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Abstract

This thesis studies potential improvements that can be made to the cur-
rent data rates of digital communication systems. The physical layer
of the system will be investigated in band-limited scenarios, where high
spectral e�ciency is necessary in order to meet the ever-growing data
rate demand. Several issues are tackled, both with theoretical and more
practical aspects.

The theoretical part is mainly concerned with estimating the constel-
lation constrained capacity (CCC) of channels with discrete input, which
is an inherent property of digital communication systems. The chan-
nels under investigation will include linear interference channels of high
dimensionality (such as multiple-input multiple-output), and the non-
linear optical �ber channel, which has been gathering more and more
attention from the information theory community in recent years. In
both cases novel CCC estimates and lower bounds are provided in this
thesis. Intuition about the optimal signaling distribution is also pro-
vided, which is generally not the standard uniform for high spectral and
energy e�ciency communications.

The practical part deals with tools to approach the CCC with real-life
transceivers. The constellation shaping concept is one such tool. More
speci�cally, the probabilistic shaping concept is of interest to this thesis.
A rate-adaptive solution is proposed for designing the mapping function
of a probabilistic shaped coded modulation system, which allows for
approaching the above mentioned optimal distribution in practice. This
results in increased energy and/or spectral e�ciency for both linear and
non-linear channels, but also increased maximum reach of the optical
link at �xed spectral e�ciency.

The speci�c problem of phase noise in digital systems is also stud-

iii
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iv Abstract

ied in this thesis. Phase noise, and particularly non-linear phase noise
is especially detrimental to high-speed, high spectral e�ciency optical
communications. As part of this work, a low-complexity solution is pro-
posed for tracking, which is able to combat the combined e�ect of linear
and non-linear phase noise in optical �bers, achieving close to the CCC
estimate.

The main contribution of the PhD project is providing engineers with
limits on the data rates that current digital communication systems can
achieve, and also with methods and insights for approaching those rates,
thus interconnecting theory and practice.



i
i

�main� � 2016/4/7 � 14:09 � page v � #7 i
i

i
i

i
i

Resumé

Denne afhandling undersøger potentielle forbedringer af datahastigheden
i digitale kommunikationssystemer. Systemets fysiske lag bliver under-
søgt i båndbredde-begrænsede scenarier, hvor høj spektral e�ektivitet
er nødvendig for at opfylde kravet om stadigt stigende datahastighed.
Afhandlingen løser en række problemstillinger, både af praktisk og mere
teoretisk karakter.

Den teoretiske del beskæftiger sig hovedsageligt med estimering af ka-
paciteten under begrænsning af konstellationen (constellation constrained
capacity (CCC)) i kanaler med diskret input, hvilket er en iboende egen-
skab ved digitale kommunikationssystemer. Kanalerne der er omfattet
af undersøgelsen inkluderer lineære interferens kanaler af høj dimension-
alitet (såsom multipelt-input multipelt-output), og den ikke-lineære op-
tiske �berkanal, som har fået stadig større opmærksomhed fra infor-
mationsteori fællesskabet i de senere år. I begge tilfælde er nye CCC
estimater og nedre grænser fastsat i denne afhandling. Intuition om
den optimale signalfordeling gives også, hvilket generelt ikke er standard
ligefordelt for højspektral og højenergie�ektivitetskommunikation.

Den praktiske del omhandler værktøjer, der muliggør at datahastighe-
den i virkelige transceivere nærme sig CCC. Formning af konstellationen
udgår et sådan værktøj. Mere speci�kt er probabilistisk formning gen-
stand for undersøgelse i denne afhandling. Der foreslås en hastighedstil-
passende løsning til at designe afbildningfunktionen for et probabilistisk
formeret kodet modulationssystem, som gør det muligt at nærme sig den
optimale fordeling i praksis. Dette resulterer i forøget energi- og/eller
spektral-e�ektivitet for både lineære og ikke-lineære kanaler, men også
forøget maksimal rækkevidde af det optiske link ved fast spektral e�ek-
tivitet.

v
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vi Resumé

Denne afhandling undersøger desuden det speci�kke problem med
fasestøj i digitale systemer. Fasestøj og især ikke-lineær fasestøj er en
særlig udfordring ved højhastigheds og højspektrale�ektiv optisk kom-
munikation. Som en del af dette arbejde, foreslås en lavkompleksitet-
sløsning til sporing af fasestøj, som er i stand til at bekæmpe den kom-
binerede e�ekt af lineær og ikke-lineær fasestøj i optiske �ber systemer
hvilke kommer tæt på CCC estimatet.

Ph.d.-projektets hovedbidrag er at give ingeniører de grænseværdier
for datahastigheder man kan opnå i nuværende digitale kommunika-
tionssystemer, samt metoder til og indsigt i hvordan man opnår disse
hastigheder, og dermed sammenkoble teori og praksis.
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Chapter 1

Introduction

1.1 Motivation

As we all know, any technology sector nowadays, including the commu-
nication and information technology (IT), aims at sustainable operation
and low energy consumption. On the other hand, data rate demands
have increased dramatically in recent years, with the trends being for
steadily increasing throughput every year, which directly increases en-
ergy consumption. Recent studies have shown the IT sector to be respon-
sible for around 2% of the global greenhouse gas emission, with around
31% of that contributed to communications [1]. Energy e�ciency is
therefore of key importance to the future communication systems. Fur-
ther, in band-limited cases, such as wireless and recently the optical �ber
communications, high spectral e�ciency is a requirement for high data
rate systems. The optimal trade-o� between the energy, used for trans-
mission over the channel and spectral e�ciency was de�ned by Shannon
for the additive white Gaussian noise (AWGN) channel in his pioneering
work [2] from 1948. This trade-o� is called the channel capacity.

Since then, the communication and information theory communities
have been developing new ways of approaching this capacity in practice.
These e�orts have resulted in very powerful error-correcting codes such as
the low-density parity check (LDPC) codes, discovered �rst by Gallager
in the 60's [3] and later re-invented in the mid-90's [4], when technology
allowed practical implementation of decoding algorithms. Another type
of capacity approaching channel code is the turbo code, invented in the

1



i
i

�main� � 2016/4/7 � 14:09 � page 2 � #14 i
i

i
i

i
i

2 Introduction

early 90's [5]. While these codes perform very close to capacity in low
signal-to-noise ratio (SNR) scenarios, mid-to-high SNR (high spectral
e�ciency, respectively) cases are still an open question. The alphabet
expansion principle was proposed by Ungerboeck [6] as a way to increase
the spectral e�ciency, which led to the concept of coded modulation,
and later to bit-interleaved coded modulation (BICM) [7]. Increasing
the spectral e�ciency further was made possible by the multiple-input
multiple-output (MIMO) principle, which exploits the spatial dimension
of the signal in addition to frequency and time, by employing multiple
transmit and receive antennas. MIMO is now an integral part of most
mobile and �xed communication standards, with the massive MIMO
concept emerging for the next generation of wireless services - the 5G
[8]. While massive MIMO in principle provides the required data rates,
there are still a lot of open issues in its practical implementation. Of
these we mention the energy e�ciency, interference management and
computational complexity. This thesis is particularly interested in the
problem of capacity estimation for MIMO when digital modulation is
employed. While the channel capacity has been found for some boundary
cases, such as very low and very high SNR [9], or for continuous input
[10], the problem with estimating it for discrete input constellations and
large number of antennas still stands.

Looking at the backbone communications networks, which are mostly
comprised of optical �bers, the historical development has been a little
bit di�erent. Due to the �in�nite� bandwidth assumption, very little ef-
fort had been put on spectral e�ciency for a very long time in optical
communications. With the data rate demands increasing exponentially,
this assumption becomes more and more obsolete, and �ber optic net-
works become stressed for bandwidth. Entering the Zetta byte era [11] in
the next few years, several solutions are possible for meeting the demand:

1. Increase the number of �ber connections, thereby directly increas-
ing the number of parallel channels and the data throughput. This
solution is very ine�cient from an economic point of view due to
the high cost of laying down the �bers.

2. Exploit the spatial dimension for communications. This can be
realized by replacing the single-mode �bers with multi-mode �bers
and/or multi-code �bers and the adoption of the MIMO principle
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1.2 Structure of the thesis 3

for detection. The same economical problem is seen here.

3. Increase the spectral e�ciency inside existing �bers. This requires
adopting already existing technologies, such as the above-mentioned
alphabet expansion and coded modulation. There are a number of
immediate problems with increasing the spectral e�ciency:

• First and foremost - the so-called nonlinear Shannon limit.
Due to the nonlinearities of the �ber, increasing the trans-
mit power does not necessarily lead to increased spectral ef-
�ciency. In fact, it decreases with launch power if the above
techniques are directly applied without considerations of the
nonlinear e�ects [12]. Finding the true capacity of the optical
�ber in the presence of nonlinearities is still an open prob-
lem, with only approximations and bounds currently avail-
able, e.g. [12�15].

• Computational complexity. Increasing the throughput per
channel inherently requires faster electronics, which could be
an issue for the very high speed future communication sys-
tems.

• Energy e�ciency. Optical �ber communications will still face
the same issue as with wireless and wired communication
systems, which tend to operate further away from capacity
at high spectral e�ciency. Furthermore, operating close to
capacity requires sophisticated signal processing, which in-
evitably results in increased energy consumption.

We conclude this section by mentioning the general energy e�ciency
problem of communications and IT. Even when solutions are found for
meeting the high data rate demand and increasing the spectral e�ciency
of communication systems, keeping the same energy e�ciency per bit
will clearly not be sustainable with the projected exponential increase in
data rate.

1.2 Structure of the thesis

This thesis is structured as follows. In Chapter 2, the theoretical back-
ground of our investigation is given. The main concepts from information
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4 Introduction

theory that we use are brie�y described, and mathematical formulations
are provided. We brie�y touch upon the di�erence between channel ca-
pacity, mutual information (MI) and achievable information rate (AIR),
and we present the general method for obtaining lower bounds on ca-
pacity via auxiliary channels. The main channel models of interest to
this thesis are presented, including the MIMO channel, the linear im-
pulse response channel, the Wiener phase noise channel and the non-
linear optical �ber channel. The latter is mathematically described via
the non-linear Schrödinger equation (NLSE), and the split-step Fourier
method (SSFM) for solving it is also presented. We introduce the BICM
system and highlight the di�erences between symbol-wise and bit-wise
MI. The concept of constellation shaping is then introduced, and a par-
ticular method for achieving shaping gain is presented, which is later
built upon in Chapter 5.

Chapter 3, Chapter 4 and Chapter 5 contain the original contribu-
tions of this thesis. In Chapter 3, theoretical investigations are carried
out into the discrete constellation constrained capacity (CCC) of general
linear interference channels, and a simple method for lower bounding the
CCC is obtained. AIRs are studied on the nonlinear optical �ber, and
some properties are derived for the optimal input distribution in both
cases.

In Chapter 4, linear and non-linear phase noise (NLPN) in optical
�bers are studied. A tracking method is then designed, which is able
to combat the combined e�ect of NLPN and laser phase noise. Close to
a benchmark method's AIRs are reached with this algorithm at much
lower complexity.

In Chapter 5, mapping functions are designed for turbo coded BICM,
which achieve close to the theoretical shaping gain, and bring the system
performance close to the CCC on an AWGN channel. The designed
method produces mappings that perform also very well in the nonlinear
region of the multi-channel optical �ber.
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Chapter 2

Theoretical background and

state of the art

This chapter familiarizes the reader with basic concepts from informa-
tion theory, such as mutual information and channel capacity, and also
describes some state of the art methods for estimating the capacity in
cases, where it cannot be directly expressed. We also brie�y introduce
bit-interleaved coded modulation (BICM) and in the last section we
present a method for constellation shaping, which is further discussed
in Chapter 5.

The quantities mutual information (MI), entropy and capacity will
usually be displayed in bits per symbol, or bits per channel use. De-
pending on the context, one symbol or channel use may be single- or
multi-dimensional, but all cases share the bandwidth and time dimen-
sions. Therefore the most popular metric in this thesis will be bits/s/Hz.
Under the assumption of ideal Nyquist pulse shaping, as here, the met-
rics are identical. When we discuss e.g. the multiple-input multiple-
output (MIMO) channel, one symbol (or channel use) will contain all spa-
tial dimensions of the signal, unless otherwise stated, and thus the same
unit will be used. However, in the optical �ber channel, where depending
on the scenario single or double polarization of the light may be used for
transmission, a more appropriate unit can be bits/s/Hz/polarization.

5
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6 Theoretical background and state of the art

2.1 Notation

The following general notation is adopted in this thesis:

• Capital letter, e.g. X, represent random variable (RV)s.

• Lower case letters, e.g. xk, represent realization of the respective
variable, and the subscript usually represents time.

• Bold lower case letters, e.g. xk, represent realization of the respec-
tive multidimensional (or vector) RV.

• Bold capital letters, e.g. H, represent realization of the respective
matrix RV.

• The indexing (·)Kk represents the sequence from k to K.

• pX(X) represents the probability distribution of X, while p(x) ,
pX(X = x) will denote the probability of X taking value x.

Other notation terms will be de�ned when they occur.

2.2 Capacity, mutual information and

achievable information rates

We begin by introducing the very basic channel model, given in Fig. 2.1.
The transmitter generates binary data, which is encoded by a channel
code, also known as forward error correction (FEC) code, into the binary
sequence B. The encoded sequence is modulated into constellation sym-
bols X, taken from a �nite size alphabet X , which are then sent on the
channel. The elements in X are assumed to be complex valued, unless
otherwise stated. The channel is generally modeled by a transition prob-
ability distribution pY |X(Y |X). The receiver demodulates the corrupted

observations Y ∈ C into the bit sequence B̂, which may either be hard
or soft decision (to be de�ned later). The channel decoder then decodes
and recovers the original bit sequence, possibly with errors. When the
distributions pX(X) and pY |X(Y |X) are �xed, the maximum amount of
data, which can be transferred through the channel is given by the MI
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Figure 2.1: Basic communication channel model.

between X and Y

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (2.1)

where H(·) is the entropy function. When at least one of the arguments
is continuous, the entropy is replaced by di�erential entropy. Calculation
of di�erential entropy requires integration, which is not always possible in
closed form. The usual method is then to perform numerical integration
on a very long sequence, e.g. xK1 , which was generated by the distribution
pX(X). In that case the entropy of X can be found as [16]

H(X) = lim
K→∞

1

K
log2

1

pX(xK1 )
. (2.2)

The entropy H(X|Y ) is calculated in a similar manner: a sequence pair
(xK1 , y

K
1 ) is generated by the distribution pX,Y (X,Y ) = pX(X)pY |X(Y |X),

and then the distribution pX|Y (X|Y ) =
pX,Y (X,Y )∑

Xi∈XK
pX,Y (Xi,Y ) is used as in

Eq. (2.2).
The number K needed for the convergence in (2.2) is usually very

large, and therefore prevents the calculation of the normalization, needed
for calculating pX|Y (X|Y ), except for some particular cases. Of these,
the most popular is the memoryless channel, which when given memo-
ryless input factorizes as

p(yK1 |xK1 ) =
K∏

k=1

p(yk|xK1 , yk−1
1 ) =

K∏

k=1

p(yk|xk). (2.3)

In that case the MI is simply calculated as

Imemoryless(X;Y ) = Ek [− log2 p(xk) + log2 p(xk|yk)] , (2.4)
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where Ek [·] is the expectation operator over k, and the probabilities

p(xk|yk) are found at each k as p(xk|yk) = p(xk)p(yk|xk)∑
x∈X p(x)p(yk|x) . The most

important memoryless channel is probably the additive white Gaussian
noise (AWGN) channel, for which Y = X + W , where W is zero-mean
Gaussian variable with variance σ2 : W ∼ N (σ2, 0;W ). In that case
p(yk|xk) = N (σ2, xk; yk).

2.2.1 Channel capacity for some channel models

The capacity of the channel is de�ned as the MI, which is maximized
over the input distribution

C = max
pX(X)

I(X;Y ). (2.5)

If the signal-to-noise ratio (SNR) is de�ned as SNR = E[|X|2]/σ2, the
capacity of the AWGN channel was found by Shannon to be C = log2(1+
SNR), and is achieved by pX(X) ∼ N (E[|X|2], 0;X). This result follows
from the fact that di�erential entropy is maximized by the Gaussian
distribution [17]. When the input, noise and output of the channel are
real-valued, the capacity of the AWGN channel is C = 0.5·log2(1+SNR),
in which case the SNR is de�ned as SNR = E[|X|2]/(2σ2).

