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Abstract. Spatio-temporal precipitation is modelled for ur-

ban application at 1 h temporal resolution on a 2 km grid

using a spatio-temporal Neyman–Scott rectangular pulses

weather generator (WG). Precipitation time series used as

input to the WG are obtained from a network of 60 tipping-

bucket rain gauges irregularly placed in a 40 km× 60 km

model domain. The WG simulates precipitation time series

that are comparable to the observations with respect to ex-

treme precipitation statistics. The WG is used for down-

scaling climate change signals from regional climate mod-

els (RCMs) with spatial resolutions of 25 and 8 km, respec-

tively. Six different RCM simulation pairs are used to per-

turb the WG with climate change signals resulting in six

very different perturbation schemes. All perturbed WGs re-

sult in more extreme precipitation at the sub-daily to multi-

daily level and these extremes exhibit a much more realistic

spatial pattern than what is observed in RCM precipitation

output. The WG seems to correlate increased extreme inten-

sities with an increased spatial extent of the extremes mean-

ing that the climate-change-perturbed extremes have a larger

spatial extent than those of the present climate. Overall, the

WG produces robust results and is seen as a reliable proce-

dure for downscaling RCM precipitation output for use in

urban hydrology.

1 Introduction

Pluvial flooding of urban areas is often caused by very local

extreme precipitation at sub-daily temporal scale (Berndts-

son and Niemczynowicz, 1988; Schilling, 1991). Tradi-

tionally, historical gauge measurements of precipitation at

minute-scale temporal resolution are thus used as input

for the design and analysis of urban water infrastructure

(Mikkelsen et al., 1998; Madsen et al., 2009; Arnbjerg-

Nielsen et al., 2013). Climate change is, however, expected

to change the occurrence rate and magnitude of extreme

events causing urban pluvial flooding (Fowler and Hennessy,

1995; Larsen et al., 2009; Olsson et al., 2009; Sunyer et al.,

2014a), and high-resolution input time series representing fu-

ture climates are therefore needed. Even though the overall

qualitative features of precipitation are reproduced realisti-

cally by regional climate models (RCMs) (Christensen and

Christensen, 2007) they are not able to capture the very fine-

scale spatio-temporal features of precipitation satisfactorily

and yield output that is too spatially correlated (Tebaldi and

Knutti, 2007; Gregersen et al., 2013). To overcome this, ei-

ther dynamic downscaling with climate models has to oper-

ate at much finer scales in order to properly describe con-

vective precipitation dynamics (Kendon et al., 2014; Mayer

et al., 2015) or further statistical downscaling of the climate

model output has to be performed (Olsson and Burlando,

2002; Wood et al., 2004; Cowpertwait, 2006; Molnar and

Burlando, 2008; Willems et al., 2012; Sunyer et al., 2012;

Arnbjerg-Nielsen et al., 2013). Fine-scale dynamic down-

scaling is computationally extremely expensive and statisti-

cal downscaling is therefore often favoured (Maraun et al.,

2010). Several approaches exist within statistical downscal-

ing, each with its pros and cons (Wilks and Wilby, 1999;

Willems et al., 2012; Arnbjerg-Nielsen et al., 2013). In the

present study a stochastic weather generator (WG) is used

for statistical downscaling.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1388 H. J. D. Sørup et al.: Downscaling future precipitation extremes to urban hydrology scales

WGs can take different forms (Cowpertwait, 2006; Vrac

et al., 2007; Burton et al., 2008; Arnbjerg-Nielsen and Onof,

2009; Chen et al., 2010; Cowpertwait et al., 2013) but they

generally work by analysing observed precipitation (and

possibly other weather-related variables) and use the ob-

tained statistics to create artificial stochastic precipitation (or

weather) time series that replicate the behaviour of the obser-

vations with respect to these statistics (Maraun et al., 2010;

Sunyer et al., 2012). Perturbation of the WG to yield out-

put time series representing future climates is then possi-

ble by application of climate change factors calculated from

output from RCMs (operation at too large space scales and

timescales) to relevant parameters of the WG (that operates

at the right space scales and timescale).

Several WGs exist that model precipitation as a stochas-

tic point process where the given observations are con-

sidered single realizations of an underlying precipitation

process (Waymire and Gupta, 1981). Rodríguez-Iturbe et

al. (1987a, b) developed the stochastic point process model

in a way to better characterize and describe the precipitation

process at the event level. Implementations of the stochas-

tic point process models for spatio-temporal precipitation

seem to work satisfactorily at temporal resolutions down to

1 h (Cowpertwait and O’Connell, 1997; Cowpertwait, 2006;

Burton et al., 2008, 2010a; Cowpertwait et al., 2013). Also,

downscaling to finer resolution than 1 h is inherently prob-

lematic as the scaling properties change below this point

(Nguyen et al., 2002; Molnar and Burlando, 2008). Thus,

for downscaling of extreme precipitation at sub-daily level

and subsequent application of climate change signals from

climate models, stochastic weather generators implementing

stochastic point process models seem useful (Cowpertwait,

1998; Furrer and Katz, 2008; Hundecha et al., 2009; Ver-

hoest et al., 2010; Sunyer et al., 2012). The trade-off is that

the models do not involve rainfall movement and, hence, that

the spatio-temporal scale of the model has to be such that

rainfall movement is not the main descriptor of the spatial

rainfall pattern.

At the daily level, the Neyman–Scott rectangular

pulses (NSRP) and the spatio-temporal Neyman–Scott rect-

angular pulses (STNSRP) models (Burton et al., 2008,

2010a, b; Cowpertwait et al., 2013) have shown good skill

in downscaling point precipitation extremes. This applies for

individual gauges (Sunyer et al., 2012) as well as for spa-

tially averaged precipitation covering large areas considered

to have a uniform climate described by relatively few gauges

(e.g. five gauges for a 4000 km2 basin in the Pyrenees; Bur-

ton et al., 2010a; three gauges used to calibrate a regional

model covering a catchment of 342 km2 in the Basque Coun-

try; Cowpertwait et al., 2013). This is, however, inadequate in

urban hydrology where the rainfall dynamics that cause the

effects under study occur on much smaller time and space

scales.

In the present study, the STNSRP weather generator (WG)

in the form of the software package RainSim (version 3.1.1,

Burton et al., 2008) is used in a new, urban hydrology context

focusing on much smaller space and timescales than what

has been done in previous studies. Due to the limitations in

scalability of both RCM model output and precipitation mea-

surements discussed above, a temporal resolution of 1 h is

adopted, even though a higher resolution would be prefer-

able from an urban hydrology perspective. Hourly data from

60 rain gauges from a dense rain gauge network in Denmark

are used to estimate parameters for the WG, which is used

to generate synthetic precipitation data series on a regular

dense grid covering approximately 2400 km2. The synthetic

precipitation data are then evaluated with respect to its ap-

plicability for urban hydrological purposes. A 1 h temporal

resolution on a 2 km grid is chosen as realistic and sufficient

performance scales of the model for fine-scale precipitation

data in urban hydrology. The evaluation of the WG is done

from an engineering perspective with respect to its ability

to reproduce rainfall features relevant for urban hydrological

modelling. We will thus focus on

– the WG’s ability to produce realistic extreme event in-

tensities at point scale;

– the WG’s ability to reproduce the seasonal distribution

of extreme events at point scale;

– the WG’s ability to reproduce small-scale spatio-

temporal correlation structures of the extreme events.

