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PREFACE 
 

This PhD thesis, “Behavioural models for cycling - Case studies of the Copenhagen Region”, 

concludes my PhD study. The study is financed by the Danish Road Directorate, under the 

project “The effect of cycling policies”, which has been conducted from December 2010 to 

September 2015 at the Department of Transport, at the Technical University of Denmark. 

Professor Otto Anker Nielsen and Professor Carlo Giacomo Prato supervised the PhD study. 

The main contributions of this study are the six papers listed below: 

Halldórsdóttir et al. (2011):  Halldórsdóttir, K., Christensen, L., Jensen, T.C. and Prato, 

C.G. (2011). Modelling mode choice in short trips - Shifting 

from car to bicycle. Presented at the 39th European Transport 

Conference, 10th – 12th October, Glasgow, Scotland, UK. 

Prato et al. (2015):  Prato, C.G., Halldórsdóttir, K. and Nielsen, O.A. (2015). Latent 

lifestyle and mode choice decisions when travelling short 

distances. Presented at the 14th International Conference on 

Travel Behaviour Research, 19th – 23rd July 2015, Windsor, 

England. Submitted to Transportation in September 2015. 
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Halldórsdóttir et al. (2015a): Halldórsdóttir, K., Nielsen, O.A. and Prato, C.G. (2015). Home-

end and activity-end preferences for access to and egress from 

train stations in the Copenhagen Region. Submitted to 

International Journal of Sustainable Transportation in 

September 2015. 

Rasmussen et al. (2015): Rasmussen, T.K., Ingvardson, J.B., Halldórsdóttir, K. and 

Nielsen, O.A. (2015). Improved methods to deduct trip legs and 

mode from travel surveys using wearable GPS devices: A case 

study from the Greater Copenhagen area. Computers, 

Environment and Urban Systems. Available online 4th May 2015 

from: doi:10.1016/j.compenvurbsys.2015.04.001 

Halldórsdóttir et al. (2014):  Halldórsdóttir, K., Rieser-Schüssler, N., Axhausen, K.W., 

Nielsen, O.A. and Prato, C.G. (2014). Efficiency of choice set 

generation methods for bicycle routes. European Journal of 

Transport and Infrastructure Research, vol. 14, no. 4, pp. 332-

348. 

Halldórsdóttir et al. (2015b): Halldórsdóttir, K., Nielsen, O.A. and Prato, C.G. (2015). Land-

use and network effects on bicycle route choice in the Greater 

Copenhagen area. Presented at the 2nd Symposium of the 

European Association for Research in Transportation (hEART), 

4th - 6th September 2013, Stockholm, Sweden. Working paper. 
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ABSTRACT 
 

Bicycle transport has traditionally been underrepresented in traffic models, because 

historically the main focus has been on modelling more resource-intensive investments in 

motor traffic roads and public transport. In order to decrease road congestion and to reduce 

the related health and societal problems, there is a growing interest in promoting more 

sustainable transport systems, with a particular emphasis on the bicycle as a sustainable 

transport alternative. Accordingly, the objective of this PhD study is to expand the knowledge 

about travellers’ choices of the bicycle as a mean of transport above other alternatives, as 

well as to create knowledge on the interaction between infrastructure and cyclists’ route 

choices. In this study, the focus is on the traditional approaches to mode choice modelling, 

where the focus is on all transport modes, as well as the modelling of cyclists’ route choices. 

The study focuses on identifying which conditions can: (i) promote bicycle use, with an 

emphasis on everyday cycling; (ii) influence the shift from motorised private transport to a 

more sustainable transport alternative; and (iii) find methods that make cycling more 

attractive, e.g., improving accessibility. 

The private car is the most dominant mode of transportation in cities throughout the world, 

even for short trips where it could easily be replaced by more sustainable transport options, 

such as bicycles. Like the car, a bicycle provides flexibility when travelling. It also cost much 
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less and, in some cases, is even a faster and more efficient choice of transport, especially in 

highly congested areas. While the car might be a more popular alternative, especially in 

suburban or rural areas where activities are dispersed over large distances, short trips appear 

more receptive to a decrease in the use of the car.  

In this PhD study, the mode choice behaviour when travelling short distances was analysed, 

in the Copenhagen Region, in order to identify factors that affect the travellers’ choices. 

Mixed logit models were estimated, in order to capture taste variations and differentiate 

travel time parameters across modes, on a dataset including trip information and socio-

economic variables for 7,958 individuals and 10,982 trip chains with five available alternative 

modes (i.e., walking, cycling, car driver, car passenger, and public transport). The results 

showed that travellers’ have heterogeneous preferences regarding the travel time of non-

motorised modes, and more homogeneous preferences regarding the travel time of 

motorised modes. The results also showed that mode choice behaviour in short distance 

travelling is related to travellers’ personal characteristics (i.e., gender, occupation, income, 

and having a public transport monthly pass) and their household characteristics (i.e., number 

of cars and family composition). Finally, the results showed that the mode choice is also 

related to the trip characteristics (i.e., hilliness, temperature, trip purpose, urban 

characteristics, and parking availability). Lastly, the results showed that cyclists have a 

heterogeneous preference towards temperature and hilliness, meaning that some cyclists do 

not mind hilly areas or lower temperatures, while others do. In order to encourage the shift 

from private cars to more sustainable transport alternatives, decision-makers need to 

address specific population groups for specific trip purposes and focus on factors that are 

able to make cycling more attractive. The results suggested that further investigation of 

heterogeneity might uncover whether different population groups exhibit different 

preference structures. 

In previous literature on short trips, the focus has mainly been on mode choice models to 

uncover the determinants of choice between car and sustainable transport alternatives. 

Generally, the focus has been more on the characteristics of the alternatives and less on the 

socio-economic characteristics of the travellers, while considering the population to have 

homogeneous preferences and the same probability of shifting mode, regardless of their 

characteristics. However, this assumption appears rather unrealistic. In this thesis, in the first 

study on travel behaviour when travelling short distances, it was concluded that the choice 

between transport alternatives is not only related to the level-of-service characteristics of the 

alternatives, but also to a large extent the socio-economic characteristics of the travellers. 

Based on that study, a more suitable methodological approach was adopted, namely a latent 

class choice model, to identify lifestyle groups and to understand how lifestyle affects mode 
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choice decisions when travelling short distances. The model allows linking observable 

characteristics of the individual with the probability of them having chosen a certain lifestyle 

and then the probability of individuals, with that specific lifestyle, choosing a specific 

transport mode for short distances. Short trip chains in the Copenhagen Region were 

investigated, on a data sample with 10,982 observations with five available alternative modes 

(i.e., walking, cycling, car driver, car passenger, and public transport). The results highlight the 

importance of investigating the heterogeneity of the population, when analysing the 

potential for switching from the car to sustainable travel modes. The results showed that the 

population is split into four lifestyle groups: auto-oriented, bicycle-oriented, public transport-

oriented, and public transport-averse. This population split is according to several 

characteristics (i.e., gender, age, family composition, number of cars, income, occupation, 

and residence location). Each lifestyle group has a heterogeneous perception of travel time, 

where the rates of substitution between alternative transport modes were extremely 

different. In addition, each lifestyle group weighs the dispreferences for public transport 

transfers differently, has a different perception of weather conditions on active travel modes, 

and selects a transport mode depending on the trip purpose.  When thinking about measures 

to increase the attractiveness of sustainable transport options in short distance travelling, 

decision-makers should: (i) propose traditional or creative solutions to encourage car-

oriented individuals out of their cars; (ii) direct public transport-averse individuals with 

policies that make the car unattractive; and (iii) hinder the attractiveness of cars in the future 

for bicycle- and walk-oriented individuals. When thinking about bicycle infrastructure 

improvements, the reduction of cycling travel time has little effect on car-oriented 

individuals, unless the time savings are very high, and bicycle-oriented individuals will only 

modify their routes as they already consider bicycles the fastest choice. 

Efforts to increase the use of public transport, with the aim of improving the sustainability of 

cities, usually focus on the service of the public transport system itself, while the accessibility 

to and from the public transport network receives less attention. This PhD study contributes 

to the existing literature by investigating the choice of access and egress modes to and from 

train stations in the Copenhagen Region. This study adopted a mixed logit model that 

distinguished between the preference structure at the home-end and activity-end for 

travellers who have chosen trains as their main transport mode. The model accounted for the 

heterogeneity in the travellers’ preferences and alternative mode perceptions, while 

investigating the effect of policy variables such as car parking availability, park & ride 

opportunities, bicycle parking availability and type, and the possibility of carrying bicycles on 

trains. The choices between five alternative transport modes was analysed (i.e., walking, 

cycling, being a car driver, being a car passenger, and riding a bus) for 2,921 observations of 

trips at the home-end of journeys, and 3,658 trips at the activity-end of journeys. The results 

showed that the choice of access and egress mode is affected by travel time and trip 
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characteristics (i.e., travelling with someone or in the city centre), as well as underlining the 

relevance of bicycle parking and the possibility of carrying bicycles on trains to the choice of 

cycling to the train station. Most importantly, the results showed that travellers’ have 

heterogeneous preferences with regard to travel time and perception of the alternatives, as 

well as their preference structure relates more to their socio-economic characteristics (i.e., 

gender, season ticket, occupation and trip purpose, along with the number of cars and other 

motorists in the household) than the trip characteristics. The study successfully identified 

factors that can contribute to the sustainability of the travel choices after selecting a train as 

the main transport mode, e.g., by improving bicycle parking availability at train stations, but 

focusing on specific population groups might also contribute further, especially when 

considering travellers’ occupation and trip purpose. 

Bicycle route choice models provide measures to search for factors that make cycling more 

attractive. In this study, the findings from the model estimates depend on the observation of 

actual route choices and the generation of realistic alternatives. While collecting data on 

actual route choices has greatly profited from enhancements in GPS device technology, the 

post-processing of such large data is still difficult. In this study, a fully automatic post-

processing procedure was proposed and applied to extract relevant information for further 

analysis. It makes it possible to process raw individual-based GPS data, with no additional 

information required from the respondent, by combining fuzzy logic- and GIS-based methods. 

By applying this method it is possible to automatically identify trips, trip-stages, and the most 

probable transport mode used on each trip-stage. The method was validated on a dataset 

consisting of raw individual-based GPS logs, collected from 183 respondents living in the 

Greater Copenhagen area, with a total of 427 trip legs, thereof 113 bicycle trips legs. The 

method was validated through the application of a control-questionnaire. The study showed 

that using the proposed method: (i) correctly linked 82% of the reported trip legs to 

corresponding trip legs, (ii) avoided classifying non-trips such as scatter around activities as 

trip legs, (iii) correctly identified the transport mode for more than 90% of the trip legs, and 

(iv) was robust through the specification of the model parameters and thresholds. The results 

document that using the proposed method enabled the possibility of using individual-based 

GPS units to collect travel surveys in large-scale multi-modal networks. 

The literature on the generation of alternative route sets has mainly focused on the 

implementation of path generation methods for cars or public transport, which are normally 

generated on a simplified network. Only few studies have focused on bicycle route choice 

sets, which require a highly detailed network. In this study, the efficiency of choice set 

generation methods was analysed by their ability to generate relevant and heterogeneous 

bicycle routes in a high-resolution network by using different evaluation methods, such as 

replicating the observed routes while also generating realistic alternatives that take into 
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account taste heterogeneity across cyclists. Three choice set generation methods for bicycle 

route choice were examined: A doubly stochastic generation function, a breadth first search 

on link elimination, and a branch & bound algorithm. The dataset used to evaluate the 

methods consisted of 778 bicycle trips traced by GPS and carried out by 139 persons. In 

addition, the extension of cost functions was proposed with bicycle-oriented factors not 

limited to distance and time, but also other factors considered relevant to cyclists, i.e., scenic 

routes, dedicated cycle lanes, and road types. The results showed that both the doubly 

stochastic generation function and the breadth first search on link elimination generated 

realistic routes, while the first produced more heterogeneous routes and the latter 

outperformed in computation cost. The two methods revealed similar performances in terms 

of coverage, i.e., almost 64% and 68%, respectively. The branch & bound method had lower 

coverage compared to the other two methods, as it reproduced approximately 40% of the 

observed routes. As to be expected, shorter routes resulted in a very good coverage for all 

methods, where there are typically (much) less possible alternative routes, while longer 

routes exhibited larger differences across algorithms, with the doubly stochastic generation 

function performing best. The results also indicated the heterogeneous and complex 

preference structure for cyclists when considering routes, thus emphasising the importance 

of realistic and heterogeneous alternative route sets for model estimation. 

Based on the above data, cyclists’ route choices were analysed by estimating a path-size logit 

model, accounting for similarities between the alternative routes. A large sample of GPS 

observations was estimated, comprised of 3,363 bicycle trips total. The logarithm of the path-

size variable was significant and positive, thus correctly accounts for route overlap. The 

results showed that cyclists are sensitive to the effects of distance, cycling the wrong way, 

turn frequency, hilliness, different bicycle facility types, bicycle bridges, surface type, 

intersection type (i.e., cyclists prefer roundabouts over other crossing types), the number of 

motorised traffic lanes, and crossing water/sea on motorised traffic bridges. Whereas 

motorised traffic type, speed limit, annual average daily traffic (AADT), time dependent traffic 

volumes, and accident patterns had no statistically significant effect on cyclists' route choices. 

Most importantly, the results showed that cyclists appear to place relatively high value on 

different land-use conditions along the routes, that is, dispreference for high residential area 

and/or town centre and industrial areas, a willingness to take detours to cycle in recreational 

areas or parks when they are on both sides of the path, but avoidance of these detours when 

such areas are on one side of the path. Previous model estimates showed that the 

parameters describing paths along a scenic area and in forests did not have a significant 

effect on cyclists’ route choices. The results also showed that personal characteristics 

influence the route choice (i.e., gender and type of cyclist), that there were differences in 

route choice preferences depending on the time of day and whether it was weekday or 

weekend, and also different weather conditions (i.e., temperature, rain, and sunshine). The 
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route choice model can be used to forecast future travel behaviour. However, the interaction 

between the bicycle route choice model and the mode choice models needs to be 

investigated. By focusing on the interaction between infrastructure and route choice of 

cyclists, it is possible to contribute to the understanding of which factors influence cyclists’ 

route choices. 

The work conducted in the PhD study contributes to the current literature on bicycle 

transport by investigating the choice of the bicycle as a transport alternative and cyclists’ 

route choices. Problems related to the modelling of cyclists’ route choices were successfully 

solved, i.e., by collecting actual route choices using individual-based GPS units, post-

processing the raw GPS data in order to get usable information on observed bicycle routes, 

and effectively generating realistic alternatives in a high resolution network. It was possible 

to analyse travel behaviour on extensive revealed preference data and the study showed that 

it is possible to estimate quite advanced models on an elaborate set of variables and utility 

functions. The findings showed that it is important to take into consideration the 

heterogeneity of individuals and that decision-makers should focus on specific individuals or 

groups within the population when thinking about measures to increase the appeal of 

sustainable travel options. The findings also showed the importance of well-built bicycle 

facilities and the importance of choosing the location of such facilities carefully. 
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DANSK ABSTRAKT 
 

Cykeltrafik har traditionelt været underrepræsenteret i trafikmodeller, idet fokus historisk set 

hovedsageligt har været på modellering af mere ressourcekrævende investeringer i vejanlæg 

og kollektiv transport. For at mindske trængsel på vejene og reducere relaterede sundheds- 

og miljøproblemer er der en voksende interesse i at fremme mere bæredygtige 

transportsystemer. Formålet med denne ph.d.-afhandling er at udbygge viden om 

trafikanternes valg af cykel som transportmiddel frem for andre transportmiddel. Formålet er 

også at skabe viden om samspillet imellem infrastrukturen og cyklisters rutevalg. 

Afhandlingen fokuserer på de traditionelle metoder til modellering af transportmiddelvalg, 

med fokus på alle transportmidler, samt på modellering af cyklisters rutevalg. Afhandlingen 

fokuserer på at identificere, hvilke forhold der kan (i) fremme cykling med fokus på 

hverdagscykelture, (ii) påvirke et skifte fra privatbilisme til et mere bæredygtigt 

transportalternativ og (iii) finde metoder, der gør cykling mere attraktivt, f.eks. ved at 

forbedre tilgængeligheden. 

Privatbilisme er den mest fremherskende transportform i byer i hele verden, selv til korte 

ture, hvor bilen nemt kunne erstattes af mere bæredygtige transportvalg, f.eks. cykling. 

Ligesom bilen er cyklen en fleksibel transportform. Det er også meget billigere, og i visse 

tilfælde er det også et hurtigere og mere effektivt transportvalg, især i stærkt befærdede 
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områder. Selvom bilen nok er det mest populære alternativ, især i forstæder eller 

landområder, hvor aktiviteterne er spredt over store afstande, ser det ud til, at de ture, hvor 

folk vil være mest tilbøjelige til at bruge bilen mindre, er de korte ture.  

Afhandlingen undersøger derfor adfærden i forbindelse med transportmiddelvalg for korte 

ture i Københavnsområdet for at identificere faktorer, der påvirker de rejsendes valg. Der er 

estimeret “mixed logit”-modeller for at afdække præferenceændringer og differentiere 

rejsetidsparametre på tværs af transportmidler på et datasæt af observerede ture med 

tilknyttede socioøkomiske data, der omfatter 7.958 personer og 10.982 turkæder, med fem 

transportmidler i valgsæt (dvs. gang, cykel, bilfører, bilpassager og kollektiv transport). 

Resultaterne viser, at de rejsende har heterogene præferencer med hensyn til rejsetiden, når 

det drejer sig om ikke-motoriserede transportmidler, og mere homogene præferencer med 

hensyn til rejsetiden, når det drejer sig om motoriserede transportmidler. Resultaterne viste 

også, at adfærden ved valg af transportmiddel i tilfælde af korte ture afhænger af de 

rejsendes personlige karakteristika (dvs. køn, beskæftigelse, indkomst, og periodekort) og 

deres husstands karakteristika (dvs. antal biler og familiestruktur). Endelig viste resultaterne, 

at transportmiddelvalget også afhænger af karakteristika ved selve turen (dvs. kuperet 

terræn, temperaturen, rejseformål, bymæssige karakteristika og parkeringsmuligheder). 

Endelig viste resultaterne, at cyklister har forskellige præferencer overfor temperatur og 

kuperet terræn, hvilket betyder, at nogle cyklister ikke har noget imod kuperet terræn eller 

lave temperaturer, mens andre har. Når beslutningstagerne skal tilskynde rejsende til at 

skifte fra privatbiler til mere bæredygtige transportalternativer, er de nødt til at adressere 

specifikke befolkningsgrupper for så vidt angår specifikke rejseformål samt fokusere på 

faktorer, der gør cykling mere attraktivt. Resultaterne indikerer, at yderligere forskning i 

heterogenitet vil kunne afdække, hvorvidt forskellige befolkningsgrupper har forskellige 

præferencestrukturer. 

Tidligere litteratur om bæredygtig transport har især fokuseret på transportmiddel-

valgsmodeller til at afdække afgørende faktorer i forbindelse med valget mellem private 

motoriserede transportalternativer og bæredygtige transportalternativer. Der har generelt 

været mere fokus på alternativernes karakteristika og mindre på de rejsendes 

socioøkonomiske karakteristika, mens befolkningen er blevet anset for homogen med hensyn 

til præferencer og med hensyn til sandsynligheden for at skifte transportmiddel uanset deres 

karakteristika. Denne formodning må imidlertid anses for at være temmelig urealistisk. 

Afhandlingen har i den første undersøgelse om rejseadfærd i forbindelse med korte ture vist, 

at valget mellem transportalternativer ikke kun afhænger af alternativernes karakteristika, 

men også i vidt omfang af de rejsendes socioøkonomiske karakteristika.  



xv 

På basis heraf valgte denne afhandling en mere passende metodisk tilgang, dvs. en “latent 

class”- valgmodel til at analysere livsstilsgrupper og forstå, hvordan livsstil påvirker 

beslutningen om rejseform for korte ture. Modellen gør det muligt at sammenkæde 

individers observerbare karakteristika med sandsynligheden for at have valgt en bestemt 

livsstil og derefter sandsynligheden for, at en person med denne specifikke livsstil vælger et 

specifikt transportmiddel for korte turkæder. Afhandlingen undersøgte korte turkæder i 

Københavnsområdet på grundlag af et datasæt med 10.982 observationer, med fem 

transportmidler i valgsæt (dvs. gang, cykel, bilfører, bilpassager og kollektiv transport). 

Resultaterne understreger vigtigheden af at undersøge befolkningens heterogenitet, når man 

undersøger muligheden for at ændre transportmiddelvalg til bæredygtige transportmidler. 

Resultaterne viste, at befolkningen kan opdeles i fire livsstilsgrupper, dvs. de bilorienterede, 

de cykelorienterede, dem, der er orienteret mod kollektiv transport, samt dem, der er 

modstandere af kollektiv transport. Denne opdeling af befolkningen kan forklares ved 

forskellige karakteristika (dvs. køn, alder, familiestruktur, antallet af biler, indkomst, 

beskæftigelse, og bopæls placering). De enkelte livsstilsgrupper har heterogene 

rejsetidspræferencer, hvor substitutionsgraden mellem transportmiddelalternativerne var 

signifikant forskellig mellem hver livsstilgruppe. Endvidere har alle livsstilsgrupperne alt-

andet-lige-præferencer for at skifte transportmiddel i kollektivt transport, de er følsomme 

overfor vejrforholdene og deres transportmiddelvalg afhænger af turformålet. Når der 

overvejes foranstaltninger til at øge interessen for bæredygtige transportmuligheder i 

tilfælde af korte ture, skal beslutningstagerne: (i) foreslå traditionelle eller kreative løsninger 

for at få bil-orienterede individer ud af deres biler; (ii) rette politikker, der gør bilen 

uinteressant, mod personer, der utilbøjelige til at anvende kollektiv transport; og (iii) gøre 

biler mindre attraktive i fremtiden for cykel- og gangorienterede individer. Når der overvejes 

cykelinfrastrukturforbedringer, har en reduktion af cykelrejsetiden ringe effekt på bil-

orienterede individer, medmindre tidsbesparelser er meget høje, og cykel-orienterede 

enkeltpersoner vil kun ændre på deres ruter, da de allerede betragter cykler som det 

hurtigste alternativ. 

Indsatsen for at øge brugen af kollektiv transport, med det formål at forbedre byernes 

bæredygtighed, fokuserer normalt på det kollektive transportsystems serviceniveau, mens 

tilgængeligheden til og fra det kollektive transportnet får mindre opmærksomhed. Denne 

ph.d.-afhandling bidrager til den eksisterende litteratur ved at undersøge valg af 

tilbringer/frabringer-transportmiddel til og fra togstationer i Københavnsområdet. 

Afhandlingen estimerede “mixed logit”-modeller, der skelner mellem præferencestrukturer 

for de to turender (hjemme-enden og aktivitets-enden) for rejsende, der har valgt tog som 

deres hovedtransportmiddel. I modellerne blev der taget hensyn til heterogeniteten i de 

rejsendes præferencer og opfattelse af alternative transportmidler, mens effekten af politiske 

variabler såsom parkeringstilgængelighed, ”Park & Ride”-muligheder, tilgængelighed og type 
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af cykelparkering, samt muligheden for at tage cyklen med på toget blev undersøgt. Valget 

mellem fem transportformer blev analyseret (gang, cykel, bilfører, bilpassager og 

bustransport), hvor datasættet til brug for modelestimeringen bestod af 2.921 observationer 

af ture til/fra de rejsendes bopæl, og 3.658 ture ved aktivititets-enden (herunder ture mellem 

aktiviteter). Resultaterne viste, at valget af tilbringere/frabringere påvirkes af rejsetid og tur 

karakteristika (dvs. om man rejser sammen med nogen eller er i bymidten), samt 

understreger relevansen af cykelparkering og muligheden for at tage cykler med på toget for 

valg cykling til togstationen. Resultaterne viste endvidere, at de rejsende har heterogene 

præferencer for så vidt angår rejsetid og vurdering af de forskellige transportmidler, og at 

deres præferencestruktur relaterer mere til deres socioøkonomiske karakteristika (dvs. køn, 

periodekort, erhverv og rejseformål samt antallet af biler og andre bilister i husstanden) end 

turens karakteristika. Det lykkedes i forbindelse med undersøgelsen at identificere faktorer, 

der kan bidrage til bæredygtigheden af de foretagne rejsevalg efter valg af tog som 

hovedtransportmiddel, f.eks. ved at forbedre cykelparkeringen på stationerne, men fokus på 

bestemte befolkningsgrupper kan også bidrage yderligere, især når man overvejer rejsendes 

beskæftigelse og turformål.  

Rutevalgsmodeller for cykler giver mulighed for at finde faktorer, der gør cykling mere 

attraktivt. Estimationen heraf har i afhandlingen benyttet observerede ruter samt beregning 

af realistiske alternativer. Selvom indsamlingen af data om de aktuelle rutevalg har nydt stor 

gavn af forbedringerne inden for GPS-teknologien, så er efterbehandlingen af sådanne store 

datamængder fortsat en udfordring. I afhandlingen præsenteres og benyttes en 

fuldautomatisk efterbehandlingsprocedure. Dette gør det muligt at behandle rå 

individbaserede GPS-data, uden behov for yderligere oplysninger fra respondenten, ved at 

kombinere “fuzzy logic”- og GIS-baserede metoder. Ved hjælp af denne metode var det 

muligt automatisk at identificere ture, delture og det mest sandsynlige transportmiddel på 

den enkelte deltur. Metoden blev valideret på et datasæt bestående af rå individbaserede 

GPS-logs indsamlet fra 183 respondenter boende i Storkøbenhavn, dækkende i alt 427 

turben, heraf 113 cykelturen. Til valideringen af metoden anvendtes et kontrolspørgeskema. 

Undersøgelsen viste, at anvendelse af den foreslåede metode: (i) forbandt 82 % af de 

rapporterede turben korrekt til de tilhørende turben, (ii) undgik at klassificere ikke-ture 

såsom “punktsværme” rundt om aktivitetspunkter som turben, (iii) identificerede 

transportmidlet korrekt for mere end 90 % af turbenene, og (iv) var robust ved specificering 

af modelparametre og tærskelværdier i modellen. Resultaterne dokumenterede, at 

anvendelse af den foreslåede metode gjorde det muligt at anvende individbaserede GPS-

enheder til at indsamle rejsevaneundersøgelser i storskala multimodale transportnet. 

Litteraturen om generering af valgsæt til estimering af rutevalgsmodeller har hovedsageligt 

fokuseret på implementering af metoder til generering af valgsæt til biler eller offentlig 
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transport, som normalt genereres på et forenklet netværk. Kun få undersøgelser har 

fokuseret på valgsæt til cykeltrafik, som kræver et meget detaljeret netværk. I denne 

afhandling blev effektiviteten af metoderne til generering af valgsæt undersøgt med henblik 

på at fastslå deres evne til at generere relevante og forskellige cykelruter i et detaljeret 

digitalt kort ved at anvende forskellige evalueringsmetoder, såsom at replikere de 

observerede ruter samtidig med at der genereres realistiske alternativer, der tager hensyn til 

cyklisternes heterogenitet i forhold til valg af ruter. Der blev undersøgt tre metoder til 

generering af valgsæt for cykelrutevalg: En dobbelt-stokastisk metode, en metode baseret på 

grafsøgning med fravalg af kanter (breadth first search on link elimination) og en 

forgreningsalgoritme (“branch & bound”) algoritme. Datasættet til brug for vurdering af 

metoderne bestod af 778 GPS-sporede cykelture udført af 139 personer. Afhandlingen 

foreslår ydermere en udvidelse af nyttefunktionerne med cykelorienterede faktorer, der ikke 

er begrænset til afstand og tid, men også andre faktorer, der anses for relevante for cyklister, 

dvs. smukke ruter, dedikerede cykelstier og vejtyper. Resultaterne viste, at såvel den dobbelt-

stokastiske metode som grafsøgning med fravalg af kanter genererede realistiske ruter, hvor 

førstnævnte genererede mere heterogene ruter og sidstnævnte klarede sig bedst med 

hensyn til regnetid. De to metoder viste sig at have næsten samme performance hvad angår 

dækning af de observerede ruter, nemlig hhv. 64 % og 68 %. “Branch & bound”-metoden 

havde en lavere dækning i sammenligning med de to andre metoder, da den kun 

reproducerede ca. 40 % af de observerede ruter. Som forventet havde alle metoderne en 

meget god dækning for de korte ruter, hvor der typisk er (meget) færre mulige alternative 

ruter, mens der for de lange ruters vedkommende var større forskelle på tværs af 

algoritmerne, med den dobbelt-stokastiske metode som den bedste. Resultaterne indikerede 

endvidere cyklisternes heterogene og komplekse præferencestruktur, når de overvejer ruter, 

hvilket understreger vigtigheden af realistiske og heterogene alternative valgsæt til 

modelestimering. 

På basis af ovennævnte data analyserede afhandlingen cyklisternes rutevalg ved at estimere 

en “path-size logit model” for at tage højde for overlap mellem alternative ruter. Et stort 

datasæt af GPS- observationer, der bestod af 3.363 cykelture i alt, blev estimeret. Logaritmen 

for “path-size”-faktoren var signifikant og positiv og tog korrekt højde for ruteoverlap. 

Resultaterne viste, at cyklisters rutevalg påvirkes af turens længde, af at cykle den forkerte 

vej, svinghyppighed, kuperet terræn, forskellige former for cykelstier, cykelbroer, 

overfladetyper, vejkrydstyper (dvs. at cyklister foretrækker rundkørsler fremfor andre former 

for kryds), antallet af vognbaner til motorkørertøjer og bilbroer, der krydser vand/hav. 

Derimod påvirkede motoriseret trafik type, hastighedsgrænse, årsdøgnstrafik (ÅDT), 

tidafhængige trafikmængder og ulykkesmønstre ikke cyklisters rutevalg signifikant. 

Resultaterne viste især, at arealanvendelsen langs ruten også har stor betydning for 

cyklisterne, idet de har negative præferencer for boligområder med høj bebyggelse og/eller 
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bymidter og industriområder, mens de er positive overfor at tage omveje for at kunne cykle i 

rekreative områder og parker, når de ligger på begge sider af ruten, mens cyklisterne undgår 

disse omveje, når de rekreative områder kun ligger på den ene side af ruten. Tidligere 

modelestimater viste, at de parametre, der beskriver ruter i et naturskønt område og i skove, 

ikke havde en signifikant effekt på cyklisternes rutevalg. Resultaterne viste også, at personlige 

karakteristika påvirker rutevalget (dvs. køn og cyklisttype), at der var forskelle i 

rutevalgspræferencerne afhængig af tidspunkt på dagen, og om det var hverdag eller 

weekend, og endelig også forskellige vejrforhold (dvs. temperatur, regn og solskin). 

Resultaterne understreger vigtigheden af veludformede cykelstier mv. og betydningen af at 

vælge placeringen af nye cykelstier omhyggeligt. Rutevalgsmodellen kan bruges til at 

forudsige fremtidig rejseadfærd. Samspillet mellem rutevalgsmodellen for cyklister og 

transportmiddelvalgsmodellerne bør dog undersøges nærmere. Ved at fokusere på samspillet 

mellem infrastruktur og cyklisters rutevalg er det muligt at bidrage til forståelsen af, hvilke 

faktorer der påvirker cyklisternes rutevalg. 

Det arbejde, der er blevet udført i forbindelse med denne ph.d.-afhandling, bidrager til den 

nuværende litteratur om transport på cykel ved at undersøge valg af cyklen som 

transportalternativ og cyklisternes rutevalg. Afhandlingen har med succes løst problemer 

relateret til modellering af cyklisters rutevalg, dvs. ved at indsamle faktiske rutevalg med 

individbaserede GPS-enheder, efterbehandling af de rå GPS-data med henblik på at få 

brugbare oplysninger om observerede cykelruter og effektivt generere realistiske alternativer 

i et højopløsningsnetværk. Vi var i stand til at analysere rejseadfærd på baggrund af et 

omfattende sæt af afslørede præferencedata, og afhandlingen viste, at det er muligt at 

estimere ganske avancerede modeller på et udførligt sæt variabler og nyttefunktioner. 

Resultaterne viste, at det er vigtigt at tage hensyn til, at befolkningen er en uhomogen 

gruppe, og at beslutningstagerne bør fokusere på bestemte personer eller grupper i 

befolkningen, når de overvejer foranstaltninger for at gøre bæredygtige transportformer 

mere attraktive. Resultaterne påviste også vigtigheden af veludformede cykelstier og 

betydningen af at vælge placeringen af sådanne cykelstier omhyggeligt. 
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Chapter 1  

INTRODUCTION 
INTRODUCTION TO THE PHD STUDY 

1.1 BACKGROUND 
It is a common practise to use the support of traffic models in the overall planning process of 

implementing a new infrastructure or a political initiative. There are many compelling 

arguments for added political efforts aimed at increasing cycling. However, bicycle transport 

has traditionally been underrepresented in traffic models. Historically, the primary focus has 

mainly been on modelling more resource-intensive investments in motor traffic roads and 

public transport. In addition, there are various aspects in modelling that need to be taken 

into account, such as how extensive the transport system is, that individuals are not always 

rational in their choices, and also that they have heterogeneous preferences. 

Figure 1 gives an overview of the four-step travel modelling process, which is a standard 

urban transportation planning system. Decision-makers can use this tool to analyse current 

travel behaviour and to forecast future behaviour, in order to prioritise different projects. The 

four steps of the model are: 
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 Trip production, which calculates the frequency of trips in each zone, categorised as 

trip generation and trip attraction, as a function of land-use, household 

demographics, and other socio-economic characteristics. 

 Trip distribution, where the number of trips between the origins and destinations are 

calculated, often using a gravity model function. 

 Mode choice, which estimates the ratio of transport modes, used between each 

origin and destination pair. 

 Route choice (route assignment), which assigns the trips by each transport mode to a 

route between an origin and destination. 

Mode choice models enable decision-makers to forecast how the transport mode share will 

shift when building a new infrastructure or implementing a political initiative. Route choice 

models can be used to determine the need for a new infrastructure or to forecast how a 

political initiative would influence current route choice behaviour. First, the number of 

travellers on each network link can be estimated by assigning the trips between each zone 

pair. The generated routes thus represent the present traffic patterns. Then, decision-makers 

can apply route assignments to forecast how the distributions of routes will possible change 

when building a new infrastructure or when implementing a political initiative. After applying 

different scenarios with these common models, the cost and/or benefit of the proposed 

future projects can be evaluated through different decision criteria. 

The PhD study focuses on the two last steps of the four-step travel modelling process, while 

concentrating on cycling, namely the choice of the bicycle as a transport alternative and 

modelling the route choices of cyclists. 

Trip production

Mode choice

Trip generation

Trip distribution

Route choice

Trip attraction

 

FIGURE 1: OVERVIEW OF THE FOUR-STEP TRAVEL MODELLING PROCESS 
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1.2 RESEARCH OBJECTIVES 
The objective of this PhD study is first to expand the knowledge of travellers’ choice of the 

bicycle as a means of transport above other alternatives. The objective is also to create 

knowledge on the interaction between infrastructure and cyclists’ route choices. Accordingly, 

the main research objective of this study was divided into two main themes. 

In the first theme, focus was on modelling the choice of bicycle as a transport mode. By 

investigating different transport modes, it is possible to identify which conditions can 

promote bicycle use, with an emphasis on everyday cycling, and which conditions can 

influence the shift from motorised private transport to a more sustainable transport 

alternative, such as bicycles. In this theme, mode choice in short distance travelling was 

investigated, as bicycles are an ideal transport alternative when travelling short distances. In 

addition, combining bicycles with public transport is a realistic alternative to cars when 

travelling longer distances. The following two main objectives were set out to be completed 

within the mode choice modelling theme: 

(i) To estimate advanced mode choice models in order to identify the determinants of 

choice between the private car and sustainable travel alternatives in short distance 

travelling; 

(ii) To understand the preference related to the choice of access and egress modes to 

and from train stations. 

The second theme dealt with the modelling of cyclists’ route choices. Bicycle route choice 

models provide measures to search for factors that make cycling more attractive, by focusing 

on the actual route choices of cyclists. In order to model the route choices of cyclists, 

numerous parts need to be taken into consideration. Consequently, the focus in this theme 

was on the following four main objectives: 

(iii) To collect data using GPS technology to register geographical points, recording the 

behaviour of a sample of bicyclists from different municipalities in the Greater 

Copenhagen area; 

(iv) To develop a fully automatic post-processing procedure, making it possible to 

process raw individual-based GPS data with no additional information required from 

the respondent; 

(v) To analyse the efficiency of choice set generation methods to generate realistic 

bicycle routes; 

(vi) To develop a model to analyse cyclists’ route choices and evaluate their trade-offs. 
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1.3 OUTLINE OF THE THESIS 
This PhD thesis consists of four main parts: (I) introduction, (II) mode choice modelling, (III) 

route choice modelling, and (IV) conclusions. An appendix provides additional information. 

The thesis is structured so to reflect the overall work process during the PhD study. There are 

twelve chapters, where each chapter consists of different sections and subsections. Figure 2 

provides a general overview of the thesis structure. The main contributions of the PhD study 

are six papers, enclosed in the two main parts, Part II and Part III. 

 

 

FIGURE 2: THE STRUCTURE OF THE PHD THESIS 

 

The structure of the thesis is as follows: 

Part I – Introduction 

Chapter 1 introduces the background to the PhD study, the main research objectives, and 

finally outlines the PhD thesis’ contents. 

Part II – Mode choice modelling 
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Chapter 2 The main contents of Part II are introduced and the objectives of the three 

papers, enclosed in this part, are outlined. 

Chapter 3 The Danish National Travel Survey, which formed the basis for the model 

estimation in all three papers, is presented. In this chapter, some general data description is 

presented, followed by a description of the data preparation conducted for all three papers. 

Chapter 4 The conference paper “Modelling mode choice in short trips – Shifting from car to 

bicycle”, which was presented at the 39th European Transport Conference (ETC), in October 

2011 in Glasgow, Scotland, is presented. In the paper, an investigation of the mode choice 

behaviour of individuals in the Copenhagen Region is presented. Focus is on short trip chains, 

with particular emphasis on shifting from private motorised transport to a more sustainable 

mode, such as bicycle. 

Chapter 5 The paper “Latent lifestyle and mode choice decisions when travelling short 

distances” is presented. This paper was presented at the 14th International Conference on 

Travel Behaviour Research (IATBR), in July in Windsor, England. The paper was then 

submitted to Transportation in September 2015. The paper proposes a latent class analysis, in 

order to understand how lifestyle affects the decision on how to travel short distances, in the 

Copenhagen Region. 

Chapter 6 The paper “Home-end and activity-end preferences for access to and egress from 

train stations in the Copenhagen Region” is presented. The paper was submitted to 

International Journal of Sustainable Transportation in September 2015. In this paper, the 

multimodal travelling of individuals in the Copenhagen Region is investigated, with focus on 

the access and egress mode choice for trips where the main transport mode is passenger 

trains. 

Part III – Route choice modelling 

In Part III focus is on the second theme, the modelling of the route choices of cyclists. Part III 

contains the last three papers, which are presented in chapter 9 to chapter 11. These 

papers also form the basis of this study. 

Chapter 7 Presents the main subjects of Part III, which deal with bicycle route choice 

modelling, and outlines the main objectives of the three papers. 

Chapter 8 discusses the GPS data collection conducted for the bicycle route choice model 

and presents some findings from an analysis conducted on the data, followed by a 

description of the bicycle network constructed for this study. 
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Chapter 9 presents the journal paper “Improved methods to deduct trip legs and mode from 

travel surveys using wearable GPS devices: A case study from the Greater Copenhagen area”. 

The paper was published online in Computers, Environment and Urban Systems in May 2015. 

A fully automated method is proposed in order to post-process large raw individual-based 

GPS datasets, collected in the highly complex large-scale multi-modal network, with no 

additional information requested from the respondent. The method combined already 

established methods to identify trips, trip legs, and assign the most probable mode of 

transport, together with a combined fuzzy logic- and GIS-based algorithm. 

Chapter 10 presents the journal paper “Efficiency of choice set generation methods for 

bicycle routes”, which was published in the European Journal of Transport and Infrastructure 

Research in December 2014. The paper analysed the efficiency of choice set generation 

methods for bicycle routes and proposed the extension of cost functions to bicycle-oriented 

factors not limited to distance and time. 

Chapter 11 presents the working paper “Land-use and transport network effects on bicycle 

route choice in the Greater Copenhagen area”. A preliminary version was presented at the 

2nd Symposium of the European Association for Research in Transportation (hEART), in 

September 2013, Stockholm, Sweden. The paper analyses cyclists’ route choices and 

evaluates their trade-offs in an established bicycle city, thus providing inspiration for 

emerging cycling cities by focusing in particular on the interaction between infrastructure and 

cyclists’ route choice. 

Part IV – Conclusions 

Chapter 12 summarises the main contributions of the PhD study and then discusses how the 

different models, used in this study, can be put together in an overall model framework, that 

improves bicycle modelling and supports policies, followed by the main conclusions of the 

overall study. 

Part V – Appendix 

The appendix gives an overview and a description of the attributes in the bicycle network 

database and presents some additional findings from Halldórsdóttir et al. (2015b). 
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Chapter 2  

INTRODUCTION 
INTRODUCTION TO PART II 

Part II focuses on modelling the choice of bicycles as a transport mode, by focusing on all 

major transport alternatives. By doing so, it is possible to identify factors that influence 

travellers’ choices and to identify which conditions can promote bicycle use, with an 

emphasis on everyday cycling, and encourage the shift from motorised private modes to 

sustainable alternative options. 

Short trips are extremely frequent in everyday life for multiple purposes, such as commuting, 

shopping, and picking up or dropping off children. Still, even in short trips, private cars are the 

most dominant mode of transportation in cities throughout the world. However, the use of 

private cars could easily be replaced by bicycles, when travelling short distances, as they 

provide flexibility when travelling, cost much less and, in some cases, are even faster and a 

more efficient choice of transport, especially in highly congested areas. In addition, with the 

aim of improving the sustainability of cities, combining the use of bicycles with public 

transport could be a realistic alternative to cars, when travelling longer distances. However, 

efforts to increase the use of public transport usually focus on the service of the public 

transport system itself, while the accessibility to and from the public transport network 

receives less attention. 
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Accordingly, Part II addresses the first two research objectives, listed in the introduction in 

Part I. The first two papers investigate the mode choice behaviour in short distance travelling, 

while the third paper investigates the choice of access and egress modes to and from train 

stations. 

In order to investigate the mode choice behaviour in the Copenhagen Region, in short 

distance travelling and when accessing train stations, level-of-service information is needed 

on the actual mode choices, as well as the alternative modes. Chapter 3 describes the Danish 

National Travel Survey, which formed the basis for the model estimation in all three papers, 

and some general data description, followed by a description of the data preparation 

conducted for all three papers. The following subsections briefly describe the papers and 

clarify which research objectives, and additional contributions, they address. 

2.1 MODELLING MODE CHOICE IN SHORT TRIPS – SHIFTING FROM CAR 

TO BICYCLE 

Title: Modelling mode choice in short trips – Shifting from car to bicycle 

Author(s): Katrín Halldórsdóttir, Linda Christensen, Thomas C. Jensen, and Carlo G. Prato 

Presented: The 39th European Transport Conference (ETC), 10th – 12th October 2011, 
Glasgow, Scotland, UK 

Abbreviated: Halldórsdóttir et al. (2011) 

The purpose of this paper is to identify factors that affect the choice of transport modes in 

short distance travelling. Investigating short distance travelling is particularly important, as 

the number of short trips is especially high for multiple purposes, where the private car may 

easily be replaced by the bicycle. In this paper, the mode choice behaviour of individuals from 

the Copenhagen Region when travelling short distances was investigated, with a particular 

emphasis on uncovering the determinants of choice between cars and sustainable transport 

alternatives, such as cycling. In this paper, the first research objective is tackled:  

(i) To estimate advanced mode choice models in order to identify the determinants of 

choice between the private car and sustainable travel alternatives in short distance 

travelling. 

In addition, this paper has the following aims: 

(i.a) To estimate mixed logit models, that are used to capture taste variations and 

differentiate travel time parameters across modes; 
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(i.b) To investigate mode choice by focusing on the characteristics of the 

alternatives, on the socio-economic characteristics of the travellers, and the 

trip characteristics; 

(i.c) To uncover factors that can make cycling more attractive when travelling 

short distances; 

(i.d) To understand which policies might be effective in promoting the choice of 

sustainable transport alternatives, in order to reduce car traffic. 

2.2 LATENT LIFESTYLE AND MODE CHOICE DECISIONS WHEN TRAVELLING 

SHORT DISTANCES 

Title: Latent lifestyle and mode choice decisions when travelling short distances 

Author(s): Carlo G. Prato, Katrín Halldórsdóttir, and Otto A. Nielsen 

Presented: Presented at the 14th International Conference on Travel Behaviour 
Research, 19th – 23rd July 2015, Windsor, England 

Submitted: Submitted to Transportation in September 2015 

Abbreviated: Prato et al. (2015) 

The purpose of this paper is to identify lifestyle groups and to understand how lifestyle 

affects mode choice decisions when travelling short distances, by adopting a latent class 

choice model. In the existing literature on short distance travelling, the main focus has been 

on mode choice models when investigating which factors influence the choice between 

private motorised alternatives and sustainable travel alternatives. The characteristics of the 

alternatives are usually the main focus, while the socio-economic characteristics of the 

travellers receive less attention. More importantly, it is assumed that the population as 

homogeneous in its preferences. However, this assumption seems rather unrealistic and thus 

this paper offers a different approach. This paper proposes a latent class analysis that helps 

to unravel how lifestyle affects the decision of how to travel in short trip chains in the 

Copenhagen Region. This paper also tackles the first research objective in the PhD study: 

(i) To estimate advanced mode choice models in order to identify the determinants of 

choice between the private car and sustainable travel alternatives in short distance 

travelling. 

More specifically, this paper also has the following aims: 

(i.e) To estimate a latent class choice model to identify latent lifestyle groups and 

choice specific travel behaviour; 

(i.f) To investigate the probable heterogeneity preferences across individuals; 
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(i.g) To investigate how lifestyle influences the short-term choices of travel mode 

rather than long-term choices. 

2.3 HOME-END AND ACTIVITY-END PREFERENCES FOR ACCESS TO AND 

EGRESS FROM TRAIN STATIONS IN THE COPENHAGEN REGION 

Title: Home-end and activity-end preferences for access to and egress from train 
stations in the Copenhagen Region 

Author(s): Katrín Halldórsdóttir, Otto A. Nielsen, and Carlo G. Prato 

Submitted: Submitted to International Journal of Sustainable Transportation in 
September 2015. 

Abbreviated: Halldórsdóttir et al. (2015a) 

The purpose of this paper is to understand the determinants of the choice of access and 

egress mode for travellers who have chosen trains as their main transport mode. Generally, 

the efforts to increase the use of public transport usually focus on the service of the public 

transport system itself, while the accessibility to and from the public transport network 

receives less attention. Previous literature shows that the access and egress mode to and 

from the railway network is an important factor when travelling by train. Accordingly, this 

paper focuses on the second research objective: 

(ii) To understand the preference related to the choice of access and egress modes to 

and from train stations. 

In addition, the paper has four broad aims: 

(ii.a) To estimate a mixed logit model, to account for heteroscedasticity across 

alternatives and heterogeneity across travellers; 

(ii.b) To differentiate between the preference structure at the home-end and 

activity-end for travellers who have chosen train as their main transport 

mode; 

(ii.c) To investigate the effect of policy variables such as car parking availability, 

park & ride opportunity, bicycle parking availability and type, the possibility 

to carry a bicycle on the train, alongside socio-economic characteristics of the 

travellers and level of service measures of the travel modes. 



15 

Chapter 3  

DATA DESCRIPTION 
THE DANISH NATIONAL TRAVEL SURVEY 

This chapter presents the data used for the model estimations in all three papers in Part II. In 

order to analyse current travel behaviour or to forecast future travel behaviour, the observed 

choices and the related choice sets of the non-chosen alternatives for each traveller are 

necessary. The observed choices were obtained from the Danish National Travel Survey 

(abbreviated TU-survey, in Danish Transportvaneundersøgelsen) (Christiansen and 

Skougaard, 2015), while route choice models and simulation methods were used to calculate 

the attributes of the alternatives within the choice set of each traveller. The history of the TU-

survey is briefly described in subsection 3.1, while subsection 3.2 describes travel behaviour 

in Denmark based on Skougaard and Christiansen (2015). Subsection 3.2 also briefly describes 

travel behaviour in the Copenhagen Region, when travelling short distances and when 

accessing passenger trains. Subsection 3.3 describes the data preparation and how the level-

of-service variables were calculated for each transport alternative. Finally, subsection 3.4 

briefly describes additional information, collected for Halldórsdóttir et al. (2015a), on parking 

facilities at train stations and the possibility to bring bicycles on trains. 
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3.1 THE DANISH NATIONAL TRAVEL SURVEY 
The TU-survey characterises the travel behaviour of a representative sample of the Danish 

population, combining detailed information on actual travel behaviour with a large variety of 

background variables. Information on the actual travel, includes information on how much, 

how, where, when, and why the trips take place, for how long, etc. In order to describe travel 

behaviour for selected groups, background variables are also collected, e.g., age, gender, 

income, education, car availability, etc. 