This result is extended to a variety of channels, of which we also focus
on the MIMO channel. It is de�ned as

Y = HX +W, (2.6)

where X and Y are M− and N−dimensional channel input and output
column vectors, respectively, and H is the [NxM ] channel matrix. The
noise W is also N−dimensional. When the channel realization is not
known at the transmitter but is known at the receiver, and we assume
that the noise covariance matrix is the scaled identity σ2IN of size [NxN ],
the channel capacity is found as [10]

C = log2 det

(
IN +

E[XHX]

M · σ2
HHH

)
, (2.7)

where (·)H is the complex conjugate and transpose operator, and the op-
timal input distribution is pX(X) ∼ N ( 1

ME[XHX]·IM ,0;X). When the
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channel changes over time, the more interesting quantity is the ergodic
capacity, which is given by

Ce = EH

[
log2 det

(
IN +

E[XHX]

M · σ2
HHH

)]
, (2.8)

and is achieved with the same input. Many variations exist for the ex-
pression (2.8). For example, knowing the channel at the transmitter will
increase the capacity by �nding an optimal pre-coder, which introduces
dependencies between the dimensions of X.

2.2.2 Capacity with discrete input

When the input is constrained to a �nite size alphabet, the maximization
in (2.5) cannot be done in closed form. The input in this case is described
by its probability mass function (PMF), which is de�ned as

pX(X,α) =
∑

xi∈α·X
wiδ(X − xi), (2.9)

where δ is the Dirac delta function and wi represent the weights with∑
i=1:|X |wi = 1. A scaling factor α is also included in order to ful�ll

the average power constraint E
[
XHX

]
= Pav. Optimizing the values

in the set X leads to geometric shaping, while optimizing the weights
leads to probabilistic shaping. In this work, we focus on probabilistic
shaping. For �xed set α · X the MI is strictly concave in the PMF [18],
which means that e�cient numerical methods can be performed for the
optimization. The algorithm for �nding the optimal weights of the in-
put PMF and thereby the constellation constrained capacity (CCC) was
�rst found by Blahut [19] and Arimoto [20] for the discrete memoryless
channels, and later generalized to AWGN [21] and MIMO channels [22].
It uses expectation-maximization (EM) type rules to update the PMF
for a fxied α, increasing the MI on each step, eventually converging to
the maximum. It is summarized in Algorithm 1, where we have slightly
abused the notation to de�ne the MI as a function of the input distri-
bution and α. In [21], it was proven that as the step-size for brute-force
sweeping of the scaling factor α becomes arbitrarily small, capacity is
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achieved1. When discussing optimized PMFs in the rest of the thesis,
the optimization on α is always assumed and is omitted for simplicity.

Algorithm 1 Algorithm for �nding the optimal PMF on an AWGN
channel with �xed X .
1: Sweep α
Initialize: pX(X,α), such that the power constraint E

[
XHX

]
≤ Pav is

satis�ed and
∑

i=1:|X |wi = 1

2: while converged pX(X,α) do
3: Generate xK1 ∼ pX(X,α)
4: Generate yK1 ∼ pY |X(Y |X)

5: pX|Y (X|Y ) =
pX,Y (X,Y )∑

Xi∈X pX,Y (Xi,Y )

6: pX(X) = arg maxpX(X) I(pX(X,α)), s.t. E
[
XHX

]
≤ Pav and∑

i=1:|X |wi = 1
7: end while

8: C(α) = I(pX(X,α)) . Maximum for each alpha
9: Go To 1:)
10: C = maxαC(α) . Global maximum

2.2.3 Auxiliary channel lower bound

The basic Blahut-Arimoto algorithm (BAA) is not always practical, es-
pecially in cases of large dimensionality of the input or long memory
in the channel. In such cases we must resort to bounds. One of the
most popular methods for lower bounding the MI and thereby the ca-
pacity of such channels is the auxiliary channel method (also known as
the mismatched decoding principle). It relies on the fact that the en-
tropy of some variable Z can be upper-bounded by using some auxiliary
probability distribution, p̂Z , as such

H(Z) ≤ H̄(Z) = lim
K→∞

1

K
log2

1

p̂Z(zK1 )
, (2.10)

1It is also easily proven that for �xed power constraint, α is bounded in a certain
interval, de�ned by the peak-amplitude values of X
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where the sequence zK1 was generated by the original pZ(Z). The proof
relies on the non-negativity of the Kullback-Leibler divergence (KLD),
and can be found in [16]. The tightness of the bound depends on the
quality of the auxiliary PMF, and equality in (2.10) is achieved when
p̂Z ≡ pZ . Calculation of H(X) in communication systems is usually
trivial, and by upper-bounding the entropy H(X|Y ) in this manner we
achieve a lower bound on the MI.

Auxiliary PMFs p̂X|Y are usually found by using an auxiliary channel
p̂Y |X (which is where the method has its name) and then the Bayes
theorem. Several such lower bounds will be discussed in the next sections.

Achievable information rate

In practice, all receivers will perform some form of pre-processing be-
fore demodulation. This can be e.g. equalization, frequency and phase
o�set correction, up/down sampling, or any other linear and nonlinear
techniques, which aim at improving the quality of the received signal.
That is, they attempt to make yK1 resemble xK1 as closely as possible.
We can model the receiver processing by some function Ŷ = f(Y,Θ) of
the channel output and some set of parameters Θ. The channel model
from Fig. 2.1 can therefore be replaced by the model from Fig. 2.2. By
doing so, we are e�ectively using an auxiliary channel p̂Y |X(Y |X) =

pŶ |X(Ŷ |X,Θ) to calculate I(X;Y ), and thus the calculated value will
actually be a lower bound on the MI. This can also be seen from the
data processing inequality [17].

This type of lower bound is called achievable information rate (AIR).
It is strictly a lower bound on the MI, but on the other hand it provides
an upper bound on the error-free bit rate, which can be achieved after
demodulation and decoding. The AIR is thus also a metric of the quality
of the speci�c receiver that we employ, i.e. the function f(Y,Θ), and of
the chosen parameters Θ. In contrast, the MI is a metric of the channel
and the input distribution. Both values are generally of interest, however,
an AIR is always easier to calculate.
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Figure 2.2: Auxiliary channel model.

2.2.4 Constellation constrained capacity estimation

Large input constellation and the MIMO channel

As mentioned, Algorithm 1 is impractical for large dimensionality of the
input. For example, when the channel is [NxM ] MIMO, and at least
K samples are needed for the convergence in (2.2), the number of cal-
culations per step is K · |X |M . For example at 64 quadrature amplitude
modulation (QAM) and 2x2 channel convergence is seen for K ≥ 105,
with this number increasing both with the size of the constellation and
the number of transmit antennas. Lots of research has gone into estimat-
ing the capacity or even the MI in this case, of which we only mention
a few recent works. E.g. in [23], the authors propose an approximation
for the MI when the input is uniformly distributed. The approxima-
tion is seen to be inaccurate at low and high SNR. Most of the other
methods for estimating the capacity rely on the minimum mean squared
error (MMSE)-MI relationship [24] [25]. Particularly in the limit of low
and high SNR [9] good approximations can be found for uniform input
PMF to the MIMO channel. In [26], the authors also use this principle to
�nd the capacity of an AWGN channel in the limit of high SNR for any
input distribution. In [24], the authors prove that the CCC converges
to the Gaussian capacity in the limit |X | → ∞. The proof relies on
the fact that the MI is continuous in the input distribution when taken
in the quadratic Wasserstein space. The quadratic Wasserstein distance
between two probability measures µ and v from this space is de�ned as:

W2(µ, v) = inf
{(

EX,Y
[
||X − Y ||2

])1/2}
, (2.11)
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where X and Y are governed by laws µ and v respectively, and the mini-
mum is taken over all joint distributions of (X,Y ) [24]. Since the distance
between the Gaussian and a sampled Gaussian vanishes in the limit of
large constellation [27], capacity is achieved with sampled Gaussian of
in�nite size. This is proven for the AWGN channel only.

The linear impulse response channel

Here we de�ne another important class of linear interference channels -
the linear impulse response channel. The input-output relation for these
channels is

Yk =
∑

l=0:L

hlXk−l +Wk, (2.12)

where h = (h0, h1, . . . hL)T is the impulse response and L is the memory
of the channel. Equivalently, the channel may be expressed in its matrix
form:

Y k
1 =




h0 0 · · · 0

h1 h0 · · · ...
...

...
. . .

...

hL hL−1
. . .

...

0 hL
. . .

...

0
. . .

. . .
...

...
. . . h1 h0




×Xk
1 +W k

1 . (2.13)

Due to the dependencies between the outputs at di�erent times, this
channel is di�cult to analyze in the time domain. A standard technique
for parallelization of the channel is to perform orthogonal frequency di-
vision multiplexing (OFDM), which e�ectively modulates each symbol
on a di�erent carrier frequency, which is orthogonal to the others. As
long as the channel is known at the receiver, each of the carriers can then
be demodulated separately. The optimal strategy at the transmitter is
then to use Gaussian distribution on each carrier and allocate the input
power according to the water-�lling principle [28]. OFDM becomes sub-
optimal when the channel is not known at the transmitter, and therefore
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Sk Sk+1

X k

Y k

Figure 2.3: Trellis representation of the impulse response channel (2.12)

uniform power allocation should be performed, and when the input is
constrained to some �nite alphabet.

The MI for such channels is found numerically in [16], where a trellis
is used to calculate p(yK1 ) =

∏
1:K p(yk|y1:K−1), and thereby the entropy

H(Y ). The entropy H(Y |X) is found as the entropy of the Gaussian
noise. Algorithm 1 is later extended in [29] to cover the linear impulse
response case. One section of the trellis which is used is given in Fig. 2.3.
The interfering symbols are cast into the state: Sk = {Xk−l, ...Xk−1},
and the current symbol governs the transition. Marginalizing the state,
the desired probability at time k is p(yk1 ) =

∑
sk
p(sk, y

k
1 ), where each

term is calculated recursively [16]

p(sk, y
k
1 ) =

∑

xk

∑

sk−1

p(sk−1, y
k−1
1 )p(yk|xk, sk)p(xk|sk). (2.14)

The likelihood p(yk|xk, sk) = N (σ2,
∑

l=0:L hlXk−l; yk). Since the num-
ber of states is given by |S| = |X |L, the dimensionality problem is the
same as for the MIMO channel, and this method is therefore impracti-
cal for large L. Instead, the mismatched receiver lower bound can be
applied.

The basic idea is to reduce the cardinality of the state. This can
be done by shortening the memory to a length L̂, and modeling the
interference from the remaining channel elements {L̂+ 1, . . . L} as noise.
The auxiliary channel in that case is

p̂(yk|xk, sk) = N (σ2 + E[|X|2] ·
L∑

l=L̂+1

|hl|2,
∑

l=0:L̂

hlXk−l; yk). (2.15)
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This method is not particularly e�ective, especially in cases of severe in-
ter symbol interference (ISI). Other methods for shortening �nd an aux-
iliary channel of shorter length, which is not necessarily a linear combi-
nation of elements of h. For example in [30], a channel of shorter length
is found either by numerically minimizing the di�erence between the
achieved lower bound and a previously calculated upper bound, or nu-
merically minimizing the KLD between the true and the auxiliary chan-
nel. This method provides AIRs of practical receivers, since the resulting
shorter channel is directly used for demodulation. Channel shortening is
the impulse response equivalent of the sphere detection for MIMO [28],
which can also be described by a trellis. Both methods are equivalently
limited in the cardinality of the state which can be used, and the per-
formance improvements will therefore saturate when the cardinality of
the input (the memory of the impulse response channel, respectively) is
increased beyond some value. A di�erent approach was recently applied
in [31], where the authors calculate a lower bound based on the com-
pound capacity model, and show quite tight performance to the MMSE
based lower bound.

The Wiener phase noise channel

Another class of channels with memory which is of interest to this thesis
is the Wiener phase noise channel. The input-output relation is de�ned
as

Yk = Xke
jθk +Wk, (2.16)

where the phase noise θ is modeled by a �rst order Wiener process with
variance ∆2 by

θk = θk−1 + ∆ · vk. (2.17)

The vk's are standard i.i.d. Gaussian variables.
The source of the phase noise in a practical system is the non-ideal

local oscillator (LO), which in this case is included in the channel model.
Local oscillators, especially cost-e�cient solutions, have frequency spec-
trum, which has a non-zero spectral width around its central frequency.
When the LO is a laser, which is the focus in this thesis, the more com-
mon term for the spectral width is laser linewidth (LLW). When the
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LLW at −3dB (also known as full-width half maximum) is fW and the
symbol rate is Ts, the parameter ∆ can be found as

∆2 = 2πfWTs. (2.18)

The quantity fW · Ts is how systems are usually parametrized.
The capacity of this channel was found in [32] by discretizing the

phase into M values θk ∈ S = {−π : 2π
M : π}, and then using a trellis,

similar to the approach in the previous section to upper- and lower-
bound the MI. The two bounds coincide, thus giving the CCC. The
state in this case represents the phase noise value. This method, while
providing an AIR, is rather impractical since it requires knowledge of the
past symbols xk−1

1 when estimating the probabilities p(xk|yK1 , xk−1
1 ). A

simpli�cation for this method was made in [33], where the probabilities
p(xk|yK1 ) are estimated instead. First, the posterior distribution of the
phase noise is calculated as

p(θk|yK1 ) = p(θk, y
k
1 )p(yKk+1|θk), (2.19)

where the factorization is a direct consequence of (2.17), and the two
factors are calculated by the forward and backward recursions of the
BCJR algorithm [34], respectively. The posterior distributions of the
symbols are then calculated as

p(xk|yK1 ) =
∑

θk∈S
p(θk|yK1 )p(xk|θk, yk), (2.20)

where the last term is obtained by the Bayes formula from the Gaussian
likelihood p(yk|xk, θk) = N (σ2, xke

jθk ; yk). This method operates very
close to the true CCC at reasonable complexity for small constellations,
where the quality of the quantization of the [−π;π) interval does not need
to be very �ne. This, however, is not the case for e.g. 256QAM constella-
tion and beyond, where more than 512 states are needed in severe phase
noise scenarios (that is, large values of ∆). Recently, this issue has been
treated in [35], where reduced complexity trellis was proposed. Even
further complexity reduction is possible when the state is represented by
a continuous variable, e.g. Gaussian, giving the rise of the Kalman �lter
solution [36]. The Kalman �lter is shown to be near-optimal in some sce-
narios [37], however, it su�ers performance degradation for high informa-
tion rates and large modulation format. Another method was presented
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in [38] for phase noise tracking for constant amplitude modulation for-
mats, such as phase shift keying. All the above methods basically employ
the sum-product algorithm for �nding marginal and posterior distribu-
tions on a chain. In the case of the �rst order Wiener process the chain
is a hidden Markov model.

Another class of algorithms for phase noise cancellation are the deci-
sion directed (DD) methods. The basic idea there is to make a decision
x̂k on a single or multiple received noisy observations, and estimate the
phase noise value as θ̂k = ∠x̂∗kyk. This can be improved by estimating
the average value

θ̂k = ∠
k+l∑

i=k−l
x̂∗i yi (2.21)

assuming the phase noise was constant within the period [k − l; k + l].
Single-symbol tracking gives rise to the phase-locked loop technique and
modi�cations, e.g. [39, 40]. Averaging, while more complex, provides a
better approximation of the phase noise. It was �rst proposed in [41],
and later modi�ed in [42] to increase the resilience to phase slips. DD
methods generally perform poorly in low SNR (low AIR, respectively)
scenarios, due to the very high symbol error rate (SER). Further, in
severe phase noise cases, the phase noise can no longer be considered
constant for a very long time, and DD methods become unable to track
these fast changes due to the long sequence averaging.

In order to improve the quality of the decisions, and thus the phase
noise estimate, information from the channel code can be included in
the decision process [43, 44]. This means that the phase noise track-
ing is integrated into an iterative receiver, which will be introduced in
Section 2.3.

Last, we mention the Viterbi & Viterbi carrier phase estimation for
quadrature phase shift keying (QPSK), which relies on estimating the
phase noise as ∠y4

k. Modifying this method to higher order QAM con-
stellations requires making a decision on the amplitude of the signal
�rst, and then removing the information in the phase by taking it to the
power of four [45]. This method generally also performs poorly in low
SNR/high SER due to the DD factor.
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The nonlinear optical �ber channel

Finally in this section we describe the modeling and some MI and AIR
estimation methods for the single mode optical �ber channel. Several
phenomena take place during light propagation in the optical �ber which
deteriorate the signal quality, of which we mention the most di�cult to
combat:

1. The chromatic dispersion (CD). The di�erent spectral components
inside the �ber propagate at di�erent velocities. This phenomenon
results in pulse broadening, which can be described by the group
velocity dispersion parameter β2 = d2β/dω2, where β is the prop-
agation constant, and ω is the angular frequency. Alternatively,
the CD can be described by the dispersion parameter D, measured
in [ps/(nm · km)], and represents how much a pulse with certain
bandwidth broadens after a certain transmission distance. It is
related to β2 via the equation

D =
2πc

λ2
β2, (2.22)

where c is the velocity of light in vacuum and λ is the center wave-
length of the light source. The pulse broadening can be calculated
as ∆T = DL∆λ, where L is the transmission distance, and ∆λ is
the bandwidth of the pulse [46].

