]. 



 
 

43 
 

Yes

Thermodynamics
Keq.≥ ≥ 1 ?

Cascade(s)
Enzymatic/Chemical

Donor excess
(if feasible / required)

Charged?
Unstable 

(co-)product?

Inhibition?
Act. Loss

>Xinh (% loss/gP/L) 

No

Hydrophobic?
 

No

Pervaporation
Gas stripping

Distillation

No ISPR No IScPR

Ion exchange
Dialysis

Membrane
Crystallization

Adsorption
Extraction
Membrane

Crystallization

Membrane
Extraction

Yes

No

Yes

Yes

YesVolatile?

Change donor?No

Yes

No

Yes

 

Figure 4.2: Methodology for identification of suitable ISPR/IScPR strategies for ATA based processes. The full lines 
indicate preferred process solutions. The dotted lines represent possible solutions when experiencing process 
limitations [124].  

 

The main motivation for the implementation of ISPR and/or IScPR strategies, based on conventional 

separation methods, is to overcome inhibition from the product, co-product, and/or intermediates from 

cascade reaction systems.  

In case of severe inhibition, it is useful to consider implementation of cascade reactions, but in many cases, 

it can be sufficient to implement strategies that are based upon conventional separation principles. Cascade 

reaction systems can only be used as ISPR when the product in the given reaction is an intermediate of the 

final product. If inhibition of the product and/or co-product composes a severe problem, and the 

thermodynamics is unfavorable, it could be very beneficial to operate with a low conversion in the reactor, 

if the separation step is implemented externally. Through this strategy, the inhibitory effects will be reduced. 

However, it requires efficient substrate and amine donor recycling, along with product separation and 

purification. Ultimately, it could be possible to operate the reaction under highly unfavorable thermodynamic 

conditions and hence avoid implementation of cascade reaction systems. A limitation to this recycle concept 

𝑘𝐻
𝑃 ≫ 𝑘𝐻

𝑠
 

logPp ≫ logPAD 
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is that it might not be possible and/or allowed by regulatory authorities for production of APIs, e.g. there can 

be risks of cross-contamination. Severe inhibition can be characterized as the loss in relative activity with 

increasing (co-)product titer. It is difficult to quantify the degree of inhibition a given process needs to 

experience, before ISPR/IScPR strategies need to be considered, as this decision is influenced by multiple 

correlated factors. Examples of such factors are: 1) The required remaining activity at the needed product 

titer (gP/L) to ensure the space time yield (STY: gP/L/h) of the reactor. 2) Dependent on the cost of the 

biocatalyst and the remaining activity at the desired product titer, it is the easiest solution to add additional 

biocatalyst if economically feasible. However, it is important to note that the required additional biocatalyst 

will increase exponentially with increasing inhibition.  

For example, for pharmaceuticals it is advised to reach product titers in the range of 50 gP/L [125] without 

compromising the required STY of the reactor. In such case, a theoretical inhibition scenario could be a 

requirement to maintain minimum 25% of the initial biocatalyst activity at 50 gP/L to ensure the STY. It is 

assumed in this example that the cost associated with adding additional biocatalyst cannot be economically 

justified. For this specific scenario, it could be justified to implement ISPR/IScPR options if the loss of initial 

activity of the given biocatalyst is greater than Xinh = 1.5 %loss/gP/L. For fine chemicals and bulk chemicals it is 

commonly advised to operate with even higher product titers than 100 gP/L and 200 gP/L, respectively, which 

would make this constraint even tougher [125]. In Figure 4.3, an overview is given on how the loss of relative 

initial activity, due to inhibition, will influence the constraint Xinh (%loss/gP/L) for when to consider 

implementation of ISPR/IScPR strategies. This form of calculation is useful early in the process development 

to identify if the experienced inhibition makes it suitable to consider ISPR/IScPR options. As more knowledge 

is acquired, it is possible to develop and apply more sophisticated and reliable models and economic 

evaluations to specify the thresholds. 

 

 

Figure 4.3: Overview on how the loss of relative initial activity, due to inhibition, will influence the constraint for when ISPR/IScPR 
methods should be considered (%loss/gP/L). It is assumed that the cost associated with adding additional biocatalyst cannot be 
economically justified. 
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In cases where stability of the product is a reason of concern, ISPR strategies can be advantageous in order 

to stabilize the product and thereby ensure improved recovery yields. If the co-product is unstable, and the 

formed compound(s) does not intervene in any way with the main reaction, there is no rationale to 

implement IScPR options. 

In cases where it is found suitable and beneficial to implement an ISPR/IScPR strategy it is common to exploit 

differences in physicochemical properties, i.e. volatility, hydrophobicity and charge or a combination of the 

three. Alternatively, implementation of cascade reaction systems is considered. Volatility differences are only 

applicable when the (co-)product is significantly more volatile than the substrate and amine donor, i.e. 𝑘𝐻
𝑃 ≫

𝑘𝐻
𝑆 , 𝑇𝑏

𝑝
≪ 𝑇𝑏

𝑠 and 𝑃𝑣𝑎𝑝
𝑝
≫ 𝑃𝑣𝑎𝑝

𝑠 , and when no azeotropes are formed. Hydrophobic differences are exploitable 

either when the substrate and amine donor are hydrophilic or have small partition coefficients (𝑙𝑜𝑔𝑃) relative 

to the hydrophobic (co-)product, i.e. 𝑙𝑜𝑔𝑃𝐴𝐷 < 1 and 𝑙𝑜𝑔𝑃𝑝 > 1 and/or 𝑙𝑜𝑔𝑃𝐴𝐷 ≪ 𝑙𝑜𝑔𝑃𝑝. However, it is 

common that the main substrate for ATA reactions is hydrophobic and has low aqueous solubility, which 

makes it difficult to achieve selective product removal unless the separation is combined with charge 

differences simultaneously (the ketones are not charged, while the amines can be charged at various pH 

values). Differences in the charge can be exploited when there is a significant difference in the acid 

dissociation constant (𝑝𝐾𝑎) of the pure components, e.g. Δ𝑝𝐾𝑎 > 1. And dependent on whether the 𝑝𝐾𝑎 of 

the (co-)product is larger or lower than that of the amine donor then separation processes based on either 

hydrophobicity or charge, respectively, will be applied. 

As highlighted, unfavorable thermodynamics (𝐾𝑒𝑞 < 1) can mostly be overcome by implementation of a 

cascade reaction system, which is highly selective and operates efficiently at low concentrations. If the 

cascade reaction system is not sufficient to shift the equilibrium, or if it is too costly, then the investigated 

reaction route may potentially only be useful for dynamic kinetic resolution and not asymmetric synthesis. 

However, when having semi-unfavorable to semi-favorable thermodynamics (𝐾𝑒𝑞 ≥ 1), implementing 

cascade systems adds significant complexity to the process and greatly increases the complexity of DSP. 

Therefore, in such cases, if economically feasible, it may be easier to either apply an excess of the amine 

donor, implement a conventional separation process or a combination of the two. Implementation of a 

conventional separation method will also add complexity to the process, but not to the same extent as with 

cascade reaction systems that will make the DSP more complex. However, conventional separation methods 

are not as selective as cascade reaction systems and for that reason not suited to shift highly unfavorable 

thermodynamics (this is explained based on basic calculations in the supplementary material). Currently, 

having an excess of the amine donor is considered the easiest strategy to shift the equilibrium and overcome 

thermodynamic limitations [24]. However, limitations to this approach are potential inhibitory effects and 

the cost contribution from the amine donor.  

Conceptually, conventional separation methods can also be used to shift highly unfavorable 

thermodynamics. However, conventional separation methods are in general not as selective, and therefore 

not as efficient, as enzymatic cascade systems. Therefore, in cases where it is required to shift unfavorable 

thermodynamics the choice of ISPR/IScPR will in most cases be based on implementation of a cascade 

reaction, which is further underlined in section 4.4. In appendix B, results are shown indicating the maximum 

allowable (co-)product concentrations in the reaction mixture if the equilibrium is to be shifted sufficiently. 

In the methodology, shown in Figure 4.2, it is specified that for 𝐾𝑒𝑞 < 1 it is required to either consider 

replacing the amine donor or implement a cascade reaction to shift the equilibrium efficiently. This is defined 
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based on the required amine donor excess to achieve high conversion (>90%), without implementation of 

ISPR/IScPR options, at various reaction equilibrium constants. It is assumed that a donor excess of 10 is the 

maximum feasible for any given donor [126] (there might be rare cases where it is suitable to apply a larger 

excess). The reaction equilibrium constant, 𝐾𝑒𝑞, represents the change in Gibbs free energy of formation, 

Δ𝐺. The equilibrium concentrations can be calculated as shown in equation 4.4 following the general 

transaminase reaction scheme presented in equation 4.3 [24].  

𝑆 + 𝐴𝐷 ⇄ 𝑃 + 𝑐𝑃                    (Eq. 4.3) 

                     𝐾𝑒𝑞 = 𝑒
−Δ𝐺°/𝑅𝑇 =

[𝑃][𝑐𝑃]

[𝑆][𝐴𝐷]
                     (Eq. 4.4) 

, where 𝑅 (8.31 𝐽 ∙ 𝐾−1 ∙ 𝑚𝑜𝑙−1) is the ideal gas constant, 𝑇 (𝐾) the absolute temperature, [S] (M) the 

substrate concentration, [AD] (M) the amine donor concentration, [cP] (M) the co-product concentration and 

[P] (M) the product concentration.  

Based on the presented definitions, it is possible to calculate the required excess of the amine donor to 

achieve a certain degree of conversion at various reaction equilibria scenarios, which is shown in Figure 4.4  

 

 

Figure 4.4: Required donor excess to reach various degrees of conversion for a range of equilibrium constants for ATA processes. 
The vertical dashed line represents the region of different reaction equilibria, from where it is considered suitable to apply an amine 
donor excess [24]. 

 

Alternatively, if the separation and recycling of the main substrate ([S]) (and/or amine donor ([AD])) is 

possible, a feasible process could consist of recycling the substrate rather than trying to achieve high 

conversion in one step. If it is possible to efficiently recycle the amine donor, it will be possible to use a larger 

excess and still have an efficient and economically feasible process. For pharma applications, it might not be 

possible to apply such recycle strategies as there is increased risk of cross-contamination and build-up of 

impurities. Alternatively, the replacement of the amine donor with a stronger donor will potentially make it 
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possible to achieve more favorable reaction thermodynamics and overcome some challenges in this way 

[127,128]. 

 

4.2.3 Implementation strategies 

The implementation of IPSR/IScPR methods is not straightforward and several implementation strategies 

need to be considered. Two main points should be considered: (i) whether the separation should occur 

internally or externally of the reactor; and, (ii) whether the separation should be directly or indirectly in 

contact with the biocatalyst [119,122,129,130]. It is a complex decision procedure and as an example there 

can be cases, where one is confronted with compatibility concerns between the separation method and the 

biocatalyst. Furthermore, the separation/implementation strategy may be limited to equipment availability 

and flexibility. Identifying a suitable implementation strategy will potentially make it possible to significantly 

reduce harmful effects from the separation method on the biocatalyst. When compatibility issues between 

the biocatalyst and the separation method are of concern, having the biocatalyst indirectly in contact with 

the separation is potentially less harmful than having direct contact. Table 4.1 presents an overview of the 

potential advantages and disadvantages of the mentioned implementation strategies 

[119,121,122,129,131,132].  

Table 4.1: Overview of the prospects of considering implementation of ISPR/IScPR strategies into biocatalytic processes. 
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Factors such as biocompatibility and reactor configuration limitations significantly influence the selection of 

the implementation strategy. In addition, the implementation of process engineering strategies will cause 

significant additional costs, operational expenses (OPEX) and in some cases capital expenses (CAPEX). For 

example, retrofitting conventional flexible equipment might be a relatively cheap solution, but it comes as a 

tradeoff to the flexibility. It might therefore be a better option not to consider dedicated equipment. Instead, 

it might be better to have flexible modular equipment where it is possible to operate various ISPR/IScPR 

methods directly connected with the reactor, without significant additional modifications, and/or by 

combining the reactor with modular separation units.   

 

4.2.3 Commonly applied ISPR/IScPR strategies for amine transaminases 

There are numerous examples of different applications where ISPR and/or IScPR strategies have been applied 

[129,130]. However, for ATA processes the investigated types of ISPR/IScPR strategies are rather limited. The 

applied ISPR/IScPR strategies for ATA processes are generally based upon a few conventional separation 

methods and cascade reactions. Table 4.2 provides an overview of ISPR/IScPR strategies based on 

conventional separation methods, whereas Table 4.3 provides a summary of ISPR/IScPR strategies based on 

the implementation of cascade reactions. Using ISPR/IScPR strategies for transaminases has as main goal to 

overcome unfavorable thermodynamics and to reduce inhibitory effects from either the co-product or 

product. Commonly, the investigated options focus on the internal configuration of the reactor in direct 

contact with the biocatalyst, with few exceptions. Furthermore, most scientific literature applies one of three 

very specific amine donors, i.e. alanine (Ala), isopropylamine (IPA) and 1-phenylethylamine (PEA). ISPR/IScPR 

strategies based on conventional separation methods are mostly based on hydrophobicity, volatility, and 

charge differences.    
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4.3 Case studies 

In this work, some remarks for the implementation of ISPR and IScPR strategies will be highlighted through 

three case studies. The case studies investigate how the choice of amine donor influences the rationale for 

implementation of ISPR or IScPR strategies for a specific reaction using transaminases. The investigated 

reaction is the asymmetric synthesis of the chiral amine 1-methyl-3-phenylpropylamine (MPPA) from 

benzylacetone (BA), using three commonly applied amine donors, i.e. 1-phenylethylamine (PEA), 

isopropylamine (IPA) and alanine (Ala).  The general reaction schemes of the case studies are illustrated in 

Scheme 4.1.  

 

CS Substrate Amine donor Product Co-product 𝐾𝑒𝑞 

1 

 

≈ 15.1 − 22.2 

2 

 

≈ 0.74 

3 

 

≈ 6.1 ∙ 10−4 

Scheme 4.1: The general reaction schemes for the three case studies (CS) and the apparent equilibrium constants reported by 
Tufvesson and co-workers [152]. The case studies evolve around the transamination of benzylacetone (BA)(1) to 1-methyl-3-
phenylpropylamine (MPPA)(2) using three different amine donors. The chosen amine donors are 1-phenylethylamine (PEA)(3), 
isopropylamine (IPA)(4), and alanine (Ala)(5). These amine donors give cause to the formation of the co-products acetophenone 
(ACP)(6), acetone (Ace)(7), and pyruvate (pyr)(8), respectively.  

 

Each of the case studies imposes various process challenges, e.g. solubility issues, thermodynamic issues, 

inhibition and separation difficulties, which motivates to investigate the possibility of implementing 

ISPR/IScPR options. Conventional separation methods are relatively fast and easy to put in place, which 

makes them a good choice for overcoming inhibitory effects. Application of conventional separation methods 

is also very useful because the final product has to be recovered at some point.  

Presently, no scientific literature indicating these compounds to be unstable has been discovered, and 

therefore the discussion of the three case studies will purely be based on the parts of the methodology 

(Figure 4.2) concerning thermodynamics and inhibition. Tufvesson et al. [152] have experimentally identified 

equilibrium constants for two of the cases studies, i.e. for the IPA based case study (𝐾𝑒𝑞 = 0.74) and for the 

Ala based case study (𝐾𝑒𝑞 = 6.1 ∙ 10
−4). Tufvesson et al. did not experimentally investigate the case study 

with PEA as the amine donor. However, PEA is a strong amine donor, and it should be reasonable to assume 

that the reaction equilibrium is somewhat favorable [126]. Also, based on the determined equilibrium 
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constants by Tufvesson et al. it is possible to calculate the apparent equilibrium constant, i.e. 𝐾𝑒𝑞 =

[15.1: 22.2] [152]. The pure component properties of the involved reaction species are highlighted in Table 

4.4.  This data, found in the Chemspider database, will be referred to throughout the case studies when 

referring to the driving force of potentially feasible ISPR/IScPR strategies [153]. 

 

Table 4.4: Pure component properties of the reaction species involved in the case studies [153]. 

COMPOUNDS BA (1) MPPA (2) PEA (3) ACP (6) IPA (4) ACE (7) ALA (5) PYR (8) 

- Substrate Product Case study 1 Case study 2 Case study 3 
CAS. NO. 2550-26-7 22374-89-6 618-36-0 98-86-2 75-31-0 67-64-1 302-72-7 127-17-3 

𝑴𝒘 (
𝒈

𝒎𝒐𝒍
) 148.2 149.2 121.2 120.2 59.1 58.08 89.09 88.06 

𝑻𝒃 (℃) 235-237 220-222 183.0 202 33-34 56 - 165 
𝒍𝒐𝒈 𝑷 (−) 1.671 2.18±0.20 1.3 1.58 0.21±0.19 -0.16±0.19 -0.679 -1.24±0.39 

𝑺𝒐𝒍𝒖𝒃𝒊𝒍𝒊𝒕𝒚 (𝒂𝒒. ) (
𝒈

𝑳
) 1.625 12.05 54.38 4.484 Miscible Miscible 164 High 

𝒑𝑲𝒂* - 10.63 9.83 - 10.6  2.35/9.69 2.5 
𝑷𝒗𝒂𝒑(𝒎𝒎𝑯𝒈 𝟐𝟓℃) 0.1±0.4 0.1±0.4 0.8±0.3 0.3±0.4 460 180 0.1±0.9 1.0±0.6 

𝒌𝑯  (
𝒂𝒕𝒎 ∙ 𝒎𝟑

𝒎𝒐𝒍
) 1.2-7.8∙ 10−6 0.1-1.4∙ 10−6 0.8-1.6∙ 10−6 1.0∙ 10−5 4.5∙ 10−5 4.0∙ 10−5 1.5∙ 10−9 3.2∙ 10−9 

 

A common challenge for the chosen case studies is the low aqueous solubility of the main substrate BA, which 

gives some challenges to achieve high space time yields (𝑔𝑃/𝐿/ℎ𝑟𝑠). This can be overcome by improving the 

solubility by using an alternative reaction medium than water, which will also influence the biocatalyst 

performance and stability. Alternatively, an efficient substrate feeding strategy can be put in place. 

Furthermore, the low solubility of BA in aqueous media gives some restriction with respect to how low 

concentrations the desired ISPR/IScPR method should be able to achieve if the equilibrium is to be shifted. 

Using equation 4.4, it is possible to calculate how low product or co-product concentrations are required to 

achieve sufficient conversion. The results from these calculations can be found in the supporting material. 

Based on these calculations, it is clear that cascade reactions, which are commonly highly selective and 

capable of operating at very low concentrations, form a better choice for shifting unfavorable 

thermodynamics, especially when operating with compounds of low solubility. Increasing the solubility or 

applying an excess of the amine donor will make it possible to apply conventional separation methods, but 

it requires extensive modification of the biocatalyst.  

 

4.3.1 Case study 1: 1-Phenylethylamine 

This case study involves the formation of MPPA from BA using PEA as the amine donor. Applying a racemic 

mixture of PEA will enable simultaneous asymmetric synthesis of MPPA and dynamic kinetic resolution of 

PEA. This will potentially yield two valuable pure chiral products, which theoretically is very appealing. 

Furthermore, it is desirable to apply a racemic mixture of PEA as it is significantly cheaper than applying the 

pure chiral compound as amine donor [126]. However, it requires the correct enantiomer of the amine donor 

to be completely converted by the biocatalyst, i.e. >99% conversion, and no amine donor excess can be 

applied. Therefore, ISPR or IScPR are not suitable for this reaction route, as it needs to go to completion for 

the separation to be feasible.  

The favorable thermodynamics of the reaction, i.e. 𝐾𝑒𝑞 = 15.1 − 22.2 [152], will enable relatively good 

yields without using excess of the amine donor. This will potentially enable to operate the process with 
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ISPR/IScPR. However, based on the pure component properties it appears that the separation of these 

amines and ketones is somewhat challenging making this process challenging and even more so to operate 

with ISPR/IScPR. The pure component properties listed in Table 4.4 for the components involved appear very 

similar, which makes the selective separation of the amine and ketone products very difficult and costly. The 

separation of the amines from the ketones will be relatively easy, as the amines become charged at a pH 

below the 𝑝𝐾𝑎 values, while the ketones remain unchanged. This result in the possibility of applying 

separation methods based on either charge or hydrophobic differences, such as ion exchange or hydrophobic 

resins.  

Nevertheless, the separation of the two ketones in order to, simultaneously, recycle the main substrate BA, 

does not seem feasible. Regarding the separation of the two amines, there is a small difference between the 

𝑝𝐾𝑎 values, which can be useful for separation purposes. Using the Henderson-Hasselbalch equation 

(equation 4.5), it is possible to predict the distribution of charged and uncharged amine, for each one of the 

amine compounds, at various pH set points. 

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔
[𝐴−]

[𝐻𝐴]
                        (Eq. 4.5) 

The fraction of uncharged molecules of the two amines (PEA and MPPA) is presented in Figure 4.5 at several 

pH set points. 

 

 

 Figure 4.5: Fractions of charged and uncharged molecules at various pH values for the two amine products, i.e. MPPA and PEA. 

 

 Figure 4.5 indicates that operating at a pH in the range of 8.5-10, will give a significant difference between 

charged and uncharged amine fractions for the two compounds. This will potentially make it possible to 

separate the compounds by extracting the uncharged compound, e.g. using liquid-liquid extraction. 

However, MPPA is more hydrophobic than PEA which will have significant influence on the selectivity of the 

separation. Ion exchange might be useful at pH set points above 11, where PEA will mainly be uncharged and 

a small fraction of MPPA will remain charged. Another possibility for separation of the two amines would be 
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distillation, which is energy intensive, as there is a significant difference in the boiling points (Δ𝑇𝑏 ≈ 40℃). 

Alternatively, chromatography could be applied to efficiently separate the two compounds, but this is also 

costly and will only be a possibility if justified by the value of the two pure chiral products. Moreover, the 

involved reaction species are known to be inhibitory, which means that the reaction will have to operate at 

relatively diluted conditions to avoid severe inhibition, unless a suitable catalyst is developed. Hence, 

achieving sufficient space-time-yields and product titers for this system would be severely challenging to the 

economic viability of the process. 

Application of a racemic mixture of an amine donor to perform asymmetric synthesis in combination with 

dynamic kinetic resolution has great potential theoretically. However, the feasibility is highly dependent on 

how easy it is to separate the two amine products, and on the extent of product and co-product inhibition. 

In this case, there were no significant differences between the amine products, making it difficult to achieve 

good separation selectivity. Nonethless, the application of racemic PEA does not appear feasible for the 

production of MPPA with or without ISPR/IScPR strategies. Potentially it may be suitable for the sytnthesis 

and purification of valuable amino acids and/or other amines. 

 

4.3.2 Case study 2: Isopropylamine (IPA) 

This case study involves the formation of MPPA from BA using IPA as the amine donor. IPA is an achiral amine 

donor and hence not dependent on whether the used biocatalyst is R- or S- selective. This case study involves 

slightly unfavorable thermodynamics, i.e. 𝐾𝑒𝑞 = 0.74 [152], which will require either implementation of an 

ISPR/IScPR strategy, application of an excess of IPA or a combination of the two to achieve a sufficient degree 

of conversion. Furthermore, in the case that the produced MPPA and/or acetone give cause to significant 

inhibition and/or toxic effects it will be beneficial to implement an ISPR/IScPR strategy. IPA is considered an 

inexpensive amine donor making it possible to apply a relatively large excess [126]. This will at the same time 

ease the separation requirements of the ISPR/IScPR method(s) in order to achieve sufficient conversion. In 

Figure 4.6, it is shown how the application of an excess of the amine donor will influence the requirements 

for minimum allowable product or co-product concentration as a complement to the amine donor excess to 

shift the reaction equilibrium. The calculations are based upon equation 4.4, assuming 𝐾𝑒𝑞 = 0.74 and an 

initial BA (1) concentration of 10 mM (close to the solubility limit).   
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Figure 4.6: Degrees of conversion expressed by the relation between minimum allowable product ([P]) and/or co-product ([cP]) 
concentrations and various amine donor to substrate excess ratios ([AD]/[S]), for an initial substrate concentation of 10 mM BA.  

 

An alternative or supplement to applying an amine donor excess, in order to loosen the requirements for 

product and co-product separation to achieve high conversion, is to increase the solubility of the main 

substrate by modifying the reaction medium. However, using an alternative reaction medium, to increase 

the substrate solubility, will influence the catalyst performance as well. Overall, using an excess of the amine 

donor, within a feasible ratio, and increasing the substrate solubility is very useful for achieving relatively 

high yields, i.e. shift the equilibrium, and product titers. However, potential issues of inhibition and/or toxic 

effects from the substrate and the amine donor will limit the impact of these strategies. In addition, none of 

these strategies will aid in overcoming inhibitory effects from the products. In case of severe inhibitory effects 

from the product(s) implementation of an IPSR or IScPR strategy needs to be considered, supplementary to 

modifying the biocatalyst. Tremendous progress in protein engineering strategies has indeed made it 

possible to significantly improve the biocatalyst performance and ultimately overcome product inhibition 

and toxic effects [7]. However, protein engineering is not a guarantee that  product inhibition and toxcicity 

will be overcome and the time it takes to overcome these factors is unknown. Therfore, in case of severe 

inhibition and/or toxic effects it may be less of a risk and faster to consider implementation of ISPR/IScPR 

strategies based on well-known and developed conventional separation methods. 

For this specific reaction system it is adding considerable complexity and cost to the process by implementing 

cascade reaction based IScPR strategies to overcome inhibition. Moreover, the pure component 

physicochemical properties highlighted in table 4 indicate that it might be suitable, less complex and faster 

to put in place an ISPR/IScPR strategy based on conventional separation methods. The main differences in 

the pure component properties relates to the volatility, where IPA and acetone are quite volatile compared 

to BA and MPPA. Implementation of IScPR based on removing acetone during the reaction course via 

stripping is an easy way to overcome significant inhibitory effects. Also, this strategy of continuously 

removing acetone has been attempted quite extensively to shift the equilibrium [135]. However, this 

separation method is not particularly selective and significant amounts of the other reaction species, 

especially IPA which is also volatile, are lost simultaneously causing this method to be very challenged 
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economically [135]. An alternative could be to apply membranes to perform pervaporation, which would be 

more selective to some extent.  

Another useful feature of this reaction system is the hydrophobic nature of MPPA compared to IPA, making 

it possible to implement a somewhat selective ISPR strategy based on extraction, e.g. hydrophobic resins or 

liquid-liquid extraction. However, BA is also hydrophobic and will be removed simultaneously [144], and 

therefore will require the introduction of a recycling strategy of BA for this ISPR strategy to be feasible.  

In Figure 4.7 an ISPR strategy, two-step liquid-liquid extraction (LLE), is proposed for this case study which 

enables simultaneous feeding of the substrate whilst allowing for product separation through the LLE steps. 

The suggested ISPR configuration should be generally applicable for ATA processes as long as the amine 

product is hydrophobic and the amine donor is hydrophilic. The ISPR strategy can either be operated based 

on the supported liquid-membrane concept [143,144] and/or in more flexible equipment in the form of a 

system with two coupled hydrophobic membranes or as two mixers and settlers. The main benefit of the 

supported liquid-membrane is the response time of the extraction due to the low overall volume of the 

solvent in the system. However, there might be some operational challenges of maintaining the solvent in 

the membrane and limitations to the quantity of BA, which can be loaded into the membrane modules during 

operation and/or the need to feed BA in another way. The main drawback of operating the system with 

mixers and settlers or the hydrophobic membranes is the required solvent volume, which will cause long 

system response times and increased losses of the main substrate and product in the solvent. Independent 

on how the proposed configuration is operated, it is conceptually possible to achieve significant 

upconcentration of the product leaving the reactor module [154–156], with a good recovery [157], high 

product titers and high product purity in the outgoing stream [143,144,158].  
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Figure 4.7: The top figure indicates the general flow chart for the synthesis and recovery of chiral amines proposed by Tufvesson et 
al. [126]. The bottom figure indicates the suggested ISPR configuration with a two-step liquid-liquid extraction (LLE), which can be 
operated as a supported liquid membrane, either by using two hydrophobic membrane contactors in combination or as two coupled 
mixers and settlers. R1(a): Reactor module with catalyst (Immobilized or free – if free it may be required to isolate the catalyst 
before the 1st extraction step), R1(b): 1st Extraction step at pH close to amine 𝑝𝐾𝑎, R1(c): 2nd extraction step at low pH, solvent with 
main substrate is recycled, LLE1: ketone substrate in the product stream is extracted at low pH, LLE2: amine is extracted at 𝑝𝐻 >
𝑝𝐾𝑎, E: Solvent is evaporated to achieve high purity amine product (alternatively precipitation might be applicable), W1: solvent 
waste for incineration and W2: aqueous waste 

 

4.3.3 Case study 3: Alanine 

This case study involves the formation of MPPA from BA using alanine as the amine donor (case study 3 

shown in Scheme 4.1). A challenge for this case study is the highly unfavorable thermodynamics, i.e. 𝐾𝑒𝑞 =

6.1 ∙ 10−4 [152], which will require ISPR/IScPR strategies with a very strong driving force, i.e. cascade reaction 

systems, to shift the reaction equilibrium sufficiently and ensure good conversion. For example, calculating 

the conversion using equivalent amounts of the amine donor and BA initially (10 mM) it would require the 

product/co-product concentration to be in the range of about 0.01 mM to achieve 25% conversion and 0.01 

µM to achieve 95% conversion for batch operation (based on equation 4.4 and the highlighted 𝐾𝑒𝑞). 

Achieving sufficient selectivity and operating at very low concentrations, to achieve good conversion, will be 

extremely challenging and maybe even impossible with conventional separation methods. Hence 

implementation of a highly selective cascade reaction system that is efficient at low concentrations is 

currently the most feasible solution. This is also strongly indicated in Table 4.2 and Table 4.3 where most 
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applications involving alanine consider the implementation of a cascade reaction system. If it is not feasible 

to implement a cascade reaction system, this reaction route with alanine might only be feasible for 

performing dynamic kinetic resolution instead of asymmetric synthesis. Using an excess of the amine donor 

is not realistic for this case study due to the highly unfavorable reaction equilibrium. 

In case of strong inhibitory effects of MPPA it will potentially be required to implement a supplementary ISPR 

strategy. For this case study there is a significant difference in the hydrophobicity of the amines, i.e. MPPA is 

hydrophobic and alanine is hydrophilic making it possible to ensure selective separation of the two amines, 

e.g by means of hydrophobic resins or liquid-liquid extraction. However, similar to case study 2, this case 

study also faces the issue of having simultaneous removal of the hydrophobic substrate BA, which will also 

require introduction of a recycling strategy of BA for this ISPR method to be feasible. It is therefore considered 

equally suitable to apply the same ISPR concept as suggested for case study 2 in Figure 4.7 in combination 

with a cascade reaction in the reactor to shift the equilibrium. This has been demonstrated succesfully, 

achieving high product purity and titers, by Börner and co-workers [144].  

An alternative to this could be to exploit the zwitter ionic behavior of alanine to selectively remove MPPA. 

For example, operating the biocatalytic process close to the isoelectric point of alanine (pH 6) would 

potentially allow to selectively separate MPPA by applying electrophoresis as ISPR strategy. However, it 

would require the biocatalyst to be compatible with these operating conditions. 

Another alternative is the application of ion exchange resins and operating at a pH above the isoelectric point 

of alanine, which would potentially allow to separate the positively charged MPPA from the negatively 

charged alanine. However, the pH should be kept lower than the 𝑝𝐾𝑎 value of MPPA. The fraction of 

uncharged molecules of the two amines at changing pH can be exploited for optimizing the ISPR method. The 

distribution of the charge of the two amines is presented in  Figure 4.8, where the calculated curves are based 

upon using the Henderson-Hasselbalch equation (equation 4.5). It should be noted that extensive work would 

have to be put into screening selectivity and capacity of different ion exchange resins. Furthermore, it should 

be considered how the choice of operational conditions impacts the biocatalyst performance and stability. 

 

 Figure 4.8: Distribution of charged and uncharged molecules at various pH values for the two amine products, i.e. Ala and MPPA. 
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4.4 Conclusions 

This chapter focused on the applicability, feasibility and limitations of in-situ product (ISPR) and co-product 

(IScPR) removal strategies for amine transaminase (ATA) processes. Fundamental requirements, as well as 

important development and implementation considerations of ISPR/IScPR strategies were highlighted and 

discussed. In addition, state of the art ISPR and IScPR application for ATA processes were reviewed. 

Introducing ISPR/IScPR strategies adds significant complexity to processes and it is essential to consider the 

impact and feasibility of such an implementation, during the process development. Based on this a generic 

methodology for rational selection of proper ISPR/IScPR strategies, when found necessary and beneficial to 

implement, was proposed. Commonly applied ISPR and IScPR strategies were evaluated with the 

methodology based upon three case studies.  

The case studies represented various thermodynamic, inhibitory, and separation related challenges. Hence, 

the case studies formed a good basis for broad coverage of the requirements and feasibility of ISPR and IScPR 

strategies for ATA processes. In conclusion, in the case studies it was found that the choice of amine donor 

might improve the thermodynamics of the synthesis route, but it comes with a trade-off in terms of the 

separation efficiency. It is therefore convenient to base ATA processes on amine donors, which can be 

considered easy to separate, i.e. donors with significant physicochemical differences from the main product 

and the substrate. In cases with unfavorable thermodynamics where the amine donor cannot be changed, it 

was found necessary to implement IScPR strategies based on cascade reaction systems. In cases with severe 

inhibitory and/or toxic effects from the (co-) product it is convenient to apply ISPR/IScPR strategies based on 

conventional separation methods. Furthermore, in cases where the product is hydrophobic and the amine 

donor is relatively hydrophilic it was found suitable to implement ISPR strategies based upon liquid-liquid 

extraction, which will enable good recovery, high purity and high concentrations of the amine product. In 

some cases, it might be necessary to apply a combination of both ISPR and IScPR if the inhibitory nature of 

both products from the ATA synthesis route is inhibitory and/or if the thermodynamics are highly 

unfavorable. It is problematic to identify unique and generic ISPR/IScPR solutions for the majority of potential 

ATA synthesis routes as each ISPR/IScPR solution is very case dependent. For example, the economic gain, in 

terms of improved process intensity, needs to justify the added costs by the implementation. In addition, 

there are many tradeoffs associated with the implementation of ISPR/IScPR strategies, which needs 

consideration as well. Some of the most prominent tradeoffs relate to altered biocatalyst performance in 

terms of activity and stability, along with the selectivity and efficiency of the applied separation method.  

Overall, it is concluded that it is a suitable approach to implement ISPR/IScPR strategies for ATA synthesis 

routes and processes suffering from severe inhibitory effects and unfavorable thermodynamics. Processes 

suffering from unfavorable thermodynamics benefit the most from IScPR strategies based upon cascade 

reaction systems. However, processes experiencing severe inhibitory issues from the products might benefit 

more from easy and fast implementation of ISPR/IScPR strategies based upon conventional separation 

processes and principles, such as LLE. 
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Chapter 5  

Characterization of microfluidic packed 

bed reactor (PBR) modules 
 

In the development of biocatalytic processes, it is important to investigate, modify and develop robust 

technologies and methods to accelerate the development of the process using the available resources 

optimally. This chapter aims at highlighting the potential of microfluidic platforms, as such a novel 

technology. A major advantage of microfluidic platforms and technologies in this context is the possibility to 

perform extensive experimental investigations using a minimum of the available and valuable resources, e.g. 

expensive enzyme. In addition, the control interface of microfluidics is somewhat automated, enabling 

systematic testing with a minimum of manual labor. Here these advantages are demonstrated through 

characterization of immobilized biocatalysts, i.e. two ATA mutants (ATA-50 and ATA-82) entrapped in a lentil 

shaped polyvinyl alcohol (PVA) matrix, in specific microfluidic packed bed reactor (PBR) modules. 

Furthermore, the investigated microfluidic reactor modules were coupled to an on-line HPLC system to 

minimize manual labor, avoid handling of small volumes, and ensure fast and reliable characterization of the 

biocatalysts in the reactor modules. Despite the efficiency and reliability of this microfluidic platform there 

are also some limitations that are identified and discussed as well. The performed characterizations are based 

on the two mutants performing asymmetric synthesis of 1-methyl-2-phenylpropylamine (MPPA(2)) from 

benzylacetone (BA(1)), using isopropylamine (IPA(4)) as the amine donor, which was introduced as case study 

2 in chapter 4. The general reaction scheme is illustrated in Scheme 5.1. 

 

 

Scheme 5.1: General ATA reaction scheme for the synthesis of 1-methyl-3-phenylpropylamine (MPPA(2)) from benzylacetone 
(BA(1)) using isopropylamine (IPA(4)) as the amine donor. The co-product of this synthesis route is acetone (Ace(7)). 
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Figure 5.1: Flowsheet of the two-step liquid-liquid extraction ISPR concept for selective removal of hydrophobic amines from ATA 
processes, which was introduced in chapter 4. This chapter will solely focus on the reactor module as indicated with the dashed 
box in the figure. [AD]: Amine donor, [S]: substrate, S1: solvent, [P]: product, R1(a): reactor module, R1(b): 1st LLE module (High pH 

~9.5) and R1(c) 2nd LLE module (Low pH ~3). 
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5.1 Introduction 

In the development of biocatalytic processes, extensive efforts go into discovery and development of new 

biocatalysts, with activity for the reaction of interest. Once activity for the desired reaction has been 

discovered, the performance of the biocatalyst can indeed be enhanced by protein engineering, to improve 

the desired properties, such as substrate repertoire and selectivity as well as activity and stability [120]. 

Today, there are many examples where new biocatalytic routes are established through significant 

improvement of an existing biocatalyst, via iterative rounds of mutagenesis and screening [7,116,159,160]. 

When such a biocatalyst, with the desired properties, is discovered/developed, it is essential to characterize 

it and evaluate its performance and limitations. Biocatalyst characterization refers to the study on how 

various process parameters influence the performance of the biocatalyst in terms of activity and stability.  

Commonly, a large number of process parameters will significantly influence the biocatalyst performance.  

For many biocatalysts, e.g. ATAs, it is quite common that the performance is influenced by process 

parameters such as: 

- Temperature 

- pH 

- Salt concentration 

- Solvent compatibility 

- Concentrations of reactants, co-factors and products: [S], [AD], [P], [cP], [PLP] 

Performing extensive catalyst characterization and identifying how all these parameters influence the 

biocatalyst performance, either separately and/or in combination, is extremely labor intensive, costly and 

requires significant resources in terms of raw materials as well. Hence, application of automated microfluidic 

platforms for the characterization will make it possible to perform extensive characterization with the 

available resources in an easy and cost efficient manner.  

The obtained knowledge from the characterization is extremely useful for directing modification and 

optimization of the catalyst. Furthermore, the knowledge gives an idea about current process limitations, 

such as inhibition from products, which potentially motivate the implementation of an ISPR and/or IScPR 

strategy. Furthermore, at this point in the process development, resources are commonly scarce, e.g. only 

small-scale production of the biocatalyst has been established. It is therefore highly relevant to consider the 

application of microfluidic platforms in this part of the process development. Microfluidics operate with small 

volumes of material, in the µL range, which makes it possible to perform extensive testing with the available 

resources compared to conventional mL scale batch testing [4].  Additionally, the possibility of performing 

extensive testing will ultimately make it possible to develop and apply advanced models for evaluating the 

process performance, e.g. ease the application of process systems engineering (PSE) tools and methods in 

the process development. The analytical limitations form a limitation to the scale-down of experiments and 

the application of microfluidics, which will dictate the minimum required sample volume. The concept behind 

this philosophy is sketched in Figure 5.2 [73]. Furthermore, the small scale gives challenges in terms of 

performing manual sampling, which motivates the development and implementation of on-line and in-line 

analytical methods. 
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 Figure 5.2: Sketch of the philosophy underlying miniaturization in the context of process development for biocatalytic processes 
[73]. 

 

5.2 On-line HPLC 

In this work, an on-line HPLC system was put in place to overcome and minimize experimental bottlenecks, 

e.g. minimize manual labor and resource consumption, in the characterization of novel biocatalysts. 

Furthermore, it is believed that the implementation of on-line analytical methods in microfluidic platforms 

will facilitate and ensure high throughput of the systems. This feature in combination with the exquisite flow 

control, mass and heat transfer in closed microfluidic systems will ultimately ensure a competitive advantage 

compared to conventional methods. The on-line HPLC system was implemented by discarding the auto-

sampler from a standard Dionex Ultimate 3000 HPLC system, and by implementing a dual loop injection port 

valve instead. The flowsheet of the setup and a picture of the actual setup are both shown in Figure 5.3. 

Please note that the magnetically stirred heater, used to control the reactor temperature, is not included in 

the flowsheet and the picture. 

