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Abstract

The squeezing of a sample between parallel plates has been used for many years to characterize the rheological behavior of soft, purely

viscous materials, and in recent times, small-amplitude oscillatory squeezing has been proposed as a means to determine the linear visco-

elastic properties of molten polymers and suspensions. The principal advantage of squeeze flow rheometer over rotational devices is the

simplicity of the apparatus. It has no air bearing and is much less expensive and easier to use. Accuracy may be somewhat reduced, but for

quality control purposes, it could be quite useful. It might also find application as the central component of a high-throughput rheometer for

evaluating experimental materials. The deformation is not simple shear, but equations have been derived to show that the oscillatory com-

pressive (normal) force that is measured can serve as a basis for calculating the storage and loss moduli. These theories as well as instru-

ments that have been developed to generate the required deformation are described, and applications to a variety of materials are

described. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4943984]

I. INTRODUCTION

Engmann et al. [1] published a useful review of squeeze

flow rheometry, emphasizing its use for fluids with yield stress

but saying little about oscillatory squeeze flow. We begin with

a brief review of the use of squeezing flows for the characteri-

zation of purely viscous (inelastic) materials. Squeezing flow

is not a viscometric flow, and devices using this deformation

for non-Newtonian fluids can be used only for qualitative pur-

poses unless a constitutive model is available.

There are two methods of operation: constant area and

constant volume. In a “squeeze film” device, the sample ini-

tially has the same size as the circular plates between which

it is compressed so that the area of the sample under com-

pression is constant. A constant normal force, F, is applied

to the upper plate, most simply by means of a weight, and

the decreasing plate spacing, H(t), is measured. In a

“parallel-plate plastometer,” the sample is smaller than the

plates so that the sample volume remains constant rather

than its compressed area. A device based on this concept is

used in a standard test method for measuring an “apparent

viscosity” of bitumen [2]. The constant area method is some-

times preferred, because if a smaller sample is used, its vol-

ume and thus its radius during testing must be precisely

known. It is also desirable that it be centered in the gap to

ensure symmetric loading.

Another mode of operation involves a constant speed

rather than a constant normal force with the force moni-

tored as a function of time, and there are thus four possible

combinations of constant-volume/constant-radius and con-

stant-speed/constant-force. Some devices also work at

exponentially decaying speed to achieve a nominally con-

stant rate of compression.

The modeling of nonoscillatory squeeze flow assumes

that inertia can be neglected (very low Re) and that the ve-

locity distribution has a certain form. Equations for the inter-

pretation of data in terms of viscosity are described in detail

by Bird et al. [3], and we present here only a brief summary.

Considering first constant area flow, for a Newtonian

fluid, the deformation is governed by the Stefan equation,

shown as

a)Author to whom correspondence should be addressed; electronic mail:
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F tð Þ ¼ 3pR4g �dH=dtð Þ
2 H tð Þ½ �3

: (1)

Here, R is the radius of the sample and g is the Newtonian

viscosity. For a constant compressive (normal) force F0 and

initial condition H(0)¼H0, the gap spacing is given by

1

H2
¼ 1

H2
0

þ 4F0t

3pR4
0g
: (2)

At very short times, inertia cannot be neglected, so if (1/H2) is

plotted versus time, the first points will not lie on a line, but if

the data approach a line, the slope can be used to calculate the

viscosity. If the deformation is sufficiently slow, this technique

should provide a reasonable approximation of the zero-shear

viscosity of a molten polymer.

For a constant volume flow, Dienes and Klemm [4]

derived the following relationship for a Newtonian fluid,

where V is the volume of the sample:

F ¼ 3gV2

2pH5
� dH

dt

� �
: (3)

For a constant normal force F0 and a constant volume, inte-

gration with the initial condition H(0)¼H0 gives

1

H4
¼ 1

H4
0

þ 8pF0

3gV2
t: (4)

Gent [5] reported that the assumptions regarding the velocity

profile are only valid when R0 > 10H0 (K< 0.1).

Because the strain is not uniform throughout the flow, the

interpretation of data for non-Newtonian fluids requires a vis-

cosity model, and Engmann et al. [1] have compiled an exten-
sive list of all the fluid models for which squeeze flow

equations have been reported, including both inelastic and

elastic materials and with no-slip, slip, and partial-slip bound-
ary conditions. For example, for a power-law fluid with con-

sistency index m and power law parameter n, the Scott

equation describes the flow with a constant force and volume

F ¼ 2pmRnþ3

nþ 3

� �
2nþ 1

n

� �
�dH=dtð Þn

H2nþ1
: (5)

Gibson et al. [6] used squeezing flow to study the behavior

of suspensions of planar fibers in polypropylene. Pham and

Meinecke [7,8] employed squeezing flow at a constant plate

speed rather than a constant normal force for the evaluation

of commercial polymers. Shaw [9] used a squeeze-flow ap-

paratus to deal with the difficult problem of characterizing

the flow behavior of ultrahigh-density polyethylene, which

has a very high viscosity. The driving pressure was main-

tained constant, and H(t) was measured, Even at very low

shear rates, this material is still pseudoplastic, but the Stefan

equation was used to calculate an apparent viscosity that was

related to molecular weight by an empirically established

relationship. About 25 min were required for a measurement.