The respondents are asked about their travel behaviour on a single day. The survey runs all 

year round, collecting data throughout the year, thus characterising the differences in travel 

behaviour between seasons and different days of the week. The survey also collects highly 

detailed geographical information, such as precise home address information and destination 

location. Approximately 95% of all locations are geographically coded directly by the 

respondents, through a “search and select” procedure. In the remaining cases, the 

respondents complete the locations description as a free text, which is post-processed 

afterwards such that 97% can be geo-coded at a coordinate level and 99.5% at a zonal level 

(Christiansen and Skougaard, 2015). 

A new questionnaire was implemented in February 2009, with a thorough mapping of the 

public transport travel routes.  This includes information on precise address of activities, as 

well as information on bus stops and stations (Anderson, 2013). This highly detailed 

information makes it possible to analyse the public transport routes more accurately and the 

characteristics of the mode choice depending on the route. 

DTU Transport organises the data collection, on behalf of the Ministry of Transport and 

several other ministries, and carries the overall responsibilities for the survey. The TU-survey 

collects information on trips, travelled on the day before the interview of Danes, between the 

age of 10 and 84, that are randomly selected. The response rate is on average approximately 

60%, which is considered quite satisfactory for such an extensive survey of this type. The data 

collection is mainly conducted as telephone interviews, approximately 80% of the data, while 

self-reported internet interviews are approximately 20% (Christiansen and Skougaard, 2015). 

3.2 DATA DESCRIPTION 
The following subsections describe some findings from a data analysis conducted on the TU-

survey. First, subsection 3.2.1 describes the travel behaviour in Denmark, based on data 

analysis conducted by Skougaard and Christiansen (2015) is discussed. Then, subsections 

3.2.2 to 3.2.3 present descriptive statistics on travel behaviour in the Copenhagen Region, 

when travelling short distances and when accessing passenger trains. 
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3.2.1 TRAVEL BEHAVIOUR IN DENMARK 

Skougaard and Christiansen (2015) found that in Denmark most bicycle trips are less than 

5km (see Figure 3). In Denmark, 86% of all trips are less than 5km, while the total number of 

cycled kilometres per trip is 54%. Some Danes also cycle long distances, 22% of the total cycle 

kilometres are more than 11 km, despite the fact that they only constitute 4% of the trips. 

By looking at the cycled kilometres per capita in the respondents’ area (Figure 4), Skougaard 

and Christiansen (2015) found that Danes living in the larger cities generally cycle more than 

Danes living in the small- and medium-sized cities. Cyclists in Copenhagen cycle the most, 

where small- and medium-sized cities only cycle around half or less than that of the daily 

bicycle transportation in Copenhagen. 

The level of bicycle use in Denmark is relatively high when compared to other countries, 

especially in Copenhagen (see Figure 5). Accordingly, Copenhagen and the capital region 

were used as a case study in this PhD thesis, with the objective to develop models where 

focus is on the mode- and route choice characteristics in an established bicycle city. 

 

 

FIGURE 3: DISTRIBUTION OF TRIPS ON BICYCLE ACROSS TRIP DISTANCE IN DENMARK, 2012-2014. SOURCE: SKOUGAARD AND CHRISTIANSEN (2015) 
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FIGURE 4: CYCLED KILOMETRES PER CAPITA IN THE RESPONDENTS’ AREA IN DENMARK, 2012-2014. SOURCE: SKOUGAARD AND CHRISTIANSEN (2015) 

 

 

FIGURE 5: BICYCLE MODE SHARE IN COMMUTING TRIPS IN LARGE CITIES, 2009. SOURCE: PUCHER AND BUEHLER (2012, PAGE 292) 
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There is a clear correlation between age and daily cycled kilometres as shown by Skougaard 

and Christiansen (2015). By comparing these two factors (Figure 6), it can be seen that young 

respondents cycle the most. The number of cycled kilometres rises slightly until the age of 30 

and remains unchanged onwards until the age of 60, after which it starts to decrease. 

Skougaard and Christiansen (2015) also found that a large share of bicycle trips, measured in 

terms of cycled kilometres, consists of commuting trips to work or a place of study (Figure 7), 

with 34% work trips and 12% to a place of study. Therefore, it is not surprising that 

employees, students, and school pupils cycle the most (Figure 8). Bicycle transport as a 

leisure activity also has a large share of cycled kilometres, or a total of 37%. 

 

 

FIGURE 6: AVERAGE DAILY TRAVEL ON A BICYCLE (KM/PERSON/DAY) DIVIDED INTO AGE GROUPS IN DENMARK, 2012-2014. SOURCE: SKOUGAARD 

AND CHRISTIANSEN (2015) 
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FIGURE 7: SHARE OF TOTAL BICYCLE TRANSPORT BY TRIP PURPOSE (KM) IN DENMARK, 2012-2014. SOURCE: SKOUGAARD AND CHRISTIANSEN (2015) 

 

 

FIGURE 8: TRAVEL DISTANCE (KM) PER PERSON, DIVIDED BY MAIN OCCUPATION IN DENMARK, 2012-2014. SOURCE: SKOUGAARD AND CHRISTIANSEN 

(2015) 
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3.2.2 TRAVEL BEHAVIOUR WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN 

REGION 

Halldórsdóttir et al. (2011) and Prato et al. (2015) estimated the choice of transport mode in 

journeys, i.e., the total travel in a chain of trips, which start and end at home (Figure 9). This 

definition was chosen as normally it is not possible to choose between a car and a bicycle in 

the middle of a trip chain, after leaving home with one means of transport. Christensen and 

Jensen (2008) analysed the choice of transport mode of car owners in Denmark. The paper 

showed that car owners occasionally choose to cycle on journeys up to 22 km, while they 

rarely cycle longer distances. Thus, Halldórsdóttir et al. (2011) and Prato et al. (2015) 

investigated journeys shorter than 22 km, as this travel distance was considered the limit for 

when it is appropriate to influence the shift from car to a bicycle. The data sample only 

included individuals above 18 years, as it is the driving age limit in Denmark. Observations 

were excluded from the dataset if respondents opted not to provide information or if other 

relevant information was missing for the analysis. Given the restrictions, the data sample was 

extracted from the TU-survey including 7,958 individuals and 10,982 journeys conducted in 

the Copenhagen Region, during the period 2006-2010. Only selected results are presented in 

this section, given the extensive data collected from the TU-survey. More information can be 

found in Halldórsdóttir et al. (2011) and Prato et al. (2015). 

 

 

FIGURE 9: DEFINITION OF A TRIP CHAIN AND TRIPS 
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Figure 10 shows that the share of respondents using each mode is 25% walking, 28% cycling, 

35% driving, 5% being driven, and 7% taking public transport. By looking at the distribution of 

mode share per distance (Figure 11), it can be seen that most travellers walk up to 2-4 km, 

from where the share starts to decrease with increasing distance. The share of cyclists 

increases up to 1-2 km, where it remains steady with an average of 30% until 14-16 km, from 

where it starts to slowly decrease again. The share of car drivers rises slowly with increasing 

distance and at 6-8 km car drivers start to dominate with approximately 50% of the journeys. 

The share of car passengers is not particularly high, with less than 10%. The public transport 

share rises slowly and after 20 km it becomes higher than the bicycle share. Approximately 

80% of the journeys are less than 10-12 km (Figure 12) while most observations are from the 

Greater Copenhagen area (including the city centre), i.e., approximately 80% of the journeys 

(Figure 13). 

 

 

FIGURE 10: MODE SHARE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 
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FIGURE 11: DISTRIBUTION OF MODE SHARE PER DISTANCE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 

 

 

FIGURE 12: NUMBER OF OBSERVATIONS PER DISTANCE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 
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FIGURE 13: DISTRIBUTION OF JOURNEYS PER URBAN AREA WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 

 

The average age in the dataset is 48 years (Figure 14), where 47% are male (Figure 15). Figure 

16 shows that the share of females is slightly higher in the walking and bicycle journeys. More 

males are car drivers, while females are frequently car passengers or public transport 

travellers. 

 

 

FIGURE 14: AGE GROUP DISTRIBUTION WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 
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FIGURE 15: GENDER SHARE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 

 

 

FIGURE 16: SHARE OF GENDER AND CHOICE OF TRANSPORT MODE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-2010 
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Figure 17 illustrates the share of main occupation and the choice of transport mode when 

travelling short distances in the Copenhagen Region, while Table 1 lists the number of 

observations in each category. The homemaker occupation category only had two 

observations, so it was not included in the analysis. The share of non-motorised- and 

motorised alternatives is more or less equal for employed, self-employed, and retired 

respondents, or approximately 50%. Un-employed respondents have a share of 64% choosing 

non-motorised transport alternatives, while students have the highest share at 70%. Self-

employed respondents have the highest share of car drivers at 48%, while students have the 

highest bicycle share at 45%. 

 

 

FIGURE 17: SHARE OF MAIN OCCUPATION AND CHOICE OF TRANSPORT MODE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 

2006-2010 
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Figure 18 shows the share of trip purpose and the choice of transport mode when travelling 

short distances in the Copenhagen Region, while Table 2 lists the number of observations per 

trip purpose and the choice of transport mode. It can be seen from Figure 18 that many 

bicycle journeys are commuting trip chains, or approximately 50%, when the trip purpose is 

commuting or commuting in combination with other. The bicycle share is also approximately 

50% when trip chains are business related. The share of bicycle is a great deal lower, or 

approximately 20%, when the trip purpose is shopping, escorting, or leisure. The share of car 

drivers is dominating when escorting, or 60%. 

 

 

FIGURE 18: SHARE OF TRIP PURPOSE AND CHOICE OF TRANSPORT MODE WHEN TRAVELLING SHORT DISTANCES IN THE COPENHAGEN REGION, 2006-

2010 
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3.2.3 TRAVEL BEHAVIOUR WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION 

Halldórsdóttir et al. (2015a) investigated the choice of access and egress transport mode in 

the Copenhagen Region during the period 2006-2011, where passenger trains were the main 

transport mode. The dataset used for the analysis was extracted from the TU-survey, 

including the new questionnaire with mapping of the public transport trips as described in 

section 3.1. The home-end and the activity-end were analysed separately, to account for the 

different availability of transport modes. The data sample included 1,743 individuals and 

2,921 trips, at the home-end, along with 1,909 individuals and 3,658 trips, at the activity-end. 

Trip chains are not always homebound, which partly explains why there is a different number 

of individuals and trips at each end. Furthermore, in one trip chain there can be more than 

one activity. Given the extensive data collected, only selected results are presented here. 

Further information can be found in Halldórsdóttir et al. (2015a). 

In Figure 18 and Figure 19, the share of access and egress mode choice is illustrated, at home-

end and the activity-end, respectively. The figures clearly show that the availability of 

transport mode affects mode choice, with walking being the most chosen transport 

alternative at both ends. At the home-end, travellers have a higher access to private 

transport alternatives, thus, being a car driver is only available at the home-end and the share 

of bicycles is larger. In Figure 20 and Figure 21, the mode choice at different distances is 

shown, with cut-off at 5 km. At the home-end, the share of travellers walking is dominant for 

trips less than 1-1.5 km long, but this dominance decreases rapidly with increasing distance. 

The share of bicycles slowly grows with the largest share at 1 to 2.5 km, at approximately 40% 

from where it starts to diminish again. The share of motorised transport alternatives grows 

with increasing distance, with busses being the most dominant transport mode, with 

approximately 50% of the trips after 3 km. The mode share at the activity-end is very similar 

to the home-end. The main difference is that travellers walk further and travellers have 

limited access to private transport alternatives. Consequently, the share of busses is larger at 

the activity-end and the bicycle share is less than 20%. By looking at the number of 

observations per distance (Figure 22) it can be seen that most access and egress trips are less 

than 2 km, or approximately 75-85%. 
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FIGURE 19: MODE SHARE AT THE HOME-END WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 

 

FIGURE 20: MODE SHARE AT THE ACTIVITY-END WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 
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FIGURE 21: DISTRIBUTION OF MODE SHARE PER DISTANCE AT HOME-END WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-

2011 

 

 

FIGURE 22: DISTRIBUTION OF MODE SHARE PER DISTANCE AT ACTIVITY-END WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 

2006-2011 
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FIGURE 23: NUMBER OF OBSERVATIONS PER DISTANCE WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 
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FIGURE 24: AGE GROUP DISTRIBUTION WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 

 

FIGURE 25: GENDER SHARE WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 
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FIGURE 26: SHARE OF GENDER AND CHOICE OF ACCESS AND EGRESS MODE AT HOME-END WHEN ACCESSING PASSENGER TRAINS IN THE COPENHAGEN 

REGION, 2006-2011 

 

 

FIGURE 27: SHARE OF GENDER AND CHOICE OF ACCESS AND EGRESS MODE AT ACTIVITY-END WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION, 2006-2011 
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FIGURE 28: SHARE OF MAIN OCCUPATION AND CHOICE OF ACCESS AND EGRESS MODE AT HOME-END WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION, 2006-2011 

 

 

FIGURE 29: SHARE OF MAIN OCCUPATION AND CHOICE OF ACCESS AND EGRESS MODE AT ACTIVITY-END WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION, 2006-2011 
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TABLE 3: NUMBER OF OBSERVATIONS PER MAIN OCCUPATION AND THE CHOICE OF ACCESS AND EGRESS MODE AT HOME-END WHEN ACCESSING 

PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 Student Retired Unemployed Employed Self-employed 

Walking 432 171 48 799 34 

Bicycle 184 43 8 456 19 

Car driver 12 20 3 97 10 

Car passenger 48 14 0 65 10 

Bus 172 76 10 186 4 

  848 324 69 1,603 77 
 

TABLE 4: NUMBER OF OBSERVATIONS PER MAIN OCCUPATION AND THE CHOICE OF ACCESS AND EGRESS MODE AT ACTIVITY-END WHEN ACCESSING 

PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 Student Retired Unemployed Employed Self-employed 

Walking 839 280 79 1,543 85 

Bicycle 41 6 3 155 6 

Car passenger 26 20 7 47 1 

Bus 188 48 19 255 10 

 1,094 354 108 2,000 102 
 

In Figure 30 and Figure 31, the share of trip purpose and the access and egress mode choice 

are illustrated, while Table 5 and Table 6 list the number of observations per trip purpose and 

the access and egress mode choice. There is some correlation between the choice of access 

and egress mode and the trip purpose. At the home-end, walking has the largest share with 

approximately 45-70%. It can also be seen that many bicycle trips are work and study related, 

or approximately 25-30%. Busses are also mostly used in study trips, with a share of 26%. At 

the activity-end, the share of walking is dominant with approximately 70-85%. The bus share 

is still the largest in study trips, at 24%. The share of bicycles is a good deal smaller at the 

activity-end, with errand trips having the largest share at 12%. 
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FIGURE 30: SHARE OF TRIP PURPOSE AND CHOICE OF ACCESS AND EGRESS MODE AT HOME-END WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION, 2006-2011 

 

 

FIGURE 31: SHARE OF TRIP PURPOSE AND CHOICE OF ACCESS AND EGRESS MODE AT ACTIVITY-END WHEN ACCESSING PASSENGER TRAINS IN THE 

COPENHAGEN REGION, 2006-2011 
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TABLE 5: NUMBER OF OBSERVATIONS PER TRIP PURPOSE AND THE CHOICE OF ACCESS AND EGRESS MODE AT HOME-END WHEN ACCESSING PASSENGER 

TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 Work Study Shopping Errand Leisure 

Walking 576 192 216 31 469 
Bicycle 409 95 49 7 150 

Car driver 95 9 5 1 32 
Car passenger  59 8 9 1 60 
Bus 151 106 45 4 142 

  1,290 410 324 44 853 
 

TABLE 6: NUMBER OF OBSERVATIONS PER TRIP PURPOSE AND THE CHOICE OF ACCESS AND EGRESS MODE AT ACTIVITY-END WHEN ACCESSING 

PASSENGER TRAINS IN THE COPENHAGEN REGION, 2006-2011 

 Work Study Shopping Errand Leisure 

Walking 1,238 368 339 41 840 
Bicycle 124 13 14 6 54 
Car passenger  18 8 1 3 71 
Bus 236 120 38 2 124 

 1,616 509 392 52 1,089 
 

3.3 DATA PREPARATION 
In this section, the preparation of the data is described and how the level-of-service variables 

were calculated for each transport alternative. When individuals have chosen to travel to a 

specific destination, they first have to make a choice on when to travel, which transportation 

mode to use, and finally they optimise their route between the origin and destination 

depending on their preferences. 

The attributes of the alternatives, within the choice set of each traveller, were calculated 

using route choice models and simulation methods. The transport alternatives could only be 

estimated generally, as the travellers do not have as much information on possible mode 

choices as the researcher. For the mode choice estimation five alternatives, i.e., walking, 

bicycle, car driver, car passenger, and public transport, were considered in all three papers 

(i.e., Halldórsdóttir et al., 2011; Prato et al., 2015; and Halldórsdóttir et al., 2015a). In 

Halldórsdóttir et al. (2011) and Prato et al. (2015) the public transport alternative included 

busses, trains, and the metro, while in Halldórsdóttir et al. (2015a) the only public transport 

alternative considered was busses. This is because the paper investigated the choice of access 

and egress transport mode, when accessing passenger trains, so trains and the metro are 

already included as the main transport alternative. 
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In Halldórsdóttir et al. (2011) and Prato et al. (2015) the level-of-service variables were 

calculated for each trip in the trip chains. Then, the level-of-service variables were summed 

over the trip chains. Hence, the level-of-service in the overall chain (defined by its main 

mode) was used for model estimation in both papers. In Halldórsdóttir et al. (2015a) the 

level-of-service variables were calculated for each access- and egress stage of the passenger 

train trip. 

Subsection 3.3.1 and subsection 3.3.2 describe how the level-of-service variables for the car- 

and public transport alternatives were calculated using route choice models. Subsection 3.3.3 

describes how the level-of-service variables were calculated for the walk and bicycle 

alternatives, using simulation methods. 

3.3.1 ROAD TRAFFIC ASSIGNMENT 

In this section, it is described how the level-of-service variables for the car alternatives were 

calculated. The variables were calculated through assignment procedures available for each 

period of the day in which the trip was conducted. This allowed for the consideration of 

congestion conditions similar in average to the ones encountered by the travellers. For the 

car alternatives, the most important variables that needed to be calculated were the travel 

times and the travel distance. 

Traffic Analyst (Rapidis, 2013) is a transportation planning and a modelling extension for 

ArcGIS Desktop (ESRI, 2015). A tool within Traffic Analyst, called Road traffic assignment, was 

used to calculate the level-of-service variables for the car alternatives. The tool can be used 

to simulate the flow of car traffic through a road network. Using this transportation model it 

is also possible to calculate the related effects of the simulated traffic flow, such as travel 

costs, which are described as the resulting average travel distance and average travel time 

between each pair of zones. Extensive data preparation was needed in order to digitalise the 

input data and to formulate the model parameters needed to run the assignment. Even 

though it was not theoretically complicated to prepare all the input data, practically it was 

very time consuming. The following subsections describe in more detail how the inputs for 

the assignment procedures were defined and how they were generated. 

3.3.1.1 ZONE CENTROIDS 

In transportation models, zones are used to describe the area being modelled, by dividing it 

into smaller areas. Then, each zone is represented by a zone centroid that is in the centre of 

the zone (Figure 32). In order to calculate the level-of-service variables required for the mode 

choice estimation, each location point needed to be digitalised as a zone centroid. Then, each 

location point corresponds to the different zones and zone centroids. The observed data 

included coordinates and precise address information, which allowed for the location points 
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to be digitalised in high accuracy. Thus, the routes between the location points could be 

analysed more accurately and the characteristics of the mode choice depending on the route. 

Figure 33 shows how a trip and stages were defined, with the corresponding location points. 

In Halldórsdóttir et al. (2011) and Prato et al. (2015) there were two location points in each 

trip (i.e., an origin and a destination point). Halldórsdóttir et al. (2015a) only focus on the 

access- and the egress stage of the passenger train trip. Consequently, there were four 

location points that needed to be digitalised (i.e., an origin and a destination point, plus the 

location of the first- and the last station in the train trip). 

 

 

FIGURE 32: DEFINITION OF ZONES AND ZONE CENTROIDS 

 

 

FIGURE 33: DEFINITION OF TRIP AND STAGES 
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(i.e., the access- and egress stage) in the Halldórsdóttir et al. (2015a). The train stage was 

excluded from the calculation in Halldórsdóttir et al. (2015a), as the paper only focused on 

the feeder modes. The assignment procedures are available in each period of the day in 

which each trip was conducted. By dividing the trips into time periods, congestion conditions, 

similar in average to the ones encountered by the travellers, could be included. The road 

traffic assignment was divided into seven time periods and each trip was assigned to the 

appropriate time period using the trip’s departure time. Table 7 lists the time periods and 

specifies which time intervals were within each period. Additionally, each trip was assigned a 

category ID, depending on the purpose of the trip. The trips were divided into three 

categories, i.e., commuting trips, business trips, and all other trips. Each category was then 

assigned a set of route choice parameters. 

 
TABLE 7: TIME PERIODS FOR THE ROAD TRAFFIC ASSIGNMENT 

Time period ID Time interval Description 

1 21-05 Evening/night non-peak hours 
2 05-07 Morning non-peak hours 

3 07-08 Morning peak hours 

4 08-09 Morning peak hours 

5 09-15 Daytime non-peak hours 

6 15-18 Afternoon peak hours 

7 18-21 Evening non-peak hours 
 

3.3.1.3 ROAD NETWORK 

In Halldórsdóttir et al. (2011) and Prato et al. (2015), the NAVTEQ road network (NAVTEQ, 

2010) was used to calculate the level-of-service variables for the car alternatives. 

Geometrically, the network has high accuracy and has a very complete detailed coverage and 

a high number of attributes, which describe travel speed (both free- and queue speed), link 

type, number of lanes, one-way roads, preload on links, etc. Due to the high number of 

observations in the papers, only major roads were included to limit calculation time. Thus, 

the network consisted of 26,154 possibly bidirectional links, limited to the Copenhagen 

Region. The level of detail was still quite high as can be seen in Figure 34. 
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FIGURE 34: THE NAVTEQ NETWORK USED IN HALLDÓRSDÓTTIR ET AL. (2011) AND PRATO ET AL. (2015). LEFT: OVERVIEW OF DENMARK, RIGHT: 

ZOOM OF THE COPENHAGEN REGION 

 

The level of geometric detail was very important in Halldórsdóttir et al. (2015a), when 

calculating the level-of-service variables, as the travel distances were very short. Accordingly, 

a full version of the NAVTEQ road network was used, including 158,443 possibly bidirectional 

links (see Figure 35). The study area was the Copenhagen Region, but the road network 

covers the eastern part of Denmark (Zealand). The number of observations was not as high as 

in the other two studies, thus including the full version of the network was not troublesome 

in relation to calculation time. 
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FIGURE 35: THE NAVTEQ NETWORK USED IN HALLDÓRSDÓTTIR ET AL. (2015A). LEFT: OVERVIEW OF DENMARK, RIGHT: ZOOM OF THE COPENHAGEN 

REGION 

 

3.3.1.4 ZONE CONNECTORS 

In order to assign the trips onto the road network, zone connectors needed to be generated, 

linking the zone centroids to the road network (Figure 36). The zone connectors were 

generated with a path search through the road network, connecting the zone centroids to the 

road network through the nearest node. A highly detailed network was used to generate the 

connectors, in order to ensure accurate travel distances. The motorways were not included in 

the network, in order to ensure that the road traffic assignment would use the surrounding 

roads to connect to the motorways. 
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FIGURE 36: DEFINITION OF A ZONE CONNECTOR 

 

After the zone connections were digitalised, the travel time on each connector was 

calculated. In the early stages of the PhD study it was assumed that the zone connectors were 

only used to connect the location points to the nearest nodes. Thus, a very low speed was 

chosen for the car connectors in Halldórsdóttir et al. (2011) and Prato et al. (2015). The travel 

time was then calculated as a function of length. 

In the later stages of the PhD study, the travel speed for the zone connectors was extended 

with a piecewise linear function in Halldórsdóttir et al. (2015a). The travel speeds were 

analysed from the TU-survey, resulting in the following speed function for the car alternatives 

(Anderson, 2013): 

     Speed km h  15 25 Length/ 8000 , (1) 

where the length is given in meters. The speed function shows that the greater the travel 

distance is, the faster travellers drive. 

3.3.1.5 ROUTE CHOICE ASSIGNMENT 

The final step of the data preparation, for the road traffic assignment, was to run the road 

traffic assignment. By running the assignment, it is possible to combine the modelling of road 

congestion effects with stochastic simulation of route choice parameters and travel costs, 

through the use of iterative calculation methods. The level of detail of the input data was 

quite high. The road network contained information on traffic load on each link in the 

different time periods, which enabled calculating the optimal route depending on the 
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congestion restraints in the different periods. An all-or-nothing assignment was performed, 

by using deterministic route choice parameters and only running one iteration. Afterwards, 

the optimal travel route through the network was generated, for each zone pair, and the 

resulting outputs calculated. The car travel time included the free flow travel time, plus the 

added travel time due to congestion. 

3.3.2 PUBLIC TRANSPORT ASSIGNMENT 

This section describes how the level-of-service variables for the public transport alternatives 

were calculated. Assignment procedures, available for each period of the day, were used to 

calculate the variables. For the public transport alternatives, the most important variables 

that needed to be calculated were the travel distance and the different travel time 

parameters, e.g., the waiting time, the access- and egress time, and the in-vehicle time. 

A tool within Traffic Analyst, called Public transport assignment, was used to calculate the 

variables for the public transport alternatives. The tool simulates the traffic flow of public 

transport passengers. The input data for the public transport assignment was constructed in 

the same way as for the road traffic assignment, with few alterations. In the following sub-

sections, the alterations are described in more detail. 

3.3.2.1 ZONE CENTROIDS AND TRIP MATRICES 

The zones and zone centroids were constructed in the same way as for the road traffic 

assignment. The trip matrices were also defined in the same way, however with minor 

alterations. There were more detailed time periods available for the public transport 

assignment. Therefore, the assignment was divided into ten time periods, instead of seven. 

Table 8 lists the time periods for the public transport assignment and specifies which time 

intervals were within each period. 
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TABLE 8: TIME PERIODS FOR THE PUBLIC TRANSPORT ASSIGNMENT 

Time period ID Time interval Description 

1 05-06 Morning non-peak hours 
2 06-07 Morning non-peak hours 

3 07-08 Morning peak hours 

4 08-09 Morning peak hours 

5 09-15 Daytime non-peak hours 

6 15-16 Afternoon peak hours 

7 16-17 Afternoon peak hours 

8 17-18 Afternoon peak hours 

9 18-21 Evening non-peak hours 

10 21-05 Night non-peak hours 

 

3.3.2.2 PUBLIC TRANSPORT NETWORK 

The route choice assignment was implemented using a detailed public transport network. 

The network used, in Halldórsdóttir et al. (2011), Prato et al. (2015), and Halldórsdóttir et al. 

(2015a), was the National Transport Model (NTM) network (Rich et al., 2010). The network is 

based on complete timetable information available, without any aggregation or 

simplification, containing, for example, a combination of buses, trains, and other public 

transport modes. The network has high detail and covers all of Denmark (Figure 37). In this 

PhD thesis, the Copenhagen Region was only investigated. In Halldórsdóttir et al. (2015a), the 

only relevant public transport alternative was bus, thus the train lines were excluded from 

the public transport network for the route choice calculations in that paper. 



46 

  

FIGURE 37: NTM PUBLIC TRANSPORT NETWORK. LEFT: OVERVIEW OF DENMARK, RIGHT: ZOOM OF THE COPENHAGEN REGION 

 

3.3.2.3 PUBLIC CONNECTORS 

The path generation program, described in subsection 3.3.1.4, was used to create the public 

connectors. The zone centroids were connected to the nearest stops or stations, as opposed 

to the nearest nodes like in the road traffic assignment. The public connectors signified the 

stage from a location point to the nearest bus stops or train stations. Travellers are often 

prepared to travel further to a stop or a station, in order to get better service, e.g., higher 

frequency or more connections. To ensure that enough relevant connection points were 

considered in the assignment procedure, the path generation program searched for the ten 

nearest stops/stations. To minimise calculation time, any unnecessary connectors, that had a 

travel distance larger than 5 km, were removed. The assignment procedure selects the best 

route through the public transport network and as a result automatically excludes any 

unfeasible connectors. In Halldórsdóttir et al. (2015a) the access- and egress transport modes 

to passenger trains were investigated, so the only public transport alternative was bus. 

Accordingly, in that paper the zone centroids were only connected to the nearest bus stops. 
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When running the public transport assignment it was assumed that walking was the only 

alternative on the public connectors. It was assumed that if travellers would decide to cycle, 

they would most likely choose to cycle all the way to the access point as the travel distances 

were short. An average walking speed was applied to the public connectors in Halldórsdóttir 

et al. (2011) and Prato et al. (2015) and the travel time was calculated as a function of length. 

In Halldórsdóttir et al. (2015a), the travel speed on the connectors was extended with a 

piecewise linear function, analysed in the TU-survey. The speed function for walking was 

(Anderson, 2013): 

     Speed km h  4 4 Length/ 8000 , (2) 

where the length was specified in meters. The speed function shows that there seems to be a 

trend that only the more fit travellers walk the long distances, so the greater the travel 

distance is, the faster the travellers walk. 

3.3.2.4 ROUTE CHOICE ASSIGNMENT 

After all the inputs had been generated, the route choice assignment was executed. The 

optimal travel route through the network was calculated, for each zone pair, by minimising 

travel cost (travel time and distance) for each traveller. Before initialising the calculations, the 

number of launches and iterations were defined. The number of launches controls how often 

traffic is placed in the transport system. Since the number of travellers in each zone pairs was 

one, the number of launches was also set to one. The number of iterations was set to ten, so 

the output was the average travel time from all ten iterations. 

3.3.3 SHORTEST PATH GENERATION 

In this section, it is described how the level-of-service variables for walking and bicycle were 

calculated. Simulation methods were used to calculate the attributes of the non-motorised 

alternatives within the choice set of each traveller. The most important variables that needed 

to be calculated, for these two modes, were the travel distance and consequently the travel 

time. The following subsections describe in more detail the transport network and the 

simulation method used in the calculations. 

3.3.3.1 BICYCLE AND PEDESTRIAN NETWORK 

A complete bicycle network was not available at the time of the analysis. Thus, in 

Halldórsdóttir et al. (2011), Prato et al. (2015), and Halldórsdóttir et al. (2015a), a preliminary 

network was used for the route calculations for the walking- and bicycle alternatives. The 

network used is called TOP10DK (Kort & Matrikelstyrelsen, 2001) and is a very detailed 

geographical network covering all of Denmark, containing the entire road network and close 

to all paths. 
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Two major advantages of the network are that the registration of the entire network follows 

one base instruction and that the network is topologically coherent between municipalities. 

The network however does not contain information on bicycle paths along roads. Paths along 

roads are only digitalised if they run in their own track and are at least ten meters from the 

road network. Since the majority of bicycle paths along roads are within ten meters from the 

road network, there are virtually no bicycle paths digitalised along the road network. Thus, 

for the analysis, the road network was included in the bicycle and pedestrian network. Bicycle 

or pedestrian paths along major roads are usually in their own tracks or along smaller roads 

parallel to the major roads. Motorways or large traffic roads were removed from the 

network, as it is illegal to cycle on those roads. In addition, it was not possible to distinguish 

between bicycle paths and other small paths that are for example reserved for pedestrians. 

Generally, this does not cause a problem since the bicycle- and pedestrian paths are 

positioned along each other. There are nonetheless some exceptions, for example where in 

some parks cycling is not allowed. The preliminary bicycle and pedestrian network can be 

seen in Figure 38. At a later stage of the PhD study, a more complete bicycle network was 

constructed (see further section 8.1.3). 

  

FIGURE 38: TOP10DK NETWORK. LEFT: OVERVIEW OF DENMARK, RIGHT: ZOOM OF THE COPENHAGEN REGION 
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3.3.3.2 ROUTE CHOICE ASSIGNMENT 

The travel distance for the walk- and bicycle alternative was calculated, for each traveller, 

with a shortest path simulation method, using the route analyst tool within the ArcGIS 

desktop extension Network Analyst. The route analyst applies a Dijkstra's algorithm to find 

the optimal route, from one location to another. 

In Halldórsdóttir et al. (2011), Prato et al. (2015), and Halldórsdóttir et al. (2015a), length was 

used as the cost attribute. It is known that cyclists choose their route depending on other 

attributes than distance, although cyclists are mostly affected by the route length (Menghini 

et al., 2010). Other negative attributes are slope, turn frequency, intersection control, and 

bicycle facility types (Hood et al., 2011; Broach et al., 2012). In addition, cyclists’ route choice 

also appears to be influenced by traffic volumes (Broach et al., 2012). Analysing these 

parameters required more detailed behavioural and geographical data, which was not 

available at the time of the analysis. 

There was no available information on bicycle- or pedestrian travel speed on different parts 

of the network. Thus, it was assumed that path characteristics do not influence the walking- 

or the bicycle speed. Accordingly, in Halldórsdóttir et al. (2011) and Prato et al. (2015), the 

travel speed for the two modes was estimated as an average travel speed. The travel time 

was thus dependent on the travel distance. In Halldórsdóttir et al. (2015a) the travel speed 

for the walking and bicycle was also extended with a piecewise linear function, as described 

in subsection 3.3.1.4. The speed function for walking was described in equation (2) and the 

speed function for bicycles was (Anderson, 2013): 

     Speed km h  6 14 Length/ 8000 , (3) 

where the length was given in meters. Again, the speed function expresses that the greater 

the travel distance is, the faster the travellers bicycle. Thus, indicating that only the more fit 

cyclists travel the long distances. 

3.4 ADDITIONAL INFORMATION 
The following subsections describe additional information, collected for Halldórsdóttir et al. 

(2015a), on parking facilities at train stations and the possibility to bring bicycles on trains. 

The policy variables were retrieved by on site investigation and analysts’ knowledge of the 

study area. 
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3.4.1 PARKING FACILITIES AT TRAIN STATIONS 

Car parking availability was defined for each train station as the offer in terms of car parking 

spaces and average occupancy on the basis of time-of-day. The basic philosophy of Park & 

Ride is that the car is used on the part of the journey where there is, for example, greater 

need for flexibility or poor public transport service. The car is then parked at the Park & Ride 

facility and the traveller changes to a train (or a bus). Public transport then brings the 

traveller quickly to the destination, thus avoiding traffic congestion and uncertainties about 

finding a parking space for the car at the activity-end. 

There are about 8,000 Park & Ride spaces at train stations in the Copenhagen Region outside 

the inner city. Two out of three of these parking spaces are used daily, so approximately 

5,000 motorists park their car each day and take the train or bus in the metropolitan area. 

This gives an average occupancy rate of approximately 65% (Anon., 2009).  The positions of 

the Park & Ride facilities were geocoded in GIS, whereby access to the road network and 

closeness to stations could be calculated. Then the Park & ride availability was defined for 

each of the parking spaces available at train stations outside the inner city in the Copenhagen 

Region while considering their average occupancy rate on the basis of statistics provided by 

the region. 

It is estimated that on average 90,000 people a day use a bicycle in combination with another 

transport mode, generally train or bus (Lindboe et al., 2003), i.e., 18 times more frequently 

than the motorised Park & Ride. Many policy strategies have thus been implemented to 

encourage travellers to use the combination of bicycle and public transport, including adding 

locked- and covered bicycle parking areas at train stations. The availability of locked- and 

covered bicycle areas was extracted from various data sources and defined for each train 

station as the offer for different types of options, namely open bicycle racks, covered bicycle 

racks, and locked bicycle parking places. 

3.4.2 BRING BICYCLES ON THE TRAIN 

Travellers are allowed to bring their bicycle for free on the suburban and the local trains in 

the Copenhagen Region, whilst they have to pay an extra fee for bringing their bicycle on the 

metro and the regional trains. Accordingly, it was assumed that if a traveller would want to 

bring their bicycle on the train, he/she would choose the optimal alternative available for 

each trip. Thus, the availability of different train types at the train stations was considered 

(i.e., suburban train, local train, regional train, IC train, and metro), at both ends of the trip, 

and considered if the travellers had the possibility to bring their bicycle along for free, or if 

they had to pay a fee. In addition, time restrictions were controlled for, since it is prohibited 
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to bring a bicycle on the metro during peak hours, or to embark or disembark with a bicycle 

at Nørreport station, also during peak hours.  
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A preliminary version of this paper was presented at the 39th European Transport Conference 

in October 2011, Glasgow, Scotland, UK and published in the conference proceedings. In this 

chapter the paper has been updated with improved model estimates and revised. 

ABSTRACT 
This paper investigates the mode choice behaviour of individuals from the Copenhagen 

Region, when travelling short distances. Data from the Danish National Travel Survey identify 

the travel behaviour of the Danish population through interviews, collecting travel diaries, 

and socio-economic variables of a representative sample of the population. Short trip chains 

were investigated on a data sample with 7,958 individuals and 10,982 observations.  

The model considers five alternatives (i.e., car driver, car passenger, public transport, walking, 

and bicycle), for which level-of-service variables are calculated through assignment 

procedures, available for each period of the day in which the trip chains were conducted. The 

present study estimates a mixed logit model, which is able to capture taste variations and 

differentiate travel time parameters across modes. The mixed logit model allows the 

investigation of the effect of level-of-service variables, individual characteristics of the 

travellers, purpose of the trip chains, and environmental conditions. 

Results suggest heterogeneity among cyclists in the sensitivity to travel time, temperature, 

and hilliness. The cost parameter is negative and significant. However, it is estimated very 

low, possibly because of lower relevance of the cost for short trip chains. Expectedly, the 

selection of sustainable transport modes for short trip chains is negatively linked to owning 

one or more cars. Urban density also has a positive correlation with the selection of 

sustainable transport modes, whereas motorised private cars are negatively correlated. The 

results show that the choice between transport alternatives is not only related to the level-of-

service characteristics of the alternatives, but also to a large extent the socio-economic 

characteristics of the travellers. 
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4.1 INTRODUCTION 
Over the years, demand for faster and more flexible transport has grown, as production, 

income, number of trips, and travel distances have increased. Consequently, the use of 

motorised private modes has steadily increased in Denmark. As a result, road congestion has 

become a major problem, especially in the Copenhagen Region. It is necessary to decrease 

the congestion and to solve the related health problems. One method is the promotion of 

sustainable transport modes, which has led to a particular emphasis on the shifting from 

motorised private transport to cycling. 

Many projects have sought ways to increase walking and cycling instead of driving a car for 

shorter trips. Two large EU-financed projects addressed this issue and studied the differences 

in the share of walking and cycling in different European cities (Hydén et al., 1999; Forward, 

1998). Various studies have also been conducted in Denmark, where applied methods were 

implemented to promote cycling (Troelsen et al., 2004; Jensen, 2001, 2004). In Aarhus, the 

second-largest city in Denmark, located on the east coast of Jutland, a bicycle and a free bus 

pass were made available to car drivers during a test period to see whether they would 

switch to more sustainable transport modes when travelling to work (Trafikforsknings-

gruppen Aalborg Universitet, 2001). In order to increase people’s possibilities to cycle, 

Egetoft et al. (2002) motivated people to plan their trips better. Finally, a study based on the 

Danish National Travel Survey (Jensen and Thost, 1999) concluded that the hilliness and the 

size of the city (with less than 10,000 inhabitants) is important for the bicycle share. In 

addition, the size of the city is important for the length of the cycling trip, and the share of 

people working in their own municipality. 

A number of studies have investigated the potential for a mode shift from car use to more 

sustainable transport options, either through frequency analysis or mode choice models. 

Mackett (2003) analysed why people use their cars in short trips, through a revealed 

preference survey. The results showed that the main reasons for using the car were: carrying 

heavy goods, escorting someone, time constraints, and because the car was needed to run 

errands. Rodríguez and Joo (2004) analysed the importance of the physical surroundings on 

the choice of transport mode and showed that the availability of bicycle lanes and hilliness 

are especially important. Vågana (2006) presented a data analysis, based on the Norwegian 

Transport Survey, describing walking and cycling trips, whereas Vågana (2007) investigated 

whether it is possible to transfer short car trips to walking or cycling by means of logistic 

regression analysis. The results showed that gender, age, size of the city, season, length of 

trip chain, and certain purposes are significant for the choice of transport mode. Wardman et 

al. (2007) studied the effect of various policies intended to increase the share of cycling on 
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commuting trips, by means of combining revealed- and stated preference data. Results 

showed that segregated bicycle paths and on-road bicycle lanes were found to be highly 

effective in increasing the bicycle share, as well as paying employees to cycle to work. Kim 

and Ulfarsson (2008) estimated a mode choice model, analysing the choice of transportation 

mode of short home-based trips. The results showed that there is a negative correlation for 

cycling with increased age, vehicle availability, being single with no children, and when being 

accompanied by others on trips, whereas having a bus pass, going to school, and 

social/recreational is positively correlated. de Nazelle et al. (2010) examined how shifting 

short car trips to other transportation modes reduces emissions, while also identifying what 

characteristics influence mode choice for short trips through logistic regression analysis. The 

study showed that the likelihood of driving increased with age and that family composition 

also has an effect. Socio-economic characteristics, particularly vehicle ownership and extra 

car in the household, increase the odds of driving on short trips, while people are less likely to 

drive during warm months and if the trip purpose is social, personal, or family related. 

Nankervis (1999) and Bergström and Magnusson (2003) studied the significance of the 

weather on bicycle commuting, where the main focus was on the maintenance of bicycle 

paths during winter. Rietfeld and Daniel (2004) analysed to which extent municipality policies 

matter in relation to variation in bicycle share. The results showed that the most important 

factors for the choice of bicycling are the physical aspects, such as altitude difference, city 

size, and the share of young people in the population. In addition, the results concluded that 

differences in ethnic compositions is also important, as well as policy-related variables, such 

as the number of stops per km on the route and the risk of accidents. Parkin et al. (2008) 

presented a logistic regression model, based on aggregate data, that shows that the quality of 

main roads and the annual rainfall, as well as the temperature, are important in commuting 

trips. Also, segregate bicycle paths have a significant relation to bicycle share, even though 

the elasticity is low. This is in contrast to a paper by Wardman et al. (2007) that illustrates 

that segregate bicycle paths and bicycle lanes have a very high effect in the preference when 

choosing to cycle in commuting trips. 

The Department of Transport at the Technical University of Denmark, in collaboration with 

the Danish Road Directorate, investigated short trips by car and examined whether it is 

possible to make car drivers shift to cycling or walking (Christensen and Jensen, 2008). The 

study presents a multinomial logit (MNL) model, investigating trip chains shorter than 22 km 

based on data from the Danish National Travel Survey (TU-survey) and demonstrated how 

three types of conditions influence the choice of transport mode: (i) conditions concerning 

the purpose of the trip chain and the road user, where car ownership and number of children 

in the family are the most important factors; (ii) conditions concerning the environment of 

the trip chain, where differences of hilliness and temperature have proved to be greatly 
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relevant; and (iii) conditions concerning the travelling circumstances, where the project 

describes the effect of speed for car drivers and cyclists; the parking conditions; as well as a 

general effort to promote cycling. 

The study showed that cycling policies would reduce the short trip chains by car in favour of 

cycling. 90% of short car trip chains would be transferred to bicycle, in the case where 

travellers would transfer to sustainable transport modes. 

This paper aims to extend the previous choice model with a fresh and up-to-date perspective. 

Public transport was not considered in the MNL model of the previous study, due to the lack 

of data on the level-of-service of the public transport. The present study includes public 

transport in the choice model, since the evaluation of the transfer from car to bicycle could 

be biased by the exclusion of public transport as a possible option. In addition, the MNL 

model of the previous study did not allow the consideration of heteroscedasticity across 

alternatives and heterogeneity across travellers. To be able to capture taste variations 

through a specification, that expresses randomly distributed parameters and differentiates 

the travel time parameters across modes to express different values of time for different 

modes, the present study estimates a mixed logit model. 

The remainder of the paper is structured as follows: section 4.2 describes the data used in the 

study; section 4.3 describes the methods applied to measure and model the behaviour of 

travellers; section 4.4 presents the results of a mixed logit model; and section 4.5 summarises 

the major findings of this study. 

4.2 DATA 
The data used in the study were extracted from the Danish National Travel Survey 

(abbreviated TU-survey) (Christiansen, 2009). For model estimation, 7,958 individuals and 

10,982 observations constitute the sample of short trip chains in the Copenhagen Region.  

The TU-survey identifies the travel behaviour of a representative sample of the Danish 

population through interviews where travel diaries and socio-economic variables (e.g., age, 

gender, income, education, car availability, etc.) are collected. DTU Transport conducts the 

survey on behalf of the Ministry of Transport and several other government departments. 

The TU-survey investigates travel during the day before the interview of Danes, between the 

age of 10 and 84, who are randomly selected. The respondents are asked about why they 

travel and by what means of transport they travelled during the day in question. In addition, 

the respondents are asked about the trips, when and where they take place, for how long, 

etc. 
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The survey reflects the diversity of the Danish population, collecting travel behaviour and 

sensitive personal information, such as name, coordinates, and precise address information. 

Data are collected each day throughout the year, thus characterising the differences in travel 

behaviour across seasons, weekdays, etc. The study is the only large Danish survey combining 

actual travel behaviour with a wide range of background variables. It gives a good description 

of the average travel behaviour of each person, by asking the respondents about their travel 

behaviour on a single day. 

4.2.1 HILLINESS, PARKING, AND WEATHER 

Terrain ratio is calculated as the average gradient of all journeys undertaken within a radius 

of 5 km from the respondent's home. Hence, it indicates how hilly the area is and thus how 

difficult it is to cycle. The average parking is calculated within a radius of 5 km from the 

person's destination, therefore describing how difficult it is to park in the area. The 

temperature is obtained from the Danish Meteorological Institute (DMI). All three variables 

were implemented as continuous variables in the model specification. 

4.3 METHODOLOGY 

4.3.1 MODE CHOICE ATTRIBUTES 

To analyse current travel behaviour, or to forecast future travel behaviour, observed choices 

and alternatives composing the choice set of each traveller are necessary. The TU-survey 

collects the current travel behaviour, i.e., the observed choices. Route choice models and 

simulation methods were used to calculate the attributes of the alternatives within the 

choice set of each traveller. Five alternatives were considered, i.e., car driver, car passenger, 

public transport, walk, and bicycle. 

The level-of-service variables for car driver, car passenger, and public transport were 

calculated through assignment procedures available for each period of the day in which the 

trip chain was conducted. The calculation of the level-of-service variables allows considering 

congestion conditions similar in average to the ones encountered by the travellers. The car 

travel time includes free flow travel time plus the added travel time due to congestion. The 

public transport travel time includes waiting time, access- and egress time, walking time, and 

in-vehicle time. The cost for car drivers was calculated with values from the Danish 

Transportation Economic Unit Prices (Modelcenter, 2010). The cost for public transport was 

estimated from the TU-survey as an average cost per km travelled, limited to the minimum- 

and maximum cost for the public transport as it is set in the Danish public transport pricing 

system. 
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There is no available information on travel speed on different parts of either the bicycle- or 

the pedestrian network. Therefore, the travel speed for the two modes was estimated as an 

average travel speed. The travel time was thus dependent on the travel distance. The travel 

distance was calculated with a shortest path simulation method. The cost for bicycles was 

also calculated with values from the Danish Transportation Economic Unit prices. It was 

assumed that the travel cost for walking is zero. 

4.3.2 MODEL SPECIFICATION 

The present study estimates a mixed logit model (for a detailed discussion see Train, 2003). 