This study uses the presented WG to analyse climate change

in precipitation at scales comparable to the observational

data sets traditionally used today for urban water infrastruc-

ture design and analysis. The WG is perturbed with climate

change information obtained from a collection of tempo-

ral high-resolution RCMs. Six RCM runs using three differ-

ent RCMs, driven by three different global circulation mod-

els (GCMs) and covering three different emission scenarios

(ranging from average to very high emissions) are included

in the analysis and four of the RCM runs are run as high-

resolution models at an 8 km grid. Finally, climate change at

urban scale is assessed based on the perturbed WG output.

2 Data

2.1 Observational data

The model area is a 40 km× 60 km region covering the

north-eastern part of Zealand (Denmark) including Copen-

hagen; see Fig. 1. This study uses two different observational

data sets; Table 1 summarizes their main characteristics.

The area is highly urbanized and has a dense but irregular

network of rain gauges designed and used for urban hydrol-

ogy applications. The main observational precipitation data

set, SVK (abbreviation for Spildevandskomiteen, the Water

Pollution Committee of the Society of Danish Engineers),

Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016 www.hydrol-earth-syst-sci.net/20/1387/2016/
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Figure 1. Locations of the rain gauges (SVK), the gridded data

set (CGD), and extent of the modelled grid (WG) in the north-

eastern part of Zealand (Denmark) including Copenhagen in the

south-eastern part of the map where the concentration of SVK

gauges is the highest.

is obtained from this dense network of high-resolution tip-

ping bucket rain gauges (Jørgensen et al., 1998; Sunyer et

al., 2013). Data from 60 stations that have been active be-

tween 2 and 34 years in the period 1979 and 2012 are in-

cluded in the analysis; see Fig. 1 for locations within the

study area. Figure 2 shows the temporal development of the

number of active stations (top panel), the average distance

between the nearest neighbouring stations through the mea-

suring period (middle panel), and shows the distribution of

record lengths by 2012 (bottom panel). Generally, there has

been an increase in the number of stations and a densifica-

tion of the network over the years. Some studies impose a

minimum length of the time series to be included in region-

alization studies, e.g. Madsen et al. (2009), but in this study

the cross-correlation is of key interest and hence all gauges

are included in the analysis regardless of their record length.

The original data resolution is 1 min and 0.2 mm but for the

present study, data are aggregated to an hourly time series.

This data set is used to estimate most of the parameters of

the WG.

The second observational data set included in the analysis

is referred to as the climate grid Denmark (CGD) (Schar-

ling, 2012). It comprises spatially averaged daily data in a

uniform 10 km grid for all of Denmark from 1989 to 2010

inclusive (cf. Fig. 1). These data are generated based on a

national network of gauges with 27 gauges within the study

Table 1. Main characteristics of the two observational data sets used

in this study.

Type of Spatial Temporal Period

data data data

resolution resolution

SVK
Point

60 stations Minute data 1979–2012
observations

CGD Gridded data 10 km grid Daily data 1989–2010
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Figure 2. Temporal development in the number of stations in the

SVK data set (top panel) and the average distance between closest

neighbouring stations (middle panel), and the distribution of record

lengths (bottom panel).

site (Scharling, 1999) and are only used to estimate the spa-

tial component in the WG.

2.2 Regional climate model data

Precipitation output from 12 different RCM runs represent-

ing present and future condition is used in this study; see

Table 2. Four of the model runs are identical to the ones used

by Gregersen et al. (2013), namely the two SRES A1B sce-

narios forcing the RCM RACMO (version 2.1, Meijgaard et

www.hydrol-earth-syst-sci.net/20/1387/2016/ Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016
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Table 2. Regional climate model (RCM) runs from which precipitation output is used to calculate perturbations schemes for the WG used in

this study. All have a temporal resolution of 1 h.

Name RCM GCM Spatial Present Future

resolution period run period run

HIRHAM SRES A1B HIRHAM 5 ECHAM 5 25 km 1980–2009 2070–2099

RACMO SRES A1B RACMO 2.1 ECHAM 5 25 km 1980–2009 2070–2099

HIRHAM rcp 4.5 HIRHAM 5 EC-EARTH 8 km 1981–2010 2071–2100

HIRHAM rcp 8.5 HIRHAM 5 EC-EARTH 8 km 1981–2010 2071–2100

WRF rcp 4.5 WRF 3 NorESM 8 km 1981–2010 2071–2100

WRF rcp 8.5 WRF 3 NorESM 8 km 1981–2010 2071–2100

al., 2008) and the RCM HIRHAM (version 5, Christensen et

al., 2006) and their present counterparts. All RCM runs are

driven by the GCM ECHAM5 (Roeckner et al., 2003) and

are part on the ENSEMBLES project (van der Linden and

Mitchell, 2009). All have a spatial resolution of 25 km and a

temporal output resolution of 1 h. These were the ENSEM-

BLES runs we had available through personal contacts for

the present study at 1 h resolution. The more generally avail-

able data series with only daily maximum 1 h intensity are

not sufficient for the employed downscaling procedure. The

other eight simulations used in this study are run with the

RCM HIRHAM driven by the GCM EC-EARTH (Hazeleger

et al., 2012) and the RCM WRF (Skamarock et al., 2005)

driven by the GCM NorESM (Bentsen et al., 2013). The

four future simulations use the RCP4.5 and RCP8.5 scenar-

ios (van Vuuren et al., 2011); see Table 2. The spatial reso-

lution of these simulations is 8 km and the output frequency

is again 1 h (Fox Maule et al., 2014; Mayer et al., 2015). The

SRES A1B and RCP4.5 scenarios are considered comparable

moderate forcing scenarios, whereas the RCP8.5 scenario is a

very strong forcing scenario. All future RCM runs are related

to RCM runs driven by the same GCM for present conditions

when climate factors are calculated (Table 2).

As in Gregersen et al. (2013), climate change is consid-

ered uniform for all land cells over Denmark; this results in

87 considered grid cells for the ENSEMBLES SRES A1B

simulations and 648 for the RiskChange RCP4.5 and 8.5 sim-

ulations.

2.3 Weather generator data

The last data set is the output from the applied weather gener-

ator (described in Sect. 3). A total of 10 data sets comprising

sets of 50-years time series in the 2 km grid (as shown on

Fig. 1) are simulated as output from the WG. These data sets

are used to corroborate the WG by refitting and rerunning it,

evaluating the output variability, and comparing the output

statistics to those of observations.

3 Weather generator

Burton et al. (2008) provided a thorough description of the

weather generator and its components, Burton et al. (2010a)

an introduction to the application of the model, and Bur-

ton et al. (2010b) an introduction to incorporation of climate

change into the WG; the remainder of this section is, thus,

only giving a brief introduction to the WG and a more in-

depth description of the workflow associated with working

with the model is given in the supplement. Generally, the ap-

proach by Burton et al. (2010a) is followed with inclusion of

climate change as described by Burton et al. (2010b) using

the software presented by Burton et al. (2008).

3.1 Parameters

The RainSim WG (version 3, Burton et al., 2008) describes

the spatio-temporal rain field as discs of rain (rain cells) with

uniform rain intensity that temporarily occur and overlap in

space and time to produce output that realistically describes

the statistical properties of precipitation. As the calibration

data set consists of point observations, the time series from

the simulations are not grid cell averages but strictly compa-

rable to what a gauge would have measured if present in a

grid point.

The WG parameters and their meaning and interactions are

described in depth in Burton et al. (2008) where a schematic

representation of the WG is also found (Burton et al., 2008:

Fig. 1). A uniform Poisson process governed by λ describes

the storm occurrences. For each storm a random number of

rain cells are produced, which occur at independent time in-

tervals after the storm origin and where the time intervals fol-

low an exponential distribution with parameter β. A uniform

spatial Poisson process governed by ρ describes the density

of the rain cells in space. The cell radii are randomly drawn

from an exponential distribution described by γ , and the du-

ration and intensity of each rain cell is independent and fol-

lows an exponential distribution with parameters η and ξ , re-

spectively. The rain intensity at a given point is therefore the

sum of all overlapping rain cell intensities at a given time. In

all, seven parameters describe the WG:

Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016 www.hydrol-earth-syst-sci.net/20/1387/2016/
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Figure 3. Spatial variation of the mean monthly precipitation cal-

culated from the CGD data set for the model area. Isohyets are sep-

arated by 3 mm.