Cua and Shaw [10] used a similar method to determine the

low-shear rate viscosity of a polydimethylsiloxane.

Squeeze flow has also been used to measure the response

of molten polymers to biaxial extension, a deformation that

is difficult to generate in the laboratory. To address this prob-

lem, squeezing between lubricated plates (LSF) has been

used to eliminate the shearing component of the flow field.

The LSF method of biaxial stretching was first proposed by

Chatraei et al. [11] and was later used by Nishioka et al. [12]

and by Kompani and Venerus [13]. The latter authors replen-

ished the lubricant continuously during a test to avoid the de-

velopment of dry regions. They reviewed the history of the

LSF technique and developed the basic equations for the

interpretation of data in terms of the biaxial extensional vis-

cosity. Guaderama-Medina et al. [14] compared results for a

low-density polyethylene obtained by LSF with those

obtained using a complex instrument in which a circular

sheet of polymer is stretched by six pairs of rotary clamps

[15]. It was found that the LSF data were not reliable at

Hencky strains greater than one.

II. THEORY OF OSCILLATORY SQUEEZE FLOW

We turn now to small amplitude oscillatory flow as

described by the theory of linear viscoelasticity. We begin by

recalling the correspondence principle by Pipkin [16], which

applies to general quasisteady deformations (i.e., no inertia).

Pipkin demonstrated that it is possible to go from the solution

to an equilibrium elasticity problem to a corresponding qua-

sisteady linearly viscoelastic problem. In a similar develop-

ment, Phan-Thien [17] and Field et al. [18] transformed the

Stefan equation for Newtonian fluids to the corresponding

functional relation for linear viscoelastic materials, again for

deformations with negligible inertia by appropriate substitu-

tion of the constant viscosity by the complex viscosity. We

make use of this relationship below [Eq. (46)].

We here describe how linear viscoelastic behavior can be

measured by the use of squeeze flow, but in a form that is

not necessarily restricted to negligible inertia.

Consider a fluid sandwiched between two plates as illus-

trated in Fig. 1. With the bottom plate located at an axial

position z¼ 0, the top plate position (HÞ also signifies the

height of the gap between the top and bottom plates. The top

plate oscillates axially about a mean height H0 to impose os-

cillatory squeezing described by

HðtÞ ¼ H0ð1þ a sin xtÞ : (6)

Here, H0 is the top plate position at time t ¼ 0, aH0 is the

amplitude, and x is frequency. The speed of the top plate _H
can thus be expressed as

FIG. 1. Sketch of an oscillatory squeeze flow geometry.
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_H ¼ dH

dt
¼ aH0x< eixtf g; (7)

where <fg indicates the real part of the complex quantity

inside the brackets.

As we are concerned here only with linear viscoelastic

characterization, a is assumed to be small. The permissible

magnitude of a depends on the aspect ratio K � H0=R0.

Konigsberg [19] has discussed the problem of defining a

characteristic value of strain, but the value of the maximum

strain, which occurs at the rim, can be evaluated, as shown in

the following discussion, and this governs the limit for the

applicability of the linear viscoelasticity (LVE) governing

equations. By restricting the analysis to small deformations

the following simplifications can be made:

(1) The convection term (v � rv) in the equation of motion,

where v is velocity, can be neglected, as it is of order

Oða2Þ [20].1

(2) The governing equations of linear viscoelasticity may be

used.

Based on these considerations v and the pressure p can be

represented as follows:

v ¼ <f�vðxÞeixtg; (8)

p ¼ <f�pðxÞeixtg; (9)

where �vðxÞ and �pðxÞ are complex functions that only vary

spatially so that the extra stress tensor r can be written sim-

ply as

r ¼ <fg�½ðr�vÞ þ ðr�v
†Þ�eixtg: (10)

It follows that the velocity field for flow of a linear visco-

elastic fluid is described by the governing equations of a

Newtonian fluid, i.e., Navier–Stokes equations, with viscos-

ity replaced by the complex viscosity g�. This is in accord

with the correspondence principle of Pipkin [16] who

showed a similar analogy to elasticity problems. Here, we

use this technique to derive the velocity distribution for the

oscillatory squeeze flow.

In setting up the equations of motion, we assume incom-

pressibility and neglect flow in the angular direction (hÞ so

that vh ¼ 0, and @=@h ¼ 0. Also, we introduce dimensionless

complex variables r̂ , ẑ, v̂r, v̂z, and p̂ as follows:

r̂ ¼ r=R0; (11)

ẑ ¼ z=H0; (12)

vr ¼ aR0x<fv̂rðr̂; ẑÞeixtg ; (13)

vz ¼ aH0x<fv̂zðẑÞeixtg; (14)

p ¼ patm þ
axR2

0

H2
0

< g�p̂ r̂; ẑð Þeixt
� �

: (15)

Here, patm is the atmospheric pressure. Using Eqs. (11)–(15),

the following dimensionless complex equations of continuity

and motion are obtained:

1

r̂

@

@r̂
r̂ v̂rð Þ þ @v̂z

@ẑ
¼ 0; (16)