The mixed logit probability can be derived from utility-maximising behaviour based on 

random coefficients. The decision maker has a choice set of J alternatives. The utility of 

decision maker n from alternative j is specified as: 

   '
nj n nj nj

U x , (4) 

where xnj are observed variables that associate with the alternative and decision maker, βn is 

a vector of coefficients of these variables for decision maker n, representing the individuals’ 

preferences, and εnj is a random term that is iid extreme value distributed over alternatives 

and decision makers. The coefficients vary over decision makers with density f(β), which is a 

function of its parameters θ (e.g., mean and covariance of the β´s in the population). In the 

standard logit the β is fixed, while in the mixed logit the β varies over decision makers. 

The researcher can only observe the xnj´s but not βn or the εnj´s. If the βn would be observed 

by the researcher then the choice probability would be standard logit, given that the εnj´s are 

iid extreme value. Then the probability restricted on βn is: 
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However, the researcher cannot condition on β, since the βn is unknown. The unrestricted 

choice probability, which is the mixed logit probability, is therefore the integral of Pni(βn) 

over all possible variables of βn: 
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The present study specifies log-normal distribution, where lnβ~N(b,W), with parameters b 

and W that were estimated, for time variables that are supposed to be negative, and normal 

distribution for variables that are not expected to have a specific sign. 
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4.4 RESULTS 

4.4.1 DATA ANALYSIS 

The data analysis in this paper focuses on trip chains shorter than 22 km. Cases were 

excluded because respondents opted not to provide information or because other relevant 

information was missing for the analysis. Given the restrictions the sample includes 7,958 

individuals and 10,982 trip chains. Given the extensive data collected from the survey, only 

selected results are presented here. 

Table 9 and Table 10 present the category variables for personal characteristics and the trip 

characteristics, respectively. The continuous variables are presented in Table 11. The 

transport mode share is: 25% walking, 28% cycling, 35% driving, 5% being driven, and 7% 

taking public transport. The dataset has 3,674 males (46%) and the average age is 48. 
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TABLE 9: CATEGORY VARIABLES FOR PERSONAL CHARACTERISTICS 

Variable Total 

Personal characteristics (N = 7,958), N(%) 

Age group  

18 - 24 619 (8) 
25 - 34 1,283 (16) 
35 - 44 1,702 (21) 
45 - 54 1,494 (19) 
55 - 64 1,401 (18) 
65 - 74 969 (12) 
75 and older 490 (6) 

Gender  

Male 3,674 (46) 
Female 4,284 (54) 

Main occupation  

Student 711 (9) 
Welfare 1,858 (23) 
Unemployed 249 (3) 
Employed 4774 (60) 
Self-employed 364 (5) 
Homemaker 2 (0) 

Respondent has a driving licence  

Yes 6,653 (84) 
No 1,305 (16) 

Respondent has a bicycle  

Yes 6,275 (79) 
No 1,683 (21) 

Respondent has a monthly pass for public transport   

Yes 1,475 (19) 
No 6,483 (81) 

Vehicle availability  

Zero car 2,289 (29) 
One car 4,309 (54) 
Two cars 1,235 (16) 
Three cars or more 125 (2) 

Household category – Number of children  

Children between the age 0-4 996 (13) 
No children between the age 0-4 6,962 (87) 
Children between the age 5-9 1,135 (14) 
No children between the age 5-9 6,823 (86) 
Children between the age 10-15 1,314 (17) 
No children between the age 10-15 6,644 (83) 
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TABLE 10: CATEGORY VARIABLES FOR TRIP CHARACTERISTICS 

Variable Total 

Trip characteristics (N = 10,982), N(%) 

Mode choice  

Walking 2,776 (25) 
Bicycle 3,015 (28) 
Car driver 3,811 (35) 
Car passenger 575 (5) 
Public transport 805 (7) 

Urban characteristics  

Copenhagen centre 4,016 (37) 
Greater Copenhagen area 4,492 (41) 
Minor town 1,296 (12) 
Village 935 (9) 
Rural area 243 (2) 

Trip purpose  

Business 188 (2) 
Commuting 1,688 (15) 
Combination of commuting and other 785 (7) 
Leisure 3,453 (31) 
Shopping 3,572 (33) 
Escorting 1,296 (12) 
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TABLE 11: CONTINUOUS VARIABLES 

Variable N Mean Std. dev. Min Max 

      
Personal characteristics 

     
Income DKK/1,000 7,958 270.1 184.3 0.0 1,500.0 

      
Trip characteristics 

     
Walk 

     
Travel time [min] 2,776 21.6 21.9 0.1 186.9 
Travel distance [km] 2,776 1.7 1.7 0.0 15.0 
Travel cost [DKK/km] 2,776 0 0 0 0 

Bicycle 
 

    

Travel time [min] 3,015 22.7 17.6 0.5 88.0 
Travel distance [km] 3,015 5.7 4.4 0.1 22.0 
Travel cost [DKK/km] 3,015 1.9 1.5 0.04 7.5 

Car driver 
     

Travel time [min] 3,811 11.9 7.2 0.0 44.7 
Travel distance [km] 3,811 8.7 4.4 0.0 22.0 
Travel cost [DKK/km] 3,811 20.9 12.9 0.1 53.0 

Car passenger 
     

Travel time [min] 575 11.9 7.1 0.2 36.0 
Travel distance [km] 575 8.7 5.4 0.1 21.9 
Travel cost [DKK/km] 575 10.4 6.5 0.2 26.5 

Public transport 
     

Waiting time [min] 805 14.7 12.5 1.5 143.4 
Access/egress time [min] 805 22.7 10.9 0.8 79.5 
In vehicle time [min] 805 23.7 13.0 0.4 68.8 
Travel distance [km] 805 11.2 5.2 1.3 22.0 
Travel cost [DKK/km]* 805 69.3 20.7 24 108 
*
Limited to the minimum and maximum cost for the public transport as it is set in the Danish public transport 

pricing system.  
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4.4.2 MODEL ESTIMATES AND DISCUSSION 

Table 12 summarises the results from the mixed logit model. The asymptotic t-test is 

primarily used to test whether a specific parameter in a model differs from a known constant, 

often zero. Not all coefficient variables, obtained in the survey, proved to be statistically 

significant at the 90% level. In addition, some variables that are considered interesting 

preference indicators cannot be included in the estimations, because they are correlated with 

other more important variables. According to these considerations, some variables were 

deleted to increase the reliability of the model. The final model is constituted by 10,982 

observations, where there are 7,958 individuals and 45 estimated parameters. The 

alternative specific constant (ASC) for walking is fixed to zero for identification purposes. 

 
TABLE 12: THE RESULTS FROM THE MIXED LOGIT MODEL ESTIMATES 

Variable Category Transport mode Value t-test   

Alternative specific constant 

 
Walk 0     

 Bicycle -2.60 -15.28 *** 

 Car driver -9.17 -26.63 *** 

 Car passenger -5.41 -32.58 *** 

  Public transport -5.59 -22.02 *** 

Travel cost [DKK/km]   All modes -0.008 -2.12 ** 

Time [min] 

Travel time - μ 
Walk 

-1.81 -44.66 *** 

Travel time - σ 0.55 26.76 *** 

Travel time - μ 
Bicycle 

-2.28 -39.61 *** 

Travel time - σ 0.40 8.71 *** 

Travel time Car driver -0.10 -9.49 *** 

Travel time Car passenger -0.12 -10.03 *** 

Waiting time  

Public transport 

-0.03 -7.25 *** 

In-vehicle time -0.02 -2.71 *** 

Access/egress time -0.04 -6.89 *** 

Number of transfers   Public transport -0.27 -3.03 *** 

Personal characteristics           

Monthly pass Yes Public transport 2.31 20.60 *** 

Gender Male 

Car driver 0.57 7.18 *** 

Car passenger -1.22 -9.70 *** 

Public transport -0.30 -2.60 *** 

Car ownership 

One car Car driver 2.98 22.02 *** 

Two cars Car driver 3.49 22.59 *** 

Three cars or more Car driver 3.76 12.61 *** 

Children in household 
Ages of 5 to 9 Car driver 0.14 1.52   

Ages of 10 to 15 Car driver 0.18 2.24 ** 
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Income [DKK/1,000]   Car driver 0.001 3.53 *** 

Main occupation 

Student 
Bicycle 0.40 2.88 *** 

Public transport 0.35 1.95 ** 

Welfare 
Bicycle -0.27 -2.82 *** 

Public transport 0.24 1.77 * 

Unemployed Car driver -0.54 -2.93 *** 

Trip characteristics           

Temperature 
μ 

Bicycle 
-0.03 -5.51 *** 

σ 0.08 8.64 *** 

Trip purpose 

Commuting 

Bicycle 0.37 2.58 *** 

Car driver -0.48 -3.63 *** 

Car passenger -0.49 -2.58 *** 

Leisure 

Bicycle -2.06 -17.28 *** 

Car driver -1.60 -17.68 *** 

Public transport -1.36 -10.16 *** 

Shopping Bicycle -0.98 -9.06 *** 

Escorting Car driver 1.15 9.97 *** 

Urban characteristic Copenhagen centre 
Car driver -0.56 -5.43 *** 

Car passenger -1.27 -10.25 *** 

Hilliness 
μ 

Bicycle 
-0.03 -3.12 *** 

σ 0.08 6.45 *** 

Parking availability   Car driver 3.07 10.82 *** 

Number of estimated parameters: 
 

45 
 Number of observations: 

 
10,982 

 Number of individuals: 
 

7,958 
 Null log-likelihood: 

 
-17,150.04 

 Final log-likelihood: 
 

-9,514.80 
 Adjusted rho-square: 

 
0.443 

 *** Significant at a 99% level, ** significant at a 95% level;* significant at a 90% level. 

 

4.4.2.1 TIME- AND TRAVEL COST VARIABLES 

The travel time variables are important trip characteristics, considered a good indicator of 

individuals preferences. Wardman et al. (2007) have documented that travel time while 

cycling is considered to be three times more unpleasant than travel time by other transport 

modes. With an increase in the travel time the perceived convenience of bicycle trips 

declines, while it does not with other transport modes (Noland and Kunreuther, 1995). 

Studies have also shown that experienced cyclists are more sensitive to travel times (Stinson 

and Bhat, 2005; Hunt and Abraham, 2007). However, some cyclists may prefer slightly longer 

commuting distances, increasing the travel time, because of health and fitness reasons. 
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The model shows that the coefficients for the travel time variables are consistently negative 

for all transport modes. The in-vehicle time, the waiting time, and the access and egress 

times for public transport mode are significant and have the expected negative sign. Walk 

travel time and bicycle travel time are log-normally distributed, where both mean and 

standard deviation are significant. If this non-homogeneous effect is overlooked in the 

estimation, the model could compensate by making the public- and car transport modes 

more attractive. After all, it can be assumed that individuals use public transport and car 

more for longer distance travel than shorter distance. 

The coefficient variable describing the number of transfer in public transport has a negative 

sign. This indicates that the higher the numbers of changes individuals have to take, the less 

they are willing to travel by public transport. 

The cost of a transport mode is important when choosing a type of mode (e.g., Noland and 

Kunreuther, 1995; Rietveld and Daniel, 2004; Rodríguez and Joo, 2004; Pucher and Buehler, 

2006). According to Bergström and Magnussen (2003) one reason why commuters choose to 

cycle is because it is economical. The results show that there is a negative correlation 

between travel cost and the choice of transport alternative.  

4.4.2.2 PERSONAL CHARACTERISTICS 

The results show that having a monthly pass is positively correlated to travelling by public 

transport, thus confirming Kim and Ulfarsson (2008). The results also show that males are 

more likely to drive a car, while females are more likely to be car passengers and use public 

transport. A preliminary result, which is not included in the final model, showed that there 

was no statistical difference between males and females in relation to cycling. This 

contradicts other research, which concludes that males cycle more than females (e.g., Pucher 

et al., 1999; Howard and Burns, 2001; Dickinson et al., 2003; Rietveld and Daniel, 2004; 

Rodríguez and Joo, 2004; Moudon et al., 2005; Plaut, 2005; Stinson and Bhat, 2005; Dill and 

Voros, 2007). This difference could be because the share of female cyclists is much higher in 

the Copenhagen Region than other capital regions. 

Mode choice behaviour is also strongly linked to household characteristics. Studies have 

shown that having a car in the household has a strong negative effect on the share of bicycles 

as a mode choice (e.g., Cervero, 1996; Stinson and Bhat, 2004, 2005; Plaut, 2005; Pucher and 

Buehler, 2006; Dill and Voros, 2007; Guo et al., 2007; Parkin et al., 2008) and that it increases 

the frequency of cycling to own fewer cars (Stinson and Bhat, 2004). This is consistent with 

the findings of the present paper. The coefficient variables describing car availability in the 

household is positive for all three categories (i.e., one car, two cars, and three cars or more). 

The higher the number of cars in the household is, the more likely individuals are to drive a 

car (e.g., Kim and Ulfarsson, 2008; de Nazelle et al., 2010). The results also show that 
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individuals with children are more likely to be car drivers, when compared to other transport 

modes (e.g., de Nazelle et al., 2010). 

The results show that there is a positive correlation between driving a car and income, 

indicating that the higher their income, the more individuals are willing to drive. The 

coefficient variable for income is not statistically significant for bicycles and is thus not 

included in the final model. This is consistent with other studies that found that income has 

no significant effect on bicycle share (Dill and Carr, 2003; Zacharias, 2005). 

Another important indicator of personal preferences is the main occupation. Employment is 

used as a reference variable. The coefficient variable for students is positive for the bicycle 

and public transport, indicating that the higher the value is the more individuals are willing to 

travel by each mode. Bicycles are the likeliest choice of transport mode for students, followed 

by public transport. The model estimates shows that individuals on welfare are more likely to 

use public transport than to travel with other transport modes. The results also show that 

unemployed are less likely to drive a car in short trip chains. 

The coefficient variables for the age categories are correlated with the main occupation 

variables. The main occupation variable is considered a better indicator of personal 

characteristics with respect to age, and to avoid multicollinearity, the age variables are not 

considered in the final model. 

4.4.2.3 TRIP CHARACTERISTICS 

The primary trip characteristics are the time variables (discussed in subsection 4.4.2.1). The 

estimation results show that other attributes describing the trip characteristics are also 

related to mode choice. 

The model results show that temperature is normally distributed for cycling. The results show 

that individuals are more likely to cycle with increasing temperature (Parkin et al., 2008), but 

the significant standard deviation suggests that some cyclists do not mind lower 

temperatures or that they cycle regardless of the temperature level, because it is their only 

transport alternative. It could be that these cyclists are regular commuters, which are less 

influenced by temperature than other cyclists (Bergström and Magnussen, 2003; 

Brandenburg et al., 2004). 

Trip purpose is also a good indicator of personal preferences. There is a positive correlation 

between cycling and commuting, while in commuting trip chains individuals are less likely to 

use cars. The results show that individuals are less likely to cycle, drive a car, or use public 

transport in leisure trip chains. Also, individuals are less likely to use a bicycle when shopping 
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and when travellers are escorting someone, they are more likely to drive a car (e.g., Mackett, 

2003; Kim and Ulfarsson, 2008). 

Studies have shown that the bicycle share grows with higher residential densities (e.g., 

Pucher and Buehler, 2006; Guo et al., 2007; Parkin et al., 2008; Zahran et al., 2008). The 

model results show that urban characteristics also affect mode choice. In central Copenhagen 

individuals are more likely to choose sustainable transport modes, reflected in the coefficient 

variables for car driver and car passenger being negative. This is also an indication of the 

difficulty of accessing and finding parking in the city centre. Shown as well by the coefficient 

variable for the minimum level of car parking at the destination being estimated positive in 

relation to driving a car. 

Hilliness has been found to have negative effect on the bicycle share (e.g., Rietveld and 

Daniel, 2004; Rodríguez and Joo, 2004; Timperio et al., 2006; Parkin et al., 2008). The results 

show that hilliness is normally distributed for bicycles. The presence of slopes has a negative 

impact on cycling, but the standard deviation is also significant and suggests that some 

cyclists do not mind riding up-hill. 

4.5 CONCLUSIONS 
This paper analysed the mode choice behaviour, in the Copenhagen Region, in trip chains 

shorter than 22 km on the basis of data from the Danish National Travel Survey. The sample 

for model estimation included 7,958 individuals and 10,982 trip chains. Route choice models 

and simulation methods were used to calculate the alternative attributes within the choice 

set of each traveller. Five alternatives were considered, i.e., car driver, car passenger, public 

transport, walk, and bicycle. The level-of-service variables for car and public transport were 

calculated through assignment procedures available for each period of the day in which the 

trip chain was conducted. The travel attributes for walk and bicycle were calculated with a 

shortest path simulation method. A mixed logit model was estimated. The results help 

identifying important factors that affect the mode choice, i.e., level-of-service variables, the 

socio-economic characteristics of the travellers, trip characteristics, and environmental 

conditions. 

Firstly, the paper shows that travel time is as important for cyclists, as other transport modes. 

The coefficients for the travel time variables are consistently negative and significant, for all 

transport modes. Thus, travellers aim to minimise the travel time for all transport modes. The 

results also show that travellers prefer not to transfer between public transports modes. 

Walk- and bicycle travel times are log-normally distributed, and significant standard deviation 

indicates that individuals have a heterogeneous preference for the travel time of non-

motorised modes, and a more homogeneous preference for the travel time of motorised 
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modes. The model estimates also show that there is a negative correlation between travel 

cost and the choice of transport alternative. However, it is estimated very low, possibly 

because of lower relevance of the cost for short trip chains. 

Secondly, certain attributes of the personal characteristics are related to the mode choice. 

The study concludes that males are more likely to drive a car than females, while females 

were more likely to be car passengers and use public transport. The results show that income 

has no significant effect on bicycle share in mode choice. However, the variable for car driver 

is significant. The results indicate that the higher their income, the more individuals are 

willing to drive a car. Although income has no significant effect on bicycle share, main 

occupation has, as well as on other transport modes. 

The study shows that mode choice behaviour was also strongly linked to household 

characteristics. Having a monthly pass has a positive influence on public transport share, and 

the higher the number of cars in a household, the more likely individuals are to drive a car. 

This could indicate that there is a negative effect on share of bicycles as a mode if there is a 

car in the household and that having fewer cars could increase cycling frequency. The study 

concludes that individuals with children were more likely to be car drivers, when compared to 

other transport modes. 

Finally, the study shows that attributes describing the trip characteristics are also related to 

the mode choice. Hilliness is normally distributed for cyclists and the presence of slopes has 

in average a significant negative impact on cycling. The results also show that individuals are 

on average more likely to cycle and walk with increasing temperatures, but the significant 

standard deviation suggests that some cyclists do not mind lower temperatures. The study 

concludes that in commuting trip chains individuals are less likely to use cars, whereas they 

are more likely to drive a car when escorting others. Individuals are less likely to cycle, drive a 

car, or use public transport in leisure trip chains. Also, individuals are less likely to use a 

bicycle when shopping. In central Copenhagen individuals are more likely to choose 

sustainable transport modes and the minimum level of car parking at the destination is 

positively related to driving a car. 

The objective of this study was to uncover the determinants of choice between car and 

sustainable transport alternatives in short distance travelling. This study helps uncover 

factors that are able to make cycling more attractive, e.g., improving accessibility for bicycles 

and addressing specific population groups for specific trip purposes.  

The model presented in this paper is a work in progress. The model suggests that a further 

heterogeneity investigation, possibly with a latent class approach, might uncover whether 

different population groups exhibit different preference structures. Lastly, scenario 
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simulations would allow further evaluation of the effects of possible policy instruments 

intending to convert short car trips to bicycles or walking. 
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ABSTRACT 
In the quest for sustainable travel, short trips appear the most amenable to curbing the use 

of the automobile. Existing studies about short trips evaluate the potential of shifting from 

the automobile to sustainable travel options while considering the population as 

homogeneous in its preferences and its tendency to accept these alternative travel options as 

realistic. However, this assumption appears quite unrealistic and the current study offers a 

different perspective: the mode choices when traveling short distances are likely related to 

lifestyle decisions. Short trip chains of a representative sample of the Danish population in 

the Copenhagen region were analysed, and more specifically a latent class choice model was 

estimated to uncover latent lifestyle groups and choice specific travel behaviour. Results 

show that four lifestyle groups are identified in the population: car oriented, bicycle oriented, 

public transport oriented, and public transport averse. Each lifestyle group has specific 

perceptions of travel time (with extremely different rates of substitution between alternative 

travel modes), transfer penalties in public transport trip chains, weather influence on active 

travel modes, and trip purpose effect on mode selection. When thinking about measures to 

increase the appeal of sustainable travel options, decision-makers should consequently look 

at specific individuals within the population and more sensitive individuals to comfort and 

level-of-service improvements across the lifestyle groups.  

Keywords: Lifestyle choices; Short trip mode choice; Latent class models; Auto oriented; 

Bicycle oriented; Public transport oriented. 
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5.1 INTRODUCTION 
When looking at mode choice decisions, the core assumption is that individuals want to travel 

from their origin to their destination in the way that guarantees the shortest time, the 

cheapest cost, the most comfortable travel, and the most flexible opportunity for escorting 

children to their activities, carrying heavy goods and changing destination or time of travel 

seamlessly. The automobile provides the answers to these needs, as its large use in cities 

throughout the world has been observed even for short trips where it has replaced 

sustainable travel options such as walking, cycling, and public transport (see, e.g., Pucher et 

al., 1999; Rietveld, 2000; Mackett, 2003; de Nazelle et al., 2010). 

The large use of the automobile causes great distress for the sustainability of the cities of the 

future, given that environmental (see, e.g., Hertel et al., 2008; de Nazelle et al., 2010; Lindsay 

et al., 2011), climate (see, e.g., Maibach et al., 2009; Fuglestvedt et al., 2010; Borken-Kleefeld 

et al., 2013), and health (see, e.g., de Nazelle et al., 2011; Rojas-Rueda et al., 2011; Scheepers 

et al., 2013) concerns urge looking for sustainable travel solutions. While the convenience 

and swiftness of the automobile might thwart the attempt to reduce its use in suburban or 

rural areas where activities are dispersed over larger distances and travel alternatives are 

more scarce, short trips appear more amenable to curbing automobile use (e.g., Frank et al., 

2000; Mackett et al., 2003; Loukopoulos and Gärling, 2005; Kim and Ulfarsson, 2008; de 

Nazelle et al., 2010; Monzon et al., 2011).  

Modal shift from the automobile to sustainable travel modes for short trips has been 

analysed in the literature with a focus on the potential for individuals to benefit from the 

climate, environmental, and health perspective. However, this potential very rarely translates 

into individuals actually leaving their cars, as the automobile is very convenient even on short 

trips for carrying goods, picking up and dropping off spouses and children, staying within time 

constraints, and enjoying comfort and convenience. Even though emission reduction is an 

obvious positive effect of the use of public transport and active travel modes (e.g., Frank et 

al., 2000; de Nazelle et al., 2010; Lindsay et al., 2011), often individuals value the convenience 

and swiftness of the automobile with respect to these sustainable travel options far more 

than their potential contribution to solve environmental issues (e.g., Banister, 2008; Monzon 

et al., 2011; Borken-Kleefeld et al., 2013). Even though active travel present obvious benefits 

from the health perspective (e.g., Rojas-Rueda et al., 2011; Grabow et al., 2012; Piatkowski et 

al., 2015), often individuals consider the potential risks in terms of decreased safety and 

increased accident probability (e.g., de Hartog et al., 2010; Rojas-Rueda et al., 2011; Schepers 

and Heinen, 2013). 
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The assessment of the potential for modal shift from automobile use to active travel and/or 

public transport in short trips usually relies on mode frequency analysis and mode choice 

models (see, e.g., Mackett, 2003; Loukopoulos and Gärling, 2005; Kim and Ulfarsson, 2008; 

Maibach et al., 2009; de Nazelle et al., 2010; Rojas-Rueda et al., 2011; Carse et al., 2013; 

Scheepers et al., 2013). Interestingly, individuals are assumed in these studies to behave 

homogeneously and to have the same underlying probability of shifting mode regardless of 

their characteristics. The assumption of homogenous individuals does not seem plausible: (i) 

travel behaviour has extensive literature on taste heterogeneity across individuals in mode 

choice models (for recent applications see, e.g., Hess and Stathopoulos, 2013; Forsey et al., 

2014; Noland et al., 2014; Paullsen et al., 2014); (ii) long-term decisions such as residential 

location, workplace location, car ownership, bicycle possession and public transport pass 

purchase play a role on short-term decisions such as mode choice (for recent applications 

see, e.g., Pinjari et al., 2011; Vovsha et al., 2013; Zhou, 2014; Guerra, 2015). The assumption 

of all individuals having the same probability of shifting travel mode does not seem plausible 

either, since their lifestyle most likely plays a role in the mode choice for short trips just as it 

is observed to play a part in other decisions: (i) residential location has been related to the 

lifestyle of households (e.g., Walker and Li, 2007; Smith and Olaru, 2013) and knowledge-

workers (e.g., Frenkel et al., 2013a; Frenkel et al., 2013b); (ii) mode choices and mobility 

styles have been associated with the lifestyle of individuals and their correlated residential 

locations (e.g., Krizek, 2006; Scheiner and Holz-Rau, 2007; Kitamura, 2009; Vij et al., 2013); 

(iii) the decision about owning a car and, in that case, selecting a car type has been connected 

with lifestyle stages (e.g., Choo and Mokhtarian, 2004; Van Acker et al., 2014); (iv) time use 

patterns, activity participation and neighborhood characteristics have been linked to lifestyle 

choices (e.g., Krizek and Waddell, 2002; Schwanen and Mokhtarian, 2005; Fan and Khattak, 

2012; Sun et al., 2012); (v) risky driving in adolescents has been coupled with the lifestyle of 

the family where they were raised (Bina et al., 2006). 

The current study proposes the analysis of mode choices for short trip chains from a lifestyle 

perspective. Unlike existing studies about short trips, this study recognizes the heterogeneity 

across individuals and relates the short-term choices of travel mode with the long-term 

decisions of lifestyle. Unlike most existing studies about lifestyle in the transportation 

literature, this study looks at lifestyle influencing short-term choices rather than long-term 

ones such as residential location or car availability. The current study proposes a latent class 

analysis that allows inferring how lifestyle affects the decision of how to travel in a short-time 

horizon and for short distances where sustainable travel options seem realistically feasible. 

This study focuses on short trip chains in the Copenhagen region as an example of a large 

metropolitan area that offers sustainable travel options and yet experiences significant traffic 

congestion and stalling cycling modal shares. Although policies exist to curb car purchase with 
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extremely high registration taxes that have negative externalities (see, e.g., Mabit and 

Fosgerau, 2011; Rich et al., 2013) and extensive infrastructure exists for cycling, not only an 

impasse in the cycling shares has been observed, but also young Danes have expressed the 

worrisome intentions of using the car instead of the bicycle in the near future (Sigurdardottir 

et al., 2013). The current study offers a different perspective when looking at the impasse in 

sustainable travel progress by estimating a latent class model that links observable 

characteristics of the individual to the likelihood of having chosen a certain lifestyle that then 

affects the travel choices for short trip chains. Data about short trip chains were available 

from a representative sample of the Danish population who participated in the Danish 

National Travel Survey: the sample included 10,982 trip chains with five available alternative 

modes (i.e., walking, cycling, car driver, car passenger, and public transport), and contained 

information about the characteristics of the travellers, the trip chains, and the environment. 

The remainder of the paper is structured as follows. Section 5.2 introduces the model 

formulation and the data collection for looking at the effect of lifestyle on the mode choice of 

Copenhageners traveling short distances. Section 5.3 presents the empirical results in terms 

of determinants of travel behaviour specific to individuals having different lifestyles and 

predictors of lifestyle group belonging. Section 5.4 summarizes the conclusions and highlights 

further research directions. 

5.2 METHODS 

5.2.1 MODEL 

A latent class choice model is the most suitable methodological approach to analyse the 

effect of lifestyle on mode decisions for short distances. As previously clarified, the model 

allows to simultaneously uncover lifestyle preferences that are not directly observable from 

the data and to elicit mode choice preferences that are heterogeneous across the lifestyle 

groups. Details about latent class choice models are provided by Gopinath (1995), Walker 

(2001), and Greene and Hensher (2003). 

The latent class choice model is composed of two parts: (i) a class membership model that 

represents the probability of individual n to have lifestyle s, and (ii) a class specific choice 

model that represents the probability of individual n with a specific lifestyle s to choose travel 

mode i for short trip chain t. Given the characteristics Xn of the individual and the attributes Xi 

of the travel modes, the probability of individual n to choose mode i for short trip chain t is 

expressed as: 

 
     

1

, ,
S

t n nit t nit n
s
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where P(s|Xn,) is the probability of individual n with characteristics Xn to have lifestyle s, and 

P(it|Xnit,s) is the probability of individual n, conditional on having lifestyle s, to choose mode i 

with attributes Xnit as perceived by individual n for short trip chain t. It should be noted that 

the probability of choosing mode i for short trip chain t is equal to the sum over all the S 

lifestyles of the products of the probability of the class specific choice model (conditional on 

lifestyle s) and the probability of having that lifestyle.  

In the current study, the class specific choice model is specified as an error component logit 

that captures the correlation between alternative modes (i.e., active travel vs. motorised 

travel) and the panel effect for multiple trip chains t being performed by individual n with 

lifestyle s. Given five alternative modes available to individual n (W = walk, C = bicycle, D = car 

driver, P = car passenger, B = public transport) performing T short trip chains, the utility 

functions Units of the travel modes i for short trip chain t of individual n having lifestyle s are 

expressed as follows: 
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where the error components ηn
A and ηn

M capture the correlation across active travel modes A 

and motorised travel modes M as well as the panel effect across individuals n. The error 

components ηn
A and ηn

M are i.i.d. normally distributed with mean equal to zero and variance 

equal to one, the error terms εnWts, εnCts, εnDts, εnPts, and εnBts are i.i.d. extreme value distributed 

across individuals, trip chains, and lifestyles, and the vectors η (= ηn
M, ηn

A) and ε (=εnWts, εnCts, 

εnDts, εnPts, εnBts) are independent (see Walker, 2001). The column vectors XnWt, XnCt, XnDt, XnPt 

and XnBt contain the attributes of the travel modes as perceived by individual n for trip chain 

t, and they are obviously independent of the lifestyle s. The parameters to be estimated are 

the row vectors βs, which are specific to each lifestyle s, and the scalars σA and σM that are 

equal across lifestyles s to impose a parsimonious specification of the error structure and 

facilitate model identification (see Walker and Li, 2007).   

In the current study, the class membership model is specified as a logit model where the 

utility function Uns of individual n having lifestyle s is: 

 
ns s s n ns

U X      (9) 
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where the vector Xn contains the socio-economic-demographic characteristics of the 

individuals n, δs is a class specific constant to be estimated, γs is a vector of class specific 

parameters to be estimated, and εns is an i.i.d. extreme value distributed error term. It should 

be noted that the probabilistic nature of the class membership model allows for each 

individual to have a different probability of having a different lifestyle s, and hence to have 

multiple lifestyles in which one might be dominant because of a very high probability.  

Given the specification of the two components of the latent class choice model, the 

probability of individual n choosing mode i for short trip chain t conditional on having lifestyle 

s is expressed as:  
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This is the product of the logit probability of each individual n choosing mode i for each of T 

trip chains (where the number of trip chains per individual varies, thus the panel is 

unbalanced), conditional on the unknown η and hence integrated over the distribution of η. 

The probability of individual n having lifestyle s is expressed as: 
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Accordingly, the probability of individual n choosing mode i for short trip chain t is: 
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and the log-likelihood is expressed as: 
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where dnit is equal to 1 if individual n chooses mode i for trip chain t (and 0 otherwise), and ωt 

is the weight of short trip chain t. The model is estimated via maximum likelihood estimation, 

and numerical integration is used to evaluate the two-dimension integral in equation (10). 

The model estimation produces simultaneously the parameter estimates for the elements of 

the vectors βs, δs, and γs, and the scalars σA and σM, which allow evaluating the different 

trade-offs made by individuals having different lifestyles. It should be noted that the model is 

probabilistic in nature, namely each individual n has a non-null probability to have latent 

lifestyle s, and the estimate of the size of each lifestyle group is provided. Moreover, the main 

issue with the model estimation is that the number of lifestyles cannot be estimated 
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endogenously, but the exogenous definition of the number S of classes for the estimation of 

different models can be performed and then the performances of the different models can 

be compared. In the current study, latent class choice models were estimated with S varying 

from 2 to 6 and the number of classes was selected via a combination of statistical 

information and interpretation of the estimation results.  

5.2.2 DATA 

Data about short trip chains of a representative sample of the Danish population were 

obtained from the Danish National Travel Survey (TU, in Danish Transportvane-

Undersøgelsen). 

The TU survey collects information about the travel behaviour of a representative sample of 

the Danish population between 10 and 84 years old via the administration of about 1,000 

interviews per month (about 80% by telephone and about 20% on the internet) since 2006. 

The TU survey is administered by the Department of Transport of the Technical University of 

Denmark with the support of an external consultant for the calibration of the representative 

sample. The TU survey participants are extracted via a stratified random procedure from the 

Danish Civil Registration System (in Danish, Det Centrale Personregister) managed by the 

Danish National Board of Health (in Danish, Sundhedsstyrelsen) with the objective of reaching 

representativity of the population as listed in the Danish National Register managed by the 

Danish Census Bureau (in Danish, Danmark Statistik). The Danish Data Protection Agency (in 

Danish, Datatilsynet) permits the use of sensitive data for research purposes, namely names, 

addresses, and coordinates of the movements. Approximately 95% of the locations (e.g., 

home addresses, workplace addresses, trip points) are coded geographically by the 

respondent with a “search and select” available in the survey. Addresses are identified at the 

coordinate level in 98% of the cases, and at the zone level in 99.9% of the cases, which 

implies that absolute confidentiality is guaranteed prior to processing the data. 

The 10,982 short trip chains analysed in the current study were the result of the application 

of the following criteria: (i) the trip chains were below a distance threshold of 22 km, which 

constitutes the 95% percentile of the trip chains by active travel mode in the Copenhagen 

Region and accordingly is a realistic distance threshold to be considered for curbing 

automobile use in short trips; (ii) the trip chains were performed by the population over 18 

years of age that constitutes the driving licensing age in Denmark (trip availability considered 

the car availability in the household). The short trip chains contained detailed information 

about: (i) the socio-economic-demographic characteristic of the 7,958 individuals between 18 

and 84 years old that travelled for short distances; (ii) the level-of-service variables of the trip 

chains by walking, cycling, driving, being a passenger in a car, and being a passenger in a 

public transport vehicle (e.g., bus, metro, train); (iii) the context of the trip chain in terms of 
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trip purpose, detailed location characteristics (e.g., station type, parking availability), weather 

conditions (e.g., temperature, rain); (iv) the weight of each trip chain that guarantees the 

representativity of the sample given that the participation to the TU survey is voluntary 

(62.5% complete responses) and self-selection of population strata is observed. The level-of-

service variables were calculated by knowing the network conditions at the time of the trip 

chain and by assuming shortest path choices for walking and cycling, shortest path choices 

conditional on the congestion conditions for driving and being a passenger in a car, and 

detailed indication of the route choices by public transport as collected in the dedicated 

section of the TU survey (Anderson et al., 2014). 

Table 13 summarizes the characteristics of the sample analysed with the latent class choice 

model, corrected by the weights allowing to achieve population representativity. The short 

trip chains in the Copenhagen region were 18.0% by walking, 28.4% by cycling, 39.3% by 

driving, 6.1% by being a passenger in a car, and 8.2% by being passenger on a public transport 

vehicle. Remarkably, almost half of the short trip chains were still done by car in a city like 

Copenhagen that offers plenty of sustainable transport alternatives. The sample shows 

almost equal share of men and women, almost equal proportion of age categories, 

representative percentage of children in the various ages (0-4 are preschool children, 5-9 are 

children not travel independent, and 10-15 are children with initial travel independence 

independent), and representative variation across individuals in terms of occupation and 

income. The sample also shows the characteristics of the trip chains, with heterogeneous 

composition according to time and cost, and representative share in terms of purpose and 

location with the majority in the centre of the city or in the immediate neighbouring 

municipalities. 
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TABLE 13: SAMPLE CHARACTERISTICS 

Variable Categories (weighted) 

Individual  characteristics 

Gender Male 48.3% Female 51.7% 

Age 18-24 8.8% 45-54 17.9% 

 25-34 19.8% 55-64 15.8% 

 35-44 22.2% 65 or older 15.5% 

Single Yes 28.9% No 71.1% 

Children 0-4 Yes 13.9% No 86.1% 

Children 5-9 Yes 14.6% No 85.4% 

Children 10-15 Yes 15.8% No 84.2% 

Occupation Student 10.3% Retired 20.1% 

 Employed 61.9% Unemployed 3.1% 

 Self-employed 4.6%   

Income (yearly) Mean 272,950 kr. St. dev. 230,610 kr. 

Bicycle  Yes 80.0% No 20.0% 

Number of cars None 31.2% Two 13.7% 

 One 53.7% Three or more 1.4% 

Driving license Yes 83.4% No 16.6% 

Public transport monthly pass Yes 18.3% No 81.7% 

Parking availability at destination Yes 90.5% No 9.5% 

Free parking at destination Yes 54.3% No 45.7% 

Trip characteristics 

Trip purpose Commute 20.7% Shopping 31.6% 

 Business 2.3% Escorting 9.0% 

 Leisure 26.0% Other 10.5% 

Location 
Copenhagen 
centre 

36.6% Minor town 11.8% 

 Copenhagen area 40.9% Rural area 10.7% 

Travel time (walking) Mean 23.40 min St. dev. 23.40 

Travel time (cycling) Mean 22.72 min St. dev. 19.26 min 

Travel time (driving) Mean 10.01 min St. dev. 7.98 min 

Travel time (car passenger) Mean 10.01 min St. dev. 7.98 min 

Access time (public transport) Mean 0.26 min St. dev. 0.87 min 

Waiting time (public transport) Mean 14.74 min St. dev. 14.64 min 

In-vehicle time (public transport) Mean 17.36 min St. dev. 16.72 min 

Number of transfers (public 
transport) 

Mean 0.37 St. dev. 0.75 

Travel cost Mean 18.13 kr St. dev. 26.90 kr 

Temperature  Mean 10.28 C St. dev. 7.52 C 

Rain Yes 22.2% No 77.8% 



89 

5.3 ESTIMATION RESULTS 

5.3.1 SELECTION OF THE NUMBER OF CLASSES 

As the number of classes cannot be estimated endogenously, latent class choice models were 

estimated with the number of lifestyle varying between 2 and 6. It should be noted that also 

an error component logit specification without segmentation of the individuals according to 

lifestyle was estimated, and that the class specific and class membership models shared the 

same specification in order to isolate the effect of the varying number of classes. 

The model performances of the different models are presented in Table 14 and the statistics 

supporting the selection of the number of classes were the rho-bar squared, the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). All the statistics are 

based on the same principle of evaluating the goodness-of-fit of each model as measured by 

the log-likelihood at estimates with respect to the parsimony as measured by the number of 

estimated parameters. However, different statistics suggest that different models are 

preferable in terms of goodness-of-fit vs. parsimony. On the one hand, increasing the number 

of parameters implies an increase in the goodness-of-fit when the evaluation is based on the 

rho-bar squared and the AIC, although the rate of improvement in performances significantly 

diminishes when estimating 5 and 6 latent classes. On the other hand, the same 

phenomenon is not observed when the evaluation is based on the BIC, as this statistic 

imposes a harsher penalty on the lack of parsimony. Given that the BIC suggests that the 4-

class choice model gives the better balance between goodness-of-fit and parsimony, and that 

the behavioural interpretation appears easier and logical for class specific behaviour and class 

membership of the 4-class choice model, estimates for this model are presented in the 

remainder of this section. 

 
TABLE 14: PERFORMANCES OF THE ESTIMATED CHOICE MODELS 

 EC logit Latent class choice models 

number of classes 1 2 3 4 5 6 

number of parameters 30 92 137 182 227 272 

log-likelihood at zero -17,675 -17,675 -17,675 -17,675 -17,675 -17,675 

log-likelihood at estimates -11,530 -10,743 -10,269 -10,030 -9,875 -9,804 

rho-bar squared 0.346 0.387 0.411 0.422 0.428 0.430 

AIC -23,120 -21,670 -20,811 -20,425 -20,203 -20,153 

BIC -23,339 -22,342 -21,812 -21,754 -21,861 -22,139 
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For sake of comparison, Table 15 illustrates the estimates of the error component logit model 

without latent lifestyle segmentation. Parameter estimates show that the sample has 

comparable sensitivity to travel time by bicycle and car, significant sensitivity to good 

weather conditions and hilliness when using active travel modes, and preferences for specific 

modes according to the trip purpose. 

 
TABLE 15: ESTIMATES OF THE EC LOGIT MODEL (WITHOUT LATENT LIFESTYLE SEGMENTATION) 

Variables estimate t-statistic 

travel time - walk -0.085 -9.73 

travel time - bicycle -0.075 -9.25 

travel time - car driver -0.073 -7.98 

travel time - car passenger -0.089 -2.58 

waiting time - public transport -0.044 -2.26 

access/egress time - public transport -0.054 -2.54 

in vehicle time - public transport -0.023 -1.84 

number of transfers - public transport -0.736 -10.65 

travel cost -0.052 -1.92 

temperature - walk 0.028 2.25 

temperature - bicycle 0.077 5.67 

precipitation - walk -0.237 -3.14 

precipitation - bicycle -0.141 -2.35 

hilliness - bicycle -0.098 -2.55 

parking availability - car driver 0.687 3.04 

monthly pass - public transport 0.897 3.89 

commuting purpose - bicycle 0.104 1.41 

commuting purpose - car driver 0.522 2.68 

commuting purpose - public transport 0.092 0.27 

leisure purpose - bicycle -0.815 -2.93 

leisure purpose - car driver -0.405 -1.83 

leisure purpose - public transport -0.452 -1.40 

shopping purpose - bicycle -0.405 -2.58 

shopping purpose - car driver 0.536 2.37 

alternative specific constant - walk 1.185 6.60 

alternative specific constant - car driver -1.482 -8.22 

alternative specific constant - car passenger -2.597 -13.97 

alternative specific constant - public transport -2.590 -12.77 

standard deviation on active travel 1.090 11.25 

standard deviation on motorised travel 1.264 11.73 
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5.3.2 THE 4-CLASS MODEL: CLASS SPECIFIC BEHAVIOUR 

Table 16 presents the parameter estimates of the class specific choice models with the same 

specification of the error component logit without latent class segmentation. The two 

parameters capturing the correlation across modes and the panel effect across individuals are 

restricted to be equal across the four lifestyle groups for parsimony and identification 

reasons, and are both significant to indicate that indeed unobservable similarities should 

have been accounted for in the model specification. 

It is evident that the 4-class choice model is better than the 1-class model not only from the 

perspective of the goodness-of-fit, but also from the perspective of unravelling the 

heterogeneity in the preferences across individuals. It should be noted that several 

parameters are significant at the 0.05 and 0.10 confidence level (see the estimates in italic), 

and also that several parameters are significantly different across classes according to a Wald 

statistic test (see the note to the table). The examination of the estimated parameters allows 

the definition of the lifestyle groups, especially when looking at the ratios between the level-

of-service estimates for the different travel modes across the different latent lifestyles. 

 



 
 

TABLE 16: ESTIMATES OF THE CLASS SPECIFIC CHOICE MODEL 

 Lifestyle independent Lifestyle 1 Lifestyle 2 Lifestyle 3 Lifestyle 4 

Variables estimate t-statistic estimate t-statistic estimate t-statistic estimate t-statistic estimate t-statistic 

travel time - walk 
a
   -0.129 -2.99 -0.074 -1.54 -0.058 -2.03 -0.085 -1.71 

travel time - bicycle 
a
   -0.129 -3.36 -0.054 -3.81 -0.087 -2.10 -0.072 -2.01 

travel time - car driver 
a
   -0.049 -2.37 -0.126 -2.74 -0.129 -2.67 -0.082 -1.73 

travel time - car passenger 
a
   -0.056 -1.47 -0.112 -1.45 -0.150 -2.29 -0.116 -1.78 

waiting time - public transport 
a
   -0.075 -2.25 -0.022 -2.69 -0.014 -2.85 -0.095 -1.85 

access/egress time - public transport    -0.059 -1.83 -0.052 -4.72 -0.033 -3.28 -0.091 -2.66 

in vehicle time - public transport    -0.038 -1.75 -0.023 -1.65 -0.013 -2.62 -0.051 -1.85 

number of transfers - public transport 
a
   -1.157 -4.23 -0.416 -1.69 -0.188 -1.89 -2.165 -4.47 

travel cost   -0.077 -1.51 -0.072 -2.55 -0.032 -1.44 -0.073 -1.65 

temperature - walk   0.029 1.01 0.017 1.77 0.030 0.90 0.040 1.69 

temperature - bicycle   0.205 2.26 0.017 0.38 0.126 1.88 0.088 5.11 

precipitation - walk   -0.364 -2.38 -0.187 -1.29 -0.192 -1.86 -0.214 -1.34 

precipitation - bicycle   -0.343 -2.02 -0.151 -0.89 -0.162 -0.83 -0.254 -1.58 

hilliness – bicycle 
a
   -0.443 -2.22 0.172 3.12 0.217 1.40 -0.252 -1.49 

parking availability - car driver    0.460 2.04 0.246 1.25 0.155 1.21 0.774 6.72 

monthly pass - public transport 
a
   0.359 1.56 0.252 1.59 1.295 10.87 0.414 3.48 

commuting purpose - bicycle 
a
   -0.525 -2.39 0.730 3.99 0.143 0.49 0.287 2.30 

commuting purpose - car driver 
a
   1.092 4.20 -0.637 -2.45 0.152 0.58 0.256 0.99 

commuting purpose - public transport 
a
   0.188 0.73 0.236 0.68 0.690 2.50 -0.463 -2.00 

leisure purpose - bicycle 
a
   -1.671 -2.67 -0.465 -1.34 -0.791 -1.70 -0.838 -2.27 

leisure purpose - car driver 
a
   0.623 2.35 -0.502 -1.03 -0.698 -2.10 -1.016 -2.75 

leisure purpose - public transport 
a
   -0.553 -0.98 -0.211 -0.35 0.907 2.56 -0.728 -1.81 

shopping purpose - bicycle 
a
   -1.249 -3.18 -0.227 -1.26 -0.422 -2.02 -0.373 -1.58 

shopping purpose - car driver 
a
   0.819 2.26 0.289 0.72 0.471 1.25 0.894 1.98 

alternative specific constant - walk 
a
   1.396 1.47 -1.113 -1.19 3.388 2.69 1.206 2.84 

alternative specific constant - car driver 
a
   2.168 2.17 -5.479 -7.15 -4.500 -3.65 0.677 1.35 

alternative specific constant - car passenger 
a
   1.039 1.18 -5.434 -7.18 -4.224 -3.43 -0.895 -1.80 

alternative specific constant - public transport 
a
   -4.218 -4.18 -3.839 -3.71 4.701 3.81 -1.239 -1.52 

standard deviation on active travel 1.112 10.82         

standard deviation on motorised travel 1.315 10.32         

Note: 
a
 the parameters vary significantly across lifestyle groups (Wald statistic at the 0.10 confidence level) 
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Lifestyle group 1 is oriented towards the use of the automobile, as emerging from the rate of 

substitution equal to 2.63 between car driver and bicycle parameters and equal to 2.30 

between car passenger and bicycle parameters. Specifically, the individuals with this lifestyle 

evaluate 1 minute of traveling as car drivers as equal to 2.63 minutes of traveling as cyclists, 

and hence they will likely never cycle to reach their destination. Also, this lifestyle group 

exhibits high disutility for adverse weather conditions when walking and cycling and for 

hilliness when needing a bicycle, expresses a positive preference for driving a car regardless 

of the purpose of the trip chain, and manifests a negative preference for cycling especially for 

leisure and shopping purposes. Clearly, individuals with lifestyle 1 consider the car as the 

fastest, cheapest, most comfortable, and most convenient travel mode. 

Lifestyle group 2 is oriented toward the use of the bicycle, as unravelling from the rate of 

substitution equal to 2.33 between bicycle and car driver parameters and equal to 1.78 

between bicycle and public transport parameters. Namely, the individuals with this lifestyle 

perceive 1 minute on the bicycle far better than the time spent in an automobile or a public 

transport vehicle and rates of substitution almost inverse with respect to the individuals with 

lifestyle 1. Weather conditions are not significantly related to the choice of walking and 

cycling, meaning that bicycle oriented individuals would not care whether it is too hot, too 

cold or too wet when they need to travel. Also hilliness is not significantly related to cycling, 

most likely because bicycle oriented individuals might enjoy the possibility of exercise that 

some hills offer. Commuting is the purpose that this lifestyle group perceives as preferable 

when cycling, while non-significant relations are observed for leisure and shopping trip 

chains. Evidently, individuals with lifestyle 2 consider the bicycle as the fastest, most direct 

and most enjoyable travel mode. 