– λ−1, the mean waiting time between storm origins (in

hours);

– β−1, the mean waiting time for rain cell origins after

storm origin (in hours);

– η−1, the mean duration of rain cells (in hours);

– ρ, the spatial density of rainfall cell centres (cells per

km2);

– ξ−1, the mean intensity of the rain cells (in mm h−1);

– γ−1, the mean radius of the rain cells (in km);

– 8, the non-homogeneous intensity scaling field describ-

ing how the mean monthly rainfall intensity varies in

space within the model area (–).

The non-homogeneous intensity scaling field, 8, is a proxy

for the spatial variation of mean monthly precipitation and is

used for relative scaling of the precipitation in space; for this

study it is interpolated from the CGD data set using inverse

distance weighting. Regional modelling of short-duration ex-

treme precipitation for Denmark, using the SVK data set, has

shown that the only significant parameter that can explain

Table 3. The relative weights used in the fitting procedure.

Statistic Relative weight

24 h mean 1

24 h variance 3

24 h skewness 6

1 h variance 3

1 h skewness 6

1 h auto-correlation 6

1 h cross-correlation 6∗

Probability of dry day 1

Probability of dry hour 1

∗ All the cross-correlations of a gauge have equal weights

that sum up to the value shown.

the geographical variation of point extremes statistically is

the corresponding mean annual precipitation (Madsen et al.,

2002, 2009). Thus, taking8 as the only spatially varying pa-

rameter in the WG, and as such the only parameter describing

spatial differences within the WG, is considered to be an ac-

ceptable approximation. The actual spatial variation of mean

monthly precipitation calculated from the CGD data set is

considerable (see Fig. 3), even though the model area is small

in size and relatively flat. Especially in June and July there is

a clear north–south gradient with 75–80 mm month−1 in the

north of the area and 55–60 mm month−1 in the south.

3.2 Parameter estimation

The parameters for RainSim (see Sect. 3.1) are estimated

based on daily and hourly statistics for each calendar month

from the observed time series (SVK). The objective function

is adopted from Burton et al. (2010b: Eq. 2) and the weights

are chosen to best reproduce features at both hourly and daily

levels, as described by Burton et al. (2008, 2010a, b). The

custom weighing scheme used is constructed to support the

features of rainfall that are important in the context of the

present study (i.e. the higher-order moments are assigned

more weight to secure a realistic fit for the extremes; see Ta-

ble 3). The statistics used for fitting the WG are

– the mean daily precipitation intensity from the individ-

ual gauges (24 h mean);

– the variance of the intensity of the daily and hourly ob-

servations from the individual gauges (1 and 24 h vari-

ance);

– the skewness of the intensity of the daily and hourly ob-

servations from the individual gauges (1 and 24 h skew-

ness);

– the probability of dry days and of dry hours based on

the observations from the individual gauges and with

thresholds of 1.0 and 0.1 mm, respectively, as suggested

by Burton et al. (2008);

www.hydrol-earth-syst-sci.net/20/1387/2016/ Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016
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– the lag-1 auto-correlation of the hourly precipitation in-

tensity calculated from the observations at the individ-

ual gauges;

– the cross-correlation between observations of hourly

precipitation intensity at the individual gauges.

The chosen weighing scheme favours the higher-order mo-

ment statistics, variance and skewness, over the mean as

the extreme characteristics of the simulated precipitation

is prioritized. Furthermore, the cross-correlation and auto-

correlation are given high weights to ensure a realistic repre-

sentation of the spatio-temporal extent of the simulated pre-

cipitation. The different observation time series are further-

more weighted relative to each other according to the effec-

tive length of the time series to give more weight to longer

time series. This is done to increase the data basis for cross-

correlation analysis, utilising the fact that a great deal of the

short time series are from recent years and thus overlap in

time; see Fig. 2.

The standard fitting bounds suggested by Burton et

al. (2008) are applied in the fitting procedure to ensure that

the WG is fitted with values that are considered realistic by

the model developers for a northern European climate.

3.3 Perturbation of the weather generator with climate

change signals

The WG is perturbed with climate change signals by appli-

cation of change factors, αi,j,k’s, to the statistics, Y Present
i,j,k ’s,

calculated from the SVK data set and used for the original

parameter estimation for the present climate. In this manner

new statistics are produced for future climate, Y Future
i,j,k ’s, as

(Fowler et al., 2007; Burton et al., 2010b)

Y Future
i,j,k = αi,j,kY

Present
i,j,k , (1)

where one climate change factor, αi,j,k , is calculated for each

statistic, i, for each month, j , for each RCM, k. The change

factors are calculated using the methodology introduced by

Burton et al. (2010b: Eqs. 1–3), which includes transforma-

tions that ensure that the bounded statistics (probabilities of

dry days and hours and auto-correlation) stay within their

prescribed boundaries (further described in the supplement).

No change factor is calculated for the cross-correlation as

this statistic is described poorly by the RCMs (Gregersen et

al., 2013).

4 Methodology

4.1 Evaluation of simulated time series

The evaluation of the simulated time series will be in line

with previous studies such as Olsson and Burlando (2002),

Cowpertwait (2006), and Molnar and Burlando (2008). This

implies that simulated time series are not evaluated directly

against the observations with the expectation of a perfect fit;

the expectation is rather that the simulated series have the

same statistical properties as the measured precipitation. In

practise this is achieved by analysis of the statistics used in

the fitting procedure and through analysis of statistics, which

are independent of the fitting statistics as will be outlined in

Sect. 4.2.

For evaluation of all realizations of the WG the 60 grid

cells closest to the observational gauges are extracted and

evaluated point-wise with respect to all the fitting statistics as

recommended by Burton et al. (2008). Furthermore, the WG

is refitted to the simulated data sets to evaluate if the real-

ization is representative and results in model parameters that

are comparable to the parameters estimated from the SVK

observational data set.

Ten realizations of the WG, named WG1 to WG10, are

used in this study. The actual simulation time is very short,

but the process of writing data to text files for the complete

grid takes a long time, making it a rather cumbersome ap-

proach, which limits the number of realizations evaluated in

this study.

The refitted WG data are evaluated with respect to the fit-

ting statistics, YWG
i,j,k for each statistic, i, for each month, j ,

for each WG realization, l, through discussion of the density

plots for the normalized error against the SVK data set:

ε =
YWG
i,j,l −Y

SVK
i,j

Y SVK
i,j

. (2)

4.2 Evaluation of extremes

Gregersen et al. (2013) compared extreme precipitation ob-

servations with RCM output. One issue is the difference in

absolute magnitude of the extremes, which can partly be ex-

plained by the inherent difference between gridded data and

point observations; another issue is the spatial correlation

structure of the extremes, where extremes calculated from

RCM output are much more spatially correlated at the sub-

daily timescale. In this study, a data set simulated with a WG

will be considered better than using RCM data directly for

the specified purpose, if it better resembles the observations

with respect to both the absolute magnitude and the spatial

correlation structure of the extremes.