2. The ampli�ed spontaneous emission (ASE) noise. During propa-
gation, the signal experiences exponential power decay, given by
the attenuation constant α, usually in [dB/km]. Transmission at
longer distances therefore requires ampli�cation. This is realized
by having a high power laser at di�erent central wavelength co-
propagate with the signal, which results in signal ampli�cation and
spontaneous emission. The latter is simply treated as AWGN [12].

Two ampli�cation schemes are currently in use - distributed and
lumped. In case of distributed ampli�cation the medium, used for
co-propagation is the transmission �ber itself. The laser sources,
known as Raman pumps, are coupled into the �ber with regu-
lar spacing, and provide the required ampli�cation continuously
among the �ber length through the stimulated Raman scattering
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Figure 2.4: Power decay pro�le for distributed Raman (left) and lumped EDFA
(right) power ampli�cation schemes.

e�ect. Lumped ampli�cation is realized by using a rare-earth el-
ement doped �ber, which is much shorter than the transmission
length, as ampli�cation medium. The most popular doping ele-
ment with current systems is Erbium, as its emission band covers
the C-band of the optical spectrum. The Erbium doped �ber am-
pli�er (EDFA)s are also inserted regularly, but the power boost
they provide is quasi-discrete in space. The power decay pro�les
are given in Fig. 2.4(a) for backward pumping Raman ampli�cation
2 and Fig. 2.4(b) for EDFA.

The two ampli�cation schemes have di�erent optical SNR (OSNR)
performance, with the distributed scheme generally providing higher
OSNR at the receiver [12]. The drawback of standard Raman am-
pli�ers is the narrower ampli�cation bandwidth.

3. Non-linear phase shift. The refractive index of the �ber is depen-
dent on the intensity of the electric �eld, propagating through it.
This results in nonlinear phase shift, depending on the instanta-
neous power of the signal. This e�ect is described by the nonlinear
coe�cient γ, de�ned as

γ =
2πn̄2

Aeffλ
, (2.23)

where n̄2 is the nonlinear refractive index and Aeff is the e�ective
mode area [46]. The nonlinear phase shift is particularly important
when multiple channels are co-propagating in the same �ber, which

2Forward and bi-directional pumping are also possible, and bene�cial in some cases
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is the case in wavelength division multiplexing (WDM) systems. If
the power in the i−th channel is Pi, the nonlinear phase shift (or
non-linear phase noise (NLPN)) in each channel is given by

θNLi = γLeff (Pi + 2
∑

j 6=i
Pj), (2.24)

where Leff is the e�ective length of the interaction, which also
accounts for the linear losses. This means that the shift from
neighboring channels (called cross-phase modulation (XPM)) is
twice as much as the self-induced shift (called self-phase modu-
lation (SPM)) for the same power.

There are several other nonlinear phenomena taking place during
propagation, such as stimulated scattering and four wave mixing (FWM).
However, there are rather e�ective ways of suppressing them [46]. We
must also mention the e�ect of polarization mode dispersion (PMD),
which occurs due to �ber birefringence. In reality the �ber will not be
ideally circular, leading to cross-talk between the otherwise orthogonal
in space polarization modes. Neglecting this e�ect leads to an idealized
scenario, which is however easier to analyze. Unless otherwise stated,
PMD will NOT be taken into account in this work. We also note that
there are higher order dispersive terms, the most important being the
third order dispersion slope S = dD/dλ, governed by the corresponding
third order dispersion parameter β3 = d3β/dω3. This results in di�erent
values of D for di�erent WDM channels, but for practical values of the
symbol rate it can be considered constant within each channel. Unless
otherwise stated, we will assume that S = 0 ps/(nm2 · km).

Making the above simpli�cations, the wave equation of propagation
can be expressed as a di�erential equation, known as the non-linear
Schrödinger equation (NLSE)3

dE(z, t)

dz
= −1

2
αE(z, t)− iβ2

2

d2E(z, t)

dt2
+ iγE(z, t)|E(z, t)|2, (2.25)

where z is the distance, t is time and E is the amplitude of the �eld.
The �rst term describes the attenuation, the second is the quadratic
phase shift in frequency, and the third term describes the second-order

3The Rayleigh and Brillouin scattering e�ects are also neglected.
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Algorithm 2 Split-step Fourier method for solving the NLSE

Initialize:

1: dz . step size
2: CD(w, dz) . frequency response of the CD after distance dz
3: z . span distance between EDFAs
4: Nz . number of spans
5: E(z, t) = E(0, t) . input sequence to the �ber
6: N0(z, α, F ) . ASE power

spectral density, depending on the distance, required ampli�cation,
and the noise �gure of the ampli�er F

7: for n = 1 to Nz step 1 do
8: for m = dz to z step dz do
9: E(z, t) = E(z, t) · exp(−α · dz/2) . attenuation
10: E(z, t) = IFFT (FFT (E(z, t)) · CD(w, dz)) . CD
11: E(z, t) = E(z, t) · exp(i · γ · dz/2|E(z, t)|2) . NLPN
12: end for

13: E(z, t) = E(z, t) · exp(α · z/2) +N (N0(z, α, F )/2, 0) . ASE
14: end for

nonlinearities, such as the SPM, XPM and FWM [46]. Due to the inter-
action between the terms, no closed form solution exists for the signal
at distance z. Instead, numerical solutions are used, the standard ap-
proach being the split-step Fourier method (SSFM). It assumes that for
very small distances the terms are independent, and can be applied one
by one. The SSFM is described for a lumped ampli�cation scheme via
pseudo code in Algorithm 2. When distributed ampli�cation scheme is
used, the noise loading in Algorithm 2 is performed for each step instead
of at the end of each span.

Chromatic dispersion introduces memory in the channel in the form
of ISI, which is nonlinear due to the interaction between CD and XPM
and SPM e�ects. A very popular method for canceling the nonlinear-
ities and CD is the digital back-propagation (DBP) [47]. Since all the
terms on each step in the SSFM are deterministic, they can be ideally
inverted at the receiver, following exactly the same steps, only changing
the sign in front of the dispersion, attenuation and NLPN values. Sev-
eral major issues are seen with this method: 1) complexity is currently



i
i

�main� � 2016/4/7 � 14:09 � page 22 � #34 i
i

i
i

i
i

22 Theoretical background and state of the art

too high for real-time implementation; 2) in a WDM optical network
the origins of all received channels are not the same, which means that
the transmission distance and other propagation properties of each line
are not available; 3) the noise introduces randomness, making the pro-
cess strictly non-deterministic, and thus DBP is sub-optimal. In [48,49],
the authors introduce the stochastic DBP method, which performs a
stochastic cancellation on each step by back-propagating not the partic-
ular instant of the received signal values, but rather the distribution of
the values. Inference tools, such as the belief propagation method can
then be used to better estimate the distribution of the input, and thus
achieve a better performance than classic DBP. Since the distribution of
the output is represented by particles, all of which are back-propagated,
the complexity of this method is very high, even compared to the already
complex classic DBP.

Another classic approach is to only cancel the e�ect of CD. As seen
from (2.25), CD introduces a quadratic phase shift in frequency, and
acts as an all-pass �lter. The response of this �lter for standard single
mode �ber (SSMF)s is known to be CD(ω, z) = exp(iβ2ω

2z/2) [12], and
can be matched at the receiver side, either in time or in frequency [50].
Since the required �lter is too long in time, and due to the simplicity of
performing FFT/IFFT in hardware, the frequency approach is usually
preferred.

The CD induced memory and its interaction with the nonlinear ef-
fects and the ASE noise makes capacity estimation of the �ber di�cult.
In probably the most famous paper on the subject [12], the authors at-
tempt to use general methods as described previously in this Chapter, in
order to obtain a capacity estimate. Consequently, lower bounds are pro-
vided based on a memoryless assumption, and where the input-output
relation (or the auxiliary channel) is modeled by a circularly symmet-
ric Gaussian density, with variance depending on the amplitude of each
constellation symbol. The constellation they use is a geometrically op-
timized ring constellation [51]. The AIRs with this method are shown
in Fig. 2.5 for several distances and two symbol rates for a SSMF with
parameters, as de�ned in Table 2.1. The ampli�cation scheme is an
ideal distributed Raman ampli�cation (IDRA), which means that the
attenuation is compensated perfectly on each step, making the pro�le in
Fig. 2.4(a) �at. Single polarization signal is used. Each span is 100km,
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Table 2.1: Standard single-mode �ber parameters

Fiber loss α = 0.2 dB/km

Non-linear coe�cient γ = 1.3 (W·km)−1

Dispersion D = 17 ps/(nm·km)
Central wavelenght λ0 = 1.55 µm

SSFM step 0.1 km

−25 −20 −15 −10 −5 0
0

1

2

3

4

5

6

7

8

9

Pin, dBm

A
IR

, b
its

 / 
ch

an
ne

l u
se

 

 

12.5 GBaud, 500km
100 GBaud, 500km
12.5 GBaud, 1000km
100 GBaud, 1000km
12.5 GBaud, 2000km
100 GBaud, 2000km

Figure 2.5: AIRs with the optimized ring constellations [51].

and 5 channels are simulated with a guard band of 2GHz. A sinc pulse
shape is used with oversampling factor of 16.

The results show an AIR, which is gradually increasing with the
OSNR for low values of the input power. In such cases the nonlinear
phase shift is small, and the channel is mainly corrupted by the ASE.
The AWGN model is a good approximation in this regime. Increasing
the input power (OSNR, respectively) beyond a certain point results
in signi�cant nonlinear e�ects, thereby increasing the variance of the
Gaussian densities of the likelihoods, leading to reduced AIR.

A very popular model of the �ber also assumes Gaussian density as
auxiliary functions, hence the Gaussian noise (GN) model, with variance
proportional to P 3

in [52], where Pin is the launch power. Approximations
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of the capacity are provided there, with the assumption of continuous
Gaussian input, and also several approximations for QAM constellation
input. This method provides a good heuristic for estimating the capac-
ity of the channel, but more importantly circumvents having to solve
the Schrödinger equation via the SSFM. The GN model is extended to
encompass �nite memory of the channel in [53].

The authors in [54] provide a model for the NLPN contribution to the
received sequence in WDM systems, and later use this model to improve
the above mentioned lower bounds in [55]. The constellation shaping
(the concept will be introduced in the next section) gains are analyzed
with this model in [56]. This set of papers provides a good intuition
about the behavior of the NLPN in time and frequency and allows for
semi-analytical treatment of the channel memory.

Making use of the above model and the long time and frequency
correlation properties of the XPM induced noise, the authors in [57, 58]
design a tracking algorithm in frequency domain, which is able to increase
the AIRs for Gaussian inputs.

Finally in this section we mention the recent work [14], where an
upper bound is found to the capacity of the optical �ber. The bound is
found to be the linear AWGN channel capacity of df · log2(1 + SNR),
where df represents all the degrees of freedom in the channel - frequency,
time, and space in case of dual polarization and multi-mode and multi-
core �bers.

2.3 Practical coded modulation schemes

In this section some methods for approaching the AIR in practice are
discussed. We focus on the concept of coded modulation, �rst introduced
in [59] as trellis coded modulation. The basic idea at the time was to
increase the spectral e�ciency by using constellation expansion in com-
bination with a channel code, which has to correct all errors, introduced
by the resulting increased SER. The concept of BICM [7] was later in-
troduced and was widely developed and deployed in the 90's and 00's
in most communication standards, where high spectral e�ciency is re-
quired.

The general block diagram of BICM with the optional iterative demap-
ping is given Fig. 2.6. At the transmitter, an interleaver is inserted be-
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Figure 2.6: General BICM with iterative demapping channel model.

tween the channel code and the modulator, which has the task of decou-
pling the consecutive bits. At the receiver, deinterleaving is performed
after demodulation, and the channel code is decoded. This scheme is par-
ticularly e�ective in fast fading channels, where errors occur in bursts,
which is something that channel codes generally do not handle very well.
The interleaving e�ectively distributes the errors across the entire code-
word. BICM also allows for iterative demapping and decoding. During
this process soft decision bits after decoding are sent back to the demap-
per, which in turn calculates new soft values, to be used by the decoder
on the next iteration. Error performance is theoretically improved on
each iteration, until some point of convergence.

The soft value L of a transmitted bit Bl at bit time l is de�ned as

L(Bl) = log
p(Bl = 1|yK1 )

p(Bl = 0|yK1 )
, (2.26)

and describes the probabilities of the bit being '1' or '0'. Another useful
representation of the soft value is through the log-likelihood ratio (LLR)

LLR(Bl) = log
p(yK1 |Bl = 1)

p(yK1 |Bl = 0)

= log

p(Bl=1)p(Bl=1|yK1 )

p(Bl=1)p(Bl=1|yK1 )+p(Bl=0)p(Bl=0|yK1 )

p(Bl=0)p(Bl=0|yK1 )

p(Bl=1)p(Bl=1|yK1 )+p(Bl=0)p(Bl=0|yK1 )

= La(Bl) + L(Bl), (2.27)

where La(Bl) = log p(Bl=1)
p(Bl=0) is the a-priori knowledge about the bit. If

the bit bl is mapped to the j−th position of the labeling of symbol xk,
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the L− value of the bit may be found as

L(Bl) = log

∑
xk:xk(j)=′1′ p(xk|yK1 )

∑
xk:xk(j)=′0′ p(xk|yK1 )

, (2.28)

where the sums run for the symbols, which have a '1' ('0', respectively)
mapped to them at position j in the mapping function. Calculation of
soft values can be done very e�ciently in hardware and software by using
the max-star and max-LOG approximations [60]. Many simpli�cations
exist for these equations, particularly when the input bits and symbols
are uniformly distributed. However, we do not go into details, which can
be found in e.g. [7, 61].

Soft values basically describe the probability density function (PDF)
of each bit, thereby enabling inference methods for channel decoding.
For example, the above mentioned belief propagation has been shown to
be near-capacity achieving for some of the most powerful channel codes
- LDPC [4] and turbo codes [5]. Employing this method for inferring the
�nal PDF allows for calculating the maximum a-posteriori probability
(MAP) of each bit, thus making the optimal decision on the transmitted
value of the bit. The belief propagation calculates the MAP solution
strictly under the assumption of independent bits and errors, which is
clearly not the case, since dependencies are already introduced at the
channel code, then at the mapping function and at the channel itself.
However, if good interleavers are designed, these dependencies vanish
for long codewords, and near-optimal inference is possible with belief
propagation 4.

2.3.1 Symbol-wise vs. bit-wise AIR and the EXIT chart

Due to the decoupling between modulator and channel encoder BICM
theoretically enables the separate design of the channel code and map-
ping function. In order to characterize the performance of the channel
code, we are therefore interested in the average MI per bit provided to it,
instead of the AIR after demodulation. Assuming memoryless channel,

4We do not go into details of channel code designs, where one of the primary
objectives is decoupling between bits, especially for LDPC code design.
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for the block diagram from Fig. 2.1 this MI is

I(X;Y ) =
∑

i=0:m−1

I(B; B̂i|B̂{0:i−1}), (2.29)

where Bi is the i−th bit in the mapping function, m is the maximum
number of bits one symbol can take and we have used the chain rule
for MI. This quantity we will refer to as the symbol-wise MI. In (2.29)
we have slightly abused the de�nition of B to express the sequence of
bits, related to one constellation symbol, instead of the entire sequence
of encoded bits. On a memoryless channel, the MI from (2.4) is identical
to the newly de�ned symbol-wise MI (2.29). Usually, m = log2 |X |,
however, this is not a requirement, as we shall see in the next section.
In case of ideal interleaving, the bits are independent, and the condition
in Eq. (2.29) disappears. However, ideal interleaving implies in�nite
codewords, something which cannot be realized in practice. The average
MI provided to the decoder is therefore

I(B; B̂) =
1

m

∑

i=0:m−1

I(Bi; B̂i) ≤
1

m
I(X;Y ), (2.30)

where the inequality follows from the fact that conditioning does not in-
crease the entropy. This is the BICM bit-wise MI. The MIs from Equa-
tions (2.29) and (2.30) are given for an AWGN channel with 16 pulse
amplitude modulation (PAM) real-valued input in Fig. 2.7. The map-
ping function in this case is a binary-re�ected Gray labeling function,
which was conjectured to maximize the bit-wise MI at the SNR regions
of interest [62]. We see that especially at low SNR there is a notable
di�erence between bit-wise and symbol-wise MI5. This di�erence is re-
lated to the constellation size. As we get to an AIR of |X | this di�erence
vanishes. The bit-wise MI is also clearly dependent on the labeling of the
symbols, as discussed in e.g. [62, 64]. As mentioned, the bit-wise MI is
what an ideal channel code can decode. That is, error-free performance
can be expected with an ideal code (or capacity achieving code) of rate
R = I(B; B̂).