Lifestyle group 3 is oriented toward the use of walk and public transport, as transpiring from 

the rate of substitution equal to 2.14 between public transport and car driver parameters, 

and equal to 1.43 between public transport and bicycle parameters. Clearly, the individuals 

with this lifestyle perceive 1 minute in a public transport vehicle better than the time spent in 

a car, and slightly better than the time spent on a bicycle. Moreover, their perception of the 

transfer penalty is lower than the one of the previous two lifestyle groups: the penalty is 3.10 

minutes per transfer for lifestyle 3, while it is equal to 4.31 minutes per transfer for lifestyle 2 

and 6.10 minutes per transfer for lifestyle 1. Individuals in the lifestyle group 3 have made the 

conscious decision of purchasing a monthly card to use public transport, they are sensitive to 

adverse weather conditions when cycling, and even though they have positive preferences 

for public transport commuting and leisure travel, they recognize the convenience of the 

automobile for shopping trip chains. Noticeably, individuals with lifestyle 3 consider walking 

and public transport as the preferable options in terms of time saving and comfort.  
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Lifestyle group 4 does not appear to have a clear orientation towards a specific travel mode, 

and the rates of substitution between bicycle and car driver parameters, bicycle and car 

passenger parameters, and bicycle and walking parameters are in the proximity of the unit. 

However, individuals in this lifestyle group have clearly a high negative sensitivity to public 

transport as shown by the highest transfer penalty of 9.14 minutes per transfer and by the 

highest rates of substitution of 3.27 between bicycle and public transport parameters and 

2.90 between car driver and public transport parameters. Individuals with this lifestyle clearly 

dislike public transport, have comparable preferences for the other travel modes regardless 

of being active or motorised and regardless of the trip purpose. Manifestly, individuals with 

lifestyle 4 show an aversion for public transport and comparable values of the other modes.  

Summarizing, lifestyle group 1 is automobile oriented, lifestyle group 2 is bicycle oriented, 

lifestyle group 3 is walk and public transport oriented, and lifestyle group 4 is public transport 

averse.  

5.3.3 THE 4-CLASS MODEL: CLASS MEMBERSHIP MODEL 

After presenting the estimates of the class specific choice models that allow illustrating the 

heterogeneity of travel behaviour across individuals and labelling the latent lifestyle groups, 

Table 17 presents the estimates of the class membership choice model that allows observing 

whether socio-economic-demographic characteristics of the individuals in the sample are 

predictors of the latent lifestyle belonging. It should be noted that several parameters are 

significant at the 0.05 and 0.10 confidence level (see the estimates in italic), and also that 

most parameters are significantly different across classes according to a Wald statistic test 

(see the note to the table). 

 



 
 

TABLE 17: ESTIMATES OF THE CLASS MEMBERSHIP MODEL 

 Lifestyle 1 Lifestyle 2 Lifestyle 3 Lifestyle 4 

 36% 27% 15% 22% 

Variables estimate t-statistic estimate t-statistic estimate t-statistic estimate t-statistic 

constant 
a
 -0.617 -4.09 -0.550 -1.82 1.426 2.97 -0.259 -0.86 

male 
a
  0.529 5.45 0.220 1.32 -0.994 -2.69 0.246 1.39 

age 18-30 (piecewise)  0.004 0.74 0.016 4.37 -0.024 -2.43 0.003 0.82 

age 31-60 (piecewise) 0.012 2.40 -0.012 -1.71 0.004 0.36 -0.003 -0.75 

age 60 plus (piecewise)  0.017 2.83 -0.008 -1.04 0.001 0.09 -0.010 -2.00 

adults over 18 years old 
a
 0.450 2.18 -0.207 -1.82 -0.101 -0.76 -0.142 -0.69 

children under 5 years old 
a
 1.615 3.29 -0.277 -2.52 -0.971 -2.58 -0.367 -2.31 

children 5-10 years old 
a
 1.300 1.96 0.216 2.01 -0.781 -2.26 -0.734 -2.09 

children 10-15 years old 
a
 1.145 1.56 0.176 1.71 -0.847 -1.85 -0.473 -1.78 

number of cars 
a
 0.625 3.15 -0.436 -3.70 -0.378 -1.41 0.190 1.50 

income 
a
 0.162 4.82 -0.073 -2.63 -0.168 -1.68 0.080 1.55 

cph centre 
a
 -0.502 -1.53 0.385 2.95 0.241 2.21 -0.125 -1.11 

cph area 
a
 0.659 1.92 -0.161 -1.07 0.169 1.45 -0.668 -1.91 

student 
a
 -0.691 -2.06 0.508 1.22 0.408 1.09 -0.227 -0.63 

self-employed 
a
 0.745 2.06 -1.126 -2.78 -0.396 -1.13 0.777 2.39 

retired 
a
 0.191 0.51 0.754 1.70 0.133 0.31 -1.080 -3.04 

unemployed 
a
 -0.947 -2.38 0.148 0.35 1.171 2.82 -0.373 -1.03 

Note: 
a
 the parameters vary significantly across lifestyle groups (Wald statistic at the 0.10 confidence level) 
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Lifestyle group 1 is more likely to be composed of individuals who are male, are over their 

thirties, are living with other adults in their households, and also have small children. As they 

are car oriented, the probability of belonging to this lifestyle group logically increases with an 

increase of the income and of the number of cars in the household, the residence in the 

municipalities in proximity of Copenhagen rather than in the centre of Copenhagen, and the 

occupation being self-employed or salary-employed (note that the parameter associated with 

students is negative with respect to the salary-employed reference category). In other words, 

individuals with this lifestyle are more affluent, have growing families, have developing 

careers, and have residence outside the urban core. 

Lifestyle group 2 is more probable to be made of individuals who are male, are in their 

twenties, and are not living with other adults in their households but might have children. As 

they are bicycle oriented, the likelihood of having this lifestyle reasonably decreases with 

higher income and higher number of cars, increases with the residence being in the city 

centre rather than the outskirts of the metropolitan area or the rural parts of the 

Copenhagen region, and increases with the occupation being a student or a retired worker. In 

other words, individuals with this lifestyle are both younger students or salary-employed 

workers who enjoy the vibrant city centre and older retired workers who have grown up 

children.  

Lifestyle group 3 is more likely to be constituted by individuals who are female, and whose 

family composition, with or without adults and with or without children in the household, is 

not significantly correlated with the membership in this class. As they are walk and public 

transport oriented, the probability of being in this lifestyle group increases for residents of 

the city centre, students, salary-employed with respect to self-employed, and unemployed. In 

other words, it seems a bit more complex to profile the group that is however mainly 

constituted by younger female students or salary-employed workers without small children. 

Lifestyle group 4 is more probable to be comprised of individuals of both genders who may 

be in their twenties and thirties, and do not have small children. As they are public transport 

averse, the likelihood of having this lifestyle does not relate to having higher income or higher 

number of cars, decreases in the outskirts of the metropolitan area while not significant 

difference exists for residence in either the city centre or the rural areas of the Copenhagen 

region, and decreases for retired workers but increases for self-employed workers. In other 

words, this lifestyle group is heterogeneous in income and residence location and most likely 

has the highest flexibility in choosing between bicycle and automobile. 

The last piece of information estimated with the class membership model is the probability of 

belonging to the four lifestyle groups that is fairly split in the individuals in the sample: 36% 

for lifestyle 1, 27% for lifestyle 2, 15% for lifestyle 3, and 22% for lifestyle 4. 
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5.4 SUMMARY AND CONCLUSIONS 
The current study has presented an analysis of the influence of lifestyle on mode choices in 

short trip chains in the Copenhagen region. The contribution of this study with respect to 

previous studies about short trips lies in the consideration of the heterogeneity in individual 

preferences, especially when comparing parameter estimates for travel time variables, and 

the relevance of lifestyle decisions on short-term choices. Very relevantly, the findings of this 

study highlight that analysing the potential for switching from the automobile to sustainable 

travel modes while considering homogeneous population is a simplistic assumption (see, e.g., 

Banister, 2008; Monzon, 2011). 

The findings of this study highlight that the population in the Copenhagen region is composed 

of four heterogeneous types of individuals: (i) car oriented individuals are likely more affluent 

and careerist individuals who have made the conscious decision of buying a car, quite an 

expensive endeavour in Denmark given the high registration tax, and most likely use the car 

in every trip chain regardless of the distance; (ii) bicycle oriented individuals are likely 

younger and at a different stage in life with less children and more interest in the vibrant city 

centre, and most likely they use the bicycle in most of the trip chains regardless of the 

distance; (iii) walk and public transport oriented individuals have made the conscious decision 

of not using the automobile for their trip chains and at the same time do not exhibit a strong 

negative preference for the bicycle even though they prefer public transport for reaching 

their farthest destinations; (iv) public transport averse individuals form the most 

heterogeneous group and are the most flexible to the use of either the bicycle or the 

automobile depending on the lifestyle stage. 

When thinking about promoting sustainable travel modes and even active travel modes, the 

findings of this study suggest that individuals in lifestyle groups 3 and 4 are the most likely to 

be swayed to move towards these travel options. While lifestyle group 3 already prefers 

walking as an alternative, it is evident that the probability of using the bicycle for longer 

distances than the walkable ones would not be too low when looking at the rates of 

substitution and the lower emphasis on weather conditions. Even more relevantly, while 

lifestyle group 4 really dislikes public transport, it is clear that the probability of using the 

bicycle is at least equal to the one of using the car when considering travel time (ceteris 

paribus). Accordingly, evaluating the potential of shifting from the automobile to sustainable 

and active travel modes should consider that any intervention should be directed towards 

these lifestyle groups in primis. Policies against the car use, such as congestion charging and 

high registration taxes, might shift individuals from having more disposable income and more 

cars (as having automobiles becomes more expensive) and possibly changing their lifestyle 

towards a sustainable one. These policies should also be accompanied by measures that 
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make the travel time of modes alternative to the car much more convenient, as car oriented 

individuals penalize heavily the time spent on anything other than their automobiles.  

When thinking about infrastructure improvements, for example looking at the heavy 

investments of the Copenhagen municipality in improving bicycle infrastructure, the 

reduction of the cycling travel time is assumed to make cycling more attractive with respect 

to alternative travel modes. However, the estimated rates of substitution of the travel time 

parameters for the car oriented lifestyle group show that the reduction should be by a factor 

of at least 2 in order for the individuals within this group to even consider the bicycle as a 

plausible alternative. The rates of substitution of the travel time parameters for the bicycle 

oriented lifestyle group illustrate that the reduction would not have any impact on the 

individuals in this group, since they already perceive the bicycle as the fastest and most 

convenient travel mode. Instead, the rates of substitution of the travel time parameters for 

the public transport oriented and averse lifestyle groups suggest that the balance could be 

moved towards cycling even with modest reductions.  

Further avenues for research are identifiable. Firstly, the current study estimates a latent 

class choice model only on the basis of traditional travel survey data and hence does not look 

at the angle of attitudes and perceptions. An extension could involve the preparation of a 

survey that would capture the psychological aspects behind the lifestyles observed from the 

travel survey information. Secondly, the current study assumes utility maximisation for all the 

lifestyle groups and hence does not open to different behavioural paradigm. An extension 

could entail the estimation of a latent class model with different formulation of the class 

specific choice models (e.g., regret minimisation, lexicographic).  
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ABSTRACT 
Increasing public transport use with the aim of improving the sustainability of cities should 

not focus only on enhancing level and quality of the service offered, but also on 

understanding determinants of the choice of access and egress mode to and from the railway 

network. This study proposes a model that recognizes the difference in preference structure 

at the home-end and activity-end for travellers who have chosen train as their main travel 

mode, investigates the effect of policy variables such as car parking availability, park & ride 

opportunity, bicycle parking availability and type, and bicycle on train possibility, and 

accommodates the heterogeneity in the travellers’ preferences for the alternative modes. 

Accordingly, this study analyses the choices between five transport modes (i.e., walking, 

cycling, being a car driver, being a car passenger, and riding a bus) for 2,921 home-end trips 

and 3,658 activity-end trips with a mixed logit model that accounts for heteroscedasticity 

across alternative modes and repeated observations across individuals. Model estimates 

uncover the importance of travel time and trip characteristics, underline the relevance of 

bicycle parking to the choice of cycling to the train station, but most importantly reveal that 

travellers have heterogeneous perceptions of the alternatives and the travel time, as well as 

their preference structure relates more to their socio-economic characteristics rather than 

the trip characteristics. In a nutshell, improving bicycle parking might certainly improve the 

accessibility to train stations, but addressing specific population groups with specific trip 

purposes might surely provide an even higher boost in the sustainability of the travel choices 

after selecting train as main transport mode. 

Keywords: access and egress mode; train stations; home-end; activity-end; public transport; 

mixed logit model. 
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6.1 INTRODUCTION 
Cities and metropolitan areas aim at curbing the use of private transport in favour of active 

travel modes and public transport solutions when targeting their sustainable future. Transit 

oriented development, namely the development process of housing, employment, activities 

and public services around existing or new railway stations served by frequent, efficient and 

high quality intra-urban rail services (see, e.g., Cervero, 1998; Knowles, 2012), appears as an 

important part of a smart growth approach to urban development in Europe, Asia, and the 

U.S. (see, e.g., Fullerton and Knowles, 1991; Cervero, 1998; Cervero and Murakami, 2009; Loo 

et al., 2010; Knowles, 2012; Goetz, 2013). Accordingly, increasing public transport use should 

not focus only on improving level and quality of the service offered, but also on 

understanding determinants of accessibility to and from railway stations. While the 

importance of the choice of access and egress mode to and from the railway network has 

been discussed in the literature (e.g., Keijer and Rietveld, 2000; Krygsman et al., 2004; Givoni 

and Rietveld, 2007; Brons et al., 2009; Bergman et al., 2011; Chakour and Eluru, 2014; Róman 

et al., 2014), this study adds to the growing body of knowledge by proposing a model of 

access to and egress from train stations in a transit oriented development region. 

The Copenhagen Region is an example of transit oriented development around five suburban 

train lines (see, e.g., Knowles, 2006; Knowles, 2012) that constitute the preferred mode of 

public transport alongside the metro when considering passengers’ perception in the 

complex public transport network including four types of buses (i.e., regular, high frequency, 

suburban, and express), four types of train services (i.e., suburban, local, regional, and 

intercity) and a metro system (Anderson et al., 2014). The current study focuses on the 

choice of access to and egress from train stations in the Copenhagen Region by building upon 

travel diaries collected within the Danish National Travel Survey (TU, in Danish 

Transportvaneundersøgelse). Most relevantly, unlike most of the existing literature focusing 

on the access to train stations, the current study proposes the analysis of the trips from the 

perspective that travellers do not have different preferences about accessing to or egressing 

from stations, but rather have different preference at the home-end and the activity-end of 

their train trips. Specifically, the current study hypothesizes that differences exist between 

the home- and the activity-end of their trips because of the different travel mode availability 

between home and activity location (e.g., access from home to the station with a bicycle 

would mean egress from the station to home with a bicycle), and the higher knowledge about 

road network, parking availability and station characteristics at the home-end than at the 

activity-end. Accordingly, the current study analyses the choices between five transport 

modes (i.e., walking, cycling, being a car driver, being a car passenger, and riding a bus) for 

2,921 home-end trips and 3,658 activity-end trips with a mixed logit model that accounts for 

heteroscedasticity across alternative modes and repeated observations across individuals. 
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The current study has a threefold contribution: (i) the model recognizes the difference in 

preference structure at the home-end and activity-end for travellers who have chosen train 

as their main travel mode; (ii) the model investigates the effect of policy variables such as car 

parking availability, park & ride opportunity, bicycle parking availability and type, bicycle on 

train possibility, alongside socio-economic characteristics of the travellers and level of service 

measures of the travel modes; (iii) the model accommodates the heterogeneity in the 

travellers’ preferences and alternative mode perceptions. 

The remainder of this paper is structured as follows. Section 6.2 summarizes existing 

literature on the access and egress mode choice to train stations. Section 6.3 describes the 

data for model estimation and the model specification. Section 6.4 presents and discusses the 

model estimates, while section 6.5 presents the main conclusions and suggests further 

research directions. 

6.2 EARLIER RESEARCH 
Most of the existing literature has focused on the access to train stations with either a 

descriptive approach (e.g., Keijer and Rietveld, 2000; Rietveld, 2000; Martens, 2004; Martens, 

2007) or a modelling approach (e.g., Wardman and Tyler, 2000; Krygsman et al., 2004; Givoni 

and Rietveld, 2007; Brons et al., 2009; Bergman et al., 2011; Chakour and Eluru, 2014; Martin 

et al., 2014).  

Descriptive studies focused on the observation of specific aspects of travel behaviour. The 

effect of distance on the ability to walk and cycle to train station and the differences in the 

travel modes used at the home- and the activity-end were observed for Dutch commuters 

(Keijer and Rietveld, 2000). The bicycle was looked at as both a feeder mode and a combined 

mode with public transport (Rietveld, 2000; Martens, 2004; Martens, 2007), and the analysis 

of Dutch commuters’ behaviour revealed that the bicycle was used more at the home-end 

(Rietveld, 2000), although bicycle lockers were not used much because expensive and the 

opportunity to bike and ride as well to flexibly rent bikes was offered (Martens, 2004; 2007).  

Modelling studies focused on the determinants of mode choice to access train stations. 

Distance was the most relevant factor when considering between active travel and motorised 

modes (Krygsman et al., 2004; Givoni and Rietveld, 2007), but when exceeding a certain 

threshold it could dissuade travellers from travelling by train altogether (Krygsman et al., 

2004; Brons et al., 2009), and when being part of a longer trip it could become less relevant 

(Wadrman and Tyler, 2000). Travel time was also a very relevant factor for the choice of 

access mode (Givoni and Rietveld, 2007; Chakour and Eluru, 2014) and travel time savings 

were evaluated as relevant with respect to the total travel time in Australia (Hensher and 

Rose, 2007) and Spain (Román et al., 2014). Car availability was not found relevant to the 
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choice of access mode (Givoni and Rietveld, 2007), while habit was observed in the access to 

train stations (Bergman et al., 2011). Findings from a study that modelled jointly the choice of 

train station and access mode highlighted how the egress mode and the destination of the 

main train trip play a role into the travellers’ preferences for access mode, while the distance 

and the parking availability play a role into the travellers’ decisions for station choice 

(Chakour and Eluru, 2014). 

The current study extends the body of literature by looking not only at the access mode, but 

also at the egress mode. Most relevantly, acknowledging some research observing 

differences in the behaviour of Dutch commuters at the home-end and the activity-end of 

their trip, the current study proposes a modelling approach that looks into the different 

preference structures at the two ends of the trips by estimating two mixed logit models for 

home-end and activity-end trips.  Lastly, the current study specifies the models with a large 

variety of variables that extend the ones traditionally used in the literature (e.g., distance, 

travel time) with others sporadically used (e.g., socio-economic characteristics of travellers) 

and policy variables never used in the literature on access mode choice such as the 

availability of car parking, the possibility of park & ride, the opportunity and type of bicycle 

parking, and the possibility of riding the train with the bicycle. These additional policy 

variables are of great interest when searching for triggers of increased attractiveness of train 

stations in particular, and public transport in general. 

6.3 METHODS 

6.3.1 DATA 

This section describes the data for the study of home-end and activity-end mode choice of 

access to and egress from the train stations of the Copenhagen Region. The home-end and 

activity-end trips were extracted from the travel diaries collected via the TU survey. 

The TU survey collects travel diaries and socio-economic information of a representative 

sample of the Danish population between 10 and 84 years old via 1,000 interviews per month 

that are split into about 80% by telephone and about 20% on the internet since 2006 

(Christiansen, 2009). The participants to the TU survey are extracted via a stratified random 

procedure from the Danish Civil Registration System (in Danish, Det Centrale Personregister) 

managed by the Danish National Board of Health (in Danish, Sundhedsstyrelsen) with the 

objective of reaching representativity of the population as listed in the Danish National 

Register managed by the Danish Census Bureau (in Danish, Danmarks Statistik). An external 

consultant supports the Department of Transport of the Technical University of Denmark in 

the administration and calibration of the representative sample. TU data are available for 
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research purposes under an agreement with the Danish Data Protection Agency (in Danish, 

Datatilsynet). 

The TU survey has implemented since 2009 an advanced data collection method for public 

transport trips that allows mapping every single part of the trip chain including details about 

stations for access, transfer, and egress, as well as details about transport modes for access, 

main, and egress part of the public transport trip (Anderson et al., 2014). The current study 

extracted the trips relevant for the analysis according to the following criteria: (i) the main 

public transport mode was train; (ii) the home-end part of the trip was identified (i.e., home – 

train station, and train station - home); (iii) the activity-end part of the trip was identified (i.e., 

train station – activity, and activity – train station). 

The trips contained detailed information about: (i) characteristics of the trips in terms of 

mode, purpose, time-of-day, season, other travellers during the journey; (ii) level-of-service 

variables of the trips by walking, cycling, driving, being a passenger in a car, and riding a bus; 

(iii) socio-economic characteristics of the 1,743 travellers who performed 2,921 trips at the 

home-end, and the 1,909 travellers who performed 3,658 trips at the activity-end; (iv) policy 

variables detailing the availability of car parking, park & ride, bicycle parking, and the 

possibility to carry the bicycle on train. 

Characteristics of the trips and the travellers were retrieved from the TU survey, while the 

level-of-service and the policy variables required calculation and on site investigation. 

The level-of-service variables were calculated by knowing the network conditions at the time 

of the trip and calculating shortest path distances for walking and cycling, shortest path travel 

times conditional on the congested travel time from the Danish National Transport Model for 

driving and being a passenger in a car, and timetables supported by the TU survey for riding a 

bus (Anderson et al., 2014). It should be noted that the shortest path choices considered a 

speed function as a function of distance for walking and cycling to capture the fact that 

travellers walk or cycle faster for longer distances according to the observations in the TU 

survey. The speed function for walking is 4 + 4·distance / 8000, while the speed function for 

cycling is 6 + 14·distance / 8000 (where the speed is in km/h and the distance is in m). 

The policy variables were retrieved by on site investigation and analysts’ knowledge of the 

study area. Car parking availability was defined for each train station as the offer in terms of 

car parking spaces and average occupancy on the basis of time-of-day. Park & ride availability 

was defined for each of the 8,000 spaces available at train stations outside the inner city in 

the Copenhagen Region while considering an evaluation of their average occupancy on the 

basis of statistics provided by the Region. Bicycle parking availability was defined for each 

train station as the offer for different types of options, namely open bicycle racks, covered 
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bicycle racks, locked bicycle parking places. Carrying a bicycle on a train was considered 

according to the specific public transport mode chosen (i.e., suburban train, local train, 

regional train, IC train, and metro) and the time-of-day restrictions (e.g., no bicycle carrying 

on metro or disembarking with a bicycle at highly congested train stations in rush hour). It 

should be noted that travellers are allowed to carry their bicycle at no additional costs for 

suburban and local trains in the Copenhagen Region, while an extra bicycle ticket should be 

bought for metro and regional trains. 

6.3.2 MODEL FORMULATION AND SPECIFICATION 

The current study formulates a mixed logit model specification (McFadden and Train, 2000) 

to represent the choice of travel mode at the home-end and activity-end of access and egress 

to train stations in the Copenhagen Region. The five alternatives of the choice model are 

walking, cycling, driving, being a car passenger, and riding a bus. 

The mixed logit model specification was formulated in order to allow investigating whether 

heterogeneity exists in terms of preference structure across travellers as well as whether 

heteroscedasticity exists as travellers might perceive alternative modes differently and hence 

the error terms related to the various alternatives might be possibly characterised by 

different variance. Traveller n is assumed to maximise its utility UEni at either end E of the trip 

(i.e., home-end H, and activity-end A) by choosing travel mode i: 
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where αEi  is a vector of alternative specific constants for alternative modes i at end E, XEnik is 

a vector of characteristics k of alternative mode i as perceived by traveller n at end E, βEki is a 

vector of parameters to be estimated, and εEin is a vector of independently and identically 

distributed Gumbel error.  

The probability PEni of traveller n choosing alternative mode i at end E is formulated 

according to the well-known multinomial logit model, conditional on values for the 

alternative specific constants αi and the taste parameters βEki: 
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In the current study, the alternative specific constants αEi are assumed to be distributed 

according to a normal distribution f(αEi) that allows expressing heteroscedasticity across the 

alternatives, and the parameters βEki are distributed according to a distribution f(βEki) that 

allows representing heterogeneity across travellers. For model identification purposes, four 

alternative specific constants are formulated as αEi ~ N(μEi,σEi2), where μEi is the mean and 

σEi2 is the variance of the normal distribution of each constant. For heterogeneity 

representation purposes, parameters are tested with different distributions also on the basis 

of expected sign restrictions (e.g., lognormal distributions for time parameters). Accordingly, 

the probability of traveller n selecting alternative i may be integrated over the distributions 

f(αEi) and f(βEki) of the random parameters: 
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As the probability does not have a closed-form expression and the integral is multi-

dimensional, the maximisation of the log-likelihood function requires simulation that consists 

in maximising the simulated log-likelihood SLL over the sample of travellers: 
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where N is the number of travellers, J is the number of alternative modes, dni is equal to 1 if 

traveller n has selected alternative mode i and 0 otherwise, r is one of the R random draws 

required for integral simulation, and the superscript r represents the instance of a draw of 

the random parameters αEi and βEki.  

The parameters are estimated in the present study by using 500 random draws from a 

Modified Latin Hypercube Sampling (MLHS) method (Hess et al., 2006) that allows 

overcoming the correlation patterns that would emerge with Halton draws for the multi-

dimensional integral. The freeware software BIOGEME (Bierlaire, 2008) was used for model 

estimation thanks to its simplicity and versatility in specifying the model formulated for this 

analysis. 
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6.4 RESULTS 

6.4.1 SAMPLE CHARACTERISTICS 

The sample included 1,743 travellers performing 2,921 trips at the home-end, and 1,909 

travellers performing 3,658 trips at the activity-end. The different number of travellers and 

trips is obviously related to the fact that some travellers might have used the train as main 

transport mode only in either end. Table 18 presents the characteristics of the trips and Table 

19 introduces the characteristics of the travellers at both the home- and the activity-end. 

Table 18 shows that the access and egress mode counts more cycling at the home-end and 

more walking at the activity-end, in line with previous findings for Dutch commuters (Keijer 

and Rietveld, 2000; Rietveld, 2000). The distribution of the trips by purpose is comparable 

between the two ends, and the bicycle is rarely brought on the train although there are 

opportunities and policies to promote them similar to the Dutch ones (Martens, 2004; 

Martens, 2007). Although the majority of the travellers have a driving license, the use of the 

car is quite scarce for accessing train stations, also in line with previous results (Givoni and 

Rietveld, 2007). 
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TABLE 18: TRIP CHARACTERISTICS 

  Home-end Activity-end 
 
  

(N = 2,921) 
 N (%) 

(N = 3,658) 
N (%) 

Trip characteristics  

Main train mode S-train 1,406 (48) 1,720 (47) 

 Local or regional train 555 (19) 705 (19) 

 Metro 370 (13) 527 (14) 

 Multiple trains 590 (20) 706 (19) 

Access/egress  Walk 1,484 (51) 2,826 (77) 

mode choice Bicycle 710 (24) 211 (6) 

 Car driver 142 (5) 0 (0) 

 Car passenger 137 (5) 101 (3) 

 Bus 448 (15) 520 (14) 

Trip purpose Work 1,290 (44) 1,616 (44) 

 Study 410 (14) 509 (14) 

 Shopping 324 (11) 392 (11) 

 Errand 44 (2) 52 (1) 

 Leisure 853 (29) 1,089 (30) 

Chosen train/bicycle  Took the bicycle on the train 124 (4) 144 (4) 

combination Lockable cycle parking 56 (2) 12 (0) 

 Covered bicycle rack 176 (6) 21 (1) 

 Bicycle rack in the open 262 (9) 28 (1) 

 On-street bicycle parking 92 (3) 6 (0) 

 Did not cycle 2,211 (76) 3,447 (94) 

Fellow travellers Yes 614 (21) 822 (22) 

 No 2,307 (79) 2,836 (78) 

Urban characteristics Copenhagen and Frederiksberg 1,172 (40) 2,376 (65) 

 Copenhagen Region 1,749 (60) 1,282 (35) 

Policy variables  

Park & Ride Yes 423 (14) 309 (8) 

 No 2,498 (86) 3,349 (92) 

Bicycle parking Locked bicycle parking  1,220 (50) 1,354 (47) 

in other stations Covered bicycle rack  827 (34) 708 (25) 

 Bicycle racks  384 (16) 790 (28) 

Bicycle parking Locked bicycle parking  27 (6) 58 (7) 

in metro stations Covered bicycle rack  285 (58) 512 (64) 

 Bicycle racks  178 (36) 236 (29) 

Station type Metro 490 (17) 806 (22) 

 Other 2,431 (83) 2,852 (78) 
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Level-of-service variables   

Walk  Travel time (min) – mean 10.5 10.0 

 Travel time (min) – st. dev. 6.3 6.9 

Bicycle  Travel time (min) – mean 10.5 11.6 

 Travel time (min) – st. dev. 3.9 4.9 

Car driver  Travel time (min) – mean 13.7 - 

 Travel time (min) – st. dev. 15.4 - 

 Parking walk time (min) – mean 2.2 - 

 Parking walk time (min) – st. dev. 0.6 - 

Car passenger  Travel time (min) – mean 13.2 14.9 

 Travel time (min) – st. dev. 17.1 20.3 

Public transport Waiting time (min) – mean 25.6 19.4 

 Waiting time (min) – st. dev. 33.8 25.9 

 Access/egress time (min) – mean 8.5 8.0 

 Access/egress time (min) – st. dev. 4.1 3.5 

 In-vehicle time (min) – mean 9.7 8.7 

 In-vehicle time (min) – st. dev. 7.3 7.1 

 

When looking at the level-of-service variables for the access and egress modes at both ends, 

a few observations apply: the car is never selected and is not considered available for driving 

to travellers at the activity-end; the car driving mode has a parking time that is an average 

estimation given the size of the parking lot at each train station; the waiting times for the bus 

are quite high because often these are feeder services with low frequency and hence appear 

as high average waiting times in the planning model used for the calculations. 

The sample contains a majority of women (using train as main transport mode), not 

surprising when looking at a higher percentage of men using cars as main transport mode. 

Students and employed are the vast majority, in line with recent results showing that men 

who are more affluent and in career are mostly car oriented, while females and students are 

more public transport oriented (Prato et al., 2015). 
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TABLE 19: TRAVELLERS’ CHARACTERISTICS 

  Home-end Activity-end 

Variables Categories 
(N = 1,743), N 

(%) 
(N = 1,909), N 

(%) 

Individual characteristics  

Age group 10-17 181 (10) 194 (10) 

 18-24 323 (19) 366 (19) 

 25-29 155 (9) 167 (9) 

 30-39 291 (17) 321 (17) 

 40-49 272 (16) 290 (15) 

 50-59 235 (13) 271 (14) 

 60-69 195 (11) 208 (11) 

 70 and older 91 (5) 92 (5) 

Gender  Male 717 (41) 785 (41) 

 Female 1,026 (59) 1,124 (59) 

Main occupation Student 519 (30) 564 (30) 

 Retired 194 (11) 196 (10) 

 Unemployed 46 (3) 56 (3) 

 Employed 937 (54) 1,039 (54) 

 Self-employed 47 (3) 54 (3) 

Traveller has a driving license Yes 1,167 (67) 1,286 (67) 

 No 576 (33) 623 (33) 

Traveller has a bicycle Yes 1,374 (79) 1,483 (78) 

 No 369 (21) 426 (22) 

Traveller has a public transport pass Yes 1,139 (65) 1,241 (65) 

 No 604 (35) 668 (35) 

Household characteristics  

Vehicle availability Zero car 724 (42) 739 (39) 

 One car 794 (46) 897 (47) 

 Two cars 208 (12) 243 (13) 

 Many cars 17 (1) 30 (2) 

Children 9 years old or younger Yes 295 (17) 324 (17) 

 No 1,448 (83) 1,585 (83) 

Children 10-17 old years Yes 497 (29) 544 (28) 

 No 1,246 (71) 1,365 (72) 
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6.4.2 MODEL ESTIMATES 

Initially, the availability of the alternative travel modes was considered for having a 

reasonable model specification: walking, being a car passenger, and riding a bus, was 

considered available to all travellers at both ends; cycling was deemed available to travellers 

owning a bicycle at both ends, as especially Danish commuters keep another bicycle at the 

activity-end; car driving was judged available to travellers owning a car and holding a driving 

license at the home-end, but it was not considered available at the activity-end. 

The best model specification was then selected by iteratively testing the significance of the 

parameter estimates and their distribution when random parameters were used. Table 20 

presents the estimates of the best models for each of the trip ends, where it should be noted 

that heteroscedasticity was accounted for as all the alternative specific constants had 

significant estimates for the mean and the standard deviation of their respective normal 

distributions, and heterogeneity was observed for the travel time parameter that was log-

normally distributed. Moreover, the specification with the random parameters allowed taking 

into account panel effects by imposing the consistency of the preferences within individuals. 
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TABLE 20: MIXED LOGIT MODEL ESTIMATES 

Variable Categories Alternative 
Home-end   Activity-end   

Value t-test   Value t-test   

Alternative 
specific 
constant 

  Walk 0 —   0 —   

μ 
Bicycle 

-14.90 -5.64 
***

 -18.20 -5.20 
***

 

σ 30.60 6.11 
***

 14.70 4.37 
***

 

μ 
Car driver 

-11.70 -3.33 
***

 — — 
 
 

σ 13.30 4.69 
***

 — — 
 
 

μ 
Car passenger 

-20.60 -6.38 
***

 -22.10 -3.32 
***

 

σ 6.41 5.77 
***

 8.27 2.06 
**

 

μ 
Bus 

-5.41 -6.88 
***

 -7.67 -7.39 
***

 

σ 1.87 4.80 
***

 2.03 2.86 
***

 

Travel time 

Travel time μ 
Generic 

-0.97 -7.69 
***

 -0.68 -6.38 
***

 

Travel time σ 0.13 3.26 
***

 0.28 4.38 
***

 

Access/egress time Bus -0.26 -5.26 
***

 -0.30 -5.91 
***

 

Trip characteristics       
 
     

 
 

Fellow 
traveller 

— 

Bicycle — —   -5.23 -3.98 
***

 

Car passenger 4.77 4.41 
***

 6.47 1.98 
**

 

Bus -0.52 -1.69 
*
 — — 

 
 

Urban 
characteristics 

 
Bicycle — —   -4.60 -3.04 

***
 

Copenhagen / Car driver — — 
 

— — 
 

Frederiksberg Car passenger -3.77 -3.25 
***

 -6.59 -1.81 
*
 

  Bus 1.37 4.18 
***

 — —   

Policy variables               

Parking at 
stations 

Bicycle parking 
Bicycle -17.60 -5.23 

***
 — — 

  

Metro station   

Covered bicycle 
rack Bicycle  — — 

 
2.90 2.06 

**
 

Other stations 

Bring bicycle 
on train 

Pay Bicycle — —   -4.10 -1.66 
*
 

Restricted Bicycle — —   -6.46 -2.72 
***

 

Travellers’ characteristics               

Gender Male Bus -0.39 -1.53   -1.08 -3.27 
***

 

Season ticket — Bus — —   1.26 3.52 
***

 

Vehicle 
availability 

One car Car passenger 6.45 4.79 
***

 — —   

Two cars 
Car driver 9.37 3.54 

***
 — —   

Car passenger 8.75 4.95 
***

 — —   

Three cars or more Car driver 22.6 3.01 
***

 — —   

Other motorist — Car driver -10.20 -2.54 
***

 — —   

 

 

 



121 

Main occupation and trip purpose               

Student 

Study 

Bike — —   -8.83 -3.21 
***

 

Car passenger -2.77 -2.39 
**

 — — 
 

Bus 1.38 3.39 
***

 1.25 3.51 
***

 

Errand Car passenger — — 
 
 8.86 1.69 

*
 

Shopping Bus 1.11 1.45 
 
 — — 

 
 

Leisure 
Bike -9.62 -4.42 

***
 — — 

 
 

Car passenger 2.64 1.78 
*
 — — 

 
 

Retired Leisure 

Bicycle — —   
-

10.30 
-2.50 

***
 

Car passenger — — 
 

5.72 3.39 
***

 

Bus 1.63 3.33 
***

 — — 
 
 

Unemployed Shopping Bus — — 
 
 2.84 2.57 

***
 

Self-employed Leisure Bus — — 
 
 2.07 1.90 

*
 

Employed 

Errand 
Bike — — 

 
 2.69 1.56 

 
 

Car passenger — — 
 
 8.14 2.15 

**
 

Leisure 
Car driver -6.52 -2.57 

***
 — — 

 
 

Car passenger — — 
 
 3.30 2.09 

**
 

Shopping 
Car driver -12.5 -4.84 

***
 — —   

Car passenger -6.70 -2.30 
**

 — —   

Number of estimated parameters: 31   28   
Number of observations:  2,921 

 
3,658 

 
Number of individuals:  1,743 

 
1,909 

 
Null log-likelihood:  -4,021.65 

 
-4,668.66 

 
Final log-likelihood:  -1,916.68 

 
-1,384.20 

 
Adjusted rho-square:  0.516   0.698   

Note: * significant at the 90% confidence level; ** significant at the 95% confidence level; *** significant at the 

99% confidence level. 

 

6.4.2.1 TRAVEL TIMES 

Initial model estimation attempted to estimate a travel time parameter specific to each 

alternative travel mode, but the best specification was obtained when a generic travel time 

parameter with log-normal distribution was estimated and both the mean and the standard 

deviation of the distribution were statistically significant. The travel time significance is not 

surprising as the distance from the train station has been found as the most relevant 

determinant of access mode in the literature (e.g., Krygsman et al., 2004; Givoni and Rietveld, 

2007; Chakour and Eluru, 2014). 

As the walking time between park & ride facilities had a logical negative sign but was not 

statistically significant, it was joined to the car driving time to obtain a total time by driving. 

Interestingly, the in-vehicle time and the waiting time for the bus were also with logical 

negative sign but not statistically significant, while the access/egress time for the bus was 

significant. This suggests that travellers might be more sensitive to the connection time when 
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reaching train stations, rather than to the actual in-vehicle time, and that they might be 

timing the low frequency feeder buses not to have to wait.  

6.4.2.2 TRIP CHARACTERISTICS 

Model estimates show that the trip characteristics are also related to the access and egress 

mode choice at both the home-end and the activity-end. Specifically, for both ends the 

estimates show that having a fellow traveller decreases the likelihood of using the bus at the 

home-end, and diminishes the probability of cycling at the activity-end as observed also in 

the Netherlands (Rietveld, 2000; Givoni and Rietveld, 2007). The former might be related to 

the cost of multiple tickets that might be on top of the train costs, while the latter might be 

associated with the availability of bicycles for everyone provided that a person left a bicycle 

at the activity-end as many commuters are used to. 

Model estimates show also that travellers are more likely to use the bus to access train 

stations in central Copenhagen and Frederiksberg at the home-end, most likely because of 

the higher level of service and frequency in the city centre. Also, travellers are less likely to 

use the bicycle for reaching train stations in central Copenhagen and Frederiksberg at the 

activity-end, probably because of the higher walkability of the city centre. Car driving or car 

passenger is highly discouraged by the congestion and the difficulty in finding parking in the 

central areas of the metropolitan area.  

It should be noted that were not found significant effects of time-of-day and season, as to 

suggest that the choices to access and egress train stations are not related to the time and 

period in which the trips are performed, in line with recent evidence suggesting that lifestyle 

is what drives mode choices in the Copenhagen Region (Prato et al., 2015).  

6.4.2.3 POLICY VARIABLES 

Parking availability for cars was not found related to the access and egress mode choice at 

both ends, given the small amount of travellers that chose to drive a car to the station. The 

same applies to park & ride facilities that are seldom used by Copenhageners during their 

trips, as to suggest that owning a car implies its use for the entire trip and not only to access 

public transport. Initial estimates suggested that travellers were more willing to drive a car at 

the home-end when there are dedicated park & ride facilities, although the estimate was not 

statistically significant at the 90% confidence level. 

The bicycle parking availability was investigated by differentiating between metro stations 

and all other stations where open bicycle racks, covered bicycle racks and lockers were 

available. Estimates for the home-end model indicate clearly that even the presence of 

parking facilities does not encourage the use of the bicycle on the metro, most likely because 

travellers would have to pay to bring their bicycle or would have to leave the bicycle in 
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crowded underground facilities as on-street bicycle parking is nearly impossible next to metro 

stations. Estimates for the activity-end show that the availability of covered bicycle parking 

increases the probability of cycling, thus suggesting that there might also be a choice of 

station to be considered, in line with existing literature about the choice of departure railway 

station being positively affected by the availability of bicycle parking (Debrezion et al., 2009). 

Initial estimates indicated a positive but non-significant effect also of lockers at both ends. 

When considering at both ends the possibility to bring the bicycle on the train, it is clear that 

travellers would not opt for the bicycle unless it is free or there is no time restriction. These 

findings indicate strong preferences for cyclists and probably motivate also the selection of 

the type of train (as it is free for suburban and local trains).   

Lastly, it was also investigated whether the popular campaign “bike to work” that occurs 

every May of every year in Denmark had any significant effect on the choice of cycling to the 

station. No parameter estimate was found significant, which is interesting since the intention 

of the campaign is to stimulate cycling among the non-cyclist, for example by proposing to 

combine a short distance cycling with public transport. 

6.4.2.4 TRAVELLERS’ CHARACTERISTICS 

Model estimates found significant correlations between travellers’ characteristics and mode 

choice to access/egress train stations. Gender and age effects were far less significant than 

the car ownership level and the occupation. The only gender effect is the dislike of males 

towards bus, which is significant at the activity-end and it is not surprising when looking at 

short trip mode choice in the same region (Prato et al., 2015). 

Having a season ticket for public transportation or having the availability of one or more cars 

obviously affects the mode choice of travellers, even when analysing access to and egress 

from train stations. It seems that long-term decisions are influencing short-term ones as the 

ones considered in the current study. It is however interesting that the only significant 

parameters were found for the home-end of the trips, most likely because walking is the 

most preferred mode at the activity-end. It should also be noted that car availability was not 

found correlated with access mode to train stations in a previous study (Givoni and Rietveld, 

2007), although that study did not configure the choice as a matter of being at the home- or 

the activity-end. 

Having another motorist in the household was significantly related to a lower probability of 

driving a car to the train station at the home-end. Having children was not significantly 

correlated with the choice of access or egress mode, most likely because travelling alone or 

with someone else was already controlled for. 
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6.4.2.5 MAIN OCCUPATION AND TRIP PURPOSE 

The specification of the model considered plausible combination of main occupation and trip 

purpose, as some combinations might not be realistic (e.g., being unemployed and having a 

work trip purpose). 

The best model considered linear combinations of the main occupation and the trip purpose 

in order to take into account the relation between the two. The reference combination was 

composed of employed travellers who commute to work, while the remaining combinations 

of occupation (i.e. employed, student, retired, unemployed, and self-employed) and trip 

purpose (i.e., study, errand, shopping, and leisure). 

When looking at the home-end model, students are less likely to be driven and more likely to 

use the bus when accessing train stations while going to study, most likely because the 

season ticket comes with a significant discount with respect to the full tariff. Students also 

prefer to use the bus for shopping purposes and they have a preference to be driven for 

leisure trips. Employed travellers do not exhibit a preference for the car, either as a driver or 

as a passenger, when not going to work and instead going for shopping or leisure. 

When looking at the activity-end model, students are less likely to cycle and more likely to 

use the bus to access train stations. Being a car passenger is more probably for students and 

employed travellers running errands, as well as employed or retired travellers going out for 

leisure. Cycling is more likely for employed travellers running errands, but less likely for 

retired travellers during leisure trips. 

6.5 CONCLUSIONS 
The current study proposed the analysis of the mode choice behaviour for the access to and 

the egress from train station in the Copenhagen Region. Although similarity exists through 

the sample, the study presented two different models for the home-end and the activity-end, 

given different preference structures related to the different knowledge of the network and 

the area. 

The model estimates revealed that there is heteroscedasticity, namely the alternative travel 

modes are perceived differently across individuals, and there is also taste heterogeneity in 

the perception of travel time across individuals. It should be noted that initial estimation of a 

Multinomial Logit model revealed some significant effects that were not significant in the 

best specification of the mixed logit model, and this finding underlines that overlooking the 

panel effect can lead to overestimating the effects of some variables. 
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The model estimates also reveal the relative importance of the elements that could make 

train stations more attractive, and consequently could support transit oriented development 

and could make public transport more enticing to travellers. Improving station accessibility, 

parking availability, bicycle parking possibility, and park & ride opportunity are logical policies 

that should make the train more attractive. However, it is clear that, although travel time was 

significant and was distributed over the population, the choices of access and egress mode 

were more related to who the travellers are as persons and how they perceive the 

alternatives. 

Findings from this study reveal that it is important to have bicycle parking and to provide the 

opportunity to carry the bicycle on the train, but most of the explanatory ability of the model 

lies in the travellers’ characteristics, especially when considering their occupation and their 

travel purpose. On the one hand it is certainly a good idea to increase bicycle parking 

availability at train stations, improve the conditions of bicycle parking especially at metro 

stations, but on the other hand travellers do not seem to be too concerned with locked 

parking areas as they are used to on-street parking. Most relevantly, finding from this study 

suggest that, similarly to what observed for short trips of which the access to and the egress 

from train stations are certainly a part of, a latent lifestyle segmentation approach could 

reveal what are the preferences of travellers in the Copenhagen Region and could suggest 

policy makers which population groups should be addressed when intending to improve the 

integration of active travel modes and public transport. 
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Chapter 7  

INTRODUCTION 
INTRODUCTION TO PART III 

Part III focuses on the modelling of the route choices of cyclists. The motivation behind this 

part is the growing interest in sustainable transport modes, where bicycle route choice 

models provide means to search for factors that make cycling more attractive. It is generally 

assumed that cyclists choose the shortest path by minimizing travel distance between origin 

and destination in operational travel forecasting models, using a fixed travel speed. Network 

attributes, such as the presence of dedicated bicycle lanes or separate bicycle boulevards, are 

usually not considered. Personal attributes are also generally not included, as well as 

elevation and other environmental attributes that could influence the route choice. Thus, 

investigating whether these factors significantly influence the route choices of everyday 

cyclists could be a step in the right direction to promote more cycling. 

Results from bicycle route choice models depend on the observation of actual route choices 

and the generation of realistic alternatives. Chapter 8 gives an overall description of the 

bicycle network, as well as briefly describing how actual route choices were collected, thus 

focusing on the third research objective: 
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(iii) To collect data using global positioning systems (GPS) technology to register 

geographical points, recording the behaviour of a sample of bicyclists from different 

municipalities in the Greater Copenhagen area. 

The remaining research objectives are tackled within the three papers in Part III. The first 

paper addresses the issue with processing raw GPS data, the second evaluates methods to 

generate alternative bicycle route sets for model estimation, and the third paper investigates 

the route choice preferences in connection with the characteristics of alternative routes. 

Subsections 7.1 to 7.3 clarify which research objectives each paper concentrates on and 

briefly describe other contributions. 

 

 

FIGURE 39: THE PROCESS FLOW IN PART III 

7.1 IMPROVED METHODS TO DEDUCT TRIP LEGS AND MODE FROM 

TRAVEL SURVEYS USING WEARABLE GPS DEVICES: A CASE STUDY 

FROM THE GREATER COPENHAGEN AREA 

Title: Improved methods to deduct trip legs and mode from travel surveys using 
wearable GPS devices: A case study from the Greater Copenhagen area 

Author(s): Thomas K. Rasmussen, Jesper B. Ingvardson, Katrín Halldórsdóttir, and Otto A. 
Nielsen 

Presented: The 2nd Symposium of the European Association for Research in 
Transportation, 4th – 6th September 2013, Stockholm, Sweden 

Published: Computers, Environment and Urban Systems, available online 4 May 2015 
from: doi:10.1016/j.compenvurbsys.2015.04.001 

Abbreviated: Rasmussen et al. (2015) 

Collecting data on actual route choices has greatly profited from resent enhancements in GPS 

device technology. However, the post-processing of raw GPS data is still problematic. GPS 

data collection generates very large data sets, containing a lot of scatter or other irrelevant 

records. The size of the raw GPS data emphasises the complexity of post-processing such 

data, as well as other issues related to, e.g., signal loss, lack of qualitative information on 

routes and activities, etc. Accordingly, processing such large data sets manually is highly 

Collect 
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choices 
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collected 

data 
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http://dx.doi.org/10.1016/j.compenvurbsys.2015.04.001
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unfeasible. The possibility to apply GPS data collection for travel surveys depends heavily on 

the availability of computer-based analysis tools, which are able to process the raw data set 

in order to extract relevant information for mode- or route choice analysis. Accordingly, this 

paper focuses on the fourth research objective, described in part I: 

(iv) To develop a fully automatic post-processing procedure, making it possible to process 

raw individual-based GPS data with no additional information required from the 

respondent. 