Rev̂r ¼ �
@p̂

@r̂
þ K2 @

@r̂

1

r̂

@

@r̂
r̂ v̂rð Þ

� �
þ @

2v̂r

@ẑ2

� �
; (17)

K2Rev̂z ¼ �
@p̂

@ẑ
þ K4 1

r̂

@

@r̂
r̂
@v̂z

@r̂

� �
þ K2 @

2v̂z

@ẑ2

� �
: (18)

Here, q is the density, and we define the Reynolds number as

Re ¼ iqxH2
0

g�
: (19)

Note that various definitions of Re have been used for oscilla-

tory squeeze flow (OSF). Field et al. [18] define it as a real

number and use aH0 as the characteristic length to obtain

Re ¼ qxaH2
0=g

�. Debbaut and Thomas [21] do not define a

Reynolds number but introduce the number a2 ¼ ixq=g�. a
has dimensions of m�1 but always appears in the group a2H2

0,

which is dimensionless and equal to the Re defined here [22].

Assuming that material planes remain parallel to the

plates, we find that v̂z is independent of r̂ so that mass con-

servation Eq. (16) yields

v̂r ¼ �
1

2
f 0 ẑð Þr̂; (20)

v̂z ¼ f ðẑÞ: (21)

Here, f ðẑÞ is a function that varies only with ẑ, and f 0ðẑÞ is

the derivative. Inserting Eqs. (20) and (21) into Eqs. (18) and

(19), we obtain

1

2
Re r̂ f 0 ¼ @p̂

@r̂
þ 1

2
r̂ f 000; (22)

K2Re f ¼ � @p̂

@ẑ
þ K2f 00: (23)

Performing cross differentiation, the pressure can be elimi-

nated, and the following expression is obtained:

Re f 00 ¼ f 0000 : (24)

With boundary conditions

f ð1Þ ¼ 1; f ð0Þ ¼ 0; (25)

f 0ð1Þ ¼ 0; f 0ð0Þ ¼ 0: (26)

1Commercial version of MFR available from GBC Scientific Equipment,

Ltd., Dandenong, Victoria, Australia, www.gbcsci.com
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Proceeding from here, it is beneficial to identify other simpli-

fying assumptions that might apply. In particular, postulate

(1) If inertia can be neglected, i.e., if Re � 1. In this case,

the flow can be regarded as a creep flow, and the left

hand side of Eqs. (22)–(24) can be set equal to 0.

(2) If K � 1, the lubrication approximation can be used so

that all terms containing any order of K can be neglected

in Eq. (23).

We now examine the effect of making either of these

assumptions. In all cases, we assume a no-slip boundary con-

dition between the fluid and the plates, although we discuss

briefly the effect of a slip or partial-slip boundary condition

below.

A. Negligible inertia

We first assume small Re so that inertia is negligible com-

pared to viscous effects, and Eq. (24) reduces to

f 0000 ¼ 0 : (27)

Using boundary conditions (25) and (26), one obtains

f ¼ �2ẑ3 þ 3ẑ2 : (28)

The radial and axial stresses (physical components) are then

found to be

rrr ¼
axR2

0

H2
0

< g�r̂rre
ixt

� �
; where r̂rr ¼ 6K2 ẑ2 � ẑð Þ; (29)

rzz ¼
axR2

0

H2
0

< g�r̂zze
ixt

� �
; where r̂zz ¼ �12 K2 ẑ2 � ẑð Þ:

(30)

Returning to the complex, dimensionless equations of

motion [Eqs. (22) and (23)], we can neglect terms containing

Re and set the right hand sides to 0. Inserting the expression

for f ðẑÞ, one obtains

0 ¼ @p̂

@r̂
� 6r̂; (31)

0 ¼ � @p̂

@ẑ
þ K2 �12ẑ þ 6ð Þ: (32)

With the solution

p̂ ¼ 3r̂2 þ 6K2ð�ẑ2 þ ẑÞ þ p̂0: (33)

Here, p̂0 is an integration constant. The most intuitive bound-

ary condition would be to set the pressure equal to the atmos-

pheric pressure at the outer rim (r̂ ¼ 1Þ. However, this

procedure is problematic since p̂ depends on ẑ. One way to

deal with this issue is to set the z-averaged pressure p ¼ patm

[1]. Another approach is to set up a force balance at

ðr̂; ẑÞ ¼ ð1; 1=2Þ. Here, only the stress in the radial direction

needs to be considered, leading to the following expressions:

0 ¼ p̂ 1;
1

2

� �
� r̂rr 1;

1

2

� �
; (34)

) p̂0 ¼ �3ð1þ K2Þ: (35)

Hence, the complete expression for p̂ is

p̂ ¼ �3ð1� r̂2 þ K2Þ þ 6K2ð�ẑ2 þ ẑÞ: (36)

In terms of physical components, we have

p� patm ¼
ax

H2
0

�3 R2
0 � r2 þ H0

2
� 	

þ 6 �z2 þ H0z
� 	h i

� < g�eixt
� �

: (37)

The expression p� patm � rzz can then be integrated over ei-

ther the top or bottom plate, i.e., z ¼ H0 or z ¼ 0, to give the

normal force (FÞ on the top plate.