5It was proven in [63] that binary-re�ected Gray mappings are sub-optimal at
asymptotically low SNR. However, this is not yet the e�ect we see in Fig. 2.7, as the
bit-wise MI is above 1 in the region of interest.
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Figure 2.7: Bit-wise vs. symbol wise MI.

Reducing the gap between bit-wise and symbol-wise MI is possible
with iterative demapping, where new prior La values are provided to the
demapper from the decoder. This improvement depends on the extrin-
sic information transfer (EXIT) function of the demapper. The EXIT
function describes a device in terms of the increase of the extrinsic infor-
mation it provides as a function of the prior information it receives. They
were �rst introduced in [65] as a way to characterize the performance of
turbo codes with constituent convolutional codes, however, they can be
applied to any soft-decision device. In case of the demapper, the ex-
trinsic L−values, and thereby the extrinsic information, are found from
Equations (2.27) and (2.28) as Le(Bl) = L(Bl)−La(Bl). In general, the
extrinsic information can be found as the di�erence between the complete
posterior information and the prior information.

An EXIT chart of a pair of devices is obtained by plotting their
EXIT functions against each other, where the extrinsic information of
one serves as the a-priori information of the other and vice-versa. Exam-
ple EXIT chart is given in Fig. 2.8(a) and Fig. 2.8(b) for a turbo code
operating on an AWGN channel, where the two devices, iterating be-
tween each other are the two constituent convolutional codes. The code
rate is R = 1/3, and the EXIT functions are plotted for two di�erent
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SNRs. The solid black lines represent the evolution of the extrinsic infor-
mation through iterations. When there is a �tunnel� between the EXIT
functions, successful decoding will eventually be achieved, since the MI
between the output of one of the decoders and the original uncoded bi-
nary signal will be '1'. For low SNR we see the two EXIT functions
intersecting before the point (1, 1), and the decoder will therefore �get
stuck�. EXIT charts are also particularly useful when characterizing the
iterative process between the demapper and decoder. We will use this
method later in Chapter 5. For more details on how the EXIT charts are
generated, the extrinsic information calculation and more, the reader is
referred to [65�67].

As we see on Fig. 2.7, increasing the SNR will allow for approaching
the symbol-wise AIR without iterations. However, at that point we
are moving further away from the channel capacity, due to the limited
constellation size. Increasing the constellation size on the other hand
will result in increased gap beween bit-wise and symbol-wise MI. Thus
we see the inherent trade-o� between energy e�ciency and complexity of
the receiver processing for �xed spectral e�ciency. This trade-o� can also
be seen from the EXIT charts. It can be proven that the area between the
two EXIT functions corresponds to the gap to channel capacity for the
AWGN channel and the binary symmetric channel [67]. At high SNR,
the tunnel will be wide open, and very few iterations will be needed
for convergence, however, the area between the EXIT functions will be
larger, thus the gap to capacity is also larger.

2.3.2 Turbo coded BICM with constellation shaping

Shannon capacity can be approached with practical codes, such as turbo
and LDPC codes, at low SNR (low rates, respectively), and using BPSK
/ QPSK modulation. However, at high SNR, increased modulation sizes
are needed. When the input alphabet is large, uniform input distribu-
tion results in a loss to the Gaussian capacity, which is called the shaping
gap, also known as shaping gain. Alternatively, the shaping gap can be
described as the energy loss of using uniform input instead of Gaussian
at the same information rate. This energy loss can be calculated for con-
stellations of in�nite size to be 1.53 dB [68], called the ultimate shaping
gain.
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Figure 2.8: EXIT chart of a convolutional turbo code for AWGN channel with two
di�erent SNRs. Successful decoding is possible when there is an open tunnel (left),
and fails otherwise (right).

In order to �nd the optimal weights of a discrete PMF with a �xed
X , Algorithm 1 is used. Doing so on a real-valued AWGN channel results
in the CCCs, given in Fig. 2.9. We see that optimizing the discrete PMF
gains around 0.8 dB at 8PAM up to 1.4 dB at 64PAM. These gains are
directly translated to the complex-valued channel and the constellation
equivalents 64QAM and 4096QAM, respectively.

Achieving these gains with practical coded modulation schemes is
far from trivial. First attempts were made in the 90's [69, 70]. In [69],
a trellis decoding on a few bits of the symbol label was used to select
the low-energy points of the constellation more often. Trellis shaping was
used in e.g. [71] for mitigation of nonlinearities in optical communications
and in [22] for MIMO, where signi�cant shaping gains and near-capacity
performance are achieved.

Hu�man decoding was proposed in [72] in order to approach a quan-
tized Gaussian distribution. The idea is to use inverse source coding for
transformation of the uniform input distribution to a non-uniform out-
put, which is matched to the channel. The problem with such a scheme
is the error propagation of the Hu�man codes. In this case the shap-
ing must be employed after channel coding, or before channel decoding
at the receiver side, which means that the Hu�man code will be unpro-
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Figure 2.9: Constellation constrained capacity for real-valued AWGN channel.

tected from errors. A single error will therefore make the entire following
sequence erroneous.

We mention a few other practical schemes for shaping. In [73], the
authors explicitly select low-energy points more often by a nonlinear
block code, which can be optimally decoded at the receiver, and achieve
signi�cant shaping gains. Similar technique is used in [74] for optical
�bers. In [75], the positioning of the points is optimized instead of their
probabilities, leading to the so-called geometric shaping, as opposed to
the probabilistic shaping. Combination of the two approaches is also
possible, such as the superposition modulation [76], where the points
are found via multiple superpositions of an initial BPSK constellation.
This idea was later applied to the optical channel [77]. The target of the
above schemes is to approach a quantized Gaussian distribution, or even
a simple staircase distribution with only a few steps, for which the low-
energy points appear more often. This leads to sub-optimal solution in
variety of scenarios. One such case is the high SNR, where the AIR begins
to �atten, i.e. close to the point, where the AIR is limited by the entropy
of the input. For discrete constellations this entropy is maximized with
uniform PMF, making the quantized Gaussian suboptimal.

Recently, the authors in [78] designed a probabilistic shaping scheme,
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which for long block lengths can approach any symbol PMF of interest.
The authors make use of a modi�ed arithmetic code, circumventing the
error-propagation problem by only modifying the probabilities of the
systematic bits of a linear block code, thus introducing error protection
before the source decoding. The scheme achieves very close to Gaussian
capacity for a variety of rates, making it very practical.

A non-bijective mapping function is used in [79] in order to make
some symbols of the constellation more probable. The mapping is com-
bined with a convolutional code and iterative demapping to resolve the
ambiguities, introduced during modulation. This is also known as many-
to-one mapping.

Of particular interest to this thesis is the work from [80], where a
turbo coded BICM is used. A �xed many-to-one mapping function for a
16PAM constellation is proposed there. Block diagrams of the transmit-
ter and receiver are given in Fig. 2.10(a) and Fig. 2.10(b), respectively.
They represent a general pragmatic turbo coded scheme, where only the
mapping function is changed to a non-bijective one. The data are en-
coded and then serial to parallel converted. Puncturing is then applied
to the parity streams, so that the remaining parity and data bits can
be rearranged into m streams. Each stream is then interleaved and the
signal is modulated. At the receiver, iterative processing between the
decoder and demapper is required, in order to resolve the ambiguities,
induced by the non-bijective mapping. Mappings design will be discussed
in Chapter 5.

The system was only made for 16PAM, making it unsuitable for
higher SNR due to the limited size. Further, the symbol PMF was simi-
lar to previously mentioned schemes designed to be quantized Gaussian,
and is therefore suboptimal in wide variety of scenarios. However, it still
achieves close to the theoretical shaping gain of 1 dB for the 16PAM at
the moderate SNR.

2.4 Summary

In this section the major concepts of interest to the thesis were intro-
duced. Information theoretic background and de�nitions were given for
terms like channel capacity, AIR and CCC. The channel models under
investigations were introduced, including the MIMO, linear impulse re-
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Figure 2.10: Pragmatic turbo coded BICM block diagram. Transmitter (a) and
receiver (b).

sponse, Wiener phase noise and the nonlinear �ber optic channels. The
main issues with estimating the CCC were outlined for each case and the
auxiliary channel method for deriving a lower bound and an AIRs was
presented. Some state of the art and emerging methods and techniques
were described for estimating CCC and AIRs, and also for mitigation of
the major impairments.

Section 2.3 outlined the main di�erences between AIR and what
coded modulation schemes can achieve in terms of symbol-wise and bit-
wise mutual information. The EXIT chart method was brie�y presented,
which makes use of the bit-wise MI to predict the performance of itera-
tive receivers in terms of complexity and number of iterations, and also
gap to capacity. Finally, the concept of constellation shaping was pre-
sented, with one particular method for shaping of uniformly distributed
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binary data, which will be of further interest in this thesis.
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Chapter 3

Capacity estimation and

bounding techniques

In this chapter the novel contributions are described regarding constel-
lation constrained capacity (CCC) estimation. We begin our investi-
gation with the linear interference channels - multiple-input multiple-
output (MIMO) and impulse response channel. Some new properties
are derived for the optimal input probability mass function (PMF) of
MIMO channels and good approximations are proposed for �nding it,
and thereby the CCC. Novel lower bounds are derived for both MIMO
and impulse response channel via the QR decomposition (QRD) of the
channel matrix form. Finally, we discuss the nonlinear optical �ber chan-
nel and derive new lower bounds based on a modi�ed Blahut-Arimoto
algorithm (BAA). Some intuition about the corresponding PMF is also
provided in this case.

Unless otherwise stated, quadrature amplitude modulation (QAM)
constellation input will be assumed, which is obtained by a product of
two identical pulse amplitude modulation (PAM) constellations. We will
also assume that the matrix H has full rank.

We focus on methodology rather than detailed step-by-step mathe-
matical derivation. Theorems are therefore proven only in sketches. The
complete proofs can be found in the corresponding papers.

35
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36 Capacity estimation and bounding techniques

3.1 Linear channels

The novel contributions of papers PAPER 1, PAPER 4 and PA-

PER 7 are described in this section. These papers deal with linear
interference channels with discrete input, and derive methods for esti-
mating the CCC and the optimal input PMF for �xed constellation X .
Of particular interest are the cases, where the large dimensionality of the
input prevents Algorithm 1 from being used.

3.1.1 Factorization properties of the optimal PMF

The main contribution of PAPER 1 is to prove that the optimal in-
put PMF to the MIMO channel factorizes into its marginals. This has
been posted as a conjecture in [22], where Algorithm 1 was modi�ed to
cover the MIMO channel. Using this conjecture, the authors were able
to reduce the complexity by minimizing the degrees of freedom in the
optimization process.

We use a two-step proof for this conjecture, given by the two the-
orems below. The basic idea is to show that if the BAA is initialized
with a factorized distribution, the distribution on the next step is also
factorized. We recall the notation of the MIMO channel from Chapter 2,
where H is the [NxM ] channel matrix, X is the M−dimensional input
with discrete PMF pX(X), and Y is the N−dimensional output. We also
denote pXi(Xi) to be the marginal PMF of the i−th dimension, which we
also refer to as the i−th MIMO layer. The PMF with optimal weights is
denoted p∗X(X) for the respective channel. We will express the mutual
information (MI) both in the standard form I(X;Y |H) and as a function
of the input PMF - I(pX(X)) or I(pX(X)|H), to be di�erentiated from
the context.

Theorem 1 If pX(X) =
∏
i=1:M pXi(Xi), then for �xed pX|Y (X|Y ) =

pX(X)pY |X(Y |X)

pY (Y ) the conditional entropy on each layer becomes

H(Xi|Y,H, X{1:M}\i) = H(Xi|Y,H).

Proof sketch. The proof relies on the fact that the conditional entropy
may be expressed as a Kullback-Leibler divergence (KLD) between two
distributions. The dependency on X{1:M}\i is expressed by an equal
linear shift of the mass of both distributions, which does not change the
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KLD between them. Details are provided in the Appendix of PAPER 1.

Theorem 2 If pnX(X) =
∏
i=1:M pnXi(Xi) at step n of the BAA, then

pn+1
X (X) =

∏
i=1:M pn+1

Xi
(Xi) at step n + 1, and by induction p∗X(X) =

arg max I(X;Y |H) =
∏
i=1:M p∗Xi(Xi)

Proof sketch. We assume the optimal PMF on step n+1 is pn+1
X (X), and

the corresponding MI is I(pn+1
X (X)). After Theorem 1, the conditional

entropy H(X|Y,H) on step n for �xed pX|Y (X|Y ) can be expressed as
a sum of functions of the marginal PMFs pnXi(Xi). Then if we take the
PMF, which is found as the product of the marginal PMFs p̂X(X) =∏
i=1:M pn+1

Xi
(Xi), we can increase the MI

I(p̂X(X)) =
∑

i=1:M

H(Xi)−H(X|Y,H)

≥
∑

i=1:M

H(Xi|X1:i−1)−H(X|Y,H)

= I(pn+1
X (X)). (3.1)

Since we assumed that I(pn+1
X (X)) is the optimum, and due to the strict

concavity in the input PMF of the MI [18], the distributions pn+1
X (X)

and p̂X(X) must coincide, which proves the theorem.
The BAA achieves unique optimum, which must also be factorized.

This property allows for optimization only on the basic 1D distribution.

3.1.2 Estimating the CCC in the limit of large

constellations

Since the output is multi-dimensional, calculation of MI and achievable
information rate (AIR)s still requires much e�ort due to the increas-
ing number of required samples K for the convergence in Eq. (2.2).
Reducing this number is possible when the interference channel can be
parallelized, thus factorizing the problem into several layers of lower di-
mensionality. This can be achieved for MIMO channels via the singular
value decomposition (SVD). It is de�ned as

H = USVH , (3.2)
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where U and V are unitary matrices, and S is diagonal. If the input
is pre-coded as X̂ = VX and the received signal is pre-processed as
Ŷ = UHY , the resulting channel is a set of parallel Gaussian channels
Ŷi = SiiXi + Wi, where Sii is the element on the i − th row and i−th
column of S. The capacity is then found by water-�lling power allocation
and Gaussian input. When the channel is not known at the transmitter
power allocation cannot be performed. Furthermore, as discussed in
Chapter 2, water-�lling is sub-optimal for discrete input constellations.

We de�ne the Gaussian distribution of X as pG(X). Discrete PMFs
are de�ned as (2.9), and the notation pX(AX), where A is full rank, will
denote a PMF with mass points linearly shifted by A, with the original
weights intact. We prove the following theorems for the CCC, derived
in PAPER 4.

Theorem 3 lim|X |→∞ I(p∗X(X)|H = H) = I(pG(X)|H = H)

Proof sketch. The following steps are taken:

1. Show that for orthogonal channels lim|X |→∞ I(p∗X(X)|H = S) =
I(pG(X)|H = S) ⇔ lim|X |→∞W2(p∗X(X), pG(X)) = 0, following
the AWGN results from [24] (W2(µ, v) was de�ned in Eq. (2.11) ).

2. Show that

lim
|X |→∞

W2(p∗X(VHX), pG(VHX)) = lim
|X |→∞

W2(p∗X(X), pG(X)) = 0,

(3.3)

from the fact that the Gaussian distribution is rotationally invari-
ant.

3. Show that

lim
|X |→∞

W2(p∗X(VHX), pG(VHX)) = 0 (3.4)

⇔ lim
|X |→∞

W2(p∗X(SVHX), pG(SVHX)) = 0 (3.5)

⇔ lim
|X |→∞

I(p∗X(X)|H = H) = I(pG(X)|H = H). (3.6)

This result is extended to the ergodic case in the following.
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Theorem 4 lim|X |→∞ EH [I(p∗X(X)|H = H)] = EH [I(pG(X)|H = H)] =
Ce, where Ce is de�ned as (2.8)

Proof sketch. The proof relies on the fact that the W2 distance is a
distance measure. For the optimal distributions p∗i and p∗j of channel
realizations Hi and Hj , respectively, we then have

lim
|X |→∞

W2(p∗i , p
∗
j ) ≤ lim

|X |→∞
W2(p∗i , pG) + lim

|X |→∞
W2(p∗j , pG) = 0 + 0.