In general, HPLC systems can be categorized as advanced microfluidic platforms, and for that exact reason 

this analytical method and flow system are easily compatible with microfluidic modules. Furthermore, only 

small and simple changes in the application of the Chromeleon control software (Chromeleon® 6.8) was 

required in order to operate the modified system, i.e. it was required to exclude the auto-sampler operation 

in the program sequences by choosing the blank sample option. The setup was inspired by conceptual similar 

setups found in the scientific literature and commercialized products [161–166].  

The basic concept of the implemented system is that a low-pressure microfluidic system operates in parallel 

with the high-pressure HPLC system. The injection port valve enables continuous introduction of samples 

from the low-pressure side into the high-pressure side, by sequentially switching the valve position. The two 

valve positions are shown in Figure 5.4. A requirement for this operation is that the valve only switches when 

each of the sample loops is completely filled with new sample, and the previous sample has had sufficient 

time in the HPLC system ensuring that peaks do not overlap. Another constraint might be the injected 

volumes of the samples, i.e. oversaturation of the detector and/or overlapping peaks due to tailing might 

occur. For the specific system used here, it was found feasible to apply two 2 µL sample loops. In addition, 
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the interfacing of the loops to the valve can cause small differences in internal dead volumes and thereby 

different sample injection volumes. The applied dual loop injection port valve was manually operated. Hence, 

the valve was required to be operated manually for each sample injection. However, there are automatic 

valves available, so it would conceptually be possible to make this setup fully automatic and/or invest in a 

costly commercial solution. In cases where it is not possible to inject the undiluted sample from the reactor, 

it is possible to dilute and/or quench the outgoing reactor mixture before entering the sample loop, e.g. by 

acid or base, and thereby achieve diluted samples. 
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Figure 5.3: Top: Flowsheet of the applied on-line HPLC setup. Bottom: Figure of the actual set-up as it looks in the lab. 
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Figure 5.4: Different operating positions of the dual loop injection port valve applied in the on-line HPLC system, i.e. position A for 

injection of sample loop 2 and position B for injection of sample loop 1. 

Despite the fact that such advanced and robust on-line HPLC systems are commercially available the 

application of on-line HPLC systems is still rather limited in terms of development and characterization of 

biocatalysts and biocatalytic processes. A reason for this can be that biocatalytic processes are commonly 

operated in batch. Hence, people test the process in the same manner as the application is operated in 

practice, and characterizing the biocatalyst in flow gives fundamentally some major differences.  

The main motivation for implementing the specific on-line HPLC system was to operate the biocatalyst in a 

closed well-controlled system and to avoid costly and intensive manual sampling while performing extensive 

biocatalyst characterization.  In addition, accurate manual handling of samples in the µL range can be difficult, 

which motivates the use of an automated sample handling procedure.  Furthermore, it was a logical choice 

to focus on the on-line analysis by HPLC, rather than other analytical methods, as HPLC is a frequently applied 

analytical method for analysis of amines and monitoring ATA reactions [46,143,144,154,156,167,168]. The 

advantages of the HPLC include specificity, sensitivity, and fast chromatographic procedures.  

 

5.3 Biocatalyst formulation 

In this work, it was decided to focus on characterization of immobilized ATAs, i.e. wild type ATA-50 and ATA-

82 immobilized by entrapment in lentil shaped polyvinyl alcohol (PVA) particles, in microfluidic packed bed 

reactor modules. The main reasons for focusing on immobilized ATAs in this work are listed below: 

 Easy separation, retaining and recycling of the biocatalysts 

 Suitable biocatalyst formulation for continuous applications 

 Possible to follow biocatalyst stability at process relevant conditions 

 No need to quench the product stream after the reactor 

 Enables easy implementation of ISPR applications without direct contact with the biocatalyst 
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Despite the many benefits of applying immobilized biocatalysts in microfluidic packed bed reactors (PBR) for 

characterization of novel biocatalysts there are also multiple drawbacks. Some of the main drawbacks are 

the additional added costs of the biocatalyst, additional mass transfer limitations, potentially reduced 

volumetric activity, large particles, stability and packing of the bed. For example, non-uniform packing will 

cause altered fluid dynamic behavior in the packed bed, channeling, which makes it difficult to reproduce 

experimental results. Channeling comes as a cause of changed flow dynamics in the packed bed, i.e. regions 

with low and high flow resistance, and thereby not all the loaded catalyst will operate equally efficiently. The 

concept of channeling together with potential dead zones (no flow zones) is illustrated in Figure 5.5 [169]. All 

these effects will influence the reliability of the measured data. It is therefore crucial to put extensive efforts 

into proper packing of the particles and into removing air bubbles in microfluidic packed bed reactors prior 

to use, to ensure reproducibility. However, as long as there is good reproducibility of experimental results, 

then the microfluidic PBR experiments give a good indication of the relative performance of the biocatalyst 

at various tested process conditions. 

 

 

Figure 5.5: Illustration of the concept of channelling and occurrence of dead zones in packed bed reactors [169]. 

 

In this work, it was decided to mainly focus on a specific immobilization form, i.e. immobilization by 

entrapment in porous lentil shaped PVA particles. The main benefits of this particular immobilization form is 

related to the physical and mechanical properties of the PVA hydrogel, i.e. cheap, biologically inert, long-

term mechanical stability, chemical inertness and non-toxic [170]. Furthermore, the porous lentil shape of 

the formed particles gives a number of advantages such as short diffusion distances across the particles, i.e. 

good mass transport properties [171–174]. The general concept and functionality of the porous LentiKats 

PVA lentil particles and the mass transfer in the particles is illustrated in Figure 5.6, whereas pictures of the 

actual lentils are shown in Figure 5.7.  
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Figure 5.6: General concept and functionality of the porous LentiKats PVA lentils (Adopted with permission from LentiKat’s® [175]). 

 

 

Figure 5.7: Left: Picture of lumps of the LentiKat's porous lentil shaped PVA particles. Right: microscopic picture of the matrix 

structure of the PVA particles (Adopted with permission from LentiKat’s® [175]). 

 

Conveniently, LentiKats® is an industrial partner in the BIOINTENSE project, and performed immobilization 

of ATA-52 and ATA-82, in the PVA particles [175]. The immobilization procedure is simple and based upon 

mixing the biocatalyst formulation with a PVA polymer solution. After the mixing, the lentil shaped particles 

are generated by dripping the solution onto a plate where gelatination occurs. The size of the particles can 

be altered by changing the size of the applied syringe for the dripping. The general concept of the 

immobilization strategy is illustrated in Figure 5.8 [176]. The manufacturing procedure causes the formation 

of a surface membrane layer on the PVA particles, with permeability in the range of 7-14 kDa, which enables 

entrapment of the biocatalyst and passage of the reaction species. The PVA matrix has an inner porous 

structure, with pore sizes in the range from 1-10 µm. A specific value of the overall porosity of the particles 

is not provided by the supplier and has not been experimentally determined. 
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Figure 5.8: Lentikat's manufacturing scheme(Adopted with permission from LentiKat’s® [175]). 

 

5.4 Experimental method 

 

5.4.1 Chemicals 

Recombinant amine transaminase ATA-82 produced in an Escherichia coli production host, was provided by 

c-LEcta GmbH (Leipzig, Germany). Formulation of the polyvinyl alcohol matrix (PVA) for immobilization of 

purified ATA-82 was performed and provided by LentiKat’s a.s. (Czech Republic, www.lentikats.eu); the 

formulation contained 50 𝑚𝑔𝐴𝑇𝐴−82/𝑔𝑃𝑉𝐴. Benzylacetone (BA; synthesis grade; Cas no. 2550-26-7) was 

purchased from Merck KGaA. Potassium carbonate (99+%; Cas no. 584-08-7) was purchased from Acros 

Organics. All other chemicals were purchased from Sigma-Aldrich, i.e. 1-methyl-3-phenylpropylamine 

(MPPA; 98%; Cas no. 22374-89-6), pyridoxal 5’-phosphate monohydrate (PLP; ≥97.0%; Cas no. 41468-25-1), 

acetone (Ace; ≥99.5%; Cas no. 67-64-1), isopropylamine (IPA; ≥99.5%; Cas no.75-31-0), sodium bicarbonate 

(99.5-100.5%; Cas no. 144-55-8). 

 

5.4.2 Analytical method 

The concentration of the substrates and products in aqueous solutions was determined by HPLC (Dionex 

Ultimate 3000) with UV detection (Dionex Ultimate 3000 PDA detector). The applied method for the on-line 

measurements only allowed analysis of benzylacetone (BA) and 1-methyl-3-phenylpropylamine (MPPA). The 

method is operated isocratic (0.450 mL/min mobile phase) at 30℃ with a Gemini-NX C18 column 

(100mmx2mm, 3µm, 110Å, Phenomenex, Torrance, CA, USA). The mobile phase consists of 35% acetonitrile 

and 65% Milli-Q water adjusted to pH 11 by addition of NaOH. The retention times for MPPA and BA were 

2.9 min and 3.6 min, respectively, and the detection was performed at 265 nm. Isopropylamine (IPA) and 

acetone (Ace) were not detected during the characterization. (See appendix C for detailed information on 

the applied standard, validation, etc.) 

http://www.lentikats.eu/
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5.4.3 Method 

A set of standard conditions (fixed temperature at 30℃, pH 9.5 and a PLP concentration of 0.1 mM) were 

applied for characterization of the microfluidic PBR modules with the immobilized biocatalysts. The pH of the 

reaction mixtures was ensured by applying a 100 mM carbonate buffer solution, where the pH was adjusted 

with HCl after addition of the amine compound. Due to the nature of the performed characterization 

experiments the concentrations of all other reaction species were varied sequentially, by changing the flow 

to the reactor from different substrate reservoirs. In order to compare different prepared reactor modules a 

standard experiment was performed at the start and end of the testing of each reactor module. The standard 

experiment was carried out using 10 mM BA and 500 mM IPA. This type of testing also gives an indication on 

the loss of activity throughout the performed experiments. Furthermore, the standard test was performed 

at various flow rates, while the characterization tests were performed at fixed flow rates, 25 µL/min for ATA-

50 and 100 µL/min for ATA-82. For each experimental set point, a minimum of 5 reactor volumes was flushed 

through before commencing the sampling. All samples were repeated 4-6 times. For these experiments, an 

on-line HPLC setup, with 2 µL sample loops, was put in place in order to automate and accelerate the 

characterization, and thus minimize manual handling. The flow diagram of the applied setup is shown in 

Figure 5.3. 

The applied reactor modules for the characterization of the performance of ATA-82 and ATA-50 entrapped 

in PVA particles consisted of PTFE tubes (Length 5 cm, OD 1/8”, and ID 1/16”, giving a working volume of 

~100 µL). The used PVA particles for the characterization were lentil shaped and had diameters in the range 

of 1-1.5 mm, i.e. smaller than normal size (3-4 mm) produced in the large scale manufacturing at LentiKat’s 

[175]. The thickness of the 1-1.5 mm particles is in the range of 0.1-0.2 mm, while the thickness of the 3-4 

mm particles is in the range of 0.2-0.4 mm. 

The quantity of biocatalyst loaded into the reactor modules was determined by weight. The loading was 

performed by sucking up the PVA particles from an aqueous suspension and retaining them in the reactor by 

dead end filtration. The water from the suspension was thereafter removed, before weighing, by blowing air 

through the filled reactor module (PVA matrix maintained wet).  

 

5.5 Characterization of ATA-50 and ATA-82 entrapped in PVA 

In this study, the aim is to characterize the performance of ATA-50 and ATA-82 to perform asymmetric 

synthesis of MPPA from BA using IPA as the amine donor (case study 2 introduced in chapter 4). The 

characterization is performed by testing how various concentrations of the reaction species influence the 

initial rate of the biocatalyst. The motivation for choosing this particular case study is related to the 

physicochemical properties, which in this case enable somewhat selective separation based on LLE as 

proposed and discussed in chapter 4. Furthermore, this case study has semi-favorable thermodynamics, 

which makes it possible to get somewhat reasonable conversions using an excess of the amine donor.  

A potential problem with this simple characterization relates to the first law of directed evolution: “You get 

what you screen for” [28]. For example, with this type of testing we only get an indication of the impact of 

the reaction species on the biocatalyst performance and neglect the potential influence of pH, temperature, 

buffer, solvent compatibility and PLP. These parameters are of high importance for the biocatalyst 
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performance and their impact needs to be classified simultaneously in the characterization, unless they do 

not influence the initial rate of the biocatalyst significantly. However, it was outside the scope of this thesis 

to fully characterize the applied biocatalysts, i.e. the focus here is to determine if the applied ATAs can benefit 

from implementation of ISPR process options. Furthermore, various BIOINTENSE project partners, i.e. Lund 

University and c-LEcta GmbH, have tested the dependence of the biocatalyst on [PLP], temperature, solvent 

compatibility and pH.  

In addition, LentiKats® has addressed the aspect of mass transfer limitations in the PVA particles. It was 

determined that the remaining activity after the immobilization of ATA-50 and ATA-82 to be 94% and 98%, 

respectively.  These numbers are relative to the activity of non-immobilized ATA-50 and ATA-82 for the 

conversion of BA into MPPA using IPA as the amine donor. This is a good indication that the reaction rate, for 

the given reaction, is the rate limiting step and not the mass transport into the particles.  

LentiKats® performed a similar study with a faster reaction, i.e. the asymmetric synthesis of PEA from ACP, 

where it was shown that mass transport limitations are more dominating. For the faster reaction, the 

remaining activity after immobilization was in the range of 50% for both ATA-50 and ATA-82. The loss in 

activity is not considered a consequence of loss in biocatalyst during immobilization, i.e. the loss in activity 

for the slower reaction was very low indicating that potential loss of biocatalyst must be fairly low. 

However, when packing the particles in a PBR some of the loaded particles will face the wall. For particles 

facing the wall, diffusion will only occur from one side and thereby increase the diffusion distance and time 

significantly. For example, for PVA particles where diffusion can occur from both sides, the diffusion distance 

in the particles will be in the range of 0.05-0.1 mm (half the thickness), giving diffusion times of 1.25-5 

seconds. Assuming the diffusion velocity of the molecules of interest is approximately DAB = 10
−9 m

2

s
. 

However if the particles are facing the wall the diffusion distances will conceptually be doubled causing the 

diffusion time to be in the range of 5-20 seconds. Consequently, this will increase diffusion limiting effects 

and thereby cause somewhat slower reactions as a consequence of increased mass transfer limitations. 

Calculating the Thiele modulus (ϕ = L√
k

DABCBA
 for a zero order reaction) and internal effectiveness factor of 

the particles (η =
3

ϕ2
(ϕ ∙ cothϕ − 1)), makes it possible to quantify if mass transfer limitations will be a 

concern. Based on the identified maximum rate determined in section  5.5.2, table 5.1 (
k

[E]
=

~156.9 
µmol

min∙genz
), worst case estimates are made of ϕ and η (Assuming: DAB = 10

−9 m
2

s
, L = 0.2 mm, CBA =

10 mM, [E] = 100
genz

LPVA
). These estimates resulted in ϕ ≈ 1.0 and η ≈ 0.93. Consequently, this confirms 

mass transfer is not expected to be the rate limiting mechanism even when the large particles stick to the 

surface. It is off course a necessity that channeling does not occur in the packed bed reactors as this would 

significantly increase the diffusion distance to some of the particles. The applied enzyme concentration in 

the particles in the calculation, [E] = 100
genz

LPVA
, was chosen higher than what can be expected in the provided 

PVA particles, 50 mgenz/gPVA, as a means to illustrate worst case scenario. 

 

5.5.1 Residence time 

Before starting the actual characterization, the impact of the substrate feed flow rate to the microfluidic PBR 

was investigated. The aim of this investigation was to identify suitable residence times in the PBR to achieve 

sufficient conversion to monitor the impact of changing feed concentrations. For example, if the 
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characterization is performed with low conversion in the PBR, the sensitivity of the HPLC method will have a 

significant impact on the results. On the other hand, if the characterization is performed with high conversion 

in the PBR the influence of inhibitory effects from products, experimental time and throughput will increase 

significantly. Furthermore, at high conversion, the measured differences may be a direct effect of altered 

equilibrium concentrations and/or the lack of differences can be a result of achieving full conversion. It is 

therefore important to operate with a reasonable residence time to ensure that the experimental data is not 

compromised. Here, it was decided to aim at an approximate conversion of 20%, which corresponds to 

formation of ~2 mM MPPA. The results from these investigations are summarized in Figure 5.9. 

 

 

Figure 5.9: Investigation of the influence of increasing residence time in packed bed reactors, with ATA-50 (left – ~311 

𝑔𝑃𝑉𝐴/𝐿 ≈16 𝑔𝐴𝑇𝐴50/𝐿) and ATA-82 (right – 594 𝑔𝑃𝑉𝐴/𝐿 ≈ 30 𝑔𝐴𝑇𝐴82/𝐿), using a standard reaction mixture of 9.53 mM BA, 482.23 

mM IPA and 0.1 mM PLP in 100 mM carbonate buffer (pH 9.5). The data points in the upper part of the plot correspond to the 

measured BA concentrations, while the lower points correspond to MPPA. 

 

These investigations indicate that it is suitable to operate with residence times of approximately 4 min (25 

µl/min) and 1 min (100 µL/min) for ATA-50 and ATA-82, respectively. The need for different residence times 

in the PBR modules will cause different laminar flow behavior for each of the characterized biocatalysts. 

However, the relative influence of the different reaction species at steady state should still be comparable.  

The significant difference in the required residence time, for the two biocatalysts, to achieve various degrees 

of conversion can be related to significant improvements and differences in active enzyme content in the 

ATA-82 formulation compared to the wild-type ATA-50 formulation. Note that it can be erroneous with such 

conclusion if the purity and active enzyme content is not known precisely before such comparison is made. 

The estimated residence times correspond to the residence time if the reactor was empty. Filling the reactor 

with porous particles will take up some of the void space end thereby influence the flow dynamics and 

residence time in the reactor. The routes resulting in lowest fluid resistance dictate the flow in the packed 

reactors. Hence, filling the 1.59 diameter tube with 1-1.5 mm wide and 0.1-0.2 mm thick particles will cause 

the actual residence time in the PBR to be lower as the flow is likely to go around the particles rather than 

through them. Performing standard experiments is therefore essential to identify if the prepared PBR 

behaves similarly to other experiments. Furthermore, performing sets of experiments, e.g. characterization 

of the impact of the different components individually in each prepared PBR, makes it possible to identify 

trends in those experiments, as the fluid dynamics in those experiments will be the same. 
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5.5.2 Characterization 

Applying the proposed residence times from section 5.5.1, the influence of the various reaction species on 

the reaction rate of the two biocatalysts was tested. The results from these tests are summarized in Figure 

5.10 and Figure 5.11 for ATA-50 and ATA-82, respectively. It was attempted to fit the expression for the 

forward reaction rate in the absence of products for reactions following ping-pong bi-bi kinetics, in the same 

manner as described by Al-Haque et al. [50], to the data describing the influence of BA and IPA on the reaction 

rates. The kinetic expression is shown in equation 5.1. The estimated parameters from this data fitting are 

presented in Table 5.1. The model predictions for each of the biocatalysts are included in the figures. 

𝑟 =
𝑉𝑚𝑎𝑥∙[𝑆][𝐴𝐷]

𝐾𝑀
𝑆 [𝐴𝐷]+𝐾𝑀

𝐴𝐷[𝑆]+[𝐴𝐷][𝑆]
                            (Eq. 5.1) 

, where 𝐾𝑀
𝑆  [𝑀] and 𝐾𝑀

𝐴𝐷  [𝑀] are the Michaelis parameters and 𝑉𝑚𝑎𝑥 [𝑚𝑜𝑙 ∙ 𝑚𝑖𝑛
−1 ∙ 𝑔𝑒𝑛𝑧] is the maximum 

rate [50]. 

 

Table 5.1: Estimated parameters for the initial forward reaction velocity in the absence of products for biocatalysts following ping-
pong bi-bi kinetics. 

 𝑽𝒎𝒂𝒙 𝑲𝑩𝑨 𝑲𝑰𝑷𝑨 𝒓𝑩𝑨
𝟐  𝒓𝑰𝑷𝑨

𝟐  

 
µ𝑚𝑜𝑙

𝑚𝑖𝑛 ∙ 𝑔𝑒𝑛𝑧
 𝑚𝑀 𝑚𝑀 − − 

ATA-50 9.56 3.1 329.7 0.77 -1.3 

ATA-82 156.9 13.2 160.9 0.99 0.96 

 

Overall, these results indicate that the formulation of ATA-82 has significant higher activity than the ATA-50 

formulation. Furthermore, the low activity of ATA-50 causes large deviations in the performed measurements 

as well as inaccurate model fitting, relative to ATA-82 where the influence of both BA and Ace is predicted 

well by the model.  
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Figure 5.10: Characterization profiles of a µ-PBR containing PVA particles with entrapped ATA-50. A: fixed [IPA] (500 mM) and 
varying [BA] (2-10 mM). B: fixed [BA] (10 mM) and varying [IPA] (50-500 mM). C: fixed [BA] (10 mM) and [IPA] (500 mM) with 
varying [MPPA] (0-10 mM). D: fixed [BA] (10 mM) and [IPA] (500 mM) with varying [Ace] (0-170 mM). All experiments were 
performed at 30 ℃, in the presence of 0.1 mM PLP and applying a feed of 25 µL/min (4 min residence time). 

 

 



 
 

73 
 

 

 

 

Figure 5.11: Characterization profiles of µ-PBR containing PVA particles with entrapped ATA-82. A: fixed [IPA] (500 mM) and varying 

[BA] (2-10 mM). B: fixed [BA] (10 mM) and varying [IPA] (50-500 mM). C: fixed [BA] (10 mM) and [IPA] (500 mM) with varying 

[MPPA] (0-10 mM). D: fixed [BA] (10 mM) and [IPA] (500 mM) with varying [Ace] (0-170 mM). All experiments were performed at 

30 ℃, in the presence of 0.1 mM PLP and applying a feed of 100 µL/min (1 min residence time). 

 

Looking into the influence of varying the initial MPPA content in the feed, the results indicate that MPPA 

gives cause to a significant decrease in the reaction rate for both biocatalysts. Hence, it is a strong indication 

of severe product inhibition, ~4% loss in initial rate per mM MPPA for ATA-82, which motivates to investigate 

the possibility of implementing an ISPR strategy. Similarly, acetone also appears inhibitory, ~0.2% loss in 

initial rate per mM Ace for ATA-82, for both biocatalysts. However, the inhibitory nature of MPPA is greater, 

~20 times higher, than that of acetone making it the first priority to focus on MPPA removal by ISPR. 

Therefore, it is found reasonable to proceed with the development and implementation of the highlighted 

two-step liquid-liquid extraction ISPR strategy that was described in chapter 4.  

In parallel to this work, Börner et al. [144] did some similar characterization investigations on ATA-50 in batch, 

which also gave an indication of strong inhibitory effects from MPPA (with alanine as the amine donor). In 
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their work, they also measured rates of ATA-50, either as crude enzyme or cells, for the reaction of BA with 

IPA to MPPA and found values that were an order of magnitude greater than what was measured here. There 

can be multiple reasons for the difference in observed behavior, where the main reason is believed to be 

caused by the altered reaction conditions. Here the reaction operated with 100 mM carbonate buffer at pH 

9.5 and Börner et al. [144] applied 20 mM sodium phosphate buffer at pH 8. Hence, a direct comparison of 

these experimental results is not possible. However, it is still interesting to consider potential features in 

conventional batch systems and in microfluidic reactor modules that potentially give cause to altered 

reaction behavior, which will be further discussed in section 5.7. 

For the characterization of ATA-50 there was almost 3 weeks between the first and the last characterization 

experiments, which had a significant impact on the remaining activity, i.e. on 27/02/2015 the maximum 

measured activity was around 10 mmol/min/mg and on 17/03/2015 the remaining activity was slightly lower 

than half the initial value. This gives some challenges for collection of reproducible data if the enzyme is not 

characterized relatively fast after it is immobilized. Considering the potential for industrial application, it 

causes some challenges as well because it is not possible to have the biocatalyst in storage for long periods 

before one should apply the biocatalyst. Hence, a more stable biocatalyst is required, which is also the case 

for ATA-82.   

 

5.5.3 Stability 

In connection to the performed characterizations, standard experiments (10 mM BA and 500 mM IPA) were 

performed to get an indication of the relative stability of the tested biocatalysts, i.e. remaining activity after 

each characterization. The results from these stability tests are summarized in Figure 5.12. 

The results indicate minor differences in the reduction of relative activity during the performed 

characterizations between the two biocatalysts, i.e. the relative activity of ATA-50 decreases slightly more 

than for ATA-82 in the tested periods. For both biocatalysts, the remaining relative activity is above 90% after 

a few hours, which is an important feature when intending to operate the system for a longer time as is 

intended with the combined ISPR system, because the microfluidic PBR modules can operate for longer 

periods before replacement is required. 
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Figure 5.12: Measured remaining activity for the various performed experiments for characterization of ATA-50 (left) and ATA-82 

(right) entrapped in PVA particles presented as the remaining activity after exposure to various concentrations of the various 

reaction species. 

 

5.6 On-line HPLC sensitivity 

An important aspect of the application of the on-line HPLC system is to reflect on the sensitivity of this 

analytical method. The relatively large quantity of data points generated during the characterizations, around 

300, makes it possible to reflect on the sensitivity and some general limitations with this setup and current 

application.  

In general, the quality of the collected data, with this on-line HPLC setup, is as good as the applied method 

and it really pays off to put some effort into developing a sensitive and robust analysis method. Some of the 

general limitations for this on-line HPLC setup, which influences the data quality and throughput, are: 

- Analysis time: The sample analysis time dictates the throughput of an on-line HPLC system. Hence, 

fast methods are required to ensure high throughput. Furthermore, biocatalysts with low stability 

will require frequent replacement of the biocatalyst in the reactor module, so a fast method will 

make better use of the applied biocatalyst. However, a catalyst with low activity will require a certain 

residence time in order to monitor sufficient conversion and in this case, nothing is gained by having 

a fast HPLC method. 

- Absorbance: Compounds with strong UV absorbance require small sample loops and/or dilution 

before going to the sample loops in order not to exceed the detection limit of the UV detector. 

However, this is also a positive effect as it potentially gives highly sensitive measurements. 

- Dead volumes: It was difficult to achieve two identical sample loops, i.e. small deviations in the dead 

volumes between sample-loops occurred, which requires a standard for each loop. Having a standard 

for each loop makes it vital to keep track of the valve position, to ensure correct analysis of the 

samples.  

- Column contamination: If the injected samples are dirty and/or contain small particles, compounds 

and/or traces of protein might damage the column after relatively few samples. Hence, it is required 

to either implement a way to clean the samples before injection and/or to evaluate if the costs saving 

achieved by avoiding manual sampling can counterbalance the reduced lifetime of the columns. 
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- Column stability: Increased peak tailing and loss of column separation performance over time make 

it crucial to validate the standards relatively frequently, which increases manual labor and analytical 

downtime. It is the same problem when reaction species cause irreversible inhibition and/or 

increased enzyme denaturation over time. Alternatively, performing a standard experiment 

relatively frequently to determine the relative remaining activity would to some extent make it 

possible to consider such effects. 

- Overlapping peaks: If the sampling is not timed correctly, overlapping peaks can be experienced and 

hence erroneous measurements, i.e. it is desired to have perfect timing of the sample injections to 

ensure the throughput. For example, for the applied method here, some of the compounds (IPA, Ace 

and PLP) lump together, appearing approximately 1 minute after the sample injection, and thereby 

cannot be quantified. Those compounds are the sole reason why the method took 4 minutes per 

sample and analysis time could not be decreased to 2 minutes, i.e. MPPA and BA both appear from 

2 to 4 minutes after injection. 

Figure 5.13, provides two examples of how the spectra can appear when applying the on-line HPLC, i.e. an 

example of a long sample sequence and a short sample sequence is provided. In case of a long sample 

sequence, it can be difficult to distinguish between different peaks. Hence, shorter sample sequences are 

easier to handle, unless a systematic method is implemented for peak recognition. Interfacing the 

microsystem control with the Chromeleon software is probably the most suitable solution to this problem. 

External standards are applied for the quantitative analysis of the spectra. The generated standards for each 

sample loop can be seen in Figure 5.14. It was required to generate a standard for each of the sample-loops, 

as there was a small difference in their dead volumes. The difference was in the range of 1 µL based on the 

differences in measured areas from the external standards. Also included in the figure is the validation of the 

generated standards by independent external standards. The validation is performed to ensure that the 

generated standards remain reliable throughout the characterization studies. In the presented validation, it 

can be seen that the MPPA standards start to under-predict the MPPA concentration with about 5% when 

time goes by, in the period from 16/02/2015 to 17/03/2015. This will have some impact on the experimental 

uncertainty, and since ATA-50 was characterized last, in the period from 26/02/2015 to 17/03/2015, it may 

explain some of the larger uncertainties in those experimental results. However, since ATA-82 was 

characterized first and within a few days, those data should not be compromised. The standard curves and 

the following characterization of ATA-50 were not repeated, due to ATA-82 was chosen as the candidate for 

further experimental work. 

The estimated standard deviation in each experimental point is presented in Figure 5.15, i.e. based on 4 to 6 

sample repetitions, for both BA and MPPA. From the presented data, large deviations can be found in some 

of the experimental points. Some of these deviations can be explained as sample points, where the peaks 

have minor overlaps, due to poorly timed sampling. Overall, the relative error in the single point 

measurements is below 5% for both MPPA and BA, meaning that the data is somewhat trustworthy. 

However, the sensitivity in the MPPA measurements is 5-6 times better than for BA. Therefore, it is concluded 

that it is better to perform model fitting based on the MPPA experimental data. The sensitivity can also be 

improved by choosing a different wavelength with stronger MPPA and BA absorbance, i.e. 210-220 nm rather 

than 265 nm. This would however require sample dilution before injection in order to ensure that the 

saturation limit of the detector is not reached. 
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5.7 Discussion 

The benefits, the advantages and the potential of applying microfluidics for characterization of biocatalysts 

is emphasized throughout this chapter. However, there are different aspects of the general applicability of 

microfluidics for the characterization that need to be considered in the further application of microfluidics 

and of the acquired data in such systems. 

Firstly, an important aspect in any biocatalytic process is the formulation of the applied biocatalyst, which is 

case specific. For example, characterizing purified free enzymes is relevant when improvements of specific 

characteristics of various mutants are to be identified, or when the purified form of the enzyme is required 

for actual production. However, for industrial applications, the pure enzyme is often not suitable for direct 

application in a process and/or it is not economically feasible to apply free purified enzymes in the process. 

In such cases, other formulations and immobilization techniques need to be exploited and characterized. 

Therefore, an essential aspect is the general applicability of microfluidics, i.e. a requirement is that it is easy 

and fast to characterize different biocatalyst formulations, which in most cases is easily performed in 

conventional batch experiments. Conceptually, microfluidics can be applied to test various immobilization 

forms, but different formulations will give altered fluid dynamics behavior that has to be taken into account 

and considered carefully. For example, formulations with the biocatalyst freely in suspension will cause the 

flow dynamics in microfluidics to be dominated by diffusion, and dispersive effects will become prominent 

which will make it time consuming to reach steady state when introducing step changes (explained in detail 

in chapter 2). On the other hand, this is also a strong motivation for characterizing immobilized biocatalysts 

in a microfluidic PBR as this application is solely dependent on the fluid dynamic behavior of the relatively 

fast diffusing reaction species compared to the slowly diffusing proteins. However, for immobilized forms 

other effects may cause altered and unpredictable fluid dynamic behavior, e.g. packing density and 

channeling effects. A result of this will be erroneous information about the catalyst performance and activity. 

However, despite these effects it may still be feasible and fast to apply microfluidics to determine the relative 

biocatalyst performance under various process conditions, e.g. test the relative influence of temperature, 

pH, and component concentrations, in a similar way as a HPLC operates, and determine relative 

concentrations based on external standards.  

That being said, it is important to emphasize that despite the benefits associated with application of 

microfluidics for characterization of biocatalysts demonstrated in this chapter, this technology is not always 

the ideal choice. In many cases, it may be easier, faster and more reliable to characterize the biocatalyst in 

conventional batch experiment based methods. The latter is especially the case when it is required to 

determine accurate kinetics of the biocatalyst, which in microfluidic systems would be greatly influenced by 

the fluid dynamics while small scale batch systems many times are operated such that they form close to 

homogeneous mixtures.  

In addition, when operating with biocatalyst formulations that are free in the reaction media it is required to 

quench the reaction at the outlet of the reactor. As such, it is easy to quench the reaction in microfluidics, 

e.g. by implementation of heated spots/segments and/or to quench it by acid or base through feeding such 

solutions immediately after the reactor modules.  

Applying biocatalysts in suspension in the on-line HPLC system gives problems related to the fact that dirty 

samples are injected to the column, and hence reduced column lifetime is the result. Applying immobilized 

biocatalysts in PBR modules will overcome this issue, but it requires that the biocatalyst is stable for longer 



 
 

81 
 

periods so the module can be operated for a longer time before replacement is required.  A significant 

problem of applying PBR modules is the issue of flushing out gas bubbles. The latter can be difficult, and for 

non-transparent systems, it might be an issue to verify whether bubbles appear. An alternative to the HPLC 

system would be to implement spectroscopic methods (UV, NIR, MIR, FTIR, Raman etc.) combined with 

chemometrics instead of having a column to do the separation of the amines and ketones. Such 

implementation would increase the throughput of the microfluidic systems. However, with implementation 

of such analytical methods it might be easier, more flexible, faster and more reliable to consider operating 

with microtiter plates. The exception to this would be when continuous flow applications, e.g. PBR and PFR, 

are considered. 

 

5.8 Conclusion 

In this chapter, the applicability of microfluidic reactor modules for characterization of novel biocatalysts was 

investigated in detail. It was found in this work that the main advantage of applying microfluidics for such 

characterization is the possibility of performing extensive testing of various process conditions, i.e. one can 

find optimal operating conditions in an easy manner using relatively small quantities of available resources. 

Limitations to the application of microfluidics for characterization were also identified and discussed, e.g. the 

fluid dynamics in microfluidics make it challenging to develop generally applicable kinetic models. 

The advantages were demonstrated through characterization of immobilized biocatalysts, i.e. two ATA 

mutants (ATA-50 and ATA-82) entrapped in lentil shaped polyvinyl alcohol (PVA) particles, in specific 

microfluidic packed bed reactor modules. The reaction of interest was the asymmetric synthesis of the chiral 

amine 1-methyl-3-phenylpropylamine (MPPA) from benzylacetone (BA) using isopropylamine (IPA) as the 

amine donor. For both biocatalysts, the inhibitory nature of the products was identified and it was found 

reasonable to consider development and implementation of ISPR strategies as a means to overcome these 

effects. Furthermore, the performed characterization gave indications of optimal operating conditions in 

terms of concentrations of substrates for the biocatalysts. 

In relation to these characterizations, an on-line HPLC system was installed to perform the characterization 

of two amine transaminases (ATAs), i.e. ATA-50 and ATA-82, in an automated manner. Furthermore, this 

experimental setup is recognized to significantly reduce manual activities related to characterization of the 

biocatalysts. For example, no sample handling, preparation and/or transportation were required during the 

characterizations, i.e. only stock solutions and reactor modules needed to be prepared. 

 

  



 
 

82 
 

 



 
 

83 
 

Chapter 6  

Characterization of microfluidic liquid-

liquid extraction modules 
 

In the development of biocatalytic processes, considerable emphasis is put into development of the 

biocatalyst and well performing reactors. However, it is equally important to consider in the development 

how to recover the product efficiently at reasonable costs. This is especially the case, where it is required to 

implement in-situ product removal (ISPR) strategies (the selective removal of product during the reaction 

course) to overcome some process challenges, such as severe inhibitory effects caused by the product(s). 

This issue was discussed in detail in chapter 4.  

In this chapter, the potential of applying microfluidics in the development of product recovery strategies for 

amine transaminase (ATA) based processes based on liquid-liquid extraction (LLE) is illustrated. LLE is 

commonly applied for recovery of chiral amines, and ATAs are known to experience severe inhibition by the 

product, which was also underlined in chapter 5. More precisely the focus in this chapter is on the 

characterization of single step microfluidic LLE modular units for putting in place a two-step LLE ISPR concept 

for extraction of hydrophobic chiral amine products from ATA processes, which is described in detail in 

chapter 4 and highlighted here in Figure 6.1. Chosen as case study is the ATA facilitated asymmetric synthesis 

of MPPA from BA, using IPA as the amine donor. The latter was also introduced in chapter 4, as case study 2, 

which is again shown here as Scheme 6.1.  

The performed characterization of the LLE modules is based on both conventional batch and microfluidic 

methods. It was found that multiple solvents give selective separation of MPPA relative to the other 

investigated reaction species. From these solvents, undecane was found to be the best choice for this 

application. Issues of simultaneous removal of BA in the extraction steps were overcome by dissolving 1 M 

BA in undecane, which enabled applying the extraction steps for feeding the main substrate (BA) as well.  

Furthermore, it was found that applying microfluidics in the development of extraction steps gives some 

significant advantages in terms of ease of use, high throughput and fast optimization of extraction steps. In 

addition, it was established that implementation of spectroscopic based analytical methods will enable easy 

and somewhat reliable determination of the overall mass transfer coefficients in the microfluidic extraction 

modules. 

 

Scheme 6.1: General ATA reaction scheme for the synthesis of 1-methyl-3phenylpropylamine (MPPA(2)) from benzylacetone (BA(1)) 

using isopropylamine (IPA(4)) as the amine donor. The co-product of this synthesis route is acetone (Ace(7)). 
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Figure 6.1: Flowsheet of the two-step liquid-liquid extraction ISPR concept for selective removal of hydrophobic amines from ATA 
processes, which was introduced in chapter 4. This chapter will solely focus on the liquid-liquid extraction modules as indicated 
with the dashed box in the figure. [AD]: Amine donor, [S]: substrate, S1: solvent, [P]: product, R1(a): reactor module, R1(b): 1st LLE 

module (High pH ~9.5) and R1(c) 2nd LLE module (Low pH ~3). 
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6.1 Introduction 

As proposed in chapter 4, for case study 2 with IPA as the amine donor to form MPPA, the focus here is to 

apply a solvent bridge concept in a two-step LLE operational mode as an ISPR concept to remove the 

inhibitory product MPPA. LLE is applied as MPPA is hydrophobic relative to the hydrophilic IPA. In addition, 

LLE is commonly applied for extraction of amine compounds from aqueous solutions 

[126,154,155,157,158,177,178]. Furthermore, it is possible to protonate both amines, thereby opening up 

for selective separation of the amines from the ketone compounds involved in the reaction. However, before 

testing the combined system it is required to characterize the two LLE steps and specify the required capacity 

of the individual LLE modules, which is the aim of this chapter. 

LLE is a well-developed separation method in the chemical industry that is based upon exploiting the relative 

solubility of compounds in two immiscible liquids [179]. The performance of the LLE modules can be 

evaluated by identifying the selectivity, partitioning and mass transfer of all the reaction species between 

the two immiscible liquids in each extraction step at the desired operational conditions. The general metrics 

applied to describe the selectivity and partitioning of each component in the system are described in chapter 

4, while the mass transfer theory is described here (section 6.1.1).  Knowledge of the mass transfer between 

the phases is important, as it will dictate the design and sizing of the extraction units, e.g. size of the 

extraction modules required to achieve equilibrium in each extraction step. In this chapter, these parameters 

are determined based upon a combination of microfluidic and conventional lab scale batch experiments. The 

motivation for this combination is that in conventional batch experiments, it is easy to get an idea about the 

equilibrium concentrations (identifying partitioning and selectivity), while microsystems are highly applicable 

to determine mass transfer rates and test various operating conditions in an easy manner. 

 

6.1.1 Mass transfer theory 

The driving force in LLE is the concentration difference of a specific compound between two liquids, e.g. a 

liquid containing the compound of interest and an extracting liquid with larger affinity for that specific 

compound. The velocity of the mass transfer between the liquids is dependent on the diffusion of the 

extracted compound. This transfer can be generally described by Fick’s law of molecular diffusion [77]: 

𝑁𝑖𝑥 = −𝐷𝑎𝑏,𝑖
𝑑𝑐𝑖

𝑑𝑥
                        (Eq. 6.1) 

, where 𝑁𝑖𝑥 [
𝑚𝑜𝑙

𝑚2𝑠
] is the flux of component 𝑖, in the 𝑥 [m] length direction. 𝐷𝑎𝑏,𝑖  [

𝑚2

𝑠
] is the diffusion 

coefficient of solute a (i) in b and 𝑐𝑖  [
𝑚𝑜𝑙

𝑚3 ] is the molar concentration, both of component 𝑖. 