This paper also has the following aims: 

(v.a) Combining already established methods to identify trips, trip legs, and detect 

the most probable transport mode, together with a combined fuzzy logic- 

and GIS-based algorithm; 

(v.b) Apply the method in the highly complex large-scale multi-modal network; 

(v.c) Validate the method on a raw individual-based GPS logs through the 

application of a control-questionnaire. 

7.2 EFFICIENCY OF CHOICE SET GENERATION METHODS FOR BICYCLE 

ROUTES 

Title: Efficiency of choice set generation methods for bicycle routes 

Author(s): Katrín Halldórsdóttir, Nadine Rieser-Schüssler, Kay W. Axhausen, Otto A. 
Nielsen, and Carlo G. Prato 

Presented: The 1st European Symposium on Quantitative Methods in Transportation 
Systems (LATSIS), 4th – 7th September 2012, Lausanne, Switzerland 

Published: European Journal of Transport and Infrastructure Research, vol. 14, no. 4, pp. 
332-348 

Abbreviated: Halldórsdóttir et al. (2014) 

The challenge of modelling the route choices of cyclists, based on the observation of actual 

route choices, is the generation of realistic alternative routes prior to the model estimation. 

Recent advances in path generation help confront the challenge of generating plausible 

alternatives for model estimation, although not without the uncertainty related to the 

dependency of model estimates on choice set composition. Most studies have focused on 

applying path generation methods in the car- or public transport context, where simplified 

networks are normally used. Only few studies have focused on the generation of bicycle 

route choice sets, which require a highly detailed network. Consequently, the following 

research objective was tackled in this paper: 
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(v) To analyse the efficiency of choice set generation methods to generate realistic 

bicycle routes; 

Furthermore, this paper extends the body of knowledge on choice set generation for bicycle 

route choice by: 

(vi.a) Applying three effective path generation methods to the bicycle context, 

e.g., doubly stochastic generation function, breadth first search on link 

elimination, and branch & bound algorithm; 

(vi.b) Evaluating the efficiency of the three path generation methods to generate 

realistic heterogeneous alternative routes in a high-resolution network; 

(vi.c) Proposing multi-attribute cost functions that account for attributes that are 

considered relevant in the bicycle route choice context. 

7.3 LAND-USE AND TRANSPORT NETWORK EFFECTS ON BICYCLE ROUTE 

CHOICE IN THE GREATER COPENHAGEN AREA 

Title: Land-use and transport network effects on bicycle route choice in the Greater 
Copenhagen area 

Author(s): Katrín Halldórsdóttir, Otto A. Nielsen, and Carlo G. Prato 

Presented: The 2nd Symposium of the European Association for Research in 
Transportation (hEART), 4th - 6th September 2013, Stockholm, Sweden 

Status: Working paper 

Abbreviated: Halldórsdóttir et al. (2015b) 

This paper focuses on the interaction between infrastructure and cyclists’ route choices. To 

contribute to the current literature on the route choices of cyclists, this paper analysed actual 

route choices of cyclists, by using a large sample of GPS-observed routes. The paper focuses 

on the route choice characteristics in the Greater Copenhagen area, an established bicycle 

city, by focusing in particular on the interaction between infrastructure, land use, and cyclists’ 

route choice. Accordingly, this paper tackles the final research objective: 

(vi) To develop a model to analyse cyclists’ route choices and evaluate their trade-offs. 

Additionally, the paper aims to: 

(vi.a) Estimate a path-size logit, to account for similarities between the alternative 

routes; 

(vi.b) Investigate how network attributes and conditions along the routes affect 

the route choice; 
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(vi.c) Analyse how personal attributes influence the route choice; 

(vi.d) Investigate whether there are differences in route choice preferences 

between trip related attributes and also between weather attributes. 
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Chapter 8  

DATA DESCRIPTION 
DATA COLLECTION FOR THE BICYCLE ROUTE CHOICE MODEL 

The TU-survey contains information on the choice of transport mode and socio-demographic 

variables, but does not collect information on actual route choices. Thus, information on the 

route choice of cyclists was collected with GPS loggers. The data collection was managed by 

the Data- and Modelcenter at DTU Transport, while the recruiting of respondents was 

conducted by Epinion. 

Collecting data on travel behaviour, using GPS technology, has become an important research 

resource. When compared to traditional travel survey methods, collecting data with GPS 

technology ideally provides far more detailed information on route choice and travel patterns 

over a longer time period. GPS data provides more accurate information on travel times, such 

as the start- and end-time of a trip and the duration of a trip. This type of data also provides 

more accurate and reliable information on actual route choices, travel distance, and accurate 

geographic locations of activities. Thus, GPS data provides information that is independent 

from individuals’ assessment of travel time, travel distance, and departure time, which can be 

biased based on their perception. GPS data collection also prevents trips underreporting, 

which is a common problem in traditional travel surveys. Additionally, carrying a GPS logger is 

less demanding for the respondents than answering time-consuming questionnaires. 
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Collecting GPS data over a long time period, often results in large sample sizes, which places 

high requirements on the post-processing of the data. Extensive post-processing is needed to 

obtain additional information, such as transport modes, trip purpose, etc. A very detailed 

digital network is also required to accurately map the routes, which can lead to high 

computation times during choice set generation, as well as issues with behavioural realism 

that might produce inconsistent estimates. The data collection is briefly described in 

subsection 8.1, while subsection 8.2 describes the bicycle network. Rasmussen et al. (2015) 

describe in detail the post-processing procedure used in order to obtain data that could be 

used for further analysis. After the GPS post-processing, the identified bicycle trips were 

mapped to a high-resolution bicycle network using the map-matching algorithm developed 

by Nielsen et al. (2004). Halldórsdóttir et al. (2014) focus on the generation of route choice 

sets for cyclists in a highly detailed network and analyse the efficiency of three choice set 

generation methods in generating realistic bicycle routes.  

8.1 DATA COLLECTION 
The level of bicycle use is relatively high in Denmark when compared to most other countries. 

However, there are considerable differences in bicycle use between Danish municipalities, as 

discussed in section 3.2.1. The PhD study uses GPS technology to register geographical points, 

recording the behaviour of a sample of cyclists from different municipalities. 

Comparing different types of cyclists and evaluating their bicycle routes can give a deeper 

understanding of what influences individuals’ choices for different types of facilities. 

Accordingly, a dataset on the physical conditions of the bicycle network from different 

municipalities, which vary in size and geographical location, is used in the study. 

The data collection was carried out in the Greater Copenhagen area, where the number of 

cyclists is most dense. The TU-survey was used to collect possible participants that had 

permanent residency in the study area. The sampling criteria were that the respondents had 

previously completed the TU-questionnaire, approximately within the last 6 to 12 months 

before the data collection, and answered that they had used a bicycle in their reported travel. 

There are stricter privacy rules within the TU-survey, when interviewing people under 16 

years, thus possible recruits were sampled from the TU-survey if they were 16 years or 

above. These individuals were then contacted and asked whether they would be interested in 

participating in the project. 

Data was then collected by giving the respondents GPS loggers and asking them to carry the 

logger for seven days. Some participants collected for more than seven days, while other 

collected for less. The number of days ranged from 1 to 23 days. The final sample contained 

GPS tracks for an average period of 8.3 days, which resulted in a very large dataset. The 
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median of the sample was 8.0 days, while the standard deviation was 3.13. The respondents 

were asked to carry the GPS units at all times, to minimise situations where they could forget 

to bring it. The post-processing procedure, described in Rasmussen et al. (2015), was then 

used to identify bicycle trips from the collected data. 

Three data collection rounds were run in order to capture different seasonal effects in 

different time periods. Figure 40 shows the study area and the number of respondents in 

each municipality, per round and in the total sample. In the first round, the respondents 

picked up the GPS units themselves at the Epinions office in inner Copenhagen. In the last 

two rounds, the GPS units were sent out by mail, containing a description of the project and 

how to use the GPS unit to collect data, and also including a return envelope. The change in 

collection strategy was done in order to optimize time usage, qualification for extracting data, 

and logistic costs. The need for coordination and communication was also reduced. The first 

round was carried out from October through December in 2012. Data was mainly collected in 

the centres of Copenhagen and Frederiksberg, where the number of daily cyclists is the 

highest. Data was collected from 112 respondents. The second round was carried out from 

June through July in 2013, where it was prioritised to sample individuals from the areas 

surrounding the city centre. Total of 71 respondents participated in the second round. The 

last round was carried out from August through October in 2013, sampling individuals from 

the Greater Copenhagen area. The final round collected data from 135 respondents. 

Accordingly, the total number of observations was 318 individuals. The final sample shows 

that the number of respondents is denser in the city centre, which is in line with the higher 

number of cyclists in that area. In the first round the respondents were given an incentive to 

participate (a 200 DKK gift card), while no incentive was given in the last two rounds. Still, the 

acceptance rate was much higher in the last two rounds, 76% in the second round and 66% in 

the final round, than in the first round, where the acceptance rate was 53%. On average, the 

acceptance rate was 65%, which is quite high for a survey of this type. 

Travel diaries were also collected from the participants. The participants were contacted on 

the 3rd or 4th day during the period where they had the GPS loggers. The TU-survey platform 

was used to collect the travel diaries, thus the participants provided information on their 

travel on the day before the interview, socio-economic variables, and trip related 

information, such as trip purpose, location points of activities, etc. Combining in-depth 

interviews with the GPS data collection enables a more accurate analysis of individual travel 

activities.  

After the post-processing procedure (Rasmussen et al., 2015) had identified all bicycle trips 

from the collected data and the map-matching algorithm was run, there were 3,443 stages 

from 291 respondents remaining for further analysis. Halldórsdóttir et al. (2015b) describes 
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the extraction of bicycle trips in more detail, as well as presenting the characteristics of the 

chosen routes. Subsection 8.1.1 presents some descriptive statistics on the participants of the 

survey. Subsection 8.1.2 discusses the characteristic of the GPS dataset compared to the TU-

survey, while subsection 8.1.3 briefly describes additional information collected for the 

survey. 
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FIGURE 40: NUMBER OF RESPONDENTS IN EACH MUNICIPALITY IN THE GREATER COPENHAGEN AREA, IN EACH ROUND AND OVER THE TOTAL SAMPLE 
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8.1.1 DATA DESCRIPTION 

The GPS dataset is composed of 45% males (Figure 41). Figure 42 shows the age distribution 

in the dataset. There are only two individuals in the dataset that are 17 years of age, while no 

one was at the age of 16. The dataset is composed of individuals between the ages of 17 and 

79, where the average age is 40 years. Figure 43 shows the share of respondents that have a 

driving license. The figure shows that most respondents have a driving license, or 

approximately 80%. 

 

 

FIGURE 41: GENDER SHARE IN THE GPS DATASET 
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FIGURE 42: AGE GROUP DISTRIBUTION IN THE GPS DATASET 

 

 

FIGURE 43: SHARE OF RESPONDENTS WITH A DRIVING LICENSE IN THE GPS DATASET 
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and employees cycle the most, as discussed in subsection 3.2.1. Figure 45 shows the share of 

the respondents by main occupation. The GPS dataset has the highest share of employees, or 

54%, while students take up approximately 20% of the sample. 

 

 

FIGURE 44: SHARE OF EDUCATION LEVEL IN THE GPS DATASET (HF IS ABBREVIATION FOR HIGHER PREPARATORY CERTIFICATE, HHX IS HIGHER 

COMMERCIAL CERTIFICATE, AND HTX IS HIGHER TECHNICAL CERTIFICATE) 

 

 

FIGURE 45: SHARE OF MAIN OCCUPATION IN GPS DATASET 
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8.1.2 CHARACTERISTICS OF THE GPS DATASET COMPARED TO THE TU-SURVEY 

The objective of the data collection was to get as many recruits as possible. In the first round, 

individuals were sampled randomly from the TU-survey, based on their residence location. In 

order to get a more representative sample of cyclists in the Greater Copenhagen area, 

individuals were contacted according to a priority list in the following two rounds, based on 

their residence location. Thus, individuals from specific areas were contacted first, in order to 

get the best possible sample for the bicycle route choice model, without diminishing the 

number of observations. If individuals did not answer their phone, Epinion moved on to the 

next individual on the list, as there was a limited timeframe in which the data could be 

collected. 

The TU-survey is a representative sample of the Danish population. By comparing the 

collected data to a weighted sample from the TU-survey, of cyclists in the Greater 

Copenhagen area, it is possible to evaluate if the GPS dataset is a representative sample. 

Table 21 shows a comparison of the socio-demographics of the GPS data sample together 

with the TU-survey. The table shows that there is some difference in gender, where the GPS 

dataset has slightly fewer females than the TU-survey. The GPS dataset does not have many 

individuals that are 16-17 years of age. The youngest participants in the GPS data collection 

are 17 years old. Instead there are slightly more participants in the other age groups, 

especially between the ages 18 to 29. The age groups from 30 to 59 have slightly lower 

shares. The remaining age groups have higher shares, where the oldest participant in the GPS 

data collection is 79 year old, while the oldest cyclists in the TU-survey are 85 years old. 

Compared to the TU-survey, there is a great deal larger share of students and slightly more 

pensioners, un-employed, and self-employed participants in the GPS data collection. The 

share of employee is considerable lower in the GPS dataset. There is some deviation between 

the share of respondents in each education level, where the main difference is in the number 

of participants in with student exams and with higher education. 
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TABLE 21: COMPARISON THE SOCIO-DEMOGRAPHICS OF THE GPS DATA SAMPLE TOGETHER WITH THE TU-SURVEY (HF IS ABBREVIATION FOR HIGHER 

PREPARATORY CERTIFICATE, HHX IS HIGHER COMMERCIAL CERTIFICATE, AND HTX IS HIGHER TECHNICAL CERTIFICATE) 

Variables GPS dataset TU-survey 

Gender   

Male 44.94% 38.36% 
Female 55.06% 61.64% 

Age group  

16-17 0.63% 1.38% 
18-24 14.56% 12.82% 

25-29 15.82% 9.98% 

30-39 24.05% 31.86% 

40-49 17.09% 22.19% 

50-59 12.34% 13.64% 

60-69 10.76% 6.24% 

70 and older 4.75% 1.90% 

Respondents main occupation  

Pupil 1.90% 0.70% 
Student 22.15% 5.85% 

Apprentice 0.00% 0.01% 

Pension 8.23% 2.98% 

Unemployed 5.70% 0.24% 

Pre-retirement 1.27% 0.07% 

Social benefits 0.63% 0.01% 

Homemaker 0.63% 0.01% 

Employee 53.8% 89.71% 

Self-employed 5.7% 0.41% 

Respondents education level 

1-10. class 8.86% 3.31% 
Student exam, HF 12.34% 7.47% 
HHX, HTX, Business college 3.48% 0.66% 

Other schooling 0.63% 0.42% 
Vocational 9.18% 10.75% 
Further education (1½ - 2 years) 3.48% 1.78% 
Further education (2 - 5 years) 37.97% 47.39% 

Further education (min 5 years) 24.05% 28.22% 
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Figure 46 shows the percentage distribution of cycling respondents per municipality in the 

Greater Copenhagen area. The figure, on the left, shows that the GPS dataset has the largest 

percentage of respondents in the city centre and in the municipalities around the centre. This 

is in line with the percentage of cyclists, in the study area, from the TU-survey, the figure on 

the right. When recruiting participants, there were very few candidates in the outer 

municipalities. This is because there are not as many cyclists in those municipalities. When 

contacting possible recruits, these municipalities were prioritised. However, either the 

possible participants were unobtainable or they were not interested in participating in the 

project, which resulted in no observations in those municipalities. 

 

  

FIGURE 46: PERCENTAGE DISTRIBUTION OF CYCLING RESPONDENTS PER MUNICIPALITY IN THE GREATER COPENHAGEN AREA. LEFT: GPS DATASET. 

RIGHT: TU-SURVEY 
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8.1.3 ADDITIONAL INFORMATION 

Along with collecting information on bicycle routes and travel diaries, additional information 

was also gathered. Geographical information on the location of respondent's home and work 

or place of study, collected in the TU-survey, was used to classify commuting trips by using 

GIS analysis, as described in subsection 8.1.3.1. This proved problematic, so the hourly split of 

cycling, during weekdays, was also extracted from the TU-survey to identify commuting trips. 

Subsection 8.1.3.2 describes how the bicycle trips were divided depending on the time of day. 

Information on sunrise and sundown in the Greater Copenhagen area was also collected in 

order to analyse whether there were differences in route preference between day and night 

times. Subsection 8.1.3.3 describes how the cyclists were categorised based on their average 

cycling speed. Finally, route preference was also analysed in relation to different 

environmental attributes, i.e., rainfall, temperature, and wind, as described in subsection 

8.1.3.4. 

8.1.3.1 COMMUTING TRIPS 

The geographic locations were used to classify commuting trips by connecting the location 

points, identified in the GPS post-processing, with the geographical location of the home 

address or the place of work/study within a buffer of 200 meters. The trips were categorised 

into commute trips if the trip started at home and ended at work or vice versa. After 

extracting all commuting trips with this method, there were only 281 commuting trips out of 

3,443 trips, or only 8.2%. In the travel survey, when bicycle was the primary mode selected, 

the share of trips to work was 33% and 6% to a place of study. Thus, this method proved 

ineffective in identifying commuting trips. This could be because travellers often combine 

other trip purposes with their commuting trips, such as dropping off/picking up children or 

buying groceries. 

8.1.3.2 TIME OF DAY 

The hourly split of cycling, during weekdays, was analysed by looking at the hourly split of 

bicycle trips for all of Denmark, including all trip purposes as reported in the TU-survey (see 

Figure 47). The results show that the morning peak hours are very clearly between 7 and 9. 

The afternoon peak hours are more widespread, most likely because travellers do other 

errands on the way home as discussed in 8.1.3.1. The maximum afternoon peak was between 

15 and 17. The hourly split of bicycle trips, collected by the GPS trackers, follows the similar 

split (Figure 48). 

 



149 

 

FIGURE 47: HOURLY SPLIT OF CYCLING, DURING WEEKDAYS, ACCORDING TO THE TU-SURVEY 

 

 

FIGURE 48: HOURLY SPLIT OF CYCLING, DURING WEEKDAYS, IN THE COLLECTED GPS DATA 
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investigate differences in route preference between weekends and weekdays. The total 

number of weekend trips was 669, while there were 2,774 weekday trips. 

In order to analyse whether darkness influences route choice, information on sunrise and 

sundown in the Greater Copenhagen area was collected and compared to the time of day 

each stage was conducted. There were 491 trips after sundown, while there were 2,952 trips 

during daylight. 

8.1.3.3 TYPE OF CYCLIST 

In the Greater Copenhagen area there are various types of cyclists, e.g., there is the fast 

sporty cyclist and the slower more leisurely cyclist. Whether there was any correlation 

between different age- and gender groups and the average speed (see Figure 49) was 

analysed. However, when averaging over age and gender there was little difference in 

average speed (12 to 15 km/h in the most extreme cases). 

 

 

FIGURE 49: AVERAGE SPEED OF CYCLISTS DIVIDED INTO AGE-GROUPS AND GENDER 
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FIGURE 50: AVERAGE SPEED, THE NUMBER OF CYCLISTS IN EACH INTERVAL 
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FIGURE 51: NUMBER OF BICYCLE TRIPS IN EACH RAINFALL (MM/HOUR) INTERVAL 

 

 

FIGURE 52: NUMBER OF BICYCLE TRIPS IN EACH SUNSHINE (MINUTES) INTERVAL 
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FIGURE 53: NUMBER OF TRIPS IN EACH AIR TEMPERATURE (°C) INTERVAL 

 

 

FIGURE 54: NUMBER OF BICYCLE TRIPS IN EACH WIND SPEED (M/S) INTERVAL 
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8.2 BICYCLE NETWORK DATABASE 
The bicycle network database is built on the topographic network FOT-kort10 (FOT-Kort10, 

2010) and TOP10DK (Kort & Matrikelstyrelsen, 2001). The two sources were compiled 

together in order to obtain a detailed bicycle network database, as illustrated in Figure 55. 

FOT-kort10 is a complete geographic network of roads and paths used by cyclists, containing 

attributes at a national standard. Most importantly the road network is seamless across 

municipality borders and was thus chosen as a base network. FOT-kort10 is expected to cover 

all of Denmark in 2012, but until then the Copenhagen, Tønder, and Åbenrå municipalities are 

missing. These areas are instead covered by TOP10DK. It is very important to have a highly 

detailed network, since cyclists are using paths that are not present in standard commercial 

digital maps made for GPS-based car navigation systems. 

The network was constructed together with the Data- and Modelcenter at DTU Transport, 

which corrected the topological errors in a 2011 version of FOT-kort10. A minor number of 

links was also added to the network manually, where map-matching results revealed gaps. 

This resulted in a very detailed network, comprising of 363,252 directional links and 270,018 

nodes for the Greater Copenhagen area. A full network is important for the overall 

completion of the final bicycle network, in order to include attributes describing physical 

surroundings, e.g., concerning motorised traffic or intersections. Then for the choice set 

generation, links can be excluded based on an attribute describing bicycle accessibility and 

roads, where cycling is illegal in Denmark, can be excluded from the calculation, such as 

motorways and expressways. Dead-ends, which do not contain any of the observed routes, 

are excluded from the network to minimise calculation time, as well as loops since those links 

cannot be used in the choice set generation. 
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FIGURE 55: BICYCLE NETWORK. LEFT: ZOOM OF THE COPENHAGEN REGION, RIGHT: ILLUSTRATION OF THE NETWORK DETAILS 

 

Relevant information from available data sources was then added to the network database, 

in order to obtain a more detailed network with characteristics considered important for 

cyclists (i.e., Open Street Map (OSM), the LTM road network (Rich et al., 2010), NAVTEQ 

(NAVTEQ, 2010), accidents crash database maintained by the Danish Road Directorate 

(Vejman), and intersection data (from the Danish Road Directorate)). For further information, 

see: Halldórsdóttir et al. (2013) and Pedersen and Senstius (2014), while appendix A gives an 

overview and a description of the network attributes. 

A rich set of network attributes was added to the base network. One attribute that is 

considered important, in analysing the route choice of cyclists, is the effect of different 

bicycle facility types. The collected information was joined to the base network, on the 

condition that the information gathered was already digitised. This required extensive work, 

both in verifying the accuracy of the data and in making it compatible with the base network. 

Road types are categorised as follows: (i) road, (ii) road with bicycle lane, (iii) road with 

bicycle path, (iv) bicycle path, (v) footpath, (vi) no bicycle access, and (vii) no access. Also, 

information on bicycle bridges, such as the one on “Den Grønne Sti”, a green path in 
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Copenhagen, was digitised in the bicycle network. Accordingly, it can be investigated whether 

the construction of more tall bridges will be beneficial to everyday cyclists and thereby 

promote more cycling. 

Information on the conditions of the bicycle network was collected, which can affect the 

choice of bicycle as a transport mode. An important factor on bicycle path condition is 

pavement type, i.e., whether the path is paved, if it is a gravel path, or whether it is a dirt 

path. 

Driving directions were extracted from various sources, and then the network was manually 

checked for errors in Copenhagen and the surrounding municipalities, but in all remaining 

areas of the network all links are consistently open in both directions. This quality control 

required a lot of work and is not without some errors. For example, not all driving restrictions 

for cars apply to bicycles. In addition, driving directions do not necessarily reflect actual 

bicycle behaviour as cyclists often choose to take a short cut by cycling on a pedestrian path, 

and thus cycle against driving direction. 

Even though Denmark has a relatively flat landscape, there are some areas that are 

considerably hilly. The routes can be analysed to discover how often cyclists choose to detour 

to avoid particularly hilly terrain and steep hills. The FOT-kort10 network has altitudes (z-

coordinates) on each point, including several intermediate points. Appendix A specifies in 

more detail how the gradients were expressed on each link. 

The network conditions along the routes were also included, i.e., motorised traffic type, time-

dependent traffic volumes, speed limit, number of motorised traffic lanes, motorised traffic 

bridges and tunnels, signalised intersections, and roundabouts. Accordingly, it can be 

investigated whether bicycle route choice is influenced by the conditions along the routes. 

The information on the main roads was provided through the NTM road network. 

Information on the remaining roads was collected from the NAVTEQ road network. 

Investigating whether land-use has an effect on cyclists’ daily travel patterns is also 

interesting. Thus, land-use information, from FOT-Kort10, was added to the bicycle network, 

e.g., residential area, city centre, industry, park, forest, and lake. Including information on the 

right and left side of the path, depending on the direction of the link. 

The Danish Road Directorate has a database that collects reported accidents for all of 

Denmark. Traffic accidents are only officially reported in two ways; by the police, if they 

witness them or are called to the scene; or if individuals involved in the accident turn to the 

emergency room. In addition, traffic accidents, where a bicycle was involved, are also only 

reported if the accident involved a motorised vehicle. This leads to a great deal of 
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underreporting of bicycle accidents. Additionally, not all accidents reported by the hospitals 

are reported by the police, or only between 6-7% of all slightly injured cyclists are reported by 

the police and between 14-15% of all severely injured cyclists (Janstrup et al., 2014). 

Information on accident patterns was added to the bicycle network as an indicator of 

approximate safety effects, where accidents from the last five years were added, a total of 

87,455. There are some challenges in relation to identifying routes that are more unsafe than 

others. A high level of reported accidents can be an effect of more traffic rather than the 

route being unsafe. Motorised traffic volumes can also be taken into account as an indicator 

for safety effects. 

After the bicycle network was constructed, the quality of the information was tested and 

validated by comparing different sources, where these were available. This was done through 

graphical validation and analysts’ knowledge of the study area. 
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The paper was then updated, rewritten, and published in the Computers, Environment and 

Urban Systems in May 2015. 

ABSTRACT 
GPS data collection has become an important means of investigating travel behaviour. This is 

because such data ideally provide far more detailed information on route choice and travel 

patterns over a longer time period than possible from traditional travel survey methods. 

Wearing a GPS unit is furthermore less requiring for the respondents than filling out (large) 

questionnaires. It places however high requirements to the post-processing of the data. This 

study developed and tested a combined fuzzy logic and GIS-based algorithm to process raw 

GPS data. The algorithm is applied to GPS data collected in the highly complex large-scale 

multi-modal transport network of the Greater Copenhagen area. It detects trips, trip legs, and 

distinguishes between five modes of transport. The algorithm was validated by comparing 

with a control questionnaire collected among the same persons and a sensitivity analysis was 

performed. This showed that the algorithm (i) identified corresponding trip legs for 82% of 

the reported trip legs, (ii) avoided classifying non-trips such as scatter around activities as trip 

legs, (iii) identified the correct mode of transport for more than 90% of trip legs, and (iv) were 

robust towards the specification of the model parameters and thresholds. The method thus 

makes it possible to use GPS for travel surveys in large-scale multi-modal networks. 

Highlights: 

 We develop and test a method to process raw individual-based GPS data. 

 The method relies on combined fuzzy logic, GIS analyses and feedback algorithms. 

 High fit rates in the detection of trips, trip legs and mode for Copenhagen case. 

 92% success rate across five modes with particular good rates for bus and rail. 

 The results were not highly sensitive to changes in the specification of the input. 

Keywords: GPS data processing; Revealed preference data; Multi-modal travel survey; 

Handheld GPS; GIS. 





163 

9.1 INTRODUCTION 
Global Positioning Systems (GPS) have been applied in various investigations of transport-

related issues over the last 20 years. These applications include, among others, (i) evaluation 

of system performance, such as measuring historical and real-time congestion and flow levels 

(Herrera et al., 2010; Li, Guensler, Ogle, & Wang, 2004; Quiroga, 2000; Quiroga & Bullock, 

1998), (ii) analysis of travel behaviour, such as response to road pricing schemes (Liu, Andris, 

& Ratti, 2010; Nielsen, 2004) or deviation from planned route (e.g., Papinski, Scott, & 

Doherty, 2009), (iii) estimation of route choice parameters in route choice models (Bierlaire, 

Chen, & Newman, 2013; Prato, Rasmussen, & Nielsen, 2014; Rich & Nielsen, 2007), and (iv) 

analysis of patterns of physical activity (Mavoa, Oliver, Witten, & Badland, 2011; Rainham et 

al., 2012). 

Much effort has been made in recent years to investigate the use of GPS devices as the data 

source for travel surveys (Bolbol, Cheng, Tsapakis, & Haworth, 2012; Gong, Chen, Bialostozky, 

& Lawson, 2011; Stopher, Jiang, & Fitzgerald, 2005; Wolf, 2000, etc.). When compared to 

traditional travel diaries, collecting data via GPS devices ideally provides the investigator with 

far more detailed information on travel times, used routes, and locations of activities. 

Another advantage of using GPS data is that it is not dependent on individuals’ (possibly mis-) 

perception of travel time, travel distance, and departure time (revealed preferences rather 

than stated preferences). In traditional travel diaries there is often a common problem of 

underreporting of trips (e.g., Forrest & Pearson, 2005; Stopher, Fitzgerald, & Xu, 2007). This 

problem is likely to be reduced when using GPS as all movements of participants are logged 

(Stopher, Clifford, Zhang, & Fitzgerald, 2008). Additionally, far less effort is required by the 

respondents as answering time-consuming questionnaires can be avoided. This enables larger 

sample sizes and data collection over a longer time period per respondent. 

Today GPS units are sufficiently accurate, lightweight and have long enough battery-life to 

make multi-day individual-based data collection possible for all conducted trips (e.g., Bolbol 

et al., 2012; Gong et al., 2011; Stopher & Shen, 2011). Such a data collection facilitates 

complete analyses and better understanding of individuals’ travel patterns. This includes 

choice of mode of transport, combination of modes, route choices in multi-modal transport 

networks, and day-to-day variations. 

Collection of GPS data generates very large data sets, containing millions of GPS logs and a lot 

of non-relevant data in the form of e.g. scatter or coordinates collected when the person is 

not travelling. The size of the data sets combined with issues related to e.g. signal loss and 

lack of qualitative information on routes and activities underline the truly complex nature of 

the post-processing of such data. Manual processing of the large data sets is highly 
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unfeasible. The possibility to utilise GPS data for travel surveys thus relies heavily on the 

availability of computer-based analysis tools which process the raw data set and convert the 

processed data into a format which is usable in the subsequent analyses of e.g. mode and 

route choice. This paper introduces such a method to process raw GPS data and to identify 

trips, trip legs, and mode used. The first part of the method is based on the POSDAP (2012) 

algorithm developed by Schüssler and Axhausen (2009). This is extended by a component 

that utilises disaggregate digital information on the infrastructure in combination with a 

Geographical Information System (GIS) to identify the mode used and to ensure that only 

actually performed trips are kept in the data set. The extension additionally includes 

algorithms to detect and correct illogical mode chains and transfers. The new method as well 

as the original POSDAP (2012) algorithm was applied to a multi-day individual-based GPS data 

set collected among families living in the Greater Copenhagen area. Corresponding traditional 

interview-based travel survey data were collected for each of the respondents for one of the 

days in the survey period. This made it possible to validate the results of the trip and mode 

identification algorithms. 

Section 9.2 of the paper presents a review of the existing literature focused on using GPS as a 

travel survey method. The new method is introduced in Section 9.3, while Section 9.4 

presents the case study and parameter specification used. Section 9.5 reports the results of 

the application. In Section 9.6 the applicability across case studies is discussed, and a 

sensitivity analysis towards changes in primary input parameters and thresholds is 

performed. Section 9.7 relates the results to findings in similar studies and concludes the 

work. A preliminary version of the work was presented in Rasmussen, Ingvardson, 

Halldórsdóttir, and Nielsen (2013). 

9.2 LITERATURE REVIEW 

9.2.1 GPS IN TRAVEL SURVEYS 

Technology limited the first travel surveys using GPS to be only vehicle-based, as the devices 

were large and the power consumption was high (Nielsen & Sørensen, 2008; Wagner, 

Neumeister, & Murakami, 1996; Yalamanchili, Pendyala, Prabaharan, & Chakravarthy, 1999). 

These early studies sought mainly to supplement telephone-based travel surveys by 

collecting additional data to e.g. identify detailed route choices, verify exact time of day as 

well as detect unreported trips (Wolf, 2000). Additional trip information such as trip purpose 

was specified by the respondents when starting a trip (Du & Aultman-Hall, 2007; Yalamanchili 

et al., 1999). This was often done on a connected personal digital assistant (PDA). 
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As GPS devices have become smaller and lighter, multi-modal GPS based travel surveys have 

become extensively applied as travel survey method. Draijer, Kalfs, and Perdok (2000) was 

the first study to expand a GPS-based data collection to support several modes of transport. 

Respondents were asked to wear a GPS and a PDA device on all trips. There was however a 

consistent underreporting of trips due to the size and weight of the devices (approx. 2 kg). 

These trips were walking, cycling, and public transport trips as well as trips with the purpose 

of shopping and visiting friends. The survey design demanded a constant effort from the 

participants, as the respondents were asked to turn the device on/off when starting/ending a 

trip and answer questions on the PDA. Several studies have combined GPS traces with 

additional information gathered by a travel survey questionnaire. Among these are the 

studies by de Jong and Mensonides (2003), Bohte and Maat (2009) and Tsui and Shalaby 

(2006). These used internet-based questionnaires where respondents needed to confirm the 

trips identified by the trip identification algorithm. Papinski et al. (2009) compared planned 

and observed route choices for 21 vehicle-based commuting trips in Kitchener–Waterloo in 

Ontario, Canada. The survey required a high effort by the respondents by performing a pre-

interview, GPS data collection, and a post-interview. 

Much has been done to reduce the effort needed by the respondents, and many studies 

today therefore do not ask participants to provide trip information en-route (Schüssler & 

Axhausen, 2009; Stopher & Shen, 2011). This however sets higher requirements to the post-

processing algorithms as these need to identify trip legs and mode of travel from raw GPS 

data consisting solely of time and space information. Later studies have proposed and 

analysed fully automatic GPS data processing methods (e.g., Schüssler and Axhausen (2009) 

and Bolbol et al. (2012)). These do not require any questionnaire data in the post-processing. 

Schüssler and Axhausen (2009) processed GPS data collected in Switzerland with no 

additional information provided by the respondents. The data set included 4,882 participants 

wearing the GPS devices for 6.65 days on average. The results were compared to the existing 

(national) travel survey. This showed that in aggregate figures the trip and mode 

identification only deviate slightly from that of the census data. However, the study did not 

perform any disaggregate evaluation of individual data. This was done in Bolbol et al. (2012), 

where 81 respondents wore a GPS device for 2 weeks but also answered a travel diary 

questionnaire. Based on speed and acceleration only, the study designated each trip to one 

of six different modes. When comparing to the travel diary it was found that most trips by 

car, train, bicycle, or walk could be inferred correctly. Some modes however had very similar 

speed and acceleration profiles, making it harder to distinguish between bus and metro, and 

between bus and bicycle. 

Alternative approaches utilising information on local spatial information in the identification 

have also been proposed (e.g., Bohte & Maat, 2009; Chen, Gong, Lawson, & Bialostozky, 
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2010; Chung & Shalaby, 2005; Gong et al., 2011; Schüssler, 2010; Stopher et al., 2005; Tsui & 

Shalaby, 2006). These methods and applications have shortcomings in either (i) not including 

modes which are important in an application to the Greater Copenhagen area (rail is not 

included in Chung and Shalaby (2005), and bicycles are not included in Chen et al. (2010) and 

Gong et al. (2011)), (ii) relying on prompted recall surveys where participants need to verify 

their trips (Bohte & Maat, 2009; Stopher et al., 2005), and/or (iii) including a very small 

sample of participants (only 9 participants in Tsui and Shalaby (2006)). These shortcomings 

were addressed in the present study. Moreover, the study included the five most dominant 

modes in the Greater Copenhagen area (walk, bicycle, bus, rail, and car) and 183 participants 

totalling 644 person days of travel. The five modes cover in total 97.5% of all trips undertaken 

in the Greater Copenhagen area (according to the Danish National Travel Survey 

(Christiansen, 2012)) and the sample size is sufficiently large to validate the algorithms. 

9.2.2 POST-PROCESSING OF GPS DATA 

Post-processing of raw GPS data typically involves four steps, namely (i) GPS data cleaning, (ii) 

trip and activity identification, (iii) trip segmentation into single-mode trip legs, and (iv) mode 

identification. The approach varies slightly between studies, e.g. steps (ii) and (iii) are 

performed jointly in Stopher et al. (2005). Some analyses subsequently apply additional steps. 

Chen et al. (2010), Stopher et al. (2005) and others infer the purpose of the trips identified, 

while Schüssler and Axhausen (2009) map match the identified trip legs onto the 

corresponding modal networks. 

Most analyses set off with a cleaning and filtering step, where systematic and random errors 

are removed from the data. This is often conducted by use of the number of satellites visible 

and the Horizontal Dilution Of Position (HDOP) (Nielsen & Jørgensen, 2004; Stopher et al., 

2005). Random errors can be dealt with by including a data smoothing algorithm (Schüssler & 

Axhausen, 2009). 

Trip end points (activity points) are often identified at a location where the device has been 

stationary for a period of time and/or if the spatial density of observations has been high for 

a period of time (Schüssler & Axhausen, 2009; Stopher et al., 2005). The result is a number of 

trips which are defined as being from one activity point to the next. This approach was 

evaluated in Schüssler (2010). The study finds that the algorithm correctly detected 97% of 

stated activities without detecting any false activities. Most studies further split trips into trip 

segments (or trip legs), defined by a change of mode. Correct trip segmentation is crucial for 

the subsequent identification of the mode of travel of the trip legs. de Jong and Mensonides 

(2003) divide trips into trip legs whenever the speed drops to 0 km/t, with the option to 

combine segments again if no mode change occurred. Schüssler (2010) and Tsui and Shalaby 

(2006) initially identify walking segments if speed and acceleration are low. This is done 
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under the assumption that trip legs of all other modes are preceded or followed by such short 

walking segments (or by time gaps). 

Several studies find that most modes can be identified by only using the speed and 

acceleration profiles gathered by the GPS device. Moreover, Bolbol et al. (2012) found that 

using the acceleration profile rather than the speed profile induces better results when 

distinguishing between modes. The best results were however found when combining the 

two profiles. This is an easy and efficient approach for the correct identification of some 

modes. Certain modes can however not be clearly distinguished by such an approach. For 

example, Bolbol et al. (2012) found that bus and bicycle trips in the Greater London area have 

similar speed and acceleration profiles. Tsui and Shalaby (2006) found that bus characteristics 

overlap with characteristics of several other modes. 

Other techniques have been proposed to improve the mode detection. Among these are the 

application of map matching to mode-specific networks by use of GIS-software (e.g., Bohte & 

Maat, 2009; Chen et al., 2010; Chung & Shalaby, 2005; Gong et al., 2011; Schüssler, 2010; 

Stopher et al., 2005; Tsui & Shalaby, 2006). In Gong et al. (2011) rail and bus trip legs are 

identified based on the proximity of start and end locations to rail stations and bus stops. A 

similar approach for bus trip legs is proposed in Schüssler (2010). Using the proximity to bus 

stops of start and end locations to identify bus trips seems insufficient in urban areas where 

the bus network is extensive; trip legs starting and ending near bus stops might have been 

done by e.g. bicycle rather than by bus. Another approach is to utilise available information 

about the respondents implicitly in the identification of modes. Stopher et al. (2008) allow car 

or bicycle as mode for a trip leg only if the household has a car or bicycle at its disposal, 

respectively. However, these approaches have limitations if applied to a typical Scandinavian 

city where the bus network is extensive and the ownership and use of bicycles is relatively 

high.1 

9.3 METHODOLOGY 
This study develops and tests a fully automatic method to post-process GPS data without 

requiring any information about or from the person carrying the GPS unit. The method 

performs, and iterates between, a series of steps. These steps identify activities (trip ends), 

trip legs and the most probable mode chosen. The method is based on the automatic trip and 

mode detection algorithm developed in Schüssler and Axhausen (2009). This is modified in 

order to improve the results in three ways; (i) GIS analyses are used to better distinguish 

                                                           
1 80% of the inhabitants in Copenhagen have access to a bicycle (2012), and bicycling 
constitutes 36% (2012) of the trips (Municipality of Copenhagen, 2014). In the city of Odense 
bicycling constitutes 24% (2012) of the trips (Municipality of Odense, 2014). 
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between modes with similar speed and acceleration characteristics, (ii) advanced feedback 

loops between steps are used, allowing inconsistent mode-sequences to alter the trip leg 

detection algorithm, and (iii) map matching is used to exclude non-trips and hinder wrongly 

splitting trips on motorways. The method consists of a 6-step process as shown in Figure 56. 

The following subsections present a detailed description of the steps of the method. 

 

 

FIGURE 56: APPROACH USED IN THIS STUDY. BOXES HIGHLIGHTED IN LIGHT RED DENOTE STEPS THAT ARE SIMILAR TO CORRESPONDING STEPS IN 

SCHÜSSLER AND AXHAUSEN (2009). BOXES HIGHLIGHTED IN DARK RED ARE STEPS WHERE THIS PAPER CONTRIBUTES WITH NEW METHODS 

 

9.3.1 GPS DATA CLEANING, TRIP IDENTIFICATION AND TRIP SEGMENTATION 

The method initially cleans the data to remove erroneous observations, identifies activities 

thereby allowing the derivation of the trips, and subsequently segments these trips into trip 

legs. These three steps are directly adopted from Schüssler and Axhausen (2009). The data 

are cleaned based on the altitude level as well as the number of satellites visible and their 

dispersion (HDOP value). A Gauss kernel smoothing approach is applied to remove systematic 

errors and perform data smoothing. Activities (trip ends) are identified as locations where the 

bearer of the GPS device has been stationary for a period of time. Stationarity is not defined 

as ‘complete’ stationarity with no movement at all, since observations may be caught e.g. 

when walking within office-buildings which are not actual trips. Consequently, activities may 

be identified when the GPS unit (i) has not logged positions for a period of time (GPS units 

turn off if completely stationary), (ii) has been moving at a very low speed during a time 

period, or (iii) has been located within a limited area for a period of time. A trip between two 
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Trip and activity 
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activities might involve several trip legs with different modes of transport or with different 

vehicles of the same mode (e.g. changing between train lines). Trip legs are identified by 

assuming that a short walking segment is needed between modes or when changing vehicles, 

and the unique characteristics of walking (low acceleration and low speed) are used to 

identify these walking segments. 

9.3.2 MODE IDENTIFICATION 

Each trip leg is associated with a most probable mode of transport. In Schüssler and Axhausen 

(2009) and in Bolbol et al. (2012) this is done based on speed and acceleration profiles. 

Driving conditions in metropolitan areas however range from being slow moving traffic 

through congested urban areas to fast moving traffic on motorways. Additionally, in urban 

areas it is hard to distinguish whether the respondent is driving in a bus or following close 

behind it in a car, or even biking next to it. These factors make it hard to distinguish modes 

solely based on the speed and acceleration profiles. The method proposed in the present 

study seeks to improve the mode identification by proposing the three-step mode 

identification process illustrated in Figure 57. The process is step-wise and utilises the speed 

and acceleration profiles as well as conduct advanced analyses in GIS software using digital 

representations of the infrastructure. The steps are explained further in the following 

subsections. 

 

 
 

FIGURE 57: THE STEPWISE MODE CLASSIFICATION ALGORITHM. CONTINUOUS ARROWS DENOTE MODE CLASSIFICATION WHEREAS DOTTED ARROWS 

DENOTE NO CHANGE FROM PREVIOUS STEP. STEP 2 IS DIRECTLY ADOPTED FROM SCHÜSSLER AND AXHAUSEN (2009), BUT WITH ADAPTED FUZZY LOGIC 

RULES 
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9.3.2.1 STEP 1: RAIL PROXIMITY 

Rail networks are typically characterised by not having the same spatial location as the street 

and path network (with the exception of on-street light rail and tram lines). This provides a 

way to, with a high chance of success, determine the correct mode for rail trip legs based on 

their proximity to the alignment of the rail network. The method performs a spatial analysis 

in GIS to identify the proximity of GPS observations to the rail network. If a large share of the 

observations of a trip leg is located within the proximity of the rail network, the trip leg is 

classified as a rail trip leg. Note that not 100% of the observations have to be identified as 

being in the proximity of the network. This accounts for potential small errors in the digital 

representation of the rail network and possible measurement errors of the GPS units. Also, a 

trip leg can only be classified as rail if it is longer than the length of the longest station 

platform in the network. This is required to avoid classifying within-platform walking trips as 

rail trip legs. 

9.3.2.2 STEP 2: FUZZY LOGIC RULES 

The next step assigns a mode of transport (walk, bicycle, car, or bus) to the remaining trip 

legs based on the speed and acceleration characteristics of the trip legs, as also done in 

Schüssler and Axhausen (2009). Hence, a mode of transport is assigned to each trip leg by 

dividing the profiles representing the median speed and peak values, e.g., 75–95 percentiles, 

of speed and acceleration into certain intervals and applying fuzzy logic rules across these for 

each trip leg (Gong et al., 2011; Schüssler & Axhausen, 2009; Stopher et al., 2005; Tsui & 

Shalaby, 2006). This means that a trip leg with a very high median as well as peak speed and 

acceleration is classified as car, since these characteristics are unique for car trips. Similarly, 

walk and bicycle trip legs have much lower acceleration and maximum/average speed making 

it possible to classify these. 

Applying fuzzy logic rules to the speed and acceleration profiles however do not uniquely 

separate all modes (e.g., Bolbol et al., 2012; Tsui & Shalaby, 2006); car trips and bus trips may 

have highly overlapping speed and acceleration profiles in congested urban areas. More 

advanced analyses are thus needed to separate bus and car trips, and the method uses a 

twofold approach for this. Initially, the acceleration and speed profiles are used to distinguish 

between trip legs which can be assumed to definitely be car trips and trip legs which are 

either car or bus trips. Trip legs which are definitely car trips have very high speed and/or 

acceleration which cannot be obtained by buses. Trip legs which are either car or bus trip legs 

(defined as potential bus trips) have characteristics which do not allow a separation based on 

the profiles. Through this, the set of potential bus trips includes all actual bus trips and a large 

subset of car trips. Subsequently, the identification of actual bus trips among this set of 

initially classified potential bus trips are done in step 3 (Section 9.3.2.3). The trip legs not 
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classified as bus trips in step 3 can be assumed to be car trips and added to the set of already 

identified car trip legs. 

9.3.2.3 STEP 3: BUS LINE ALIGNMENT 

The subset of potential bus trips are analysed in terms of coherence between GPS-recorded 

stop locations and bus line bus stops in order to identify whether the trip follows the 

stopping pattern of any bus line. 

An initial step of the identification specifies that if at least a certain number of GPS 

observations are located within the proximity of a bus stop, the algorithm flags the trip leg as 

stopping at the bus stop. The distance and number of observations should reflect (i) the time 

a bus typically stops at a bus stop (longer than when just passing), and (ii) the length of two 

buses to account for the instance of two buses stopping at the same bus stop at the same 

time. Next, if the GPS trace stops at a certain share of potential bus stops between boarding 

and alighting stops on any bus line, the trip leg is flagged as a probable bus trip (on bus line(s) 

fulfilling this criterion). The threshold for the share of bus stops should reflect the 

characteristics of the bus line, e.g., a low threshold should be applied for bus lines with few 

passengers where the bus often does not stop at all bus stops and a higher threshold should 

be used for high demand bus lines (high level-of-service). 

Subsequently, the trip legs in the sample of probable bus trip legs are analysed with regards 

to the location of their start and end. The start point and end point of each trip leg are 

analysed to see if they are both located within a certain distance from a bus stop on any of 

the bus lines identified previously. If this is the case, the trip leg is classified as a bus trip. 

Otherwise the trip leg is classified as a car trip. An additional benefit of applying this method 

is the identification of the most probable actual bus line used. Also note that while the rail 

proximity analysis (step 1) cannot capture trips using on-street rail lines such as e.g. trams or 

light rail, these can be identified by including trams and light rail in the bus line alignment 

algorithm. 