(3.7)

The distribution on any channel realization is therefore optimal on all
other channel realizations, and provides the rate of the Gaussian distri-
bution, which proves the theorem.

The main implication of Theorems 3 and 4 is that if some PMF
achieves close to the rate of the Gaussian distribution on the equivalent
orthogonal channel, obtained by the SVD, that PMF will also achieve
close to the Gaussian rate on the interference channel. The PMF and
the CCC are straightforward to �nd on an orthogonal channel due to the
complete factorization - the PMF on each layer is found by Algorithm 1,
and the CCC is the sum of the CCC on each layer. We can then easily
identify the signal-to-noise ratio (SNR) regions, where the above claim
is true.

3.1.3 QR decomposition based lower bound

The approximations derived in the previous section are usually accurate
for low-to-mid SNR. It is of interest to �nd good approximations, or at
least good lower bounds, in the mid-to-high SNR as well. We derive such
bounds based on the QRD of the channel, de�ned as

H = QR, (3.8)

where Q is unitary and R is upper triangular. The successive inter-
ference cancellation MIMO receiver utilizes the form of R to cancel the
interference from previously detected layers in the following manner: the
received samples are pre-processed as Ŷ = QHY , and the channel model
becomes Ŷi =

∑M
j=iRi,jXj . Assuming the layers from i + 1 to M are

correctly decoded by the following channel code, the symbols can be re-
modulated and subtracted from the current layer i. Here we use a similar
technique to derive a lower bound on the channel capacity.
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Since Q is unitary and does not change the entropy of Y , and thus
the MI, we can write

I(X;Y |H) = H(X)−H(X|Ŷ ,H)

= H(X)−
∑

i=1:M

H(Xi|Ŷ , XM
i+1,H)

≥ H(X)−
∑

i=1:M

H(Xi|Ŷi, XM
i+1,H), (3.9)

where we have used the fact, that conditioning does not increase the
entropy. In order to calculate the terms in the sum, we express the
posterior probabilities as

p(Xi|Ŷi, XM
i+1,H) =

p(Xi)p(Ŷi|Xi, X
M
i+1,H)

∑
Xi
p(Xi)p(Ŷi|Xi, XM

i+1,H)
(3.10)

Since we condition on the following layers, the likelihood above can be
expressed as

p(Ŷi|Xi, X
M
i+1,H) = N (σ2,

∑

j=i:M

Ri,jXj ; Ŷi)

= N (σ2, Ri,iXi; Ŷi −
∑

j=i+1:M

Ri,jXj), (3.11)

where Ri,j is the element on the i−th row and j−th column of R. Using
(3.11), lower bound on the MI on each layer can be calculated indepen-
dently. WhenM <= N , the achievable rate on theM−th layer coincides
with the actual capacity for that layer. However, when M > N , there
is residual interference on the (N + 1)-st to the M−th layers from lay-
ers, which are not yet decoded, and the resulting lower bound becomes
poorer. In order to improve it, we model the residual interference as
noise, which is a standard practice in communications engineering. The
likelihood we use on layers i > N is then:

N (σ̂2
i , RN,iXi; ŶN −

∑

j=i+1:M

RN,jXj), (3.12)

where σ̂2
i = σ2 +

∑
j=N :i−1 |RN,j |2E

[
X2
i

]
.
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Alternatively, the same lower bound can be derived via the auxil-
iary channel method. If we use the auxiliary probability distribution
p̄(X|Y,H)

p̄(X|Ŷ ,H) =
M∏

i=1

p̄(Xi|Ŷ , XM
i+1,H)

=

M∏

i=1

p̄(Ŷ |Xi, X
M
i+1,H)p(Xi)∑

Xi
p̄(Ŷ |Xi, XM

i+1,H)p(Xi)
,

where

p̄(Ŷ |Xi, X
M
i+1,H) =

N (σ2,Ri,iXi; Ŷi −
∑

j=i+1:M

Ri,jXj), (3.13)

the same rate is achieved. Details about the above derivations are found
in PAPER 4 and PAPER 7.

On Fig. 3.1, CCC approximations are given for several constellation
sizes for 8x8 MIMO matrix, which is too complex for the general opti-
mization, and even for MI calculation on a standard computer. Instead,
we have used the factorization properties of the optimal input to reduce
the degrees of freedom in the optimization, which is then performed on
per-layer basis. We report the CCC estimates, obtained via the SVD
approximations, and the lower bounds, obtained via the QR decomposi-
tion based approach 1. We can directly read the regions, where the SVD
based approximations are accurate: up to SNR = 10dB, 16dB and 24dB
for 64QAM, 256QAM and 1024QAM, respectively. This means that the
true CCC also approaches Gaussian capacity up to those points. At high
SNR, the SVD based approximation becomes worse than the QRD based
lower bound. This comes to show that orthogonalizing the channel with
discrete inputs can be sub-optimal. The envelope of the two curves can
be generally used as a good approximation to the CCC.

The lower bounds are directly extended to the linear impulse re-
sponse channel. The QRD in this case is performed on the matrix form

1Since the QRD method provides lower bounds on each BAA iteration, the �nal
result is a lower bound on the CCC
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Figure 3.1: CCC approximations via the SVD method and the QRD method. The
SNR regions, where the SVD based approximation is true can be directly read from
the curves as the regions, where Gaussian capacity is approached.

of the channel (2.13), and the MI is calculated for each of the K chan-
nels separately. Since the number K is usually large, an SNR-MI look-up
table (LUT) can be used, where the SNR on the i−th layer is de�ned
as SNR=|Ri,i|2E

[
X2
i

]
/σ2. Some results for this case are given in PA-

PER 7 for Rayleigh fading channels of di�erent length and 16QAM
input. Here we mention that the same behavior as with MIMO channels
is observed - at high SNR, the QRD based lower bounds outperform
the AIR of orthogonal frequency division multiplexing (OFDM) with
uniform power allocation, which once again shows the sub-optimality of
orthogonalization of the channel with discrete input.

3.2 Non-linear optical �ber channel

As mentioned in Chapter 2, the nonlinear interaction between chro-
matic dispersion (CD), ampli�ed spontaneous emission (ASE) noise and
self-phase modulation (SPM) and cross-phase modulation (XPM) e�ects
makes the capacity estimation of the nonlinear optical �ber channel di�-
cult. This is mainly due to the memory, introduced in the channel. When
operating on memoryless assumption, the lower bounds in Fig. 2.5 are
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calculated using ring constellation input [51]. Here we extend the idea
of probabilistic shaping to cover this scenario.

3.2.1 Blahut-Arimoto algorithm for the nonlinear

channel

We modify the BAA from Section 2.2.2 to Algorithm 3. In Step 4,
the mean and covariance matrices are found from the sample mean and
covariance matrix of the sequence YK : K ≡ {k : Xk = xi}, i.e. the
samples Yk, where Xk = xi. The optimization over the scaling factor α
is as in Algorithm 3, and is omitted for simplicity.

Algorithm 3 Algorithm for �nding the optimal PMF on a nonlinear
optical �ber channel

Initialize: pX(X), such that the power constraint E
[
XHX

]
≤ Pav is

satis�ed and
∑

i=1:|X |wi = 1

1: while converged pX(X) do
2: Generate xK1 ∼ pX(X)
3: Generate yK1 by solving the NLSE via the SSFM
4: Estimate p(Y |X = xi) = N (Σi, µi; [Re [Y ] , Im [Y ]]T )

5: pX|Y (X|Y ) =
pX,Y (X,Y )∑

Xi∈X pX,Y (Xi,Y )

6: pX(X) = arg maxpX(X) I(Y ;X), s.t. E
[
XHX

]
≤ Pav and∑

i=1:|X |wi = 1
7: end while

8: CLB = I(pX(X))

The Gaussian �t represents an auxiliary channel. If we assume that
the split-step Fourier method (SSFM) is an accurate representation of
the �ber optic channel, the MI on each iteration is an AIR, and the
�nal MI CLB is a lower bound on the capacity. These AIRs are given
in Fig. 3.2 for an Erbium doped �ber ampli�er (EDFA) link with pa-
rameters, given in Table 3.1. The �ber parameters are the same as in
Table 2.1. Both polarizations are employed, and we report the AIRs as
a function of the input power per channel per polarization. We compare
to the AIRs with conventional uniformly distributed QAM constellations
and the AIRs with ring constellations, optimized as in [51] with 32 rings
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Table 3.1: System parameters, EDFA transmission

EDFA noise �gure F = 3 dB

Symbol rate 28 GBaud

Pulse shape Raised cosine, roll-o� factor - 0.01

Span length 80km

Total distance 800km

and 1024 points. We see that the maximum AIR can be increased by
around 0.5 and 0.2 bits/s/Hz/polarization w.r.t. uniform QAM and ring
constellations, respectively. Probabilistic shaping of QAM constellations
is more attractive than the geometric optimization of ring constellations
for several reasons:

1. The optimization is convex and can be performed via numerical
methods (as in Algorithm 3).

2. The original quadrature shape is retained, which allows for stan-
dard I/Q modulation/demodulation.

3. Straight-forward Gray mapping can be applied.

Some optimal 1024QAM PMFs are given in Fig. 3.3(a) for the optimal
input power of −6 dBm and in Fig. 3.3(b) at the highly nonlinear region
of 0 dBm, together with the quantized Gaussian PMF. Only the marginal
1D PMFs are shown, i.e. 32PAM. The points are rescaled so that the
same average power is retained with di�erent PMFs. At −6 dBm, the
optimal PMF is already slightly non-Gaussian. In the highly nonlinear
region this is even more pronounced, as the PMF converges to only a few
levels and the points with largest amplitude are given a lot of mass. This
is in contrast to shaping for the linear region, where quantized Gaussian
is near-optimal. Operating QAM constellations with an optimized PMF
will be the subject of Chapter 5.

3.3 Summary

In this section the contributions of this thesis regarding capacity estima-
tion and lower bounding for several channels of interest were presented.
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Figure 3.3: Optimal 1024QAM PMFs for the optimal and highly nonlinear input
power regime.

These include the linear interference channels, such as MIMO and linear
impulse response channels, but also the nonlinear optical �ber channel.
Factorization properties were derived for the optimal signaling distribu-
tion of QAM constellations for MIMO, and SVD based approximations
were derived, which are particularly useful in the low-to-mid SNR re-
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gions. For the higher SNR, QRD based lower bounds were derived. In
the case of optical �ber, the BAA was extended to cover the nonlinear
channel, and improvements were shown with probabilistic shaped QAM
constellations over conventional uniformly distributed QAM constella-
tions and also ring constellations.
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Chapter 4

Phase noise mitigation in

digitally modulated systems

In this chapter we study the Wiener phase noise channel model. We
investigate some properties of the nonlinearities in optical �bers and
show that the �rst order Wiener process is a suitable model for the
cross-phase modulation (XPM) induced non-linear phase noise (NLPN).
Then, we propose a practical method for tracking the combined e�ect
of NLPN and regular laser linewidth (LLW) induced phase noise. The
main results are available in PAPER 5 and PAPER 6.

4.1 The nonlinear XPM noise

The self-phase modulation (SPM) and XPM were extensively studied
in [54], where a model for the auto-correlation function (ACF) of the
XPM induced phase noise was proposed. The authors show that the
NLPN is highly correlated in time and frequency. Exploiting this correla-
tion, it was shown in [55,57] that the achievable information rate (AIR)s
with Gaussian input to the optical �ber can be signi�cantly improved
by subtracting the previously estimated NLPN values with a genie ap-
proach, similar to Eq. (2.21), where instead of decisions the actual sam-
ples xk are used. Using this approach also allows for computing the
empirical ACF, which was shown to agree with the theoretical model in
point-to-point links [55].

47



i
i

�main� � 2016/4/7 � 14:09 � page 48 � #60 i
i

i
i

i
i

48 Phase noise mitigation in digitally modulated systems

Normalized frequency f " Ts

10-3 10-2 10-1

P
S

D

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
Lorentzian PSD, "2 = Ek

h
(3̂k ! 3̂k!1)

2
i

PSD of f3̂kg

L = 10;"2 = 1:05 " 10!4

L = 20;"2 = 2:50 " 10!5

L = 100;"2 = 1:00 " 10!6

Figure 4.1: Lorentzian PSD of a Wiener process (dashed lines) with process noise

variance as in (4.1), together with the PSD of the phase noise estimates {θ̂k} (solid
lines) for a WDM link as described in the text. Depending on the choice of the
window L a good match can be found to the theoretical model.

In order to validate the Wiener process for modeling the NLPN,
we study the power spectral density (PSD) of the sequence {θ̂k}. The
sequence is estimated from the above mentioned genie approach for a
wavelength division multiplexing (WDM) single polarization system with
5 channels, 100 GBaud each, after 40 Raman ampli�cation spans of
100km. The input constellation is 256QAM, and the input power is
optimized to−4 dBm per channel. In order to estimate the XPM induced
noise only, we perform digital back-propagation (DBP) for the channel
of interest, thus removing the SPM contribution. Empirical PSDs are
given in Fig. 4.1 for several lengths L of the sliding window averaging.
We compare them to the Lorentzian PSD of a true Wiener process with
parameter

∆2 = Ek
[
(θ̂k − θ̂k−1)2

]
. (4.1)

We see that the slope of the empirical PSD closely follows the Lorentzian
function. For discussion on the window length and the periodic behavior
of the empirical PSD, please refer to PAPER 6.

We conclude this section with a note that the correlation properties
of the NLPN become much less signi�cant in a WDM network, where
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channels are added and dropped on the way. These properties were
studied in PAPER 5.

4.2 Wiener phase noise tracking based on

Tikhonov distributions

The general framework for mitigating the phase noise in digital systems
is to �rst estimate the phase noise samples θ̂k with some algorithm, pre-
process the received samples as ŷk = yk ·exp(−jθ̂k), and then operate the
receiver on a memoryless assumption. Most classes of such receivers were
brie�y presented in Section 2.2.4. Here we propose a method that directly
estimates the posterior probabilities p(xk|yK1 ), thus taking into account
the memory of the channel, and implicitly calculates the posterior prob-
ability density function (PDF) of the phase noise values p(θk|yK1 ). The
basic idea is to model the forward and backward recursions, p(θk|yk−1

1 )
and p(yKk+1|θk), respectively, by mixtures of Tikhonov distributions. The
general belief propagation inference model can then be applied for �nd-
ing the posteriors. The method is thus closely related to the Kalman
�lter [36], the trellis model [33] and the phase noise tracking method for
phase shift keying constellations from [38].

Details of the method can be found in PAPER 6. Here we brie�y
describe the di�erences to the other mentioned models and the bene�ts
of using the mixture of Tikhonov distributions. The factor graph that we
use for inference is given in Fig. 4.2, where circles represent variables, and
rectangles represent factors. The directions of the messages is indicated
by the arrows, and the messages themselves are calculated as

• ξ1 = p(θk−1|yk−1
1 ) =

∑M
m=1 αm,k−1t(wm,k−1; θk−1)

• ξ2 = p(θk|yk−1
1 ) =

∫ π
−π ξ1 · p(θk|θk−1)dθk−1

• ξ3 = p(yKk+1|θk) =
∫ π
−π ξ4 · p(θk+1|θk)dθk+1

• ξ4 = p(yKk+1|θk+1) =
∑N

n=1 βn,k+1t(un,k+1; θk+1)

• ξ5 = ξ2 · ξ3

• ξ6 =
∫ π
−π ξ5 · p(yk|θk, xk)dθk
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Figure 4.2: Graph of a �rst-order hidden Markov model, used for inference on the
Wiener phase noise channel. The direction of the messages is indicated by the arrows.