There are several theories describing the mechanism of mass transfer between the two liquid phases, taking 

into account the mass transfer resistance effects at the liquid-liquid interface, i.e. the film, penetration, 

surface-renewal and film-penetration theories [179]. All these theories have in common that they assume 

well-mixed bulk phases and address the aspect of the gradient appearing close to the interface. In each 

theory, a mechanism representing resistance to mass transfer at the phase interface is described. However, 

since it is difficult to measure on the actual phase interface mechanistic behavior, it is convenient to 

determine the mass transfer in terms of overall mass transfer coefficients, which can be described by [179–

181]: 
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𝑑𝐶𝑖,𝐿1(𝑡)

𝑑𝑡
= 𝐾𝐿,𝑖𝑎 (𝐶𝑖,𝐿1

∗ − 𝐶𝑖,𝐿1(𝑡))                              (Eq. 6.2) 

, where 𝐾𝐿,𝑖𝑎 [𝑠−1] is the overall mass transfer coefficient of a component 𝑖, from phase 𝐿1 [-] to the 

extracting phase. 𝐶𝑖,𝐿1
∗  [𝑚𝑜𝑙/𝑚3] and 𝐶𝑖,𝐿1(𝑡) [𝑚𝑜𝑙/𝑚

3] represent the equilibrium concentration at the 

phase interface and the time dependent concentrations of component 𝑖 in phase 𝐿1, respectively. 

From the above expression for the mass transfer, it is clear that the extraction is limited by the phase 

equilibrium, which is a direct function of the partition coefficient. Hence, for 𝑡 ≫ 0 𝑠 the system goes towards 

equilibrium and the partition coefficient (PC) can be described as: 

    𝑃𝐶𝑖 =
𝐶𝑖,𝐿2
∗

𝐶𝑖,𝐿1
∗ ⇔                                (Eq. 6.3) 

𝑃𝐶𝑖 =
(𝐶𝑖,𝐿1(𝑡=0)−𝐶𝑖,𝐿1

∗ )

𝐶𝑖,𝐿1
∗                                                 (Eq. 6.4) 

, where 𝐶𝑖,𝐿2
∗  [𝑚𝑜𝑙/𝑚3] is the equilibrium concentration of component 𝑖 in the extracting phase 𝐿2. Equation 

6.4 assumes that the change in concentration over time is solely caused by the extraction from 𝐿1 into 𝐿2, 

which is assumed because only the aqueous phases are analyzed in this work. The expression is applied in 

combination with the experimental data to evaluate the extraction performance of the screened solvents.  

 

6.1.2 Microfluidic extraction phenomena 

In chapter 2, a general introduction to different multi-phase flow phenomena that occur in microfluidics was 

given. Two of the presented phenomena are of special interest for the characterization of LLE modules, i.e. 

slug and side-by-side flow scenarios, because it is possible to predict the phase interfacial area to volume 

ratio rather accurately based on the slug size and system dimensions. In Figure 6.2, the general concept of 

the two types of flow and the associated mass transfer effects are illustrated.  

 

 

Figure 6.2: Droplet/slug (top) and side-by-side (bottom) flow extraction concepts in microfluidics. 
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In the case of side-by-side laminar flow applications, the mass transfer is solely based on diffusion through 

and in between the two fluids. The interface area and curvature between the two phases is determined based 

on the pressure difference (Δ𝑃𝐹) and the Laplace pressure (Δ𝑃𝐿) caused by the interfacial tension between 

the two phases that stabilizes the phase interface, respectively. Δ𝑃𝐹 can be determined by applying the 

Hagen-Poiseulle equation, introduced in chapter 2, for each phase. The Laplace pressure is restricted as 

follows, for parallel multi-phase flows [71]: 

2𝜎sin(θre−90°)

𝑑
< Δ𝑃𝐿 <

2𝜎sin(θ𝑎𝑑−90°)

𝑑
              (Eq. 6.5) 

, where 𝑑 [𝑚] is the depth of the microchannel, and 𝜃𝑟𝑒 and 𝜃𝑎𝑑 are the receding and advancing contact 

angles of the organic phase.  

As long as Δ𝑃𝐹 is between the higher and lower limits of Δ𝑃𝐿 it should be possible to maintain the parallel 

multi-phase microflows. The side-by-side flow can also be stabilized by having a combination of hydrophobic 

and hydrophilic channels [182] and/or structural support in parts of the channel [183]. 

In the case of slug flow applications, the mass transfer will be dominated by the diffusion at the phase 

interfaces at the ends of the slugs and by internal mixing in the droplets. The internal mixing effects in the 

droplets are also known as Hadamard-Ryczniski circulation, which is illustrated in Figure 6.2 [77]. Another  

effect that might occur in microscale slugs are Marangoni effects, which are caused by surface tension 

gradients in the slugs, that potentially influence the mass transfer rate of the slugs significantly 

[77,88,92,179]. It is therefore important to keep in mind that measured mass transfer coefficients in micro 

slugs, influenced by Marangoni effects, will make the values unreliable across scales. 

In this work, it was chosen to apply standard hydrophilic polytetrafluoroethylene (PTFE) tubing. This choice 

was based on the good chemical resistance, the low cost, the compatibility with the applied pumps and the 

easy handling of PTFE tubing relative to fabrication of specific microfluidic chips and/or glass capillaries. The 

hydrophilic behavior and pressure drop in the channels gave cause to the formation of aqueous slugs in the 

applied standard tubes. This is illustrated in Figure 6.3. Furthermore, side-by-side flow scenarios can result 

in inaccurate prediction of the mass transfer because of different flow velocity profiles in the two liquid 

phases caused by viscosity differences [184]. Unless the flow velocity profiles are known this is difficult to 

take into account. 

Based on the measured droplet dimensions presented in Figure 6.3, it was possible to determine some 

characteristic dimensional features of the droplets in the tubes at various flow rates. These features are 

important for identifying and characterizing different dimensional characteristics of the formed slugs, which 

will have an impact on the mass transfer in the microfluidic LLE modules. The measured and calculated 

dimensional features are presented in Table 6.1. The low capillary numbers form a strong indication that 

these tubes are operated in the squeezing flow regime, hence the formation of slugs (theory described in 

chapter 2).  Furthermore, it is noteworthy that the slug length to diameter ratio increases as the inner 

diameter (ID) of the tubes decreases, which causes the surface area (where mass transfer occurs) to volume 

ratio to decrease alongside the ID. This effect is represented in Figure 6.4. This effect needs to be taken into 

account when comparing measured mass transfer coefficients, as it might have a severe impact on the mass 

transfer occurring in extraction experiments with small ID tubing. For the rest of this work these 
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characteristics will be applied, bearing in mind that there might be small deviations in the slug size and slug 

length distribution at various flow rates. The slug lengths can be influenced by varying the flow rates, relative 

to one another, but further investigation of such effects was considered to be outside the scope of this work.   

 

 

 

 

 

Figure 6.3: Influence of tube inner diameter (ID) on the slug length, aqueous blue slugs and transparent undecane fluid segments, 

for 4 different tube diameters: A) 170 µm ID gave ~4 mm slugs, B) 250 µm ID gave ~5 mm slugs, C) 500 µm gave ~1.5 mm slugs 

and D) 1000 µm gave ~1mm droplets/slugs. 

 

Table 6.1: Measured and calculated features of slugs formed in PTFE tubing of various inner diameter (ID) when mixing water and 

undecane at various flow rates (25-1000 µL/min). The Capillary number was introduced in chapter 2 (𝜇 = 0.001 𝑃𝑎 ∙ 𝑠 [185] and 𝜎 =

0.025 𝑁/𝑚 [153]). 

ID Lslug L/ID Asphere Vslug 𝒂 𝒗 Ca 

µm mm - mm2 µL m2/m3 µL/min ∙ 𝟏𝟎−𝟕 

170 4.5 26.5 0.09 0.10 889 25-400 1.8 − 29.0 

250 5 20 0.20 0.25 800 25-400 0.8 − 14 

500 1.5 3 0.79 0.29 2667 25-500 0.2 − 4.2 

1000 1 1 3.14 0.79 4000 25-500 0.1 − 1.1 

Note: The phase interface where mass transfer occurs is assumed only to be located in both ends of the slugs. The ends 

are furthermore assumed spherical for each droplet and the volume of the slugs is then estimated by assuming 

cylindrical slugs. 

A) 

B) 

C) 

D) 
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Figure 6.4: Representation of the increasing slug lengths with decreasing inner diameter (ID) (L/ID, which follows the right hand 
side y-axis) and the impact it has on the area to volume ratio of the slugs in the tubes. 

 

6.2 Solvent selection 

For LLE applications, it is important to select a solvent that performs the desired separation satisfactorily, e.g. 

sufficient selectivity and partitioning. However, also other aspects in the choice of solvent need to be 

addressed. For example, aspects such as safety, environmental impact, separation efficiency, recyclability, 

enzyme compatibility and costs need to be considered as well. In the scientific literature there are multiple 

methods and guides for selecting appropriate solvents [186–188]. Highlighted below are a few important 

considerations related to the choice of a solvent for a particular application: 

Safety, health & Environment: A point of concern when deciding to apply a specific solvent in a given 

process and/or during development are the safety, health and environmental risks associated with 

handling and operating the process with the given solvent [186,189].  For example, carcinogenic 

solvents potentially impose unnecessary health risks, explosive/highly flammable solvents may 

impose unnecessary safety risks, and some solvents have severe toxic effects on the environment. It 

should therefore always be the aim, when applying solvents, to apply solvents where these issues do 

not cause any concerns. However, for some applications, it may not be possible to avoid solvents 

that cause such concerns and appropriate precautions need to be made. 

 

Solvent separation:  From an operational point of view, it is important to select a solvent that is easy 

to handle, allowing easy product recovery, and in some cases, the solvent should be easy to recycle 

as well. For example, if the solvent of choice causes formation of emulsions the phase separation can 

be difficult. Furthermore, if the solvent is not selective and difficult to separate from the product(s), 

e.g. by distillation, it may not be suitable. In addition, if the chosen solvent is costly it may be a 

requirement to have efficient solvent separation and recovery to ensure that it can be recycled 

multiple times. For pharmaceutical applications, it may not always be possible to recycle the solvent, 
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e.g. potential cross-contamination is to be avoided, and it might be difficult to get approval from 

regulatory authorities. 

 

Biocatalyst Compatibility: Solvents can have toxic effects on the applied biocatalysts, which can 

significantly reduce the stability and thereby greatly inactivate/denature the catalyst over short time 

periods. In general, such toxic effects can be divided into two categories: 

1. Inactivation/denaturation caused by the phase interface between two immiscible fluids, which 

also motivates separation of the biocatalyst before the LLE. This form of 

inactivation/denaturation only occurs when operating with immiscible fluids. 

2. Inactivation/denaturation caused by dissolved solvent in the aqueous reaction media, where the 

effect will depend on the hydrophobicity (𝑙𝑜𝑔𝑃). This form of inactivation/denaturation can be 

experienced with both water miscible and immiscible solvents. In the scientific literature, it is 

argued that high relative water-octanol partition coefficients, 𝑙𝑜𝑔𝑃 > ~4, are prone to have 

minor toxic effects on biocatalysts relative to solvents with lower partition coefficients [190,191].  

 

Inertness:  Another compatibility aspect is the inertness of the chosen solvent. It is important that 

the chosen solvent does not intervene with the desired reaction, i.e. the biocatalyst should not have 

affinity for the solvent and thereby cause the solvent and substrate(s) to compete. Furthermore, it is 

important that the chosen solvent does not react in an uncontrolled manner with the substrates 

and/or products resulting in the formation of unwanted side-products. 

Considering these aspects in addition to the methods, guidelines and reported solvents in the scientific 

literature [143,186–188] a list of 5 solvents was chosen for further testing. The list is shown in Table 6.2. 

Solvents with a range of different 𝑙𝑜𝑔𝑃 values were chosen to identify how the polarity of the solvents 

influences the separation performance. Furthermore, one of the chosen solvents is the main substrate (BA) 

applied in the investigated case study (case study 2), which ideally will decrease the complexity of the process 

if suitable for the extraction.  

 

Table 6.2: List of selected solvents focused on in this work [153]. 

Solvents 𝒍𝒐𝒈𝑷 𝝆 𝑨𝒒. 𝑺𝒐𝒍. 𝑷𝒗𝒂𝒑 𝑻𝒃 𝑻𝑭 𝝈 

- [−] [
𝑔

𝑐𝑚3
] [

𝑚𝑔

𝐿
] [𝑚𝑚𝐻𝑔] [℃] [℃] [𝑚𝑁/𝑚] 

BA 1.671 1 1625 0.1 235-237 105 34.2 

Undecane 6.60 0.7 0.2571 0.6 196 60 25 

Heptane 4.47 0.7 3.554 45.2 97-99 -4 21.6 

Xylene 3.12 0.9 242.4 7 143-145 32 28.8 

Toluene 2.73 0.9 573.1 21 111 4 28.8 
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6.3 Experimental methods 

A combination of conventional batch and microfluidic experiments was performed to characterize the 

extraction performance of the chosen solvents.  

 

6.3.1 Chemicals 

Benzylacetone (BA; synthesis grade; Cas no. 2550-26-7) was purchased from Merck KGaA. Potassium 

carbonate (99+%; Cas no. 584-08-7) was purchased from Acros Organics. All other chemicals were purchased 

from Sigma-Aldrich: 1-Methyl-3-phenylpropylamine (MPPA; 98%; Cas no. 22374-89-6). Pyridoxal 5’-

phosphate monohydrate (PLP; ≥97.0%; Cas no. 41468-25-1). Acetone (Ace; ≥99.5%; Cas no. 67-64-1). 

Isopropylamine (IPA; ≥99.5%; Cas no.75-31-0). Citric acid monohydrate (99.5-102%, Cas no. 5949-29-1). 

Sodium citrate dehydrate (≥99%; Cas no. 6132-04-3). Sodium bicarbonate (99.5-100.5%; Cas no. 144-55-8). 

Undecane (≥ 99%; Cas no. 1120-21-4). Xylenes (Cas no. 1330-20-7). Toluene (≥99.5%; Cas no. 108-88-3). 

Heptane (HPLC grade; ≥99%; Cas no. 142-82-5). 

 

6.3.2 Equipment 

The pumps used in the experimental set-ups were TECAN cavro® XLP6000 pumps (Tecan Systems Inc., San 

Jose, CA, USA) equipped with TECAN cavro® XLP 250 µL syringes (Tecan Systems Inc., San Jose, CA, USA). The 

applied tubing for the systems was PTFE based. Standard HPLC PEEK fittings and connectors were used to 

connect pumps, tubing and micro-scale modules. These items were purchased from Mikrolab Aarhus A/S 

(Højbjerg, Denmark). Sampling was performed with a 10 µL 10F syringe (SGE Analytical Science, Trajan 

Scientific Australia Pty Ltd).  

 

6.3.3 Analytical methods 

The concentration of the substrates and products in aqueous solutions was determined by HPLC (Dionex 

Ultimate 3000) with UV detection (Dionex Ultimate 3000 PDA detector). One method was applied for the 

separation of benzylacetone (BA) and 1-methyl-3-phenylpropylamine (MPPA) and another method was 

applied to separate isopropylamine (IPA) and acetone (Ace). Both methods are isocratic and operate at 30℃ 

with the same column, i.e. a Gemini-NX C18 column (100mmx2mm, 3µm, 110Å, Phenomenex, Torrance, CA, 

USA). The first method is operated with a flow rate of 0.450 mL/min with a mobile phase consisting of 35% 

acetonitrile and 65% Milli-Q water adjusted to pH 11 with NaOH. The retention times for MPPA and BA were 

2.9 min and 3.6 min, respectively. Both BA and MPPA are detected at 215 nm. The second method is operated 

with a flow rate of 0.300 mL/min with a mobile phase consisting of 5% acetonitrile and 95% Milli-Q water 

adjusted to pH 11 with NaOH. The retention times for Ace and IPA were 1.6 min and 2.7 min, respectively. 

Acetone is detected at 265 nm, while IPA is detected at 200 nm.  

 

6.3.4 Batch experiments 

The performed batch experiments were based on the methodology published by Grey et al. [143]. Mixtures 

of the different reaction species, from case study 2 (IPA, Ace, BA, MPPA), were fully dissolved in aqueous 

solutions containing either 100 mM citrate based buffer (pH 3) or 100 mM carbonate based buffer (pH 9.5). 
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The pH of the mixtures were adjusted with HCl after the addition of the reaction species. Each of the two 

buffer solutions represents the aqueous mixture in one of the LLE modules. The aqueous solutions are mixed 

with the organic solvents (volume ratio 1:1, total volume 2 mL) and shaken (900 rpm) for 24 hours at 30℃ 

using a thermomixer (HLC BioTech Model MHR 11, Germany). After 24 hours of mixing, the samples are left 

to phase separate (o rpm) for an additional 24 hours at 30℃ on the thermomixer. 100 µL samples are then 

extracted from the aqueous phases and analyzed by HPLC-UV. The organic phases are not analyzed. Hence, 

the mass balances are closed by assuming that the extracted compounds are located in the solvents, i.e. 

assuming insignificant quantities of the reaction species in the headspace of the vials. Experiments are 

performed in triplicate. 

 

6.3.5 Microfluidic experiments 

The characterization of the microfluidic LLE modules is based on forming slugs by combining streams of 

aqueous mixtures with streams of the different solvents in a standard PEEK Y-connector at the entrance to 

the PTFE LLE modules (the volume ratio remained 1:1). The same types of aqueous mixtures as for the batch 

experiments are applied. The characterization of the modules is performed by varying the flow rates of the 

applied syringe pumps (TECAN Cavro® XLP6000 pumps, 250 µL syringes, Tecan Systems Inc., USA) and varying 

the dimensions of the LLE modules (varying length and varying inner diameters), giving a range of mixing 

times and behavior. The different inner diameters of the applied PTFE tubes are highlighted in Table 6.1. The 

slugs in the microfluidic LLE modules are separated in a mini settler at the outlet of the modules (borosilicate 

HPLC glass vials with micro inserts, 200µL), similar to how Zhao et al. [192] separated the phases. The settlers 

are long and thin to minimize additional extraction of the reaction species while filling the settler (small 

surface to volume ratio). 10 µL samples are extracted from the aqueous phases and analyzed by HPLC-UV. 

The organic phases are not analyzed. Hence, it is necessary to close the mass balances by assuming that the 

extracted compounds are located in the solvents. The experiments are performed in triplicate at ambient 

temperatures. i.e. 22 ± 1℃. The experimental setup is sketched in Figure 6.5. For experiments, where the 

amine(s) is initially added to the solvent, the pH cannot be adjusted during the extraction of the amine, and 

hence the successful execution of these experiments is dependent on the fact that the applied amine 

concentrations do not exceed the buffer strength. 
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Figure 6.5: Microfluidic LLE characterization experimental setup, where R1 and R2 corresponds to the reservoirs containing the 

aqueous and solvent solutions, respectively. 

 

6.4 Results: Preliminary solvent screening 

The first step in the implementation of the proposed LLE based ISPR option is to identify the most suitable 

solvent from the list of selected solvents from section 6.2. It is therefore required to do some basic 

characterization experiments identifying the partitioning and selectivity of the various solvents. Furthermore, 

these basic characterization experiments give a good indication of potential operational problems with the 

applied solvents. 

 

6.4.1 Influence of pH 

An important aspect in the driving force of the two-step LLE ISPR configuration is the pH in the two aqueous 

reservoirs. In the first extraction step, it is required to operate the aqueous phase at a pH close to or above 

the 𝑝𝐾𝑎 value of the amine of interest. This will ensure that a sufficient fraction of the amine is uncharged 

and will thereby drive the extraction into the chosen solvent [193]. In Figure 6.6, it is shown how the pH 

influences the fraction of uncharged amines at various pH values for IPA and MPPA. There is no significant 

difference in the 𝑝𝐾𝑎values of IPA and MPPA and thereby the selectivity of the extraction of MPPA is solely 

dependent on the differences in the hydrophobicity. Hence, the optimal pH for extraction for this reaction 

system is dependent on the optimal pH for the biocatalyst. However, since the characterization of ATA-82, 

in chapter 5, was performed at pH 9.5 and was found to be active and somewhat stable at this pH, this pH 

value is also chosen for further testing. It should be noted that BIOINTENSE partner ULUND investigated the 

performance of the wild type ATA-50 at various pH values and found this catalyst to have optimal 

performance at pH ~8. However, at pH 8 almost all the present MPPA will be in the charged form and the 

driving force for the extraction will be reduced, which is another reason why pH 9.5 is chosen here. Future 

work should focus on coupling the extraction and biocatalyst pH dependence to identify optimal pH 

operational conditions. 
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In the second extraction step, it is important that the pH is kept well below the 𝑝𝐾𝑎 value of the amine of 

interest. This will ensure that the amine is charged and thereby drive the extraction into the aqueous phase, 

which is why it is chosen to operate with pH 3 (𝑝𝐻 3 << 𝑝𝐾𝑎 10.63 for MPPA).  

 

 

Figure 6.6: Influence of pH on the distribution of uncharged amines in solution. 

 

6.4.2 Solvent screening 

For the selected solvents, an initial screening was performed to identify the partition coefficients and 

selectivity of the various reaction species in the given solvents. The screening was performed with aqueous 

mixtures with pH ~3 and pH ~9.5 using 100 mM citrate and 100 mM carbonate based buffers, respectively. 

The screening was performed in batch experiments following the procedure described in section 6.3.4 and 

in triplicate.  

 

6.4.2.1 BA extraction 

Firstly, the partitioning of BA was investigated to identify the impact of the extraction steps on unreacted BA 

from the reactor module. The results are listed in Table 6.3.  

The results show that the aromatic solvents that have similar structure to BA (xylene and toluene) have a 

high affinity for BA and will thereby extract the remaining BA. On the other hand, applying solvents like 

undecane and heptane will minimize the BA loss during operation relative to xylene and toluene due to the 

lower affinity. Another aspect is to apply BA as the solvent that, as long as it is possible to recycle BA 

extensively, will make it possible to minimize overall BA losses.  
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Table 6.3: BA partitioning coefficients (PC) in various solvents, ~10 mM BA dissolved in aqueous buffer solutions at 30 ℃. 

Solvent pH 3.13 pH 9.45 

BA - - 

Undecane 30.6 ± 0.7 26.3 ± 0.3 

Xylene 147 ± 27 137 ± 35 

Toluene 230 ± 94 146 ± 32 

Heptane 33.4 ± 2.5 29.1 ± 1.0 

 

6.4.2.2 Amine extraction 

In addition, a screening of the partitioning of the other reaction species in the various solvents was 

performed. Extraction of BA was not considered in the calculation of the selectivity of the solvent. The reason 

for not including BA in the estimation of the selectivity was because it was desirable to obtain a relative 

measure of the selectivity for the other reaction species. Furthermore, it was the intention to feed BA to the 

aqueous solutions through the solvent. The results for the first extraction step (pH 9.5) are shown in Table 

6.4. 

These results also indicate that the aromatic solvents (BA, xylene and heptane) have a high affinity for 

extracting MPPA. Furthermore, BA was found to have the highest affinity for MPPA making it ideally suited 

for applying the main substrate BA as the extracting solvent in terms of good separation of the main product. 

However, there are operational aspects that make it challenging to apply BA, which is discussed further in 

section 6.4.4. An important feature of all the solvents is their relatively low affinity for IPA, ensuring high 

extraction selectivity for MPPA at pH 9.5, i.e. 𝑠𝑀𝑃𝑃𝐴 ≥ 87.0%. High affinity for IPA would cause severe losses 

of IPA during the extraction. This feature will enable the possibility to apply a large excess of IPA on the 

reaction side of the ISPR setup and recycle IPA to improve the atom efficiency. The affinity for acetone is also 

low. However, acetone build-up is not considered a severe issue in the specific case study, as ATA-82 seemed 

to be able to handle relatively large quantities before a significant loss in activity was experienced, see also 

chapter 5. Furthermore, at higher acetone concentrations it becomes relatively easy to selectively strip off 

the majority of the formed acetone, e.g. Tufvesson et al. [135] easily stripped off all acetone higher than 20 

to 30 mM. 

Experimental results for the second extraction step (pH 3) indicated the partition coefficients to approach 0 

for MPPA. Values of the partition coefficients were found in the range of [0.006:0.02] for all solvents. This 

means that the majority of the extracted MPPA from the first extraction step will be extracted into the low 

pH reservoir. This is also as expected, and it is common that the amines have a high affinity for acidic aqueous 

phases [143,157,158]. It is expected that IPA will behave similarly as MPPA, i.e. IPA extracted in the first 

extraction step will extract into the acidic aqueous phase in the second extraction step [143]. The acetone 

partitioning is not expected to be influenced by changing pH.  
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Table 6.4: Measured partition coefficients and selectivity, in various solvents, of 441 ± 9 𝑚𝑀 IPA, 34.2 ± 0.4 𝑚𝑀 Ace and 8.95 ±

0.02 𝑚𝑀 MPPA at 30 ℃ and pH 9.53.  

Solvent PCi [-] si [%] 

BA 

IPA 0.10 ±0.04 0.2 

Ace 1.24 ±0.05 2.2 

MPPA 55.82 ±9.74 97.7 

Undecane 

IPA 0.03 ±0.02 1.6 

Ace 0.17 ±0.00 8.4 

MPPA 1.83 ±0.01 90.0 

Xylene 

IPA 0.11 ±0.02 1.0 

Ace 0.73 ±0.01 7.0 

MPPA 9.56 ±0.65 92.0 

Toluene 

IPA 0.09 ±0.03 0.7 

Ace 0.86 ±0.08 6.5 

MPPA 12.21 ±0.70 92.8 

Heptane 

IPA 0.07 ±0.02 2.6 

Ace 0.26 ±0.04 10.4 

MPPA 2.20 ±0.05 87.0 

 

An issue with this characterization procedure is that the performed experiments are based on having the 

components dissolved in the acidic aqueous solutions at the start of the experiment. Therefore, a similar test 

was performed with the components initially present in undecane, with 1 M BA, which is similar to the way 

Peng et al. [158] did their investigations. The thermodynamics are not dependent on the initial location of 

the reaction species, which the results from Peng et al. also indicated, but the water solubility in the solvent 

is suspected to influence the degree of protonation and thereby the extraction. In this work it was found that 

performing the extraction experiments in the reverse direction caused the partition coefficients to differ from 

the initially found values, i.e. 𝑃𝐶𝑀𝑃𝑃𝐴 = 0.7 ± 0.1 and 𝑃𝐶𝐴𝑐𝑒 = 0.7 ± 0.2. The analytical method did not 

enable reliable detection of IPA in the aqueous phase.  

The cause of this deviation is suspected to be linked with the highly hydrophobic behavior of undecane 

(𝑙𝑜𝑔 𝑃 =  6.6), which is causing limited quantities of acid to dissolve in the solvent in order to protonate and 

extract the amines. In comparison, Peng et al. applied solvents with more hydrophilic nature (log P < 2). Rehn 

et al. [143] tested undecane, but only reported the partitioning of the extraction from the acidic aqueous 

solution to the solvent. For future work, it could be interesting to test the influence of ionic strength of the 

acid solution on the partitioning and investigate how it will affect the partitioning. 

 

6.4.3 Influence of buffer 

In the scientific literature, it has previously been pointed out that the applied buffer and/or acid 

concentration can significantly influence the partitioning between the phases [154]. Therefore, a simple set 

of tests was performed to investigate the influence of the applied buffers and the initial concentration of the 

reaction species on the extraction performance. For example, will high buffer concentrations cause 
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significant effects on the partitioning or vice versa? The reason for applying buffers for these extraction 

experiments in the first place, is due to the basic nature of the amines that will influence the pH and the 

extraction, where the result of the latter operation is pH dependent. The experiments are based on testing 

how different buffer concentrations in mixtures containing MPPA (~40 mM) influence the extraction. The 

standard mixtures are prepared with and without buffer to identify the influence of the buffer. The solutions 

containing buffer were prepared at pH 3 (100 mM citrate buffer) and pH 9.5 (100 mM carbonate buffer), 

while for the solutions without buffer the pH was adjusted to pH 3 and pH 9.5 by addition of HCl and NaOH 

respectively. BA was applied as solvent for these extraction experiments. The prepared solutions containing 

MPPA with and without buffer were diluted with a solution not containing MPPA and buffers, to see how it 

influenced the extraction. The dilution factor (DF [-]) is determined by: 

𝐷𝐹 =
𝑉𝑡𝑜𝑡𝑎𝑙

𝑉𝑚𝑖𝑥
=
𝑉𝑎𝑞+𝑉𝑚𝑖𝑥

𝑉𝑚𝑖𝑥
   (Eq. 6.6) 

The results from these experiments are shown in Figure 6.7. Noteworthy, these results indicate that the 

buffer does not have a significant impact on the extraction of MPPA. Additionally, these results once again 

underline that the amines tend to remain in the acidic aqueous solution. However, these experiments were 

also based on extraction from the aqueous solutions into BA and not the other way around. In contrast to 

undecane, then BA is not as hydrophobic and thereby the water content in BA might be higher and have less 

influence on the partitioning, as the protonation of the amines might be higher. 

 

 

Figure 6.7: Experimental results indicating the influence of the buffer, relative to no buffer, on the MPPA extraction by BA at various 

initial MPPA concentrations. Left) Experimental results at pH 3.0.  Right) Experimental results at pH 9.6. (∆) and (□) initial MPPA 

concentrations for various dilution factors with and without buffer, respectively.  (○) and (◊) MPPA concentrations for various 

dilution factors with and without buffer after extraction, respectively.  
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6.4.4 Water solubility in solvent 

Based on the preliminary screening it was found ideal to apply the main substrate as the extracting solvent. 

However, amines are prone to react with acids and form salts [194], which may give some restrictions to the 

application of solvents where significant quantities of water can be dissolved, i.e. solvents with high uptake 

of water should be avoided. It was in this relation experienced that applying BA as extracting solvent caused 

the solvent to become milky white, which is suspected to be caused by salt formation in BA. In Figure 6.8 it 

is shown how the BA phase, with dissolved MPPA and IPA, appears after mixing with water (pH ~6-7), 100 

mM citric acid buffer (pH 3) and HCl (pH ~1). It can be seen that the milky appearance of the solvent is only 

visible with the two acid solutions. The samples were centrifuged to investigate the possibility of splitting the 

salt from the solvent, but the solvent phase maintained turbid after intense centrifugation. Furthermore, 

centrifugation was not suited for the proposed microfluidic two-step LLE ISPR concept.  

In order to avoid this effect it was decided to mainly focus on undecane, which is a highly hydrophobic 

solvent. In relation to this it was tested which quantities of BA that could be dissolved in undecane before 

the milky appearance became dominant. The results from these tests, with various loadings of BA in 

undecane, are shown in Figure 6.9. It is desirable to add BA to undecane in order to apply the first extraction 

step as a BA saturation step as well, i.e. continuously supply BA during the reaction course. It was found that 

BA concentrations below 1.25 M were less prone to causing the milky effect, and therefore it was decided to 

apply 1 M BA concentrations for testing the combined system, which is done in chapter 7.  

 



 
 

99 
 

 

Figure 6.8: Visual test of how the presence of acids and amines in BA causes a milky appearance, i.e. suspected insoluble salt 

formation causes increased turbidity. From left to right: Water (pH ~6-7), 100 mM citrate buffer (pH ~3) and HCl (pH ~1), 

respectively. 

 

Figure 6.9: Visual turbidity investigations of various BA loadings in undecane, to identify optimal BA loading. The BA concentration 

increases from left to right, both top and bottom ([0.5; 0.75; 1.0; 1.25; 1.5; 2.0; 3.0] M BA in undecane, respectively). The top 

picture also indicates that a lower BA concentration reduces the time needed for achieving phase splitting. 

 

 

 



 
 

100 
 

6.4.5 BA supply  

As it is desirable to feed the BA from the applied solvent, which avoids implementation of a feeding strategy 

after the extraction and before the reactor, it is required to identify how the BA will distribute between the 

solvent and the aqueous phase. The partition coefficients determined for BA between the various solvents 

in Table 6.3, can be applied to calculate the minimum required BA loading in the solvents to ensure full BA 

saturation of the aqueous phase. Hence, due to the low partition coefficients for undecane and heptane, 

relatively to xylene and toluene, these solvents are better suited for supplying BA (less BA will be lost in the 

solvent) of the screened solvents. The minimum required BA concentrations in the solvents calculated from 

the measured partition coefficients are presented in Table 6.5. 

 

Table 6.5: Minimum required BA concentrations in the tested solvents for ensuring saturation of the aqueous phase. The applied 

partition coefficients are based on the extraction results presented in table 6.3, which are based on LLE experiments with ~10 mM BA 

dissolved in aqueous buffer solutions at 30 ℃. 

 PC [BA]min 

BA - (mM) 

Undecane 26.3±0.3 288 

Xylene 137±35 1502 

Toluene 146±32 1601 

Heptane 29.1±1.0 319 

 

In addition to the calculated values, this was experimentally verified by testing the partitioning at various 

initial BA concentrations. These results are highlighted in Figure 6.10, where the same trends are observed, 

which is a good indication that the measured partition coefficients are somewhat reliable. However, some of 

the measured concentrations in the aqueous phase exceed the solubility limit of BA in water, which is 

suspected to be a cause of small solvent droplets compromise the sampling. 

 

 

Figure 6.10: Left) Initial BA concentrations, at various dilution factors, in four solvents. Right) The monitored aqueous concentration 

at equilibrium at 30 ℃. DF = 1 corresponds to the initial concentration of BA in the solvents before dilution. 
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6.5 Results: Micro LLE characterization 

Here it is intended to apply microfluidics as a means to obtain an idea about the mass transfer, which is 

important for specifying the required dimensions of the extraction modules. Nevertheless, as mentioned in 

the introduction to this chapter, section 6.1.2, there might be different aspects that make it difficult to 

perform actual scale-up of the measured mass transfer values, i.e. different dominating mixing phenomena 

across scales. However, the measured partition coefficients are not scale dependent making them suitable 

to focus on achieving equilibrium in the extraction steps across scales.  

 

6.5.1 Module dimensions 

Different microfluidic LLE modules consisting of PTFE tubing with various inner diameters (ID) were 

characterized. The different modules were tested with various flow rates (50-500 µL/min) and tube lengths 

(10-75 cm) to change the residence times in the modules. The characterization of the modules was carried 

out with various solvent mixtures and initial concentrations of the reaction species present in the IPA case 

study presented in chapter 4. The acquired experimental data is fitted with the model defined in eq. 6.2 to 

determine the overall mass transfer coefficient and based on the estimated equilibrium concentrations the 

partition coefficients are determined based on eq. 6.4. The estimation was performed in MATLAB® using the 

fminsearch function, where the difference between the experimental data and the model predictions is 

minimized by changing the input parameters, i.e. 𝐾𝐿𝑎 and 𝐶𝑖,𝐿1
∗ .  

The estimated parameters and the experimental conditions are presented in Table 6.6. Examples of the 

model predictions relative to experimental data are shown in Figure 6.11 and Figure 6.12 for pH 9.51 and pH 

3.03, respectively. The uncertainty of the single point measurements, determined by the experiments 

performed in triplicate, is implemented in the parameter estimation as a weight factor (E).  

 

𝐸𝑖 =

(

  
 

1

𝜃1,𝑖
2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝜃𝑛,𝑖
2
)

  
 

 

, where 𝜃𝑛,𝑖 [mM] is the uncertainty in the  𝑛𝑡ℎ measurement for component 𝑖.  

This weight factor is multiplied with the matrix of residuals of the experimental results relative to the model 

predictions in the fminsearch function. The uncertainty of the estimated parameters is evaluated based on 

the bootstrap method [195], which is applying random sampling with replacement from the residuals of the 

experimental data relative to the model predictions.  

The microfluidic characterization experiments were not applied for characterizing the extraction of IPA and 

Ace. The relatively small partition coefficients determined in the batch experiments will only cause small 

quantities of the added IPA and Ace to be extracted. This in combination with the poor sensitivity of the HPLC 

method to detect these compounds makes it unreliable and difficult to determine the extraction of these 

compounds accurately, i.e. it is difficult to distinguish small changes over time considering the uncertainty of 

the analytical method. It would require an improved and sensitive analytical method to get reliable 

predictions of the extraction performance of these compounds. It was however not the focus of this thesis 

to go further in the direction of developing such an improved HPLC method.  
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Figure 6.11: Model predictions relative to experimental data for the first extraction from a pH 9.51 aqueous mixture of the reaction 

species into undecane, with 309 mM BA. 

 

 

Figure 6.12: Model predictions relative to experimental data for the second extraction from undecane, with 507 mM BA, into a pH 

3.03 aqueous solution. 

 

From the results, it is not possible to identify unique trends in the estimated overall mass transfer coefficients 

relative to the ID of the applied PTFE tubes. If accounting for the surface area to volume ratio, one can argue 

that there are some trends of improved mass transfer with decreasing ID, but there are many exceptions 

and/or outliers in the results making it unreliable to make definitive conclusions from these data. The reasons 

for these deviations are most likely associated with errors caused by the manual experimental approach and 



 
 

104 
 

in a lesser degree with altered mixing effects in the various LLE modules. A problem in the estimation of the 

mass transfer coefficients is the lack of data in the region where mass transfer is dominating, i.e. most of the 

acquired data appears close to the equilibrium concentration and thereby the mass transfer effects are not 

caught by the experimental method. Furthermore, there can easily be measurement time errors in the range 

of ±1 seconds in the given experimental setup caused by delays in the system that increase the effective 

extraction time. For example, the need for a settler will cause additional mass transfer while the phases split, 

and this will influence the results. The additional mass transfer before phase separation in the settler and 

mass transfer at the interface make it difficult to assess data in the mass transfer region. The interfacial area 

of the micro inserts is ~9.6 mm2 while the surface area in the various tubes and the tube lengths are in the 

range of 7.5-1177.5 mm2. However, the mass transfer at the interface is slow relative to the mass transfer 

distances in the settler and will have a minor effect. Therefore, the residence time of the two phases in the 

settler before splitting will cause overestimation of the mass transfer coefficients, i.e. it introduces longer 

residence times. Because of the surface area to volume ratio of the droplets in the different tubes and 

thereafter in the settler, this effect will be more prominent for smaller bubbles relative to larger bubbles. 

Assessing data in the mass transfer dominated region, with improved accuracy, for this type of experiments 

can be achieved by implementing in-line analytics. Alternatively or in combination, it is possible to implement 

a settler module where the residence time and interfacial area are known precisely. Therefore, in conclusion 

the applied manual experimental setup is not suited for determination of mass transfer coefficients, but 

merely useful for determination of equilibrium concentrations and thereby partition coefficients. 

The measured saturation concentration, 𝐶∗, of BA in the experiments is in many cases higher than the 

maximum aqueous solubility (see Table 4.4 in chapter 4). Droplets of solvent being transferred during the 

sampling, which gives erroneous measurements, will potentially cause this result, and due to the high 

concentration of BA in undecane, it has a significant impact. This can be overcome with in-line monitoring of 

BA, which also avoids manual sample handling. 

The determined partition coefficients for MPPA with undecane as the solvent are in good correlation with 

the values determined via batch experiments. It is however noteworthy that the second extraction step also 

shows that the extraction of MPPA from undecane into the aqueous solution with pH 3 is not complete. Once 

again, this confirms that the direction of the performed extraction makes a difference when applying highly 

hydrophobic solvents. 

The determined partition coefficients for MPPA, with BA as the solvent, deviate significantly from the values 

obtained with the batch experiments. The cause of this was not investigated in detail as it was decided to 

apply undecane as the solvent at this point of time. A potential cause may be the differences in temperature 

between the batch and microfluidic experiments. The temperature difference between batch and 

microfluidic experiments was approximately Δ𝑇 ≈ 8℃. Furthermore, a cause may be erroneously 

determined pH value that will give cause to altered partitioning. At pH 9.5 small deviations of the pH will 

have a large influence on the fraction of uncharged MPPA and thereby the extraction.  

The applied pumps for the micro LLE characterization experiments are highly accurate and thereby the flow 

rates and ratios between the solvent and the aqueous streams are considered highly accurate. The only cause 

of deviations is in these cases where air bubbles occur in the experimental setup. However, extensive efforts 

were made before each experiment to avoid the presence of any air bubbles, e.g. by flushing through the 

system and the syringes extensively. 
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From these investigations, it was found that most of the tested LLE modules and residence times resulted in 

extractions that were close to the equilibrium concentrations. Hence, the given modules will enable the 

combined two-step LLE system to be operated as equilibrium steps. Therefore, it was decided to apply 

oversized LLE modules (250 µm ID and lengths of 30 cm that result in ~15 µL dead volumes) for the combined 

system, enabling some flexibility to alter flows in the system without compromising the extraction 

performance.   

 

6.5.2 Extraction optimization 

Despite the challenges of applying the current microfluidic experimental setup to determine mass transfer 

coefficients accurately, it has a lot of potential for extraction optimization. Small modifications to the setup 

will enable fast testing of various extraction conditions, e.g. pH and temperature. For example, 

implementation of a pH sensor in the aqueous stream, before the inlet to the LLE modules, will make it 

possible to test the influence of changing pH on the extraction and equilibrium in a fast and easy manner 

(buffers are prepared and mixed upstream of the sensor). Another modification is to implement temperature 

control of the LLE modules, which will enable the possibility to test the influence of temperature on the 

extraction performance.  