Another approach is to use another fact at our disposal to

deal with this tricky boundary condition that will allow us to

completely avoid it. This is to use the macroscopic mechani-

cal energy balance adapted to linear viscoelastic liquids [23,

Sec. 7.8].

F _H ¼
ð

v

r : rvdV: (38)

Since _H is completely in phase with v, it follows that F must

be in phase with r and is given by

F ¼ ðaH0xÞ�1

ð
v

/V dV<fg�eixtg; (39)

where

/V ¼ 2
d�vr

dr

� �2

þ d�vz

dz

� �2
" #

þ d�vr

dz

� �2

: (40)

Thus, the volume integral over /V gives

ð
v

/VdV¼2p axR0ð Þ2H0<
(ð1

ẑ¼0

ð1

r̂¼0

 
2

dv̂r

dr̂

� �2

þ dv̂z

dẑ

� �2
" #

þ R0

H0

dv̂r

dẑ

� �2
!

r̂ dr̂dẑ

)
;

¼3p axð Þ2R4
0

2H0

1þ2
H0

R0

� �2
" #

: (41)

The final expression for F is obtained by inserting this into

Eq. (39) and we get

) F ¼ 3paxR4
0

2H2
0

< g�eixt
� �

1þ 2
H0

R0

� �2
" #

: (42)

Inserting ixg� ¼ ðG0 þ iG00Þ and taking the real part of all

terms results in following:
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F ¼ 3paR4
0

2H2
0

G0 sin xtþ G00 cos xtð Þ 1þ 2
H0

R0

� �2
" #

: (43)

The factor ½1þ 2ðH0=R0Þ2� weighs the shear contribution to

the normal force compared to the extensional contribution. If

H0=R0 	 1, the second term in brackets dominates the first,

and the flow can be considered uniaxial extension. Hence,

the relation reduces to the well-established expression for the

normal force on the top plate for uniaxial viscoelastic exten-

sional flow [3]

F ¼ 3paR2
0ðG0 sin xtþ G00 cos xtÞ: (44)

But if H0=R0 � 1, the first term in Eq. (43) dominates the

second so that the deformation is dominated by shear, and

Eq. (43) reduces to

F ¼ 3paR4
0

2H2
0

G0 sin xtþ G00 cos xtð Þ: (45)

This equation can be derived from the Stefan equation [Eq.

(1)] using Pipkin’s correspondence principle [16], as shown

originally derived by Phan-Thien [17]. Phan-Thien’s final

expression contained an error later corrected by Field et al.
[18] who give the correct form shown below:

F� ¼ 3pR4
0g
�

2H3
0

dH�

dt
: (46)

The price paid for this apparent simplicity is that F� and H�

are now complex functions of time related to the force and

the plate separation by F ¼ <fF�g and H ¼ <fH�g,
respectively.

The very simple relations, Eqs. (45) and (46), are often

applied to OSF as the aspect ratio in most cases is very small,

and hence, the deformation can be safely assumed to be

dominated by shear. However, if inertia is non-negligible, a

correction is needed as is shown below.

B. Lubrication approximation

Now we assume a small aspect ratio and apply the lubri-

cation approximation (assumption 2 above). However, this

does not lead to any simplification of Eq. (24) which we

focus on initially in the following. The full solution of Eq.

(24), which was derived by Bell et al. [22], is rather compli-

cated and thus has limited practical utility. Instead it is bene-

ficial to consider the perturbation solution in Re. We

represent the full solution f as a power series in Re

f ðRe; ẑÞ ¼ f0 þ Re f1 þ OðRe2Þ: (47)

So far, we have limited our analysis to a first order approxi-

mation in Re, and the approach is the same, but it becomes

increasingly messy at higher orders. Inserting Eq. (47) into

Eq. (24) gives

Re f 000 ¼ f 00000 þ Re f 00001 þ OðRe2Þ : (48)

Collecting terms of equal order in Re yields following sys-

tem of equations:

f 00000 ¼ 0; (49)

f 000 � f 00001 ¼ 0: (50)

With the following boundary conditions:

f0ð1Þ ¼ 1; f0ð0Þ ¼ 0; (51)

f 00ð1Þ ¼ 0; f 00ð0Þ ¼ 0; (52)

f1ð1Þ ¼ 0; f1ð0Þ ¼ 0; (53)

f 01ð1Þ ¼ 0; f 01ð0Þ ¼ 0: (54)

Terms of OðRe2Þ are disregarded, as they are assumed to be

negligibly small. We see that Eq. (49) is identical to Eq.

(27). This is expected, since both are of order OðRe0Þ, and it

obviously follows that both have the same solution. This so-

lution is subsequently applied when solving for f1 and we

obtain

f0 ¼ �2ẑ3 þ 3ẑ2 ; (55)

f1 ¼ �
1

10
ẑ5 þ 1

4
ẑ4 � 1

5
ẑ3 þ 1

20
ẑ2: (56)

Until now, no simplifications based on lubrication have been

made. However, returning to the equations of motion [Eqs.

(22) and (23)], the lubrication approximation can be applied

by eliminating all terms containing any order of K.