• ξ7 = p(xk)

The desired posteriors are �nally calculated as

p(xk|yK1 ) ∝ p(xk, yK1 ) = ξ6 · ξ7. (4.2)

The distribution p(yk|θk, xk) ∝ N (σ2, xk exp(jθk); yk). The coe�cients
αm,k and βn,k above satisfy

∑M
m=1 αm,k = 1 and

∑N
n=1 βn,k = 1. The

factors p(θk|θk−1) are simply the Gaussian PDFs N (∆2, θk−1; θk). The
Tikhonov distribution at θ with complex parameter w in messages ξ1

and ξ4 is de�ned as

t(w; θ) =
exp(Re [w · exp(−jθ)])

2πI0(|w|) , θ ∈ [−π;π), (4.3)

and 0 elsewhere, and I0 is the zero-th order modi�ed Bessel function of
the �rst kind. When the phase is discrete as in [33], the integration in the
messages ξ2, ξ3 and ξ6 must be done numerically, which is very complex
for �ne quantization. If the messages are represented by a Gaussian, the
function under the integral in the message ξ6 is a product of Gaussians,
where p(yk|θk, xk) is not a linear function of the phase. The integral is
therefore not solved in closed form.
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Algorithm 4 Algorithm for phase noise tracking, based on Tikhonov
parametrization

Initialize:

1: αm,0 = 1/M
2: βn,K+1 = 1/N

3: wm,0 = 1
∆2 e

j(m· 2π
M
−π)

4: un,K+1 = 1
∆2 e

j(n· 2π
N
−π)

5: for k = 1 to K step 1 do
6: messages ξ1 and ξ2 . Forward recursion
7: end for

8: for k = K to 1 step −1 do
9: messages ξ3 and ξ4 . Backward recursion
10: messages ξ5 and ξ6

11: p(xk|yK1 ) ∝ p(xk, yK1 ) = ξ6 · ξ7 . Posterior calculation
12: end for

Tikhonov parametrization allows the likelihood to be represented di-
rectly as a distribution in the phase as

p(yk|xk, θk) =
2 · SNR · I0(2 · SNR|ykx∗k|)t(2 · SNR · ykx∗k; θk)

exp(SNR(|yk|2 + |xk|2))
. (4.4)

Further, the convolution of a Tikhonov and a Gaussian is again a scaled
Tikhonov of the same variable, making the analytical integration and
coe�cient updates in messages ξ3 and ξ4 straightforward. The complete
algorithm is summarized in Algorithm 4. The initialization values are
chosen such that each Tikhonov component corresponds to a Gaussian
distribution of the phase with variance ∆2, and the means of the com-
ponents are uniformly spaced within [−π;π).

The AIRs obtained with this method are shown in Fig. 4.3 for a se-
lected dual polarization Erbium doped �ber ampli�er (EDFA) �ber link
with parameters, given in Table 4.1. In this case DBP is not performed,
only chromatic dispersion compensation in frequency domain. Extensive
simulations results are found in PAPER 6. We compare with the trellis
method [33] with 256 states (256 quantization levels of the phase), and
a pseudo-ideal phase noise removal, which is obtained by a genie ap-
proach. We see that the trellis based AIRs are closely approached with
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Table 4.1: System parameters, EDFA transmission for phase noise tracking perfor-
mance estimation

Symbol rate 28 GBaud

Number of channels 17

Guardband 0.56 GHz (2% of symbol rate)

EDFA noise �gure 4 dB

LLW 100 kHz

Span length 100km
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Figure 4.3: AIRs with the proposed phase noise tracking method, compared with
the trellis method [33] and a genie approach phase noise removal.

the proposed algorithm at much lower complexity. General decision di-
rected (DD) methods cannot be used at such LLWs and received signal-
to-noise ratio (SNR)s due to the very high symbol error rate (SER), as
discussed in Section 2.2.4.

Finally in this section we note the π/2 ambiguity of the quadrature
amplitude modulation (QAM) constellations. In mild phase noise sce-
narios, if an initial phase value is reliably estimated and no phase-slips
are expected, the algorithm performs really well blindly. However, in
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more severe phase noise cases, minor pilot rate is needed for ensuring
the phase does not slip to a neighboring mixture component. This pilot
rate in the above EDFA scenario was kept at 0.5%.

4.3 Summary

In this chapter the novel contributions of the thesis were presented re-
garding Wiener phase noise channels. We showed that the Wiener pro-
cess is suitable for modeling the NLPN in optical �ber systems via PSD
�tting to a Lorentzian spectrum. We then proposed a novel method for
tracking of the phase noise based on this model. The method relies on
Tikhonov parametrization of the phase, and is able to e�ectively combat
the combined e�ect of laser phase noise and the NLPN in optical �bers.
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Chapter 5

Probabilistic shaping of QAM

Constellations

In this chapter we describe the contributions of this thesis to the �eld of
constellation shaping. As mentioned in Chapter 2, when high spectral
e�ciency (SE) is targeted, constellation shaping must be performed in
order to approach capacity. We will mainly be interested in probabilis-
tic shaping for quadrature amplitude modulation (QAM) constellations,
and particularly - the many-to-one scheme, which was �rst proposed
in [80]. We propose a rate adaptive method for designing the mapping
function, which is key to achieving shaping gain. Especially in dynamic
scenarios, where the channel conditions change rapidly, rate adaptation
is a necessary feature of the communication system. In static channel
conditions the rate �exibility is also necessary in order to cover a wide
range of high SE services.

We will analyze the potential shaping gains in a linear additive white
Gaussian noise (AWGN) channel, but also in an optical �ber system. In
the latter case energy e�ciency gains and increased maximum reach of
the link for �xed SE will be of interest.

Most of the contributions of this Chapter can be found in PAPER 2

and PAPER 3. Section 5.3 contains also currently unpublished mate-
rial, mainly in terms of results.

55
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5.1 The mapping function

The many-to-one method basically means that multiple bit sequences
are mapped to the same modulation symbol. One way to achieve this
is to map all sequences of certain length with the same pre�x to the
same symbol, leading to the Hu�man decoding procedure [81], which
was originally used for source coding. The su�x of the label is �lled up
with the remaining bits of the sequence, which are treated as ambiguous
at the receiver, that is both '1' and '0'. Their L values are thus zero on
the �rst demapping iteration. The bit sequence length for each symbol in
this case is generallym ≥ log2 |X |. The block diagrams of the transmitter
and receiver are given in Fig. 2.10(a) and Fig. 2.10(b), respectively.

Since all labels have the same length, the synchronization and error
propagation problems of source codes are circumvented. The resulting
probability mass function (PMF)s have dyadic form: pX(X = xi) = 2−li ,
where li is the length of the unique pre�x of the i−th symbol. The
optimal dyadic approximation to a PMF was found in [82] to be achieved
by the geometric Hu�man codes (GHC).

A given dyadic PMF generally can be assigned di�erent bit labellings.
In PAPER 2, a labeling method was proposed that achieves Gray-like
property of the unique parts of the labels. The design of a mapping
function for a certain channel (including the nonlinear optical �ber) is
as follows:

1. Obtain the optimal PMF via Algorithm 1 (Algorithm 3 in case of
nonlinear channels).

2. Run the GHC to obtain a dyadic approximation to the optimal
PMF.

3. Run the algorithm from PAPER 2 to obtain the labeling.

All mapping functions that we use in this thesis are given in Appendix B.
We design only the pulse amplitude modulation (PAM) mapping func-
tions for the marginal 1D PAM PMFs, and the QAM labeling is obtained
by taking an outer product of two PAM labelings.

The combination of the Gray-like property with the fact that am-
biguous bits are inserted along the stream makes this labeling scheme
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Figure 5.1: EXIT chart of demapper and turbo decoder. The EXIT function of the
many-to-one mapping achieves higher extrinsic information with no prior information
than the conventional Gray labeled PAM, and furthermore is slightly inclined, leading
to a better match to the EXIT function of the turbo decoder.

particularly useful when combined with turbo codes. An extrinsic infor-
mation transfer (EXIT) chart of such combination is given in Fig. 5.1 for
signal-to-noise ratio (SNR), as given in the legend. The mapping function
is given in Fig. B.4, and the channel code is a turbo code with constituent
convolutional codes with generator polynomials (23, 37) [83] in standard
octal notation, punctured to rate R = 1/2. The Gray-like property en-
sures maximum extrinsic information transferred from the demapper on
the �rst iteration, while the ambiguities results in an EXIT function of
the demapper, which is slightly inclined. This makes the �t between the
EXIT functions of the demapper and the turbo decoder much tighter
than with uniformly distributed PMF with Gray labeling. As mentioned
in Chapter 2, depending on the SNR, iterative processing can be bene-
�cial for Gray labelings, even though their EXIT functions appear �at,
due to the di�erence between bit-wise and symbol-wise MI. This e�ect
is even more pronounced for the proposed many-to-one mapping. While
shaping gains can generally be expected with one-shot processing, they
can be further increased by performing iterative demapping and decod-
ing.
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Table 5.1: Summary of used mapping functions

Constellation m Type

256QAM 12 Raphaeli's original mapping [80]

64QAM 8

Designed in PAPER 2
256QAM 10

1024QAM 14

1024QAM 16

64QAM 6
Binary-re�ected Gray
mappings with uniform PMF

256QAM 8

1024QAM 10

5.2 Gains in AWGN channel

We analyze the shaping gains on an AWGN channel in terms of the
achieved block error rate (BLER) based throughput, which is calculated
as T = (1−BLER) ·η, where η is the input SE. A speci�c SE is achieved
by puncturing the channel code to rateR = η/m. The mapping functions
we examine are given in Appendix B, and summary of their size is given
in Table 5.1. We use 20 turbo iterations, 5 demapping iterations, and
the block length is 1000 data bits. Simulated SEs are between 3 and
9, with a step of 0.5 bits/channel use, and the throughput envelope
is reported, that is, the throughput of the best performing mapping
function from Table 5.1 at the respective SNR. The results are shown in
Fig. 5.2. Shaping gains between 0.6 dB and 1.2 dB are seen depending on
the SNR. We clearly see the limitations of the original scheme [80], which
can only operate above and below a certain SNR, due to the constellation
size and the value of m. We note, however, that the performance in that
region is near-optimal. For more extensive results, including shaping
gains with non-iterative processing please refer to PAPER 2.
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Figure 5.2: Throughput envelope of the designed mapping functions, showing the
shaping gains w.r.t. conventional uniformly distributed Gray labeled QAM. The
performance of Raphaeli's original design [80] is also shown. The AIRs with the
dyadic approximations to the optimal 1024 QAM PMF at each SNR are also shown
for comparison.

5.3 WDM optical transmission

The 1024QAM with m = 16 from Table 5.1 was used in PAPER 3

for a single channel optical link, and gains of up to 1dB were reported
w.r.t. uniform QAM. Here we apply the methodology from the previous
section to a wavelength division multiplexing (WDM) link with the same
parameters as in Section 3.2, and design the 1024QAM and the 256QAM
mappings, given in Appendix B. The speci�c PMFs are obtained by
optimizing the PMF for the optimal input power (see Fig. 3.2), and then
�nding the GHC approximation.

In our simulations, the main impairments, present in digital com-
munication systems are included, summarized in Table 5.2. In order to
combat these impairments, quadrature phase shift keying (QPSK) pilot
symbols are interleaved with the data at rate P = 1%.

The block diagram of the receiver is given in Fig. 5.3. Frequency o�-
set and phase noise are induced on the up-sampled signal. After analog-
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Figure 5.3: Receiver block diagram.

Table 5.2: Transmission impairments

Frequency o�set ∆ω 50 MHz

Laser linewidth 10 kHz

ADC accuracy 6 bits per real dimension

Receiver sampling frequency 56 GSa/s

to-digital conversion (ADC), chromatic dispersion (CD) compensation
is performed in frequency domain. Frame alignment is performed based
on a short Zaddof-Chu sequence [84], inserted before the �rst transmit-
ted block. Frequency o�set is compensated for via maximum likelihood
brute force search, and the symbol sequence is sent for constant mod-
ulus equalization, based on the QPSK pilots only. Finally, phase noise
tracking is performed with the algorithm from Chapter 4, and the re-
ceived sequence is sent for demapping and decoding, which is described
in Fig. 2.10(b).

We evaluate the achievable information rate (AIR) before decoding,
which is calculated by the phase noise tracking algorithm, and also the
achieved bit error rate (BER). The input SE is η = 5 bits / s / Hz /
polarization.

Figures 5.4(a) and 5.4(b) show BER performance after the turbo
decoding as a function of the input power per channel per polarization.
We sweep the input power in steps of 0.5 dBm, and the absence of a
point on a curve means that no errors were found for the duration of
the simulation. The block length is 6000 symbols, and 30 blocks were
simulated in each case, which at η = 5 means a total of 9·106 information
bits are transmitted. The "error-free" region thus corresponds to actual
BER < 1.1 · 10−6. We assume that the BER results are reliable above
1.1 · 10−4, since at least 100 errors are seen. As with most iterative
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systems, here we expect an error �oor to appear somewhere below these
numbers. The usual requirement for optical communication systems is
BER < 10−15. Therefore an outer code will be necessary. For example,
the Reed-Solomon code of rate RRS = 239/255, de�ned for the optical
transfer networks protocol can operate at such low output BER, when
the inner code is subject to the above mentioned error-�oor, and when
independence of the error events may be assumed (see PAPER 8). This
assumption is reasonable if interleaveing is performed between the inner
and outer codes.

As seen from Fig. 5.4(a) shaping gain is achieved both in the lin-
ear regime (around 1.5dB), and slightly less in the nonlinear regime of
transmission at a distance of 800 km, i.e. 10 spans of �ber. Due to
the very low code rate of R = 5/14 for the 1024QAM shaped system,
the BER slope is steeper than for the rest of the schemes, and values of
the BER between around 10−3 and the minimum detectable 1.1 · 10−6

are not present at the given resolution of the sweep of 0.5 dBm. We
also study distances between 960 and 1120 km. A summary of these re-
sults is given in Fig. 5.4(c), where the size of the region, for which BER
< 1.1 · 10−4 is given as a function of the link distance for the examined
mappings. The achieved shaping gain may be seen as the increase of the
size of this region, but also as the increased maximum distance, where
an "error-free" region is found. At 960 km the 1024QAM conventional
system may still be used, however, a very small window of "error free"
performance is found, which would make it unreliable. When increasing
the distance further, no "error-free" region is found for both 1024QAM
and 256QAM with uniform PMF. The shaped 256QAM can be used up
to 1040 km, and the shaped 1024QAM is able to achieve an "error-free"
performance also at 1120 km. If the pilot symbols and the rate RRS of
the above mentioned outer code are taken into account, the SE is re-
duced to η̂ = RRS · (1−P ) ·η = 4.65 bits/s/Hz/polarization, making the
the achieved data rate around 260 Gbps per channel.

In Fig. 5.4(d) we plot the received AIR after 800km, calculated be-
tween the transmit symbols and the received symbols after the phase
noise tracker. We note that due to the pilot overhead, the entropy H(X)
in Eq. (2.1) must be scaled to (1 − P )H(X) in order to get an accu-
rate estimate of the achievable rate. The region, where the �nal SE of
η̂ = 4.65 is achieved by the 1024QAM shaped system (the region, where
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(c) BER < 1.1 · 10−4
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Figure 5.4: Performance in presence of impairments. (a) and (b) : BER at 800 and
1120km, resp., (c) : size of the window, where BER < 1.1 · 10−4, (d) : received MI
after 800km by the analyzed transmission formats, together with the window, where
the input SE is achieved

BER < 1.1 · 10−4 after turbo decoding) is also given in Fig. 5.4(d).
We see that performance is close to the theoretical limit - 0.5 and 0.7
bits/s/Hz/polarization at the two edges of the "error free" region, re-
spectively.

5.4 Summary

In this section the novel contributions of this thesis regarding proba-
bilistic shaping were presented. We have introduced a new algorithm
for designing mapping functions for many-to-one shaping methodology.
The mapping functions achieve Gray-like properties, and are thus partic-
ularly suitable for integration with turbo codes. This was demonstrated
via EXIT chart analysis of the many-to-one demapper. Shaping gains of
up to 1.2 dB were achieved with this method for a wide variety of input
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spectral e�ciencies on an AWGN channel. Furthermore, the maximum
achievable distance of WDM optical �ber links at �xed spectral e�ciency
can be increased by more than 300km in some cases, at a reference dis-
tance of 800km.
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Chapter 6

Description of Ph.D.

Publications

In this Chapter a description of the publications included in the thesis is
provided, highlighting novelties and main results. The papers are divided
into three groups, following the order used in the previous chapters. This
order is not necessarily the same as the chronological order, in which the
papers were published. This section is designed to be as self-contained
as possible, therefore overlaps with previous chapters exist.

6.1 Constellation constrained capacity

estimation and bounding

PAPER 1: Factorization properties of the optimal signaling dis-

tribution of multi-dimensional QAM constellations

The motivation behind this work was the conjecture, posted in [22],
that the optimal probability mass function (PMF) of quadrature
amplitude modulation (QAM) constellations input to a multiple-
input multiple-output (MIMO) channel factorizes into the product
of its marginals. This allowed the authors to reduce the complexity
of the modi�ed Blahut-Arimoto algorithm (BAA) for �nding the
optimal PMF on a MIMO channel.