These modifications in combination with a battery of aqueous buffer solutions and solvent mixtures 

connected to multiple pumps before the LLE module will facilitate the possibility of operating this setup as a 

microfluidic high throughput, extraction characterization platform in the future.  

However, in order to ensure the high throughput, improve data accuracy and avoid extensive manual 

sampling it is required to consider the implementation of on-line or in-line analytics as well. If a continuous 

settler had been put in place, it would have been possible to apply the on-line HPLC system from chapter 5 

for characterization of ATA-50 and ATA-82. However, implementation of NIR spectroscopy was attempted 

here as such an in-line analysis method. The choice for NIR was made partly because a continuous settler 

was not readily available and because in-line spectroscopy was thought to simultaneously provide 

information about slug size distributions at various conditions and dimensions. NIR relative to other 

spectroscopic methods was chosen due to the availability of the equipment.  

In order to determine the slug size distribution it is required that the data acquisition rate of the NIR 

equipment (Networkir, Q-interline/ABB Inc.) is fast relative to the linear velocity in the LLE modules. The 

available equipment and software (Grams/AI, Thermo Galactic) have a maximum acquisition rate of 1 

spectrum per second, which makes it difficult to test droplet size distributions at a variety of different flow 

rates. In Figure 6.13 two examples are shown of such droplet size distribution data at various flow rates. A 

challenge for the data collection is when the linear velocity of the slugs exceeds the data acquisition rate, 

making it difficult to determine the start and end of each droplet, and thus making it difficult to distinguish 

between the different slugs. 

From the presented data, it can be seen that each time an aqueous slug passes by the optical fiber the 

absorbance detection is saturated, i.e. water absorbs strongly in the NIR wavelength range. This feature 

enables the possibility to determine droplet size distributions if the data acquisition is accelerated, e.g. by 

means of updated software and/or equipment. 



 
 

106 
 

 

Figure 6.13: Examples of NIR spectra at various wavelengths of water slugs in BA and PTFE tubing for two different flow rates, i.e. 
at a low (left) and a high (right) flow rate. 

 

Despite the fact that the available equipment was not ideally suited to determine droplet size distributions 

accurately, it was still tested if the equipment could be applied to measure different amines and ketones in 

solvents. In this relation, mixtures were prepared and tested (1 cm path length). The composition of the 

tested mixtures in BA as solvent are presented in Table 6.7, and the measured spectra, with various 

backgrounds, are shown in Figure 6.14. 

The results indicate that the different compounds in the mixtures have significant absorbance in the 

wavelength range from 7500-4500 cm-1. In order to distinguish between the compounds it is necessary to 

apply chemometrics. However, in this specific region water is also absorbing strongly making it difficult to 

develop an accurate PLS model in the presence of small quantities of water in the solvent. Alternatively, the 

water content in the solvent can be determined by the PLS model, if the content does not cause the NIR 

spectra to be saturated. In Figure 6.15, the absorbance of water in the NIR region is shown relative to the 

absorbance of the amines and ketones. In case water is saturating the spectra it is possible to minimize the 

path length of the sensors, but this will at the same time compromise the absorbance intensity of the amines 

and ketones. Applying highly hydrophobic solvents, e.g. undecane, may reduce the impact of water 

absorbance due to the low water solubility and make NIR applicable in such cases. However, because of the 

impact of water absorbance in most solvents it was assessed that NIR is not generally applicable and thereby 

not pursued further in this project. 

Table 6.7: Dilution sequences of a standard reference sample in BA. 

 ACP MPPA (S)-PEA 
Ref. 1 0.35 M 0.33 M 0.35 M 

Dil. 1 0.18 M 0.17 M 0.17 M 

Dil. 2 0.058 M 0.055 M 0.058 M 

Dil. 3 0.0083 M 0.0079 M 0.0083 M 
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Figure 6.14: At-line spectral data based on the dilution sequence from table 1, with air and BA as the background (the solvent is 
BA), the path length is ~5 mm and the material used is a glass vial. 

 

 

 

Figure 6.15: Example of spectra of aqueous mixtures with 10 mM BA, MPPA, MBA and ACP with water as the background. The 

spectrum of water with air as the background (black line) is also shown for comparison. The noise in the spectra occurs in the 

regions where water saturates the absorbance, which is in the same regions where the tested components are detectable making 

it challenging to apply NIR for analysis. 
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6.6 Conclusion 

In this chapter the potential of applying microfluidics, combined with conventional batch methods, was 

assessed for the development of product recovery strategies for ATA processes based on LLE. This was done 

by characterizing single step microfluidic LLE modules for putting in place a two-step LLE concept, which is 

described in chapter 4, for the selective extraction of MPPA from mixtures also containing BA, IPA and Ace. 

In this relation, multiple solvents were screened for their capacity to selectively separate MPPA from the 

mixtures. The screening results indicated that applying the main substrate BA as the solvent gave the best 

selectivity and capacity for extracting MPPA. However, the aqueous solubility of this solvent gave an issue 

with what is believed to be salt formation in the solvent. Therefore, it was found more suitable to apply a 

highly hydrophobic solvent, undecane, with 1 M of BA dissolved. BA was added to the solvent to enable 

simultaneous extraction of MPPA and feeding of BA in the extraction steps. 

In the process of characterizing the two extraction steps, it was found that the applied microfluidic 

experimental platform gives some advantages in comparison to conventional batch experiments. The 

advantages include the potential for high-throughput extraction characterization and optimization. In 

addition, it was identified that the implementation of on-line and/or in-line analytical methods, when 

possible, will greatly increase the throughput and the quality of acquired data. 

In conclusion, it is decided to apply oversized LLE modules (250 µm ID and lengths of 30 cm that result in ~15 

µL dead volumes) for performing tests with the combined system proposed in chapter 4. This will give 

sufficient flexibility to alter flow rates in the combined system without compromising the extraction 

performance in the two modules. 
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Chapter 7  

ISPR testing by combined microfluidic 

modules 
 

The development of biocatalytic processes is greatly dominated by the application of batch-based 

technologies, e.g. well plates and glass vials. A limitation to the batch based approaches is that it is not 

possible to test and validate complex process options and scenarios. For example, in conventional batch 

based technologies it is very difficult to test and validate complex ISPR and IScPR concepts that are not 

implemented internally and directly in contact with the applied biocatalyst. It is always desirable to keep the 

process as simple as possible, but in some cases it can be beneficial to consider more complex alternatives, 

such as when severe inhibitory effects from products are of concern.  

Therefore, the purpose of this chapter is to emphasize the potential of applying combined microfluidic 

modules (plug-and-play) in order to test complex biocatalytic process concepts. More precisely this is done 

by combining microfluidic modules to experimentally test the two-step LLE ISPR concept proposed in chapter 

4 (also shown in Figure 7.1). Additionally, in order to get a better understanding of the dynamic behavior of 

the evaluated ISPR concept, a simple mathematical model describing the system is developed. 

Similarly, to the previous chapters, the ATA facilitated asymmetric synthesis of MPPA from BA using IPA as 

the amine donor forms the basis for the case study in this chapter. Furthermore, as shown in chapter 5 

increasing MPPA concentrations caused a significant reduction in the rate of the tested ATAs, which 

motivates the implementation of and efficient ISPR strategy. 

 

Figure 7.1: Flowsheet of the two-step liquid-liquid extraction ISPR concept for selective removal of hydrophobic amines from ATA 
processes, which was introduced in chapter 4. This chapter will focus on the entire setup. [AD]: Amine donor, [S]: substrate, S1: 
solvent, [P]: product, R1(a): reactor module, R1(b): 1st LLE module and R1(c) 2nd LLE module. 
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[P][AD]
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7.1 Introduction 

A generic methodology was presented earlier in chapter 4 to select appropriate ISPR/IScPR options according 

to specific ATA process limitations and pure component properties. Moreover, chapter 4 highlights general 

ISPR/IScPR implementation strategies and requirements. However, when suitable ISPR/IScPR options and 

implementation strategies are identified, further identification of their performance is required. A way to 

approach this objective is through extensive experimental characterization and modelling of the isolated 

single process steps of the identified strategy. However, testing single process steps will only provide an 

indication of the performance under artificial conditions and, possibly, fail to catch the dynamics of the 

combined process. Microfluidics, when compared to conventional batch methods, gives a distinct advantage 

by providing an easier way of testing combined complex biocatalytic processes, in a plug-and-play manner 

[196]. Furthermore, it is useful to identify the influence of different process steps on each other and, hence, 

aid in understanding the actual dynamic behavior of the system, contributing to the development of more 

reliable descriptive system models. Therefore, the main goal of this chapter is to underline the advantages 

of applying microfluidics for testing complex ISPR concepts, which are difficult to perform by means of 

conventional batch process based methods. 

The focus of the present chapter is to apply microfluidics to test the performance of the two-step LLE ISPR 

concept (firstly presented in chapter 4, shown in Figure 7.1), where hydrophobic amines are selectively 

separated from hydrophilic amines. 

The ISPR concept is inspired by the solvent bridge concept published by Yun and Kim [141], which has later 

been modified, to a supported liquid membrane (SLM) concept, and has been explored for chiral amine 

production applications by Rehn et al. [143] and Börner et al. [144]. Up to now, very limited work has been 

presented on the application of different combinations of microfluidic modules for ISPR testing of biocatalytic 

processes [70]. Therefore, this is also one of the most significant contributions of this work. The microfluidic 

setup ( ≤ ~5 𝑚𝐿), in comparison with the already tested SLM concept (≥ ~60 mL [143,144]), enables 

experimental testing with at least a factor 12 lower volumes. In addition, simultaneous substrate supply and 

product extraction are performed in the two-step LLE modules. Furthermore, a mathematical model has been 

developed to describe the dynamic behavior of the system as well.  

In line with the previous sections, the case study of interest for testing the ISPR concept is the formation of 

MPPA from BA using IPA as the amine donor (case study 2) and applying undecane with dissolved BA as the 

solvent. The motivation for testing this ISPR concept, for this specific reaction, is related to the outcome of 

the ATA-50 and ATA-82 characterizations in chapter 5. There it was identified that increasing MPPA 

concentrations cause a drastic reduction of the reaction rates for both of the tested biocatalysts. 

Furthermore, in chapter 6 it was found that undecane is a suitable solvent for performing actual tests with 

the proposed ISPR system. 

 

7.1.1 Two-step Extraction dynamics 
In the proposed two-step LLE ISPR concept, the partitioning between the different phases and the degree of 

conversion achieved in the microfluidic packed bed reactor, controls the dynamics of the system.  Because 

the two LLE steps operate as equilibrium steps, these parts of the system are not rate dependent. The ISPR 
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concept can be divided into three elements: 1) the reactor module, R1(a), 2) the 1st LLE module, R1(b), and 

3) the 2nd LLE module, R1(c), where the functionality of each module is illustrated in Figure 7.2.  
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Figure 7.2: Schematic illustration of the functionality of each element in the proposed ISPR concept, where pH 9.5 and pH 3 are 
chosen as operating conditions in the two LLE modules. 

 

In the reactor module, R1(a), the Immobilized ATA-82 will convert BA and IPA into MPPA and Ace. In the 1st 

LLE module, R1(b), the formed MPPA, along with small quantities of the other reaction species, will be 

extracted by the applied solvent. The high pH will cause only a fraction of the amine compounds to be 

uncharged and thereby they can be extracted. In the 2nd LLE module, R1(c), the extracted components from 

R1(b) will be extracted into the low pH aqueous phase, i.e. by protonation of the amine compounds in the 

solvent. The relative quantities depend on the partitioning of the reaction species. The combination of these 

dynamic effects is shown in Scheme 1.  
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Scheme 7.1: Simplified scheme of the dynamic behavior of the component 𝑖 between the different phases in the two-step LLE ISPR 
system, and the effect of the biocatalyst causing a change in the quantities of the reaction species in the system. 

 

An important aspect of this ISPR concept, is the ability of the LLE modules to ensure low MPPA concentrations 

in the reactor, i.e. shown by R1(a) and R1(b). This is directly influenced by the residence time and loading in 

the reactor module, in combination with the solvent to aqueous phase ratio in the extraction modules and 

the partitioning. For example, in the 1st LLE module it might be beneficial to have an excess of the solvent 

relative to the aqueous solution to reach minimal product concentrations in the aqueous phase. Excess in 

the LLE modules refers to the volumetric flow rate and not the overall volume ratio, as it would compromise 

the final product titer. The reservoirs form a limitation of the system, which causes prolonged response times 

and thereby influences the time it takes to reach equilibrium between the phases. 

The efficiency of the ISPR concept can be defined as the ability to recover the desired product relative to the 

recovery of the other compounds. A way of evaluating this is by identifying the degree of recovery and purity 

of the amine product in the low pH reservoir throughout the course of reaction. The product recovery and 

purity are defined as shown in equations 7.1 and 7.2, respectively. 

𝑅∗ =
𝑚𝑖
𝑝𝐻 3(𝑡)

𝑚𝑖
𝑡𝑜𝑡(𝑡)

∙ 100%                       (Eq. 7.1) 

, where 𝑚𝑖
𝑝𝐻 3(𝑡) [g] and 𝑚𝑖

𝑡𝑜𝑡(𝑡) [g] represent the recovered quantity, of component 𝑖, in the pH 3 reservoir 

and the total quantity in the system, respectively. 

𝑃∗ =
𝑀𝑖∙𝐶𝑖

𝑝𝐻 3(𝑡)

∑ 𝑀𝑖∙𝐶𝑖
𝑝𝐻 3(𝑡)𝑖=1

𝑛

∙ 100%                          (Eq. 7.2) 

, where 𝑀𝑖 [g/mol] is the molar mass of component 𝑖 and 𝐶𝑖
𝑝𝐻 3(𝑡) [mol/L] is the molar concentration of 

component 𝑖 in the product reservoir. 

 

7.2 Materials and Methods 

The chemicals, equipment and off-line analytical methods described in the materials and methods sections 

in chapter 5 and 6 are also applied here. Only the experimental method differs. 

 

7.2.1 Experimental method 
The combined system consists of a packed bed reactor module and two LLE modules. The applied PBR reactor 

consists of a glass cylinder with PEEK connectors in the top and bottom (ID = 10mm, L = 11mm, V ≈ 864 µL). 

The two LLE modules consist of PTFE tubing (ID = 0.25mm, L = 300mm, V ≈ 15 µL). 
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The flows in the system are obtained by operating 4 TECAN cavro® XLP6000 pumps (Tecan Systems Inc., San 

Jose, CA, USA) equipped with TECAN cavro® XLP 250 µL syringes (Tecan Systems Inc., San Jose, CA, USA). The 

pumps are equipped with an inlet tube (ID = 1 mm, L = 300mm, V ≈ 236 µL) and an outlet tube (ID = 0.25 

mm, L = 200mm, V ≈ 10 µL), all composed of PTFE. The tubes, pumps and the microfluidic modules are 

connected by standard PEEK flangeless fittings. The solvent and aqueous streams are combined before the 

LLE units in standard PEEK Y-connectors. Two glass vials (2 mL borosilicate glass, 8x70mm) are applied in the 

combined system as both settlers and reservoirs. The reservoirs are sealed with caps with PTFE septum. The 

various tubing entering into the reservoirs only come in through the septum. The flow scheme of the setup 

with the relative locations of tubing, modules and reservoirs/settlers is presented in Figure 7.3. 

 

R1(a)

R1(b) R1(c)

VS1

V2

VS2

V1

P1

P3
P4

P2

 

Figure 7.3: Microfluidic experimental setup. P1-P4 syringe pumps with 250 µL syringes, V1 and V2 aqueous reservoirs 1 mL of pH 
9.5 and pH 3, respectively, Vs1 and Vs2 solvent reservoirs 750 µL. R1(a) PBR, R1(b) 1st LLE module, R1(c) 2nd LLE module 

 

One reservoir is initially filled with 1000 µL (V1) of a pH 9.5 mixture (100 mM carbonate buffer solution with 

10 mM BA, 500 mM IPA and 0.1 mM PLP) and 750 µL (VS2) undecane with 1 M BA dissolved. The second 

reservoir is initially filled with 1000 µL (V2) of a pH 3 mixture (100 mM citrate buffer) and 750 µL (VS1) 

undecane with 1 M BA dissolved. The buffer concentrations will be the limiting factor for the quantities of 

amines that can be removed and added to the two aqueous reservoirs before the pH changes significantly. 

Magnets are placed in the bottom of each reservoir providing mixing of the aqueous phases. Before 

initializing the experiments, the respective solutions are flushed through the system and disposed of.  This 

serves the purpose of priming the system, by removing air bubbles and filling dead volumes with the 

respective solutions. 

The loading of the PBR module is determined by weight and the pH 9.5 mixture is applied to dispense the 

particles before sealing the packed bed, hence, enabling easy removal of air bubbles that can potentially be 

stuck in the PBR. Before testing the combined system, the performance of the PBR module is evaluated by 

flushing the standard pH 9.5 mixture through, at various flow rates, followed by measuring the achieved 

conversion. 
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The tests are performed with the reactor module submerged into a water bath (30℃) on a magnetic stirrer 

(IKA® C-MAG HS7 - Werke GmbH & Co. KG, Staufen, Germany). The two reservoirs and LLE modules are 

operated at ambient conditions (22±1℃) and the pumps are set to operate with a flow rate of 250 µL/min. 

Sampling is performed by introducing a 10 µL syringe (10F syringe SGE Analytical Science, Trajan Scientific 

Australia Pty Ltd) through the PTFE septum into the lower aqueous reservoir. 

In cases where the system is tested without a reactor module, the sizes of the reservoirs are altered to: V1 = 

10 mL, V2 = 2 mL, VS1 = 1 mL and VS2 =2 mL. In those experiments, the applied solvent(s) are used without 

added BA, and the pH 9.5 mixture contains: ~8.5 mM MPPA, ~6.5 mM BA, ~50 mM Ace and ~250 mM IPA. 

 

7.3 System model 

A model of the system (Figure 7.3) is developed to get in depth understanding of the dynamic behavior of 

the ISPR concept. The developed model divides the proposed two-step LLE ISPR strategy into different 

modules and equilibrium steps describing the different functionalities. The model is composed of four 

reservoir modules, two liquid-liquid extractor modules and a reactor module, all connected by streams S1-

S9. Figure 7.4 shows the different modules and respective streams as they interact in the model.  

PBR
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Figure 7.4: Visualization of the different modules and streams included in the developed model. F1-cycle is the high pH and reactor 
side of the system. Sol1-cycle is the solvent cycle in the system and F2-cycle is the low pH extracting side of the system. PBR: Packed 
Bed Reactor. CST1: High pH aqueous reservoir. CST2: Solvent reservoir on top of the low pH reservoir. CST3: Solvent reservoir on 
top of the high pH reservoir. CST4: Low pH aqueous reservoir. LLE1: 1st LLE module. LLE2: 2nd LLE module. S1-S9: The different 
streams in the system. 

 

Noteworthy is that the concept of the model should be applicable to predict the dynamic behavior of the 

SLM concept exploited by Rehn et al. [143] and Börner et al. [144].  It would require small modifications of 
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the dynamic behavior of the solvent cycle, which is stagnant in the SLM. Verifying the general applicability of 

the developed model for two-step LLE based ISPR options was outside the scope of this work. 

In the model, the reservoirs are defined as well mixed continuous stirred tanks (CST). However, this is a rough 

approximation as the experiments are performed with low intensity mixing in CST1 and CST4 solely. No active 

mixing was applied in CST2 and CST3. The change in the outlet concentration of component 𝑖 (BA, IPA, MPPA 

and Ace) from these reservoirs can then be described by the following equations: 

CST1:  
𝑑𝐶𝑖,1

𝑑𝑡
=
𝐹1

𝑉1
∙ (𝐶𝑖,3 − 𝐶𝑖,1)                       (Eq. 7.3) 

CST2:   
𝑑𝐶𝑖,4

𝑑𝑡
=

𝑆1

𝑉𝑠1
∙ (𝐶𝑖,7 − 𝐶𝑖,4)                       (Eq. 7.4) 

CST3:   
𝑑𝐶𝑖,6

𝑑𝑡
=

𝑆1

𝑉𝑠2
∙ (𝐶𝑖,5 − 𝐶𝑖,6)                       (Eq. 7.5) 

CST4:   
𝑑𝐶𝑖,8

𝑑𝑡
=
𝐹2

𝑉2
∙ (𝐶𝑖,9 − 𝐶𝑖,8)                       (Eq. 7.6) 

, where 𝐹1 [𝑚𝐿/𝑚𝑖𝑛], 𝐹2[𝑚𝐿/𝑚𝑖𝑛] and 𝑆1[𝑚𝐿/𝑚𝑖𝑛] correspond to the flow rates in the two aqueous cycles 

and the solvent cycle, respectively. 𝑉1[𝑚𝐿] and 𝑉2[𝑚𝐿] are the volumes of the high and low pH reservoirs, 

respectively. 𝑉𝑆1[𝑚𝐿] and 𝑉𝑆2[𝑚𝐿] are the volumes of the two solvent reservoirs located on top of the low 

and high pH aqueous reservoirs, respectively. 𝐶𝑖,1−9 corresponds to the concentrations of component 𝑖 in 

the different streams S1-S9. 

The two LLE modules are modelled by assuming that in each pass the solvent and aqueous streams reach 

equilibrium, which should be a good approximation based on the chosen LLE module designs (described in 

chapter 6). The partition coefficient relationship of each component is applied to describe the partitioning 

relative to the flow rates of the two fluids. Based on the mass balance over the LLE modules, it is possible to 

derive the following expressions to determine the outlet concentrations, assuming 𝐹1 = 𝑆1 = 𝐹2 (similar to 

how the experiments are operated): 

LLE1 (Aq.):   𝐶𝑖,3 =
1

1+𝑃𝐶𝑖,1
∙ (𝐶𝑖,2 + 𝐶𝑖,4)                        (Eq. 7.7) 

LLE1 (Sol.):   𝐶𝑖,5 = 𝐶𝑖,4 + (𝐶𝑖,2 − 𝐶𝑖,3)                       (Eq. 7.8) 

LLE2 (Aq.):   𝐶𝑖,9 =
1

1+𝑃𝐶𝑖,2
∙ (𝐶𝑖,8 + 𝐶𝑖,6)                       (Eq. 7.9) 

LLE2 (Sol.):   𝐶𝑖,7 = 𝐶𝑖,6 + (𝐶𝑖,8 − 𝐶𝑖,9)                     (Eq. 7.10) 

, where 𝑃𝐶𝑖,1 [-] and 𝑃𝐶𝑖,2 [-] are the partition coefficients of component 𝑖 in the 1st and 2nd LLE module, 

respectively. For BA there is a limitation to the application of the partition coefficients as the concentration 

in the aqueous mixtures cannot exceed the solubility limit of BA in water, i.e. in cases with high BA 

concentration in the solvent then 𝐶𝐵𝐴,3 = 𝐶𝐵𝐴
∗  and 𝐶𝐵𝐴,9 = 𝐶𝐵𝐴

∗ . For this particular case study, the other 

components in the system are not operated close to their respectively solubility limits. 

It is possible to implement the applied PBR modules as large series of continuous stirred tank reactors 

(CSTRs), which are easier to describe and implement in MATLAB® than as a PBR. A large number of CSTRs in 



 
 

116 
 

series will approximate the behavior a PBR. The behavior of the PBR modules with reaction can be described 

by: 

   
𝑑𝐶𝑖,𝑥

𝑑𝑡
=
𝐹1

𝑉𝑥
(𝐶𝑖,𝑥−1 − 𝐶𝑖,𝑥) ± 𝑟𝑖,𝑥−1 ∙

𝑊𝑥

𝑉𝑥∙10
−3 

         (Eq. 7.11) 

, where 𝑋 [-] corresponds to the number of CSTRs in series, i.e. discretization of the PBR. 𝑉𝑥 [𝑚𝐿] and 

𝑊𝑥  [𝑚𝑔𝑒𝑛𝑧] are the volume and biocatalyst loading in each of the CSTRs, respectively. The term 

±𝑟𝑖 [𝑚𝑚𝑜𝑙/𝑚𝑖𝑛./𝑚𝑔𝑒𝑛𝑧] corresponds to the rate of formation, which is positive for the products of the 

asymmetric synthesis (formation) and negative for the substrates (consumption).  

A rate expression for the forward reaction of the given case study was previously determined and presented 

in chapter 5. However, due to the specific laminar flow profile for that reactor module at the given 

operational conditions, the derived rate expression is unique for the tested reactor modules and not feasible 

in other modules. A larger reactor module was applied for testing of the combined system, due to the 

presence of larger quantities of PVA particles with a larger average diameter of 3-4 mm relative to the smaller 

particles applied for the characterization performed in chapter 5. Consequently, this change in reactor 

module did not enable the possibility of implementing the reactor performance into the proposed model 

framework.  

In the tested cases without a reactor module, the PBR functionality can be excluded from the model by 

implementing equation 7.13 that represents the PBR when no reaction is occurring. 

   
𝑑𝐶𝑖,2

𝑑𝑡
=
𝑑𝐶𝑖,1

𝑑𝑡
             (Eq. 7.12) 

 

7.4 Results 

Here the proposed two-step LLE ISPR concept is tested using a combination of microfluidic. The experimental 

results consist of three parts: 1) identifying extraction performance without PBR modules, 2) identifying 

system performance with PBR modules with ATA-82 immobilized in PVA, and 3) Identifying the system 

flexibility, by testing ATA-50 immobilized by chitosan. The developed model is applied in parallel with the 

experiments without PBR modules. 

 

7.4.1 Preliminary testing 
A set of preliminary experiments, without reactor modules, were performed to verify that the microfluidic 

system, with the proposed ISPR setup, works as intended. This form of testing will aid in identifying operating 

difficulties and the overall extraction performance. Furthermore, excluding the reactor module makes it 

accessible to evaluate the performance of the model to understand the dynamic behavior of the two-step 

LLE and, potentially, identify losses in the solvent phase. 

The set of preliminary experiments were performed in triplicate with undecane, xylene and toluene as 

solvents. The achieved results for each of the applied reaction species (BA, IPA, MPPA and Ace) are 

highlighted in the following sections. 
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7.4.1.1: Benzylacetone (BA) 

The measured concentrations of BA over time, in the high and low pH reservoirs, are highlighted and shown 

for the three tested solvents in Figure 7.5. Additionally, the BA concentration predicted by the model in the 

two reservoirs is presented. For the model, it is assumed that BA in the aqueous streams entering the LLE 

modules will fully extract into the solvent (no initial BA in the solvent), which is a good approximation relative 

to the measured partitioning coefficients (values presented in Table 6.3 in chapter 6). 

The experimental results and the model predictions are shown to be consistent (Figure 7.5), which forms a 

strong indication that the model represents the dynamics of the system properly (behavior of the main 

substrate in the two reservoirs for all three solvents being tested). There is a small increase in the BA 

concentration in the pH 3 reservoir for the undecane experiments. This is believed to be a result of the lower 

partition coefficient of BA in undecane relative to the other solvents, which will cause a higher quantity of 

BA to appear in the aqueous reservoirs (results presented in Table 6.3 in chapter 6). This can be accounted 

for by directly implementing the measured partition coefficients of BA in the model. However, for 

experiments including PBRs and dissolved BA in the solvent, the aqueous phases will appear completely 

saturated with BA and, therefore, no additional efforts were made to include this in the model. 

 

 

Figure 7.5: Comparison of model predictions relative to experimental results of BA in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), Xylene (ӿ), and Toluene (□) as solvents. The dotted, full and dash-dotted lines indicate the model predictions of 
BA in undecane, xylene and toluene, respectively. The model assumed full partitioning of BA into the solvents. 
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7.4.1.2: Isopropylamine (IPA) 

Similarly, the measured time dependent IPA concentrations in the two reservoirs were compared to the 

model predictions. These results are shown in Figure 7.6. Interestingly, here the model fails to predict the 

behavior of IPA in the two reservoirs. It is believed that this is due to the uncertainty of the measured 

parameters, i.e. partition coefficients of IPA (Table 6.4 in chapter 6). Furthermore, the applied analytical 

method for identifying the IPA content is highly inaccurate, which is also, reflected in the large deviations in 

the measured IPA concentrations in the reservoirs.  

Consequently, the extraction of IPA in the system is excluded from the model by fixing the partition 

coefficients of IPA in both reservoirs to 0, i.e. 𝑃𝐶𝐼𝑃𝐴,1 = 𝑃𝐶𝐼𝑃𝐴,2 = 0. This avoids the erroneous prediction of 

the IPA extraction for experiments where reactor modules are implemented. This assumption will also 

maintain the IPA concentration in the pH 9.5 reservoir artificially high, which will influence the rate of 

reaction. However, this assumption will be applicable when operating with an initial IPA concentration of 500 

mM or higher, 3 times higher than the determined 𝐾𝐼𝑃𝐴 in chapter 5, and for experiments with a short time 

horizon, e.g. 2 hours operation. Rehn et al. [143] showed that, for long-term experiments, the removal of IPA 

is significant. In such cases, the assumption fails and the model cannot be applied. The model results, with 

the altered partition coefficients, relative to the IPA measurements are represented in Figure 7.7.   

 

 

Figure 7.6: Comparison of model predictions relative to experimental results of IPA in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), Xylene (ӿ), and Toluene (□) as solvents. The dotted, full and dash dotted lines indicate the model predictions of 
IPA in undecane, xylene and toluene, respectively. The model applies 𝑃𝐶𝐼𝑃𝐴,1 = [0.03; 0.11; 0.09] and 𝑃𝐶𝐼𝑃𝐴,2 = [0; 0; 0] for 

undecane, xylene and toluene, respectively. 
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Figure 7.7: Comparison of model predictions relative to experimental results of IPA in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), xylene (ӿ), and toluene (□) as solvents. The dotted, full and dash-dotted lines indicate the model predictions of 
IPA in undecane, xylene and toluene, respectively. The model applies 𝑃𝐶𝐼𝑃𝐴,1 = [0; 0; 0] and 𝑃𝐶𝐼𝑃𝐴,2 = [0; 0; 0] for undecane, 

xylene and toluene, respectively. 

 

7.4.1.3: 1-Methyl-3-phenylpropylamien (MPPA) 

Likewise, the measured time dependent MPPA concentrations in the two reservoirs were also compared with 

the model predictions; the results are presented in Figure 7.8. Noteworthy is the fact that the model 

somewhat accurately predicts the dynamic behavior of MPPA in both reservoirs for the different solvents. 

The exception to this is the prediction for undecane in the pH 3 reservoir, where the model fails to predict 

the MPPA concentration profile. However, this is believed to be closely related to the difficulty of identifying 

a unique partitioning coefficient for MPPA in the 2nd LLE module with undecane (see chapter 6). Hence, this 

is also the reason why multiple partition coefficients are highlighted in the figure, in order to identify, which 

of the measured values represents best the experimental data. Figure 7.8 shows that, in the case of 

𝑃𝐶𝑀𝑃𝑃𝐴,2 = 0, the data is better represented and therefore, it is more suitable to apply this coefficient when 

modelling the extraction in the 2nd LLE module.  
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Figure 7.8: Comparison of model predictions relative to experimental results of MPPA in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), Xylene (ӿ), and Toluene (□) as solvents. The dotted, full and dash-dotted lines indicate the model predictions of 
IPA in undecane, xylene and toluene, respectively. The model applies 𝑃𝐶𝑀𝑃𝑃𝐴,1 = [1.5; 9.6; 12.21] and 𝑃𝐶𝑀𝑃𝑃𝐴,2 = [#; 0; 0] for 

undecane, xylene and toluene, respectively. The value of # is indicated on the figures. 

 

Moreover, for MPPA it is also interesting to evaluate the degree of recovery by using the various solvents. In 

Figure 7.9, the estimated degrees of recovery determined by the model (based on equation 7.1) are 

presented together with the experimental results. From these estimations, it can be found that applying 

xylene or toluene enables recoveries in the range of 90% of the initial MPPA. For undecane, the relative 

recovery of MPPA, in the same scale, is approximately in the range of 65%, which poses a significant decrease. 

This can to some extent be explained by the lower partition coefficient determined for MPPA with undecane.  

 

Figure 7.9: Representation of the experimentally achieved degrees of MPPA recovery in undecane (x), xylene (ӿ), and toluene (□) 
as solvents The dotted, full and dash-dotted lines indicate the model predictions of IPA in undecane (𝑃𝐶𝑀𝑃𝑃𝐴,2 = 0), xylene and 

toluene, respectively.  
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7.4.1.4: Acetone (Ace) 

Lastly, the measured time dependent Ace concentrations in the two reservoirs were compared to the model 

predictions and are presented in Figure 7.10. Similarly, to the results achieved for IPA, the model fails to 

predict the dynamic extraction behavior of Ace accurately. The poor model performance in predicting the 

dynamic behavior can be due to the relative uncertainty of the analytical method. However, it is also believed 

to be caused – at least partly – by over-predicted partition coefficients, i.e. acetone is rather volatile and 

significant quantities may appear in the headspace of the vials. Hence, the predicted partition coefficients 

appear to be larger than they actually are. 

Better predictions for the extracting behavior of acetone were achieved by manually reducing the measured 

partition coefficients. Figure 7.11 shows the results with the modified partition coefficients (𝑃𝐶𝐴𝑐𝑒,1 =

𝑃𝐶𝐴𝑐𝑒,2 = [0.1; 0.3; 0.25]) relative to the experimental results.  

 

 

Figure 7.10: Comparison of model predictions relative to experimental results of Ace in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), Xylene (ӿ), and Toluene (□) as solvents. The dotted, full and dash-dotted lines indicate the model predictions of 
IPA in undecane, xylene and toluene, respectively. The model applies 𝑃𝐶𝐴𝑐𝑒,1 = [0.17; 0.73; 0.86] and 𝑃𝐶𝐴𝑐𝑒,2 = [0.17; 0.73; 0.86] 

for undecane, xylene and toluene, respectively. 
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Figure 7.11: Comparison of model predictions relative to experimental results of Ace in the pH 9.5 (Left) and pH 3 (Right) reservoirs, 
with undecane (x), Xylene (ӿ), and Toluene (□) as solvents. The dotted, full and dash-dotted lines indicate the model predictions of 
IPA in undecane, xylene and toluene, respectively. The model applies 𝑃𝐶𝐴𝑐𝑒,1 = [0.1; 0.3; 0.25] and 𝑃𝐶𝐴𝑐𝑒,2 = [0.1; 0.3; 0.25] for 

undecane, xylene and toluene, respectively. 

 

In general, the model results show a good correlation with experimentally determined MPPA and BA results. 

However, experimental results for IPA and Ace do not correspond to the model predictions. In order to get 

better predictions of the dynamic behavior of IPA and Ace it may be required to improve the sensitivity of 

the HPLC method, minimize the headspace in the vials and at the same time consider implementation of a 

GC method to analyze the solvent phase and thereby close the mass balance. In addition, it may be beneficial 

to implement a continuous splitter in the microfluidic LLE characterization setup to improve the throughput 

and minimize external effects occurring during the extraction experiments. 

 

7.4.2 Combined system: ATA-82 in PVA particles 
Experiments with reactor modules, with various loadings of ATA-82 entrapped in PVA particles, were 

conducted. The experiments were performed solely with undecane as the solvent, with 1 M BA dissolved. 

These experiments serve the purpose of understanding the operational dynamics of the ISPR concept. For 

example, these experiments are useful for identifying potential issues of MPPA build-up in the reactor 

module and the high pH aqueous reservoir.  

The applied PBR modules for these tests deviated from the applied modules described in chapter 5, due to 

the application of larger PVA particles (3-4 mm diameter). This fact, in combination with an over-simplified 

forward reaction kinetic model derived for ATA-82 in chapter 5 limited the use of the developed model to 

predict the dynamic behavior of the experiments. 
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7.4.2.1: Residence time 

Firstly, the influence of residence time in the reactor modules is tested by varying the feed flow rate into the 

system. Figure 7.12 presents, the results of these tests, which are highlighted as the change in MPPA and BA 

concentrations at various residence times. 

  

 

Figure 7.12: Identifying the impact of PBR residence time (X-axis) on the degree of BA (□) conversion and MPPA (x) formation at 
three different loadings of ATA-82 in PVA particles. A) 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82), B) 0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82), and C) 0.68 𝑔𝑃𝑉𝐴(0.03 
𝑔𝐴𝑇𝐴−82). 

 

According to the above results, a flow rate of 250 µL/min results in MPPA yields in the range of 25-35% for 

all the tested reactor modules (residence times of 3.5 minutes, 7.9 min for experiment (A)). The specific flow 

rate was chosen to minimize the MPPA presence in the reactor modules and thereby minimize its inhibitory 

effects. The longer residence times achieved for the low loading experiment (A), are due to the presence of 

a larger dead volume in the reactor module (the dead end filters expanded when the experiment was 

initiated). The length of the reactor module for that experiment was approximately 2.5 cm, which gives an 

approximate dead volume of 1.96 mL.  

 

7.4.2.2: Benzylacetone (BA) 

In Figure 7.13, the measured concentrations of BA over time in the high and low pH aqueous reservoirs are 

highlighted for the three loadings. The given results do not indicate any difference in the BA concentrations 

in the two reservoirs over time for any of the loadings. This is as expected as the aqueous streams are 

saturated with BA in the LLE modules. Notably the measured BA concentrations exceed the maximum 

solubility limit of BA (10.8 mM). This can partly be caused by the sampling procedure, where small quantities 

of the solvent with high BA content in the samples will greatly influence the measured BA concentration. 

However, if that is indeed the case then there should have been larger deviations on the measured 

concentrations. Another cause of this increased solubility can be related to the presence of the other reaction 

species, which can improve the BA solubility. 
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Figure 7.13: Experimental results of the time dependent BA concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous reservoirs, 
with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (□),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 𝑔𝐴𝑇𝐴−82)  
(Δ). 

 

7.4.2.3: Isopropylamine (IPA) 

In Figure 7.14, the measured concentrations of IPA over time in the two reservoirs are highlighted for the 

three loadings. Similarly to the experimental results without the reactor module (section 7.4.1.2), it appears 

that there is minimal IPA extraction in the system. The uncertainty of the analytical method makes it difficult 

to follow the conversion of IPA in the system, and also difficult to measure the extraction of small quantities 

of IPA. Notably, the IPA concentrations do not decrease significantly over time, which means that the impact 

of IPA evaporating from the system is minimal. Notably Rehn et al. [143] experienced significant extraction 

of IPA in their SLM system. The main difference between the two systems is related to the applied solvent 

volumes and system response times, which may cause this system to have a lower driving force for extracting 

IPA during operation, i.e. increased IPA concentration in the solvent over time causes lower partitioning from 

the pH 9.5 reservoir. 
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Figure 7.14: Experimental results of the time dependent IPA concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous reservoirs, 
with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (□),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 𝑔𝐴𝑇𝐴−82)  
(Δ). 

 

7.4.2.4: 1-methyl-3-phenylpropylamine (MPPA) 

In Figure 7.15, the measured concentrations of MPPA over time in the two reservoirs are highlighted for the 

three loadings. The results indicate that the extraction concept works as intended and the MPPA 

concentration in the low pH reservoir increases significantly over time. However, over time the MPPA 

concentration also increases slightly in the high pH reservoir, which will cause increased inhibition of the 

biocatalyst. In addition, the increased MPPA concentration in the high pH reservoir may also explain why 

there are only minor differences in the MPPA concentration profiles achieved with the various loadings, i.e. 

for each of the tested loadings the system is limited by the extraction. The LLE modules do not directly cause 

this limitation of the extraction, and it is believed that the limitation is a consequence of the applied solvent 

reservoir volumes, which cause the system to have a low response time compared to the achieved reaction 

rates in the PBR modules. This can be overcome by adjusting the applied solvent volumes and/or increasing 

the flow rate of the solvent in the system. Alternatively, applying a solvent with better MPPA partitioning can 

also be considered.  

To better understand the capacity of the system, some of the tests were performed with longer operating 

times (Figure 7.16). In one of these experiments, a final product titer of ~180 mM (~26.5 g/L) was achieved. 

This is a strong indication that the given ISPR setup enables the possibility of achieving high product titers 

despite operating the biocatalyst at dilute conditions. Please note that a slight decrease in the MPPA 

concentration was observed after 120 min for one of the performed experiments. However, this is believed 

to be an experimental outlier that is occurring either as a consequence of the exceedance of the buffer 

capacity in the low pH reservoir, and/or caused by transfer of aqueous droplets in between the aqueous 

reservoirs.  Both effects will disrupt the driving force for the separation. 
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Some of the specific limitations of achieving high product concentrations and good space-time-yields (STY) 

[gp/L/h] in the tested system are is related to the activity of ATA-82 and the system response times. 

Additionally, the volumes of the solvent reservoirs and the low pH aqueous reservoir were larger than 

required (larger reservoirs are easier to operate). For example, if the pH 3 reservoir volumes were half the 

size compared to the ones used in these experiments, then the outlet product titer would have been doubled, 

as long as the pH is maintained. Based on the achieved concentrations in the low pH reservoir in the first 120 

minutes it is found that a STY of 3.0 gP/LpH 3/h is achieved based on the low pH reservoir volume. If the STY is 

based on the total system volume the value will be approximately 4 times lower (0.7 gP/L/h). Hence, the STY 

and achievable product titer in the pH 3 reservoir can be significantly improved by reducing the volumes of 

all the reservoirs in the system. 