The statistics used in this study to evaluate the WG’s per-

formance with respect to simulating extreme precipitation

are based on the identification of independent rainfall events,

as done when estimating intensity–duration–frequency rela-

tionships; see e.g. Madsen et al. (2002). Individual events

are separated by dry periods equal to or longer than the cho-

sen event duration (i.e. 1 h events have at least 1 h of dry

weather between them and 24 h events have at least 24 h

of dry weather between them) and the maximum-averaged

event intensities over the chosen durations are calculated.

Furthermore, the peak-over-threshold (POT) approach from

Mikkelsen et al. (1996) and Madsen et al. (2002) is adopted
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with a global constant intensity threshold (i.e. type I censor-

ing) to define the extreme events for each gauge/grid point.

In this study, extreme precipitation events are evaluated for

11 distinct durations of 1, 2, 3, 4, 6, 8, 12, 24, 48, 72, and

120 h with thresholds ranging (approximately log-linearly)

from 7.6 to 0.34 mm h−1 (the same as used by Gregersen et

al. (2013) for the SVK data set). Three different event-based

indices of extreme precipitation are evaluated as explained

below.

4.2.1 Magnitude of extreme events

To evaluate the magnitude of the extreme events intensity–

duration–frequency relationships are calculated for all data

sets. First, the return periods of extreme events extracted

from an observed or simulated rainfall time series are cal-

culated using the California plotting position formula:

Tm =
Tobs

m
, (3)

where Tm is the return period of the event (years) with rankm

and Tobs is the observation period (years) of the time series.

Tm is obviously affected by sampling variability and is bi-

ased, especially for large return periods. There are more elab-

orate methods to estimate Tm than Eq. (3), but we use Eq. (3)

here because it allows for comparing extreme value curves

from multiple sites (including sampling variability and spa-

tial variability) in a straightforward way.

Second, a generalized Pareto distribution is fitted to ex-

tremes from every single time series:

zT = z0+µ
1+ κ

κ

(
1−

(
1

λT

)κ)
, (4)

where zT is the intensity for extreme event with return period

T , z0 is the threshold, µ is the mean intensity of the extreme

events, λ is the mean number of extremes per year, κ is the

shape parameter and T is the return period. Finally, based

on z(T )’s intensity–duration–frequency curves are calculated

for each data set.

For the climate change scenarios, climate factors for the

intensity of the extreme events are calculated as a function of

the return period for different T year event durations. This is

done as a simple ratio between the present and future levels

for a given return period as

CFT =
z(T )future

z(T )present
. (5)

4.2.2 Seasonality of extreme events

The seasonality of the extreme events is determined to fur-

ther evaluate the realism of the behaviour of the WG. This is

done to evaluate whether the WG data set constructed with

individual monthly model parameters results in a realistic

distribution of the extremes throughout the year. The same

extreme events used in the evaluation of the magnitude are

used in this analysis.

The determination is in practice performed by counting the

number of extremes from the POT analysis that occur within

each month for the SVK and WG data sets. These are then

normalized and compared with a χ2 test (Wilks, 2011) where

the normalized counts C for the SVK data act as the expected

values for the WG data set and where the summation is done

over months giving a test statistic x:

x =

12∑
i=1

(
CWG
i −CSVK

i

)2
CSVK
i

. (6)

x then follows a χ2 distribution with (12− 1)(2− 1)= 11 de-

grees of freedom.

4.2.3 Unconditional spatial correlation of extremes

The unconditional spatial correlation (Mikkelsen et al.,

1996), ρ, between the intensities of extreme events that are

considered concurrent at different sites A and B is estimated.

The methodology follows Mikkelsen et al. (1996) with the

i′th extreme intensity ZAi measured at site A being concur-

rent with the j ′th extreme event ZBj measured at site B if

Eq. (7) is fulfilled. In this framework the precipitation pro-

cess is considered to generate random occurrences of pre-

cipitation that are treated as correlated random variables, ZA
and ZB , and two events are considered concurrent if they are

overlapping in time or at most separated by a lag time 1t ,

which is introduced to account for the travel time of rain

storms between sites.{
ZAi,ZBj

}
:

[
tsi −

1t

2
, tei +

1t

2

]
A

∩

[
tsj −

1t

2
, tej +

1t

2

]
B

6= Ø (7)

Here ts’s are the start times of the events and te’s are the end

times of events. A lag time of1t = 11 h+ the duration of the

event is adopted in accordance with Gregersen et al. (2013).

The introduction of this lag time, in combination with lack

of knowledge of the movement direction of precipitation, im-

plies that an individual event at one site can be correlated to

more than one event at another site.

The unconditional covariance is then estimated by also ac-

counting for non-concurrent extreme events at the two sites

as

cov {ZA,ZB} = cov {E {ZA|U} ,E {ZB |U}}

+E {cov {ZA,ZB |U}} (8)

with U being a Boolean operator taking the value of

U = 1 if events are concurrent and U = 0 otherwise. Thus,

E{Z|U}s are not a single values, but two values for U = 0

and U = 1, respectively, and a covariance between them can

be calculated.
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Finally, the unconditional spatial correlation is obtained by

division of Eq. (8) with the sample standard deviations of the

two sites (Mikkelsen et al., 1996):

ρAB =
cov {ZA,ZB}

√
var {ZA}var {ZB}

. (9)

The unconditional spatial correlation values are grouped to-

gether in bins where the distance between the points consid-

ered are approximately the same, and an exponential model

is fitted to describe the unconditional spatial correlation’s de-

pendence on distance between sites using the e-folding dis-

tance measure as proposed by Gregersen et al. (2013).

5 Results and discussion

5.1 Weather generator parameter estimation

The parameter estimates (cf. Sect. 3.2) for the model fitted

to SVK data, the parameter estimates for the model refitted

to the 10 realizations of the WG (WG1–WG10) and the used

boundary values are given in Fig. 4. All parameters values

shown in Fig. 4 are given in the supplement. All parameters

vary over the course of the year, some more smoothly than

others. Note that the β parameter (the parameter controlling

the arrival time of cells after a storm origin) is constrained

at its prescribed minimum value for 4 months (February,

September, October, and December). However, rain events

can easily last for several days at these times of the year in

Denmark, and this fitting artefact is therefore considered to

have limited influence on those features of rainfall, which

are of interest for this study. Figure 4 shows that all the refit-

ted values are different and especially the β parameter does

not always seem to follow the same structural pattern as the

SVK data set. As β−1 controls the arrival time of cells after

storm origin, it will be heavily dependent on the actual real-

ization of weather from the WG and this is not considered to

be important for the realized extreme events. The ξ param-

eter seems to be slightly biased in the same direction for all

WGs. ξ−1 controls the mean intensity of the rain cells and

the difference in fit suggests that the rain in the WG data sets

are slightly more intense during summer than what is seen

in the SVK data set. Generally, the WG data sets, however,

represent the SVK data set well.

The fitting statistics (cf. Sect. 3.1) resulting from the di-

rect analysis of the observations (SVK data set) and the sim-

ulations (WG data sets that are simulated based on fitting

the WG to the SVK and CGD data) are compared in Fig. 5

through the normalized error (Eq. 2) and directly in Table 4.

Generally, the fit seems reasonable for all variables with a

mean of the normalized errors close to zero. For the moment

statistics, the WG data sets seem to have a slight positive

bias, and the variance and skewness distributions are also

slightly positively skewed (Fig. 5a–e). However, the WG fit

is still within the bounds reported for the SVK data set in Ta-

ble 4. The lag-1 auto-correlation and the probabilities of dry
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Figure 4. Monthly variation of the model parameters estimated

from the SVK data set and from the simulated 10 WG data sets.

Upper and lower fitting bounds are shown in light grey.

hours seem to be fitted well even though the probability of

dry days also seem to have some skewness in the error dis-

tribution. The probability of dry days is the only parameter

that seems to differ between observations and WGs, indicate

that the WG concentrates the precipitation on too few days.