PAPER 1 proves this conjecture by an induction method and
exploiting the concavity of mutual information (MI) in the input

65
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PMF. It also uses the expectation-maximization (EM) property of
the BAA and the fact that the MI is increased on each EM step,
eventually converging to the maximum. Recall the basic steps of
the BAA, which are iterated until convergence:

1. Expectation: Fix pX(X), and calculate pX|Y (X|Y ).

2. Maximization: Fix pX|Y (X|Y ), and �nd p∗X(X) =
arg max I(X;Y |H).

The proof is divided in two major parts, represented by Theorem 1
and Theorem 2. In the expectation step, we prove that for �xed
factorized pX(X) =

∏
i pXi(Xi) the conditional entropyH(X|Y,H)

separates into a sum of the marginal entropies H(Xi|Y,H). In
the maximization step, we show that by taking the product of the
marginals of the optimal PMF p∗X(X), the MI is increased, which is
in contradiction with the strict concavity of the MI. The optimal
PMF and the product of its marginals must therefore coincide.
Unique optimum is found on the last step, which is also factorized.

The paper provides numerical evidence of the theoretical results in
terms of achieved constellation constrained capacity (CCC). We
run the full-complexity BAA and the reduced complexity BAA for
a 64QAM 2x2 MIMO system, and show that the achieved rates
coincide within the numerical precision of the simulations. We
also show that the Kullback-Leibler divergence (KLD) between the
optimal PMFs found by the two algorithms is very small, and can
be attributed to the limited input-output sequence length that was
simulated and the convergence thresholds, set in the algorithm
implementation.

PAPER 4: Approximating the constellation constrained capac-

ity of the MIMO channel with discrete input

The motivation for this work was the set of papers [24, 25], where
the minimum mean squared error (MMSE)-MI relation was found
and it was shown that the quantized Gaussian PMF is capacity
achieving on an additive white Gaussian noise (AWGN) channel as
the constellation size grows to in�nity. In PAPER 4, the MIMO
channel is studied, where similar property was derived. The goal of
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the paper was to estimate the CCC in scenarios, where numerical
methods are too complex, such as large MIMO matrix. This was
done by calculating the CCC on the equivalent orthogonal channel,
obtained from the singular value decomposition (SVD), and prov-
ing that for large constellation the CCC on the interference channel
is the same. The proof relies on the fact that the MI is continuous
on the quadratic Wasserstein space in the input PMF, and showing
that the quadratic Wasserstein distance from the optimal discrete
PMF to the Gaussian disappears.

Then, using the fact that the quadratic Wasserstein distance is a
distance measure, we are able to extend this result to the ergodic
case. This is done by showing that in the limit of in�nitely large
constellations, the optimal PMF to any channel realization from
the channel distribution is also optimal on any other channel from
the same distribution.

The QR decomposition (QRD) is also studied in the paper as means
to derive a lower bound on the CCC. The orthogonal channel,
obtained from the diagonal elements of the R matrix of the QRD
is used in this case, instead of the S channel of the SVD. The
R channel provides a better lower bound than the above SVD-
based estimate for high signal-to-noise ratio (SNR). Furthermore,
it holds for any input PMF, which factorizes into the product of
its marginals, and not only the optimal one. This includes the
standard uniform PMF.

The result section of the paper provides CCC estimates on a variety
of channels, where the MI on the true interference channel can
not be calculated due to high complexity, e.g. 1024QAM on 8x8
MIMO. It was shown that the envelope of the SVD-based estimate
and the QRD-based lower bound serves as a good approximation
to the CCC for the entire SNR region.

PAPER 7: Achievable information rates on linear interference

channels with discrete input

The main goal of the paper was to provide meaningful lower bounds
for the linear impulse response channels. This is done by extending
the QRD based bound from PAPER 4 to cover the general linear
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interference case. To that end, the bound is expressed via the aux-
iliary channel method, which was presented in detail in Chapter 2.
It was shown that the same bound can be achieved if auxiliary
channel functions are used, for which the interference from previ-
ously decoded layers are subtracted in the current layer. This is
similar to the approach, taken in successive interference cancella-
tion receivers. The auxiliary channel method allows to bound the
CCC also in cases, where the number of transmit antennas is larger
than the number of receive antennas, although the bound quality
is poor in that setting.

If the linear impulse response channel is then expressed in its ma-
trix form, we can directly apply the QRD based bound. In this
case the H matrix is of size [KxK], where K is the length of the
input-output sequence. The QRD can still be performed, and the
lower bounds can be estimated by a SNR-MI look-up table for each
element on the diagonal of the R matrix.

Results for uniform input PMF are provided for several MIMO
channels and two di�erent Rayleigh fading impulse response chan-
nels of length l = 3 and l = 6. In the �rst case, the QRD bound
approaches the true CCC, which is obtained by the trellis method
from [16]. In the second case, the trellis method cannot be applied
due to the high complexity associated with the exponentially in-
creasing number of states. The QRD-based bound, however, can
be used, and achieves close to the Gaussian capacity. It was shown
that OFDM with uniform power allocation is outperformed by this
bound. This result is in agreement with the result on the MIMO
channel from PAPER 4, where the SVD based approximation was
outperformed at high SNR by the QRD-based bound. Both these
results show that orthogonalizing the channel with constellation
constrained input can be sub-optimal.

6.2 Phase noise in optical �ber systems

PAPER 5: Compensation of XPM interference by blind track-

ing of the nonlinear phase in WDM systems with QAM

input
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The motivation of this paper was previous work by Dar [55], where
the auto-correlation function (ACF) of the non-linear phase noise
(NLPN) is modeled, and then used to �nd improved bounds on
the optical channel capacity assuming Gaussian input. The goal
of PAPER 5 is to study the ACF of the NLPN with QAM input
and estimate potential gains from tracking the NLPN in a prac-
tical receiver. To that end, standard models for phase noise are
studied, including the Wiener process. In order to validate the
Wiener process for modeling the NLPN, the latter is estimated by
a genie approach, and the power spectral density (PSD) of the pro-
cess is compared to the PSD of a true Wiener process, which is a
Lorentzian function. A good match was observed, which allowed
us to apply existing methods for phase noise tracking under this
model.

The chosen method was the trellis method [33]. We optimized the
method in terms of number of states in the trellis, and showed that
with reasonable complexity the genie based achievable information
rate (AIR)s are approached. While the genie approach assumes
knowledge of the entire past when estimating the current phase
noise sample, the trellis method applies a forward-backward re-
cursion for estimation, which can be implemented in a practical
receiver.

We study point-to-point links, but also network scenarios, where
the interfering channels are changed along the transmission path.
It was shown that for 1000km link and 1024QAM input, the max-
imum AIR can be increased by around 0.5 bits/channel use in the
point-to-point case, similar to the result in [55] with Gaussian in-
put.

These gains disappear in a network scenario due to the very quickly
diminishing ACF. The NLPN samples in that case cannot be con-
sidered constant even for short duration, and both the genie ap-
proach and the trellis method fail to provide signi�cant gains.

PAPER 6: Low-Complexity tracking of laser and nonlinear phase

noise in WDM optical �ber systems

In this paper the Wiener process is further studied as a potential
tool for modeling the NLPN in optical �bers. Similar to PA-
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PER 5, a genie approach is used to estimate the NLPN samples
via window averaging θ̂k = ∠

∑k+l
i=k−l x

∗
i yi, where xk are the input

symbols, assumed known, and yk are the channel output samples.
We experimented with the window length 2 · l, and showed that a
very good match of the empirical PSD is possible to the theoretical
Lorentzian PSD of a Wiener process with variance, given by the

sample variance ∆2 = Ek
[
(θ̂k − θ̂k−1)2

]
.

In the main part of the paper we propose a general low-complexity
phase noise tracking algorithm. The method models the phase
noise distribution at each time by a mixture of Tikhonov distribu-
tions, and applies forward and backward recursions for estimating
the posterior probabilities of the input symbols p(xk|yK1 ). Inciden-
tally, the phase noise distribution p(θk|yK1 ) is also estimated. It
was shown that the forward and backward recursions can actually
be cast directly into the sum-product algorithm for estimating den-
sities on a graph, in this case - a hidden Markov chain. The bene�t
of using Tikhonov distributions instead of Gaussians is the possi-
bility for analytical integration at the variable nodes of the graph
during the recursions. This analytical integration is also bene�cial
in terms of complexity compared to the trellis method [33], where
the phase is discretized and the integration is numerical.

The performance of the algorithm is evaluated on a standardWiener
phase noise channel, on wavelength division multiplexing (WDM)
ideally distributed Raman ampli�ed optical �ber link with single
polarization and on an Erbium doped �ber ampli�er (EDFA) link
with dual polarization. The rates approach the AIRs of the sig-
ni�cantly more complex trellis method, and were superior to the
decision directed method from [41] in most cases.

6.3 Constellation shaping for near-capacity

digital communications

PAPER 2: Rate-adaptive constellation shaping for turbo-coded

BICM

This paper studies many-to-one probabilistic shaping strategies for
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bit-interleaved coded modulation (BICM). The focus is on the
pragmatic turbo-coded approach from [80]. Intuition about the
method's performance is provided via extrinsic information transfer
(EXIT) charts. By analyzing the bit-wise and symbol-wise MI after
demapping, it is possible to predict where iterative demapping and
decoding will be necessary in order to achieve shaping gain, and
where single-shot demapping is su�cient.

Instead of using the quantized Gaussian as in [80], the input PMF
is optimized via the BAA and then a dyadic approximation is
found, using geometric Hu�man coding (GHC) [82]. This allows
for performance improvements in many SNR regions, particularly
high SNR, where the optimal PMF starts resembling the uniform.
A dyadic PMF is achieved with a many-to-one mapping by having
each constellation symbol carry many labeling sequences, which
share the same pre�x. The length of the unique pre�x determines
the probability of each symbol.

We then propose a method for the construction of the mapping
function for symmetric dyadic PMFs, which achieves a Gray-like
property of the unique parts of the labels. This property is crucial
for the near-optimal performance of the mapping functions for both
iterative and non-iterative demapping reception, especially when
combined with a turbo code. This is shown via an EXIT chart
analysis of the demapper.

Several mapping functions were designed with the proposed method,
and evaluated extensively on an AWGN channel and a Rayleigh
fading channel in terms of the block error rate based throughput.
We show up to 1.2 dB shaping gain with the proposed mappings at
high SNR. The iterative performance prediction is con�rmed via
throughput measurements, where it is shown that iterations are
only needed at low-to-mid SNR in order to achieve the complete
shaping gain.

PAPER 3: Constellation shaping for �ber-optic channels with

QAM and high spectral e�ciency

The main idea of the paper is to apply the concept of constel-
lation shaping for NLPN mitigation in optical �bers. The fo-
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cus was on QAM constellations, due to their implementation sim-
plicity. Further, when the receiver is subject to practical con-
strains, such as limited analog-to-digital and digital-to-analog con-
version, the regularity of QAM constellations is preferred in I/Q
modulation/demodulation. The main contribution of this paper is
two-fold:

• A modi�ed BAA is used which allows for optimizing the input
PMF on an optical �ber channel. The optimized QAM PMFs
achieve a rate, higher than the previously considered most
suitable for this channel ring constellations;

• The turbo-coded constellation shaping method fromPAPER 2

is applied on the optical �ber channel, and gains of around
1dB of energy e�ciency are achieved.

The modi�ed BAA relies on a Gaussian auxiliary channel assump-
tion. The likelihood functions are modeled as bi-variate Gaussian
distributions with mean and covariance matrix obtained from the
sample mean and covariance matrices of each constellation symbol.
The achieved rates are thus lower bounds on the channel capacity.

The paper implements the optical �ber channel in software via
the split-step Fourier method for solving the nonlinear Schrödinger
equation (2.25). The system is evaluated on a 800km EDFA link,
with single channel double polarization signal. Gains of around 1
dB are reported in bit error rate (BER) in both the linear and non-
linear regions of transmission w.r.t. standard, non-shaped QAM
system.
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Chapter 7

Conclusion

This thesis was concerned with capacity analysis of, and near-capacity
achieving techniques for digital communication systems. The PhD project
was focused on both these aspects for a variety of channels with discrete
input of �nite size. The channels of interest included:

• General additive white Gaussian noise (AWGN) channel;

• Linear interference channels, such as the multiple-input multiple-
output (MIMO) channel and impulse response channel;

• The Wiener phase noise channel;

• The nonlinear optical �ber channel.

Particularly for the linear channels, novel techniques were developed
for estimating the constellation constrained capacity (CCC) in the low-
to-mid signal-to-noise ratio (SNR) and lower-bounding it at high SNR
as well. The CCC estimates do not require multi-dimensional numer-
ical integration and can therefore be easily computed for the desired
channel, thereby allowing for simple performance evaluation of di�erent
receiver processing methods. Instead of the CCC, achievable informa-
tion rate (AIR)s were analyzed for the phase noise and the optical �ber
channels. Applying a modi�ed Blahut-Arimoto algorithm, probabilistic
shaping can be performed for quadrature amplitude modulation (QAM)
constellations and the AIR of wavelength division multiplexing (WDM)

73
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systems can be increased w.r.t. conventional uniformly distributed QAM
inputs.

The non-linear phase noise (NLPN) in optical �bers was studied in
Chapter 4, and the �rst order Wiener process model was validated for the
cross-phase modulation (XPM) induced phase noise. A low-complexity
method was then proposed based on Tikhonov parametrization of the
phase, which e�ectively combats the combined e�ect of NLPN and laser
phase noise in WDM optical systems. The method exploits the Wiener
property and achieves signi�cant performance improvements over stan-
dard decision directed methods in variety of scenarios at lower compu-
tational complexity.

Constellation shaping for high spectral e�ciency digital communica-
tions was discussed in Chapter 5. A new method was introduced for de-
signing many-to-one mapping functions for rate adaptive systems, which
achieve close to the optimal shaping gain in terms of energy e�ciency for
the AWGN channel. The proposed method is particularly suitable for
systems, which operate turbo-codes (such as the 4G-LTE mobile com-
munications), for which the gains can be achieved with minimal e�ort by
simply modifying the mapping function of the transmitter. The method
performs very well on the nonlinear WDM channel, where up to 1.5
dB energy gains can be seen, or equivalently the maximum error-free
transmission distance can be increased w.r.t. conventional QAM input
constellations. Alternatively, the maximum AIR can be increased by
0.5 bits/channel use on a 800 km link w.r.t. conventional uniformly
distributed QAM constellations.

Future Work and Discussion

Several topics of interest have arisen during the course of the PhD study,
which are outlined below:

• Constellation shaping for the optical �ber channel. While the
scheme, which was designed for the AWGN channel, was success-
fully transferred to the optical �ber, many improvements may be
possible in that setting:

1. Integration with low-density parity check (LDPC) - convolu-
tional codes (CC). Turbo codes are not particularly suitable
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for very high speed communications, due to the inherent la-
tency of the successive BCJR decodings. LDPC-CC have pre-
viously been shown to be superior in that regard. However,
combining LDPC-CC with high order modulation and many-
to-one mappings e�ectively introduces cycles into the Tanner
graph of the code. Therefore, the code needs to be carefully
designed with these considerations in mind. Latency is also
becoming a problem in wireless communications, e.g. wireless
control. Integrating the shaping scheme from Chapter 5 with
a LDPC code is therefore of general interest.

2. Joint probabilistic and geometric shaping. Probabilistic shap-
ing is attractive due to its simple and hardware-transparent
implementation. However, as we saw in Chapter 3, the gains
especially in the nonlinear �ber channel are limited. Jointly
optimizing the probabilities and the positions of the points
on the complex plane is an interesting area of future research.
Further, in Chapters 3 and 5 a memoryless channel is con-
sidered, which is far from a realistic model of the nonlinear
optical �ber. Temporal constellation shaping is therefore also
of interest.

• Iterative phase noise tracking, de-mapping and decoding. Phase
noise is still a dominant limitation to the AIRs of cost-e�cient
optical communication systems. Integrating the tracking scheme
from Chapter 4 into the iterative loop might further improve the
performance. While this integration seems straightforward, poten-
tial improvements, especially in the complexity of the tracking, are
of interest for a practical receiver.

• Memory of the optical �ber. As mentioned above, temporal con-
stellation shaping is an interesting area for research. Exploiting
the memory in the �ber in general is also of interest. While it was
shown in Chapter 4 that the NLPN is highly correlated in phase,
such correlation in the amplitude noise are not studied in this the-
sis. Extending the noise model, and subsequently the tracking
algorithm, to cover memory in the amplitude might provide even
higher gains in AIRs.
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ABSTRACT
In this work we study the properties of the optimal Proba-
bility Mass Function (PMF) of a discrete input to a general
Multiple Input Multiple Output (MIMO) channel. We prove
that when the input constellation is constructed as a Cartesian
product of 1-dimensional constellations, the optimal PMF
factorizes into the product of the marginal 1D PMFs. This
confirms the conjecture made in [1], which allows for
optimizing the input PMF efficiently when the rank of the
MIMO channel grows. The proof is built upon the iterative
Blahut-Arimoto algorithm. We show that if the initial PMF
is factorized, the PMF on each successive step is also
factorized. Since the algorithm converges to the optimal
PMF, it must therefore also be factorized.