 

 

Figure 7.15: Experimental results of the time dependent MPPA concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous 
reservoirs, with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (□),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 
𝑔𝐴𝑇𝐴−82)  (Δ). 
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Figure 7.16: Experimental results of the time dependent MPPA concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous 
reservoirs, with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (□),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 
𝑔𝐴𝑇𝐴−82)  (Δ). For (Δ), 37% (w/w) HCl was applied after 120 min. to ensure the buffer concentration was not exceeded while 
operating for longer times.  

 

 

Figure 7.17: Degree of recovery with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (x),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), 
and 0.68 𝑔𝑃𝑉𝐴(0.03 𝑔𝐴𝑇𝐴−82)  (□). The degree of conversion is determined as the remaining MPPA in the high pH reservoir relative 
to the MPPA in the low pH reservoir, and excluding losses in the solvent (undecane). 
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Figure 7.18: Estimated purity, on weight and mole basis, of MPPA in the final reservoir achieved with three different reactor 
loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (x),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 𝑔𝐴𝑇𝐴−82)  (□). 

 

Another interesting feature of the system is the degree of recovery and the achieved final product purity (the 

degree of recovery can be calculated based on equation 7.1 and the purity as shown in equation 7.2). The 

estimated degree of recovery is shown in Figure 7.17. These estimates indicate that approximately 80% is 

recovered, which is an improvement compared to the preliminary tests without reactor modules (~65% 

recovery for undecane). However, the preliminary tests also indicated that there were losses to the solvent, 

which is not considered in the estimates provided here, i.e. the solvent composition was not analyzed. In 

Figure 7.18, the achieved purities are presented. The purity of the final product is in the range of 60-70% 

(w/w), which is mainly caused by the quantity of acetone extracted into the low pH reservoir. Higher purity 

can be achieved by extracting BA and by acetone stripping. Furthermore, the purity can be slightly improved 

by reducing the size of the low pH reservoir, as the BA content relative to MPPA content will be minimized.  

 

7.4.2.5: Acetone (Ace) 

In Figure 7.19, the measured concentrations of Ace over time in the high and low pH aqueous reservoirs are 

highlighted for the three loadings. It can be seen that Ace builds up in both aqueous reservoirs, which to 

some extent will compromise the product purity. However, as mentioned, Ace is volatile and it is easy to strip 

off large quantities and thereby achieve improved product purity. An advantageous feature of the 

simultaneous extraction of Ace is that inhibitory effects on the biocatalyst caused by Ace are reduced 

simultaneously. 
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Figure 7.19: Experimental results of the time dependent Ace concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous reservoirs, 
with three different reactor loadings: 0.44 𝑔𝑃𝑉𝐴 (0.02 𝑔𝐴𝑇𝐴−82) (□),  0.54 𝑔𝑃𝑉𝐴 (0.03 𝑔𝐴𝑇𝐴−82) (ӿ), and 0.68 𝑔𝑃𝑉𝐴(0.03 𝑔𝐴𝑇𝐴−82)  
(Δ).. 

 

7.4.3 Combined system: flexibility 
An important aspect for the application of microfluidic modules in combination to test ISPR concepts is the 

flexibility and the general applicability. Hence, it is important that changes to the setup and operational 

conditions can be implemented easily.  

Therefore, to highlight the flexibility of applying microfluidic modules for biocatalytic process screening, the 

reactor module was tested with an alternative immobilization method and biocatalyst (ATA-50 in lyophilized 

cells). The immobilization method is based on performing flocculation, with chitosan, of the lyophilized cells. 

This was done based on the procedure as published by Rehn et al. [27]. The results from these tests are 

highlighted in Figure 7.20.  
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Figure 7.20: Experimental results of the time dependent MPPA concentrations in the pH 9.5 (Left) and pH 3 (Right) aqueous 
reservoirs, with three different reactor loadings: 1) 150 𝑚𝑔𝐴𝑇𝐴−50 𝑐𝑒𝑙𝑙𝑠, 5 𝑚𝑔𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 and 50 𝑚𝑔𝑝𝑒𝑟𝑙𝑖𝑡𝑒(x). 2) 100 𝑚𝑔𝐴𝑇𝐴−50 𝑐𝑒𝑙𝑙𝑠, 

3.3 𝑚𝑔𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 and 50 𝑚𝑔𝑝𝑒𝑟𝑙𝑖𝑡𝑒(ӿ). 3) 50 𝑚𝑔𝐴𝑇𝐴−50 𝑐𝑒𝑙𝑙𝑠, 5 𝑚𝑔𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 and 50 𝑚𝑔𝑝𝑒𝑟𝑙𝑖𝑡𝑒(□). 

 

The results follow the same trends as experienced with ATA-82 in PVA particles. The main difference, 

compared to using ATA-82 in PVA particles, is that the achieved MPPA concentrations in the two reservoirs 

are lower relative to the loading, which can be associated with the lower measured activity of ATA-50 

compared to ATA-82 (see chapter 5). It is important to note that the lower activity of ATA-50 and the given 

immobilization method causes the reaction rate to be the rate-limiting step and, thereby, not the response 

time of the LLE modules and reservoirs as seen with ATA-82 in PVA particles.  

Therefore, specifically for this system, it is required to either minimize the solvent volume and/or increase 

the solvent flow rate in the system to ensure sufficient extraction performance, especially if applying 

biocatalysts with higher activities than ATA-82. Changing operational conditions, e.g. reactor temperature 

and/or flow rates, can easily be performed for the tested system. 

Despite this work being committed to the application of microfluidic PBRs, with immobilized biocatalysts, 

and LLE modules in combination, to test a two-step LLE ISPR concept, it is still considered generally applicable. 

For example, in cases where the biocatalyst is not influenced significantly by the interface of the separation 

method it is possible to apply free solubilized biocatalysts. Alternatively, microfluidic membrane reactor 

modules can be applied to avoid the interface. Furthermore, for reactor systems where other separation 

methods are required, it is a matter of replacing the applied LLE separation modules with alternative unit 

operations. For example, resins can be implemented in the same manner as the applied PBR reactors. Gas-

liquid applications, e.g. stripping or evaporation, would require implementation of backpressure regulators, 

but technically, it should not be any problem to implement such separation methods as well. 
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7.5 Monitoring and control 

It is recognized that there are many potential advantages associated with the application of microfluidics for 

testing complex biocatalytic processes. However, limitations to this approach in general are the required 

volumes for analysis, and the handling of small volumes. Hence, implementation of on-line and in-line 

analytical methods will greatly improve the experimental throughput and handling.  

The on-line HPLC system implemented for biocatalyst characterization can also be implemented in the 

applied two-step LLE ISPR setup. However, it would require sampling from both reservoirs, which would make 

the implementation complex. Furthermore, it would be advantageous to implement a sample point after the 

reactor module to follow the reactor performance over time. Alternatively, pH sensors can be implemented 

in the two aqueous reservoirs to monitor deviations in the pH caused by the extraction of the amine product. 

Additionally, this can be coupled with additional pumps that can add acid and base to maintain the pH in the 

two reservoirs and thereby indicate the product concentration and formation as a function of acid and base 

addition, i.e. titration. The implementation of this pH monitoring and control strategy is illustrated for the 

given two-step LLE ISPR concept in Figure 7.21. 

In addition, it will be beneficial to analyze the solvent composition in the two solvent reservoirs, since such 

implementation will for example make it possible to evaluate product losses in the solvent. In view of this, it 

would be suitable and easy to implement in-line NIR spectroscopy, if the water saturating the solvent does 

not saturate the NIR spectra in the region where the reaction species absorb. The implementation of NIR 

spectroscopy in the solvent cycle is also illustrated in Figure 7.21. 
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Figure 7.21: Proposed scheme for implementation of NIR monitoring of the solvent cycle and pH sensors for monitoring and control 
of the two-step LLE ISPR concept.  
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7.6 Conclusion 

In this chapter the potential of applying microfluidic modules, combined in a plug-and-play manner, was 

highlighted as a novel technology enabling easy testing of complex biocatalytic process concepts. This was 

emphasized through a case study, where a two-step LLE ISPR concept was tested by combining a microfluidic 

reactor module with two microfluidic LLE modules. 

In addition, the tested ISPR concept showed good potential for extracting hydrophobic amine products from 

hydrophilic amines in amine transaminase (ATA) processes to overcome severe inhibitory effects. 

Furthermore, the tested concept showed other advantages in the form high product purity in the stream 

leaving the system and high overall product recovery. The advantage of the tested system is that the 

biocatalyst can be operated at mild conditions, where it is stable and works efficient, without compromising 

the need for high product titers and purity in the outlet stream. 
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Chapter 8  

General discussion 
 

In this thesis, the role of microfluidics in the development of biocatalytic processes was investigated. 

Emphasis was given to identifying and testing ISPR concepts for ATA applications that are difficult to test in 

traditional batch process based methods. It is the intention of this chapter to discuss some of the aspects, 

which were not covered in detail elsewhere in this thesis. These aspects cover discussions on: 1) when to 

focus on process engineering strategies and when to focus on protein engineering strategies. 2) How to apply 

the knowledge obtained in microfluidics across scales. 3) The need for implementing analytics into 

microfluidics. 

 

8.1 Protein engineering vs. process engineering 

Biocatalysis has matured greatly in the past decades and thereby become a feasible and important option in 

the chemical industry for the synthesis of a broad range of chemicals [5]. The increasing application of 

biocatalysis in the chemical industry is a direct consequence of the tremendous advances made in protein 

engineering strategies, which have made it possible in many cases to modify biocatalysts to fit the process 

requirements [7]. Despite the major advances, it is still time consuming and labor intensive to go through 

iterative rounds of modifying applicable biocatalysts to fit the process requirements. Additionally, the 

application of protein engineering strategies is not predictable, in the sense that there is no guarantee that 

a biocatalyst that fits specific requirements will be developed as a consequence of applying protein 

engineering strategies. For example, only in a few cases it has been possible to overcome product inhibition 

by protein engineering [7]. Perhaps future advances in protein engineering strategies will make it possible to 

develop novel biocatalysts that fulfill the needed process requirements in a fast and predictable manner.  

However, there are still some process challenges that cannot be addressed directly by protein engineering 

strategies, e.g. unstable products. Therefore, independent of the advances in protein engineering, there will 

always remain applications of biocatalysis whose successful implementation will depend on implementation 

of process engineering strategies such as ISPR. Furthermore, it should once again be emphasized that ISPR 

and IScPR strategies are many times based on well-known and developed conventional separation methods, 

making it relatively fast and easy to implement such a strategy. For example, this is very beneficial if the 

apparently biggest bottleneck for the usage of a given biocatalyst consists of severe inhibitory effects from 

the (co-)product. Low biocatalyst activity at high concentrations, e.g. due to inhibition, can also be addressed 

by applying additional biocatalyst, but it will increase the synthesis costs exponentially with decreasing 

activity. In cases where ISPR/IScPR based on conventional separation methods is considered, emphasis 

should be given to aim the development towards concepts and implementation strategies that are not 

dedicated to a single application purpose. Hence, the investment risk in ISPR/IScPR options is not based on 

the success of a single product. Furthermore, independent on whether or not ISPR/IScPR concepts will be 

implemented in the final biocatalytic process, considering such options early on in the process development 

will certainly facilitate the development of the primary product recovery for the final process. 
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8.2 Scale-up or scale-out 

As highlighted in this thesis there are many benefits associated with the application of microfluidics for 

process development. However, the process knowledge obtained by applying microfluidics has to be 

transferable across scales in order to enable transition to industrial scale production in a fast, reliable and 

easy manner. In other words, one should always keep in mind that process development, even in microscale 

reactors, is performed with the goal of achieving economically viable commercial scale production. This is 

especially important in industries with a need for fast transition from discovery to market implementation, 

such as the pharmaceutical industry [1]. However, it has proven quite challenging to efficiently transfer 

knowledge across scales, and this is also an issue for process development performed in conventional lab 

scale (mL scale). It is therefore the intention here to discuss some of these challenges and introduce 

approaches, which are potentially applicable for scaling-up starting with process-related information 

obtained from microfluidics.   

Generally, the scientific literature identifies two main strategies applicable to increase process throughput, 

starting from the microfluidic scale into pilot and commercial scale production. These two strategies are 

numbering-up, sometimes referred to as scaling-out, and conventional scale-up [197]. The basic concept of 

both strategies is illustrated in figure 8.1. Alternatively, a combination of the two scaling strategies can be 

applied, i.e. scale-up/scale-out, which enables the possibility to maintain important features from both 

scaling strategies. For example, the good mass and heat transfer properties from the microfluidic modules 

combined with increased throughput from the larger scale. 
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Figure 8.1: Illustration of the basic concept of numbering-up (scale-out), stepwise scale-up and scale-up/scale-out. The scale-up is 
performed stepwise to ensure reliable reaction performance across scales.  

 

Numbering-up is based on operating microfluidic modules in parallel in order to reach the required process 

throughput, i.e. the microfluidic modules used for the process development are simply copied a number of 

times and operated in parallel. The advantage of this strategy is that microfluidic modules operated in parallel 
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should ideally ensure similar operating conditions in each module [197–199]. However, monitoring and 

controlling multiple modules simultaneously can become quite complex as the number of parallelized 

modules increases, making it challenging to ensure optimal reaction conditions in all reactor modules 

[197,199,200]. For example, it will be close to impossible to have individual control of each parallelized 

module, as it would be extremely expensive in terms of equipment and take up a lot of space. It is therefore 

necessary to operate parallelized microfluidic modules in a network, potentially causing variations of 

operating conditions in the individual reactors, e.g. due to flow maldistributions, which will influence the 

overall reaction performance [199]. From a Good Manufacturing Practice (GMP) point of view, such flow 

maldistributions can make it difficult to ensure consistent product quality over time along with sufficient 

periodical cleaning, making it difficult to have such a production pathway approved by regulatory authorities. 

These hurdles make it less attractive to apply the scaling out strategy [201,202]. On the other hand, in some 

cases numbering-up might be the only feasible scaling strategy. For example, the only way to ensure process 

safety, adequate process control and/or formation of desired product(s) [203]. This could be in cases when 

working with unstable compounds and/or highly exothermic reactions, where product degradation, 

unwanted side reactions and reaction runaway are key issues [198,203]. Additionally, in some cases only 

small quantities, e.g. a few grams, of a given compound are required in a fast manner, which makes it suitable 

to apply microfluidic devices for the actual production. For example, this is highly relevant for the production 

of personalized medicine and/or reactive compounds, which will greatly benefit from on-site and on-demand 

production that can be achieved by microscale reactors. Alternatively, the scale-up/scale-out strategy can be 

used where key features, such as mass and heat transfer, are maintained while the throughput can be 

increased with a minimum of modules in parallel.   

Scale-up is the conventional strategy applied in biocatalysis to reach the required industrial scale production. 

Scaling-up is based on increasing reactor dimensions until a desired throughput can be ensured [102].  This 

strategy has the advantage that it will be possible, in principle, to retrofit new processes to pre-installed 

process equipment. Furthermore, it will only be required to monitor and control single reactors, i.e. reducing 

the complexity of the controller hardware compared to the numbering-up strategy. However, scaling-up is 

not straightforward as a consequence of the different physical phenomena which are dominating across 

scales [204], and causing altered process behavior across scales. For example, microfluidic modules are 

operating in the laminar flow regime, where wall effects, viscous effects and capillary effects are dominating, 

and where mixing is caused by diffusion. Larger scale reactors, e.g. with a volume ranging from L to m3, are 

operating in the turbulent flow regime, where convective mixing, viscous effects and gravitational effects are 

dominating. These dominating effects cause altered process behavior compared to the microscale, e.g. 

because mass and heat transfer limitations vary across scales (the larger the scale, the lower the surface to 

volume ratio). Scale-up can be performed by trial and error or base on systematic approaches, such as scale-

up based on dimensional similitude or model-based. 

Dimensional similitude for scale-up is based on keeping the values of specific dimensionless numbers 

constant across scales, ensuring preservation of the laws of conservation of mass, momentum and heat [205]. 

It has however shown very difficult to replicate the unique operating conditions achievable in microfluidics 

at larger scale, i.e. achieving identical dimensionless numbers at large scale is often not possible. 

Furthermore, dimensional similitude will not take into account varying mass and heat transfer distances and 

thereby limitations that occur across scales. Even though the true reaction rate is independent of reactor size 

and structure, the observed reaction rate in any given system is influenced by the experienced mass and heat 
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transfer limitations. The mass and heat transfer limitations are then again influenced by the size and structure 

of the given reactor [71,206]. Hence, this approach is not suited for scale-up of microfluidics.  

Another scale-up approach is based on mathematical modelling. Mathematical modelling is in that approach 

used to describe the separation method, reaction and reactor performance/behavior using mathematical 

equations representing physical and chemical effects in the reactor. In contrast with dimensional similitude, 

mathematical modelling enables the possibility to account for laws of physical and chemical rate processes 

to predict the reactor performance [205]. Thereby, in cases where true reaction kinetics are available, e.g. 

reaction kinetics which are not influenced by mass and/or heat transfer limitations, it should be possible to 

scale up the given system in a relatively easy manner. This also includes the possibility of taking the influence 

of mass and/or heat transfer limitations across scales into account. However, performing scale-up through 

mathematical modelling requires fast computers capable of solving very complex models in a fast routine. 

Computational fluid dynamics (CFD) is a powerful modelling tool for performing such advanced modelling 

simulations, in an attempt to describe reaction systems well enough and take rate-limiting effects across 

scales into account. However, even with powerful modelling tools such as CFD it is still very challenging and 

complex to simulate larger reactors and implement complex reaction/separation kinetics. 

Independent of the applied scale-up approach, it is required to have determined the reaction/separation 

kinetics in advance. The use of microfluidics is thought to provide a major advantage in relation to the 

determination of “real” reaction/separation kinetics. This is related to the high degree of process control 

achievable in these reactors. This superior control will allow operating and maintaining certain mass and heat 

transfer limiting scenarios during operation. Furthermore, laminar flow operation can easily and with 

relatively high certainty be modelled using CFD simulations. Combining microfluidic experimental results with 

sufficient CFD models and simulations is essential to correctly interpret observations in microfluidic 

experiments and consequently determine reliable kinetic data from microfluidic experiments. The kinetic 

data can thereafter be used directly in other CFD models of larger scale systems, taking mass and heat 

transfer limitations across scales into account, ideally making the scale-up transition easier, faster and more 

reliable. 

 

8.3 Analytics 

Development of biocatalytic processes is mainly dominated by labor-intensive batch process based 

technologies that require extensive manual handling, which is labor intensive and imposes random 

experimental errors. This is also the case when performing manual sampling from microfluidic modules. For 

example, small deviations in the sample volume of low volume samples will cause large deviations in 

experimental results. Furthermore, the low flow rates commonly applied in microfluidics make it time and 

labor intensive to acquire sufficient sample volume manually. Therefore, a key element in the application of 

microfluidics is the possibility to implement in-line and on-line analytical monitoring in automated 

autonomously operating setups. The key benefits of such implementation is that the required sample 

volumes can be minimized, it can increase the experimental throughput, minimize manual labor, improve 

data quality, avoid and/or automate work-up procedures and methods [207]. Hence, successful 

implementation of such analytical monitoring options in microfluidics will facilitate the application of 

microfluidics as a process development and optimization tool. Furthermore, at present numerous novel and 

conventional analytical methods have been successfully implemented into microfluidics [207]. Thus, it is 
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rather a question of having the correct analytical equipment available rather than being limited by the 

experimental platform. Therefore, the most important limitation in this approach is the sensitivity of the 

available equipment, which will dictate the required operating volumes. 
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Chapter 9  

Conclusions and future perspectives 
 

In this thesis, in-situ product removal (ISPR) strategies in biocatalysis were investigated as a means to 

overcome challenges such as inhibitory effects from the product. The main goal of this thesis was to 

investigate the application of microfluidics as a novel technology for testing ISPR concepts in biocatalysis, 

which is difficult with conventional batch process based methods and technologies. As case study for these 

investigations, the application of amine transaminases (ATAs) for the asymmetric synthesis of chiral amines 

was chosen. The industrial and academic interest in ATAs is driven by the possibility of ATAs to enable 

efficient synthesis of enantiomerically active amines, which for example are important building blocks for 

many pharmaceuticals. However, synthesis of chiral amines by applying ATAs is commonly challenged by 

severe inhibitory effects, unfavorable thermodynamics and low solubility of the reaction species, to name a 

few of the most commonly experienced challenges, making it an excellent case study for investigation of 

ISPR/IScPR strategies. 

  

9.1 Conclusions 

Part of the work presented in this thesis evolved around defining a methodology for identifying and choosing 

proper ISPR/IScPR methods for ATAs processes (chapter 4). The methodology is based on identifying the 

challenges of the applied biocatalyst and the pure component physicochemical properties of the involved 

reaction species. Hence, the need for ISPR/IScPR and the most suitable options are identified. The 

methodology is focusing on challenges related to unfavorable thermodynamics, inhibitory effects from 

products/co-products and the product stability. Some of the key findings, which formed the basis of the 

proposed methodology are: 

- Unfavorable thermodynamics: For the given methodology it was identified and proposed that in 

cases with unfavorable thermodynamics, 𝐾𝑒𝑞 < 1, it is required to either change the amine donor or 

implement cascade reaction systems to shift the equilibrium. The easiest and least complex option 

is to change the donor, but it required that the biocatalyst is compatible with this change. 

Furthermore, changing the donor can have a severe impact on how easy it is to recover the product 

after reaction. Cascade reactions were proposed as suitable ISPR/IScPR strategies because 

conventional separation methods are not suited for shifting the equilibrium, as they commonly do 

not have the same selectivity as the cascade reactions. 

- Product inhibition: In cases where the biocatalyst performance suffers from severe inhibitory effects 

from the product/co-product, it is suitable to consider conventional separation methods. The 

advantage of conventional separation methods is that they are well-known and developed concepts, 

which makes it less of a risk compared to relying on protein engineering to solve the problem. Despite 

the tremendous progress made in protein engineering strategies, it is still not a guarantee that 

product inhibition will be minimized. Furthermore, in cases where the product is unstable, then it is 

required to consider ISPR strategies. 
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- Downstream process development: Furthermore, if inhibition is overcome, e.g. by protein 

engineering or changing the biocatalyst, then the methodology researched in this thesis can be 

applied to identify a suitable primary recovery step. Hence, the methodology motivates and 

addresses the aspect of considering recovery options early in the process development alongside 

with specifying the biocatalyst requirements.  

The remaining part of this work evolved around the application of microfluidics for development, testing and 

evaluating of the proposed ISPR/IScPR options highlighted by the proposed methodology. This was 

performed by characterizing single microfluidic modules, representing the different process steps, 

individually and in combination in a plug-and-play manner. As a case study for these tests, the ATA catalyzed 

synthesis of 1-methyl-3-phenylpropylamine (MPPA) from benzylacetone (BA) was chosen using 

isopropylamine (IPA) as the amine donor. For this specific reaction system a two-step LLE ISPR concept was 

proposed, which enabled selective extraction of hydrophobic amines from hydrophilic amines. Some of the 

key findings and experiences made while performing this work are: 

- Biocatalyst characterization (chapter 5): An on-line HPLC was integrated with microfluidic packed 

bed reactor modules as a means of ensuring high throughput characterization of biocatalysts. The 

main benefit from hooking up such an on-line analytical method to microfluidic systems is that it 

completely avoids manual sample handling and preparation, which can be challenging when 

operating with µL volumes. Furthermore, this setup made it possible to perform fast characterization 

of various process conditions influencing the biocatalyst performance. For example, testing the 

impact of changing substrate, amine donor, product, and co-product concentrations on the 

biocatalyst performance was possible. Such applications make the setup suitable for identifying 

optimal operating conditions and identifying potential challenges for the given biocatalyst in an easy 

and automated manner. A limitation to the assembled setup is the laminar flow profile in the reactor 

modules, which makes the measured biocatalyst performance a relative measure and thereby 

challenges the general applicability of the measured enzyme kinetics. 

- Separation characterization (chapter 6): A microfluidic setup was assembled to test microfluidic 

liquid-liquid extraction. The given setup solely consisted of PTFE tubing connected in a Y-connector 

resulting in slug flow in the LLE modules. Based on varying the residence time in the LLE modules it 

was possible in a fast manner to determine partition coefficients and to some extent consider the 

mass transfer between the phases in the modules. Similar to the biocatalyst characterization, this 

setup will enable fast characterization of the influence of various process conditions on the extraction 

performance in multiple solvents. 

- Substrate supply (chapter 6): It was identified that simultaneous extraction of the hydrophobic 

substrate (BA), would challenge the ISPR concept. However, since the applied substrate in the case 

studies had low aqueous solubility it was decided to apply the extraction as a simultaneous substrate 

supply strategy by dissolving BA in undecane (the extracting solvent). A big advantage of this kind of 

multi-functional separation method is that it avoided the need for considering an alternative reaction 

medium to increase the BA solubility, which could potentially compromise the biocatalyst. 

- Two-step LLE ISPR concept (chapter 7): Based on the results from the characterization of the 

biocatalyst and the microfluidic LLE modules with undecane, it was found suitable to test a combined 

two-step LLE ISPR concept. This was done by combining a large microfluidic PBR module with two 

externally located microfluidic LLE modules in a plug-and-play manner. The assembled setup verified 
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that the ISPR concept worked as intended, and indeed made it possible to achieve high product purity 

and titers in the second extraction step without compromising the performance of the biocatalyst. 

This is a strong indication that it is indeed possible to test complex ISPR/IScPR concepts in an easy 

manner by applying microfluidics, which is otherwise difficult with conventional technologies.  

- Intensified biocatalyst performance (chapter 7): Specific for the tested two-step LLE ISPR concept 

for ATA applications it was identified to be generally applicable for the separation of hydrophobic 

amines form hydrophilic amine donors. An advantage of the given system is that it is possible to 

maintain low product concentration and high substrate concentrations in the reaction mixture and 

thereby ensure intensified biocatalyst performance (delayed build-up of inhibitory product). The 

biggest limitation to the current system is the mixing response times, the required reservoir volumes 

and the activity of the tested biocatalysts (ATA-50 and ATA-82), which made it difficult to achieve 

high product concentrations in a relatively short time. However, the tested two-step LLE ISPR system 

did enable high product titers over longer periods, i.e. in the range of 26.5 gP/L in 20 hours.  

As a concluding remark, microfluidics for process development should be considered in combination with 

conventional biocatalytic process development technologies. That combination will make it possible to 

address the aspect of intensifying biocatalytic processes and thereby aid in expanding and accelerating the 

applicability of biocatalysis in future chemical manufacturing. 

 

9.2 Open challenges and future perspectives 

Biocatalysis is a maturing technology, which is developing faster and faster. This is caused by great 

improvements made to existing technologies on the one hand, and by the development of new methods and 

technologies that accelerate the biocatalyst and process development on the other hand. Furthermore, such 

progress aids in broadening the application range of biocatalysis. However, with such progress, also new 

challenges appear, resulting in new questions and problems that need to be resolved. During this work some 

apparent challenges and questions were not addressed, which could be very interesting for future work: 

- Solvent selection: In this work, a rather limited number of solvents were tested for the extraction of 

hydrophobic amines. Further work should therefore be put into identifying generally applicable 

solvents suitable for extraction of various chiral amines from aqueous solutions. Additionally, for 

further screening it would be of interest to characterize the relative impact of the pH on the 

extraction performance. A starting point for this would be a thorough review of the scientific 

literature.  

- Biocatalyst formulation: In this work only two immobilization techniques were considered, which 

could be broadened in the future. Therefore, for future work different biocatalyst formulations and 

immobilization techniques should be considered. Different formulations and immobilization 

techniques will have advantages and disadvantages for various applications (not necessarily only for 

microfluidics and ATAs). For example, in microfluidics some immobilization techniques will cause 

formation/application of particles that are too large to fit into the modules in an easy manner. 

- Biocompatibility: Here the implication of applying in-situ LLE on the biocatalysts, i.e. the solvent and 

biocatalyst compatibility, was not investigated in detail. The impact of dissolved solvent in the 

aqueous phase on the biocatalyst should be investigated, to see if the biocatalyst performance is 
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compromised. Alternatively, the presence of a liquid-liquid interphase in the reactor modules could 

be investigated as a means to consider other ISPR/IScPR implementation strategies. 

- Two-step LLE ISPR for ATA processes: For future work concerning the specific two-step LLE ISPR 

concept investigated in this work it could be interesting to identify the general applicability (other 

amines) and consider commercial production aspects of such ISPR concepts. A necessity before 

commercial production should be considered is the identification/development of ATAs with higher 

specific activity and/or expression than the ones applied in this work. The developed model of the 

ISPR concept could also be improved and combined with robust enzyme kinetics as a means to assess 

the actual intensification potential of the system. 

- Plug-and-play microfluidics: There are an increasing number of commercial suppliers of microfluidic 

separation modules, which enable to test a broad range of ISPR/IScPR applications based on 

conventional separation methods. Therefore, for future work it could be interesting to consider other 

case studies requiring various ISPR/IScPR methods and implementation strategies. This would be 

crucial for evaluating the general applicability and the limitations of microfluidics for testing complex 

biocatalytic process concepts. 

- Analytics in microfluidics: A big challenge in microfluidics is the handling and preparation of small 

volume samples. Therefore, it is ideal to integrate on-line and/or in-line analytics in the microfluidic 

experimental setup, which will greatly reduce manual labor and at the same time increase the 

knowledge throughput. 

- Microfluidics across scales: The aim of developing biocatalysts and biocatalytic processes is 

commercialization. It is therefore important to address how the knowledge acquired by using the 

microfluidic experimental platform can be transferred into production, once suitable solutions are 

identified at the microscale. Various approaches to reach the desired production capacity were 

briefly discussed in this thesis, i.e. scale-up and scale-out. However, it would be interesting to 

combine that discussion with economic considerations for various production scenarios, where 

advantages and disadvantages of the different strategies could be identified in more detail. 



 
 

143 
 

References 
1  Pollard, D.J. and Woodley, J.M. (2007) Biocatalysis for pharmaceutical intermediates: the future is 

now. Trends Biotechnol. 25, 66–73 

2  Tufvesson, P. et al. (2011) Guidelines and cost analysis for catalyst production in biocatalytic 
processes. Org. Process Res. Dev. 15, 266–274 

3  Straathof, A.J. et al. (2002) The production of fine chemicals by biotransformation. Curr. Opin. 
Biotechnol. 13, 548–556 

4  Krühne, U. et al. (2014) Biocatalytic process development using microfluidic miniaturized systems. 
Green Process Synth 3, 23–31 

5  Schmid, A. et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409, 258–268 

6  Schmid, A. et al. (2002) The use of enzymes in the chemical industry in Europe. Curr. Opin. 
Biotechnol. 13, 359–366 

7  Bornscheuer, U.T. et al. (2012) Engineering the third wave of biocatalysis. Nature 485, 185–194 

8  Burton, S.G. et al. (2002) The search for the ideal biocatalyst. Nature 20, 37–45 

9  Hartman, R.L. and Jensen, K.F. (2009) Microchemical systems for continuous-flow synthesis. Lab 
Chip 9, 2495–2507 

10  Kruhne, U. et al. (2014) Systematic Development of Miniaturized (Bio)Processes using Process 
Systems Engineering (PSE) Methods and Tools. Chem. Biochem. Eng. Q. 28, 203–214 

11  Beilen, J.B. Van and Li, Z. (2002) Enzyme technology: An overview. Curr. Opin. Biotechnol. 13, 338–
344 

12  Kirk, O. et al. (2002) Industrial enzyme applications. Curr. Opin. Biotechnol. 13, 345–351 

13  Hailes, H.H. et al. (2007) Perspective: Integration of biocatalytic conversion into chemical syntheses. 
J. Chem. Technol. Biotechnol. 82, 1063–1066 

14  Santacoloma, P.A. et al. (2011) Multienzyme-Catalyzed Processes : Next-Generation Biocatalysis. 
Org. Process Res. Dev. 15, 203–212 

15  Tufvesson, P. et al. (2010) Process considerations for the scale-up and implementation of 
biocatalysis. Food Bioprod. Process. 88, 3–11 

16  Schoemaker, H.E. et al. (2003) Dispelling the myths--biocatalysis in industrial synthesis. Science 299, 
1694–1697 

17  Nielsen, P.H. et al. (2007) Cradle-to-gate environmental assessment of enzyme products produced 
industrially in denmark by novozymes A/S. Int. J. Life Cycle Assess. 12, 432–438 

18  Wohlgemuth, R. (2009) The locks and keys to industrial biotechnology. N. Biotechnol. 25, 204–213 

19  Tao, J. and Xu, J.-H. (2009) Biocatalysis in development of green pharmaceutical processes. Curr. 
Opin. Chem. Biol. 13, 43–50 

20  Woodley, J.M. (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. 
Trends Biotechnol. 26, 321–327 

21  Hatti-Kaul, R. et al. (2007) Industrial biotechnology for the production of bio-based chemicals - a 
cradle-to-grave perspective. Trends Biotechnol. 25, 119–124 



 
 

144 
 

22  Dunn, P.J. (2012) The importance of Green Chemistry in Process Research and Development. Chem. 
Soc. Rev. 41, 1452 

23  Wohlgemuth, R. (2007) Perspective Interfacing biocatalysis and organic synthesis. J. Chem. Technol. 
Biotechnol. 82, 1115–1121 

24  Tufvesson, P. et al. (2011) Process considerations for the asymmetric synthesis of chiral amines 
using transaminases. Biotechnol. Bioeng. 108, 1479–1493 

25  Datta, S. et al. (2013) Enzyme immobilization: an overview on techniques and support materials. 3 
Biotech 3, 1–9 

26  Tufvesson, P. et al. (2011) Towards a cost-effective immobilized lipase for the synthesis of specialty 
chemicals. J. Mol. Catal. B Enzym. 68, 200–205 

27  Rehn, G. et al. (2013) Chitosan flocculation: An effective method for immobilization of E. coli for 
biocatalytic processes. J. Biotechnol. 165, 138–144 

28  Schmidt-Dannert, C. and Arnold, F.H. (1999) Directed evolution of industrial enzymes. Trends 
Biotechnol. 17, 135–136 

29  Hibbert, E.G. and Dalby, P.A. (2005) Directed evolution strategies for improved enzymatic 
performance. Microb. Cell Fact. 4, 1–6 

30  Carey, J.S. et al. (2006) Analysis of the reactions used for the preparation of drug candidate 
molecules. Org. Biomol. Chem. 4, 2337–2347 

31  Kohls, H. et al. (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine 
synthesis. Curr. Opin. Chem. Biol. 19, 180–192 

32  Clifton, J.E. et al. (1982) Arylethanolamines derived from salicylamide with a- and b-adrenoceptor 
blocking activities. Preparation of labetalol, its enantiomers, and related salicylamides. J. Med. 
Chem. 25, 670–679 

33  Savile, C.K. et al. (2010) Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to 
Sitagliptin Manufacture. Science (80-. ). 329, 305–309 

34  Turner, N.J. and Truppo, M.D. (2010) Biocatalytic routes to nonracemic chiral amines, in chiral amine 
synthesis. In Chiral amine synthesis  (Nugent, T. C., ed), Wiley-VCH Verlag GmbH & Co. KGaA 

35  R. Martin, A. et al. (2011) Characterization of a High Activity (S)-Aminotransferase for Substituted 
(S)-Aminotetralin Production: Properties and Kinetics. J. Bioprocess. Biotech. 01, 1–6 

36  Breuer, M. et al. (2004) Industiral Methods for the Production of Optically Active Intermediates. 
Angew. Chem. Int. Ed. 43, 788–824 

37  Cimarelli, C. and Palmieri, G. (2000) Asymmetric reduction of enantiopure imines with zinc 
borohydride: stereoselective synthesis of chiral amines. Tetrahedron: Asymmetric 11, 2555–2563 

38  Tararov, V.I. and Börner, A. (2005) Approaching highly enantioselective reductive animation. Synlett 
2, 203–211 

39  Malik, M.S. et al. (2012) Features and technical applications of ω-transaminases. Appl. Microbiol. 
Biotechnol. 94, 1163–1171 

40  Malik, M.S. et al. (2012) ω-Transaminase-catalyzed kinetic resolution of chiral amines using l-
threonine as an amino acceptor precursor. Green Chem. 14, 2137 

41  Höhne, M. and Bornscheuer, U.T. (2009) Biocatalytic routes to optically active amines. 



 
 

145 
 

ChemCatChem 1, 42–51 

42  Ghislieri, D. and Turner, N.J. (2014) Biocatalytic Approaches to the Synthesis of Enantiomerically 
Pure Chiral Amines. Top. Catal. 57, 284–300 

43  Hanson, R.L. et al. (2008) Preparation of (R)-amines from racemic amines with an (S)-amine 
transaminase from Bacillus megaterium. Adv. Synth. Catal. 350, 1367–1375 

44  Koszelewski, D. et al. (2010) omega-Transaminases for the synthesis of non-racemic a-chiral primary 
amines. Trends Biotechnol. 28, 324–332 

45  Steffen-Munsberg, F. et al. (2015) Bioinformatic analysis of a PLP-dependent enzyme superfamily 
suitable for biocatalytic applications. Biotechnol. Adv. 33, 566–604 

46  Schätzle, S. et al. (2011) Enzymatic asymmetric synthesis of enantiomerically pure aliphatic, 
aromatic and arylaliphatic amines with (R)-selective amine transaminases. Adv. Synth. Catal. 353, 
2439–2445 

47  Bruunshuus, I. et al. (1997) , Properties and units in the clinical laboratory sciences. , IUPAC 
Technical report 1997 - IFCC Recommendation 1997. [Online]. Available: 
http://www.iupac.org/nc/home/about/members-and-committees/divisions/vii/ifcc-documents/iii-
elements-of-properties-and-their-code-values.html?sword_list%5B%5D=aminotransferase 

48  Höhne, M. et al. (2010) Rational assignment of key motifs for function guides in silico enzyme 
identification. Nat. Chem. Biol. 6, 807–813 

49  Skalden, L. et al. (2015) Two Subtle Amino Acid Changes in a Transaminase Substantially Enhance or 
Invert Enantiopreference in Cascade Syntheses. ChemBioChem 16, 1041–1045 

50  Al-Haque, N. et al. (2012) A robust methodology for kinetic model parameter estimation for 
biocatalytic reactions. Biotechnol. Prog. 28, 1186–1196 

51  Cassimjee, K.E. et al. (2015) A quantum chemical study of the omega-transaminase reaction 
mechanism. Org. Biomol. Chem. 13, 8453–8464 

52  Cassimjee, K.E. et al. (2011) Active site quantification of an Ω-Transaminase by performing a half 
transamination reaction. ACS Catal. 1, 1051–1055 

53  Nobili, A. et al. (2015) Engineering the Active Site of the Amine Transaminase from Vibrio fluvialis for 
the Asymmetric Synthesis of Aryl-Alkyl Amines and Amino Alcohols. ChemCatChem 7, 757–760 

54  Rausch, C. et al. (2013) Crystal structure of the ω-aminotransferase from Paracoccus denitrificans 
and its phylogenetic relationship with other class III amino- transferases that have biotechnological 
potential. Proteins Struct. Funct. Bioinforma. 81, 774–787 

55  Wohlgemuth, R. et al. (2015) Microscale technology and biocatalytic processes: opportunities and 
challenges for synthesis. Trends Biotechnol. 33,  

56  Sackmann, E.K. et al. (2014) The present and future role of microfluidics in biomedical research. 
Nature 507, 181–9 

57  Wiles, C. and Watts, P. (2012) Continuous flow reactors: a perspective. Green Chem. 14, 38 

58  Newman, S.G. and Jensen, K.F. (2013) The role of flow in green chemistry and engineering. Green 
Chem. 15, 1456 

59  Anastas, P.T. and Kirchhoff, M.M. (2002) Origins, current status, and future challenges of green 
chemistry. Acc. Chem. Res. 35, 686–694 



 
 

146 
 

60  Poliakoff, M. et al. (2002) Green chemistry: science and politics of change. Science 297, 807–810 

61  Wegner, J. et al. (2011) Ten key issues in modern flow chemistry. Chem. Commun. (Camb). 47, 
4583–4592 

62  Jensen, K.F. et al. (2014) Tools for chemical synthesis in microsystems. Lab Chip DOI: 
10.1039/c4lc00330f 

63  Darvas, F. et al. (2014) Flow Chemistry, (1st edn) De gruyter. 

64  Jiménez-González, C. et al. (2011) Key green engineering research areas for sustainable 
manufacturing: A perspective from pharmaceutical and fine chemicals manufacturers. Org. Process 
Res. Dev. 15, 900–911 

65  Nagy, K. and Jensen, K. (2011) Catalytic processes in small scale flow reactors. Chem. Today 29, 29–
31 

66  Moore, J.S. and Jensen, K.F. (2014) “Batch” kinetics in flow: online IR analysis and continuous 
control. Angew. Chem. Int. Ed. Engl. 53, 470–3 

67  McMullen, J.P. and Jensen, K.F. (2010) An Automated Microfluidic System for Online Optimization in 
Chemical Synthesis. Org. Process Res. Dev. 14, 1169–1176 

68  Schaber, S.D. et al. (2014) Design, Execution, and Analysis of Time-Varying Experiments for Model 
Discrimination and Parameter Estimation in Microreactors. Org. Process Res. Dev. 18, 1461–1467 

69  Sahoo, H.R. et al. (2007) Multistep continuous-flow microchemical synthesis involving multiple 
reactions and separations. Angew. Chemie - Int. Ed. 46, 5704–5708 

70  Fagaschewski, J. et al. (2012) Modular micro reaction engineering for carboligation catalyzed by 
benzoylformate decarboxylase. Green Process. Synth. 1, 337–344 

71  Aota, A. et al. (2009) Parallel multiphase microflows: fundamental physics, stabilization methods 
and applications. Lab Chip 9, 2470–2476 

72  Andrade, L.H. et al. (2014) Continuous Flow Synthesis of Chiral Amines in Organic Solvents: 
Immobilization of E. coli Cells Containing Both ω-Transaminase and PLP. Org. Lett. 16, 6092–6095 

73  Mitic, A. et al. (2013) Applications, benefits and challenges of flow chemistry. Chim. Oggi/Chemistry 
Today 31, 4–8 

74  Roberge, D. et al. (2013) Control of Hazardous Processes in Flow: Synthesis of 2-Nitroethanol. J. Flow 
Chem. 4, 1–9 

75  Klais, O. et al. (2009) Guidance on safety/health for process intensification including MS design Pat I: 
Reaction hazards. Chem. Eng. Technol. 32, 1831–1844 

76  Whitesides, G.M. (2006) The origins and the future of microfluidics. Nature 442, 368–373 

77  Bird, R.B. et al. (2002) Transport Phenomena, (2nd edn) John Wiley and Sons inc. 

78  Bruus, H. (2008) Theoretical microfluidics, Oxford University Press. 

79  He, L. and Niemeyer, B. (2003) A novel correlation for protein diffusion coefficients based on 
molecular weight and radius of gyration. Biotechnol. Prog. 19, 544–548 

80  Feigin, L.A. and Svergun, D.I. (1987) Structure Analysis by Small-Angle X-Ray and Neutron Scattering, 
Plenum Press. 

81  Young, M.E. et al. (1980) Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22, 



 
 

147 
 

947–955 

82  Ortega, A. et al. (2011) Prediction of hydrodynamic and other solution properties of rigid proteins 
from atomic- and residue-level models. Biophys. J. 101, 892–898 

83  Fischer, H. et al. (2004) Average protein density is a molecular-weight-dependent function. Protein 
Sci. 13, 2825–2828 

84  Levenspiel, O. (1999) Chemical reaction engineering, John Wiley and Sons inc. 

85  Bolivar, J.M. and Nidetzky, B. (2013) Multiphase biotransformations in microstructured reactors: 
opportunities for biocatalytic process intensification and smart flow processing. Green Process. 
Synth. 2, 541–559 

86  Hessel, V. et al. (2005) Gas - Liquid and Gas - Liquid - Solid Microstructured Reactors : Contacting 
Principles and Applications. Ind. Eng. Chem. Res. 44, 9750–9769 

87  Liu, H. and Zhang, Y. (2009) Droplet formation in a T-shaped microfluidic junction. J. Appl. Phys. 106,  

88  Day, P. et al. (2008) Microdroplet Technology: Principles and Emerging Applications in Biology and 
Chemistry, Springer Science+Business Media. 