Also, it seems that none of the WG realizations performs dif-

ferently than the others with respect to reproduction of the

fitting statistics. Hence, the discrepancies observed in Fig. 4

do not seem to impede the use of the WGs as good proxies

for observed precipitation.

The cross-correlation of the 1 h intensities is shown in

Fig. 6 for each month of the year. The 10 WG data sets seem

to reflect the overall behaviour of the SVK data set very well

and also capture most of the variability seen in the SVK data

set. The very low correlations observed in the SVK data set

for some “traces” of points, especially in March, October,

and November, are due to some time series only overlapping

for very short time periods in recent years where the num-

ber of stations has increased dramatically (see Fig. 2); hence,

the correlation is depending on only very few precipitation

events. There is no evidence of a systematic pattern in these
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Table 4. Comparison between observational (SVK) data and the simulated (WGs) statistics. Data are averaged over the full course of the

year and over the full model domain. For the SVK data set the 50th percentile (50) is reported as well as the 16th to 84th percentiles (16–84)

interval to emulate the empirical standard deviation. For the WGs one central 50th percentile is reported across the ten simulations.

24 h 24 h 24 h 1 h 1 h Probability Probability Lag-1 h

mean variance skewness variance skewness of dry of dry auto-

(mm day−1) (mm2 day−2) (–) (mm2 h−2) (–) days hours correlation

(–) (–) (–)

SVK (50 1.67 12.6 3.56 0.117 8.93 0.718 0.934 0.572

(16–84)) (1.09–2.34) (6.05–32.9) (2.76–4.79) (0.0576–0.409) (6.73–15.1) (0.667–0.770) (0.914–0.947) (0.422–0.654)

WGs (50) 1.60 14.9 4.04 0.151 10.4 0.812 0.945 0.578

readings. Again, the difference between different WG real-

izations is very limited.

From Figs. 5 and 6, the WG fit is considered satisfactory

given the complex data set used and the purpose of this study.

For analysis of extremes at event level, this WG reproduces

well the higher-order moment statistics, which are the fea-

tures expected to have the highest influence on the produced

extremes.

5.2 Evaluation of extremes for present climate

conditions

For durations of 1 to 120 h, the extreme events are extracted

from the SVK data set at each gauge and from the WG data

sets in each grid cell closest to the SVK observation points

and ranked according to return period (Eq. 3). Figure 7 shows

intensity–duration–frequency curves estimated for WG real-

ization along with the SVK data set. For both 100- and 10-

year events, the WG data sets result in comparable extreme

intensity values for all considered durations well within the

shown 68 % confidence interval (corresponding to a 1 stan-

dard deviation envelope) for the SVK IDF curve.

Figure 8 shows that the seasonal distribution of these ex-

treme events is captured very well by the considered grids

from the simulated WG data sets for all considered event du-

rations. The χ2 tests furthermore confirm that there are no

significant differences between distributions for the WG and

the SVK data sets for all event durations.

Figure 9 shows the unconditional spatial correlation for

the SVK and for the selected WG grid points calculated ac-

cording to Eq. (9) and grouped in selected bins. Table 5 fur-

thermore compares the e-folding distances based on the fit-

ted exponential models with a set of values calculated from

RCM data representing a slightly larger area, as seen in from

Gregersen et al. (2013).

Gregersen et al. (2013) showed, using data from the whole

of Denmark (range 0–350 km), that the spatial correlation

pattern is not the same when considering output from cli-

mate models compared to SVK data as the climate model

output maintains too long spatial correlation lengths at scales

below approximately 150 km and 12 h (see Table 5). Both

Fig. 9 and Table 5 indicate that the WG better reproduces the

Table 5. e-folding distances for the SVK and WG maximum-

averaged intensities of extremes for 1, 6, 12, and 24 h duration,

based on the fitted exponential models (cf. Fig. 8) as well as for

a regional climate model (HIRHAM/ECHAM) from the study by

Gregersen et al. (2013) for comparison.

e-folding distance 1 h 6 h 12 h 24 h

[km]

SVK 3.5 5.5 7.3 8.0

WGs 7.1–9.9 9.1–14 9.5–16 10–28

HIRHAM/ECHAM∗ 56 48 48 54

∗ Values from Gregersen et al. (2013).

spatial correlation pattern of the SVK data within the spatial

range (0–60 km) covered by the observations included in this

study. The e-folding distances computed in this study for the

SVK data set are somewhat lower than the ones calculated

by Gregersen et al. (2013). This is a consequence of inclu-

sion of fewer gauges and, most importantly, that the time se-

ries in the SVK data set for this study have been aggregated

into hourly time series prior to the smoothing and POT anal-

ysis. Gregersen et al. (2013) conducted the smoothing and

POT analysis directly on the original time series that have a

1 min resolution. The WG data sets represent the space–time

features of precipitation of crucial importance for urban hy-

drology applications much better than the climate model out-

put; the WG data set is considered realistic at this small-scale

spatio-temporal resolution.

Overall, the results show that the WG is able to realis-

tically simulate extreme precipitation statistics down to the

hourly scale at a 2 km× 2 km spatial resolution.

5.3 Perturbation of the weather generator with climate

change signals from RCMs

As the different realizations of the WG produce very simi-

lar output, only one 30-year realization is generated for each

perturbation with climate change signals from each of the

RCMs. Furthermore, all grid cells are used for both present

and future evaluations as no comparisons are made to the ob-

servational data.
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Figure 5. Density plots for the normalized error between the WG and the SVK data sets for each considered statistic (i= [1 . . . 8]) for all

months (j = [1 . . . 12]) for all WG realizations (l= [1 : 10]).

For each RCM run and each statistic the change factors,

αi,j,k’s, are calculated. All change factors and all parame-

ters values for WGs representing future climate are given in

the supplement. They are primarily above 1 for the moment-

derived statistics (Fig. 10a–e) but the different RCM runs ap-

pear different. For the 24 h mean (Fig. 10a) the αi,j,k’s are

mostly above 1 with all RCM runs showing some months

with values below 1 in an unsystematic pattern. For both the

24 and 1 h variances (Fig. 10b and d) the number of RCM

runs and months that show a decrease is very limited and

in general the variance will increase for all seasons. The

HIRHAM RCP8.5 simulation differs from the other RCM

runs with very high αi,j,k’s for the summer months. The

24 and 1 h skewness (Fig. 10c and e) show more clear sea-

sonality than the mean and variance with higher αi,j,k’s from

May to September for all RCM runs clearly indicating a shift

in the distribution of precipitation intensities towards more

extremes. Again the HIRHAM RCP8.5 run stands out with

very high αi,j,k’s for the 1 h skewness for most of the year.

This means that the extreme precipitation intensities are ex-

pected to be higher during summer and especially the sub-

daily extremes for the HIRHAM RCP8.5 perturbation could

have very high intensities as a combination of a large increase

in both variance and skewness will result in many severe pre-

cipitation events with a high mean intensity.

For the lag-1 hour auto-correlation (Fig. 10h) the αi,j,k are

mostly below 1 indicating more variations from one hour to

the next and thus a possibility of more abrupt changes in the

rainfall at the hourly level. For the probability of dry days and

dry hours (Fig. 10f and g) the pattern is less clear. The RCM

simulations show some variation around 1 (approximately

between 0.7 and 1.7) but do not agree with respect to the

season of these changes or their relative magnitude. This sug-

gests that future rainfall will follow the same overall patterns

as today but as all RCM runs have months with αi,j,k below 1

there will also be more severe periods since the precipitation

is concentrated on fewer days and hours. For instance, the

peaks for the WRF RCP8.5 perturbation in August for both

probability of dry days and hours (Fig. 10f and g) in combi-

nation with the increases in variance and skewness (Fig. 10b

to e) are expected to result in very severe extremes, as the

increased rainfall amount is expected to occur on fewer days.
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Figure 6. Variation of cross-correlation of the 1 h intensity with distance between pairs of gauges in the SVK data set (black dots) and grid

points in the WG data set (coloured dots).