If we also insert the 1st order perturbation solution

f ¼ f0 þ Re f1 þ OðRe2Þ, we obtain

dp̂

dr̂
¼ � 1

2
r̂ f 0000 þ Re f 0001 � f 00

� 	
 �
; (57)

dp̂

dẑ
¼ 0: (58)

We see that in this case p̂ is independent of ẑ. Inserting the

expressions for f0 and f1 in Eq. (57) yields the following dif-

ferential equation:

dp̂

dr̂
¼ 6r̂ 1þ 1

10
Re

� �
; (59)

whose solution is

p̂ ¼ 3r̂2 1þ 1

10
Re

� �
þ p̂1: (60)

Here, p̂1 is a dimensionless integration constant. At the rim,

r̂ ¼ 1 and we apply the boundary condition that p ¼ patm lead-

ing to p̂ ¼ 0, and we obtain the following expression for p̂:

p̂ ¼ �3 1� r̂2ð Þ 1þ 1

10
Re

� �
: (61)
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In terms of physical components, the pressure is

p� patm ¼ �
3axR2

0

H2
0

1� r

R0

� �2
" #

�< g� 1þ 1

10
Re

� �
eixt

� 
: (62)

The normal force F is obtained by integration of p� patm,

and the following expression is obtained:

F ¼ �2p
ðR0

0

ðp� patmÞrdr; (63)

) F ¼ 3paxR4
0

2H2
0

< g� 1þ 1

10
Re

� �
eixt

� 
; (64)

) F ¼ 3paR4
0

2H2
0

G0 � qx2H2
0

10

� �
sin xtþ G00 cos xt

� �
: (65)

Thus, the first order inertial correction only influences the stor-

age modulus G0. In situations where Re 
 1, an error of about

10% in G0 is expected if the first order correction term is not

included. This is in good agreement with results obtained by

Debbaut and Thomas [21], who compared computational fluid

dynamics (CFD) calculations to analytic expressions for systems

where inertia plays a non-negligible role. Additionally, it should

be noted that when Re! 0, Eq. (64) reduces to the creep solu-

tion for small aspect ratios [Eq. (45)] as it should. Debbaut and

Thomas [21] also simulated nonlinear behavior using a Giesikus

viscoelastic model to determine the effects of normal stress dif-

ferences on the results. Their results revealed that normal stress

differences affect data at high strains in a different way than non-

linearity affects data from rotational measurements.

The solution can also be derived for higher orders of Re

as was done by Bell et al. [22], who extended earlier work of

Phan-Thien [17] and Field et al. [18] to obtain the perturba-

tion solution approximated to order OðRe2Þ as follows:

F ¼ 3paxR4
0

2H2
0

< g� 1þ 1

10
Reþ 1

8400
Re2

� �
eixt

� 
: (66)

From the prefactor of Re2, we see that the second order correc-

tion is needed only at very high Re. More specifically, an error

of about 10% is expected when Re 
 100. In this high

Reynolds number, the flow is dominated by inertia. This leaves

one wondering whether the OSF-technique is of any use for

these types of fluids as one has to extract a small fraction of

the total normal force to obtain the viscous contribution.

With regard to the 1st and 2nd-order correction terms,

however, it is important to note that compared to a torsional

rheometer, inertia for OSF is much less significant [22]. In a

torsional rheometer, corrections for inertia are required at a

much lower Re compared to the OSF-rheometer.

In closing, we note that the fundamental solution repre-

sented by the function f0 allows us to get a more accurate

estimate of the maximum shear strain at the outer rim. We

find that the shear rate at the bottom plate is given by

_crz ¼ �3 a x
r

H0

cos xt: (67)

The shear strain from some given initial time 0 to time t is

then

c t; 0ð Þ ¼
ðt

t0¼0

_crz dt0 ¼ �3a
r

H0

sin xt: (68)

The maximum value is therefore 3a=K:

C. Slip/partial slip boundary

In this review, only a no-slip boundary condition for the

top and bottom plates is considered. However, if the fluid

does not fully stick to the wall, partial slip or complete slip

will occur. This has been modeled for a nonoscillatory

squeeze flow [24], where the degree of slip is accounted for

from the slip velocity (vsÞ at the solid-liquid interphase

vsðr;HÞ ¼ �brrzðr;HÞ: (69)

Here, the slip coefficient b is introduced as a lubrication mea-

sure, i.e., if b ¼ 0, a no-slip boundary condition applies,

whereas complete slip is obtained in the limit of b!1. If a

full slip boundary condition is applied in the OSF model, one

generates biaxial extension, as was mentioned in Sec. I. If fluid

sticks only partially to the wall, the situation will be between

the no-slip and full slip cases. The less slip, the greater will be

the contribution of shearing deformation to the stress.

III. INSTRUMENTS

A. Narrow gap squeeze flow devices

Early work on the behavior of elastic fluids in squeeze

flow was motivated by the question of whether elasticity

enhanced the lubricating ability of a fluid squeezed between

flat plates, and this was reviewed by Brindley et al. [25].

When the aspect ratio is sufficiently small, the lubrication

approximation can be used, or if the viscosity is large, inertia

can be ignored, and Eq. (45) can be used to interpret the data.