89  Van Der Graaf, S. et al. (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped 
microchannel. Langmuir 22, 4144–4152 

90  De Menech, M. et al. (2008) Transition from squeezing to dripping in a microfluidic T-shaped 
junction. J. Fluid Mech. 595, 141–161 

91  Nisisako, T. et al. (2004) Novel microreactors for functional polymer beads. Chem. Eng. J. 101, 23–29 

92  Kreutzer, M.T. et al. (2005) Multiphase monolith reactors: Chemical reaction engineering of 
segmented flow in microchannels. Chem. Eng. Sci. 60, 5895–5916 

93  Günther, A. and Jensen, K.F. (2006) Multiphase microfluidics: from flow characteristics to chemical 
and materials synthesis. Lab Chip 6, 1487–1503 

94  De Loos, S.R.A. et al. (2010) Gas-liquid dynamics at low Reynolds numbers in pillared rectangular 
micro channels. Microfluid. Nanofluidics 9, 131–144 

95  Ergun, S. (1952) Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 – 94 

96  Caulkin, R. et al. (2012) Predictions of porosity and fluid distribution through nonspherical-packed 
columns. AIChE J. 58, 1503–1512 

97  Nguyen, N.-T. and Wu, Z. Micromixers—a review. , Journal of Micromechanics and 
Microengineering, 15. (2004) , R1–R16 

98  Zaiput Flow Technologies. . [Online]. Available: https://www.zaiput.com/. [Accessed: 01-Sep-2015] 

99  Hartman, R.L. et al. (2010) Multistep microchemical synthesis enabled by microfluidic distillation. 
Angew. Chemie - Int. Ed. 49, 899–903 

100  Tufvesson, P. et al. (2015) Economic considerations for selecting an amine donor in biocatalytic 
transamination. Org. Process Res. Dev. 19, 652–660 

101  Blow, N. (2009) Microfluidics: the great divide. Nat. Methods 6, 683–686 

102  Bieringer, T. et al. Future Production Concepts in the Chemical Industry: Modular - Small-Scale - 
Continuous. , Chemical Engineering and Technology, 36. (2013) , 900–910 



 
 

148 
 

103  Jensen, K.F. et al. (2014) Tools for chemical synthesis in microsystems. Lab Chip 14, 3206–3212 

104  Ehrfeld Mikrotechnik BTS. . [Online]. Available: http://www.ehrfeld.com/home.html. [Accessed: 07-
Jul-2015] 

105  Syrris. . [Online]. Available: http://syrris.com/. [Accessed: 07-Jul-2015] 

106  Fluidgent. . [Online]. Available: http://www.fluigent.com/. [Accessed: 07-Jul-2015] 

107  Chemtrix. . [Online]. Available: http://www.chemtrix.com/. [Accessed: 07-Jul-2015] 

108  Poulsen, A. et al. (2013) 3D-printer vejen til innovation? Dansk Kemi 94, 32–34 

109  Hartman, R.L. et al. Deciding whether to go with the flow: Evaluating the merits of flow reactors for 
synthesis. , Angewandte Chemie - International Edition, 50. (2011) , 7502–7519 

110  Valera, F.E. et al. (2010) The flow’s the thing...or is it? Assessing the merits of homogeneous 
reactions in flask and flow. Angew. Chem. Int. Ed. Engl. 49, 2478–85 

111  Woodley, J.M. (2013) Application of In situ Product Removal (ISPR) Technologies for Implementation 
and Scale-Up of Biocatalytic Reductions. In Synthesis Methods for Biologically Active Molecules: 
Exploring the Potential of Bioreductions  (Brenna, E., ed), Wiley-VCH Verlag GmbH & Co. KGaA 

112  Mathew, S. and Yun, H. (2012) omega-Transaminases for the Production of Optically Pure Amines 
and Unnatural Amino Acids. Acs Catal. 2, 993–1001 

113  Peng, Y. et al. (2014) Engineering chiral porous metal-organic frameworks for enantioselective 
adsorption and separation. Nat. Commun. 5, 4406 

114  Zheng, G.W. and Xu, J.H. (2011) New opportunities for biocatalysis: Driving the synthesis of chiral 
chemicals. Curr. Opin. Biotechnol. 22, 784–792 

115  Drauz, K. (2012) Enzyme catalysis in organic synthesis. Vol. 2, Wiley-VCH Verlag. 

116  Woodley, J.M. (2013) Protein engineering of enzymes for process applications. Curr. Opin. Chem. 
Biol. 17, 310–316 

117  Welch, C.J. et al. (2005) Adsorbent Screening for Metal Impurity Removal in Pharmaceutical Process 
Research Adsorbent Screening for Metal Impurity Removal in Pharmaceutical Process Abstract : A 
microtube screening approach affords simple and convenient. Org. Process Res. Dev. 9, 198–205 

118  Schügerl, K. and Hubbuch, J. (2005) Integrated bioprocesses. Curr. Opin. Microbiol. 8, 294–300 

119  Bechtold, M. and Panke, S. (2009) In-situ Product Recovery Integrated with Biotransformations. 
Chim. Int. J. Chem. 63, 345–348 

120  Turner, N.J. (2009) Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 
567–573 

121  Lye, G.J. and Woodley, J.M. (1999) Application of in situ product-removal techniques to biocatalytic 
processes. Trends Biotechnol. 17, 395–402 

122  Freeman, A. et al. (1993) In-situ product removal as a tool for bioprocessing. Biotechnology 11, 1007 
– 1012 

123  Oudshoorn, A. et al. (2010) Short-cut calculations for integrated product recovery options in 
fermentative production of bio-bulk chemicals. Process Biochem. 45, 1605–1615 

124  Van Hecke, W. et al. (2014) Advances in in-situ product recovery (ISPR) in whole cell biotechnology 
during the last decade. Biotechnol. Adv. 32, 1245–1255 



 
 

149 
 

125  Tufvesson, P. et al. (2013) Advances in the process development of biocatalytic processes. Org. 
Process Res. Dev. 17, 1233–1238 

126  Tufvesson, P. et al. (2015) Economic considerations for selecting an amine donor in biocatalytic 
transamination. Org. Process Res. Dev. 19, 652–660 

127  Fesko, K. et al. (2013) Investigation of one-enzyme systems in the ω-transaminase-catalyzed 
synthesis of chiral amines. J. Mol. Catal. B Enzym. 96, 103–110 

128  Päiviö, M. and Kanerva, L.T. (2013) Reusable ω-transaminase sol-gel catalyst for the preparation of 
amine enantiomers. Process Biochem. 48, 1488–1494 

129  Stark, D. and von Stockar, U. (2003) In situ product removal (ISPR) in whole cell biotechnology during 
the last twenty years. Adv. Biochem. Eng. Biotechnol. 80, 149 – 175 

130  Woodley, J.M. et al. (2008) Future directions for in-situ product removal (ISPR). J. Chem. Technol. 
Biotechnol. 83, 121–123 

131  Wang, P. et al. (2012) Microbial production of propionic acid with Propionibacterium freudenreichii 
using an anion exchanger-based in situ product recovery (ISPR) process with direct and indirect 
contact of cells. Appl. Biochem. Biotechnol. 166, 974–986 

132  Buque-Taboada, E.M. et al. (2006) In situ product recovery (ISPR) by crystallization: Basic principles, 
design, and potential applications in whole-cell biocatalysis. Appl. Microbiol. Biotechnol. 71, 1–12 

133  Truppo, M.D. et al. (2010) Efficient Production of Enantiomerically Pure Chiral Amine at Conc 50 g/L 
Using Transaminase. Organic 14, 234–237 

134  Halim, M. et al. (2014) Microscale methods to rapidly evaluate bioprocess options for increasing 
bioconversion yields: Application to the ω-transaminase synthesis of chiral amines. Bioprocess 
Biosyst. Eng. 37, 931–941 

135  Tufvesson, P. et al. (2014) A model to assess the feasibility of shifting reaction equilibrium by 
acetone removal in the transamination of ketones using 2-propylamine. Biotechnol. Bioeng. 111, 
309–319 

136  Yun, H. et al. (2004) Kinetic resolution of (R,S)-sec-butylamine using omega-transaminase from 
Vibrio fluvialis JS17 under reduced pressure. Biotechnol. Bioeng. 87, 772–778 

137  Meadows, R.E. et al. (2013) Efficient Synthesis of ( S )-1- ( 5-Fluoropyrimidin-2-yl ) ethylamine Using 
an ω-Transaminase Biocatalyst in a Two-Phase System. Org. Process Res. Dev. 17, 1117–1122 

138  Bea, H.S. et al. (2011) Asymmetric synthesis of (R)-3-fluoroalanine from 3-fluoropyruvate using 
omega-transaminase. Biotechnol. Bioprocess Eng. 16, 291–296 

139  Shin, J.S. and Kim, B.G. (1997) Kinetic resolution of alpha-methylbenzylamine with omicron-
transaminase screened from soil microorganisms: application of a biphasic system to overcome 
product inhibition. Biotechnol. Bioeng. 55, 348–358 

140  Seo, J.-H. et al. (2011) Necessary and sufficient conditions for the asymmetric synthesis of chiral 
amines using ω-aminotransferases. Biotechnol. Bioeng. 108, 253–263 

141  Yun, H. and Kim, B.-G. (2008) Asymmetric Synthesis of (S)-α-Methylbenzylamine by Recombinant 
Escherichia coli Co-Expressing Omega-Transaminase and Acetolactate Synthase. Biosci. Biotechnol. 
Biochem. 72, 3030–3033 

142  Shin, J.S. et al. (2001) Kinetic resolution of chiral amines with omega-transminase using an enzyme-
membrane reactor. Biotechnol. Bioeng. 73, 179–187 



 
 

150 
 

143  Rehn, G. et al. (2014) Supported liquid membrane as a novel tool for driving the equilibrium of ??-
transaminase catalyzed asymmetric synthesis. J. Biotechnol. 179, 50–55 

144  Börner, T. et al. (2015) A Process Concept for High-Purity Production of Amines by Transaminase-
Catalyzed Asymmetric Synthesis: Combining Enzyme Cascade and Membrane-Assisted ISPR. Org. 
Process Res. Dev. 19, 793–799 

145  Simon, R.C. et al. (2013) Chemoenzymatic synthesis of all four diastereomers of 2,6-disubstituted 
piperidines through stereoselective monoamination of 1,5-diketones. Chem. - A Eur. J. 19, 2859–
2865 

146  Simon, R.C. et al. (2013) Concise chemoenzymatic three-step total synthesis of isosolenopsin 
through medium engineering. European J. Org. Chem.  

147  Wang, B. et al. (2013) An efficient single-enzymatic cascade for asymmetric synthesis of chiral 
amines catalyzed by ω-transaminase. Chem. Commun. 49, 161–3 

148  Simon, R.C. et al. (2014) Recent Developments of Cascade Reactions Involving ω ‑ Transaminases. 

ACS Catal. 4, 129–143 

149  Koszelewski, D. et al. (2008) Asymmetric synthesis of optically pure pharmacologically relevant 
amines employing ω-transaminases. Adv. Synth. Catal. 350, 2761–2766 

150  Mutti, F.G. et al. (2011) Stereoselectivity of four (R)-selective transaminases for the asymmetric 
amination of ketones. Adv. Synth. Catal. 353, 3227–3233 

151  Fuchs, M. et al. (2012) Amination of benzylic and cinnamic alcohols via a biocatalytic, aerobic, 
oxidation–transamination cascade. RSC Adv. 2, 6262–6265 

152  Tufvesson, P. et al. (2012) Experimental determination of thermodynamic equilibrium in biocatalytic 
transamination. Biotechnol. Bioeng. 109, 2159–62 

153  Chemistry, R.S. of (2015) , Chemspider: Search and share chemistry. . [Online]. Available: 
http://www.chemspider.com/ 

154  Zhao, L. et al. (2002) Analysis of aromatic amines in water samples by liquid-liquid-liquid 
microextraction with hollow fibers and high-performance liquid chromatography. J. Chromatogr. A 
963, 239–248 

155  Yan, H. and Wang, H. (2013) Recent development and applications of dispersive liquid-liquid 
microextraction. J. Chromatogr. A 1295, 1–15 

156  Zhu, L. et al. (2002) Liquid – liquid – liquid microextraction of aromatic amines from water samples 
combined with high-performance liquid chromatography. J. Chromatogr. A 963, 231–237 

157  Pedersen-Bjergaard, S. and Rasmussen, K.E. (2008) Liquid-phase microextraction with porous hollow 
fibers, a miniaturized and highly flexible format for liquid-liquid extraction. J. Chromatogr. A 1184, 
132–142 

158  Peng, S.X. et al. (2000) Automated high-throughput liquid-liquid extraction for initial purification of 
combinatorial libraries. Anal. Chem. 72, 261–266 

159  Bommarius, A.S. et al. (2011) Status of protein engineering for biocatalysts: How to design an 
industrially useful biocatalyst. Curr. Opin. Chem. Biol. 15, 194–200 

160  Reetz, M.T. (2011) Laboratory evolution of stereoselective enzymes: A prolific source of catalysts for 
asymmetric reactions. Angew. Chemie - Int. Ed. 50, 138–174 



 
 

151 
 

161  Liu, Y. et al. (2001) On-line monitoring and controlling system for fermentation processes. Biochem. 
Eng. J. 7, 17–25 

162  Zumbusch, P. V. et al. (1994) On-line monitoring of organic substances with high-pressure liquid 
chromatography ( HPLC ) during the anaerobic fermentation of waste-water. Appl. Microbiol. 
Biotechnol. 42, 140–146 

163  Wu, C.-H. and Wee, S. (2015) Micro sequential injection system as the interfacing device for process 
analytical applications. Biotechnol. Prog. 31, 607–613 

164  Welch, C.J. et al. (2009) Online analysis of flowing streams using microflow HPLC. Org. Process Res. 
Dev. 13, 1022–1025 

165  Zhu, L. et al. (2007) On-line HPLC combined with multivariate statistical process control for the 
monitoring of reactions. Anal. Chim. Acta 584, 370–378 

166  Doyle, M.J. and Newton, B.J. (2002) Chromatography with On-line HPLC and Ion Chromatography 
For Process Control. Cast  

167  Kohls, H. et al. (2015) Selective Access to All Four Diastereomers of a 1,3-Amino Alcohol by 
Combination of a Keto Reductase- and an Amine Transaminase-Catalysed Reaction. Adv. Synth. 
Catal. 357, 1808–1814 

168  Mallin, H. et al. (2014) Immobilization of (R)- and (S)-amine transaminases on chitosan support and 
their application for amine synthesis using isopropylamine as donor. J. Biotechnol. 191, 32–37 

169  Scott Fogler, H. (2014) Elements of chemical reaction engineering, Pearson Education Limited. 

170  Zajkoska, P. et al. (2014) Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl. 
Microbiol. Biotechnol. 99, 1229–1236 

171  Grosová, Z. et al. (2009) Production of d-galactose using β-galactosidase and Saccharomyces 
cerevisiae entrapped in poly(vinylalcohol) hydrogel. Food Chem. 116, 96–100 

172  Stloukal, R. et al. (2014) Dye decolorisation by laccase immobilised in lens-shaped poly(vinyl alcohol) 
hydrogel capsules. Chem. Pap. 68, 1514–1520 

173  Rodríguez-Nogales, J.M. et al. (2013) Immobilization of Oenococcus oeni in lentikats® to develop 
malolactic fermentation in wines. Biotechnol. Prog. 29, 60–65 

174  Rebroš, M. et al. (2013) Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in 
polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal. Biotransformation 
31, 329–334 

175  LentiKat’s Biotechnologies. . [Online]. Available: http://www.lentikats.eu/cs/. [Accessed: 01-Sep-
2015] 

176  Durieux, A. et al. (2000) Continuous malolactic fermentation by Oenococcus oeni entrapped in 
Lentikats. Biotechnol. Lett. 22, 1679–1684 

177  Zhou, Q. et al. (2009) Ultrasound-assisted ionic liquid dispersive liquid-phase micro-extraction: A 
novel approach for the sensitive determination of aromatic amines in water samples. J. Chromatogr. 
A 1216, 4361–4365 

178  Saraji, M. and Boroujeni, M.K. (2014) Recent developments in dispersive liquid-liquid 
microextraction. Anal. Bioanal. Chem. 406, 2027–2066 

179  Seader, J.D. (2006) Separation process principles, Wiley. 



 
 

152 
 

180  Dessimoz, A.L. et al. (2008) Liquid-liquid two-phase flow patterns and mass transfer characteristics 
in rectangular glass microreactors. Chem. Eng. Sci. 63, 4035–4044 

181  Burns, J.R. and Ramshaw, C. (2001) The intensification of rapid reactions in multiphase systems 
using slug flow in capillaries. Lab Chip 1, 10–15 

182  Logtenberg, H. et al. (2011) Multiple flow profiles for two-phase flow in single microfluidic channels 
through site-selective channel coating. Lab Chip 11, 2030–2034 

183  Atencia, J. and Beebe, D.J. (2005) Controlled microfluidic interfaces. Nature 437, 648–655 

184  Guillot, P. et al. (2006) Viscosimeter on a Microfluidic Chip Viscosimeter on a Microfluidic Chip. 
Society DOI: 10.1021/la060131z 

185  Assael, M.J. et al. (1991) Measurements of the viscosity of n-heptane + n-undecane mixtures at 
pressures up to 75 MPa. Int. J. Thermophys. 12, 811–820 

186  Gani, R. et al. (2005) Method for selection of solvents for promotion of organic reactions. Comput. 
Chem. Eng. 29, 1661–1676 

187  Henderson, R.K. et al. (2011) Expanding GSK’s solvent selection guide – embedding sustainability 
into solvent selection starting at medicinal chemistry. Green Chem. 13, 854 

188  Curzons,  a. D. et al. (1999) Solvent selection guide: a guide to the integration of environmental, 
health and safety criteria into the selection of solvents. Clean Technol. Environ. Policy 1, 82–90 

189  Clark, J.H. and Tavener, S.J. (2007) Alternative solvents: Shades of green. Org. Process Res. Dev. 11, 
149–155 

190  Straathof, A.J.J. (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate 
into toxic product. Biotechnol. Prog. 19, 755–762 

191  Halling, P.J. (1994) Thermodynamic predictions for biocatalysis in nonconventional media: Theory, 
tests, and recommendations for experimental design and analysis. Enzyme Microb. Technol. 16, 
178–206 

192  Zhao, Y. et al. (2007) liquid-liquid two-phase mass transfer in the T-junction microchannels. AIChE J. 
53, 3042–3053 

193  Shin, J.S. and Kim, B.G. (1999) Modeling of the kinetic resolution of alpha-methylbenzylamine with 
omega-transaminase in a two-liquid-phase system. Enzyme Microb. Technol. 25, 426–432 

194  McMurry, J. (2007) Organic chemistry : a biological approach, Thomson Brooks/Cole. 

195  Efron, B. (1979) the 1977 Rietz Lecture - bootstrap methods: another look at the jackknife. Ann. Stat. 
7, 1–26 

196  Wohlgemuth, R. et al. (2015) Microscale technology and biocatalytic processes: opportunities and 
challenges for synthesis. Trends Biotechnol. 33, 302–314 

197  Jensen, K.F. (2001) Microreaction engineering — is small better? Chem. Eng. Sci. 56, 293–303 

198  Elvira, K.S. et al. (2013) The past, present and potential for microfluidic reactor technology in 
chemical synthesis. Nat. Chem. 5, 905–15 

199  Saber, M. et al. (2010) Microreactor numbering-up in multi-scale networks for industrial-scale 
applications: Impact of flow maldistribution on the reactor performances. Chem. Eng. Sci. 65, 372–
379 



 
 

153 
 

200  Tonkovich,  a. et al. (2005) Microchannel Technology Scale-up to Commercial Capacity. Chem. Eng. 
Res. Des. 83, 634–639 

201  Roberge, D.M. et al. (2009) Industrial design, scale-up, and use of microreactors. Chim. Oggi 27, 8–
11 

202  Wegner, J. et al. (2011) Ten key issues in modern flow chemistry. Chem. Commun. 47, 4583–4592 

203  Zhang, X. et al. (2004) Application of Microreactor Technology in Process Development. Org. Process 
Res. Dev. 8, 455–460 

204  Losey, M.W. et al. (2001) Microfabricated multiphase packed-bed reactors: characterization of mass 
transfer and reactions. Ind. Eng. Chem. Res. 40, 2555–2562 

205  Perry, R.H. (1997) Perry’s chemical engineers' handbook, McGraw-Hill. 

206  Kockmann, N. and Roberge, D.M. (2011) Scale-up concept for modular microstructured reactors 
based on mixing, heat transfer, and reactor safety. Chem. Eng. Process. Process Intensif. 50, 1017–
1026 

207  McMullen, J.P. and Jensen, K.F. (2010) Integrated microreactors for reaction automation: new 
approaches to reaction development. Annu. Rev. Anal. Chem. 3, 19–42 

 

 

  



 
 

154 
 

  



 
 

155 
 

Appendix A  

Publications 
 

Appendix A.1: Biocatalytic process development using microfluidic miniaturized systems 

 

 

  



DOI 10.1515/gps-2013-0089      Green Process Synth 2014; 3: 23–31

Review

Ulrich Krühne, Søren Heintz, Rolf Ringborg, Inês P. Rosinha, Pär Tufvesson, Krist V. Gernaey 
and John M. Woodley*

Biocatalytic process development using 
microfluidic miniaturized systems

Abstract: The increasing interest in biocatalytic processes 
means there is a clear need for a new systematic devel-
opment paradigm which encompasses both protein engi-
neering and process engineering. This paper argues that 
through the use of a new microfluidic platform, data can 
be collected more rapidly and integrated with process 
modeling, can provide the basis for validating a reduced 
number of potential processes. The miniaturized platform 
should use a smaller reagent inventory and make better 
use of precious biocatalysts. The EC funded BIOINTENSE 
project will use ω-transaminase based synthesis of chiral 
amines as a test-bed for assessing the viability of such a 
high throughput biocatalytic process development, and in 
this paper, such a vision for the future is presented.
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1  Introduction
The increasing academic and industrial interest in biocata-
lytic processes (chemical reactions catalyzed by an isolated 
enzyme, immobilized enzyme, or whole cell containing one 
or more enzymes) is to a large extent driven by the need for 
selective chemistry [1]. Even more remarkable is that such 
selectivity is achieved with enzymes under mild reaction 
conditions. While high selectivity may be easily achievable 
using biocatalysis, for implementation in industry, it is also 
necessary to develop a process that is sufficiently efficient 
that it can be economically feasible. For example, for a 
pharmaceutical intermediate, a product concentration over 

50 g/l must leave the reactor and a high yield of product on 
biocatalyst (termed biocatalyst yield) must also be achieved 
[2, 3]. The exact threshold values depend on the type of 
catalyst and the industry sector (or more accurately the 
selling price of the product relative to the cost of the sub-
strate). However, almost without exception, a new biocata-
lytic process studied in the laboratory will not fulfill these 
requirements, since enzymes are usually evolved to convert 
natural substrates at low concentrations. This presents an 
interesting challenge for process chemists and engineers, 
since the wish to implement a new (non-natural) substrate 
at high concentrations can only be addressed by a con-
certed development effort with a combination of biocata-
lyst modification and process modification. The driver for 
such process development is economic and while targets 
can be evaluated in a given case, there remains a further 
problem, because there are many options to choose from 
and different routes to solve a given problem [4]. While 
some solutions are more effective than others, and some 
are easier to implement than others, there remain many 
choices to be made. One consequence of such complexity is 
that to date such an analysis has inevitably been carried out 
on a case-by-case basis, meaning that often the final scale-
up and implementation does not even take place, because 
it takes too long and is too difficult. Furthermore, in many 
cases, at an early stage it is not clear which way to develop 
the process and where to put the research effort. In order to 
overcome this, one potential vision for the future could be 
a systematic procedure for automated data collection, fol-
lowed by testing of a more limited number of alternatives at 
a miniature scale, such that operations can be carried out 
with a reduced reagent inventory and potentially even in 
parallel. Indeed, such schemes already exist for chemical 
synthetic systems and while the level of complexity with 
biocatalysis is frequently greater, it is also the case that their 
value might be the greater. At the very least, it would enable 
more process options to be evaluated in a shorter time (see 
Figure 1 for a schematic representation of the philosophy).

Combined with process modeling techniques (Krühne 
et al., 2013, submitted for publication), this could provide 
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a way to map the solution space and enable design deci-
sions to be made more rapidly and with greater confidence. 
This is one of the main objectives of the EC-funded BIOIN-
TENSE project. In this brief article, the rationale behind 
high throughput biocatalytic process development will be 
discussed, together with the challenges and opportunities 
such an approach can bring. One of the most important 
application areas of biocatalytic processes is in the syn-
thesis of pharmaceutical intermediates, where speed of 
development (and integration with the neighboring cata-
lytic steps) is of the utmost importance.

2   Biocatalytic process development 
in the pharmaceutical sector

In the pharmaceutical industry, process development time 
is critical (both for chemical as well as biocatalytic syn-
thetic steps) and therefore it is essential to evaluate and 
screen process options rapidly. For biocatalytic processes, 
in order that resources spent on development are used in 
the most efficient manner possible, a systematic method 
is necessary to help identify the process constraints (reac-
tion related constraints as well as biocatalyst related con-
straints). The constraints form the basis of a methodology 
to identify suitable improvement strategies.

For biocatalytic processes, several strategies are avail-
able to improve the process from the initial laboratory 
reaction, so that it is suitable for industrial application. 
Strategies focused on reducing the cost contribution of the 
biocatalyst include fermentation technology (e.g., optimi-
zation of the production host platform, carbon feeding 
strategy, oxygen supply and media composition) to reduce 
the cost of producing the biocatalyst, as well as protein 
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Figure 1 Philosophy underlying miniaturization in the context of 
process development for biocatalytic processes.

engineering and biocatalyst immobilization to ensure that 
the biocatalyst (irrespective of its cost) is subsequently 
used in the most effective way possible (maximum biocat-
alyst yield: kg product/kg biocatalyst). Strategies focused 
on reducing the other cost contributions include reaction 
engineering (e.g., addition of an organic solvent or use 
of substrate excess), reactor engineering (e.g., substrate 
feeding), or process engineering (e.g., in situ product 
removal), to enable the process to run as effectively as 
possible (maximum reaction yield, biocatalyst yield and 
product concentration). Additionally, it is important to 
recognize the interaction between the strategies.

Interestingly, several recent reviews about the applica-
tion of protein engineering strategies to solve biocatalytic 
process challenges have argued that the advances in protein 
engineering now make it possible to ‘fit’ the biocatalyst to 
the process [5, 6], as originally proposed by Burton and co-
workers [7]. Therefore, once initial activity for the desired 
reaction has been detected, the enzyme performance can 
indeed be enhanced by protein engineering, to improve the 
desired properties, such as substrate repertoire and selec-
tivity, as well as activity and stability [8]. Today, there are 
many examples where new biocatalytic routes have been 
established through significant improvement of an existing 
enzyme, via iterative rounds of mutagenesis and screening 
[5, 6, 9, 10]. However, despite the remarkable advances in 
protein engineering, we are yet to be convinced that it is 
possible to fit the biocatalyst to all process conditions. For 
example, while optimal operating conditions for a biocata-
lyst can be expanded significantly from pH 7 and ambient 
temperature, enzymes still have limitations when compared 
to chemical catalysts (which in general operate at high con-
centrations of substrates and products, as well as elevated 
temperatures [11]), meaning that operation under extreme 
conditions may not be possible. However, of even greater 
importance is the fact that the thermodynamic constraints 
of the process cannot be addressed by biocatalyst modifi-
cations directly. While in nature, enzymes usually catalyze 
thermodynamically favorable reactions, for non-natural 
substrates as well as reactions run in synthetic mode, this 
is frequently not the case. Thus, the design of any process 
needs to also consider the likely operating space for the bio-
catalyst and the implication of changing key parameters on 
the process feasibility and cost [4].

3   Process development using 
microfluidic miniaturized systems

Microfluidic technologies concern the use of fluids in 
small compartments (e.g., with a size in the order of µl 
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volumes and with dynamic flow driven by pressure gradi-
ents or other methods). Such technologies are sometimes 
referred to as micro unit operations (MUOs), where the 
basic concept is to have conventional large scale equip-
ment mimicked at a micro scale (e.g., reactors and sepa-
rators [12]). However, microfluidic devices also enable 
novel process development methods [13–15]. At small 
scale, different physical effects dominate the flow com-
pared to larger scale technologies. Microfluidic technolo-
gies exploit these effects in a way that simply cannot be 
achieved at a larger scale. Often these dominant effects 
are described by dimensionless numbers [16]:

 – In microfluidic devices, the Reynolds number (Re), the 
ratio of convective to viscous forces, is low (Re < 100 
and usually around 1) indicating that viscous forces are 
dominating and thereby laminar flows are obtained:

hd
Re

ρν

µ
=

where ρ is the fluid density, ν is the fluid velocity, dhis 
the hydraulic diameter (4A/P, where A is the cross sec-
tional area and P the wetted perimeter) and μ is the 
fluid viscosity.

 – The Péclet (Pe) number, the ratio of mass transfer 
rate due to convection compared to that of diffusion, 
becomes small in microfluidic devices, indicating that 
the rate of mass transport is dominated by diffusion:

aPe
D
ν=

where D is the diffusion coefficient and a is the radial 
length scale.

 – The bond number (Bo), the ratio of gravitational 
forces to those caused by surface tension, is small in 
microfluidic devices, as a consequence of dominant 
surface tension forces, i.e., Bo <  < 1:

2gaBo ρ
γ

=

where g is the gravitational acceleration (9.81 
2

m
s

) and 
γ is the surface tension.

 – The Damköhler number (Da) is another important 
dimensionless number for the characterization of 
microfluidic systems. This number is used to relate 
the chemical or biochemical reaction timescale to 
other phenomena that occur in miniaturized systems. 
This can, for instance, be the material transport 
due to diffusion, interphase transport and fluid 
dynamic convective driving forces. The mathematical 
description is omitted here due to the dependency on 
the specific case considered.

At a larger scale these effects do not have such a signifi-
cant impact, which may result in problems when trans-
ferring processes from micro to large scale and vice-versa. 
However, it is quite common with conventional technolo-
gies to experience problems when transferring knowledge 
obtained at the lab scale to the industrial scale. Alterna-
tively, rather than scaling-up by increasing dimensions, 
microfluidic systems can be numbered-up/parallelized in 
order to obtain the desired process throughput (although 
clearly there is a cost penalty since ‘economies of scale’ 
are lost). Indeed, this scaling strategy is, in many cases, 
not straightforward due to operating and handling issues 
of many systems in parallel [17].

Nevertheless, for screening of reactions, biocata-
lysts and processes, many possibilities exist and there-
fore, even with the potential limitations for scale-up 
of processes developed in microfluidic systems, there 
are many motivators for using microfluidic systems for 
process development. Indeed, in our opinion it seems 
most likely that process development will benefit most 
from the application of miniaturized systems. There is a 
growing group of bioprocess practitioners that share this 
view, working not only on development problems related 
to applied biocatalysis [18–20], but also fermentation [21] 
and protein recovery for biopharmaceutical applications 
[22]. Some of the key motivators are reduced development 
costs and accelerated process development, compared to 
conventional technologies in the ml scale. In many cases, 
microfluidic technologies have been applied for chemical 
synthesis, for example, where otherwise difficult synthe-
ses have been operated and controlled under new and in 
some cases extreme conditions [23, 24]. However, there is 
an increasing interest in applying microfluidic technolo-
gies for the development of biocatalytic processes, due to 
the many general benefits and advantages highlighted in 
the scientific literature [25]. Examples of potential, advan-
tages and benefits for process development based on 
microfluidic devices are discussed below, where special 
attention is given to how this will influence the develop-
ment of new biocatalytic processes.

The first obvious benefit of performing process 
development in microfluidic systems is the reduced con-
sumption of valuable and scarce resources. The reduced 
consumption of resources makes it possible to obtain 
greater process knowledge with the available resources 
and at the same time reduce the development costs. For 
biocatalytic processes, this is especially important, since 
the availability of a generally expensive biocatalyst is ini-
tially limited and will continue to be so until the process 
has been validated. For example, when improving the 
performance of biocatalysts through protein engineering, 
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only small quantities of different putative mutants need 
to be tested for their performance before larger scale 
production is initiated. The reduced consumption is in 
general, especially for the fine chemicals and pharma-
ceutical industries, a major driver for using microfluidic 
systems. Development costs can therefore be reduced 
since resources are so valuable.

Process development requires the testing and optimi-
zation of different biocatalyst and process options [e.g., 
reactors and downstream unit operations (separations)], 
which can in principle be performed relatively easily in 
microfluidic systems. For example, scientific literature can 
be found on membrane based microfluidic separation units 
[26]. Furthermore the liquid-liquid extraction in microsys-
tems has also been proven to be successful [27], especially 
operated in a continuous way. The extraction in microsys-
tems in two phase systems is also being investigated more 
[28]. Furthermore, the most promising microfluidic unit 
operations can easily be tested in combination, to get an 
indication of how they influence one another. It should 
though be mentioned that individual reaction systems or 
processes benefit differently from miniaturization and in 
some cases it will not be advantageous to use microsys-
tems. In the scientific literature, it has been argued, with 
good justification, that micro-reactors benefit faster reac-
tions [29]. However, there are also examples where slower 
reaction systems, e.g., biocatalytic reaction systems, have 
proven to greatly benefit from being operated at a micro 
scale [30]. The easy testing and optimization of process 
options in microfluidic systems opens the possibility of 
greatly accelerating the development of new processes, 
which is especially important in intellectual property (IP)-
dominated industry sectors, such as pharmaceuticals. 
Assuming that miniaturized microfluidic systems contrib-
ute to easy testing and optimization of processes, such 
systems open the possibility of greatly accelerated process 
development, realized through parallelization and auto-
mation of the microfluidic systems. Operating the systems 
in parallel potentially increases screening and testing 
throughput. This potentially makes it possible to test dif-
ferent process conditions and options relatively quickly, 
thus generating knowledge that can be used to select and 
focus on feasible process options, eliminating infeasible 
processes. The information collected could also serve well 
the regulatory needs for Quality-by-Design (QbD) of the 
US Food and Drug Administration [31]. However, a certain 
degree of automation will be required in order to run the 
systems in parallel and ensure high throughput, and cer-
tainly there is still a major effort in software development 
required in order to reach automated and parallelized 
experimental microfluidic platforms [32]. Nevertheless, 

in principle at least, microfluidic systems already require 
a certain degree of automation in order to be operated. 
For example, it is not possible to achieve controlled flows 
through the devices without automated pumps. Auto-
mated systems will also aid in increasing the throughput 
of the parallel systems, since they in principle are able to 
operate continuously, with minimum downtime. Auto-
mated systems also have the advantage of having consist-
ent systematic errors, making results comparable, unlike 
manual sample handling which may vary from operator to 
operator and from day to day.

Furthermore, microfluidic systems can be manufac-
tured in a modular way, thus allowing the user to combine 
the different fluidic modules to test the influence of dif-
ferent process steps on the process efficiency [33–35]. It 
will therefore be possible to test the entire miniaturized 
process before making any efforts to scale-up the best 
process option.

Microfluidic systems have the advantage of enhanced 
process control (e.g., controlled flow scenarios and with 
rapid heat and mass transfer). The characteristic high 
surface-to-volume ratio in microfluidic systems enables 
fast and highly controlled heat and mass transfer. This 
opens up possibilities for dynamic process scenarios (e.g., 
fast transition between hot and cold regions for reactions 
operated in cascades). Likewise, laminar flows in micro-
fluidic systems make it possible to operate with different 
flow scenarios (e.g., parallel, plug flow, slug flow). This 
can be very useful in order to precisely control mass trans-
fer in these systems and enables the possibility of obtain-
ing valuable mass transfer knowledge for the processes 
of interest. Also, it makes it much easier to simulate and 
model the processes in a microfluidic device.

Having laminar flows also enables easy liquid separa-
tion in the systems, based on capillary forces or controlled 
phase (or flow) splitting. This is very useful for extractive 
purposes and provides an option to operate biocatalytic 
processes in new ways. For example, this could enable 
the possibility of having substrate(s) continuously fed to 
the reaction stream. Other possibilities are in situ product 
removal or in situ co-product removal operating scenarios, 
where an auxiliary phase is used to continuously remove 
products or co-products from the reaction stream. For bio-
catalytic processes, these scenarios could potentially be 
useful in order to improve process feasibility by shifting 
unfavorable reaction equilibria and overcoming the inhib-
itory effects of substrates and products on the biocatalyst.

The laminar flows correspond to having a membrane 
free separation or supply system. It is also possible to 
inject an auxiliary phase between two reacting phases 
(i.e., liquid membrane operation using hydrodynamic 
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focusing, and thereby control the reaction rate). It is, 
however, also possible to implement ordinary membranes 
into these systems, as for example demonstrated by Cer-
vera-Padrell and co-workers [36]. The driving force for the 
laminar flow and membrane operations is the concentra-
tion gradient between the different fluids.

Biocatalytic processes are operated in different ways 
dependent on the formulation of the biocatalyst, i.e., free, 
surface immobilized, immobilized in/on support particles, 
or in whole cell form. In relation to microfluidic systems, 
the different immobilization scenarios can be exploited in 
order to perform controlled sequential cascade reactions, 
or actually replicate metabolic pathways. For example, 
in Figure 2A, a micro packed bed reactor performing a 
cascade reaction is illustrated and in Figure 2B, an illus-
tration of a packed bed reactor can be seen, where laminar 
side-by-side flow is used to perform continuous adsorp-
tion and desorption of products.