On the whole, the αi,j,k’s indicate that for all RCM runs there

will be more rainfall on average and it will be more variable

resulting in more (and more severe) extreme events. This is

in accordance with general findings from studies based on di-

rect output from RCMs (Christensen and Christensen, 2007;

Sunyer et al., 2014b).

5.4 Changes in climate-changed extremes from the

weather generator

Calculating the climate factors, CFs (Eq. 5), from the per-

turbed and original WG using the T year event estimates

calculated with Eq. (4) shows that despite the differences

observed in the αi,j,k for the input statistics (Fig. 10), the

perturbation schemes based on RCM simulations modelling

comparable climate change (HIRHAM SRES A1B, RACMO

SRES A1B, HIRHAM RCP4.5 and WRF RCP4.5) result in
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10 WG realizations; 68 % confidence interval for the SVK data set.
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Figure 8. Monthly variation for 1, 6, 12, and 24 h durations of the

frequency of extreme events in the SVK and WG data sets.

similar changes to extremes after downscaling with the WG

(Fig. 11). Clearly, and as expected from the results in Fig. 10,

the HIRHAM RCP8.5-perturbed WG results in a much more

severe change in extreme precipitation than the other pertur-

bation schemes for both 10- and 100-year return periods. It

is interesting that the WG perturbed with HIRHAM SRES

A1B results in a rather stable CF in the range 1.35–1.55

with seemingly little dependence on return period and event

duration, The WGs perturbed with RACMO SRES A1B,

HIRHAM RCP4.5, and WRF RCP4.5 show similar CF val-

ues that are higher for 100-year extremes than for 10-year

extremes but still not depend significantly on the event dura-

tion.
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Figure 9. Unconditional spatial correlation for the SVK and WG

data sets, calculated from maximum-averaged intensities of extreme

events for 1, 6, 12, and 24 h duration. Fitted exponential models that

highlight overall tendencies are shown.

Table 6. e-folding distances for all aggregation periods for all WG

output.

e-folding distance [km] Aggregation period

1 h 6 h 12 h 24 h

WG – present climate 3.9 5.0 4.9 5.0

WG – HIRHAM SRES A1B 5.2 7.4 7.7 8.1

WG – RACMO SRES A1B 7.3 9.7 9.1 8.4

WG – HIRHAM rcp 4.5 5.2 8.4 8.7 8.8

WG – HIRHAM rcp 8.5 4.6 7.7 9.3 9.0

WG – WRF rcp 4.5 5.1 9.1 9.3 11.5

WG – WRF rcp 8.5 4.9 9.4 9.9 10.2

Both the HIRHAM RCP8.5 and WRF RCP8.5-perturbed

WGs yield CF values that depend on the event duration

with higher CF for short-duration precipitation extremes.

This indicates that this high-end scenario is changing the

climate more drastically than the more moderate scenarios

(SRES A1B and RCP4.5) and that the observed extreme ef-

fects are not linearly scalable from moderate to high end sce-

narios. For event durations above 48 h, the different WGs

yield similar CFs, but surprisingly the high-end scenario

WRF RCP8.5 perturbation scheme results in the smallest CF

for the long duration events. This may indicate that the direct

output from the RCMs underestimate the changes occurring

at high spatio-temporal resolutions.
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Figure 10. Change factors, α’s, calculated on a monthly basis for each statistic and each RCM. Each set of α’s from an RCM act as a

perturbation scheme for the WG.
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Figure 11. Climate factors for different return periods for the differ-

ent perturbed WG runs. T = 10 years (left panel) and T = 100 years

(right panel).

Despite the observed differences between WGs perturbed

with different RCM runs and different forcing scenarios the

results show an upwards change for all event durations (see

Fig. 11). The change seems to increase with the return pe-

riod with a projected change factor of the order of 1.2–

1.3 for T = 10 years and 1.4–1.5 for T = 100 years for the

moderate scenarios (SRES A1B and RCP4.5). Furthermore,

the RCP8.5 scenario-perturbed WG runs suggest that short-

duration extreme events become relatively more severe com-

pared to the WG runs perturbed with the other, moderate

forcing scenarios.

5.5 Unconditional spatial correlation of

climate-changed T year events

All the perturbed WG runs produce T year precipitation

events with reasonable spatial correlation structure (Fig. 12,

Table 6) including calculated e-folding distances, and it is

noteworthy that the e-folding distance for present conditions

is somewhat shorter for the full WG data set compared to

the sub-sets closest to the observations shown in Fig. 9. The

HIRHAM RCM and WRF RCM-perturbed WG runs present

similar results for all event durations, whereas the RACMO

SRES A1B-perturbed WG run yield slightly larger correla-

tions lengths for the very short durations (Fig. 12a). Gen-

erally, all the perturbed WG runs have larger correlation

lengths than for the present climate, suggesting that the WG

implicitly expects that more severe events on average also
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Figure 12. The unconditional spatial correlation of all T year events

for perturbed WG output for event durations of 1, 6, 12, and 24 h.

results in events with a larger spatial extent. This behaviour

has recently been observed by Kendon et al. (2014) using a

high-resolution regional climate model (1.5 km resolution).

This difference, however, is limited, and in general the WG

produces extremes with a spatial extent much closer to that

of observations than RCMs. Online resource 1 includes an

animation of extreme precipitation events generated directly

as output from the 25 km resolution RCM HIRHAM SRES

A1B, the 8 km resolution RCM HIRHAM RCP4.5, and the

2 km WG evaluated in this study. From these it is clear that

the small-scale variability is much more pronounced for the

WG output than for the output of the RCMs, but also that the

WG output lacks rainfall movement. At the hourly scale this

is not a problem for a catchment of the size presented in the

online resource (same as shown in Fig. 1).

Only few apparent effects are observed with respect to

choice of RCM, GCM, and RCM spatial resolution and it

is not possible to detect any systematic patterns. The WG

seems to produce robust results with respect to change in ex-

treme precipitation due to climate change that are similar for

similar climate forcing scenarios.

6 Conclusions

Precipitation time series based on high-resolution gauge

measurements are presently used as input to design and

analysis of urban water infrastructure, and time series rep-

resenting future climates are needed in the future. Current

RCMs operating at 25 and even 8 km spatial scales, how-

ever, yield too spatially correlated output that poorly repre-

sents the fine-scale precipitation features relevant for urban

hydrology. The study indicate that statistical downscaling of

precipitation output from RCMs using a stochastic weather

generator (WG) is therefore a better solution.

This study demonstrates that the chosen spatio-temporal

Neyman–Scott rectangular pulses weather generator (WG)

fitted to a dense network of 60 rain gauges in a

40 km× 60 km region simulates realistic extreme precipita-

tion of relevance to urban hydrology. Output is generated at

the 1 h temporal scale at a 2 km spatial grid, which is finer

than what previous studies using this WG have focused on.

Even though urban hydrology literature claims that rain data

are ideally needed at a timescale of minutes, the hourly scale

chosen here can still be of much use when assessing climate

change impacts in urban hydrology as it is much finer than

what regional climate models can currently provide.