A constant sample area is generally the preferred configura-

tion, because if a smaller sample is used, its initial radius must

be precisely known. Also, in the case of a constant volume

sample, it is important that it be centered in the gap if sym-

metric loading is to be achieved. The principal advantage of

the squeeze flow rheometer over rotational instruments is the

simplicity of the apparatus. It has no air bearing and is much

less expensive and easier to use. It might also find application

as the central component of a high-throughput rheometer for

evaluating experimental materials.

It was some years before an instrument to carry out such a

test was described in a presentation by Whittingstall and van

Arsdale [26] and a patent by Van Arsdale and Motivala [27].

Figure 2 shows the principle of operation.

The sample fills the gap, so this is a constant area device.

The first commercial instrument based on oscillatory

squeeze flow was the CP20 Compressional Rheometer made

by TA Instruments, a sketch of which is shown in Fig. 3. As

in the Van Arsdale device, it is the sample area that is con-

stant rather than its volume. The manufacture and sale of the
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CP20 were later taken over by DB Scientific Instruments,

which no longer exists, who called it the CP50 Compressional

Rheometer. Figure 4 is a photo of this device. Note that the

sample fills the gap under the upper plate.

Walberer and McHugh [28] used this device to study

highly filled particle suspensions in polydimethylsiloxane.

Crassous et al. [29] described a device for high-frequency

measurements driven by a piezoelectric axial vibrator. They

were able to obtain storage and loss moduli for polymer solu-

tions over a range of frequencies from 10 to 300 Hz. In com-

bination with a rotational rheometer and a set of torsional

resonators, they were able to characterize a sample at fre-

quencies from 10�3 to 77 kHz without the use of time-

temperature superposition. They used this set of devices to

characterize an aqueous suspension of thermosensitive latex

particles over the same range of frequencies.

B. Nonsinusoidal deformation

Nelson and Dealy [30] describe a number of nonsinusoidal

waveforms that have been used for linear viscoelastic character-

ization, including multiple, superposed sine waves, an equistrain

waveform designed to generate a uniform strain amplitude

across a given band of frequencies, and a pseudorandom binary

sequence. The advantage of this approach is that by use of a

fast Fourier transform (FFT) program one can obtain results

over a range of several decades of frequency in a single test.

Nelson and Dealy [30] discussed several problems that arise in

the use of the discrete Fourier transform to analyze the results.

Field et al. [18] employed pseudorandom squeezing in the

device sketched in Fig. 5. A FFT is used to extract the

frequency-dependent moduli. A characterization over two

decades of frequency is obtained in a very short time.

A commercial version of this instrument is called the

micro-Fourier rheometer (MFR), because it can deal with

samples as small as 100 ll. Figure 6 is a photo of this device.

FIG. 2. Sketch showing essential elements of the device patented by van

Arsdale and Motivala [27]. (1) Temperature-controlled stationary plate; (2)

moveable base plate; (3) pneumatic linear actuator; (4) rings to limit vertical

movement; (5) air cylinder; (6) air line; (7) oscillating plate; (8) shaker

motor; (9) noncontacting displacement sensor; and (10) frame.

FIG. 3. The basic elements of the CP50 compressional rheometer. FIG. 4. Photo of the CP20 compressional rheometer.
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The input is random noise of amplitude n as shown below,

where e� 1

hðtÞ ¼ H0½1þ enðtÞ� ¼ H0 þ h0ðtÞ: (70)

The noise is described by its spectral representation [31]

nðtÞ ¼
ð1
�1

eixtdZðxÞ; (71)

where dZ(x) is a random function with zero means and a

known correlation.

Phan-Thien et al. [20] examined the effects of inertia on

the operation of this instrument. Because a complete charac-

terization can be carried out quickly, the MFR can be used to

track rapid changes in properties. This device has been used,

for example, to study particle suspensions [32] and dental

composite resins [33].

Sakai [34] modified a MFR for use with fluids employed

in the manufacture of micromechanical electric systems. Of

special interest here are interactions between dispersed par-

ticles and dissolved polymers. The fluid response is primarily

viscous, but elasticity is still important, and a major chal-

lenge is detecting the very small phase angle of the response

to oscillatory squeezing. Figure 7 shows this apparatus, in

which the amplitude of the deformation is only 25 lm.

Another device based on the same basic principle was

designed for quality assurance in manufacturing processes

[35–37].2 It measures the state of a fluid while it is in pro-

cess, either in an in-line or side-stream installation.

C. Filament stretching rheometer

The filament stretching rheometer (FSR) was originally

developed for the characterization of polymeric liquids in a

nonlinear uniaxial extension [38,39]. It is similar to OSF

instruments in the sense that it consists of a top plate and a

bottom plate between which the sample is placed. As shown

in Fig. 8, the top plate moves in an axial direction while the

bottom plate remains fixed and is mounted on a strain-gauge

load cell.

The major difference between OSF instruments described

above and the FSR is that in the latter the deformation is not

measured from the position of the top plate but across the

sample midplane using a laser-sheet. Whereas the aspect ra-

tio is about unity, it is very small in the OSF devices

described in Secs. III A and III B. For use in OSF, the top-

plate undergoes oscillatory displacement to impose a sinu-

soidal compression on the sample, but in the FSR, a laser

moves in-phase at half the speed of the top plate, in order to

FIG. 5. Essential elements of the MFR of Field et al. [18].