4  Transaminases
One of the most important functionalities in pharmaceuti-
cal molecules is the amine group and in recent years, there-
fore, routes to optically pure chiral amines have attracted 
considerable academic and industrial interest. Of the pos-
sible routes for synthesis of such molecules, which include 
selective crystallization and chemical catalytic methods, 
biocatalysis is particularly attractive. Biocatalytic methods 
offer high selectivity, under mild conditions with a renew-
able and tunable catalyst. In principle, several biocata-
lytic options exist, but the use of ω-transaminases (EC 
2.6.1.X) in synthetic mode has driven significant research 
to find not only S-selective, but also R-selective enzymes 

for specific applications, and process routes to effectively 
implement the technology. Despite the excellent selec-
tivity of this reaction and its unique ability to create a 
chiral center, in principle with 100% yield, in reality the 
ω-transaminase is one of the more challenging of the bio-
catalytic reactions; the substrates and products are often 
poorly water-soluble, the equilibrium is frequently unfa-
vorable [37] and the substrate(s) and product(s) are more 
often than not inhibitory to the reaction (see Table 1) [38, 
39]. This means that at first glance such a process is not 
only economically infeasible, but indeed far away from the 
targets which would be required for economic industrial 
exploitation [3]. Interestingly, in common with many other 
biocatalytic reactions, via a combination of protein engi-
neering and clever use of reaction, reactor and process 
engineering, a cost effective process can be established 
(see Figure 3), and excellent precedent has already been 
set with the synthesis of sitagliptin by Merck and Co (USA) 
[42, 43], and other examples by Cellgene/Cambrex (USA 
and Sweden) [44] and Astra Zeneca (UK and Sweden)[45].

However, there are many other potential molecules 
to be synthesized using ω-transaminases, where the chal-
lenges have not yet been overcome and in general no 
standardized procedure exists to design an appropriate 
reaction, reactor and process for a given transaminase 
conversion. For this reason, we decided to use this reac-
tion as a test system for the microfluidic development 
platform in the BIOINTENSE project.

Transaminases catalyze the transfer of an amine 
(-NH2) group from a donor molecule, usually an amino 
acid or a simple non-chiral amine such as 2-propylamine, 
to a pro-chiral ketone acceptor, yielding a chiral amine as 
well as a co-product ketone (or alpha-keto acid) (Figure 4).  
The enzyme requires the cofactor pyridoxal phosphate 

A B

Figure 2 (A) Example of a micro packed bed reactor operated with a cascade reaction performed by immobilized enzyme on particles 
arranged in a sequential order. Green and gray particles represent different immobilized biocatalysts; (B) example of a novel way to operate 
micro packed bed reactors in which a simultaneous adsorption (blue stream) and desorption (red stream) flow is established with the help 
of a side by side laminar flow. This flow concept is currently under investigation and can be achieved by an appropriate design of the length 
and depth ratio of the Micro Packed Bed Reactor (µ-PBR). The channeling effects which also occur in miniaturized systems should in this 
way be limited to each side of the separated flow.
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(PLP) to act as a shuttle to transfer the amine group. The 
cofactor is tightly bound to the enzyme and therefore 
does not pose the cofactor regeneration problems so often 
encountered in biocatalytic oxidation and reduction reac-
tions [46, 47].

The asymmetric synthesis of chiral amines by 
ω-transaminase consists of three major steps (Figure 5); 
fermentation, biocatalytic reaction and product recovery. 
In order to avoid unnecessary costs, the biocatalyst is used 
in the crudest possible form (either as whole cells or cell 
free extract). Immobilization of the enzymes can be used 
to facilitate recovery and recycle, thereby improving the 
biocatalyst yield (g products/g biocatalyst).

After the reaction is complete, the biocatalyst is 
removed (biocatalyst separation) and the product is iso-
lated from the substrate (which may also be recycled 
dependent upon the cost contribution to the process) 
prior to purification.

There are many challenges inherent to transami-
nase processes that need to be dealt with and numerous 
reports have been published that address one or more 
of these challenges. Frequently, the suggested strategies 
solve more than one problem, for instance the use of an 
auxiliary phase may solve issues related to substrate and 
product inhibition as well as low water solubility; by con-
trast, the solution might pose other problems, such as 
lower biocatalyst stability. An overview of transaminase 
process challenges has been compiled in Table 1, along 
with the suggested technologies and strategies used to 

Amine
donor

Amine
acceptor

R′ R′′ R′ R′′
+ +

NH2 NH2 OO

Chiral amine
product

Co-product

ω-TAm

Figure 4 Asymmetric synthesis of chiral amines by 
ω-transaminase.

AD

Co-P

P

W

Sc
FM

O

ACRM

M R

S1

S2

S3

S4

F

Figure 5 Generalized process flow sheet for transaminase-catalyzed reactions. Unit operations: fermenter (F), mixer (M), reactor (R), cell/
fermentation broth separator (S1), biocatalyst/reaction medium separator (S2), amine donor/acceptor separator (S3) and chiral amine 
product/co-product separator (S4). Process streams: amine acceptor (AC), amine donor (AD), product (P), co-product (Co-P), fermentation 
media (FM), oxygen (O), reaction media (RM), starter culture (SC), waste fermentation broth (W).

overcome these, as well as the further implications of 
using a specific technology.

5  Discussion
Although there is a great potential for the application of 
microfluidic miniaturized systems in process develop-
ment, there are also several challenges related to their 
operation.

One of the main challenges is the large number of 
samples required for analysis due to the sensitivity of the 
measurements and manual sample handling for off-line 
measurements. The implementation of on-line measure-
ments could be a possible solution. However, the stand-
ard on-line measurement methods [e.g., near-infrared 
(NIR) and ultraviolet (UV)] can be quite problematic. The 
compounds involved in the processes studied by BIOIN-
TENSE, amines and ketones, have peaks appearing in crit-
ical regions of the NIR and UV spectra. For instance, the 
amines are shadowed by water in the NIR spectrum, and 
in the UV spectrum, the peaks appear in the lower region, 
where common materials used for fabrication of microflu-
idic devices will have shadowing effects.

The integration of the hardware such as pumps, 
valves, analytical equipment and the heating/cooling 
zone can be quite challenging when working at the micro 
scale. For this reason, it is necessary to standardize con-
nections to simplify their application. There is a similar 
constraint related to the available technology that can be 
applied to process development. Here, there is a need for 
readily and commercially available platforms, modules 
and methodologies. For instance, for biocatalytic pro-
cesses, there is no guidance and there has been a trend 
towards starting from the very beginning each time. For 
that matter, methodologies should also cover develop-
ment and scale-up procedures and/or strategies. This is 
one of the tasks that will be undertaken in BIOINTENSE.
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Likewise, the formation (or use) of solids in microsys-
tems can cause severe channel clogging due to surface 
adhesion. The large surface to volume ratio supports 
adhesion and it is difficult to prevent [48]. This is a great 
bottleneck, since the biocatalyst formulation can vary, 
e.g., free solubilized enzymes, immobilized enzymes on 
solid support, or whole cells. Biocatalysts are usually 
expensive and it is intended to use them in as crude as 
possible a state, or at least for as many cycles as possi-
ble [3]. Another challenge that should be considered is 
the catalyst immobilization in strategic locations of the 
micro-reactor surface for topology studies. These studies 
can involve complex biocatalyst distribution patterns 
determined by simulations using biocatalyst immobiliza-
tion and can be difficult to replicate experimentally.

6  Future outlook
In the BIOINTENSE project, we are developing entirely new 
tools and only time will tell if the results and the perfor-
mance of the microsystem based platform will reveal a new 
‘high throughput’ paradigm. However, based on the prelim-
inary results obtained, it can already now be seen that the 
developed ‘microtools’ contribute to entirely new results, 
including deepening the understanding and knowledge of 

mass transfer parameters (like diffusion velocities of the 
substrates and products). With the help of this informa-
tion, it will become possible to understand the complex 
interactions of the biocatalytic system better and hence it 
can also be expected that in the long run, this information 
can contribute to the rapid development of the identified 
processes. Indeed, we are convinced that it will be neces-
sary to develop a miniaturized toolbox for the investigation 
and screening of process options. Nevertheless, the exact 
composition of that toolbox is today unknown. The project 
will show, in the end, if the full advantages of microsys-
tems can be applied for rapid process development and 
if this is, from an economic point of view, worthwhile. 
However, the highest expectations are at the moment to 
prove if the miniaturized process toolbox will contribute to 
the acceleration of the process development and thereby to 
the reduction of development time.
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Introduction

The development of new chemical engineering 
design tools is essential for the implementation of the 
latest technology in the manufacture of chemical and 
other products. The focus of this paper is on process 
systems engineering (PSE) methods and tools, and 
especially on how such PSE methods and tools can 
be applied to speed up or support systematic biopro-
cess development at miniature scale. In this context, 
the term bioprocess is interpreted broadly, and in-
cludes both biocatalysis (enzyme or resting cell con-
version) as well as fermentation (growing cell con-
version). In the following section, we first provide a 
brief introduction to the main drivers of biocatalysis 
and fermentation process development. The paper 
also contains a short overview of PSE methods and 
tools. The use of such tools is illustrated on the basis 
of three examples, which summarize some of our re-
cent experiences in the area. The paper ends with a 
discussion on future perspectives with respect to the 
use of PSE methods and tools in miniaturized bio-
process systems and for extrapolation of results 
across reactor scales (scaling up).

Bioprocess development drivers – biocatalysis

The need for selective chemistry is the main 
driver behind the increasing academic and industri-
al interest in biocatalytic processes (chemical reac-
tions catalyzed by an isolated enzyme, immobilized 
enzyme or whole cell containing one or more en-
zymes).1 While biocatalysis may easily hold the 
promise of high selectivity, economic process feasi-
bility is also necessary for implementation in indus-
try. Economic feasibility translates into a minimum 
required product concentration that must leave the 
reactor, as well as a yield of product on biocatalyst 
that is to be achieved, as has been illustrated by 
Tufvesson and coworkers for a number of different 
scenarios.2 The exact threshold values for minimum 
product concentration and yield of product on bio-
catalyst will indeed depend on the particular indus-
try sector as well as the selling cost of the product 
relative to the cost of the substrate. In fact, most 
new biocatalytic processes studied in the laboratory 
do not fulfill these requirements, mainly because 
enzymes are usually evolved to operate under mild 
conditions converting natural substrates at low con-
centrations. Hence, achieving an economically fea-
sible biocatalytic process in terms of minimum re-
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quired product concentration and yield of product 
on biocatalyst is therefore often challenging, and 
can only be addressed by a combination of process 
modifications as well as biocatalyst modifications. 
Indeed, in many cases it is not clear at an early 
stage how to develop the process. In order to over-
come this, one potential vision for the future could 
be automated data collection and systematic testing 
of alternatives at a miniature scale such that opera-
tions can be carried out in parallel and with a re-
duced reagent inventory. This is the main aim of the 
EC-funded BIOINTENSE project, and the experi-
mental and practical challenges of such an approach 
have recently been discussed by Krühne and 
co-workers (2014).3

When considering the list of potential process 
and biocatalyst modifications, analyzing all potential 
options is a combinatorial problem that is too diffi-
cult and time-consuming to be addressed by evaluat-
ing options one-by-one in the laboratory, even at 
miniature scale. However, specifically at this point, 
mathematical models can be used to supplement 
biocatalytic process development, and to support the 
rapid identification of the most promising biocata-
lytic process options among many. This also match-
es the above-mentioned ideas on automated data 
collection and systematic testing of alternatives at a 
miniature scale. Automated data collection can in-
deed be combined with automated model structure 
selection and parameter estimation, as recently illus-
trated for a conventionally-catalyzed Diels-Alder re-
action with complex kinetics in a microreactor.4

Bioprocess development drivers – fermentation

Fermentation processes have been used for 
hundreds of years in the production of food, includ-
ing beer and wine. However, partly due to the scar-
city of fossil fuels, fermentation processes have be-
come increasingly attractive during the past decades 
to produce proteins (including enzymes), fine and 
bulk chemicals as well on the basis of renewable 
raw materials. The essential difference between a 
biocatalytic process and a fermentation process is 
that the catalyst in the fermentation process is a liv-
ing microorganism – most often a genetically mod-
ified organism overexpressing the genes required to 
produce the product of interest – that grows on a 
carbon substrate which usually also forms the sub-
strate for the formation of the product of interest. 
As a consequence, successful implementation of an 
economically feasible fermentation process relies 
on achieving a high enough product yield on sub-
strate (especially for lower value products) as well 
as maintaining a delicate balance between using 
substrate for biomass growth on the one hand and 
product formation on the other hand. If biomass 
growth is not sufficiently prioritized, the product 

formation rate will be too low, resulting in subopti-
mal exploitation of the available reactor volume. 
On the other hand, if biomass growth is promoted 
too much, the final yield of product on substrate 
achieved in the fermentation process and the prod-
uct concentration will be suboptimal. Thus, the 
main economic drivers of an industrial fermentation 
process are the yield of product on substrate and the 
final product concentration that can be achieved – 
the higher the better, since less water needs to be 
removed from the product in the downstream pro-
cessing. Furthermore, for aerobic fermentations the 
energy cost for oxygen supply is also an important 
cost.

Mathematical models are often used to study 
laboratory scale fermentation processes. However, 
their use in industry is rather limited, and fermenta-
tion process development has traditionally relied on 
an extended series of experiments at lab-scale and 
pilot-scale in order to find the operating conditions 
that result in an economically feasible fermentation 
process. In recent years, microliter and milliliter 
scale devices capable of performing fermentations 
have been developed as well,5 and have been pro-
moted for use in fermentation process development. 
However, it is quite clear that additional research 
work is needed before the use of microscale or mil-
liliter scale devices will be the generally accepted 
process development strategy or support tool. 
Mechanistic models could, according to us, be help-
ful in realizing that future vision.

PSE methods and tools

Process systems engineering (PSE) is an inter-
disciplinary field within chemical engineering that 
focuses on the design, operation, control, and opti-
mization of chemical, physical, and biological pro-
cesses through the aid of systematic computer-based 
methods. A systems approach is generally mod-
el-based, i.e. different types and forms of mathe-
matical models play a prominent role in process 
design/operation, evaluation and analysis as they 
have the potential to provide the necessary process 
understanding, supplement the available knowledge 
with new data, and reduce time and cost for pro-
cess-product development.6,7 PSE methods and 
tools have been applied successfully to many indus-
tries, such as the chemical and petrochemical, the 
pharmaceutical8 and biotechnological industries.

While working on a process development task, 
independent of scale, mathematical models are of-
ten used to summarize the available process knowl-
edge and to describe the dynamics of the most im-
portant process variables. Such ‘dynamic models’ 
are usually mechanistic models of a process or a 
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unit operation, for example consisting of a set of 
ordinary differential equations (ODEs) which repre-
sent the input-output dynamics. Once available, 
such a model can be supplemented by a set 
of well-established model analysis tools,9–11 for 
 example also including uncertainty and sensitivity 
analysis to assess the statistical quality (reliability) 
of the simulated scenarios.12 Perhaps most impor-
tantly from a process development point of view, 
the calibrated dynamic models can be used for 
in-silico testing of a set of potential process operat-
ing strategies, e.g. by comparing different control 
strategies in a series of dynamic simulations, with-
out disturbing process operation. The latter is a ma-
jor advantage, but requires a dynamic model which 
has been calibrated on the basis of available process 
data.

Case study examples

Example 1: Bi-enzyme production of lactobionic 
acid (Santacoloma, 2012)3

The main goal of this first example was to ana-
lyze the reliability of a mechanistic mathematical 
model describing a biocatalytic reaction in a lab-
scale reactor in terms of its prediction quality. 
During the process the temperature was controlled 
at 30 °C and pH was maintained at 3.9. Further-
more, concentrations of lactose, lactobionic acid 
and oxygen were measured for 6 hours. After that 
time, the lactose was completely consumed. The 
sampling interval for lactose and lactobionic acid 
was 1 hour and the samples were measured by 
High-performance liquid chromatography (HPLC). 
The dissolved oxygen measurements were recorded 
every 10 seconds.

Production of lactobionic acid (4-O-b-D-galac-
topyranosyl-D-gluconic acid), a compound used in 
the production of high-value products, pharmaceuti-
cal and food applications, is primarily achieved by 
the oxidation of lactose. The general scheme for the 

biocatalytic production of lactobionic acid is shown 
in Fig. 1. A first enzyme, cellobiose dehydrogenase 
(CDH), catalyzes the dehydrogenation of lactose to 
lactobiono-lactone, which is spontaneously hydro-
lyzed to lactobionic acid. In this case, the double 
action of the redox mediator 2,2’-azinobis(3-ethyl-
benzothiazoline-6-sulfonic acid) (ABTS) is exploit-
ed. In the first reaction, ABTS acts as an electron 
acceptor regenerating the initial oxidation state of 
the first enzyme (CDH). In the second reaction, 
ABTS serves as electron donor to obtain the reduc-
tion by laccase (lacc), which is the second enzyme 
added to the system. The reduced state of laccase 
catalyzes the second reaction where oxygen (the 
co-substrate) is fully reduced to water.14,15

The mathematical model for this system was 
obtained from the literature, including the kinetic 
parameters of the multi-enzyme process.16 and was 
implemented in MATLAB. Both enzymes involved 
in the process (CDH and lacc) follow the substitut-
ed enzyme mechanism. Kinetic parameters for each 
enzyme were obtained from the literature.14,15,17 In-
teraction due to the combination of enzymes was 
not taken into account in these studies. In this case 
study, the bi-enzyme process was carried out in 
batch mode, in a membrane bioreactor. The main 
purpose of this reactor was to provide bubble-free 
oxygenation. Furthermore, the mass transfer of ox-
ygen from the gas to the liquid phase was included 
in the mathematical model.16

The following assumptions were made for the 
mathematical model: (1) Substrate and product in-
hibition are neglected in the process; (2) pH and 
temperature are maintained constant during the op-
eration; (3) Perfect mixing in the reactor.

The model for the system consists of six differ-
ential equations, and can be written down in a com-
pact matrix notation,18 as shown in Table 1. An ex-
ample of how the matrix in Table 1 should be read 
is shown in Eq. 1 with the oxygen balance:

 2o
2

d 1
d 2omt

C
r r

t
   (1)

F i g .  1  – General reaction scheme for bi-enzyme production of lactobionic acid: (a) lactose, (b) lactobiono-lactone 
and (c) lacto bionic acid
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The enzymatic reactions follow the bi-bi ping-
pong (or substituted-enzyme19,20) kinetics. In this 
case study, both enzymes follow the same type of 
mechanism. Hence, two coupled substituted-en-
zyme mechanisms are suggested to describe both 
enzymatic reactions. The process rates are summa-
rized in Table 2.

Progress curves for lactic acid, dissolved oxy-
gen and lactobionic acid formed the basis of a pa-
rameter estimation. Details of the parameter estima-
tion procedure can be found in Santacoloma 
(2012).13 The resulting model fit is illustrated in 
Fig. 2. The parameter estimates, including confi-
dence intervals, are provided in Table 3.

Ta b l e  1  – Mass balances of the batch process for lactobionic acid production represented by the stoichiometric matrix notation
   Component 
 
Process

Clact

(mM)

CLBL

(mM)

CLBA

(mM)

CO2

(mM)

CABTS

(mM)

CABTS+

(mM)
Process rates

Enzyme 1- CDH –1 1 2 –2– rCDH

Enzyme 2- Lacc. –1/2– –2– 2 rlacc

Hydrolysis –1– 1 rhyd

Aeration 1 romt

Ta b l e  2  – Reaction rate expressions for lactobionic acid production

Reaction rate (symbol) Reaction rate expression

rCDH max_1
Lact ABTS

Lact ABTS
CDH

M ABTS M Lact Lact ABTS

C C
r V

K C K C C C




 




    

rlacc
2

O 2 22

O
max_ 2

O OABTS

ABTS
lacc

M ABTS M ABTS

C C
r V

K C K C C C



    

rhyd hyd hyd LBLr K C 

romt
2 2O O( )sat

omt Lr K a C C  

F i g .  2  – Comparison between experimental data and simulation of the system using the estimated parameters 
(line – simulation, dots – measurement)
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Despite the assumptions, the suggested mathe-
matical model can in general describe the process 
dynamics. Seven parameters were found to be iden-
tifiable based on the given dataset, but the kinetic 
parameters (KM) for both oxidation states of the in-
termediate redox mediator ABTS are very small 
which physically means fast dynamics in the system 
as the lactic acid approaches depletion. That effect 
could probably also explain – at least to some ex-
tent – the uncertainty in those parameters, observ-
able in Table 2 as a large confidence interval. Sev-
eral other parameters show rather large confidence 
intervals as well. This means12 that the absolute val-
ues of the parameters should be interpreted with 
care, i.e. the model can describe the process dynam-
ics but the physical meaning of the parameters is 
limited. Improved quality of the parameter estima-
tion (reduced confidence intervals) could be 
achieved by collecting measured data on other mod-
el variables as well.

Example 2: CFD to study mass transfer 
phenomena in microreactors 
(Bodla et al., 2013)21

The second case study demonstrates the combi-
nation of microreactor technology and computation-
al fluid dynamics (CFD) to contribute towards un-
derstanding of the diffusional properties of substrate 
and product in a biocatalytic reaction. Such knowl-
edge can then be applied to design new reactor con-
figurations.

As a case study, an ω-transaminase catalyzed 
transamination for the synthesis of chiral amines 
was selected. Biocatalytic transamination is studied 
intensively nowadays, mainly because the transam-
ination reaction is attractive for synthesis of optical-
ly pure chiral amines (which are valuable building 
blocks for pharmaceuticals and precursors). How-
ever, in the synthetic direction the reaction is often 
limited by unfavourable thermodynamics, as well as 
substrate and product inhibition of the enzyme ac-

tivity.22 The reaction is catalysed by ω-transami-
nase, in the presence of a co-factor, pyridox-
al-5’-phosphate (PLP), by transferring the amine 
group from the amine donor to a pro-chiral acceptor 
ketone, yielding a chiral amine along with a 
co-product ketone. The reaction follows the bi-bi 
ping pong mechanism where the substrate is first 
bound to the enzyme while co-product is released 
before the second substrate is bound and the final 
product leaves the enzyme.23 Thus diffusion of the 
substrate to the enzyme binding site and the product 
diffusion potentially have a significant effect on the 
reaction performance. Hence, it was specifically in-
tended here to study the diffusion characteristics of 
the substrate and the product under operating condi-
tions.

Transient experiments were performed in a mi-
crochannel under continuous flow conditions. Fol-
lowing a step input of the diffusing species at the 
inlet at time t = 0, the phenomenon of species trans-
port in uniform poiseuille flow is explained by the 
convection-diffusion equation.24 A species that is 
diffusing relatively fast creates a more radial mix-
ing profile, while a species diffusing more slowly 
has less effect. Under laminar flow conditions, resi-
dence time distribution (RTD) experiments were 
performed by inducing a step input at the inlet of 
the channel after reaching steady-state, while the 
concentration over time is subsequently measured 
at the outlet in order to obtain the response curves, 
E(t) as shown in Eq. 2. These distribution profiles 
are helpful in understanding the diffusional proper-
ties of each species. Slowly diffusing species have 
more lag time, and thus it takes more time to reach 
the normalized concentration at the outlet. The first 
molecules of the species will also break through 
sooner at the end of the channel compared to rela-
tively faster diffusing species (Fig. 3).

 
o

( )
( )

C t
E t

C
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Ta b l e  3  – Lactobionic acid example: parameter estimates with 95 % confidence intervals and correlation matrix of the estimated 
parameters

Parameter Estimates with 
95 % C. intervals Units

Correlation matrix

q1 q2 q3 q4 q5 q6 q7

Vmax 1 23.33 ± 16.40 mM h–1 1

KM lact  1.27 ±  3.06 mM –0.47– 1

KM ABTS+ 4.10 e–5 ±  0.09 mM 0.85 –0.71– 1

Vmax 2 58.48 ± 34.70 mM h–1 0.29 0.13 –0.08– 1

KM ABTS 8.74 e–3 ±  0.51 mM 0.42 0.18 –0.06– 0.83 1

KLa  3.84 ± 0.10 h–1 0.13 0.13 0.23 –0.07– –0.22 1

Khyd   0.655 ± 0.44 mM h–1 –0.00– 0.00 –0.00– –0.00– –0.00 0.00 1



208 U. KRÜHNE et al., Systematic Development of Miniaturized (Bio)Processes using…, Chem. Biochem. Eng. Q., 28 (2) 203–214 (2014)

Where Co is the species concentration at the inlet 
for a step input, and C(t) is the concentration mea-
sured at the outlet at time t. The RTD experiments 
were performed in the microchannel at a flow rate 
of 7.5 µL min–1 for the amine acceptor substrate 
(acetophenone), for the amine product (methylben-
zylamine), and for glucose, as shown in Fig. 3. The 
channel dimensions (width 0.5·10–3 m, height 1·10–3 m, 
length 0.1 m) are sufficiently small and the flow 
rate is sufficiently low to maintain a laminar flow 
(Reynolds number is 0.2). Glucose is a compound 
with a known aqueous diffusion coefficient of 
0.67.10–9 m2 s–1 and was therefore used as a refer-
ence.

Computational fluid dynamics (CFD) models 
of the flow behaviour were also constructed for a 
range of diffusion coefficients with the intention of 
distinguishing between fast and slowly diffusing 
compounds (i.e. compounds with orders of mag-
nitude differences of their diffusion coefficients). 
ANSYS CFX version 12.5 was used as software 
package for this purpose. Response curves were ob-
tained from the simulations, after inducing a step 
input at the inlet, and by measuring the area average 
of the species concentration at the outlet of the 
channel and are also plotted in Fig. 3.

The results in Fig. 3 provide a comparison of 
the experimental data obtained from transient ex-
periments with the RTD curves resulting from CFD 
simulations. The simulation result, with a diffusion 
coefficient of 0.67 . 10–9 m2 s–1, fits well with the 
data for the product, indicating that the diffusion 
coefficient of the product is close to that of glucose. 
With respect to acetophenone, the results indicate 
an increased lag time to reach the normalized con-
centration at the outlet compared to the product im-

plying that the substrate is diffusing slower than the 
product. Compared to the simulations, the experimen-
tal data does not fit exactly, although the behaviour 
of the response curve is closer to that of the simula-
tion with a diffusion coefficient of 0.67 . 10–12 m2 s–1. 
Hence it can be interpreted that the diffusion coeffi-
cient is in the order of magnitude of 10–12. Thus it 
can be concluded that the substrate is diffusing con-
siderably slower than the product (around 103 fold 
slower).

For experimental values, a standard deviation 
of about 10 % from the mean has been observed. 
This could account for an error of 10 % in deter-
mining the value of the diffusion coefficients. Fur-
ther errors in numerical simulations will have a 
combined effect on determining the value of the 
diffusion coefficients. CFD simulations for solving 
the Navier -Stokes equations for fluid dynamics are 
well established in various applications. It is im-
portant to replicate the exact geometry including the 
wall effects and boundary conditions in the simula-
tion since the response curve is a function of these 
variables. Appropriate meshing of the geometry is 
also crucial to minimize the numerical error. The 
finer the mesh size or the higher the number of 
mesh elements, the more precise will the numerical 
calculations be. For transient simulations, the time-
step is also important when the error has to be min-
imized. However, there is a tradeoff between the 
mesh size, the time-step and the required computa-
tional time and effort. Thus a compound (such as 
glucose in this case study) with a known diffusion 
coefficient can be used to confirm if the simulations 
are able to predict the experimental data. Assuming 
about 5 % error in the numerical simulations, the 
combined error could be in the order of 5 % – 30 %. 

F i g .  3  – CFD simulations with induced diffusion coefficients of 0.67·  10–9 m2 s–1 and 0.67·  10–12 m2 s–1 plotted as continuous lines; 
Experimental results are plotted as markers. Figure adapted from (Bodla et al., 2013)25
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In this case, the substrate is estimated to be diffus-
ing 1000 fold slower compared to the product, 
where the real value could thus be about 700–1300 
times slower compared to the product (assuming 
maximum 30 % error). So when comparing the nu-
merical response curves with the experimental data, 
errors in both numerical simulation and experimen-
tal data can result in incorrect estimation of the dif-
fusion coefficients.

The knowledge of substrate and product diffu-
sion coefficients is crucial for the choice and design 
of reactors for biocatalytic reactions. Different reac-
tor configurations can be achieved based on the 
flow and species transport characteristics. It has 
been demonstrated that the reactor configurations 
built from this knowledge perform better than the 
traditional well mixed batch reactor.21 In order to 
build reactor configurations for industrial purposes, 
it is furthermore also crucial to be able to extrapo-
late the results from microscale to larger industrial 
scale. Although it is challenging to obtain the selec-
tivity of a microreactor configuration in a conven-
tional reactor, the data acquired at microscale can 
be used as a guide to understanding the process lim-
itations during scale-up.

Example 3: Topology optimization 
(Schäpper et al., 2011)25

The third case study (Schäpper et al., 2011),25 
presents a new approach to the design of microbio-
reactor layouts using topology optimization, a meth-
od which had previously been successfully applied 
in the design of optimal catalytic microreactors.26 
Topology optimization is an iterative mathematical 
optimization technique which can optimize a design 
according to the value of a pre-defined objective 
function. In this case the design was the spatial dis-
tribution of immobilized yeast cells and their carrier 
material inside a small bioreactor, which was opti-
mized based on the yeast cells’ total production of a 
given protein as the objective function.

The yeast Saccharomyces cerevisiae was cho-
sen for this study for several reasons: it is one of the 
best known model systems, and S. cerevisiae is fur-
thermore one of the microorganisms most common-
ly used in the biotechnology industry.

Simulations were carried out using the software 
COMSOL coupled to MATLAB and the optimized 
reactor was a rectangular microbioreactor with a 
length of 1.2 mm and a width of 1.2 mm. A constant 
pressure difference between inlet and outlet provid-
ed a continuous flow of glucose containing medium 
inside the reactor.

Inside the reactor, the distribution of a carrier 
material with immobilized yeast cells was then op-
timized. The carrier was modeled as a porous, 

sponge-like material which gave rise to an addition-
al so called Darcy friction anti-parallel to the flow 
medium. For the volumes inside the reactor with no 
carrier present, i.e. those regions only containing 
culture medium, the Darcy friction was set to zero.

For a given distribution of carrier material in 
the reactor, the flow velocities of the medium were 
calculated from the steady state Navier-Stokes 
equation, taking the Darcy friction of the carrier 
material into consideration. These flow velocities 
were then used in the second part of the calcula-
tions, where kinetic models were applied to model 
the protein production in the reactor.

Topology optimization was then applied in or-
der to find a better reactor design with a more ben-
eficial distribution of carrier material, and each can-
didate was evaluated based on how high a protein 
production the configuration could achieve.

The kinetic model in this study was based on 
the work of Brányik et al. (2004)27 and Zhang et al. 
(1997),28 and describes the yeast metabolism 
through the three metabolic events described in 
Fig. 4.

According to the model, glucose may be oxi-
dized to carbon dioxide along the respiratory meta-
bolic pathway 2. However, if the glucose flow be-
comes too large for the respiratory capacity of the 
cell, excess glucose is fermented to ethanol accord-
ing to pathway 1, and the activity of the enzymes in 
the glucose oxidation pathway is reduced. When 
glucose approaches depletion, ethanol begins to be 
metabolized by pathway 3. The cells grow exclu-
sively on ethanol when glucose is exhausted.

In this model, the production of the desired 
protein is assumed to be associated with growth and 
is exclusively associated to the oxidative metabo-
lism (pathways 2 and 3) in the yeast cells. This 
means that the production of the protein will be 
negatively affected by, for example, too high glu-
cose concentrations.

F i g .  4  – The three pathway model for yeast metabolism sug-
gested by Zhang et al. (1997).28 (Figure adapted 
from (Schäpper et al., 2011)25)
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With this as a basis, a set of equations describ-
ing glucose consumption, ethanol production and 
consumption, protein production as well as both im-
mobilized and suspended biomass was implemented 
as a kinetic model. The concentrations of glucose, 
ethanol, protein and biomass were then calculated 
at steady state based on the kinetic models coupled 
to their diffusion in the medium as well as their 
convection, based on the previously calculated flow 
velocities. From this the objective function, which 
was the total production of protein in the system, 
was calculated and the carrier distribution re-orga-
nized in order to try to find a more optimal distribu-
tion, by repeating the flow and kinetic calculations.

The total protein production in the optimized 
bioreactors (i.e. in the reactors with an optimized 
distribution of carrier) was then compared to the 

calculated performance of non-optimized reactors 
(i.e. in reactors where the carrier material was ho-
mogeneously distributed).

This comparison was made for different glu-
cose concentrations in the feed and the results can 
be seen in Table 4, which shows that the protein 
mass flow rate at the outlet increased at least five-
fold for all the simulated glucose concentrations 
when topology optimization was applied. The re-
sulting structure for the case with a glucose concen-
tration of 0.1 g L–1 in the feed can be seen in Fig. 5, 
together with its resulting glucose, ethanol and pro-
tein concentrations at steady state.

The significant gain in protein concentration 
can be explained by the fact that a structurally opti-
mized distribution, where flow is distributed and 
islands of biomass are surrounded by streams of liq-

F i g .  5  – Resulting structure and concentrations for a glucose inflow concentration of 0.1 g L–1. (a) Distribution of biomass where 
white = cells and black = fluid, (b) glucose concentration [g L–1], (c) ethanol concentration [g L–1] and (d) protein con-
cen tration [units L–1]. From Schäpper et al. (2011).26
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uid flow, allows for a more balanced distribution of 
glucose across the reactor leading to higher local 
protein production rates.

This first theoretical investigation of the poten-
tial of topology optimization for improvement of 
microbial cultivation processes at micro scale has 
clearly shown that the use of this methodology can 
potentially lead to microbioreactors with a signifi-
cantly higher productivity than conventional reactor 
designs where immobilized biomass is homoge-
neously distributed.

Discussion

The presented case studies have different levels 
of complexity, and address different experimental 
scales as well. For the first case a lab-scale biocata-
lytic reaction is described by a system of coupled al-
gebraic and ordinary differential equations that have 
been solved for a number of state variables, while for 
the second case, a microreactor, the Navier-Stokes 
equation has been solved with a mass balance for 
two different slow diffusing species. Finally in the 
last case study the partial differential equation sys-
tems for momentum and mass transport have been 
coupled with the kinetic rate laws of a relatively sim-
ple biological model, and this model of a microbiore-
actor was then linked with an optimization routine.

In the case studies, different types of informa-
tion can be gathered from the calculations. In the 
first example, a model is confirmed with respect to 
the prediction quality, which by calibration may be 
further improved. In the second example a CFD 
model is applied in order to gain a better under-
standing of existing experimental data collected in a 

microscale reactor. Here new insight is quickly 
gained from a rapidly performed experiment, and 
this new information – the diffusion coefficient – 
can subsequently be used for the prediction of later 
experiments. Finally, the third example is complete-
ly theoretical and describes how an advanced model 
is used with the intention of generating new design 
configurations of an otherwise relatively well 
known fermentation system. The future challenge 
here is to verify experimentally whether new and 
intensified reaction systems can be generated. An 
evolutionary algorithm is furthermore implemented 
in order to achieve this goal.

Such examples are interesting from a scientific 
point of view, but also the more practical oriented 
scientist or engineer should consider the more sys-
tematic use of PSE methods and tools, since these 
methods and tools offer a range of convincing op-
portunities, as well as saving considerable resourc-
es. Indeed guiding experimentalists to the most 
valuable experiments is a key role of PSE methods 
and tools in general, and modeling in particular.

In most cases it is impossible to investigate all 
potential process configurations experimentally. In-
deed, there is often not enough material (substrate, 
enzymes and other reactants) available, and if so the 
time/manpower for the experiments is limited. PSE 
methods can assist here as well. A broad range of 
theoretical configurations can be tested in relatively 
simple simulations and hence the impact of product 
inhibition, substrate inhibition, co-factor inhibitions 
and especially also mass transfer limitations due to 
reactor designs can be tested. A sensitivity analy-
sis12 is helpful for planning of experiments which 
can be used for the Design of Experiments (DoE) or 
Optimal Experimental Design (OED). The sensitiv-
ity analysis – local or global – will for example give 
an indication of which variables to measure in order 
to allow estimation of specific parameters. New 
process options can be investigated as well, before 
they are experimentally tested. In this way, PSE 
methods and tools can support process develop-
ment. Even more importantly, PSE methods and 
tools can support process development in a struc-
tured way, meaning that the tools can be used over 
and over again each time a new process develop-
ment task is started up.

Another area of application is the direct cou-
pling of experimental data and mathematical simu-
lations. Here well-established models will help to 
access requested but not available information. For 
example in case study 2 the diffusion characteristics 
of acetophenone and methylbenzylamine were not 
known and could not be found in literature. A sur-
prising result was that by an appropriate experimen-
tal design (again planned with help of a model) it 
was discovered that one of the species diffuses sub-

Ta b l e  4  – Comparison of the total protein outputs for the ho-
mogeneous and the optimized reactor at different 
glucose feed concentrations

Glucose feed conc. 
(mg L–1)

Protein flow at the reactor outlet (U sec–1)

homogeneous 
reactor

structurally 
optimized 

reactor

increase 
(fold)

  1  0.3   2.7 5.8

  5  1.4  12.9 9.1

 10  2.7  23.1 8.4

 30  7.2  57.4 8.0

 50 10.7  91.7 8.5

100 17.6 170.3 9.7

200 25.2 229.5 9.1

500 39.0 325.2 8.3

10000 63.8 380.4 6.0
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stantially slower than the other. This was unexpect-
ed, since the molecular weight and the chemical 
structure are very similar. The acquired material 
properties are fundamentally important for the mass 
transfer limitations in the reaction and hence this 
information can also be used for scale up and scale 
out of reactors and processes.

From an intellectual point of view most interest-
ing is the application of models for testing of concepts 
and even generation of entirely new ideas. It is not 
important, that the model predicts correctly from a 
quantitative point of view. As long as the qualitative 
prediction capacity is sufficient, the models can be 
used for the generation of understanding, insight and 
evaluation of new ideas. The user can visit the virtual 
laboratory in order to test simple relationships, com-
plex interactions between different kinetic formula-
tions and material transport limitations or simply to 
obtain a different view of a problem which the user is 
assumed to have been working with already for a 
long time. The more exact and experimentally vali-
dated the models are, the user might even omit the 
experimental validation of the simulation. This is 
classically done in engineering areas like turbine de-
sign or ship design, where the fabrication of proto-
types is too demanding with respect to the costs.

The impact of the PSE tools can be substantial 
when the interdisciplinary nature of the project is 
guaranteed by a proper collaboration of different 
experts, such as protein scientists, chemists, process 
engineers, mathematicians and physicists. Then to-
day futuristic appearing models can be used for ad-
vanced optimization routines, where under the as-
sumption that the model is right, complex 
configurations can be automatically produced and 
hence reactors can be optimized with respect to to-
pology and shape.

A last important potential application area for 
PSE methods is the transfer of experimentally estab-
lished knowledge across scales. Miniaturized reactor 
technology is receiving increased attention due to 
the economic potential with respect to reduced time 
and costs in process development. But even though 
more and more companies are using or experiment-
ing with such technology it is still unknown to what 
extent the experimental results can be used for the 
comparison with setups at another scale.

As presented in Table 5, the experimental setup 
of micro-scale experiments is dominated by laminar 
flow conditions and hence the mixing is poor and 
often diffusion limited. This results in considerable 
material transfer limitations and hence partial dif-
ferential equations (PDE) have to be solved, for in-
stance by use of CFD models, in order to predict the 
conditions in such systems. When changing to 
bench or pilot scale experiments it can be assumed 
that the systems are relatively well mixed and the 

mathematical description can be reduced to ordi-
nary differential equations (ODEs), which simpli-
fies the mathematical description of those systems. 
At full scale the situation is again such that there 
are mixing limitations due to the physical reactor 
design and a limited transfer of kinetic energy in 
comparison to bench/pilot scale setups. The fluid 
dynamic conditions are here highly turbulent and 
hence more complex PDE systems (CFD models) 
have to be applied which also consider turbulence 
modeling. Under the assumption that

1. The kinetics can be transferred across scales 
and

2. The model analysis tools can be used at all 
scales

it will be possible to answer many open questions 
with respect to the varying performances of systems 
at different scales, which is a research area in bio-
chemical process technology which receives con-
siderable attention nowadays.