The WG generally reproduces statistics of the observa-

tions such as mean, variance, and skewness of the rainfall

intensity distribution well at both the hourly and daily lev-

els. It also produces realistic levels of lag-1 auto-correlation,

cross-correlation between output at different grid points and

probabilities of dry days and hours. Evaluating the WG from

an urban hydrological engineering perspective yields the fol-

lowing conclusions:

– The extreme events of the simulated time series show

realistic levels of intensity as well as a reasonable spatial

variability for the full 60× 40 km model area. Thus, the

WG handles the large data set of spatially distributed

observational input in a robust manner.

– The seasonal distribution of the extremes are not signifi-

cantly different in the generated WG data sets compared

to the observed SVK data set, implying that the applied

procedure of individual monthly model fits results in a

realistic seasonal behaviour of the WG.

– The spatial extent of the extreme events in the WG data

set, as evidenced by the unconditional spatial correla-

tion of extremes, is close to that of the observational

SVK data set with e-folding distances in the same order

of magnitude. This is much better than what is observed

for regional climate model (RCM) output at a 25 and

8 km grid scale in previous studies.

– This indicates that the WG is a good way to downscale

spatio-temporal precipitation output from RCMs to rel-

evant urban scales and that the simulated output can be

used directly as input to urban hydrological models.
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Output from six different RCM runs representing aver-

age to high-emission scenarios are used to perturb the WG

for different possible future climate scenarios. Two have a

25 km× 25 km spatial resolution and four have a very high

8 km× 8 km spatial resolution, and all RCM data sets are

available at hourly temporal resolution. A clear increase in

the magnitude of extreme precipitation is observed for all cli-

mate change perturbations of the WG.

This study highlights that different RCMs run with the

same greenhouse gas emission scenario can result in differ-

ent precipitation output and hence different CFs for pertur-

bation of the WG. Despite these observed differences, down-

scaling with the WG results in similar extreme precipitation

behaviour for similar emission scenarios.

Most perturbed WGs confirm that there is a more severe

climate change signal for extreme events. The two WGs per-

turbed by the RCP8.5 scenario show a more severe climate

change signal for short-duration events. However, this find-

ing is not shared by the other emission scenarios, suggesting

that extreme precipitation at T year event level is not scalable

between emission scenarios. The spatial correlation structure

of the WG output is slightly altered by the perturbation in-

dicating a built-in correlation between intensity and spatial

extent and suggesting that precipitation extremes in a future

climate may have larger spatial extent than extremes in the

present climate.

The Supplement related to this article is available online

at doi:10.5194/hess-20-1387-2016-supplement.
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R., Sterl, A., Wyser, K., Semmler, T., Yang, S., van den Hurk,

B., van Noije, T., van der Linden, E., and van der Wiel, K.:

EC-Earth V2.2: description and validation of a new seamless

earth system prediction model, Clim. Dynam., 39, 2611–2629,

doi:10.1007/s00382-011-1228-5, 2012.

Hundecha, Y., Pahlow, M., and Schumann, A.: Modeling of daily

precipitation at multiple locations using a mixture of distri-

butions to characterize the extremes, Water Resour. Res., 45,

W12412, doi:10.1029/2008WR007453, 2009.

Jørgensen, H. K., Rosenørn, S., Madsen, H., and Mikkelsen, P. S.:

Quality control of rain data used for urban runoff systems, Water

Sci. Technol., 37, 113–120, doi:10.1016/S0273-1223(98)00323-

0, 1998.

Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S.

C., and Senior, C. A.: Heavier summer downpours with climate

change revealed by weather forecast resolution model, Nat. Clim.

Change, 4, 570–576, 2014.

Larsen, A. N., Gregersen, I. B., Christensen, O. B., Linde, J. J.,

and Mikkelsen, P. S.: Potential future increase in extreme pre-

cipitation events over Europe due to climate change, Water Sci.

Technol., 60, 2205–2216, doi:10.2166/wst.2009.650, 2009.

Madsen, H., Mikkelsen, P. S., Rosbjerg, D., and Harremoes,

P.: Regional estimation of rainfall intensity-duration-frequency

curves using generalized least squares regression of partial du-

ration series statistics, Water Resour. Res., 38, 21-1–21-11,

doi:10.1029/2001WR001125, 2002.

Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Update of

regional intensity-duration-frequency curves in Denmark: Ten-

dency towards increased storm intensities, Atmos. Res., 92, 343–

349, doi:10.1016/j.atmosres.2009.01.013, 2009.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon,

E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., The-

meßI, M., Venema, V. K. C., Chun, K. P., Goodess, C. M.,

Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.:. Precipita-

tion downscaling under climate change: Recent developments to

bridge the gap between dynamical models and the end user, Rev.

Geophys., 48, RG3003, doi:10.1029/2009RG000314, 2010.

Mayer, S., Maule, C., Sobolowski, S., Christensen, O., Sørup, H.,

Sunyer, M., Arnbjerg-Nielsen, K., and Barstad, I.: Identifying

added value in high-resolution climate simulations over Scandi-

navia, Tellus A, 67, 24941, doi:10.3402/tellusa.v67.24941, 2015.

Meijgaard, E. V., Ulft, L. H. V., v. d. Berg, W. J., Bosveld, F. C.,

v. d. Hurk, B. J. J. M., Lenderink, G., and Siebesma, A. P.:

The KNMI regional atmospheric climate model RACMO, ver-

sion 2.1, Report no. 302, KNMI Technical Report, KNMI, De

Bilt, the Netherlands, 50 pp., 2008.

Mikkelsen, P. S., Madsen, H., Rosbjerg, D., and Harremoes, P.:

Properties of extreme point rainfall. 3. Identification of spa-

tial inter-site correlation structure, Atmos. Res., 40, 77–98,

doi:10.1016/0169-8095(95)00026-7, 1996.

Mikkelsen, P. S., Madsen, H., Arnbjerg-Nielsen, K., Jørgensen, H.

K., Rosbjerg, D., and Harremoës, P.: A rationale for using local

and regional point rainfall data for design and analysis of urban

storm drainage systems, Water Sci. Technol., 37, 7–14, 1998.

Molnar, P., and Burlando, P.: Variability in the scale prop-

erties of high-resolution precipitation data in the Alpine

climate of Switzerland, Water Resour. Res., 44, W10404,

doi:10.1029/2007wr006142, 2008.

Nguyen, V.-T.-V., Nguyen, T.-D., and Ashkar, F.: Regional fre-

quency analysis of extreme rainfalls, Water Sci. Technol., 45,

75–81, 2002.

Olsson, J. and Burlando, P.: Reproduction of temporal scaling by a

rectangular pulses rainfall model, Hydrol. Process., 16, 611–630,

doi:10.1002/hyp.307, 2002.

Olsson, J., Berggren, K., Olofsson, M., and Viklander, M.: Apply-

ing climate model precipitation scenarios for urban hydrological

assessment: a case study in Kalmar City, Sweden, Atmos. Res.,

92, 364–375, doi:10.1016/j.atmosres.2009.01.015, 2009.

Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch,

M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh,

L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U.,

and Tompkins, A.: The atmospheric general circulation model

ECHAM5: Model description, Max Planck Institute for Meteo-

rology Rep. 349, Max Planck Institute for Meteorology, Ham-

burg, Germany, 140 pp. 2003.

Rodriguez-Iturbe, I., Cox, D. R., and Isham, V.: Some models for

rainfall based on stochastic point processes, P. Roy. Soc. Lond. A,

410, 269–288, doi:10.1098/rspa.1987.0039, 1987a.

Rodriguez-Iturbe, I., Febres de Power, B., and Valdes, J. B.:

Rectangular pulses point process models for rainfall: anal-

ysis of empirical data, J. Geophys. Res., 92, 9645–9656,

doi:10.1029/JD092iD08p09645, 1987b.

