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INTRODUCTION
There is limited knowledge on how the slope of a tunnel can affect the smoke movement during a fire 
and thus how the longitudinal ventilation should be controlled. Only very few of the previous reported 
studies [1–3] consider the slope of the tunnel and how it affects the critical velocity,  the backlayering 
distance and its corresponding longitudinal velocity. Based on the helium-air technique developed by 
Mégret & Vauquelin [3–5], several experiments in a small-scale rig (scale 1/30 of a tunnel with a 
section of 6 m by 9 m in full-scale) were conducted in order to study the critical velocity, 
backlayering distance and longitudinal velocity (confinement velocity) in a tunnel with slope. Several 
heat release rates were studied, ranging from 0.42-2.6 MW, under two slopes directions (uphill and 
downhill), and for several slope degrees.  

THEORETICAL BACKGROUND
In order to reproduce several phenomena from a full-scale fire to a densimetric small-scale fire, three 
stages are required: first, a set of formulae based on a semi-empirical model [6] to quantify the 
parameters that have to be scaled down; second, the application of two sets of scaling principles based 
on dynamic similarities (Froude modelling) and thermal/densimetric analogy, and third and last the 
equivalence of the corresponding scaled smoke flow rate to a gas densimetric buoyant mixture of 
helium-air [5]. The experimental rig and method was validated against full-scale date for a range of 
0.42-31 MW to ensure that the method met the theoretical requirement for high fidelity results.

EXPERIMENTAL PROCEDURE
A 4.7 m long model tunnel was designed to allocate a buoyant source of helium-air mixture into the 
model tunnel section, see Figure 1, and to allow the quantification of the involved parameters and 
phenomena. Furthermore the experimental rig allowed a wide range of simulated heat release rates, 
and it also allows for the presence of vehicular blockage. Finally, the modular wall and ceiling 
construction permits modification of the tunnel slope and the tunnel geometry, making the set-up ideal 
for parametric studies. 

Figure 1 – Schematic view of the experimental set-up.  

The buoyant mixture of helium and air gases are supplied at several flow rates, depending on the 
heptane pool fire size and hence the fire size. Both gases were supplied from 50 l cylinders and 
regulated through Bronkhorst mass flow controllers (MFC). In order to overcome the disadvantage of 
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the colourless buoyant mixture, the flow was seeded in a plenum box with mineral oil particles 
released from a fog generator.  The longitudinal ventilation system was activated when the buoyant 
plume filled up the small-scale tunnel section, the system consisted in extracting the buoyant mixture 
with an axial fan (K100M) located at the end of one of the portals. A potentiometer connected to the 
fan allowed the regulation of the longitudinal flow. Finally an anemometer (VT100E) was used to 
measure the longitudinal air velocity in the middle of the model tunnel and at several locations; hence 
an average value was estimated.

THE CASE STUDY
A detailed experimental matrix is shown in Table 1, which contains three sets of experiments; in Set 1
the tunnel had no slope and was aimed to validate the tunnel model and the method, whereas Set 2
and Set 3 had 3% and 6% tunnel slope, respectively. For all sets the tunnel dimensions represented a 
full-sized tunnel with 9 m width and 6 m height, and the longitudinal ventilation control was studied 
uphill and downhill. One “X” means that only the critical velocity was measured, whereas “XX” 
means that the backlayering distance and its corresponding longitudinal velocity were measured in a 
first experiment, and the critical velocity in a second experiment.

Table 1 – An overview of the experiments that were carried out for several scenarios.
Source 

diameter 
(mm)

HRR 
(MW)

SET 1 SET 2 SET 3
0 % tunnel 

slope 
3 % tunnel slope 6 % tunnel slope 

Uphill Downhill Uphill Downhill 
20.7 0.42 XX XX XX X XX
26.0 0.78 XX XX XX XX XX
28.0 0.96 XX XX XX X XX
34.0 1.61 XX X X XX XX
41.0 2.62 XX X X XX XX

CONCLUSION AND FURTHER WORK
The current method and experimental set-up have been able to reproduce several phenomena in a 
sloped model tunnel with two orientations (uphill and downhill). Moreover the model has been 
validated against full-scale data for a certain range of heat release rate, from 0.42 to 31 MW. 
The tunnel slope seems to have an influence on the critical velocity and backlayering distance, 
depending on the slope direction, uphill or downhill, where the latter affects the backlayering distance
to a greater extent. However, further experiments are required to be executed with higher slope and 
larger HRR.
The experimental set-up has the advantage to allow a great modularity and thus several scenarios can
potentially be studied. Further experiments are planned that include three stages: confinement 
velocity, tunnel slope and transversal ventilation control.
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