9.3.3 ALGORITHMIC FEEDBACK 

The trip leg and mode identification is improved by identifying and correcting illogical mode 

shift patterns in a subsequent feedback step. This is done to avoid wrong trip leg splitting and 

modal classification due to irregular changes in speed and/or acceleration for a trip leg. Such 

irregularities could e.g. arise in congested stop and-go traffic or if a bus has a long dwell time 

at a stop. The feedback algorithm uses simple rules to identify irregular mode changes and is 

based on a set of probable mode transfers. For example, it is likely that a bicycle trip leg 

follows or precedes a bus trip leg as some passengers might bicycle to and from the bus stop. 
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It is however not very likely that a bicycle trip leg is followed by a car trip leg with only a short 

time gap between the trip legs. 

9.3.4 MAP MATCHING 

The initial data cleaning seeks to remove scatter observations. The cleaning may however 

have failed to remove all such observations, and the subsequent trip leg and mode 

identification may have identified some non-trips. Non-trips are e.g. short trip legs generated 

as a consequence of the GPS device being turned on when no trip was actually undertaken 

(e.g. when persons are walking inside their home). The method removes these non-trips by 

map matching all trip legs (except rail trip legs) to a disaggregate network representation of 

the infrastructure. This map matching is done using an algorithm developed by Nielsen and 

Jørgensen (2004). Trip legs which cannot be map matched properly are classified as non-trips 

and removed from the data set (if none or only a little share of the mapped route is found by 

mapping of actual GPS observations2). The map matching also allows detecting and correcting 

trip legs which are wrongly split due to congestion on motorways; if the matched last link and 

first link of two consecutive trip legs are a motorway or a ramp then the two trip legs are 

merged into one. The mode of the merged trip leg is determined by re-running the mode 

classification on the merged trip leg. 

9.4 CASE STUDY: GREATER COPENHAGEN AREA 

9.4.1 GPS DATA 

The study area covers the Greater Copenhagen area in which approximately 2 million people 

live. The study utilised data which were collected as part of the ongoing research project 

‘‘Analyses of activity-based travel chains and sustainable mobility’’ (Hansen, 2014). The data 

set included 53 households, corresponding to 183 persons from 6 to 58 years of age. The 

households were sampled from the Danish National Travel Survey (Christiansen, 2012). All 

participants were asked to bring a GPS device on all trips undertaken within a period of 3–5 

days. Additionally, each respondent was asked to fill in an internet-based travel diary 

corresponding to one of the days for which GPS data were also collected. This enabled a 

validation of the proposed method. 

The travel diaries were linked to the recorded GPS observations resulting in travel diaries 

with corresponding GPS data for 101 persons. Consequently, there were 82 persons for which 

data could not be linked. An analysis identified that this was due to one of the following three 

                                                           
2 In cases where only a part of the observed route can be map matched, the map matching 
algorithm generates the shortest path between links to which observations can be mapped. 
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reasons; (i) the respondent failed to answer the survey for a day where he/she also carried a 

GPS device, (ii) no or only few GPS data were collected for the day where the survey was 

filled in, or (iii) there was a large difference between the number of trips reported and what 

could be seen in the GPS traces. 

The GPS device was the wearable KVM BTT08 M (KVM, 2013). It logged data every second, 

thereby facilitating a high level of accuracy for the identification of en route travel choices 

and the location of trip ends. The data set contained in total 6,419,441 collected GPS points 

(observations) corresponding to 1,783 h of travel (including stationary and error data), and 

was collected on 644 person days of travelling. 

The GIS-based analyses utilised a detailed digital representation of the road and public 

transport networks of the Greater Copenhagen area. The road network was based on the 

road network of NAVTEQ (2010) and was in a format that allowed for a complex map 

matching algorithm to be run (Nielsen & Jørgensen, 2004). The public transport network used 

for mode identification of rail trip legs was a digital representation of the rail line alignment. 

The analysis distinguishing between bus and car utilised a disaggregate public transport 

network representation containing information on bus route alignment and stop locations for 

all bus lines and bus line variants. 

9.4.2 CONFIGURATION 

9.4.2.1 GPS DATA CLEANING, TRIP IDENTIFICATION AND TRIP SEGMENTATION 

The method was based on the method of Schüssler and Axhausen (2009). However, some 

values were adjusted to fit the local setting. In the data cleaning step only observations with 

altitude levels between 37 m and +201 m were regarded as acceptable as this is the altitude 

range in Denmark +/30 m. 

A trip was identified when one of three criteria were met, as described in Section 9.3.1. In the 

implementation these three criteria translate into the following; (i) if there was a time gap 

between consecutive observations of 120 s or more, (ii) if the speed had been lower than 

0.01 m/s for at least 60 s, or (iii) if the location of the GPS device was within a limited area for 

at least 60 s. Trip legs were defined based on the identification of short walking segments 

between trip legs similar to in Schüssler and Axhausen (2009). A test of different values of the 

thresholds however led to a slight modification of some of the thresholds, e.g. a lower 

maximum speed when identifying walking trip legs due to the large variation of speeds of the 

extraordinarily many bicycle trips performed in Copenhagen. 
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9.4.2.2 MODE IDENTIFICATION 

Rail trip legs are easy to identify as the rail network in the Greater Copenhagen area does not 

follow the street and path network. Consequently, a trip leg was classified as being a rail trip 

if more than 75% of the observations in one trip leg were located less than 25 m from the rail 

network. Additionally, the length of a rail trip leg was required to be at least 250 m. This is 

less than the shortest distance between railway stops in the Greater Copenhagen area, but 

longer than the longest platform. An example of a successfully identified rail trip leg is shown 

in Figure 58. In this example almost 98% of the observations for the trip leg were located 

within 25 m of the rail network. 

 

 

Trip leg information 
Date: 
Starting time: 
Ending time: 
Trip length: 
Number of obs.: 
Number of obs. within 25m: 
Percentage rail: 

 
09-11-2011 
16:07:01 
16:22:53 
15 min 52 sec 
947 
924 
97.6% 

FIGURE 58: EXAMPLE OF A RAIL TRIP LEG (SHOWN WITH RED) ON THE DANISH S-TRAIN RING LINE (RINGBANEN) IDENTIFIED BY THE RAIL PROXIMITY 

ALGORITHM. THE RAILWAY NETWORK IS HIGHLIGHTED BY BOLD BLACK LINES, AND STATIONS WITH GREEN DOTS 

 

The study used the 95 percentiles to represent peak speed and acceleration in the fuzzy logic 

rules. Each profile was divided into three or four (possibly overlapping) intervals. The division 

was based on an empirical analysis of the sample of trip legs in the data for which the mode 

was known, see Figure 59. Subsequently, the fuzzy logic rules reported in Table 22 were 

applied to classify each of the remaining trip leg as either walk, bicycle, car, or potential bus 

trips. 
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FIGURE 59: THE DISTRIBUTIONS OF THE 95TH PERCENTILES OF SPEED AND ACCELERATION AND THE MEDIAN SPEED FOR THE SUBSET OF TRIP LEGS FOR 

WHICH THE MODE IS KNOWN (RAIL EXCLUDED) FROM THE CONTROL QUESTIONNAIRE 
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TABLE 22: FUZZY LOGIC RULES APPLIED 

95th percentile acceleration 95th percentile speed Median speed Mode classification 

Low Low Very low Walk 

Low Medium Very low Walk 

Low High Very low Bike 

Medium Low Very low Walk 

Medium Medium Very low Walk 

Medium High Very low Bike 

High - Very low Car 

Low Low Low Walk 

Low Medium Low Bike 

Low High Low Bike 

Medium Low Low Bike 

Medium Medium Low Bike 

Medium High Low Bus 

High Low Low Bus 

High Medium Low Car 

High High Low Bus 

Low Low Medium Bike 

Low Medium Medium Bike 

Low High Medium Car 

Medium Low Medium Bike 

Medium Medium Medium Bike 

Medium High Medium Car 

High Low Medium Car 

High Medium Medium Car 

High High Medium Bus 

Low - High Car 

Medium - High Car 

High - High Car 
 

The bus line alignment algorithm identified bus trip legs among the set of potential bus trips. 

A trip leg was defined as stopping at a given bus stop if at least 10 observations were logged 

within 25 m from the bus stop. The threshold for the minimum share of bus stops stopped at 

was set at 60% for low demand bus lines and 75% for high demand bus lines. 100 m was used 

as threshold for the distance of start and end point from stops on relevant bus lines.  

Figure 60 shows two examples of the application of the method. The example to the left is an 

actual bus trip, whereas the example to the right is an actual car trip. In the example to the 

left the GPS carrier stopped at 14 out of 19 bus stops of bus line 68. The trip leg also began 
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and ended close to bus stops on this line. This caused the trip leg to be correctly classified as 

a bus trip leg. In the example to the right, the GPS carrier stopped at several stops along bus 

line 161. The trip leg was however correctly classified as a car trip leg. This is because the trip 

leg started and ended more than 100 m away from a bus stop served by bus line 161. 

 

Actual bus trip Actual car trip 

  
Trip information 
Date:   09-11-2011 
Starting time:  16:41:24 
Ending time:  16:53:18 
Trip length:  11 min 54 sec 
 
Bus line stop overlap # stops Hit% 
200S   2/2 100% 
300S   2/2 100% 
68   14/19 74% 
 
Origin stop:  68 
Destination stop: 200S/300S/68 
Classified as:  Bus trip 
Actual bus line: 68 

Trip information 
Date:   09-11-2011 
Starting time:  06:42:26 
Ending time:  06:49:07 
Trip length:  6 min 41 sec 
 
Bus line stop overlap # stops Hit% 
161   3/5 60% 
 
 
 
Origin stop:  None 
Destination stop: None 
Classified as:  Car trip 
Actual bus line: - 

FIGURE 60: EXAMPLE OF RESULTS FROM THE BUS STOP ALGORITHM. THE LINES REPRESENT RELEVANT BUS LINES, WHILE BLACK AND GREEN DOTS 

REPRESENT GPS POINTS AND STOPS, RESPECTIVELY 
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9.4.2.3 ALGORITHMIC FEEDBACK 

The algorithmic feedback mechanism searched for sets of two or three consecutive trips legs 

fulfilling certain criteria indicating non-likely mode-sequences and wrong split of trips, e.g. 

due to congestion. The search criteria and the resulting mode classification of the joined trip 

legs are listed in Table 23. 

 
TABLE 23: FEEDBACK ALGORITHMS JOINING TRIP LEGS. ΔTIME AND ΔSPACE REFER TO TEMPORAL AND SPATIAL DISTANCES BETWEEN END OF TRIP A 

AND START OF TRIP B (C FOR 3 LEG CASES), RESPECTIVELY. ORDER IS THE CLASSIFICATION OF THE 2 (3) TRIP LEGS AND CLASSIFICATION IS THE MODE 

ASSIGNED TO THE MERGED TRIP LEG 

 ΔTime ΔSpace Order Classification 

2 consecutive trip legs 
AB 

 ≤ 120sec. ≤ 25m Car-Bicycle 
Bicycle-Car 

Rerun mode identification 

Bus-Car 
Car-Bus 

Probable bus trip 

3 consecutive trip legs 
ABC 

≤ 300sec. ≥ 25m Car – Bus – Car Car trip 
Car – Bicycle – Car Car trip 
Car – Train – Car Car trip 
Car – Walk – Car Car trip 
Bicycle – Bus – Car Car trip 
Bicycle – Bicycle – Car Car trip 

Bicycle – Bus – Car Car trip 

Bicycle – Train – Car Car trip 
Bicycle – Walk – Car Car trip 
Car – Bus – Bicycle Car trip 

Car – Bicycle – Bicycle Car trip 
Car – Train – Bicycle Car trip 
Car – Walk – Bicycle Car trip 

 

9.4.2.4 MAP MATCHING 

The map matching used the NAVTEQ road network (NAVTEQ, 2010). Non-trips were 

identified and removed when either no GPS observations could be map matched or if less 

than 50% of the mapped route was found by mapping of actual GPS observations. 

9.5 RESULTS 
Two configurations of the method were tested on the available data set; 

(i) Algorithm 1 without map matching including trip leg and mode identification as 

well as feedback algorithm (Sections 9.3.1–9.3.3), but excluding the map 

matching algorithm, 
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(ii) (ii) Algorithm 2 with map matching including Algorithm 1 without map matching 

and the map matching algorithm (Sections 9.3.1–9.3.4). 

The effect of including the map matching could be evaluated by comparing the results 

generated by the two algorithms. A ‘‘traditional’’ Baseline algorithm was also tested for 

comparison. This included trip leg and mode identification as proposed by Schüssler and 

Axhausen (2009), i.e. with the mode identification step based solely on fuzzy logic rules. 

Different configurations of intervals as well as rules were tested for each of the three 

algorithms, and the best configuration was chosen for each algorithm. 

The algorithms were run on the full data set consisting of approximately 644 person days of 

travel. The calculation time on a quad-core computer was less than two hours for the entire 

algorithm (Algorithm 2 with map matching), and most time was used for step 3 of the mode 

identification algorithm (the bus line algorithm). The algorithm was run using a batch-script 

calling Python for spatial analyses (Python scripts call analysis tools of the ArcGIS software 

package) and SAS for the numerical analyses and aggregation. The remainder of the section 

only report the results obtained when using a data subset where the travel mode was known 

from the additional questionnaire. This included trips that were directly connected to the 

travel diary data supplied by the respondents as well as trips where in-depth investigation 

made it possible to deduct the travel information manually. The results of the mode 

identification were evaluated using two assessment measures. The first measure is the 

success rate which denotes the number of correctly classified trip legs by the algorithm as 

percentage of the number of observed trip legs of that mode. The second measure is the 

confidence rate which denotes the number of correctly classified trip legs by the algorithm as 

percentage of the number of trip legs of that mode identified by the algorithm. Thus, the 

latter refers to the percentage of trip legs in the output of the algorithm where the mode was 

correctly identified. Hence, the first measure relates to the observed travel survey trip legs 

whereas the second measure relates to the trip legs in the output of the algorithm which may 

also include non-trips (see Section 9.3.4). 

9.5.1 TRIP LEG IDENTIFICATION 

The total number of trip legs identified was 752, 741 and 427 if using the Baseline algorithm, 

Algorithm 1 without map matching and Algorithm 2 with map matching, respectively. This 

compares to the total number of reported trip legs in the subset of the travel survey of 521. 

Three sources of error influenced these numbers. 

(i) There were trip legs in the travel survey where no corresponding GPS trip legs 

could be identified. This could be due to either the respondent not wearing the 



180 

GPS device, the GPS device not being able to get an acceptable signal or the 

device not functioning properly. 

(ii) Some trip legs were identified by the algorithm even though no corresponding 

trip information was reported by the respondents in the diary. This error was 

partly due to underreporting by the respondents. Underreporting has also been 

observed in other studies including Stopher et al. (2007) and Wolf, Oliveira, and 

Thompson (2003). Another reason was the identification of non-trips (see Section 

9.3.4). 

(iii) The algorithm sometimes wrongly separated a trip leg into several trip legs due 

to long dwell times while travelling. This could for example occur in stop-and-go 

congested traffic. The opposite was also observed, namely that several actual trip 

legs were identified as one trip leg if the dwell time(s) between trip legs was very 

low. 

Figure 61 illustrates the results of a comparison between the trip legs identified by the 

algorithms and the trip legs reported by the respondents. 

 

 

FIGURE 61: CLASSIFICATION OF TRIP LEGS IDENTIFIED BY THE ALGORITHMS 
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The Baseline algorithm generated trip legs with the correct origin and destination for 45% of 

the identified trip legs. 28% of the identified trip legs were partial trip legs, i.e. one reported 

trip leg was identified as two or more trip legs by the algorithm. A further 24% of the 

identified trip legs were non-trips which should not have been detected as a trip leg. The 

remaining 4% represents trip legs that either included several actual trip legs (not split 

correctly) or trips where observations had a too low quality for general usage. 

The stepwise mode classification algorithm and the feedback algorithm improved the results 

(Algorithm 1 without map matching). Fewer trip legs were identified and more trip legs were 

correctly identified. Additionally, the feedback algorithm caused fewer actual trip legs to be 

wrongly split into several trip legs, as eleven partial trip legs were successfully connected into 

actual complete trip legs. The map matching algorithm of Algorithm 2 with map matching 

connected further nine trip legs successfully into four actual trip legs and 143 trip legs were 

correctly removed from the sample, cf. Figure 61. However, further analysis showed that 

some trip legs which should be merged remained unconnected. Overall, the best results were 

achieved when using Algorithm 2 with map matching as this identified the entire actual trip 

leg as one trip leg in 59% of the cases, and the entire actual trip leg as one or several trip legs 

in 93% of the cases. Additionally, the percentage of wrongly identified trip legs (non-trips) 

dropped to a very low level (3%). An analysis of the distribution of the length of the resulting 

trip legs found that many of the trip legs removed by Algorithm 2 with map matching were 

short non-trips. This induces that Algorithm 2 with map matching generated the best 

coherence with the length of the reported trip legs. 

9.5.2 MODE IDENTIFICATION 

This section presents the methods’ capability to identify the correct mode of transport of the 

trip legs. Table 24 reports the results of a disaggregate comparison between the mode 

identified by the algorithm and the actual chosen mode (success rate) for the Baseline 

algorithm. Approximately 82% of the trip legs were assigned the correct mode of transport 

when only considering trip legs which were actual trip legs. Table 25 reports the 

corresponding results for Algorithm 1 without map matching. The success rate obtained is 

90%. Consequently, results were improved considerably by including the stepwise mode 

classification algorithm and feedback algorithm. Especially the method to identify rail trips 

was very efficient – using the fuzzy logic rules caused 24% of the rail trip legs to be correctly 

identified, whereas the corresponding number for Algorithm 1 without map matching was 

97%. Applying the method proposed to identify car and bus trips also improved the results 

considerably, as the success rate for bus rose from 38% to 76% while the success rate for car 

rose from 82% to 93%. The success rates for walking and bicycling reduced slightly for 

Algorithm 1 without map matching when compared to the Baseline algorithm. 
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TABLE 24: THE RESULTS OF THE MODE IDENTIFICATION WHEN USING BASELINE ALGORITHM (COMPARED TO REPORTED MODE USE) 

 Observed       

Algorithm Walk Bicycle Bus Car Rail Non-trips  Confidence rate 

Walk 184 12 2 6 - 118  57.1% 

Bicycle 9 121 - 13 - 53  61.7% 

Bus - 1 14 9 - 2  53.8% 

Car - 4 21 143 25 2  73.3% 

Rail - - - 3 8 1  66.7% 

Other - - - - - 1  - 

Total 193 138 37 174 33 177  62.2% 

Success rate 95.3% 87.7% 37.8% 82.2% 24.2% - 81.7% 

 

Table 24 and Table 25 however also highlight a weakness of the two approaches. Both 

approaches identified many trip legs which were not reported in the diary (non-trips 

generated due to e.g. scatter). This induced the overall confidence rates to be 62% and 69% 

for the Baseline algorithm and Algorithm 1 without map matching, respectively. The stepwise 

mode classification algorithm classified trip legs considerably better, especially for bicycle, 

bus (no generated bus trip legs were wrongly classified) and rail. Summarising, the 

comparison between the Baseline algorithm and Algorithm 1 without map matching showed 

that applying the stepwise mode classification algorithm and the feedback algorithm 

improved the mode classification (especially the success rate) considerably. The two 

algorithms however – as also found in Section 9.5.1– identified many non-trips. 

 
TABLE 25: THE RESULTS OF THE MODE IDENTIFICATION WHEN USING ALGORITHM 1 WITHOUT MAP MATCHING (COMPARED TO REPORTED MODE USE) 

 Observed       

Algorithm Walk Bicycle Bus Car Rail Non-trips  Confidence rate 

Walk 180 11 2 2 - 117  57.7% 

Bicycle 2 114 - 6 - 16  82.6% 

Bus - - 28 - - -  100.0% 

Car 4 8 7 156 1 41  71.9% 

Rail 3 - - - 33 2  86.8% 

Other 3 1 - 3 - 1  - 

Total  192 134 37 167 34 177  
69.2% 

Success rate 93.8% 85.1% 75.7% 93.4% 97.1% - 90.6% 
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Many of such non-trips were removed when adding the map matching algorithm of 

Algorithm 2 with map matching (see Section 9.5.1). This improved the overall confidence rate 

from 69% to 91% (Table 26). The improvement in confidence rate was however at the cost of 

also removing a large number of generated trip legs for which a corresponding observed trip 

leg exists. Specifically, many actual trip legs undertaken by foot or bicycle were discarded by 

the map matching algorithm (e.g., short walking trips through parks, etc.). This was probably 

a consequence of the map matching being conducted on a road network not including bicycle 

paths and footpaths. The row denoted by ‘‘Success rate (all)’’ highlights this issue. The 

measure represents the share of the total number of observed trip legs for which a generated 

trip leg with the correct mode was identified. 

All trip legs identified as bus by the proposed algorithms were correctly classified (confidence 

rate), but some actual bus trips were wrongly classified (success rate). A disaggregate analysis 

identified two primary reasons for this. The first reason was problems associated with the trip 

leg identification algorithm and the feedback algorithm. The trip leg identification algorithm 

caused some actual bus trips to be wrongly split into several trip legs due to congestion, 

longer dwell times, etc. The feedback algorithm subsequently failed to identify and reconnect 

these. The other reason was the actual stopping pattern of the buses. At times some buses 

may have skipped a large percentage of stops, e.g. during evening hours where fewer 

passengers board the bus. 

 
TABLE 26: THE RESULTS OF THE MODE IDENTIFICATION WHEN USING ALGORITHM 2 WITH MAP MATCHING (COMPARED TO REPORTED MODE USE) 

 Observed       

Algorithm Walk Bicycle Bus Car Rail Non-trips  Confidence rate 

Walk 75 5 1 1 - 3  88.2% 

Bicycle 1 100 - 5 - -  94.3% 

Bus - - 29 - - -  100.0% 

Car 1 7 7 151 1 4  88.3% 

Rail - - - - 33 -  100.0% 

Other 1 1 - 1 - -  - 

Total 78 113 37 158 34 7  90.9% 

Total (all) 192 134 37 167 34 -   

Success rate 
96.2% 

88.5% 78.4% 95.6% 97.1% - 92.4%  

Success rate 
(all) 

39.1% 74.6% 78.4% 90.4% 97.1% - (68.8%)  
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9.5.3 FURTHER WORK 

The method to identify trips and trip legs were adopted directly from POSDAP (2012). We 

found that at times the approach wrongly split trips into several trip legs, and that this also 

influenced the results of the mode classification. Though the algorithmic feedback captured 

some of these wrongly split trip legs, more research is needed in the correct detection of trip 

legs. New methods could be developed which use the available disaggregate digital 

representation of the infrastructure, possibly in combination with congestion measures. Such 

an approach could e.g. hinder that trips are wrongly split into several trip legs when queuing 

at intersections. 

The present study analysed all generated trip legs and found that many of these did not have 

a corresponding observed trip leg reported in the travel diary. This can partly be because of 

underreporting, but the analysis found that many non-trips were identified around activity 

locations. While the method developed and tested in this present study aimed at removing 

such non-trips (through the map matching step), the other studies reviewed did not seem to 

explicitly deal with these (important) non-trips. The map matching algorithm succeeded in 

removing most of the non-trips, however at the cost of also removing trip legs which were 

actually performed. These wrongly removed trip legs were primarily walking and bicycle trips. 

The incorrect removal of these could be partly explained by the use of the street network for 

the map matching. Additional research could test whether expanding the network to also 

include bicycle paths and footpaths would further improve the results. 

The GPS units did not log positions when travelling underground, e.g. in some parts of the 

metro network and the suburban rail network. Signal was lost when the train runs 

underground (or when the traveller entered an underground station) and then reappeared 

when the train returned to the surface (or when traveller returned to street level at a 

station). There are however only three stretches where trains run underground in the rail 

network of the Greater Copenhagen area (with only two obvious transfer locations), allowing 

the underground trips to be correctly reproduced. More research is needed for the 

reproduction of trips in more complex underground networks where multiple change 

possibilities exist (e.g. the subway network of New York City). 

9.6 TRANSFERABILITY AND SENSITIVITY 
The proposed method was successfully applied to a case study of the highly complex and 

multi-modal transport network of the Greater Copenhagen area. The method is however 

generally applicable across case studies for which there are disaggregate digital 

representations of the infrastructure available. When transferring the model across case 

studies it is important to consider the impact of the differences in the characteristics of the 
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built environment and the transportation network. This impact may be considerable, and the 

parameters and thresholds of the method may therefore need to be adapted correspondingly 

to ensure good model performance. In this fitting process it is important to have available a 

GPS data set with corresponding travel diaries. However, transferring and fitting the method 

across case studies are easier if the results are not highly sensitive to changes in the 

specification of parameters and thresholds. To investigate this further, the remainder of this 

section reports the results of sensitivity analyses towards the specification of various key 

parameters and thresholds. These relate to the main contributions of this study, namely the 

mode identification and the removal of non-trips, and we test different setups of these 

components on the Greater Copenhagen area case study. 

9.6.1 MODE IDENTIFICATION 

The parameters and thresholds used in the rail trip leg identification process is (i) the 

threshold for the share of observations in the vicinity of the rail network (distance ⩽ 25 m, 

length ⩾ 250 m), (ii) the maximum distance to the rail network (share of observations ⩾ 75%, 

length ⩾ 250 m), and (iii) the minimum trip leg length (share of observations ⩾ 75%, distance 

⩽ 25 m). Table 27 reports the results of the sensitivity tests of these three thresholds. 
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TABLE 27: SENSITIVITY TESTS FOR STEP 1: RAIL PROXIMITY. COMPARISON OF CLASSIFIED RAIL TRIP LEGS TO REPORTED MODE FOR DIFFERENT 

THRESHOLDS FOR (I) THE SHARE OF OBSERVATIONS IN VICINITY, (II) THE DISTANCE TO THE NETWORK, AND (III) THE LENGTH OF THE TRIP LEGS 

  Observed 
  Walk Bicycle Bus Car Rail 

Share of observations in vicinity of rail network (≥)  [%] 
0 33 54 24 94 33 
25 10 5 2 5 33 
35 9 1 2 1 33 
45 5 1 0 0 33 
50 3 1 0 0 33 
55 3 1 0 0 33 
60 2 1 0 0 33 
65 1 1 0 0 33 
70 0 1 0 0 33 
75 0 0 0 0 33 
80 0 0 0 0 33 
85 0 0 0 0 31 
90 0 0 0 0 31 
95 0 0 0 0 30 
100 0 0 0 0 25 
 

Maximum distance to rail network (≤) [m] 
5 0 0 0 0 8 
10 0 0 0 0 25 
15 0 0 0 0 31 
20 0 0 0 0 33 
25 0 0 0 0 33 
30 0 1 0 0 33 
40 1 1 0 0 33 
50 2 1 1 0 33 
75 8 2 1 0 33 

 

Minimum trip leg length (≥) [m] 
0 4  0 0 0 33 
50 4  0 0 0 33 
100 3  0 0 0 33 
150 1  0 0 0 33 
200 1  0 0 0 33 
250 0  0 0 0 33 
800 0  0 0 0 33 
900 0  0 0 0 30 
1000 0  0 0  0 30 
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The results are not highly sensitive towards the choice of any of the three thresholds. 

Extremes should however be avoided in all cases: reasonable results are generated when 

specifying a threshold between 60% and 80% for the minimum share of observations in the 

vicinity of the alignment, a maximum distance of 15–40 m to the network, and a minimum 

trip leg length longer than the platforms (200 m in the Greater Copenhagen area) and shorter 

than the smallest distance between stations. 

Fuzzy logic rules are used to distinguish walk, bicycle, potential bus trips and trips which are 

definitely undertaken by car. Sensitivity tests were performed towards the definition of the 

fuzzy logic rules and the intervals of the profiles. 

Table 28 reports the results, namely the number of correctly/ wrongly classified trip legs 

obtained for different combinations of varying the definitions of the fuzzy logic rules and the 

intervals of the profiles. The detailed configuration of the combinations are too 

comprehensive to report, but include the removal or addition of rules and different degrees 

of variation of the intervals around the definitions reported in Figure 59. The table includes 

only results for walk and bicycle trips since these are classified in this step while car and bus 

are distinguished in the subsequent bus line alignment step. 

 
TABLE 28: SENSITIVITY TESTS FOR STEP 2: FUZZY LOGIC RULES. NUMBER OF TRIP LEGS CORRECTLY/WRONGLY CLASSIFIED AS WALK OR BIKE. EACH 

VERSION DENOTES DIFFERENT SPECIFICATIONS FOR INTERVALS OF SPEED AND ACCELERATION PROFILES AND DIFFERENT FUZZY LOGIC RULES 

 Walk Bike 

Specification 1 174/18 120/14 

Specification 2 174/18 120/16 

Specification 3 165/26 106/34 

Specification 4 163/25 124/16 

Specification 5 164/26 122/16 

Specification 6 168/23 121/17 

Specification 7 183/9 116/18 

 

No specification results in confidence rates of 100%. The results vary across specifications, 

but in general the correct identification only differs slightly between specifications. The 

method does thus not seem to be highly sensitive towards the specification of the fuzzy logic 

rules and the intervals. Consequently, while it is important to validate the results via 

comparisons to travel diaries it is not problematic to use a specification which deviates 

slightly from the optimal specification. 

Two different thresholds were tested for the bus line alignment step, and the results are 

reported in Table 29. It can be seen that the threshold for the share of bus stops stopped at 
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should not be too low to hinder classifying car and bicycle trips as bus trips. It should not be 

too high either as this translates into wrong classification of actual bus trips. A comparison of 

the 0.6/0.6, 0.75/0.75 and the 0.75/0.6 (Table 29) highlights that distinguishing between low 

and high level-of-service (LoS) bus lines improves the result. A sensitivity analysis of the 

threshold for the time in vicinity of the stops shows that the threshold should be 

approximately 10 s to allow the correct classification of most bus trip legs and hinder the 

wrong classification of trip legs of other modes as bus trips. The thresholds used in the bus 

line alignment should thus be chosen with parsimony, preferably supported by a sensitivity 

analysis comparing classified and corresponding reported mode choices. 

 
TABLE 29: SENSITIVITY TESTS FOR STEP 3:BUS LINE ALIGNMENT. FIT WITH OBSERVED MODE FOR DIFFERENT THRESHOLDS FOR THE SHARE OF BUS STOPS 

STOPPED AT AND THRESHOLD FOR TIME IN THE VICINITY OF THE BUS STOPS 

  Observed 

  Walk Bicycle Bus Car Rail 

Share of bus stops high/low LoS (≥) 

0.5/0.4  2 30 12  

0.6/0.6  1 29 1  

0.75/0.6   29   

0.75/0.75   19   

0.9/0.75   16   

Time vicinity stops (≥) [s] 

5  2 35 38  

10   32   

15   29   

20   16   

30   10   

45   0   

 

9.6.2 MAP MATCHING 

The map matching was found successful in removing non-trips, however at the cost of also 

removing some actual trips from the data set. Table 30 highlights the results for different 

values of the threshold for the minimum share of a trip which has to be mapped based on 

GPS observations. An influence is seen, but in general the results are not highly sensitive to 

the threshold, as long as it is specified as below 60%. Values above this induce the exclusion 

of many actual trips. 
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TABLE 30: SENSITIVITY ANALYSIS OF MAP MATCHING COMPONENT TO REMOVE NON-TRIPS. NUMBER OF CORRECTLY/WRONGLY CLASSIFIED TRIP LEGS 

REMAINING FOR VARIOUS THRESHOLDS OF THE MINIMUM SHARE BEING MATCHED BY USING GPS OBSERVATIONS. ALSO LISTED IS THE NUMBER OF 

NON-TRIPS REMAINING IN THE DATA SET 

 Observed 
 Walk Bicycle Bus Car Non Trip 
 [correct/wrong classification by algorithm]  

Share fully matched (≥) [%] 
0 76/3 100/13 29/8 151/7 8 
30 76/3 100/13 29/8 151/7 8 
40 76/3 100/13 29/8 151/7 7 
50 75/3 100/13 29/8 151/7 7 
60 75/3 97/12 29/8 150/6 6 
70 74/3 92/11 29/8 150/6 6 
100 73/3 72/9 28/6 121/6 5 
 

9.7 CONCLUSIONS 
Automated post-processing procedures are essential to facilitate the use of GPS data for 

transport surveys. This paper has presented a fully automated and disaggregate method to 

process raw GPS data and classify trips, trip legs, and the most probable mode of transport 

used. The method is applicable to all cases where data is collected as individual-based GPS 

traces and where detailed digital information on the local infrastructure is available. This 

study applied the method to GPS data collected in the Greater Copenhagen area. 

The method performs, and iterates between, a series of steps. While being based on the 

automatic trip and mode detection algorithm developed in Schüssler and Axhausen (2009), 

the method contributes by utilising (i) available disaggregate information on the local 

infrastructure to conduct GIS analyses to better distinguish between modes with similar 

speed and acceleration characteristics, (ii) advanced feedback loops between steps, allowing 

inconsistent mode-sequences to alter the trip leg detection, and (iii) map matching to exclude 

non-trips and hinder wrongly splitting of trips on motorways. 

Two variants of the method proposed were tested, one algorithm with the map matching 

step and one without it. This showed that including map matching improves the confidence 

and success rates by removing many non-trips, however at the cost of also removing some 

actually performed (primarily walking) trips. Both variants produced success rates above 90% 

when comparing to the control sample. These results are promising in comparison to the 

overall success rates obtained in other studies. Gong et al. (2011), Chen et al. (2010) and 
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Bolbol et al. (2012) obtained success rates of 82.6%, 79.1% and 87.4%3 respectively. Chung 

and Shalaby (2005) obtained a success rate of 91.6% in their study including 60 trips. 

Especially the success rates of 78% for bus and 97% for rail are high when compared to other 

studies; Gong et al. (2011) and Bolbol et al. (2012) obtained success rates of 35.7% and 84.1% 

for rail, and 62.5% and 58.3% for bus. The current study also applied the method proposed by 

Schüssler and Axhausen (2009) on the same data set. This allowed evaluating whether the 

high success rates were generated due to special circumstances related to the case study 

rather than improvements in the methodology. Success rates of 24% and 38% were obtained 

for rail and bus, respectively, when using this existing algorithm. This verified that the high 

success rates for the two proposed algorithms were generated as a result of applying the 

suggested advanced feedback algorithm and utilising the available disaggregate network 

data. 

The deployment of the method does not require the respondents to provide any information 

beyond the GPS traces. It is however important to note that the parameters and thresholds 

used may need to be adapted/calibrated to fit the characteristics of the specific case. To do 

this, it is necessary to have available a control sample of corresponding revealed or stated 

information of trips undertaken by the respondents. A sensitivity analysis revealed that the 

correct removal of non-trips and correct identification of rail, walk, and bicycle trip legs are 

not highly sensitive to the specification of the thresholds and parameters. The specification of 

the parameters used in the distinction between car and bus trip legs should however be done 

with parsimony, preferably via sensitivity analyses comparing with corresponding observed 

mode choices. 

The study has contributed to literature by demonstrating much improved fit rates in the 

detection of trips, trip legs, and mode of transport used. Through this we believe that the 

abilities of automatic post-processing methods are causing travel surveys based on GPS data 

collection to be highly attractive, even for complex multi-modal study areas. 
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ABSTRACT 
The current study analyses the efficiency of choice set generation methods for bicycle routes 

and proposes the extension of cost functions to bicycle-oriented factors not limited to 

distance and time. Three choice set generation methods for route choice were examined in 

their ability to generate relevant and heterogeneous routes: doubly stochastic generation 

function, breadth first search on link elimination, and branch & bound algorithm. Efficiency of 

the methods was evaluated for a high-resolution network by comparing the performances 

with four multi-attribute cost functions accounting for scenic routes, dedicated cycle lanes, 

and road type. Data consisted of 778 bicycle trips traced by GPS and carried out by 139 

persons living in the Greater Copenhagen Area, in Denmark. Results suggest that both the 

breadth first search on link elimination and the doubly stochastic generation function 

generated realistic routes, while the former outperformed in computation cost and the latter 

produced more heterogeneous routes. 

Keywords: bicycle route choice, bicycle route generation, branch and bound, breadth first 

search, choice set generation, stochastic generation function. 
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10.1 INTRODUCTION 
The growing interest in the transition towards the use of sustainable transport modes 

motivates the search for factors determining the selection of the bicycle as a viable 

alternative to the car. Bicycle route choice models provide directions to this search, but 

findings from these models depend on the observation of actual route choices and the 

generation of plausible alternatives. While the former is a challenge that recent 

enhancements in technology and software help tackling, the latter is a challenge that recent 

advances in path generation help confronting, not without the uncertainty related to the 

dependency of model estimates on choice set composition (see, e.g., Bekhor et al., 2006; 

Bliemer and Bovy, 2008; Prato and Bekhor, 2007). 

The literature in bicycle route choice shows that most studies have used stated preference 

(SP) data (e.g., Axhausen and Smith, 1986; Bovy and Bradley, 1985; Hopkinson and Wardman, 

1996; Hunt and Abraham, 2007; Krizek, 2006; Sener et al., 2009; Stinson and Bhat, 2003; 

Tilahun et al., 2007), while only a few studies have used revealed preference (RP) data (e.g., 

Aultman-Hall et al., 1997; Broach et al., 2011; Broach et al., 2012; Hood et al., 2011; Howard 

and Burns, 2001; Hyodo et al., 2000; Menghini et al., 2010; Shafizadeh and Niemeier, 1997). 

On the one hand, SP data trade the easiness in individuating alternative routes with the 

possible bias in predefining the factors being relevant to route choices of cyclists. On the 

other hand, RP data trade the realism of observing actual cyclists’ behaviour with the 

challenge of generating plausible alternative routes prior to model estimation. 

While the challenge of collecting RP data (i.e., actual route choices) has greatly benefitted 

from enhancements in GPS device technology, GPS data post-processing (e.g., Schüssler and 

Axhausen, 2008, 2009b; Stopher, 2009; Tsui and Shalaby, 2006), and highly detailed network 

digitalization, the challenge of generating plausible alternative routes is still testing. Most 

studies have focused on implementing path generation methods for cars or public transport, 

which are normally generated on a simplified network, and only few studies have focused on 

bicycle route choice sets, which require a highly detailed network. Menghini et al. (2010) 

applied a Breadth First Search on Link Elimination (BFS-LE) method (Rieser-Schüssler et al., 

2012) while limiting the cost function to the route length. Broach et al. (2010) compared a 

modified route labelling method to a K-shortest paths link penalty (Cascetta et al., 1996; de la 

Barra et al., 1993; Ramming, 2001), a simulated shortest paths (Bekhor et al., 2006; Ramming, 

2001), and labelled routes method (Bekhor et al., 2006; Ben-Akiva et al., 1984; Ramming, 

2001). The modified route labelling method performed best out of all four methods, however 

obtained lower coverage in comparison with studies focusing on car route choice. This is 

likely because the network used in the study was a realistic “all streets” network, while most 

car route choice studies cited used much coarser auto networks. Hood et al. (2011) 
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implemented a doubly stochastic generation function (DSGF) (Bovy and Fiorenzo-Catalano, 

2007; Nielsen, 2000) with a multi-attribute cost function while observing better performance 

than a BFS-LE method with single-attribute cost function. They obtained a slightly higher 

coverage than Broach et al. (2010). Notably, the first two studies defined cost functions either 

containing only one attribute or containing only travel time and distance. Although Hood et 

al. (2011) included a multi-attribute cost function, they only manage to reproduce one-third 

of the observed routes. This emphasises the importance of both identifying factors that are 

important in the choice set generation process for bicycle route choice as well as exploring 

algorithmic issues in generating a plausible set of path choice alternatives in a highly detailed 

network. 

The current study extends the body of knowledge on choice set generation for bicycle route 

choice. Firstly, the current study applies to the bicycle context the three most effective path 

generation methods in the car context: BFS-LE, DSGF, and branch & bound (B&B) 

(Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 2006). These methods are chosen in 

order to investigate their transferability in the context of choice set generation for bicycle 

routes choice, given their proven ability in reproducing observed car route choices. Secondly, 

the current study evaluates the efficiency of the three path generation methods in a high-

resolution network by using different evaluation methods, such as replicating the observed 

routes while also generating realistic alternatives that take into account taste heterogeneity 

across cyclists. Lastly, the current study extends the path generation literature by proposing 

multi-attribute cost functions that account for scenic routes, dedicated cycle lanes, and road 

type. These attributes are relevant to the route choice of cyclists and are important when 

intending to estimate models providing insights into the factors relating to cyclists’ choices of 

routes. 

The remainder of this paper is organised as follows. Section 10.2 describes the data collected 

for this study. Section 10.3 describes the path generation methods applied in this study, the 

bicycle-tailored multi-attribute cost functions, and the methods used to evaluate the 

efficiency of the methods. Section 10.4 presents the results from the implementation and the 

comparison of the path generation methods. Section 10.5 discusses the results and draws 

conclusions. 

10.2 DATA 
The current study uses a dataset consisting of 778 bicycle trips, traced by GPS and carried out 

by 139 persons living in the Greater Copenhagen Area in Denmark. In addition to collecting 

GPS tracks, travel diaries were collected from a sample of the participants by means of a web-

based survey. 



201 

Extensive data processing was required to obtain data that could be used for choice set 

generation of bicycle routes, as the GPS data collection and the travel diaries focused on all 

modes of transport in the Greater Copenhagen Area. The post-processing procedure used is 

described in detail in Schüssler and Axhausen (2008, 2009b). Initially, various criteria were 

first used to filter the data, e.g., the number of satellites in view, altitude value, the 

Horizontal Dilution of Precision (HDOP) value, sudden jumps in position, etc., followed by a 

Gauss kernel smoothing approach to remove random errors. Then, different criteria were 

applied to identify trips and activities and trips were divided into single-mode stages. Last, 

modified fuzzy logic rules were applied to identify the transport mode for each stage using 

the median speed, 95th percentile acceleration, and 95th percentile speed. The original fuzzy 

logic rules had to be altered in order to better fit the travel behaviour of Danes and extended 

with more disaggregate components using GIS software (Rasmussen et al., 2013). The travel 

diaries were used for validation of the post-processing procedure. 

 

 

FIGURE 62: DISTRIBUTION OF THE OBSERVATIONS OVER DISTANCE TRAVELLED 

 

After the data post-processing, a total of 1,824,034 GPS points and 4,552 stages were 

identified, and 490,062 points and 1,026 stages were retained for further analysis after the 

travel mode was identified as bicycle. 

After the filtering, the processed bicycle trips were mapped to a high-resolution network 

using the map-matching algorithm developed by Schüssler and Axhausen (2009a) that 

extended a previous algorithm developed by Marchal et al. (2005). The network consists of 
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110,893 nodes and 272,586 directional links for the study area, and the high-resolution is the 

result of the compilation of various sources in order to consider attributes that were 

considered relevant to bicycle route choice such as road type, segregated cycle paths, and 

land use information. The network includes small paths only accessible by bicycles and 

pedestrians, and does not include motorways and expressways where cycling is illegal in 

Denmark. 

After the map-matching algorithm was run, there were 778 stages remaining for the choice 

set generation. In some cases, stages were filtered because of missing network links or 

because the traveller was cycling off-road, which resulted in the lower number of stages. The 

average distance was approximately 2 km and approximately 90% of the trips were less than 

5 km. Figure 62 shows the distribution of the observations over distance travelled. 

10.3 METHODS 
This section introduces the applied path generation methods, the defined cost functions and 

the implemented comparison methods. It should be noted that a maximum choice set size of 

20 alternative routes was defined prior to choice set generation, and a time abort threshold 

was predefined in order to move on to the next observation after processing origin-

destination pairs for which the choice set generation could not be completed within the time 

interval.4 

10.3.1 CHOICE SET GENERATION METHODS 

Doubly stochastic generation function 

The DSGF (Bovy and Fiorenzo-Catalano, 2007; Nielsen, 2000) accounts for variation in 

travellers’ link cost and differences in travellers’ attribute preferences by drawing random 

costs and random parameters from probability distributions. Advantages of this method are 

the inherent heterogeneity of the generated alternatives and its computational efficiency in 

large networks, even though the randomisation of link costs and the parameters can be time 

consuming in a high-resolution network. 

In the DSGF method, a shortest path search is carried out iteratively using an implementation 

of the Dijkstra´s algorithm (Dijkstra, 1959) on a realisation of the network. At each iteration, 

the realisation of the network is obtained by randomly drawing the cost of each link from a 

probability distribution and extracting attribute preferences for each traveller from another 

probability distribution. After each iteration, only unique routes not generated in previous 

                                                           
4 The alternative routes were generated using a tool developed in Java, originally developed 
for the automatic processing of GPS tracks to reconstruct travel diaries (POSDAP) (see 
www.sourceforge.net/projects/posdap). 
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ones are added to the route choice set as the same route may be found several times during 

the process, even though the realisations of the network are obtained from different costs 

and preference parameters. The shortest path search is repeated iteratively until the 

preselected maximum choice set size is achieved or the predefined time abort threshold is 

reached. 

Although the literature reports the implementation of a multi-attribute cost function for the 

DSGF method in the bicycle route choice context (Hood et al., 2011), the current study 

extends this implementation by testing and reporting the results of four different cost 

functions that consider not only route length and time, but also bicycle-oriented factors such 

as preferences for road types, dedicated cycle paths, and land use. As the correct definition 

of choice sets is a necessary condition for obtaining meaningful parameter estimates, 

including these bicycle-oriented factors is essential to the in-depth understanding of cyclists’ 

preferences. 

Breadth first search on link elimination 

The BFS-LE method (Rieser-Schüssler et al., 2012) combines a breadth first search with 

topologically equivalent network reduction. The procedure concentrates on generating a 

route set, which afterwards can be reduced to an individual choice set. Its advantage is a high 

computational efficiency in a high-resolution network while ensuring a significant level of 

route variety. 

The algorithm searches for the shortest path between origin and destination. Consecutively, 

the links of the shortest path are removed one by one and the shortest path for the resulting 

network is determined. Once all links of the original shortest path have been processed, the 

algorithm proceeds to the next level, where two links at a time are eliminated. The algorithm 

monitors the generated networks and only keeps unique and connected routes. The 

algorithm continues until the maximum number of unique routes has been generated, the 

time abort threshold is met or there are not more feasible routes between origin and 

destination. 

As the literature reports only single-attribute cost functions for the implementation of the 

BFS-LE method in the bicycle route choice context (Hood et al., 2011; Menghini et al., 2010), 

the current study proposes to examine the efficiency of the BFS-LE method with the same 

multi-attribute cost functions implemented for the DSGF method. The same input parameters 

are applied for the two methods, although obviously for the BFS-LE the error components 

and the error terms are not extracted from a probability distribution. 
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Branch & bound 

The B&B method (Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 2006) constructs a 

connection tree between the origin and destination of a trip by processing link sequences 

according to a branching rule accounting for logical constraints devised to increase route 

likelihood and heterogeneity. The strength of this algorithm is the realism and the 

heterogeneity of the generated routes, but a disadvantage is the high computation time in a 

high-resolution network. Rieser-Schüssler et al. (2012) tested the method with GPS observed 

car trips in a high-resolution network where the average number of links per chosen route 

was 65.69. This proved to be too high for the B&B algorithm, as within a reasonable 

computation time it only managed to produce alternatives for origin-destination pairs 

connected by very short paths. However, empirical results have shown that the algorithm can 

be applied to networks of different sizes by applying different design parameters (Bekhor and 

Prato, 2009). 

In the current study, different behavioural constraints were tested to exclude links that: (i) 

take the cyclists farther from the destination and closer to the origin (directional constraint); 

(ii) cause the travel time to be excessively high when compared to the shortest path 

(temporal constraint); (iii) cause the cyclist to have a detour larger than an acceptable value 

(loop constraint); (iv) are shared by other routes that would not be considered as separate 

alternatives (similarity constraint). Table 31 presents the input parameters. Firstly, basis 

values were implemented according to the indications by Prato and Bekhor (2006). Then, 

relaxed values were applied to allow for higher travel times and greater overlap, and 

restrictive values were used to allow for lower travel times and less overlap. It should be 

noted that the time abort threshold was applied differently than the BFS-LE and the DSGF, 

namely the B&B searched through the network tree before checking whether the time 

restriction has been met. As the search tree was rather large because of the highly detailed 

network, at times the algorithm took longer to compute and the choice set size exceeds the 

maximum. Consequently, this method could not be compared to the other two algorithms in 

relation to computation time or number of unique routes created for each chosen route. 

However, the structure of the derived choice set could be compared. 