Scharling, M.: klimagrid Danmark nedbør 10 ∗ 10 km (ver. 2) –

metodebeskrivelse, Danish Meteorological Institute Technical

report no. 99-15, Danish Meteorological Institute, Copenhagen,

Denmark, 18 pp., 1999.

Scharling, M.: Climate Grid Denmark, Danish Meteorological Insti-

tute Technical report no. 12-10, Danish Meteorological Institute,

Copenhagen, Denmark, 12 pp., 2012.

Schilling, W.: Rainfall data for urban hydrology: what do we need?,

Atmos. Res., 27, 5–22, doi:10.1016/0169-8095(91)90003-F,

1991.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., and Barker, D.: A

description of the Advanced Research WRF version 3, NCAR

Tech. Note NCAR/TN-475+STR, NCAR, Boulder, Colorado,

USA, 125 pp., 2005.

Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016 www.hydrol-earth-syst-sci.net/20/1387/2016/

http://dx.doi.org/10.1007/BF00613411
http://dx.doi.org/10.1002/joc.1556
http://dx.doi.org/10.1029/2008WR007316
http://dx.doi.org/10.1007/s10584-012-0669-0
http://dx.doi.org/10.1007/s10584-012-0669-0
http://dx.doi.org/10.1007/s00382-011-1228-5
http://dx.doi.org/10.1029/2008WR007453
http://dx.doi.org/10.1016/S0273-1223(98)00323-0
http://dx.doi.org/10.1016/S0273-1223(98)00323-0
http://dx.doi.org/10.2166/wst.2009.650
http://dx.doi.org/10.1029/2001WR001125
http://dx.doi.org/10.1016/j.atmosres.2009.01.013
http://dx.doi.org/10.1029/2009RG000314
http://dx.doi.org/10.3402/tellusa.v67.24941
http://dx.doi.org/10.1016/0169-8095(95)00026-7
http://dx.doi.org/10.1029/2007wr006142
http://dx.doi.org/10.1002/hyp.307
http://dx.doi.org/10.1016/j.atmosres.2009.01.015
http://dx.doi.org/10.1098/rspa.1987.0039
http://dx.doi.org/10.1029/JD092iD08p09645
http://dx.doi.org/10.1016/0169-8095(91)90003-F


H. J. D. Sørup et al.: Downscaling future precipitation extremes to urban hydrology scales 1403

Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of dif-

ferent regional climate models and statistical downscaling meth-

ods for extreme rainfall estimation under climate change, Atmos.

Res., 103, 129–128, doi:10.1016/j.atmosres.2011.06.011, 2012.

Sunyer, M. A., Sørup, H. J. D., Madsen, H., Rosbjerg, D., Chris-

tensen, O. B., Mikkelsen, P. S., and Arnbjerg-Nielsen K.: On the

importance of observational data properties when assessing re-

gional climate model performance of extreme precipitation, Hy-

drol. Earth Syst. Sci., 17, 4323–4337, doi:10.5194/hess-17-4323-

2013, 2013.

Sunyer, M. A., Gregersen, I. B., Rosbjerg, D., Madsen, H., Luchner,

J., and Arnbjerg-Nielsen, K.: Comparison of different statistical

downscaling methods to estimate changes in hourly extreme pre-

cipitation using RCM projections from ENSEMBLES, Int. J. Cli-

matol., 35, 2528–2539, doi:10.1002/joc.4138, 2014a.

Sunyer, M. A., Madsen, H., Rosbjerg, D., and Arnbjerg-Nielsen,

K.: A Bayesian Approach for Uncertainty Quantification of Ex-

treme Precipitation Projections Including Climate Model Inter-

dependency and Non-Stationary Bias, J. Climate, 27, 7113–

7132, doi:10.1175/JCLI-D-13-00589.1, 2014b.

Tebaldi, C., and Knutti, R.: The use of the multi-model ensemble

in probabilistic climate projections, Philos. T. Ser. A, 365, 2053–

2075, doi:10.1098/rsta.2007.2076, 2007.

van der Linden, P. and Mitchell, J. F. B. (Eds.): ENSEMBLES: Cli-

mate Change and its Impacts: Summary of research and results

from the ENSEMBLES project, Met Office Hadley Center, Ex-

eter, 164 pp., 2009.

van Vuuren, D. P., Edmonton, J., Kainuma, M., Riahi, K., Thomson,

A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-

F., Masui, T., Meinshausen, M., Nakocenovic, N., Smith, S. J.,

and Rose, S. K.: The representative concentration pathways: an

overview, Climatic Change, 109, 5–31, doi:10.1007/s10584-011-

0148-z, 2011.

Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-

Figueras, T., and Jameleddine, S.: Are Stochastic point rainfall

models able to preserve extreme flood statistics?, Hydrol. Pro-

cess., 24, 3439–3445, doi:10.1002/hyp.7867, 2010.

Vrac, M., Stein, M., and Hayhoe, K.: Statistical downscaling of pre-

cipitation through nonhomogeneous stochastic weather typing,

Clim. Res., 34, 169–184, doi:10.3354/cr00696, 2007.

Waymire, E. and Gupta, V. K.: The mathematical structure

of rainfall representations. I. A review of the stochas-

tic rainfall models, Water Resour. Res., 17, 1261–1272,

doi:10.1029/WR017i005p01261, 1981.

Wilks, D. S.: Statistical methods in the atmospheric sciences,

3rd Edn., Academic Press, San Diego, CA, 704 pp., 2011.

Wilks, D. S. and Wilby, R. L.: The Weather generator game: a re-

view of stochastic weather models, Prog. Phys. Geogr., 23, 329–

357, doi:10.1177/030913339902300302, 1999.

Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V.-T.-

V.: Climate change impact assessment on urban rainfall extremes

and urban drainage: methods and shortcomings, Atmos. Res.,

103, 106–118, doi:10.1016/j.atmosres.2011.04.003, 2012.

Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hy-

drologic Implications of Dynamical and Statistical Approaches

to Downscaling Climate Model Outputs, Climatic Change, 62,

189–216, doi:10.1023/B:CLIM.0000013685.99609.9e, 2004.

www.hydrol-earth-syst-sci.net/20/1387/2016/ Hydrol. Earth Syst. Sci., 20, 1387–1403, 2016

http://dx.doi.org/10.1016/j.atmosres.2011.06.011
http://dx.doi.org/10.5194/hess-17-4323-2013
http://dx.doi.org/10.5194/hess-17-4323-2013
http://dx.doi.org/10.1002/joc.4138
http://dx.doi.org/10.1175/JCLI-D-13-00589.1
http://dx.doi.org/10.1098/rsta.2007.2076
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1002/hyp.7867
http://dx.doi.org/10.3354/cr00696
http://dx.doi.org/10.1029/WR017i005p01261
http://dx.doi.org/10.1177/030913339902300302
http://dx.doi.org/10.1016/j.atmosres.2011.04.003
http://dx.doi.org/10.1023/B:CLIM.0000013685.99609.9e

	Abstract
	Introduction
	Data
	Observational data
	Regional climate model data
	Weather generator data

	Weather generator
	Parameters
	Parameter estimation
	Perturbation of the weather generator with climate change signals

	Methodology
	Evaluation of simulated time series
	Evaluation of extremes
	Magnitude of extreme events
	Seasonality of extreme events
	Unconditional spatial correlation of extremes


	Results and discussion
	Weather generator parameter estimation
	Evaluation of extremes for present climate conditions
	Perturbation of the weather generator with climate change signals from RCMs
	Changes in climate-changed extremes from the weather generator
	Unconditional spatial correlation of climate-changed T year events

	Conclusions
	Acknowledgements
	References