According to the complexity of the presented 
case studies also the requested mathematical skills, 
knowledge and experience of the user has to be ap-
propriately matching the task. For the first case 
study an experienced student, working for instance 
on a master project, might be the appropriate person 
to perform the task. As here presented, the system is 
modelled with help of MATLAB and mass balances 
which are coupled with the governing kinetic reac-
tion rate expressions. In the second case study a 
commercial CFD software (ANSYS CFX 12.5) has 
been used, which made the numerical investigation 
simple with respect to the CFD work (days). But it 
should be considered that a commercial license of 
such software might not be available at all compa-
nies or research institutions. This would then de-
mand either an investment into a license or the use 
of open software, where the latter then would need 
considerable training for the person involved. Final-
ly in the third case, again a commercial CFD soft-
ware (COMSOL) has been used and coupled with 
an evolutionary algorithm written in MATLAB. 
Clearly this is the most advanced PSE example that 
is presented here and a considerable experience 

Ta b l e  5  – Summary of the variation of reactor characteristics 
and model tools across reactor scales

Scale Characteristics Models

Micro-scale
Not well mixed, laminar 
flow, material transport 
limitations

PDEs (CFD)

Lab scale Well-mixed ODEs

Pilot scale Usually well-mixed ODEs

Full scale Often not well mixed, 
gradients

PDEs (CFD), ODEs 
(compartment model)
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with this software tool has been a requirement. 
Consequently, the user of this software has been an 
advanced user and has nevertheless spent a consid-
erable amount of time (month) on this task.

Conclusions and perspectives

This article has briefly presented an overview 
about how Process System Engineering (PSE) 
methods can be used for the systematic develop-
ment of (bio) reactor systems. Three case studies 
have been presented with different applications, re-
actions and scales. The intention of the studies is to 
present different applications of PSE tools. One im-
portant focus area is the use of PSE methods for the 
development of miniaturized reactor systems. It was 
demonstrated, how models can assist in achieving a 
better understanding of the process conditions, the 
prediction of process performance and the theoreti-
cal investigation of reaction conditions with com-
puter based algorithms for reactor improvement. 
The manuscript gives the reader a motivation for 
the use of PSE models and tools at different scales 
and level of detail of applications. This included 
practical aspects like determination of material con-
stants or reaction performance as well as more aca-
demic use like in optimization routines. The future 
and experimental studies will show if such in silico 
investigations will contribute to the reduction of 
process development costs and improved under-
standing of processes across scales.
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L i s t  o f  s y m b o l s  a n d  n o m e n c l a t u r e

A b b r e v i a t i o n s

CDH  – Cellobiose dehydrogenase
ABTS – 2,2’-azino-bis(3-ethylbenzothiazoline-6- 

 -sulfonic acid) diammonium salt
ABTS+ – 2,2’-azino-bis(3-ethylbenzothiazoline-6- 

 -sulfonic acid) diammonium salt cation radical
HPLC – High-performance liquid chromatography

N o m e n c l a t u r e

Vmax – Maximum initial velocity of an enzyme, mM h–1

KM – Michaelis-Menten constant, mM
KLa – Volumetric mass transfer coefficient, h–1

Khyd – Hydrolysis constant, h–1

C0 – Initial concentration of any species, mM
C – Concentration of any species, mM
r – Reaction rate, mM h–1

S u b s c r i p t s

lact – Lactose
LBL – Lactobiono-lactone
LBA – Lactobionic acid
O2 – Oxygen
ABTS – Reduced redox intermediate
ABTS+ – Oxidized redox intermediate
omt – Oxygen mass transfer

S u p e r s c r i p t s

CDH – Cellobiose dehydrogenase
lacc –Laccase
ABTS+ – Oxidized redox mediator
ABTS – Reduced redox mediator
sat – Saturation

R e f e r e n c e s

1. Pollard, D. J., Woodley, J. M., Trends Biotechnol. 25 (2007) 
66.
doi: dx.doi.org/10.1016/j.tibtech.2006.12.005

2. Tufvesson, P., Lima-Ramos, J., Nordblad, M., Woodley, J. 
M., Org. Process Res. Dev. 15 (2011) 266.
doi: dx.doi.org/10.1021/op1002165

3. Krühne, U., Heintz, S., Ringborg, R., Rosinha, I. P., Tuf-
vesson, P., Gernaey, K. V., Woodley, J. M., Green Process-
ing Synth. 3, 1, (2014) 23.

4. McMullen, J. P., Jensen, K. F., Org. Process Res. Dev. 15 
(2011) 398.
doi: dx.doi.org/10.1021/op100300p

5. Schäpper, D., Zainal Alam, M. N. H., Szita, N., Eliasson 
Lantz, A., Gernaey, K. V., Anal. Bioanal. Chem. 395 (2009) 
679.
doi: dx.doi.org/10.1007/s00216-009-2955-x

6. Klatt, K., Marquardt, W., Comput. Chem. Eng. 33 (2009) 
536.
doi: dx.doi.org/10.1016/j.compchemeng.2008.09.002

7. Stephanopoulos, G., Reklaitis, G. V., Chem. Eng. Sci. 66 
(2011) 4272.
doi: dx.doi.org/10.1016/j.ces.2011.05.049

8. Gernaey, K. V., Cervera-Padrell, A. E., Woodley, J. M., 
Comput. Chem. Eng. 42 (2012) 15.
doi: dx.doi.org/10.1016/j.compchemeng.2012.02.022

9. Asprey, S. P., Macchietto, S., Comput. Chem. Eng. 24 (2000) 
1261.
doi: dx.doi.org/10.1016/S0098-1354(00)00328-8



214 U. KRÜHNE et al., Systematic Development of Miniaturized (Bio)Processes using…, Chem. Biochem. Eng. Q., 28 (2) 203–214 (2014)

10. Sales-Cruz, M., Gani, R., Comp. Aid. Chem. Eng. 16 (2003) 
209.
doi: dx.doi.org/10.1016/S1570-7946(03)80076-7

11. Marquardt, W., Chem. Eng. Res. Design 83 (2005) 561.
doi: dx.doi.org/10.1205/cherd.05086

12. Sin, G., Gernaey, K. V., Eliasson Lantz, A., Biotechnol. 
 Progr. 25 (2009) 1043.
doi: dx.doi.org/10.1002/btpr.166

13. Santacoloma (2012) Multi-enzyme process modelling. PhD 
thesis, Technical University of Denmark, Kgs. Lyngby, 
Denmark. p 197.

14. Van Hecke, W., Bhagwat, A., Ludwig, R., Dewulf, J., Hal-
trich, D., Van Langenhove, H., Biotechnol. Bioeng. 102 
(2009) 1475.
doi: dx.doi.org/10.1002/bit.22165

15. Ludwig, R., Ozga, M., Zámocky, M., Peterbauer, C., Kulbe, 
K. D., Haltrich, D., Biocatal. Biotranfor. 22 (2004) 97.

16. Van Hecke, W., Ludwig, R., Dewulf, J., Auly, M., Messiaen, 
T., Haltrich, D., Van Langenhove, H., Biotechnol. Bioeng. 
102 (2009) 122.
doi: dx.doi.org/10.1002/bit.22165

17. Galhaup, C., Goller, S., Peterbauer, C. K., Strauss, J., Hal-
trich, D., Microbiol. 148 (2002) 2159.

18. Sin, G., Ödman, P., Petersen, N., Eliasson Lantz, A., Ger-
naey, K. V., Biotechnol. Bioeng. 101 (2008) 153.
doi: dx.doi.org/10.1002/bit.21869

19. Cornish-Bowden, A., Fundamental of enzyme kinetics, 
Third Edition, Portland Press Ltd., London, 2004.

20. Leskovac, V., Comprehensive Enzyme Kinetics, Kluwer 
Academic/Plenum Publishers, New York, 2003.

21. Bodla, V. K., Seerup, R., Krühne, U., Woodley, J. M., Ger-
naey, K. V., Chem. Eng. Technol. 36 (2013) 1017.
doi: dx.doi.org/10.1002/ceat.201200667

22. Tufvesson, P., Lima-Ramos, J., Jensen, J. S., Al-Haque, N., 
Neto, W., Woodley, J. M., Biotechnol. Bioeng. 108 (2011) 
1479.
doi: dx.doi.org/10.1002/bit.23154

23. Al-Haque, N., Santacoloma, P. A., Neto, W., Tufvesson, P., 
Gani, R., Woodley, J. M., Biotechnol. Progr. 28 (2012) 1186.
doi: dx.doi.org/10.1002/btpr.1588

24. Bruus, H., Theoretical Microfluidics, First Edition, Oxford 
University Press, Oxford, 2008.

25. Schäpper, D., Lencastre Fernandes, R., Lantz, A. E., Okkels, 
F., Bruus, H., Gernaey, K. V., Biotechnol. Bioeng. 108 
(2011) 786.
doi: dx.doi.org/10.1002/bit.23001

26. Okkels, F., Bruus, H., Physical Review E. 75 (2007) 16301.
doi: dx.doi.org/10.1103/PhysRevE.75.016301

27. Brányik, T., Vicente, A. A., Kuncová, G., Podrazký, O., 
Dostálek, P., Teixeira, J. A., Biotechnol. Progr. 20 (2004) 
1733.
doi: dx.doi.org/10.1021/bp049766j

28. Zhang, Z., Scharer, J. M., Moo-Young, M., Bioprocess Eng. 
17 (1997) 235.
doi: dx.doi.org/10.1007/s004490050380



 
 

181 
 

Appendix A.3: Applications, benefits and challenges of flow chemistry  

 

 



Chimica Oggi - Chemistry Today - vol. 31(4) July/August 2013

FLOW	CHEMISTRy

4

Applications,	benefits		
and	challenges	of	flow	chemistry

ALEKSANDAR	MITIC,	SØREN	HEINTZ,	ROLF	H.	RINGBORG,	VIJAyA	BODLA,	JOHN	M	WOODLEy,	KRIST	V.	GERNAEy*

*Corresponding	author

1.	Technical	University	of	Denmark	(DTU),	Department	of	Chemical	and	Biochemical	Engineering,		
Søltofts	Plads,	Building	229,	2800	Kgs.	Lyngby,	Denmark

Flow	chemistry;	Organic	Synthesis;	Biocatalysis;	Process	
Analytical	Technology	(PAT);	Microreactor	Technology.

Organic	synthesis	(incorporating	both	chemo-catalysis	
and	biocatalysis)	is	essential	for	the	production	of	a	wide	
range	of	small-molecule	pharmaceuticals.	However,	
traditional	production	processes	are	mainly	based	on	
batch	and	semi-batch	operating	modes,	which	have	
disadvantages	from	an	economic,	environmental	
and	manufacturing	perspective.	A	potential	solution	
to	resolve	these	issues	is	to	use	flow	chemistry	in	such	
processes,	preferably	with	applications	of	micro-	and	
mini-sized	equipment.	In	addition,	Process	Analytical	
Technology	(PAT)	may	be	implemented	in	a	very	
efficient	way	in	such	equipment	due	to	the	high	degree	
of	automation	and	process	controllability	that	can	be	
achieved	in	small	scale	continuous	equipment.

KEyWORDS

ABSTRACT

Krist	V.	Gernaey

MICRO-CHEMICAL	PROCESSING	IN	ORGANIC	SyNTHESIS

Organic	synthesis	can	be	performed	in	continuous	mode	by	
using	mini-	and	micro-structured	flow	devices.	Small	scale	
continuous	flow	technology	has	many	potential	advantages,	
such	as:	rapid	heat	and	mass	transfer,	increased	safety,	easy	
scale-up/scale-out,	fast	process	characterization,	potential	
for	real-time	release,	operation	with	unstable	reaction	
species,	and	so	on	(9,	10).	Due	to	such	advantages	
integration	of	these	small	scale	devices	in	plant	architectures	
has	become	more	common	in	the	last	two	decades	(11).	It	is	
important	to	note	here	that	not	all	chemical	reactions	are	
suited	to	such	small-scale	equipment.	For	example,	
according	to	Roberge	et	al.	(12),	chemical	reactions	with	a	
half-life	higher	than	10	min	should	preferably	be	operated	in	
batch	manufacturing	mode.	However,	it	has	been	
demonstrated	that	some	of	these	reactions	too	could	be	
drastically	accelerated	by	downsizing	the	equipment	to	a	
micro-scale	level	(13).	Furthermore,	chemical	reactions	with	
very	reactive	substrates,	such	as	Grignard	exchange	
reactions	and	reactions	with	chloride,	bromide	and	amine	
species	are	all	very	suitable	for	flow	chemistry	applications.	
These	reactions,	with	typical	half-lives	below	1	s,	can	
therefore	be	completed	in	the	mixing	zone	alone	(12,	14,	15).	
Finally,	chemical	reactions	with	half-lives	from	1	s	up		
to	10	min	could	also	benefit	from	the	micro-scale	devices	
(16).	Better	control	of	heat	flow	and	temperature		
are	the	main	advantages	of	operating	such	reactions		
at	micro-scale	(12).	
The	kinetics	of	biocatalytic	processes	(mixed	order,	
obeying	Michelis-Menten)	will	always	be	best	exploited	in	
a	batch	or	continuous	plug	flow	mode,	especially	for	
reactions	requiring	a	high	conversion.	For	this	reason,	
continuously	stirred	tank	reactors	are	rarely	used	for	
biocatalytic	reactions	in	industry.	However,	at	reasonable	
concentrations	for	industrial	implementation	most	
biocatalytic	reactions	are	limited	by	substrate	inhibition,	
meaning	that	a	fed-batch	system	becomes	favorable.	
Often	the	product	too	is	inhibitory	which	is	most	normally	
dealt	with,	by	in-situ	product	removal	(ISPR)	(1,	3,	17-19).	
Such	a	combination	of	‘feed	and	bleed’	combined	with	
the	mixed	order	kinetics,	characteristic	of	an	enzyme	
catalyzed	reaction,	implies	that	a	batch	with	feed	and	
ISPR,	or	alternatively	a	plug	flow	with	multiple	feed	and	
product	removal	points	down	the	column,	would	be	
attractive.	Hence,	we	believe	that	flow	chemistry	also	can	
be	attractive	to	biocatalysis.	Performing	synthesis	at	
micro-scale	is	even	more	attractive	when	one	considers	

INTRODUCTION

Continuous	production	is	often	cited	as	both	eco-
friendly	and	economic,	mainly	due	to	the	higher	
energy	efficiency	and	reduced	consumption	of	

resources	that	can	be	achieved	in	comparison	with	traditional	
batch	production	(1-4).	Furthermore,	continuous	production	
fulfills	very	well	the	requirements	defined	by	the	regulatory	
bodies,	such	as	the	Food	and	Drug	Administration	(FDA).	More	
particularly,	the	FDA	has	clearly	indicated	that	it	favors	such	
processes	–	including	on-line	measurement	and	control	–	with	
the	publication	of	the	Process	Analytical	Technology	(PAT)	
guidance	in	2004	(5).	PAT	defines	the	key	Initiative	of	cGMP	(6)	
and	is	incorporated	into	the	International	Conference	on	
Harmonization	(ICH)	Q8	guidance	(7).	The	Initiative	has	shown	
many	advantages	in	modern	organic	synthesis	and	
biotechnology,	and	has	consequently	been	applied	in	other	
industry	sectors,	such	as	food,	chemical	and	life	sciences	(8).	
The	objective	of	this	manuscript	is	to	briefly	review	applications	
of	flow	chemistry	in	modern	organic	synthesis.	Furthermore,	the	
focus	will	be	on	emphasizing	the	benefits	of	such	processes	
and	additionally	on	identifying	the	remaining	challenges	for	
further	improvement.
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membrane	separator	(Figure	2)	showed	great	efficiency	for	
separating	two	immiscible	liquids	(28).	However,	it	requires	
long-term	tests	at	industrial	scale	before	such	membrane	
separators	will	be	accepted	by	industry.	While	waiting	for	the	
results	of	such	trials,	development	of	separators	without	
membranes	is	preferred	(29).	Furthermore,	effective	separation	
of	two	miscible	liquids	has	been	achieved	by	applying	micro-
evaporation	principles	(30),	as	well.	
Solid	particles	form	a	major	issue	in	meso-	and	especially	in	
micro-scaled	equipment.	One	successful	approach	for	
handling	solids	is	to	use	acoustic	irradiation,	which	is	often	
applied	in	modern	organic	synthesis	with	the	main	purpose	to	
avoid	bridging	inside	the	channels.	Another	phenomenon	
called	constriction	could	also	cause	potential	problems	in	small	
scale	flow	devices,	and	it	is	usually	avoided	by	using	different	
fluid	velocities,	or	more	precisely	by	applying	periodical	flushing	
actions.	Assuming	constant	concentrations	of	starting	materials	
or	formed	particles	present	inside	micro-channels,	the	extent	of	
such	constriction	phenomena	could	be	predicted.	Indeed,	
assuming	constant	inflow	conditions,	quantification	of	the	
constriction	rates	is	possible	on	the	basis	of	simple	
measurements	of	pressure	drops	along	the	microchannels	(31).	
For	biocatalytic	applications	it	will	often	be	a	necessity	to	operate	
these	systems	in	the	presence	of	solids,	e.g.	as	a	consequence	of	
the	biocatalyst	formulation	(see	below),	or	in	some	cases	due	to	
reaction	species	with	low	solubilities	(21,	24).	Operating	biocatalytic	
processes	in	these	miniaturized	modules	can	therefore,	for	many	
applications,	be	expected	to	give	some	precipitation	and	clogging	
problems,	which	have	to	be	overcome	(33,	34).	Use	of	
unconventional	reaction	media,	e.g.	organic	solvents,	can	result	in	
avoiding	high	concentrations	of	insoluble	compounds.	However,	
unconventional	reaction	media	can	have	severe	effects	on	the	
biocatalyst	performance,	e.g.	toxic	and	denaturizing	effects	(34).	
Protein	engineering	here	provides	the	means	to	modify	the	
biocatalyst	in	a	manner	so	it	becomes	more	resistant	to	operation	
in	non-conventional	media	(1,	2).	Protein	engineering	is	generally	
used	for	biocatalyst	modifications	to	improve	performance	in	
process	relevant	conditions	(22).	
The	formulation	of	the	biocatalyst	can	also	cause	clogging.	

the	small	amounts	of	material	
(both	substrates	and	
products)	available	at	an	
early	stage	of	biocatalytic	
process	development.	
Operating	in	plug	flow	
enables	the	effective	testing	
of	immobilized	enzyme	
formats	as	well,	and	simplifies	
integration	with	the	
neighboring	chemical	
operations	(20).	Besides	the	
limiting	effects	of	inhibitions	at	
industrially	relevant	process	
conditions,	there	are	also	
situations	where	the	reaction	
equilibrium	of	the	biocatalytic	
processes	is	unfavorable.	In	
those	situations	it	is	necessary	
to	use	different	
methodologies	to	shift	the	
equilibrium	towards	the	
desired	products.	For	
example	in-Situ	co-Product	
Removal	(IScPR)	is	a	potential	
solution	enabling	higher	yields	
and	productivities	(21,	22).	
The	benefits	of	flow	systems	
have	been	reported	to	some	
extent	in	the	scientific	literature,	for	both	simple	and	more	
complex	systems.	One	example	of	relatively	simple	biocatalytic	
systems	is	using	lipase	(EC.	3.1.1.3).	The	enzyme	is	particularly	
robust	in	non-natural	environments,	e.g.	high	concentrations,	
organic	solvents,	etc.	(3,	23,	24).	An	example	of	more	complex	
biocatalytic	systems	is	the	use	of	ω-transaminase	(ω-TA	–	EC.	
2.6.1.1)	to	transfer	an	amine	to	a	prochiral	ketone.	Transaminase	
based	biocatalytic	processes	typically	experience	severe	
substrate	and	product	inhibition,	along	with	unfavorable	
reaction	equilibrium	depending	on	the	choice	of	amine	donor	
(21,	25).	In	preliminary	work	Bodla	et	al.	(26)	showed	improved	
productivity	in	micro-scale	systems	compared	to	conventional	
batch	methods	for	such	a	reaction.

INTEGRATION	 OF	 MICROREACTORS	 IN	 THE	 PLANT	
ARCHITECTURE

Even	though	they	are	only	suited	for	micro-chemical	processing,	
miniaturized	total	analysis	systems	(µ-TAS)	or	lab-on-a-chip	
systems	are	receiving	increasing	attention	in	the	process	
industries.	This	approach	integrates	all	analytical	steps	on	the	
same	platform	(27),	and	could	thereby	successfully	avoid	
unnecessary	storage	of	intermediate	products.	In	this	way,	faster	
manufacturing	of	a	desired	compound	could	be	obtained,	as	
well	as	circumventing	significant	losses	in	processes	with	very	
reactive	substrates	and	intermediates.	A	simplified	process	flow	
scheme	of	such	lab-on-a-chip	system	is	shown	in	Figure	1,	
together	with	integrated	process	in-/on-line	monitoring,	process	
control	and	automation.	
The	previous	section	was	entirely	focused	on	the	reaction	step	in	
continuous	flow.	However,	incorporation	of	multi-step	chemical	
synthesis	in	micro-scaled	devices	usually	necessitates	coupling	
the	reaction	step(s)	with	a	subsequent	continuous	separation	
step.	Traditional	separation	approaches	for	two	immiscible	
liquids	at	macro-scale	levels	are	mainly	based	on	gravitational	
forces.	However,	if	downsizing	is	applied,	surface	forces	become	
dominant	(9).	
A	recent	lab-scale	example	with	the	use	of	a	hydrophobic	

Figure 1. Simplified scheme of the Lab-on-a-chip system with implemented PAT requirements. Blue solid  
line – main flow; blue dashed line – process signal obtained by in-line process monitoring; black dashed 
line – on-line process monitoring and resulting process signal; green solid line – data from a process 
analyzer to data analysis section intended to establish process control and automation of the pumps for 
the reactor section; yellow solid lines – data from a process analyzer to data analysis section intended 
to establish process control and automation of the pumps for the separation section; red solid line – 
separation agent and waste material flow. 



Chimica Oggi - Chemistry Today - vol. 31(4) July/August 2013

FLOW	CHEMISTRy

6

The	formulation	of	the	biocatalyst	is	highly	dependent	on	
the	process	economics,	e.g.	the	feasibility	of	a	biocatalytic	
process	can	be	greatly	improved	by	applying	the	
biocatalyst	in	the	crudest	possible	form	(35),	as	a	
consequence	of	reduced	purification	costs.	It	can	therefore	
for	some	applications	be	necessary	to	use	solutions	
potentially	containing	precipitate,	polymers,	cells,	etc.	
resulting	in	clogging	issues	caused	by	adhesion	of	
compounds	or	cells	to	surfaces	(36).	Also,	for	some	
applications	the	biocatalysts	are	immobilized	onto	solid	
supports	with	the	purpose	of	improving	the	catalyst	stability	
along	with	simplification	of	catalyst	recirculation	(37).	For	
some	biocatalytic	applications,	we	expect	that	it	will	be	
ideal	to	use	the	biocatalyst	directly	from	the	fermentation,	
without	any	major	purification	steps	beforehand.	This	could	
greatly	improve	process	feasibility,	but	at	the	same	time	
result	in	potential	issues	with	regards	to	high	solid	
concentrations	in	flow	systems.
The	majority	of	new	synthetic	pathways	in	organic	chemistry	
involve	chemical	catalysts	and	in	some	cases	biocatalysis	as	
one	step	in	the	otherwise	chemical	synthetic	sequence.	
Hence,	removal	of	transition	metals	is	still	receiving	
considerable	attention	in	pharmaceutical	production.	Due	
to	the	high	toxicity	of	these	chemical	elements,	the	allowed	
concentrations	in	final	products	are	usually	very	low	(38)	and	
thereby	very	efficient	metal	removal	procedures	are	
required.	Currently,	most	procedures	are	based	on	batch	
processing	(39),	however,	examples	with	packed-bed	
columns	showed	promising	performance	in	flow,	as	
described	by	Wiles	et	al.	(40).

DOWNSTREAM	PROCESSING

Besides	developing	efficient	synthesis	pathways	in	miniaturized	
systems,	there	is	also	a	demand	for	efficient	inline	downstream	
methods	in	order	to	recover	and	purify	products.	The	high	
surface-to-volume	ratios	attainable	at	micro-scale	result	in	
faster	mass	transfer	suggesting	improved	effectiveness	of	such	
systems	compared	to	macro-scale.	Combining	upstream	with	
downstream	unit	operations	in	micro-chemical	or	biochemical	

processing	enables	testing	
entire	processes	on	a	
bench	–	e.g.	factory-on-a-
bench.	In	some	situations	it	
might	even	be	desired	to	
run	the	actual	process	on	a	
bench.	However,	there	is	a	
clear	need	for	miniaturized	
equivalents	of	large	scale	
downstream	unit	
operations	before	this	
factory-on-a-bench	
concept	can	be	fully	
realized.	There	has	been	
some	focus	already	on	
providing	such	miniaturized	
unit	operations	(41,	42).	
Here	the	main	focus	will	be	
on	continuous	extraction	in	
flow	systems.	
Liquid-liquid	extraction	
(LLE)	is	a	well-established	
product	recovery	
method	in	the	
pharmaceutical	industry.	
Laminar	flow	conditions	
experienced	in	micro-

scale	extraction	units	give	the	possibility	to	operate	with	
both	segmented	and	side-by-side	flows.	Side-by-side	flow	
operation	allows	easy	laminar	flow	splitting	in	a	continuous	
manner,	and	both	extraction	in	concurrent	and	counter	
current	flow	modes	can	be	established.	Segmented	flow	
operation	improves	the	mass	transfer	by	diffusion,	due	to	an	
even	higher	surface	area	than	side-by-side	flow.	However,	it	
is	not	possible	to	separate	the	segments	by	gravitational	
forces	as	in	conventional	methods,	because	surface	
tension	forces	are	dominant	in	micro-scale.	LLE	with	
segmented	flows	requires	other	separation	methods,	e.g.	
membrane	separation	units	have	shown	great	potential	for	
continuous	separation	in	such	flow	systems	(43).	For	
biocatalytic	applications	there	can	be	issues	concerning	
biocompatibility	and	phase	toxicity	if	streams	are	recycled,	
and	specifically	for	such	applications	it	would	be	necessary	
to	modify	biocatalysts	to	operate	efficiently	in	the	presence	
of	organic	solvents	(protein	engineering,	see	previous	
section).	
Solid-liquid	extraction	using	particles	(resins	etc)	is	an	
attractive	alternative	option	to	processes	where	organic	
solvents	exhibit	operational	challenges,	e.g.	
biocompatibility,	phase	toxicity,	emulsification,	etc.	Porous	
resins,	in	general,	are	inert,	easy	to	handle	and	simplify	
product	isolation	(filtration).	In	biocatalysis,	resins	can	
additionally	be	used	to	enhance	the	reaction	performance	
for	reactions	with	kinetic	limitations.	This	is	achieved	by	
using	them	as	an	auxiliary	phase	for	substrate	supply	and	
product	removal	(ISPR)	by	integrating	the	reaction	and	
extraction	steps.	However,	at	micro-scale	and	more	
specifically	in	flow	systems,	one	important	limitation	is	that	
solid	reagents	are	difficult	to	handle	as	they	may	clog	
micro-channels.	
High	surface-to-volume	ratios	attainable	at	microscale	result	
in	faster	mass	transfer	suggesting	the	improved	effectiveness	
of	such	systems	compared	to	macro-scale.	However,	the	
increase	in	pressure	drop	needs	to	be	addressed	with	a	
suitable	reactor	design	solution.	Losey	et	al.	(44),	for	example,	
reported	an	increase	in	mass	transfer	by	more	than	2	orders	
of	magnitude	for	cyclohexene	hydrogenation	in	a	micro	
packed	bed	reactor,	using	activated	carbon	catalyst,	

Figure 2. A PTFE membrane separator applicable for splitting two immiscible liquids. a. Part of the separator 
intended for the aqueous phase. b. Part of the separator intended for the organic phase. c. Image of the PTFE 
membrane separator with aqueous phase coloured in blue and uncoloured toluene phase. d. Scheme 
of the PTFE membrane separator setup (28). 
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these	miniaturized	systems	for	process	development	and	
research	purposes.	The	micro-scale	flow	systems	indeed	
have	the	potential	of	being	powerful	tools	which	can	aid	in	
detailed	process	screenings	and	biocatalyst	
characterization	under	realistic	process	conditions.	Early,	in	
the	development	of	new	biocatalytic	processes,	there	is	
limited	availability	of	resources,	e.g.	biocatalyst	to	be	
tested.	The	limited	availability	of	resources	puts	some	
constraints	on	how	many	experiments	can	be	performed.	
The	level	of	system	detail	is	therefore	also	determined	by	
the	available	quantity	of	the	biocatalyst	to	be	tested,	and	
this	should	be	enough	to	evaluate	the	potential	of	a	given	
process.	The	use	of	miniaturized	systems	for	process	
investigations	enables	more	detailed	characterization	with	
lower	sample	volumes	and	could	be	used	to	set	up	
sophisticated	models	describing	the	systems.	There	are	
however	limitations	with	regard	to	how	low	the	sampling	
volumes	can	become	before	analytical	limitations	become	
a	hindrance,	as	illustrated	in	Figure	3.	

CONCLUSIONS	AND	FUTURE	PERSPECTIVES

Flow	chemistry	in	meso-	and	micro-scale	devices	has	found	
many	useful	applications	in	modern	organic	synthesis	and	
increasingly	also	in	biocatalytic	processes.	Increased	
selectivity	and	yields,	increased	safety,	and	additional	
benefits	lead	to	higher	applicability	of	these	processes	in	the	
modern	pharmaceutical	industry,	especially	in	relation	to	
complex	processes.	Furthermore,	easier	implementation	of	
the	requirements	defined	by	the	PAT	Initiative	has	made	flow	
chemistry	into	a	key	focus	point.	

compared	to	a	macro	scale	counterpart.	The	increase	in	
pressure	drop	was	in	that	case	addressed	by	splitting	the	flow	
into	multiple	channels	and	thus	reducing	the	overall	pressure	
drop	while	retaining	the	effective	cross-sectional	area	and	
obtaining	higher	reactor	throughput.	

PROCESS	MONITORING,	CONTROL	AND	AUTOMATION

Efficient	production	of	the	desired	compounds	is	the	main	goal	
in	organic	synthesis.	Operating	the	processes	in	an	efficient	
manner	does	however	require	a	high	degree	of	process	
understanding	to	enable	improved	monitoring	and	control.	It	is	
though	very	challenging	to	implement	in-line	monitoring	in	
micro-scale	systems	because	of	the	small	dimensions	required	
for	the	sensors,	as	well	as	the	fact	that	analysis	of	very	complex	
process	signatures	is	needed.	Traditional	applications	based	
on	in-	and	on-line	spectroscopic	methods	are	desired	even	
though	they	are	difficult	to	obtain.	A	recent	example	of	
process	monitoring	and	control	in	flow	was	published	by	
Cervera-Padrell	et	al.	(45).
Fulfilment	of	the	PAT	requirements	involves	automation	of	
the	established	processes.	Several	successful	case	studies	
have	been	reported	using	different	kinds	of	commercially	
available	software	(46).	The	most	desired	way	is	to	perform	
in/on-line	process	monitoring	and	control	due	to	the	very	
fast	response	that	can	be	obtained.	Consequently,	faster	
data	analysis	is	achieved	and,	for	example,	corrective	
actions	to	avoid	or	reduce	side	reactions	are	performed	
easily,	which	is	essential	for	fast	reactions.	
Besides	using	miniaturized	systems	for	operation	of	complex	
biocatalytic	processes,	there	is	also	the	possibility	of	using	
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However,	obstacles	in	performing	process	monitoring	and	
consequently	process	controls	in	micro-scaled	devices	are	still	a	
major	challenge.	Hence,	further	focus	is	on	the	development	of	
better	data	analysis	tools	in	order	to	facilitate	efficient	process	
control	actions	on	the	basis	of	the	collected	data.	
Extrapolating	from	these	miniaturized	systems	to	larger	production	
volumes	can	mainly	be	done	in	two	ways,	by	means	of	scale-up	
or	scale-out	(numbering-up).	When	considering	scale-up,	this	can	
introduce	additional	obstacles	as	a	consequence	of	altered	
reaction	and	flow	conditions.	It	is	therefore	essential	to	develop	
tools	that	can	help	to	predict	the	cost	to	scale-up	and	scale-out,	
respectively,	and	to	use	such	tools	to	support	decision	making	
when	designing	the	production	process.	
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Appendix B  

Chapter 4: supplementary material 
 

Calculation of the required [P] or [cP] concentrations at various initial substrate concentrations: 

The initial concentration of BA in the reaction mixture gives some restrictions with respect to how low a 

concentration the desired ISPR/IScPR strategy should operate with in order to be efficient. In figure B.1, some 

apparent values are calculated indicating how low product or co-product concentrations are required to 

achieve various degrees of conversion, where B.1A is at low initial concentration (10 mM) and B.1B is at high 

initial concentration (337 mM), using equivalent amounts of the amine donor.  

From these calculations it becomes clear that operating with low substrate concentrations and slightly 

unfavorable thermodynamics, will require the separation process to be extremely selective and capable of 

removing very low quantities of the product and/or co-product. It is therefore very important to characterize 

how selective ISPR/IScPR options are, and at which concentrations they can potentially operate in a feasible 

way. Enzymatically based cascade reactions for IScPR are known to be very selective and capable of operating 

with very low concentrations. However, cascade reactions add significant complexity to the process and are 

partly for that reason not always a feasible choice. In many cases, it can be useful to consider the 

implementation of conventional separation methods as the preferred ISPR strategies in combination with a 

donor excess in order to loosen the requirements for the separation and maintain a high degree of 

conversion. The benefit of implementing ISPR strategies based on conventional separation processes is that 

it will ultimately result in an outlet product stream with potentially high product titer, from which it should 

be significantly easier and cheaper to recover the product. 
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Figure B.1: Overview of required product and/or co-product concentrations in order to achieve various degrees of conversion for 
different thermodynamic scenarios. The plots are based upon having equivalent amounts of substrate and amine donor. A) 
Illustration of the requirements when operating with low initial BA concentration, i.e. 10 mM, which is close to the indicated 
solubility limitation. B) Illustration of the requirements when operating with higher concentrations, i.e. 337 mM (~50 g/L). The 
horizontal dashed line in both plots corresponds to the initial BA and amine donor concentration. 

 

Case study 2 plots and calculations: 

In figure B.2, it is shown how the application of an excess of the amine donor will influence the requirements 
for minimum allowable product and/or co-product concentration as a complement to the excess to shift the 
reaction equilibrium. The calculations are based upon equation 4 and assuming 𝐾𝑒𝑞 = 0.74 and an initial BA 

concentration of 10 mM (close to the solubility limit).   

 

Figure B.2: Degrees of conversion expressed by the relation between minimum product and/or co-product concentrations and 
various amine donor excess ratios, for an initial substrate concentation of 10 mM BA. 
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A suplementary alternative to applying an amine donor excess, in order to loosen the requirements for 
product and co-product separation is to increase the solubility of the main substrate. In figure B.3, it is shown 
how increasing the solubility of the main substrate will reduce the minimum allowable product/co-product 
concentration in order to achieve the desired yield. The degree of conversion values are calculated assuming 
an amine donor excess of 10. 

 

Figure B.3: Degrees of conversion expressed by the relation between minimum product and/or co-product concentrations and 
various initial substrate concentrations, using an amine donor excess of 10. 

 

Plot of uncharged IPA vs. uncharged MPPA: 

 

Figure B.4: Fractions of charged and uncharged molecules at various pH values for the two amines MPPA and IPA. 
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Plot of uncharged Alanine vs. uncharged MPPA:  

 

Figure B.5:Fractions of charged and uncharged molecules at various pH values for the two amines MPPA and Ala. 
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Appendix C  

Off-line HPLC analytical methods 
 

Two HPLC methods on a Dionex Ultimate 3000 HPLC (Dionex, Sunnyvale, CA, USA), with an UV photodiode 

array detector, were applied to determine the concentrations of the main reaction species involved in this 

project. The compounds were separated using a Gemini-NX 3µ C18 110Å (100 x 2 mm) column (Phenomenex, 

Torrance, CA, USA). The two methods are as follows: 

Method 1: 

This method was applied to determine concentrations of the two main reaction species for all case studies, 

1-methyl-3-phenylpropylamine (MPPA) and benzylacetone (BA). Additionally, the method can be used to 

quantify the amine donor and ketone co-product from one of the reaction systems, i.e. phenylethylamine 

(PEA) and acetophenone (ACP). The details on how the method was operated are listed in Table C.1. 

Table C.1: HPLC method for determination of racemic 1-methyl-3-phenylpropylamine (MPPA), benzylacetone (BA), phenylethylamine 

(PEA) and acetophenone (ACP). 

Method settings 

Mode Isocratic 

Flow 0.450 𝑚𝐿/𝑚𝑖𝑛 

Mobile phase 
35 % Acetonitrile 

65% 𝐻2𝑂 pH-11 (adj. by NaOH) 

Column Gemini-NX 3µ C18 110Å (100 x 2mm) 

𝑻𝒐𝒗𝒆𝒏 30 ℃ 

Detection 

X min (210 nm) - PEA 

X min (210 nm) - ACP 

2.67 min (210 nm) - MPPA 

3.63 min (210 nm) - BA 

Time of analysis 5 min 

Std. Inj. Vol. 1 µL 

Note: it may be beneficial to determine low ACP concentrations at a wavelength of ~244 nm, due to stronger 

absorbance at this wavelength. 

An example of a spectrum of a sample containing both MPPA and BA is shown in Figure C.1. 
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Figure C.1: Spectrum obtained from a solution of MPPA, BA, IPA and Ace on 09-12-2014. 

The quantitative analysis was performed from peak areas by external standards. The generated standards 

are highlighted below in Figure C.2  and Figure C.3 for BA and MPPA, respectively (column: 00D-4453-b0). 

 

Figure C.2: Standard curve for benzylacetone (BA) at 210 nm (column: 00D-4453-b0). 
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Figure C.3: Standard curve for 1-methyl-3-phenylpropylamine (MPPA) at 210 nm (column: 00D-4453-b0). 

Additionally the continuous performance of the column and the standards was validated by independent 

external standards. The validation results are highlighted below in Figure C.4 and Figure C.5 for BA and MPPA, 

respectively. The dashed lines surrounding the full line in the middle of the figures corresponds to ±5% 

errors. 

 

Figure C.4: Validation of BA analytical method over time (column: 00D-4453-b0), i.e. performed to ensure that the standard was still 

valid over time. 
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Figure C.5: Validation of MPPA analytical method over time (column: 00D-4453-b0), i.e. performed to ensure that the standard was 

still valid over time. 

 

Method 2: 

This method was applied to determine concentrations of the amine donor isopropylamine (IPA) and the co-

product acetone (Ace) from the main case study. The details on how the method was operated are listed in 

Table C.2. 

Table C.2: HPLC method for determination of isopropylamine (IPA) and acetone (Ace). 

Method settings 

Mode Isocratic 

Flow 0.300 𝑚𝐿/𝑚𝑖𝑛 

Mobile phase 
5 % Acetonitrile 

95% 𝐻2𝑂 pH-11 (adj. by NaOH) 

Column Gemini-NX 3µ C18 110Å (100 x 2mm) 

𝑻𝒐𝒗𝒆𝒏 30 ℃ 

Detection 
1.7 min (270 nm) - Ace 

3.0 min (200 nm) - IPA 

Time of analysis 5 min 

Std. Inj. Vol. 1 µL 

 

An example of spectra of IPA and Ace is shown in Figure C.6 and Figure C.7, respectively. 
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Figure C.6: Acetone (ace) peak for a spectrum obtained from a solution of 1-methyl-3-phenylpropylamine (MPPA), benzylacetone 

(BA), isopropylamine (IPA) and Ace on 09-12-2014. 

 

 

Figure C.7: Impurity peak and an isopropylamine (IPA) peak for a spectrum obtained from a solution of 1-methyl-3-

phenylpropylamine (MPPA), benzylacetone (BA), IPA and acetone (Ace) on 09-12-2014. 

The quantitative analysis was performed from peak areas by external standards. The generated standards 

are highlighted below in Figure C.8 and Figure C.9 (column: 00D-4453-b0). 
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Figure C.8: Standard curve for isopropylamine (IPA) at 200 nm (column: 00D-4453-b0). 

 

Figure C.9: Standard curve for acetone (Ace) at 270 nm (column: 00D-4453-b0). 

Additionally the continuous performance of the column and the standard was validated by independent 

external standards; the results are highlighted below in Figure C.10 and Figure C.11 for IPA and Ace, 

respectively. The dashed lines surrounding the dashed line in the middle correspond to ±5% errors. 
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Figure C.10: Validation of IPA analytical method over time (column: 00D-4453-b0), i.e. performed to ensure that the standard was 

still valid over time. 

 

Figure C.11: Validation of Ace analytical method over time (column: 00D-4453-b0), i.e. performed to ensure that the standard was 

still valid over time. 
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predictions are reliable over time. Furthermore, the operational conditions with high pH are extremely 

tough on the columns. Hence, their performance is significantly decreasing over time and tailing effects 

become an increasing issue for the amine compounds. Furthermore, the UV lamps break and/or lose 

intensity over time, which can also influence the spectra significantly. 
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