 
TABLE 31: IMPLEMENTATION OF THE BRANCH & BOUND GENERATION TECHNIQUE 

 Basis Restricted Relaxed 

Directional factor 1.10 1.10 1.10 

Temporal factor 1.50 1.33 1.67 

Loop factor 1.20 1.20 1.20 

Similarity factor 0.80 0.75 0.85 
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10.3.2 COST FUNCTIONS 

Four cost functions were tested for the BFS-LE and the DSGF methods with various input 

parameters being considered with the aim to get realistic route alternatives, to obtain the 

best coverage over the average of the sample, and to capture heterogeneous preferences 

across cyclists. The parameters accounted for preferences of road types, cycle lanes, and land 

use. Table 32 presents an overview of the calibrated parameters and the variation factors 

applied in the cost functions. The following sup-sections describe in more detail the tested 

cost functions and the calibration of the parameters. 

 
TABLE 32: OVERVIEW OF THE CALIBRATED PARAMETERS AND VARIATION FACTORS 

 Cost function 

 Road type Cycle lanes Land use Road type, 
cycle lanes, 

and land use 

Parameters     

Large roads 0.167 – – 0.167 

Small roads 0.333 – – 0.333 

Other roads 0.500 – – 0.500 

Segregated cycle lanes – 0.400 – 0.400 

No segregated cycle lanes – 0.600 – 0.600 

Scenic roads – – 0.125 0.125 

Non-scenic roads – – 0.250 0.250 

Forest roads – – 0.500 0.500 

Non-forest roads – – 0.125 0.125 

Variation factors     

ξLarge roads 2 – – 2 

ξSmall roads 10 – – 10 

ξOther roads 10 – – 10 

ξSegregated cycle lanes – 2 – 2 

ξNo segregated cycle lanes – 10 – 10 

ξScenic roads – – 2 2 

ξNon-scenic roads – – 3 3 

ξForest roads – – 7 7 

ξNon-forest roads – – 2 2 

εa 2 2 2 2 
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Road type 

Cost functions should consider information regarding different road types for cyclists, and in 

the case of absence of specific information, regarding different road types in general. For 

example, three different road types may be considered (e.g., large traffic roads, small traffic 

roads, other roads). Larger roads are usually properly equipped with segregated cycle paths 

and cycle lanes (e.g., Hunt and Abraham, 2007; Stinson and Bhat, 2003) in the Greater 

Copenhagen area, while smaller roads have usually fewer or non-segregated cycle lanes, thus 

resulting in a mixed traffic scenario between cyclists and motorists, but in return have lower 

speed limits and traffic volumes (e.g., Axhausen and Smith, 1986; Antonakos, 1994). Other 

roads are a mixture of pedestrian paths or shared bicycle and pedestrian paths. 

The first cost function represented individuals with different preference for the three road 

types: 

   
k aka RoadType RoadType ak a a

k

C RoadType Length        (18) 

where Ca is the random cost of link a, Lengtha is the length of link a, RoadTypeak is the road 

type k that link a belongs to, ξRoadTypeak are error components related to road type k of link a, 

βRoadTypek are coefficients related to road type k, and εa is the random error term for link a.  

The implementation of the cost function differs between DSGF and BFS-LE. In the DSGF 

method, the error terms εa express the random link costs and the error components 

ξRoadTypeak express the heterogeneous preferences. Each error term εa was computed as the 

link length multiplied by a standard normal distribution and a variation factor that 

determined the “width” of the distribution from which the link lengths were drawn. Each 

error component ξRoadTypeak was calculated as the corresponding parameter β multiplied by a 

standard normal distribution and a distribution factor that determined the “width” of the 

distribution from which the utility parameter itself is drawn in the doubly stochastic case. 

Calibration of the parameters resulted in the large traffic roads having the lowest cost and 

capturing preferences for high quality bicycle facilities, and the small and the other traffic 

roads having double and triple cost and capturing preferences for the most direct route and 

for paths not shared with pedestrians. In the DSGF method, each error term εa was computed 

with a variation factor of 2, and each error component ξRoadTypeak were computed with a 

variation factor of 2 for large roads and 10 for small and other roads. In the BFS-LE method, 

variation in travellers’ link cost and differences in travellers’ attribute preferences are not 

considered, and hence each error term εa is equal to zero for every link a and each error 

component ξRoadTypeak is equal to one for every road type k and every link a. 
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Cycle lanes 

Cost functions could consider information on cycle lanes, and in particular on Copenhagen-

style lanes that are segregated lanes with raised curbs separating the cycle lane from the 

motorised traffic on one side and from the pedestrians on the other side. Studies have shown 

that some cyclists prefer routes that are separated from motorised traffic (e.g., Hunt and 

Abraham, 2007; Stinson and Bhat, 2003) and are willing to take detours to travel on bicycle 

paths, while others prefer the most direct route (e.g., Stinson and Bhat, 2005). 

The second cost function characterised individuals with different perspectives to use 

segregated bicycle paths: 

   
k aka BikeLanes BikeLanes ak a a

k

C BikeLanes Length        (19) 

where Ca is the random cost of link a, Lengtha is the length of link a, BikeLanesak indicates 

the presence of cycle lane configuration k on link a, ξBikeLanesak are error components related 

to cycle lane configuration k in link a, βBikeLanesk are coefficients related to cycle lane 

configuration k, and εa is the random error term for link a.  

Calibration of the parameters resulted in roads with no segregated cycle lanes having almost 

two times larger cost than roads with segregated bicycle lanes. In the DSGF method, each 

error term εa was computed with a variation factor of 2, and each error component ξBikeLanesak 

was calculated with a variation factor of 2 for roads with segregated cycle paths and 10 for 

roads without segregated cycle paths. In the BFS-LE, each error term εa was equal to zero for 

every link a and each error component ξBikeLanesak was equal to one for every cycle lane 

configuration k and every link a. 

Land use 

Cost functions could also consider land use attributes, in particular when referring to scenic 

areas such as the lakes in the Greater Copenhagen Area, as scenic routes are considered 

attractive for cyclists (e.g., Antonakos, 1994; Axhausen and Smith, 1986). Major forest areas 

should also be considered, as the bicycle paths in forests are usually dirt paths and in some 

cases only suitable for mountain bicycles. 

The third cost function assumed that cyclists have different preferences when travelling in 

different areas: 

   
k aka LandUse LandUse ak a a

k

C LandUse Length        (20) 



208 

where Ca is the random cost of link a, Lengtha is the length of link a, LandUseak indicates the 

land use type k associated to link a, ξLandUseak are error components related to land use type k 

for link a, βLandUsek are coefficients related to land use type k, and εa is the random error term 

for link a.  

Calibration of the parameters resulted in non-scenic roads (i.e., not alongside lakes) having 

double the cost compared to scenic roads, thus capturing the preference for scenic routes. 

Also, calibration resulted in links in forest areas having four times the cost of roads in non-

forest areas, thus capturing the disutility of cycling on gravel or dirt paths. In the DSGF 

method, each error term εa was computed with a variation factor of 2, and each error 

component ξLandUseak was calculated with a variation factor of 2 for roads alongside lakes and 

not in forests, 3 for roads not alongside lakes and 7 for roads in forests. In the BFS-LE, each 

error term εa was equal to zero for every link a and each error component ξLandUseak was equal 

to one for every land use type k and every link a. 

Road type, cycle lanes, and land use 

The fourth cost function included all three cost attributes, thus capturing a multi-attribute 

heterogeneous preference structure across individuals: 

   
  
  

k ak

k ak

k ak

a RoadType RoadType ak a
k

BikeLanes BikeLanes ak a
k

LandUse LandUse ak a a
k

C RoadType Length

BikeLanes Length

LandUse Length

 

 

  

   

   

    







 (21) 

Calibration of the parameters resulted in small traffic roads having double and other roads 

having triple the cost of large traffic roads, roads with segregated cycle lanes having slightly 

over two times higher cost than large traffic roads, and roads with no segregated cycle lanes 

having almost four times larger cost. Moreover, roads alongside lakes resulted having slightly 

lower cost than large traffic roads, while not having lakes along the route implied almost 

double cost. Also, roads in forests resulted having a cost three times higher than large traffic 

roads. In the DSGF method, each error term εa was computed with a variation factor of 2, and 

each error component ξRoadTypeak, ξBikeLanesak and ξLandUseak was calculated with the same 

variation factors applied to the cases with a single attribute in the cost function. In the BFS-

LE, each error term εa is equal to zero for every link a and each error component ξRoadTypeak, 

ξBikeLanesak and ξLandUseak was equal to one. 

10.3.3 EVALUATION METHODS 

The effectiveness of the three choice set generation methods was evaluated by comparing 

the generated choice sets to the observed routes. If the choice sets contained the actual 
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chosen route among paths produced with the generation methods, they were considered 

consistent with the observed behaviour. The consistency of a route choice set generation 

method was evaluated with respect to the observed behaviour by considering the length of 

the links shared between the generated route and the observed route for each choice set: 

 
nr

nr

n

L
O

L
  (22) 

where Onr is the overlap measure, Lnr is the overlapping length between the path generated 

by choice set generation method r and the observed path for cyclist n, and Ln is the length of 

the observed path for cyclist n. The coverage is defined as the percentage of observations for 

which an algorithm generates a route that satisfies a particular threshold for the overlap 

measure: 
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I O 


  
(23) 

where I(∙) is the coverage function, where when its argument is true it is equal to 1 and when 

false it equals to 0, and δ is a threshold for the overlap measure. 

In order to investigate the heterogeneity of the choice set composition, the path size was 

calculated for each route in each choice set (Ben-Akiva and Bierlaire, 1999): 
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where PSin is the path size factor, Γi is the set of all links of path i, la is the length of link a, Li is 

the length of path i, Cn is the generated choice set for cyclist n, and δaj equals 1 if link a is on 

path i and 0 otherwise. The path size ranges between 0 and 1, indicating the portion of the 

route that constitutes a completely independent alternative. Thus, a unique route will have a 

path size equal to one, while two duplicate routes will each have a path size factor of ½, three 

routes that completely overlap will each has a size of ⅓, and so on. The path size distribution 

over the choice sets Cn indicates whether the route choice sets contains heterogeneous 

routes by representing their average degree of independence. 

The behavioural consistency of the route choice set generation methods with respect to an 

ideal algorithm was measured with a consistency index (see Bekhor and Prato, 2006). Ideally, 

a choice set generation method would reproduce the observed behaviour perfectly by 

replicating link by link all the routes collected and would result in 100% coverage for a 100% 

overlap threshold. However, the actual choice set generation methods only partially 
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reproduce the observed behaviour and generate different numbers of routes. The index 

measures the behavioural consistency of the methods by accounting for the total overlap 

over all the observations: 
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(25) 

where CIr is the consistency index of choice set generation method r, Onr,max is the maximum 

overlap measure obtained with the paths generated by method r for the observed choice of 

each cyclist n, and Omax is the overlap 100% overlap over all the N observations for the ideal 

method. 

10.4 RESULTS 
Table 33 presents the coverage results for the three choice set generation methods according 

to different overlap thresholds varying from complete replication to the reproduction of 70% 

of the collected routes. The first four rows show the results for the BFS-LE method, followed 

by the results for the DSGF method, and the results from the B&B method. 

 
TABLE 33: COVERAGE MEASURES OF THE APPLIED ALGORITHMS 

 Overlap threshold 
Algorithm 100% 90% 80% 70% 

BFS-LE method 
Road type 62.2 67.9 72.8 78.8 

Segregated bicycle path 66.1 72.0 78.0 82.6 

Land use 62.0 67.0 74.6 81.9 

All three cost attributes 67.9 74.8 80.1 84.8 

Doubly stochastic generation function 
Road type 62.2 69.0 75.3 82.4 

Segregated bicycle path 58.6 64.0 70.7 78.3 

Land use 58.9 64.5 70.8 76.2 

All three cost attributes 63.5 71.1 75.2 79.2 

Branch and bound algorithm 
Basis 38.0 40.1 45.2 50.4 

Relaxed 38.3 40.2 43.6 49.7 

Restricted 40.4 42.7 46.5 51.3 
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The BFS-LE method duplicated 62% and up to almost 68% of the chosen routes, whereas at 

least 79% and up to almost 85% were reproduced with a 70% overlap threshold. The DSGF 

method replicated approximately 59% and up to almost 64% of the chosen routes, whereas 

more than 76% and up to more than 82% were reproduced with a 70% overlap threshold. The 

cost function with all three cost attributes had the highest coverage percentage at 100% 

overlap threshold for both methods and this finding showed the correctness of the 

hypothesis of selecting attributes other than distance and time. All three tests with the B&B 

method had very low coverage, and Table 34 suggests the reason. 

Table 34 shows the consistency of the applied methods and their computational costs. The 

B&B method did not manage to generate any alternatives for a large percentage of the 

observations within the time abortion threshold, which resulted in a very low coverage as 

seen in Table 33. The majority of these observations were longer than 4 km. In few cases the 

DSGF method also did not generate any alternative routes. This is not necessarily considered 

a problem as these are relatively short trips and thus not applicable in route choice 

modelling. 

Both the BFS-LE method and the DSGF method performed quite well in relation to the 

consistency index, where the BFS-LE with the cost function with all the attributes performed 

the best, followed by the DSGF with road type as an attribute. Not surprisingly, the B&B did 

not perform well.  

The BFS-LE had a very low computational time, while the DSGF had a lot higher run time. 

Since the DSGF had larger computational costs, the method did not produce the maximum 

choice set size in some of the cases because of the time abort threshold. Consequently, this 

resulted in a lower number of unique routes. Since the B&B method did not follow the same 

restrictions as the other two methods in terms of time abort threshold and maximum choice 

set size, the method produced very high number of unique routes for some of the 

observations, and also resulted in high computation time. Consequently, the method was not 

comparable to the other two and no further results are presented relatively to the B&B. 
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TABLE 34: COMPUTATIONAL COSTS AND TECHNIQUES CONSISTENCY 

 
Consistency 

index 

Number of 
unique 
routes 

Number of 
observations with no 

alternative 

Computational 
time* 

BFS-LE method 
Road type 86.3 15,560 0 0h 5m 

Segregated 
bicycle path 

88.2 15,560 0 0h 4m 

Land use 86.9 15,560 0 0h 4m 

All three cost 
attributes 

89.5 15,560 0 0h 4m 

Doubly stochastic generation function 
Road type 88.5 13,603 0 24h 55m 

Segregated 
bicycle path 

85.8 13,570 2 23h 30m 

Land use 84.8 12,333 7 27h 51m 

All three cost 
attributes 

87.3 11,613 7 38h 58m 

Branch and bound algorithm 
Basis 54.8 49,911 345 

 
33h 26m 

 Relaxed 54.5 47,411 347 33h 08m 

Restricted 55.6 53,184 343 33h 28m 
 *Computations performed on an Intel(R) Xeon(R) COU E5-1650 0 @ 3.20GHz with 32 GB RAM running Windows 7 

Professional. 

 

To visualize the consistency of the BFS-LE and DSGF methods with respect to the observed 

behaviour, the distribution of coverage over the cumulative percentage of observations is 

presented in Figure 63. It can be seen that the methods follow a very similar pattern and do 

not exhibit a significant difference. 

Figure 64 shows the average of the maximum coverage over the choice sets as a function of 

the length of the chosen route. The figure shows that there is a general trend, namely that 

the results are good (and obvious) for shorter routes, but there is a large difference for longer 

routes. The DSGF performed better up to 10 km, where the average coverage started slightly 

decreasing. 
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FIGURE 63: DISTRIBUTION OF COVERAGE OVER 778 OBSERVATIONS 

 

 

FIGURE 64: AVERAGE MAXIMUM COVERAGE OVER DISTANCE 
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Figure 65 shows the percentage of completely replicated chosen routes as a function of 

distance. It can be observed a general trend, namely the number of completely reproduced 

chosen routes decreases with increasing distance. As intuitively logical, longer routes appear 

problematic, as routes longer than 8 km were not completely reproduced by any of the 

choice set generation methods with the exception of one observation getting reproduced by 

the BFS-LE with the cost function accounting for preferences for specific road types. 

Figure 66 shows the distribution of the average path size of all routes in the choice sets 

generated by the different methods. The path size distribution indicates considerably more 

diversity between routes generated with the DSGF method than the ones generated with the 

BFS-LE method. 

 

 

FIGURE 65: PERCENTAGE OF CHOSEN ROUTE COMPLETELY REPLICATED AS A FUNCTION OF DISTANCE 
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FIGURE 66: PATH SIZE DISTRIBUTION FOR THE RESULTING ROUTE SETS 

 

10.5 DISCUSSION AND CONCLUSIONS 
The current study focused on the efficiency of choice set generation of bicycle routes in a 

high-resolution network. Bicycle routes were collected with GPS devices and three choice set 
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distance and time related terms, but also other factors that cyclists would consider relevant, 

such as scenic routes, dedicated cycle lanes, and road types. 
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The efficiency of choice set generation methods for bicycle routes revealed similar 
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observed routes, while using networks with significantly lower number of links (i.e., 3 and 8 
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attributes had the highest coverage percentage at 100% overlap threshold for both methods, 

which indicated the heterogeneous and complex preference structure for cyclists when 

considering routes. The B&B method had lower coverage compared to the BFS-LE and the 

DSGF, as it reproduced approximately 40% of the observed routes and was more in line with 

previous findings. The problem with this method is the high computational time that did not 

allow reaching the destination within the time abort threshold for a large percentage of the 

observations. 

When looking at the average maximum coverage over distance, a general trend emerged 

from the results. Specifically, shorter routes illustrated expected results in having very good 

coverage for all methods, while longer routes exhibited larger differences across algorithms, 

with the DSGF method performing better up to 10 km routes and the average coverage 

decreasing. Hood et al. (2011) found similar results of better coverage with the DSGF for 

longer observations. Moreover, the number of completely reproduced chosen routes 

decreased with increasing distance, and routes longer than 8 km were not reproduced. 

When looking at the distribution of the average path size of the routes in the choice sets 

generated with the different methods, the DSGF method produced more heterogeneous 

alternative routes. 

When looking at computational costs, the BFS-LE clearly outperformed the DSGF and the 

B&B. Hood et al. (2011) found instead that the DSGF (using a uniform probability distribution 

to draw the random error term) had lower computation time than the BFS-LE in a far less 

detailed network. A possible reason for this difference is that using a uniform probability 

distribution might cause the randomly drawn travel cost to deviate substantially from the real 

travel cost and hence might increase substantially the likelihood of generating unrealistic 

routes. In the current study, error terms and error components were randomly drawn from a 

standard normal distribution function while discarding the instances where a negative 

number was drawn that would explain the longer computation time. A more obvious reason 

for this difference is that algorithms have been programmed with different resources for 

diverse stopping criteria, observed routes, and considered networks. Two limitations of this 

study are indeed that a fairer comparison would entail the same programs being developed 

for the same dataset, and that the coding of the algorithms does not necessarily characterise 

the definite computation cost, but works only as a proxy. However, these are still relevant 

results and the better ability in reproducing routes recorded in this study clearly shows the 

importance of the random draws being from a normal distribution and even more of the cost 

function being multi-attribute and not only distance and time related. 

Results suggest possible directions for further investigation, especially for longer routes. 

Possible improvements would be to include turn restrictions in the choice set generation, on 
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the line of the turn restrictions constraint included in the original formulation of the B&B 

method (Prato and Bekhor, 2006). The cost function could also be extended with other 

attributes considered important for cyclists. Also, the availability of intersection data could 

contribute to improving further the cost function. Drawing from non-negative distributions 

(e.g., lognormal, gamma) could help reducing the computation time relating to discarding 

negative numbers. Last, comparison of model estimation performance and prediction 

accuracy could be carried out with datasets from the different choice set generation 

methods. 
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A preliminary version of this paper was presented at the 2nd Symposium of the European 

Association for Research in Transportation (hEART), in September 2013, Stockholm, Sweden. 

This working paper has been updated with improved model estimates and revised. 

ABSTRACT 
This study presents a bicycle route choice model that was estimated from a large sample of 

GPS observations, which revealed cyclist route choice preferences. Choice alternatives were 

generated for the model estimation using a doubly stochastic generation function, accounting 

for variation in travellers’ link cost perception as well as differences among their preferences. 

A path-size logit model was estimated, capturing taste variations across cyclists. The results 

showed that cyclists are sensitive to the effects of distance, cycling the wrong way, turn 

frequency, hilliness, different bicycle facility types, bicycle bridges, pavement conditions, 

intersection type, the number of motorised traffic lanes, and crossing water/sea on 

motorised traffic bridges. The cyclists also valued different land-use conditions relatively 

highly. The results also showed that personal characteristics influence the route choice, that 

there were differences in route choice preferences depending on the time of day and 

whether it was a weekday or weekend, and also in different weather conditions. 

Keywords: Bicycle; Route choice; Land-use; Transport network effect; Global positioning 

system (GPS); Doubly stochastic generation function; Discrete choice model. 
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11.1 INTRODUCTION 
Over the years, non-motorised travel alternatives have been largely underrepresented in 

most transport models. Growing interest in sustainable transportation systems has increased 

the focus on policies and investments that encourage more cycling. However, such 

investments are often made without being able to carry out a quantitative forecast of the 

impacts of the investment – as opposed to, e.g., road investments. The study contributes to 

the field of cyclists’ route choice modelling by using a large sample of GPS-observed routes 

and relating this to potential transport network and land-use factors that might influence 

cyclists’ route choices. 

Several recent studies focus on bicycle route choice as outlined in the review in Sener et al. 

(2009). Most studies have been based on stated preference (SP) data (e.g., Bovy and Bradley, 

1985; Axhausen and Smith, 1986; Hopkinson and Wardman, 1996; Stinson and Bhat, 2003; 

Krizek, 2006; Hunt and Abraham, 2007; Tilahun et al., 2007; Sener et al., 2009), and a few on 

revealed preference (RP) data (e.g., Aultman-Hall et al., 1997; Shafizadeh and Niemeier, 1997; 

Hyodo et al., 2000; Howard and Burns, 2001; Ehrgott et al., 2012; Larsen et al., 2013; Snizek 

et al., 2013; Yeboah and Alvanides, 2015). Although SP data have the benefits of making a 

controlled experimental environment, they are not based on actual observed behaviour. 

Cyclists’ route choice models, based on revealed preference (RP) data, have had technical 

problems caused by the difficulty of observing routes. This has been overcome by the use of 

small transportable GPS-devices. Another challenge has been to generate plausible 

alternative routes for the model estimation. 

There have been few studies on bicycle route choice models estimated from GPS 

observations. Menghini et al. (2010) estimated the route choice of cyclists in Zürich, 

Switzerland, and concluded that cyclists are mostly affected by the route length, with little 

effect of other factors, i.e., bicycle paths, maximum gradient, and traffic lights. The 

heterogeneity of the cyclists was captured through interaction terms, formulated from their 

average length and speed, confirming the strong preference for direct routes and showing 

that faster cyclists prefer marked routes. 

Hood et al. (2011) showed that cyclists in San Francisco, USA, prefer bicycle lanes to other 

bicycle facility types, i.e., paths and routes. Especially infrequent cyclists appear to have a 

strong preference for this type of bicycle facility. The study also showed that cyclists have a 

negative preference for length, as well as turns, and they avoid cycling the wrong way down a 

one-way street. Average up-slopes were disfavoured, especially by women and when 

commuting, whereas traffic volume, traffic speed, number of lanes, crime rates, rain, and 

nightfall had no significant effect. 
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Broach et al. (2012) estimated the route choice of cyclists in the Portland metropolitan area, 

USA. The study confirms the main findings of the previous two studies, i.e., cyclists are 

sensitive to the effects of distance and increasing upwards slopes. In addition, in the Portland 

metropolitan area, cyclists prefer off-street bicycle paths, bicycle boulevards, and bridge 

facilities. The interaction between bicycle lanes and traffic volumes had significant effect 

(contradicting Hood et al. (2011) who concluded that traffic volume had no effect), showing 

increased dispreference for this facility type with increasing traffic. Cyclists are also sensitive 

to turns and intersection control (i.e., traffic signals and stop signs). Finally, the study 

concluded that commuting cyclists were more sensitive to distance and less sensitive to most 

other variables. 

The route choice of cyclists in the Waterloo Region, Canada, was estimated in Casello and 

Usyukov (2014). The study estimated a limited number of variables, only showing the 

significance of length, bicycle lanes, and gradient, whereas motor traffic speed and traffic 

volume could not be incorporated in the model. 

The level of bicycle use in Denmark is relatively high when compared to most other countries, 

particularly in the Copenhagen capital, where about 37% of the commuting trips are carried 

out on bicycles (Pucher and Buehler, 2012). None of the previous studies, on revealed 

preference models of cyclists’ route choices estimated from GPS data, are constructed in 

established bicycle cities. The main objective of this study is thus to develop a route choice 

model that focuses on the route choice characteristics in the Greater Copenhagen area, thus 

providing inspiration for emerging cycling cities by focusing in particular on the interaction 

between infrastructure, land use, and cyclists’ route choice. The current study expands the 

body of literature by analysing a rich set of network attributes describing distance, wrong 

way, turn frequency, elevation, bicycle facility type (i.e., segregated bicycle path, bicycle lane, 

bicycle path in own traces, footpath, and steps), bicycle bridges, surface type, intersection 

type (i.e., traffic lights, roundabouts, and give way), and accident patterns. The current study 

also includes network attributes describing motorised road type, speed, number of traffic 

lanes, bridge (crossing water/sea), and tunnel. Most relevantly, the current study also 

expands the body of literature by analysing different land-use attributes along the route, as 

previous studies have shown the importance in positive cycling experience (e.g., Snizek et al., 

2013). It is investigated how personal attributes influence the route choice (i.e., gender, age, 

and cyclists’ average speed profile), whether there are differences in route choice preference 

between trip related attributes (i.e., trip purpose, peak hours, weekends, and darkness), and 

also between weather attributes (i.e., temperature, rainfall, sunshine, and wind). 
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The remainder of this paper is structured as follows. Section 11.2 describes the data used in 

the current study. Section 11.3 describes the choice set generation methods used in this 

study and the applied modelling methodology. Section 11.4 presents the descriptive statistics 

of the data used and the results from the model estimation and discussion. Finally, 

conclusions are provided in section 11.5. 

11.2 DATA 

11.2.1 BICYCLE NETWORK DATABASE 

The bicycle network database is built on the topographic network FOT-kort10 (FOT-Kort10, 

2010) and TOP10DK (Kort & Matrikelstyrelsen, 2001). The two sources were compiled 

together in order to obtain a detailed bicycle network database, as illustrated in Figure 67. 

This is necessary, since cyclists are using paths that are not present in standard commercial 

digital maps made for GPS-based car navigation systems. The combination of sources created 

a complete geographic network of roads and paths used by cyclists, comprising of 361,053 

directional links and 268,762 nodes for the study area. The network includes small paths only 

accessible by bicycles and pedestrians and does not include roads where cycling is illegal in 

Denmark, such as motorways and expressways. 

Various sources were added to the bicycle network database with characteristics considered 

important for cyclists (i.e., Open Street Map (OSM), the LTM road network (Rich et al., 2010), 

NAVTEQ (NAVTEQ, 2010), where accidents from the last five years were added, a total of 

87,455, from the crash database maintained by the Danish Road Directorate (Vejman), and 

intersection data (from the Danish Road Directorate)). For further information, see: 

Halldórsdóttir et al. (2013) and Pedersen and Senstius (2014). 

A rich set of network attributes was analysed, i.e., distance, turn frequency, gradient, bicycle 

facility type, bicycle bridges, surface type, intersection type, and accident patterns. The 

conditions along the routes were also analysed, i.e., motorised traffic type, time-dependent 

traffic volumes, number of motorised traffic lanes, motorised traffic bridges and tunnels, 

motorised free speed, and land-use information.  
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FIGURE 67: BICYCLE NETWORK DATABASE IN THE GREATER COPENHAGEN AREA. LEFT: OVERVIEW OF THE GREATER COPENHAGEN AREA NETWORK. 

RIGHT: ILLUSTRATION OF THE NETWORK DETAILS 

 

11.2.2 GPS DATA 

The data collection was carried out for the Greater Copenhagen area, in Denmark. A total of 

318 cyclists were provided with GPS trackers for an average period of eight days. The 

individuals were sampled from the Danish National Travel Survey (Christiansen, 2009), 

abbreviated the TU-survey (in Danish Transportvaneundersøgelsen). The sampling criteria 

were that the respondents had previously been interviewed, approximately within the last 6 

to 12 months before the data collection, that they had used a bicycle in their reported travel, 

and that they lived in the study area. In addition, because of strict privacy rules within the TU-

survey, possible recruits were sampled if they were 16 years or older. In order to capture 

different seasons, three data collection rounds were run; the first round was carried out from 

October through December in 2012, the second round was carried out from June through July 

in 2013, and the last round was carried out from August through October the same year. The 

average acceptance rate was 65%, which is quite high for a survey of this type. In addition to 

collecting GPS data, travel diaries were collected from the participants, providing their travel 
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information on a selected day, trip purpose in their reported trips, and socio-economic 

variables. 

11.2.2.1 GPS POST-PROCESSING AND MAP-MATCHING 

Extensive data processing was required to obtain data that could be used for further analysis 

on cycling specifically, since the GPS data was delivered as raw GPS-traces and collected all 

modes of transport. The post-processing of the data was carried out as described in Schüssler 

and Axhausen (2008, 2009). The method is divided into four steps: (i) GPS data cleaning, 

where systematic and random errors are removed from the data; (ii) trip and activity 

identification, where the GPS tracker had been stationary for a period of time and/or if the 

spatial density of observations has been high for a period of time; (iii) trip segmentation into 

single-mode trip legs (sub-components of the trip); and (iv) mode identification, where 

modified fuzzy logic rules were applied as described in Rasmussen et al. (2015). The post-

processing method was validated by comparing the resulting trips and modes with travel 

diaries. In order to better fit the travel behaviour of the Danish population, the original fuzzy 

logic rules had to be altered and extended with more disaggregated components using GIS 

software (Rasmussen et al., 2015). 

After the data post-processing, a total of 6,378,651 GPS points and 14,557 single-mode stages 

were identified. After the travel mode was identified as a bicycle, 2,681,108 GPS-points and 

5,027 stages were retained for further analysis. The identified bicycle trips were mapped to a 

high-resolution network using the map-matching algorithm developed by Nielsen and 

Jørgensen (2004). Non-trips were identified and removed when either no GPS observations 

could be map-matched, such as scatter around activities wrongly classified as trip legs, or if 

there were large deviations between the calculated map-matched distance and the distances 

calculated from the processed GPS points. These large deviations were, for example, caused 

by random errors in the network, such as missing links. Rasmussen et al. (2015) showed that 

by removing such non-trips, the overall confidence rate improved from 69% to 91%. 

However, the improvement in confidence rate was at the cost of also removing a large 

number of actual trip legs. After the map-matching algorithm was run and non-trips were 

removed, there were 3,443 stages from 291 respondents remaining for further analysis. 

11.2.2.2 PERSONAL CHARACTERISTICS 

The GPS dataset was composed of 45% males and individuals between the ages of 17 and 79. 

Figure 68 shows the age distribution of the dataset. For more information on the 

characteristics of the data sample, see section 8.1.2. 
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FIGURE 68: AGE GROUP DISTRIBUTION IN THE GPS DATASET 

 

In addition to considering age and gender, participants were also divided into three groups of 

cyclists, depending on their average speed profiles; slow (<10 km/h), medium (10-14 km/h), 

and fast (>14 km/h). There were 91 trips taken by slow cyclists, 2,633 by medium cyclists, and 

719 by fast cyclists. 

11.2.2.3 TRIP INFORMATION  

Commuting trips were extracted through GIS analysis, described in section 8.1.3.1. The 

method proved ineffective in identifying commuting trips as there were only 281 commuting 

trips out of 3,443 trips. This could be because travellers often combine other trip purposes 

with their commuting trips, such as dropping off/picking up children or buying groceries. In 

order to identify possible commuting trips, weekday trips conducted within the morning peak 

hours, between 7 and 9, and the afternoon peak hours, between 15 and 17, were classified as 

peak hours trips. A total of 1,094 trips were peak hours trips, while all others were non-peak 

hours, 2,349 trips in total.  

Trips conducted during weekends were identified in order to investigate differences in route 

preference between weekends and weekdays. The total number of weekend trips was 669, 

while there were 2,774 weekday trips. In addition, information on sunrise and sundown in 

the Greater Copenhagen area was also collected and compared to the time of day each stage 

was conducted. There were 491 trips after sundown, while there were 2,952 trips during 

daylight. 

0,6% 

14,6% 
15,8% 

24,1% 

17,1% 

12,3% 
10,8% 

4,7% 

0%

5%

10%

15%

20%

25%

30%

Age group 



231 

Finally, weather information, from the Danish Meteorological Institute (DMI), was joined with 

the bicycle trips in order to analyse whether there were differences in route preference 

between different weather attributes (i.e., rainfall, temperature, sunshine, and wind). For 

more information on how the additional information was collected for the survey, see section 

8.1.3. 

11.3 MODEL DEVELOPMENT 
Route choice models are essential to identify which network attributes influence cyclists’ 

route choice and evaluate the trade-offs among these attributes. Section 11.3.1 presents the 

method used to generate the alternative routes, while section 11.3.2 presents the model 

used for estimation. 

11.3.1 CHOICE SET GENERATION 

Bicycle route choice models depend on the observation of actual route choice and the 

generation of plausible alternatives. Model estimation results are strongly influenced by the 

size and composition of the choice set (Bekhor et al., 2006; Prato and Bekhor, 2007; Bliemer 

and Bovy, 2008; Anderson et al., 2014; Rasmussen et al., 2014). An incorrectly specified 

choice set can lead to biased parameter estimates and choice probabilities, especially when 

accounting for correlation between alternatives (Bliemer and Bovy, 2008). Preferably, the 

choice set should only include relevant alternatives. Including all paths in the network is 

unrealistic. 

For this study, three path generation methods were tested, i.e., breadth first search on link 

elimination (BSF-LE) (Rieser-Schüssler et al., 2012), doubly stochastic generation function 

(DSGF) (Nielsen, 2000; Bovy and Fiorenzo-Catalano, 2007), and the branch & bound (B&B) 

(Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 2006) algorithm, in their ability to 

generate relevant and heterogeneous bicycle routes (for further information see 

Halldórsdóttir et al., 2013). Different multi-attribute cost functions were tested, where not 

only route length or time is considered, but also bicycle-oriented factors, such as preferences 

for road types, dedicated cycle paths, and land use. The study showed that extending the cost 

function to factors that are relevant to cyclists provided a significant increase in 

performances when compared to previous choice set generation methods in the bicycle 

context. 

In the current study, the alternative routes were generated using DSGF. The method accounts 

for variations in travellers’ link cost and differences in travellers’ attribute preferences by 

drawing random costs and random parameters from probability distributions. The 

advantages of this method are the heterogeneity of the generated alternatives and its 
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computational efficiency in large networks, even though the randomisation of link costs and 

the parameters can be time consuming in a high-resolution network. The route set 

alternatives were generated using a modified version of the Road Traffic Assignment (RTA) 

tool in the Traffic Analyst (TA) software developed by Rapidis (www.rapidis.com), which is a 

transportation planning and modelling extension for ArcGIS Desktop (ESRI, 2015). 

11.3.1.1 GENERATION (COST) FUNCTION 

In this study, besides considering information regarding route length and travel time, the cost 

function considers information regarding different bicycle path types (i.e., motorised roads 

without any bicycle infrastructure, motorised roads with bicycle paths, motorised roads with 

bicycle lanes, dedicated bicycle path, dedicated footpath, and steps), surface types (i.e., 

paved or not paved) and land-use information (i.e., scenic paths, including forests and parks, 

or non-scenic paths). Travelling the wrong way was also given a penalty factor, as cycling the 

wrong way on an one-way street is illegal in Denmark. Nonetheless, many cyclists do so in 

order to avoid long detours. The generation (cost) function was defined as: 
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(26) 

where: 𝐶𝑎̅̅ ̅ is the random cost of link a; βRoadTypek
 are coefficients related to road type k with 

error components ξRoadTypeak
 related to road type k of link a; βSurfaceTypek

 are coefficients 

related to surface type k with error components ξSurfaceTypeak
 related to surface type k of link 

a; βLandUsek
 are coefficients related to land-use k with error components ξRoadTypeak

 related to 

land-use type k of link a; βWrongWayk
 are coefficients related to wrong way type k with error 

components ξWrongWayak
 related to wrong way type k of link a; βTravelTime is a coefficient related 

to travel time with error component ξTravelTimea
 related to the travel time on link a; βLength is a 

coefficient related to length with error component ξLengtha
 related to the length of link a. 

In order to guarantee non-negative draws, the betas βi are distributed according to a log-

normal distribution: 

  ~ ln ,
i i

Variable Variable   . (27) 

 

http://www.rapidis.com/
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The error terms are distributed according to a gamma distribution: 
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, (28) 

where 𝐶𝑎̅̅ ̅ is the generalized cost calculated in equation (26) and γ is the scale parameter 

(Nielsen and Jovicic, 1999). 

There are two cost types that are predefined in the RTA tool, i.e., length and travel time (the 

average speed was set at 15 km/hour), and then the error term. Various test runs were 

conducted in order to select suitable parameters for the generation (cost) function. After 

each run, the stochasticity of the generated alternatives was evaluated graphically, as well as 

the maximum coverage over the data sample. The parameters were chosen so as to provide a 

good amount of variation between the different routes, without them being unrealistic. Table 

35 lists the predefined cost parameters, plus the final scale parameters that were used to 

generate the alternative choice set for the bicycle routes. 

 
TABLE 35: PREDEFINED COST PARAMETERS, PLUS THE ADDED SCALE PARAMETERS 

ID Parameter Distribution Mean Variance 

Predefined cost parameters    
βLength Length No distribution 1 0 
βFreeTime Free time Log-normal 1 0.25 
ε Error term Gamma  0 2 

Scale parameters    
βRoadType1 Road with no bicycle infrastructure Log-normal 1.25 1.5625 

βRoadType2 Road with bicycle lane Log-normal 0.75 0.5625 

βRoadType3 Road with segregated bicycle path Log-normal 0.5 0.25 

βRoadType4 Bicycle path Log-normal 0.5 0.25 

βRoadType5 Footpath Log-normal 1.5 2.25 

βRoadType6 Steps Log-normal 1.5 2.25 

βSurfaceType1 Surface type – Paved Log-normal 0.75 0.5625 

βSurfaceType2 Surface type – Not paved Log-normal 1.25 1.5625 

βLandUse1 Land use – Scenic routes Log-normal 0.5 0.25 

βLandUse2 Land use – All other routes Log-normal 1.5 2.25 

βWrongWay Wrong way Log-normal 1.5 2.25 
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Observations over the 80% overlap threshold were considered consistent with the observed 

behaviour, a value often used in the literature (e.g., Ramming, 2002; Prato and Bekhor, 2007). 

The DSGF method duplicated 80% of the observed routes with a 80% coverage threshold. The 

method produced on average 65.60 alternative routes for each bicycle trip, with a standard 

deviation of 40.19. The number of alternatives varied across choice situations, ranging from 1 

to 100 alternatives, and directly attributed to increasing trip distance. Zero alternatives were 

generated for 59 out of 3,443 trips. These trips were, in most cases, extremely short, or the 

network density was limited. These trips were not included in the estimated dataset, along 

with one respondent that was missing travel survey information. 

11.3.2 MODEL SPECIFICATION 

The Multinomial Logit (MNL) and the Nested Logit (NL) are the most common models used 

when modelling discrete choices in travel behaviour. However, the MNL model does not 

account for similarities among alternatives, which is very important when modelling route 

choice since alternative routes often overlap. Also, routes share links with hundreds of other 

routes in real-size networks, which makes the NL model not applicable as it assumes that 

each alternative route belongs only to one nest. Path-size logit (PSL) models, presented by 

Ben-Akiva and Bierlaire (1999), account for similarities among alternative routes. In this 

study, PSL models were estimated and performances for different route choice specifications 

were examined: 
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where C is the choice set. The probability of choosing the specific route k is Pk, and Vk and Vl 

are the utility functions of routes k and l, respectively. Furthermore, βPS is the parameter to 

be estimated while the PSk and PSl are the path-size factors of route k and l, respectively. The 

path-size specifies the path fraction that constitutes a “full” alternative. Accordingly, a unique 

path has a size equal to 1 and identical paths N share the size 1/N. 

In order to capture the similarities between the alternative routes, the path-size factor was 

calculated as: 
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where PSk is the path-size factor, Γk is the set of all links of path k, La is the length of link a, Lk 

is the length of path k, and δal equals 1 if link a is on path i and equals 0 otherwise. The path-
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size ranges between 0 and 1, with 0 indicating complete overlap and 1 indicating complete 

independence. 

11.4 RESULTS 

11.4.1 DESCRIPTIVE STATISTICS 

Table 36 presents a comparison of the means and standard deviations of the network 

attributes and the land-use variables for the chosen and the non-chosen routes, respectively. 

In comparison to the alternatives, the chosen routes are on average shorter. As a result, all 

length related attributes are shorter, to a varying degree. The chosen routes have less turns, 

are not as steep, and have fewer intersections. Bicycle paths and footpaths in own traces are 

noticeably shorter for the chosen routes. This is because very few choose these alternatives 

and therefore it is to be expected that there will be very strong dispreference in the model 

estimation results. The land-use variables are the total distance travelled along a specific 

land-use type. The variables are divided into three categories, i.e., if the land-use category is 

on both sides of the link or if the information is either on the right side of the link or on the 

left side. In central Copenhagen, and other highly populated areas, it is difficult to 

differentiate between high residential areas and town centres, as high buildings are often 

contained in both. Thus, these two variables were joined together. 
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TABLE 36: VARIABLE DESCRIPTION OF THE NETWORK- AND LAND-USE ATTRIBUTES FOR THE CHOSEN AND NON-CHOSEN ROUTES 

    Chosen route   Alternatives 

Variable Unit Mean St. dev   Mean St. dev 

Network attributes             

ln(Path-size) - -2.043 1.348 
 

-2.900 0.882 
Length [km] 3.759 4.659 

 
5.374 5.496 

Wrong way [km] 0.070 0.261   0.092 0.252 

Number of turns 
 

     
Left turns - 2.993 4.053 

 
6.436 6.427 

Right turns - 2.711 2.953   4.901 3.914 

Cumulative elevation gain 
 

     
0-10 meters/km [km] 0.004 0.006 

 
0.006 0.006 

10-35 meters/km [km] 0.009 0.013 
 

0.013 0.016 
35-50 meters/km [km] 0.002 0.003 

 
0.003 0.005 

Above 50 meters/km [km] 0.003 0.007   0.007 0.013 

Bicycle facility type 
 

     
Motorized road without any bicycle facilities [km] 0.927 1.363 

 
1.326 1.722 

Motorized road with bicycle lane [km] 0.150 0.374 
 

0.209 0.450 
Motorized road with segregated bicycle path [km] 2.326 3.627 

 
2.643 3.620 

Bicycle path in own trace [km] 0.311 0.958 
 

0.955 2.243 
Footpath in own trace [km] 0.045 0.193 

 
0.235 0.583 

Steps [km] 0.001 0.008   0.005 0.026 

Bicycle bridge [km] 0.002 0.025   0.005 0.038 

Surface type 
 

     
Paved [km] 3.658 4.540 

 
4.921 5.007 

Cobblestone [km] 0.006 0.077 
 

0.037 0.217 
Unpaved [km] 0.090 0.439 

 
0.400 1.157 

Only MTB [km] 0.004 0.067   0.016 0.127 

Number of intersections 
 

     
Give way - 0.617 1.743 

 
0.756 1.908 

Roundabout - 0.518 2.093 
 

0.741 2.480 
Traffic signal - 7.913 11.794   9.629 11.753 

Motorized road type 
 

     
Large motorized roads [km] 1.847 3.390 

 
2.027 3.142 

Medium motorized roads [km] 0.603 1.198 
 

0.686 1.125 
Large local roads [km] 0.006 0.091 

 
0.008 0.086 

Small local roads [km] 1.266 1.745 
 

2.604 3.294 
Traffic calmed roads [km] 0.037 0.187   0.050 0.215 

Motorized free speed 
 

     
Below 11 km/hour [km] 0.308 0.866 

 
0.870 1.889 

11-30 km/hour [km] 0.293 0.634 
 

0.641 1.040 
31-50 km/hour [km] 2.478 3.021 

 
3.030 3.047 

51-70 km/hour [km] 0.613 1.729 
 

0.736 1.654 
71-90 km/hour [km] 0.067 0.769 

 
0.096 0.695 

91-100 km/hour [km] 0.000 0.000 
 

0.001 0.029 
Above 101 km/hour [km] 0.000 0.000   0.000 0.016 
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Number of motorized traffic lanes             
1 lane [km] 0.010 0.073 

 
0.009 0.063 

2 lanes [km] 2.937 3.631 
 

3.810 3.713 
3 lanes [km] 0.045 0.159 

 
0.043 0.149 

4 lanes [km] 0.262 1.172 
 

0.339 1.114 
5 lanes [km] 0.047 0.209 

 
0.065 0.242 

6 lanes [km] 0.086 0.426 
 

0.138 0.535 
7 lanes [km] 0.000 0.000 

 
0.000 0.000 

8 lanes [km] 0.007 0.054   0.008 0.057 

Motorized traffic bridge, crossing water/sea [km] 0.015 0.068 
 

0.030 0.099 
Motorized traffic tunnel [km] 0.000 0.010   0.000 0.011 

Land-use influence             
Cemetery on the right side [km] 0.050 0.194 

 
0.052 0.206 

Cemetery on the left side [km] 0.047 0.197 
 

0.047 0.190 
Cemetery on both sides [km] 0.011 0.105   0.024 0.169 

Forest on the right side [km] 0.155 0.529 
 

0.275 0.719 
Forest on the left side [km] 0.150 0.540 

 
0.268 0.696 

Forest on both sides [km] 0.146 0.581   0.355 1.144 

High residential area/town centre on the right side [km] 0.497 0.804 
 

0.722 1.023 
High residential area/town centre on the left side [km] 0.496 0.809 

 
0.723 1.025 

High residential area/town centre on both sides [km] 1.413 1.927   1.726 1.866 

Industry on the right side [km] 0.251 0.588 
 

0.312 0.624 
Industry on the left side [km] 0.248 0.585 

 
0.306 0.612 

Industry on both sides [km] 0.164 0.516   0.222 0.555 

Low residential area on the right side [km] 0.509 0.981 
 

0.730 1.214 
Low residential area on the left side [km] 0.469 0.904 

 
0.681 1.153 

Low residential area on both sides [km] 0.787 1.596   1.067 1.709 

Park on the right side [km] 0.333 0.618 
 

0.555 0.900 
Park on the left side [km] 0.366 0.628 

 
0.607 0.919 

Park on both sides [km] 0.223 0.711   0.636 1.262 

Scenic on the right side [km] 0.185 0.540 
 

0.346 0.794 
Scenic on the left side [km] 0.154 0.473 

 
0.315 0.744 

Scenic on both sides [km] 0.095 0.315   0.168 0.462 

Sport on the right side [km] 0.056 0.205 
 

0.112 0.326 
Sport on the left side [km] 0.054 0.183 

 
0.101 0.297 

Sport on both sides [km] 0.017 0.123   0.021 0.123 

Technical on the right side [km] 0.173 0.446 
 

0.209 0.420 
Technical on the left side [km] 0.166 0.415 

 
0.209 0.418 

Technical on both sides [km] 0.104 0.283   0.150 0.338 
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11.4.2 MODEL ESTIMATION AND DISCUSSION 

To investigate the attributes that are relevant in bicycle route choice, various PSL models 

were estimated. The asymptotic t-test was primarily used to test whether a specific model 

parameter differed from a known constant. Not all estimated parameters proved to be 

statistically significant at the 90% level. In addition, some variables, which were considered 

interesting preference indicators, could not be included in the estimation, either because 

they were correlated with other more important variables or because of identification 

problems. Consequently, some variables were removed to increase the reliability of the 

model. The model was estimated using the Biogeme package (Bierlaire, 2008). 

The results from the model estimation are reported in Table 37. The estimated values are 

presented along with the rates of substitution, which are scaled to the length. The rates of 

substitution specify the degree to which the average cyclist prefers one type over the other 

compared to the length. The final model is constituted by 3,363 observations and 26 

estimated parameters. 