FIG. 6. Photo of the MFR2100 MFR of GBC scientific equipment.

FIG. 7. The MFR of Sakai [34].

2Commercial version available from Rheology Solutions, Bacchus Marsh,

VIC, Australia, www.rheologysolutions.com
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remain at the level of the sample midplane. The relation

between the top plate position, H(t), and the sample diameter

at the midplane, which is D ¼ D0ð1þ b sin xtÞ with bD0

being the amplitude [3], is given by

_H

H0

¼ � 4

3

1

D0

dD

dt
; (72)

) b ¼ � 3

4
a: (73)

This relation can simply be substituted into, e.g., Eq. (43) to

give F as a function of deformation across the midplane

rather than the top plate

F ¼ � 2pbR4
0

H2
0

G0 sin xtþ G00 cos xtð Þ 1þ 2
H0

R0

� �2
" #

: (74)

This way of measuring deformation overcomes the problem

of load cell compliance.

Using the FSR for linear characterization enables linear

oscillatory and nonlinear uniaxial characterization using a

single instrument with a single sample. More specifically,

uniaxial extension can be performed directly after linear

characterization. As the aspect ratio (KÞ of the samples that

are used for uniaxial extension in the FSR are much higher

(K 
 1Þ compared to other OSF techniques, a significant

extensional contribution to the stress will be present.

Consequently, the lubrication approximation cannot be used.

In many cases, Eq. (43) will be sufficient as inertia is rarely a

factor with the very viscous fluids characterized in uniaxial

extension using the FSR.

At the present time, the FSR in the OSF mode has been

used to study only one set of polystyrene melts [40]. Figure

9 shows dynamic moduli data obtained using both the FSR

and an Ares G2 for a commercial polystyrene with Mw ¼
230 kg=mol (PS-230k). Data from the two instruments agree

very well, although there is a small vertical shift between the

two sets of data.

IV. APPLICATIONS

A. Polymer melts and solutions

Polymer melts and solutions have been used in several

studies to test OSF technique. One advantage of using poly-

meric liquids is that inertial effects can be brought out or

suppressed as desired due to the high degree of rheological

tunability that these materials offer. This approach was

employed by [22] to investigate fluids in which inertia was

FIG. 8. Sketch of the FSR configures for uniaxial extension. (a) The fila-

ment, (b) top plate, (c) bottom plate, (d) top plate support, (e) force trans-

ducer, (f) motor, (g) belts, (h) gearing, and (i) laser micrometer [39].

FIG. 9. G0 (closed symbols) and G00 (open symbols) of a commercial PS-

230K at 130 �C. Data points obtained using the FSR [Eq. (74)] at various

temperatures that has been shifted to 130 �C using shift factors aT and bT ,

respectively. Diamonds: FSR (150�C); Stars: FSR (150�C); Squares: FSR

(170�C). Circles show data obtained using a commercial torsional Ares G2

rheometer [40].
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negligible and fluids for which inertial corrections to the 1st

or 2nd order were needed.

Bulk polymers usually have very high viscosities and are

thus useful to verify Eqs. (43) and (45), in which inertial

effects are neglected. Figure 10 shows storage and loss mod-

uli of a highly viscous polydimethyl sulfate measured using

a conventional torsional rheometer (AR 2000) and an OSF

rheometer with several gap heights. The OSF results were

calculated without correcting for inertia. As seen, the results

between the two techniques are in very good agreement,

which confirms that a correction for inertia is not needed for

highly viscous fluids. Some concentrated polymer solutions,

for example, the 30 wt. % polystyrene solution studied by

Crassous et al. [29], were sufficiently viscous that an inertial

correction was not required. In general, this makes character-

ization of thick fluids very simple and convenient, and OSF

is an excellent means for characterization for such fluids.

Bell et al. [22] showed that compared to a conventional tor-

sional rheometer, one can operate at much higher Re in the

OSF rheometer before a correction for inertia is required.

Several OSF-studies used a polymer solution called the

“A1 fluid.” It is a thoroughly tested standard fluid [41] and

was used both to validate the accuracy of the OSF rheometer

and as a model material in numerical simulations to evaluate

the influence of inertia and various boundary conditions

[21,22]. The A1 fluid is a 2% ðw=vÞ polyisobutylene solution

in a mixture of cis and trans decalin. Dilution of polymers

will normally lower the viscosity, and the inertial effects will

become more significant but far from dominant. Results per-

formed both on the A1 fluid and other polymer solutions

such as hyaluronic acid in methylcellulose proved to be in

very good agreement with data from commercial rheometers,

and in all cases, only an inertial approximation to the 1st

order was needed [20,28]. The only material for which a 2nd

order inertial correction was needed was a 1% polyacryl-

amide solution in water [22]. This system was specifically

designed to have a low viscosity in order to investigate the

2nd order inertia correction.

B. Other materials

See et al. [32] used a MFR shown in Fig. 5 to study the

behavior of a suspension of spheres in a polymeric liquid.