 
TABLE 37: THE RESULTS FROM THE BASIS PATH-SIZE LOGIT MODEL ESTIMATES 

    Model estimates Rates of 
substitution Parameter Unit Value t-test   

Network attributes           

ln(Path-size) - 1.36 20.25 
***

 - 

Length [km] -0.91 -2.79 
***

 -1 

Wrong way [km] -1.19 -7.36 
***

 -1.31 

Number of turns       
 
   

Left - -0.32 -19.71 
***

 -0.36 
Right - -0.20 -12.11 

***
 -0.22 

Cumulative elevation gain       
 
   

0-10 meters/km ref. 
    

10-35 meters/km [km] -33.30 -3.72 
***

 -36.63 
35-50 meters/km [km] -37.60 -2.49 

***
 -41.36 

Above 50 meters/km [km] -49.40 -5.60 
***

 -54.35 

Bicycle  facility type       
 
   

Motorised road without any bicycle facilities ref. 
    

Motorised road with segregated bicycle path/ lane [km] 0.11 2.98 
***

 0.12 
Bicycle path in own trace [km] -0.19 -2.51 

***
 -0.21 

Footpath in own trace [km] -1.92 -9.22 
***

 -2.11 
Steps [km] -12.70 -4.33 

***
 -13.97 

Bicycle bridge [km] 2.09 1.60 
 
 2.30 

Surface type 
     

Paved ref. 
    

Not paved [km] -0.22 -2.13 
**

 -0.24 

Number of intersections - Roundabout - 0.05 3.14 
***

 0.05 



239 

Number of motorised traffic lanes       
 
   

1 lane [km] 1.27 3.00 
***

 1.40 
2 lanes ref. 

    
3 to 4 lanes [km] -0.22 -3.77 

***
 -0.24 

5 lanes and above [km] -0.42 -5.77 
***

 -0.46 

Motorised traffic bridge, crossing water/sea [km] -1.34 -2.53 
***

 -1.47 

Land-use influence 
     

Low residential area on the right side ref.     
 
   

Low residential area on both sides ref. 
    

High residential area and/or town centre on one side [km] -0.22 -3.49 
***

 -0.24 
High residential area and/or town centre on both sides [km] -0.60 -9.56 

***
 -0.66 

Industry on both sides [km] -0.30 -2.65 
***

 -0.33 
Sport on one side [km] -0.56 -4.37 

***
 -0.61 

Sport on both sides [km] 0.86 3.94 
***

 0.94 
Park on one side [km] -0.11 -1.98 

**
 -0.12 

Park on both sides [km] 0.16 1.52 
 
 0.18 

Number of estimated parameters:       
 
 26 

Number of observations: 
    

3,363 
Null log-likelihood: 

    
-12,761.08 

Final log-likelihood: 
    

-9,687.62 
Adjusted rho-square:         0.239 

Note: 
*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 

 

11.4.2.1 NETWORK ATTRIBUTES 

The logarithm of the path-size variable is statistically significant and positive, as expected, 

and thus correctly accounts for route overlap. Consistent with the findings in the literature 

(e.g., Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012) the results show that 

cyclists prefer shorter routes and avoid cycling the wrong way down a street (e.g., Hood et 

al., 2011), unless they, e.g., avoid a large detour, as observed from some of the chosen 

routes. Turn frequency has a significant negative effect on cyclists’ route choice and the 

model estimates show that cyclists prefer straight routes, and dislike left turns over right 

turns, also shown in Hood et al. (2011) and Broach et al. (2012). 

Many variations of elevation change were tested, i.e., maximum and average slope, and 

cumulative gain and loss in elevation. The best performing specification was the sum of 

elevation gain on all subparts of a link categorised with ‰. More specifically, it consists of the 

length with gain per thousand in the range of 0 to 10 meters (i.e., with slope up to 1%), 10 to 

35 meters, 35 to 50 meters, or above 50 meters. The estimation results show that cyclists’ 

route choice is strongly affected by increasing elevation and large in comparison with the 

impact of the length, indicating that average cyclists are willing to take a detour around the 

hillside if possible. Hood et al. (2011) and Broach et al. (2012) also found a strong 

dispreference for steep slopes, while Menghini et al. (2010) only found a small effect. 
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The parameters describing segregated bicycle paths and bicycle lanes were joined together, 

as the estimated coefficient parameters were not statistically different from each other. On 

average, cyclists prefer segregated bicycle paths and bicycle lanes and they are willing to take 

a detour in order to cycle on these facility types. The results show that, on average, cyclists 

are not willing to take a detour to travel on bicycle paths in their own trace. In Denmark, it is 

illegal to cycle on footpaths, which is confirmed by the model estimate as cyclists perceived 

footpaths more than double more burdensome in ratio to the length. Not surprisingly, there 

is also a high resistance to routes that have steps, as it can be very inconvenient to step off 

the bicycle and carry it up or down the staircases, although most staircases in Copenhagen 

have bicycle rails to assist. This pronounced dispreference is also because the dataset 

contains very few observed choices for these types, while there are numerous alternative 

routes. The literature shows that cyclists prefer increased separation from motorised traffic 

(e.g., Menghini et al., 2010; Hood et al., 2011; Broach et al., 2012) as confirmed in this study. 

It should be noted that none of the comparable literature investigates bicycle paths in their 

own trace, footpaths, or steps. The coefficient estimates show that cyclists have a high 

preference to dedicated bicycle bridges, indicating that cyclists might change their route 

choices if such facilities are built. 

The estimated coefficients for the unpaved surface types (i.e., cobblestone, unpaved, and 

mountain bicycle paths) were not statistically significant from each other and were thus 

joined together, showing that cyclists prefer to cycle on paved surfaces. 

The model estimates for the number of traffic signals was not statistically significant, thus 

contradicting Menghini et al. (2010) and Broach et al. (2012) that found that cyclists are 

sensitive to this type of intersection control. The number of stop signs did not have a 

significant effect on cyclists’ route choices. The number of roundabouts crossed was the only 

significant intersection parameter. It entered the model with a positive sign, which indicates 

that cyclists prefer to travel in a roundabout. This is probably because in Denmark bicycles 

have the right of way to motorised traffic in roundabouts and they do not need to stop when 

crossing it, opposite to signalised intersections or left turning in any intersection. Various 

different motorised conditions were tested (i.e., traffic type, speed limit, annual average daily 

traffic (AADT), and time dependent traffic volumes), however, these parameters did not have 

statistically significant model estimates. In Denmark, it is recommended to increase 

separation from mixed traffic, first to bicycle lanes and then to segregated bicycle paths, with 

increasing traffic volume and speed. Accordingly, segregated bicycle paths and bicycle lanes 

are highly correlated with motorised speed and traffic volumes, which could explain why 

these parameters were not statistically significant. These findings correspond with the 

findings of Hood et al. (2011), while they contradict Broach et al. (2012). The parameters 

describing the number of traffic lanes were the only parameters estimated statistically 
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significant, showing that cyclists prefer roads with one traffic lane, all else being equal, and 

that cyclists’ disutility towards traffic lanes increases, as the number of traffic lanes increases. 

The coefficient for motorised traffic bridges, crossing water/sea, was estimated negative and 

the rates of substitution show that cyclists consider traffic bridges, over water/sea, more than 

40% more burdensome to travel on in relation to length. 

11.4.2.2 LAND-USE ATTRIBUTES 

The estimated coefficients for the land-use information on the right side of the link and on 

the left side were not statistically different from each other and were thus joined together. 

The estimated parameters for high residential area and/or town centre on one side and both 

sides were negative and statistically significant. This could be an indication that cyclists are 

sensitive to high congestion levels on bicycle paths, as the bicycle paths are often highly 

congested in these areas. The negative effect could also be explained by the availability of car 

parking along these roads (e.g., Sener et al., 2009) and pedestrians crossing the bicycle paths 

to access shops, therefore these areas become more cumbersome or risky for bicycles. As 

expected, the parameter for industrial area on both sides was estimated negative and 

statistically significant. 

The model estimates indicate that cyclists are willing to take detours to cycle in recreational 

areas or parks, when they are on both sides of the path, while they avoid such detours when 

these areas are only on one side of the path. Previous model estimates showed that the 

parameter describing paths along a scenic area was estimated positive. However, it was not 

statistically significant and was thus not included in the final model. The parameter for paths 

in forest areas were estimated negative but not statistically significant and was thus not 

included. This is because forests generally have gravel paths, and accordingly were highly 

correlated with the parameter describing the surface type. 

11.4.2.3 ADDITIONAL MODEL ESTIMATES 

It was investigated how personal- and trip attributes influence the route choice of cyclists, 

where each category was estimated separately through linear combinations. The final results 

are presented in Appendix B with the rates of substitution, scaled to the length. 

11.4.2.3.1 PERSONAL ATTRIBUTES 

The model estimates in Appendix B show that on average, females have a higher negative 

preference for increased elevation than males. Hood et al. (2011) also found that females are 

more sensitive to average up-slopes. Males prefer not to cycle on paths in their own trace. 

The results also show that females prefer to cycle in park areas, while males prefer to avoid 

such detours. Interactions with other socio-economic variables were also tested, e.g., age and 

bicycle path type, but none of them were significant. 
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The cyclists’ average speed profile appears to influence their route choice (also concluded by 

Menghini et al., 2010), as faster cyclists have a negative preference for cycling on bicycle 

paths in their own trace, all else being equal, and a positive preference to cycle in parks. The 

results show that slow and medium fast cyclists have a negative preference to cycle in park 

areas. 

11.4.2.3.2 TRIP ATTRIBUTES 

Trip attributes’ influence on the route choice of cyclists was investigated as well, through 

linear combinations. The results are presented in Appendix B with the rates of substitution, 

scaled to the length. 

Cyclists have a higher dispreference to cycling on a bicycle path in own their trace and in 

parks after sundown. This is not surprising, as these paths are often isolated and poorly lit. 

The results also indicate that cyclists prefer not to cycle alongside parks during daytime, but 

instead prefer to cycle through parks. 

During peak hours, cyclists have a higher dispreference for bicycle paths in their own trace 

than during off-peak hours. They also avoid cycling alongside parks during peak hours and 

prefer to cycle in parks during off-peak hours. During weekends, there is a higher preference 

for segregated bicycle paths and bicycle lanes. Cyclists also appear to avoid bicycle paths in 

own their trace on weekdays. The results show that cyclists prefer routes through parks on 

weekdays, when they are not as crowded with pedestrians. During weekends, cyclists avoid 

parks as there are more pedestrians, which can be troublesome for cyclists as they need to 

cycle quite slowly and be more alert and swerve around people. In addition, it is not very 

popular amongst pedestrians to share paths with cyclists as they find it uncomfortable when 

a bicycle passes. Most importantly, it is not allowed to cycle through some parks, e.g., in the 

Copenhagen Municipality. Nonetheless, some cyclists ignore these restrictions. 

Several interactions with the weather variables were tested. As there are not many 

observations during rain, only 289 out of 3,363 in total, there was no measurable difference 

in route choice preferences in this weather condition, confirming Hood et al. (2011). There 

are considerably more observations during sunshine, a total of 1740 trips. However, the main 

difference is that cyclists have a higher dispreference for bicycle paths in their own trace 

when there is no sunshine. 

Trips were divided into three groups, depending on the air temperature: low when the air 

temperature was below 5°C, medium when between 5°C and 15°C, and high when above 

15°C. In previous model estimates, the medium- and high air temperatures were not 

statistically significant from each other and were thus joined together. The results show that 

cyclists’ route choices are more affected by the air temperature than other weather 
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conditions. There seems to be a correlation between low temperatures and avoiding bicycle 

paths in their own trace and parks on both sides. These paths are often cleaned later when 

the weather is snowy or freezing and thus these paths are more unattractive than roads in 

the wintertime. Several interactions with wind speed were also tested. However, none of 

them could be incorporated into the final model with statistically significant coefficients. 

11.5 CONCLUSION 
In this study it was examined which factors relate to the route choice of cyclists in the Greater 

Copenhagen area. A large sample of GPS observations was estimated, comprised of 3,363 

bicycle trips total, with related socio-economic attributes of the cyclists. Comparing different 

types of cyclists and evaluating their routes provided a deeper understanding of what affects 

cyclists’ route choices. In this study, a PSL model was estimated, accounting for similarities 

between the alternative routes. The model had a good explanatory power, with the logarithm 

of the path-size variable significant and positive, thus correctly accounts for route overlap. 

The findings of this study report on the sensitivity of cyclists to the effects of distance, cycling 

the wrong way, turn frequency, and hilliness. When thinking about new bicycle 

infrastructure, the findings suggest that cyclists are sensitive to the effects of different bicycle 

facility types and emphasise the importance of well-built bicycle facilities, i.e., segregated 

bicycle path and bicycle lanes, as well as bicycle bridges and that cyclists prefer paved surface 

types. 

In the Greater Copenhagen area, cyclists’ favour having the right of way to motorised traffic 

at intersections, as the findings show that cyclists’ prefer roundabouts over other intersection 

types. The findings also show that cyclists’ are sensitive to the number of motorised traffic 

lanes and crossing water/sea on motorised traffic bridges, whereas motorised traffic type, 

speed limit, annual average daily traffic (AADT), and time dependent traffic volumes had no 

statistically significant effect. Accident patterns also had no significant effect on cyclists’ route 

choices. 

Most importantly, the findings show that cyclists appear to place relatively high value on 

different land-use conditions along the routes, i.e., prefer to avoid high residential areas 

and/or town centres and industrial areas, whereas they are willing to take detours to cycle in 

recreational areas or parks when they are on both sides of the path. Cyclists avoid these 

detours when recreational- or park areas are on one side of the paths. Paths along scenic 

areas and in forests did not have a significant effect on cyclists’ route choices. 

The findings of this study reveal, through linear combinations, that there is some 

heterogeneity among the cyclists in relation to different route preferences (i.e., gender and 
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type of cyclist) and that there are differences in route choice preferences depending on the 

time of day (i.e., peak hours and darkness) and whether it is a weekday or weekend. The 

findings also show that cyclists route choices are more affected by the air temperature than 

rain or sunshine. 

This study shows that by focusing on the interaction between infrastructure and route choice 

of cyclists, it is possible to contribute to the understanding of which factors influence cyclists’ 

route choices. The findings help decision-makers to improve strategies in policy making and 

prioritise new infrastructure plans, aimed to improve cycling conditions. In addition, the 

findings can be used to improve travel demand models, which are mostly based on shortest-

paths calculations, and thus enable traffic planners to predict bicycle travel more accurately 

and to forecast future travel behaviour. 

Avenues for future research are needed. Firstly, the method used to identify commuting trips 

from raw GPS data proved not to be very successful. Further research is needed in this area, 

as investigating route choice preferences depended on different trip purposes in an obvious 

extension. Secondly, the current study estimates a PSL model only on bicycle trips collected 

with GPS trackers. An extension could be to estimate the model with the weight of each trip, 

that guarantees the representability of the sample, and therefore avoid self-selection of 

population levels, given that the participation to the data collection was voluntary. Thirdly, in 

order to only include realistic choice set alternatives for the model estimation, the estimated 

utility function could be used to generate a new set of alternatives for the route choice model 

and estimate the model again. This procedure should then be repeated iteratively to ensure 

consistency across model components. 
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Chapter 12  

CONCLUSIONS 
CONCLUSIONS OF THE PHD STUDY 

The research methods and the results have been discussed in the papers throughout this PhD 

thesis. This chapter briefly summarises the main contributions of the PhD study, in section 

12.1. Section 12.2 then discusses how the different models, used in this study, can be put 

together in an overall model framework that improves bicycle modelling and supports 

policies. Finally, section 12.3 gives the overall conclusions of the study. 

12.1 MAIN CONTRIBUTIONS 
Through the application of advanced transport models, the following six general 

contributions have been completed on the subject of the modelling of bicycle behaviour in 

the Copenhagen Region: 

 The first contribution regards the use of a mixed logit model to estimate the mode 

choice preferences in short distance travelling. The model proved effective in 

identifying the heterogeneity among cyclists in the sensitivity to travel time, 

temperature, and hilliness. The model estimates suggested that further 
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heterogeneity investigation might uncover whether different population groups 

exhibit different preference structures. 
 The second contribution regards the application of a latent class choice model to 

uncover different lifestyle groups and choice specific travel behaviour in short 

distance travelling. The findings highlight the importance of analysing the possible 

shift from the car to sustainable travel modes by considering the heterogeneous 

preferences of travellers, especially when comparing parameter estimates for travel 

time variables, and the significance of lifestyle decisions on short-term choices. 

Model estimates showed that four lifestyle groups were identified in the population: 

car oriented, bicycle oriented, public transport oriented, and public transport averse, 

where each group had heterogeneity in relation to travel time preferences with 

extremely different rates of substitution between alternative travel modes. 

 The third contribution regards the analysis of the mode choice behaviour for the 

access to and the egress from train stations. The mixed logit model, used for 

estimation, successfully accounted for the heterogeneity in the travellers’ 

preferences and heteroscedasticity across alternative modes. The findings emphasise 

the importance of estimating two different models for the home-end and the 

activity-end, given different preference structures related to the different knowledge 

of the network and the area. It is furthermore found that travellers’ perceptions of 

the alternatives and the travel time are heterogeneous. The findings showed that the 

choice of bicycles as a transport alternative is to a large extent related to the travel 

time, but also to the policy variables, i.e., parking at stations and the possibility of 

carrying bicycles on trains. In addition, their preference structure relates more to 

their socio-economic characteristics as opposed to the trip characteristics. 

 The fourth contribution regards the collection of individual-based GPS data and the 

importance of automated post-processing procedures to classify trips, trip legs, and 

the most probable mode of transport. A method, combining fuzzy logic and GIS-

based algorithm to process raw GPS data, was developed and tested. The proposed 

method proved successful in processing the raw GPS data, thus making it possible to 

use GPS loggers to collect the actual route choices of cyclists, in large-scale multi-

modal networks. 

 The fifth contribution regards the analysis of the efficiency of three choice set 

generation methods for bicycle routes, i.e., a doubly stochastic generation function, a 

breadth first search on link elimination, and a branch & bound algorithm. The 

extension of cost functions to bicycle-oriented factors, not limited to distance and 

time, was proposed. The findings showed that both the doubly stochastic generation 

function and the breadth first search on link elimination generated realistic routes, 

while the first produced more heterogeneous routes and the latter outperformed in 
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computation cost. The doubly stochastic generation function was chosen for further 

analysis in this study, due to the complex nature of route choice behaviour in general 

and the importance of generating relevant and heterogeneous routes for model 

estimation. 

 The sixth contribution regards the route choice behaviour of cyclists, where a path-

size logit model was estimated, accounting for similarities between overlapping 

alternative routes. The logarithm of the path-size variable was positive and 

significant, hence it correctly accounted for route overlap. The model successfully 

identified the importance of numerous attributes and how they influence cyclists’ 

route choices. The model estimates highlight the importance of well-built bicycle 

facilities and that cyclists also place a relatively high value on different land-use 

conditions along the route, emphasising the importance of choosing the location of 

new bicycle paths carefully. 

12.2 RECOMMENDATION FOR FUTURE WORK 
As discussed in Chapter 1, the problem with existing traffic models is that bicycle transport 

has been largely simplified in the models. This PhD study focused on the two last steps of the 

four-step travel modelling process, i.e., the mode choice and the route choice. 

All three mode choice models, estimated in the study, emphasise the importance of not only 

considering the importance of travel time and trip characteristics, but also that travellers 

have heterogeneous preferences. The mixed logit models are a good means to investigate the 

effect of policy variables, while taking into consideration the heterogeneous preferences of 

travellers. The results from the mixed logit models showed that travellers’ socio-economic 

characteristics are highly connected to their preference structure, both when travelling short 

distances as well as when accessing train stations. The findings from the mixed logit model, 

analysing short distance mode choices, suggested that further investigation of heterogeneity 

might uncover whether different population groups exhibit different preference structures. 

The latent class choice model proved to be a more suitable methodological approach to 

uncover the determinants of the choice between cars and sustainable transport alternatives 

when travelling short distances. The model allows identifying lifestyle groups and to 

understand how lifestyle affects mode choice decisions when travelling short distances. The 

finding from the mixed logit model, analysing the mode choice behaviour for the access to 

and the egress from train stations, also indicated that a latent lifestyle segmentation 

approach could reveal which population groups should be addressed when intending to 

improve the integration of active travel modes and public transport. 
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By estimating a path-size logit model, to analyse the route choice of existing cyclists, the rates 

of substitution between different route variables can be calculated. Consequently, decision-

makers are able to weight cyclists’ preferences for different route characteristics. Most 

importantly, the findings from the route choice model can be used to forecast future travel 

behaviour by investigating further the interaction between the bicycle route choice model 

and the mode choice models.  Figure 69 gives an overview of this feedback mechanism in the 

four-stage modelling process, where the models studied in this thesis are shown in dark red. 

The route choice model can be implemented into the mode choice model, e.g., by using the 

logsum as a measure of consumer surplus or by using the estimated utility function, from the 

route choice model, to calculate the level-of-service variables for the bicycle alternatives in 

the mode choice models. Accordingly, the rather simple shortest path simulation method, 

from Section 3.3.3 – Shortest path generation, can be replaced and more complex route 

assignment used to calculate the attributes of the bicycle alternative within the choice set of 

each traveller, similar to the description in Section 3.3.1 – Road traffic assignment. In 

addition, by adding relevant variables from the bicycle route choice model, to the utility 

function in the mode choice models, scenario analysis can be conducted to further evaluation 

of the effects of possible policy instruments intending to increase cycling in the Copenhagen 

Region. 

Furthermore, the interaction between the route choice in public transport, when the main 

transport mode is passenger trains, and the results from the access and egress mode choice 

model, needs to be investigated further. Figure 70 shows the feedback mechanism for access 

and egress modes to passenger trains. As shown in the figure, it is quite complex to model 

the access and egress mode choice and it entails a lot of bookkeeping to the model 

framework. The level-of-service variables for the feeder modes would need to be re-

calculated and then a new demand assigned. Even though it looks quite complicated, it is 

fairly straightforward since all the components are available from this study. 
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FIGURE 69: FEEDBACK MECHANISM IN THE FOUR-STEP TRAVEL MODELLING PROCESS 
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FIGURE 70: FEEDBACK MECHANISM FOR ACCESS/EGRESS MODES TO PASSENGER TRAINS 
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12.3 MAIN CONCLUSIONS 
The main conclusion of this PhD study is that it is possible to estimate quite advanced 

models: (i) to evaluate the potential of shifting from the private car to sustainable travel 

options, when travelling short distances; (ii) to investigate the choice of access and egress 

modes to and from the railway network, by taking into consideration the difference in 

preference structure at the home-end and activity-end; and (iii) to analyse cyclists’ route 

choice behaviour. These models included a much more elaborate set of variables and utility 

functions than the very simple models that are often used in practice. It was possible to 

analyse travel behaviour on extensive revealed preference data, both the preferences in the 

choice of transport mode and cyclists’ route choice behaviour. 

Firstly, when thinking about measures to increase the attractiveness of bicycles as a 

sustainable transport option in short distance travelling, decision-makers should address 

specific population groups for specific trip purposes and focus on factors that are able to 

make cycling more attractive in order to encourage the shift from private cars to more 

sustainable transport alternatives. They should propose traditional or creative solutions to 

encourage car-oriented individuals out of their cars and minimise the attractiveness of cars in 

the future for bicycle- and walk-oriented individuals. They should also direct public transport-

averse individuals towards the bicycle, with policies that make the car unattractive. 

Secondly, when thinking about bicycle infrastructure improvements to increase the use of 

bicycle as a transport alternative in short distance travelling, the findings showed that 

decreasing the travel time on bicycles has little effect on car-oriented individuals, unless the 

time savings are very high. Bicycle-oriented individuals will only modify their routes as they 

already consider cycling as the fastest means of transport. 

Thirdly, when thinking about factors that can contribute to the sustainability of the travel 

choices after selecting a train as the main transport mode, it is important to improve train 

station accessibility, e.g., by improving the bicycle network infrastructure. Increasing bicycle 

parking availability at train stations is certainly helpful, especially improving the conditions of 

bicycle parking at metro stations. The availability of covered bicycle parking also increases the 

probability of cycling. Alternatively, travellers do not seem to be too concerned with locked 

parking areas as there is already a tradition to use on-street parking. It is also important to 

provide the opportunity to carry the bicycle on the train. 

Finally, when thinking about bicycle infrastructure improvements to make cycling more 

attractive for existing cyclists, decision-makers should focus on minimising excessive detours, 
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by improving the connectivity of the bicycle network and making the infrastructure seamless, 

while avoiding hilly areas. The findings also highlight the importance of well-built bicycle 

facilities, i.e., segregated bicycle paths and bicycle lanes, as well as bicycle bridges. The 

cyclists also place relatively high value on different land-use conditions, emphasising the 

importance of choosing the location of new bicycle paths carefully. 

The bicycle route choice model, developed in this study, is an important component in 

improving trip assignment models for cyclists. The estimated utility function, from the bicycle 

route choice model, can be used to generate realistic bicycle routes between each origin-

destination pair. In addition, it can be used to calculate more accurately the level-of-service 

variables for the bicycle alternatives in mode choice models, by including, e.g., the preference 

for different bicycle facility types and the negative effect of hilliness. Avenues for future 

research are needed. In order to forecast future travel behaviour, the interaction between 

the bicycle route choice model and the mode choice models needs to be investigated further. 

Scenario simulations would also allow further evaluation of the effects of implementing a 

new infrastructure or a political initiative, intending to increase cycling in the Copenhagen 

Region, and to forecast future behaviour. 

 



 
 

PART V 

APPENDIX 
 

 

 





 
 

APPENDIX A 

BICYCLE NETWORK DATABASE – DATA DESCRIPTION 
ATTRIBUTE TABLE 

 





 

265 

A BICYCLE NETWORK DATABASE FOR THE GREATER COPENHAGEN 

AREA 
 

This appendix gives an overview and a description of the attributes in the bicycle network 

database, described in section 8.2. For further information on how the network was 

constructed, see: Halldórsdóttir et al. (2013) and Pedersen and Senstius (2014). 

TABLE 38: BICYCLE NETWORK - ATTRIBUTES OVERVIEW 

Name Description 

ID Unique id 

From_node 
Unique node identification 

To_node 

OpenFor 
Driving directions 

OpenBack 

Type 

11 Road 

12 Road with bicycle lane 

13 Road with bicycle path 

21 Bicycle path 

22 Footpath 

23 Steps 

31 No bicycle access 

32 No access 

Surface 

1 Paved 

2 Paved, cobblestone 

3 Unpaved 

4 Unpaved, only mountain bikes 

LanduseRight 

Low residential 

High residential 

Industry 

Town centre 

Park 

Forrest 

Heath 

Cemetery 

LanduseLeft 

Sport facilities 

Sand 

Technical facilities 

Gravel pit 

Coast 

Lake 

Wetland 

Stream 
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Cum_elev_gain Sum of elevation gain/loss on all subparts of a link, where gain and 
loss is relative to drawing direction of the link. Cum_elev_loss 

Cum_elev_gain_0_10 

Sum of elevation gain/loss on all subparts of a link categorized in ‰, 
where gain and loss is relative to drawing direction of the link. 

Cum_elev_gain_10_35 

Cum_elev_gain_35_50 

Cum_elev_gain_above_50 

Cum_elev_loss_0_10 

Cum_elev_loss_10_35 

Cum_elev_loss_35_50 

Cum_elev_loss_above_50 

FromIntersectionLegsAll 

Count of legs in an intersection. 

Dead end links are 
excluded in the 
count. 

ToIntersectionLegsAll 

FromIntersectionLegsRoad Dead end links and 
paths (type 21 and 
22) are excluded in 
the count. 

ToIntersectionLegsRoad 

FromIntersectionType 

-1 Unknown 

0 No intersection (pseudo-nodes and path intersecting road) 

1 Giveaway junction (da: vigepligt) 

ToIntersectionType 

2 Roundabout 

3 Traffic Signal 

    

MotorTrafficSpeedLimit 
Based on NavTeq Streets 

For paths with type 
13 values refers to 
corresponding 
road. 

MotorTrafficLanes 

MotorTrafficFunctionalClass 

1 

Used for roads with high volume, 
maximum speed traffic movement 
between and through major 
metropolitan areas. 

2 
Used to channel traffic to 
MotorTrafficFunctionalClass = 1 roads. 

3 

Roads which interconnect 
MotorTrafficFunctionalClass = 2 roads 
and provide a high volume of traffic 
movement at a lower level of mobility 
than these. 

4 
Roads which provide for a high volume 
of traffic movement at moderate speeds 
between neighbourhoods. 

5 
Roads with low volume and traffic 
movement. In addition, walkways, 
Parking lanes etc. 

-1 Non-navigable links 

LTM_ID Reference to LTM version 1.05 road network 

LTM_LinkType   

LTM_WDT LTM modelled average week day total traffic 

LTM_TruckShare Truck share of LTM_WDT 
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LTM_FreeSpeed Uncongested speed used in LTM. 

AccidentsVejman08_12 Count of reported accidents 2008 to 2012. 

AccVejmann08_12_NoIntersect Count of reported accidents not related to intersections. 

Dead_end 
Value is 1 for dead end link, while links with 
values greater than 1 is dead ends, only if 
links with lower values are removed. 

Possibly to be used 
for limiting the 
number of links. 

Serviceroad Road of lesser importance.  

Urban 
Urban area is defined as place with more than 200 inhabitants and 
less than 200 meters between houses. 

Shape_Length Length in meters. 
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B RESULTS FROM HALLDÓRSDÓTTIR ET AL. (2015B): THE MODEL 

ESTIMATES, WITH LINEAR COMBINATIONS 
 

This appendix supplements Halldórsdóttir et al. (2015b). The following sections present the 

results from the path-size logit model estimates, with linear combinations. For further 

information, see Halldórsdóttir et al. (2015b). 

 

B.1 Gender Page 272 

B.2 Type of cyclist Page 274 

B.3 Darkness Page 276 

B.4 Peak hours Page 278 

B.5 Weekend Page 280 

B.6 Air temperature Page 282 
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B.1 GENDER 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.36 21.17 
***

 - 

Length -0.95 -3.01 
***

 -1.00 

Wrong way -1.21 -7.47 
***

 -1.28 

Number of turns 
    

Left -0.32 -19.58 
***

 -0.34 
Right -0.20 -12.09 

***
 -0.22 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km - Female -40.20 -3.00 
***

 -42.41 
10-35 meters/km - Male -24.00 -1.99 

**
 -25.32 

35-50 meters/km - Female -51.70 -2.47 
***

 -54.54 
35-50 meters/km - Male -22.90 -1.17 

 
-24.16 

Above 50 meters/km - Female -60.20 -4.58 
***

 -63.50 
Above 50 meters/km - Male -40.60 -3.29 

***
 -42.83 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane 0.13 3.63 
***

 0.13 
Bicycle path in own trace - Female - 

  
- 

Bicycle path in own trace - Male -0.30 -3.18 
***

 -0.31 
Footpath in own trace -1.87 -9.12 

***
 -1.97 

Steps -12.90 -4.46 
***

 -13.61 
Bicycle bridge 2.13 1.59 

 
2.25 

Surface type 
    

Paved ref. 
   

Not paved -0.20 -2.13 
**

 -0.21 

Number of intersections - Roundabout 0.05 3.22 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.29 2.99 
***

 1.36 
2 lanes ref. 

   
3 to 4 lanes -0.23 -4.14 

***
 -0.24 

5 lanes and above -0.42 -5.73 
***

 -0.44 

Motorised traffic bridge, crossing water/sea -1.27 -2.37 
**

 -1.34 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.24 -3.71 
***

 -0.25 
High residential area and/or town centre on both sides -0.60 -9.66 

***
 -0.63 

Industry on both sides -0.30 -2.68 
***

 -0.32 
Sport on one side -0.53 -4.20 

***
 -0.56 

Sport on both sides 0.78 3.55 
***

 0.82 
Park on one side -0.13 -2.11 

**
 -0.14 

Park on both sides - Female 0.24 1.71 
*
 0.26 

Park on both sides - Male -0.10 -0.90 
 

-0.11 
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Number of estimated parameters: 
 

30 
Number of observations: 

 
3,363 

Null log-likelihood: 
 

-12,761.075 
Final log-likelihood: 

 
-9,675.673 

Adjusted rho-square: 
 

0.239 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.2 TYPE OF CYCLIST 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.36 21.23 
***

 - 

Length -0.901 -2.89 
***

 -1.00 

Wrong way -1.22 -7.59 
***

 -1.35 

Number of turns 
    

Left -0.328 -19.94 
***

 -0.36 
Right -0.205 -12.31 

***
 -0.23 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -33.5 -3.66 
***

 -37.18 
35-50 meters/km -38.5 -2.56 

***
 -42.73 

Above 50 meters/km -49.9 -5.62 
***

 -55.38 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane 0.104 3.16 
***

 0.12 
Bicycle path in own trace - Slow - 

 
 

- 
Bicycle path in own trace - Medium - 

  
- 

Bicycle path in own trace - Fast -0.454 -4.49 
***

 -0.50 
Footpath in own trace -1.83 -9.14 

***
 -2.03 

Steps -12.8 -4.32 
***

 -14.21 

Bicycle bridge 1.91 1.48 
 

2.12 

Surface type 
    

Paved ref. 
   

Not paved -0.264 -2.87 
***

 -0.29 

Number of intersections - Roundabout 0.049 3.13 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.42 3.36 
***

 1.58 
2 lanes ref. 

   
3 to 4 lanes -0.179 -3.03 

***
 -0.20 

5 lanes and above -0.421 -5.9 
***

 -0.47 

Motorised traffic bridge, crossing water/sea -1.37 -2.57 
***

 -1.52 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.241 -3.82 
***

 -0.27 
High residential area and/or town centre on both sides -0.612 -9.95 

***
 -0.68 

Industry on both sides -0.308 -2.74 
***

 -0.34 
Sport on one side -0.539 -4.15 

***
 -0.60 

Sport on both sides 0.888 3.6 
***

 0.99 
Park on one side - Slow -1.31 -2.06 

**
 -1.45 

Park on one side - Medium - 
  

- 
Park on one side - Fast -0.19 -2.54 

***
 -0.21 
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Park on both sides - Slow - 
  

- 
Park on both sides - Medium -0.219 -1.78 

*
 -0.24 

Park on both sides - Fast 0.659 4.59 
***

 0.73 

Number of estimated parameters: 
 

28 
Number of observations: 

 
3,363 

Null log-likelihood: 
 

-12,761.075 
Final log-likelihood: 

 
-9,658.176 

Adjusted rho-square: 
 

0.241 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.3 DARKNESS 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.35 20.36 
***

 - 

Length -0.916 -2.84 
***

 -1.00 

Wrong way -1.2 -7.43 
***

 -1.31 

Number of turns 
    

Left -0.324 -20 
***

 -0.35 
Right -0.201 -12.1 

***
 -0.22 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -32.1 -3.56 
***

 -35.04 
35-50 meters/km -32.6 -2.17 

**
 -35.59 

Above 50 meters/km -47.9 -5.53 
***

 -52.29 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane 0.107 2.94 
***

 0.12 
Bicycle path in own trace - Darkness -0.727 -4.11 

***
 -0.79 

Bicycle path in own trace - Light -0.17 -2.22 
**

 -0.19 
Footpath in own trace -1.92 -9.26 

***
 -2.10 

Steps -12.6 -4.32 
***

 -13.76 

Bicycle bridge 2.23 1.7 
*
 2.43 

Surface type 
    

Paved ref. 
   

Not paved -0.176 -1.82 
*
 -0.19 

Number of intersections - Roundabout 0.048 3.09 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.27 2.99 
***

 1.39 
2 lanes ref. 

   
3 to 4 lanes -0.219 -3.85 

***
 -0.24 

5 lanes and above -0.415 -5.69 
***

 -0.45 

Motorised traffic bridge, crossing water/sea -1.31 -2.49 
***

 -1.43 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.209 -3.34 
***

 -0.23 
High residential area and/or town centre on both sides -0.591 -9.55 

***
 -0.65 

Industry on both sides -0.288 -2.56 
***

 -0.31 
Sport on one side -0.546 -4.23 

***
 -0.60 

Sport on both sides 0.848 3.99 
***

 0.93 
Park on one side - Darkness - 

  
- 

Park on one side - Light -0.119 -2.11 
**

 -0.13 
Park on both sides - Darkness -0.261 -1.24 

 
-0.28 

Park on both sides - Light 0.196 1.78 
**

 0.21 
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Number of estimated parameters: 
   

28 
Number of observations: 

   
3,363 

Null log-likelihood: 
   

-12,761.075 
Final log-likelihood: 

   
-9,675.422 

Adjusted rho-square: 
   

0.240 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.3 PEAK HOURS 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.36 21.08 
***

 - 

Length -0.93 -2.95 
***

 -1.00 

Wrong way -1.2 -7.45 
***

 -1.29 

Number of turns 
    

Left -0.32 -19.7 
***

 -0.35 
Right -0.2 -12.1 

***
 -0.22 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -34 -3.73 
***

 -36.68 
35-50 meters/km -37.4 -2.5 

***
 -40.35 

Above 50 meters/km -49.4 -5.58 
***

 -53.29 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane 0.115 3.14 
***

 0.12 
Bicycle path in own trace - Peak hours -0.26 -2.45 

***
 -0.28 

Bicycle path in own trace - Off-peak hours -0.17 -1.94 
**

 -0.18 
Footpath in own trace -1.92 -9.17 

***
 -2.07 

Steps -12.6 -4.29 
***

 -13.59 

Bicycle bridge 2.1 1.59 
 

2.27 

Surface type 
    

Paved ref. 
   

Not paved -0.21 -2.03 
**

 -0.23 

Number of intersections - Roundabout 0.047 3.06 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.24 2.97 
***

 1.34 
2 lanes ref. 

   
3 to 4 lanes -0.23 -4.01 

***
 -0.25 

5 lanes and above -0.45 -6.56 
***

 -0.48 

Motorised traffic bridge, crossing water/sea -1.43 -2.67 
***

 -1.54 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.23 -3.58 
***

 -0.24 
High residential area and/or town centre on both sides -0.6 -10.1 

***
 -0.65 

Industry on both sides -0.32 -2.88 
***

 -0.35 
Sport on one side -0.56 -4.41 

***
 -0.60 

Sport on both sides 0.869 3.99 
***

 0.94 
Park on one side - Peak hours -0.2 -2.83 

***
 -0.21 

Park on one side - Off-peak hours - 
  

- 
Park on both sides - Peak hours - 

  
- 

Park on both sides - Off-peak hours 0.25 1.86 
*
 0.27 
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Number of estimated parameters: 
   

27 
Number of observations: 

   
3,363 

Null log-likelihood: 
   

-12,761.075 
Final log-likelihood: 

   
-9,682.419 

Adjusted rho-square: 
   

0.239 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.4 WEEKEND 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.36 20.71 
***

 - 

Length -0.919 -2.89 
***

 -1.00 

Wrong way -1.19 -7.39 
***

 -1.29 

Number of turns 
    

Left -0.324 -19.72 
***

 -0.35 
Right -0.201 -12.11 

***
 -0.22 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -34.2 -3.77 
***

 -37.21 
35-50 meters/km -38.1 -2.52 

***
 -41.46 

Above 50 meters/km -49.7 -5.63 
***

 -54.08 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane - 
Weekday 

0.09 2.58 
***

 0.10 

Motorised road with segregated bicycle path/bicycle lane - 
Weekend 

0.209 3.6 
***

 0.23 

Bicycle path in own trace - Weekday -0.229 -2.83 
***

 -0.25 
Bicycle path in own trace - Weekend - 

  
- 

Footpath in own trace -1.91 -9.25 
***

 -2.08 
Steps -12.7 -4.33 

***
 -13.82 

Bicycle bridge 2.07 1.58 
 

2.25 

Surface type 
    

Paved ref. 
   

Not paved -0.226 -2.15 
**

 -0.25 

Number of intersections - Roundabout 0.05 3.19 
***

 0.05 

Number of motorised traffic lanes 
 

   
1 lane 1.26 2.93 

***
 1.37 

2 lanes ref. 
   

3 to 4 lanes -0.209 -3.57 
***

 -0.23 
5 lanes and above -0.421 -5.88 

***
 -0.46 

Motorised traffic bridge, crossing water/sea -1.37 -2.58 
***

 -1.49 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.218 -3.48 
***

 -0.24 
High residential area and/or town centre on both sides -0.601 -9.6 

***
 -0.65 

Industry on both sides -0.311 -2.78 
***

 -0.34 
Sport on one side -0.561 -4.36 

***
 -0.61 

Sport on both sides 0.854 3.87 
***

 0.93 
Park on one side - Weekday -0.128 -2.25 

**
 -0.14 

Park on one side - Weekend - 
  

- 
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Park on both sides - Weekday 0.233 2.07 
**

 0.25 
Park on both sides - Weekend -0.234 -1.25 

 
-0.25 

Number of estimated parameters: 
   

28 
Number of observations: 

   
3,363 

Null log-likelihood: 
   

-12,761.075 
Final log-likelihood: 

   
-9,681.773 

Adjusted rho-square: 
   

0.239 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.5 AIR TEMPERATURE 

 

Model estimates Rates of 
substitution Parameter Value t-test 

 
Network attributes 

    
ln(Path-size) 1.35 20.08 

***
 - 

Length -0.892 -2.73 
***

 -1.00 

Wrong way -1.19 -7.32 
***

 -1.33 

Number of turns 
    

Left -0.325 -19.8 
***

 -0.36 

Right -0.202 -12 
***

 -0.23 

Cumulative elevation gain 
    

0-10 meters/km ref.    
10-35 meters/km -33.1 -3.72 

***
 -37.11 

35-50 meters/km -36.5 -2.43 
***

 -40.92 

Above 50 meters/km -49.3 -5.64 
***

 -55.27 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref.    
Motorised road with segregated bicycle path/bicycle lane - 
Low 

-0.135 -1.63 
***

 -0.15 

Motorised road with segregated bicycle path/bicycle lane - 
Medium/high 

0.119 3.23 
***

 0.13 

Bicycle path in own trace - Low -1.44 -3.56 
***

 -1.61 

Bicycle path in own trace - Medium/high -0.165 -2.14 
**

 -0.18 

Footpath in own trace -1.89 -9.2 
***

 -2.12 

Steps -12.7 -4.34 
***

 -14.24 

Bicycle bridge 2.38 1.81 
*
 2.67 

Surface type 
    

Paved ref.    
Not paved -0.209 -2.07 

**
 -0.23 

Number of intersections - Roundabout 0.048 3.08 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.24 2.94 
***

 1.39 

2 lanes ref.    
3 to 4 lanes -0.213 -3.73 

***
 -0.24 

5 lanes and above -0.412 -5.69 
***

 -0.46 

Motorised traffic bridge, crossing water/sea -1.31 -2.46 
***

 -1.47 
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Land-use influence 
    

Low residential area on the right side ref.    
Low residential area on both sides ref.    
High residential area and/or town centre on one side -0.209 -3.36 

***
 -0.23 

High residential area and/or town centre on both sides -0.597 -9.48 
***

 -0.67 

Industry on both sides -0.298 -2.66 
***

 -0.33 

Sport on one side -0.55 -4.33 
***

 -0.62 

Sport on both sides 0.84 3.93 
***

 0.94 

Park on one side - Low -0.226 -1.31 
 

-0.25 

Park on one side - Medium/high -0.112 -1.99 
**

 -0.13 

Park on both sides - Low -0.776 -1.48 
 

-0.87 

Park on both sides - Medium/high 0.196 1.84 
*
 0.22 

Number of estimated parameters: 

   

30 

Number of observations: 

   

3,363 

Null log-likelihood: 

   

-12,761.08 

Final log-likelihood: 

   

-9,666.949 

Adjusted rho-square: 

   

0.24 
Note: 

*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.6 RAIN 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.36 62.01 
***

 - 

Length -0.912 -39.6 
***

 -1 

Wrong way -1.19 -15.1 
***

 -1.30 

Number of turns 
    

Left -0.324 -38.1 
***

 -0.36 
Right -0.202 -16.6 

***
 -0.22 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -33.7 -4.87 
***

 -36.95 
35-50 meters/km -38.5 -3.03 

***
 -42.21 

Above 50 meters/km -49.8 -7.93 
***

 -54.61 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane - 
Rain 

- 
  

- 

Motorised road with segregated bicycle path/bicycle lane - 
No rain 

0.12 4.16 
***

 0.13 

Bicycle path in own trace - Rain - 
  

- 
Bicycle path in own trace - No rain -0.19 -4.23 

***
 -0.21 

Footpath in own trace -1.9 -17.5 
***

 -2.08 
Steps -12.9 -4.66 

***
 -14.14 

Bicycle bridge 2.01 1.79 
*
 2.20 

Surface type 
    

Paved ref. 
   

Not paved -0.227 -3.18 
***

 -0.25 

Number of intersections - Roundabout 0.049 3.03 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.28 2.79 
***

 1.40 
2 lanes ref. 

   
3 to 4 lanes -0.22 -5.57 

***
 -0.24 

5 lanes and above -0.425 -5.84 
***

 -0.47 

Motorised traffic bridge, crossing water/sea -1.35 -2.48 
***

 -1.48 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.223 -4.82 
***

 -0.24 
High residential area and/or town centre on both sides -0.597 -13.9 

***
 -0.65 

Industry on both sides -0.299 -3.69 
***

 -0.33 
Sport on one side -0.564 -4.93 

***
 -0.62 

Sport on both sides 0.848 3.75 
***

 0.93 
Park on one side - Rain - 

  
- 

Park on one side - No rain -0.103 -2.3 
**

 -0.11 
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Park on both sides - Rain - 
  

- 
Park on both sides - No rain 0.161 2.75 

***
 0.18 

Number of estimated parameters: 

   
26 

Number of observations: 

   
3,363 

Null log-likelihood: 

   
-12,761.075 

Final log-likelihood: 

   
-9,686.528 

Adjusted rho-square: 

   
0.239 

Note: 
*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level. 
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B.7 SUNSHINE 

 
Model estimates Rates of 

substitution Parameter Value t-test 
 

Network attributes 
    

ln(Path-size) 1.35 61.89 
***

 - 

Length -0.88 -38.2 
***

 -1 

Wrong way -1.2 -15.2 
***

 -1.36 

Number of turns 
    

Left -0.327 -38.7 
***

 -0.37 
Right -0.208 -17.1 

***
 -0.24 

Cumulative elevation gain 
    

0-10 meters/km ref. 
   

10-35 meters/km -34.8 -5.1 
***

 -39.55 
35-50 meters/km -38.8 -3.07 

***
 -44.09 

Above 50 meters/km -49.1 -7.89 
***

 -55.80 

Bicycle  facility type 
    

Motorised road without any bicycle facilities ref. 
   

Motorised road with segregated bicycle path/bicycle lane - 
Sunshine 

0.137 4.16 
***

 0.16 

Motorised road with segregated bicycle path/bicycle lane - 
No sunshine 

-0.296 -5.79 
***

 -0.34 

Bicycle path in own trace - Sunshine -0.156 -2.94 
***

 -0.18 
Bicycle path in own trace - No sunshine - 

  
- 

Footpath in own trace -1.92 -17.5 
***

 -2.18 
Steps -12.8 -4.62 

***
 -14.55 

Bicycle bridge 2.13 1.9 
*
 2.42 

Surface type 
    

Paved ref. 
   

Not paved -0.198 -2.73 
***

 -0.23 

Number of intersections - Roundabout 0.047 2.89 
***

 0.05 

Number of motorised traffic lanes 
    

1 lane 1.33 2.87 
***

 1.51 
2 lanes ref. 

   
3 to 4 lanes -0.207 -5.64 

***
 -0.24 

5 lanes and above -0.423 -5.78 
***

 -0.48 

Motorised traffic bridge, crossing water/sea -1.37 -2.52 
***

 -1.56 

Land-use influence 
    

Low residential area on the right side ref. 
   

Low residential area on both sides ref. 
   

High residential area and/or town centre on one side -0.203 -4.74 
***

 -0.23 
High residential area and/or town centre on both sides -0.591 -13.9 

***
 -0.67 

Industry on both sides -0.279 -3.43 
***

 -0.32 
Sport on one side -0.572 -4.99 

***
 -0.65 

Sport on both sides 0.871 3.85 
***

 0.99 
Park on one side - Sunshine -0.127 -2.34 

**
 -0.14 

Park on one side - No sunshine - 
  

- 

 



 

287 

Park on both sides - Sunshine 0.233 3.39 
***

 0.26 
Park on both sides - No sunshine - 

  
- 

Number of estimated parameters: 

   
27 

Number of observations: 

   
3,363 

Null log-likelihood: 

   
-12,761.075 

Final log-likelihood: 

   
-9,687.079 

Adjusted rho-square: 

   
0.239 

Note: 
*
 significant at the 90% level; 

**
 significant at the 95% level; 

***
 significant at the 99% level.5 
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