Walberer and McHugh [28] used the CP-20 rheometer to

study the effects of polymer molecular weight and filler con-

tent in a glass-bead-filled polydimethyl siloxane. See and

Nguyen [42] used a prototype MFR to monitor the curing of

an epoxy resin and a plastic putty. Peng and Zhu [43], See

et al. [44], and Lee and Wen [45] used OSF to study the

behavior of an electrorheological fluid, which they modeled

as a Bingham plastic with continuous modification. Kuzhir

et al. [46] studied a suspension of magnetic particles, and

Jiang et al. [33] used a MFR to track the curing of dental

composite resin cements. They found that the response was

linear during the earlier stages of cure but became nonlinear

at very small strain amplitude.

1. Large-amplitude squeeze flow

Kim and Ahn [47,48] studied combined oscillatory rota-

tion and squeezing flow, which they called “dynamic helical

squeeze flow” (DHSQ). They modified a Rheometric

RMS800 rheometer to make it possible to do normal tor-

sional flow, OSF, and combined DHSQ flow. In their 2012

paper, they compared the strain for the onset of nonlinear

viscoelasticity for DHSQ and OSF for a polybutene with

Mw¼ 920 g/mol and found that the values were 0.02 and 1.0,

respectively. The nonlinearities that arise at higher strains

for both flows are not related to those observed in large-

amplitude oscillatory shear in rotational instruments, as the

deformations are quite different in the two flows.

NOMENCLATURE

Symbol

a Oscillation amplitude relative to the sample

height, Eq. (6) (-)

b Oscillation amplitude relative to the sample diam-

eter, Eq. (73) (-)

D Sample diameter 2R (m)

D0 Mean sample diameter 2R0 (m)

f Dimensionless complex function of ẑ, Eqs. (21)

and (22) (-)

F Normal force exerted on a plane by a fluid, Fig. 1

ðkg m s�2Þ
f0 Dimensionless complex function of ẑ in the per-

turbation solution (f Þ, contributing an order

OðRe0Þ to the full solution of f , Eq. (47) (-)

FIG. 10. Rheological characterization of a polydimethyl sulfate solution

using the CP50 compressional rheometer; no inertial correction was applied

[22]. Symbols indicate various gap heights in microns. (�) shows results

obtained using a commercial torsional AR2000 rheometer. (A) The loss

modulus and (B) the storage modulus.
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F0 Constant compressive force exerted on a plane by

a fluid ðkg m s�2Þ
f1 Dimensionless complex function of ẑ in the per-

turbation solution (f Þ, contributing an order

OðRe1Þ to the full solution of f , Eq. (47) (-)

F� Complex function related to normal force F ¼
<fF�g ðkg m s�2Þ

G� Complex modulus G0 þ iG00 (Pa)

G0 Storage modulus (Pa)

G00 Loss modulus (Pa)

H Sample height Fig. 1 (m)
_H Speed of the top plate dH=dt ðm s�1Þ

H0 Initial sample height Fig. 1 (m)

H� Complex function related to sample height H ¼
<fH�g (m)

i Imaginary unit
ffiffiffiffiffiffiffi
�1
p

(-)

m Flow consistency index for a power law fluid, Eq.
(5) ðPa snÞ

Mw Weight average molar mass ðkg mol�1 Þ
n Power law exponent of a power law fluid, Eq. (5)

(-)

O Order of magnitude indication, Eq. (47) (-)

p Isotropic compressive stress (pressure) (Pa)

patm Atmospheric pressure (Pa)

�p Complex function related to pressure, Eq. (9) (Pa)

p̂ Dimensionless complex function related to pres-
sure, Eq. (15) (-)

p̂0; p̂1 Dimensionless complex integration constants for
pressure, Eqs. (33) and (60) (-)

ðr; h; zÞ Cylindrical coordinates ½ðm;�; mÞ�
R Sample radius Fig. 1 (m)

ðr̂; ĥ; ẑÞ Nondimensional cylindrical coordinates

ðr=R0; h; z=H0 Þ ½ð�;�;�Þ�
R0 Mean sample radius

Ð1
0

RðtÞdt=
Ð1

0
dt (m)

Re Complex Reynolds number iqxH2
0=g

� (-)

t Time (s)

T Temperature ðKÞ=ðCÞ
v Velocity vector @x=@t ðm s�1Þ
V Sample volume (m3)

�v Complex function related to velocity vector, Eq.

(8) ðm s�1Þ
v̂ Dimensionless complex function related to veloc-

ity, Eqs. (13) and (14) (-)

vs Slip velocity at the wall vrðz ¼ 0Þ or vrðz ¼ HÞ
ðm s�1Þ

x Position vector

x̂ Nondimensional position vector

b Slip coefficient, Eq. (69) ðm2s=kgÞ
c Shear strain, Eq. (68) (-)

_crz Shear rate @vr=@z (s�1)

g Newtonian viscosity r= _c (Pa s)

g� Complex viscosity ðG00 � iG0Þ=x (Pa s)

K Aspect ratio of the sample H0=R0 (-)

q Density of the fluid ðkg m�3Þ
r Extra stress tensor (Pa)

r̂ Dimensionless complex stress tensor, Eqs. (29)

and (30) (-)

/V Viscous dissipation term, Eq. (40) ðs�2 Þ
x Oscillation frequency of the top plate ðrad=s�1Þ
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