Index Terms— MIMO, QAM, Constellation shaping

I. INTRODUCTION
As the data rate demand increases, the physical links in

band limited scenarios are pushed to operate at high SNR
and with high order of modulation in order to achieve high
spectral efficiency. Furthermore, it is well known that at high
SNR, uniformly distributed signaling achieves the Shannon
capacity rate for 1.53dB more energy, called the shaping gap
or shaping gain. In order to close that gap, continuously
distributed Gaussian signaling is required [2]. While it is
clear that such signals are completely described by their
mean and variance, nothing explicit can be said about the
shape of the optimal Probability Mass Function (PMF) of a
given discrete signaling set.

We consider a standard Multiple Input Multiple Output
(MIMO) channel model:

Y = HX +W (1)

where X is 2M dimensional vector random variable, tak-
ing values from the discrete, real-valued set X 2M , H is
the 2Nx2M real-valued equivalent of the NxM complex
channel matrix, W is the usual 2N dimensional AWGN and
Y is the 2N dimensional channel output. The set X is the
basic PAM constellation set. The channel is assumed to be
perfectly known at the receiver unless otherwise stated.

The algorithm for finding the optimal PMF input to an
AWGN channel was derived independently by Blahut [3]
and Arimoto [4]. It uses Expectation-Maximization (EM)
type update rules, sequentially increasing the concave cost
function (in this case the Mutual Information (MI) as a
function of the input distribution) subject to average power
constraint

∑|X 2M |
i=1 p(xi)|xi|2 ≤ Pav , and normalization

constraint
∑|X 2M |

i=1 p(xi) = 1, where xi is the i′th element of
the signaling set and P (X = xi) = p(xi) is its probability.

In [5], the authors replace the power constraint with
equality, and then sweep all possible scaled versions of the
signaling set, i.e. ˆX 2M = αX 2M . The EM algorithm is then
run for each of these sets, and the one achieving maximum
MI is chosen as optimal. The optimal PMF of X 2M is the
PMF of the optimal set, and its respective MI is the channel
capacity. This algorithm was later extended to cover MIMO
scenarios in [1]. Our work is largely based on the derivations
made in [1], and so we briefly introduce the mathematical
notation of the algorithm used there.

I-A. EM for finding the optimal distribution on MIMO
channel with average power constraint

The channel capacity when signaling with X 2M and
averaging among the possible channel realizations can be
expressed as [1]:

C = max
p(X)
I(X;Y |H) =

= max
p(X)

∑

i=1:|X 2M |
p(xi)

(
log2

1

p(xi)
+ Ti

)
(2)

where,:

Ti =

∫

H

p(H)

∫

y

p(y|xi,H) log2 p(xi|y,H)dydH (3)

We have replaced p(H = H) with p(H) for simplicity and
I is the MI. The EM algorithm is as follows:

Sweep α ∈ [αmin;αmax]

• Initialization:
Initialize p(x), so that it satisfies

∑|X 2M |
i=1 p(xi) = 1, and∑|X 2M |

i=1 p(xi)|αxi|2 = Pav

IEEE ISCCSP 2014 81
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• E: For each point i and fixed p(xi), compute Ti.

• M: Given the set of fixed Ti values, maximize I(X;Y |H)
w.r.t. the probability of each point. This is a strictly
concave optimization problem, solved using Lagrange
multipliers.

• Go to ‘E’ until convergence

As the order of modulation and number of dimensions of
the signal grow, this algorithm is impractical even when
performed offline due to the exponential increase in the
number of parameters to be optimized. In [1] the authors
conjecture, that the optimal PMF factorizes into the PMFs
of each dimension, however, no theoretical proof has been
provided. In this work we prove the conjecture. We also
show how the Blahut-Arimoto (BA) algorithm can be used
to solve the power-allocation problem for discrete signaling
sets.

I-B. Notation

In the rest of the paper we use the following notation: xi
denotes the i′th value from the set X . The one-dimensional
variable Xi represents dimension i, and p(Xi = xj) =
p(xij) is the probability of that variable taking value xj .
Capacity achieving PMF will be denoted as p(X)∗, and
p(X)n will be the PMF at the beginning of the E step
on the n′th iteration. The entropy function is denoted as
H(·). Dependency on the noise variance is omitted in the
expressions for probability and entropy for brevity.

II. FACTORIZING THE OPTIMAL QAM
DISTRIBUTION

In the following, without loss of optimality of the EM
algorithm, we assume it has been initialized with a distribu-
tion, which is symmetric around 0, and which factorizes as
p(X)1 =

∏
k=1:2M p(Xk)

1.

Theorem 1. If p(X)n =
∏

k=1:2M p(Xk)
n, then

at step n, for fixed p(X|Y,H), the conditional en-
tropy H(Xk|X{1:2M}\k, Y,H = H) is independent of
p
(
X{1:2M}\k

)n+1

Proof. See Appendix A

Theorem 2. If p(X)n =
∏

k=1:2M p(Xk)
n, then

p(X)n+1 =
∏

k=1:2M p(Xk)
n+1, and therefore p(X)∗ =∏

i=1:2M p(Xk)
∗

Proof. The MI after step n for real-valued 2x2 MIMO
channel can be written as:

I(X;Y |H) = H(X|H)−H(X|Y,H) =

H(X1) +H(X2|X1)−H(X1|Y,H)−H(X2|X1, Y,H)
(4)

where we have used the chain rule for entropy and con-
ditional entropy. It is clear that H(X1|Y,H) is indepen-
dent of p(X2)

n+1. After Theorem I, H(X2|X1, Y,H) is
also independent of p(X1)

n+1, or the conditional entropy
H(X|Y,H) is separated into functions of the marginal
PMFs. Let’s assume that the optimal PMF at this step was
found as p(X)∗, and its respective marginals are p(Xk)

∗ =∑
X{1:2M}\k

p(X)∗. We then consider the PMF, obtained as
product of those marginals p(X)˜ =

∏
k=1:2M p(Xk)

∗. The
entropy of X as a function of this PMF is:

H(p(X)˜) = H(X1) +H(X2) ≥ H(p(X)∗) (5)

Then for the MI as a function of the PMF we have:

I(p(X)˜) = H(p(X)˜)−H(X|Y,H) ≥
H(p(X)∗)−H(X|Y,H) = I(p(X)∗) (6)

However, I(p(X)∗) ≥ I(p(X)) for any p(X), and there-
fore I(p(X)∗) = I(p(X)˜). In [6] the authors prove, that
the MI is strictly concave in p(X), and therefore the optimal
distribution is unique. The optimal distribution therefore
must be the same as the product of its marginals. The
extension to M > 2 is straight-forward. The MI after step
n can be expressed as:

I(p(X)n+1) = H(X)−
∑

k=1:2M

H(Xk|X{1:k−1}, Y,H)

(7)

where each element in the sum only depends on its respective
marginal PMF. Then if I(p(X)n+1) = max I(p(X)n+1)⇒
H(Xm|{X1:2M}\Xm) = maxH(Xm|{X1:2M}\Xm), and
therefore p(Xm|{X1:2M}\Xm)n+1 = p(Xm)n+1. Since
p(X)n+1 =

∏
i=1:M p(Xi)

n+1, the theorem is proven.

II-A. Modified BA algorithm
The channel capacity of the simple 2x2 real-valued chan-

nel can now be expressed as:

C = max
p(X)
I(X;Y |H) = max

p(X1)
(I(X1;Y |H))+

max
p(X2)

(H(X2)−H(X2|X1, Y,H)) (8)

The maximization problem is separated into 2 maximization
problems of much lower dimensionality, and power constrain
P k
av =

∑
l=1:|X | p(xl)αk|xl|2, where αk is the scaling

coefficient for the k′th dimension. The degrees of freedom
in the maximization problem are reduced from |X |2M to
only |X |. If we assume symmetric distribution on H , it
is clear that p(X1)

∗ = p(X2)
∗ = · · · = p(X2M )∗, and

P 1
av = P 2

av = · · · = P 2M
av = Pav/2M . In that case the

modified BA algorithm from Section I takes the form:

Sweep α ∈ [αmin;αmax]

• Initialization:
Initialize p(X1), so that it satisfies

∑|X |
i=1 p(x1i) = 1, and∑|X |

i=1 p(x1i)|αxi|2 = Pav

2M

82 Ph.D. Publications



i
i

�main� � 2016/4/7 � 14:09 � page 83 � #95 i
i

i
i

i
i

• E: For each point xi ∈ X and fixed p(xi), compute T̂i:

T̂i =

∫

H

p(H)

∫

y

p(y|x1i,H) log2 p(x1i|y,H) (9)

• M: Given the set of fixed T̂i values, find p(X1) which
maximizes I(X1;Y |H) as:

p(X1) = argmax I(X1;Y |H) =

argmax
∑

i=1:|X |
p(x1i)

(
log2

1

p(x1i)
+ T̂i

)
(10)

• Go to ‘E’ until convergence

III. FURTHER DISCUSSION
III-A. Orthogonal channel

Let us consider the case, when H is diagonal. When the
noise is i.i.d. Gaussian, the likelihood on this channel can be
expressed as a product of the likelihoods on each dimension:

p(Y |X,H) =
∏

k=1:2M

p(Yk|Xk,Hkk) (11)

where Hkk is the element on the k′th row and k′th column
(we assume the channel has full rank). In this case it is
straightforward to prove that the entropy H(X|Y,H) can
be expressed as a sum of functions of the marginal PMFs,
namely H(X|Y,H) =

∑
k=1:2M H(Xm|Ym, H). It suffices

to show that at step n, the conditional distribution p(X|Y,H)
factorizes as:

p(X|Y,H) =
p(Y |X,H)p(X)n∑

k=1:|X 2M | p(Y |xk,H)p(xk)n
=

∏
k=1:2M p(Yk|Xk,Hkk)p(Xk)∏

k=1:2M

∑
i=1:|X | p(Yk|xki,H)p(xki)n

=

∏

k=1:2M

p(Xk|Yk,H) (12)

III-B. Non-symmetric channel matrix distribution
When the channel distribution is not symmetric, the power

constraint on each maximization problem is not necessarily
the same. In order to find these constraints, a power alloca-
tion solution is needed. However, this can be circumvented
if the scaling coefficient α can be chosen differently for
each dimension, and the maximization problem is run on
the full-rank system for each allowed α = [α1, ...α2M ]T

and the set X 2M =
∏

k=1:2M αkX . As usual, the set,
achieving the maximum MI will be chosen as optimal. Since
for fixed p(X), αk directly gives the power, allocated to
dimension k, it is clear that the power allocation is obtained
by the modified Blahut-Arimoto algorithm. When channel
state information at the transmitter is not available or is
imperfect, and symmetry in the channel distribution cannot
be assumed, the optimization problem cannot be separated
into problems of reduced dimensionality, because the optimal

Fig. 1. MI with uniform PMF, the optimal PMFs obtained
from the algorithms in Sections I and II, and the ergodic ca-
pacity. The KLD between the two optimal PMFs is indicated
for selected SNR values

power allocation is not known a-priori, and only the total
power constraint:

Pav =
∑

k=1:|X 2M |
p(xk)[α1, ...α2M ][|x1k|2, ...|x2Mk |2]T (13)

can be considered (here xk = [x1k, ...x
2M
k ]T ). In this case the

degrees of freedom in the optimization process for each α
are reduced from |X |2M to 2M |X |, but the number of values
of the vector α that need to be swept grows exponentially
with M .

IV. SOME RESULTS ON THE OPTIMAL PMFS
We compare the PMF, obtained by the general algorithm

from Section I, with the PMF, obtained by the modified
algorithm from Section II by means of the Kullback-Leibler
Distance (KLD). If p(X)∗gen is the former, and p(X)∗prod is
the latter PMF, the KLD is defined as:

D(p(X)∗gen||p(X)∗prod) =
∑

i=1:|X 2M |
p(xi)

∗
gen log2

p(xi)
∗
gen

p(xi)∗prod

In Fig. 1 the MI is given for both PMFs, together with
the MI with uniform PMF and the ergodic capacity [7].
The MI is practically the same for both. The KLD is also
indicated in the figure for selected SNR values. We see that
it is practically zero (we attribute any error to numerical
inaccuracy) at the low SNR (where the shaping gain is very
small), the medium SNR (where the largest shaping gain can
be expected) and at high SNR (where the uniform PMF is
near-optimal).

V. CONCLUSION
In this paper the factorization properties of the optimal

PMF input to a MIMO channel were considered. It was
proven, that the optimal PMF factorizes into the product
of its marginal PMFs, confirming the conjecture, made in
[1]. The proof relies on the iterative BA algorithm, showing
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that if the initial PMF factorizes, it stays factorized on each
subsequent iteration, evidently reaching the unique optimum,
which must also be factorized. Using the factorization prop-
erty, it was also shown how the power allocation problem
can be solved by the BA algorithm.

VI. APPENDIX A
We prove Theorem 1 for M = 2 and real-valued channel

for simpler notation, and then show that it can be extended
to higher order MIMO and complex-valued channel. Let us
denote f(p(X1)

n+1, p(X2)
n+1) = −H(X2|X1, Y,H = H)

at iteration n for fixed p(X|Y,H):

f =
∑

k=1:|X |
p(x1k)

n+1

∫

y

p(y|H,x1k)·
∑

j=1:|X |
p(x2j|x1k,y,H) log2 p(x2j|x1k,y,H)dy =

=
∑

k=1:|X |
p(x1k)

n+1
∑

j=1:|X |
p(x2j|x1k)

n+1 · gj(x1k) (14)

where the function gj(X1) is defined as:

gj(X1) =

∫

y

p(y|H,x2j, X1).

log2
p(y|H,x2j, X1)p(x2j)

n

∑
i=1:|X | p(y|H,x2i, X1)p(x2i)n

dy =

= log2 p(x2j)
n +D(p(Y |H,x2j, X1)||p(Y |H, X1)) (15)

In (14) the Bayes theorem is used to express the conditional
distribution p(X2|X1,y,H), we remove the dependency on
H where it is not relevant, and we have used the fact that
p(x2j|x1k)

n = p(x2j)
n.

Let us examine the PDFs in the KLD. The first one is a Gaus-
sian with mean H [X1,x2j]

T and covariance matrix given by
the noise. The second is a Mixture of Gaussians (MoG) with
the same covariance matrices, and mixing coefficients given
by the marginal PMF p(X2)

n. For different values of X1, the
shape of both PDFs is unchanged, only the mass is linearly
shifted. We note that this shift is the same for both PDFs.
This means that the relative offset between them is the same
regardless of X1, or in other words - the KLD is unchanged
for different X1. This property is illustrated in Fig. 2. We
plot the likelihood and the marginal PDF for a random H,
2 randomly chosen values of X1 : X1 = xk and X1 = xm,
fixed X2 = xj and a random valid PMF p(X2). The
likelihood (the white Gaussian curve) sits on top of one of
the components of the MoG (plotted in gray). The shift is
along the line, defined by the points H[X1, xj ]

T .
The logarithm in (15) is clearly independent of X1, therefore
gj is independent of X1. Equation (14) can now be rewritten
as:

f =
∑

j=1:|X |
p(x2j)

∑

k=1:|X |
p(x1k|x2j).gj =

∑

j=1:|X |
p(x2j).gj

which proves the theorem.

Fig. 2. Illustration of the KLD independence of X1. The
masses of the likelihood and the marginal PDF are shifted by
the same factor, retaining their relative offset, and therefore
the KLD

It is straight-forward to extend the proof to M >
2 and complex-valued input and channel. The upper-
mentioned linear shift will be across multiple di-
mensions, instead of just 1, still keeping the KLD
D(p(Y |H,x2j, X{1:2M}\2)||p(Y |H, X{1:2M}\2)) indepen-
dent of X{1:2M}\2. Then gj(X1, X3, ...X2M ) only depends
on p(x2j), and f =

∑
j=1:|X | p(x2j).gj .
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Abstract—In this paper the problem of constellation shaping
is considered. Mapping functions are designed for a many-
to-one signal shaping strategy, combined with a turbo coded
Bit-interleaved Coded Modulation (BICM), based on symmetric
Huffman codes with binary reflected Gray-like properties. An
algorithm is derived for finding the Huffman code with such
properties for a variety of alphabet sizes, and near-capacity
performance is achieved for a wide SNR region by dynamically
choosing the optimal code rate, constellation size and mapping
function based on the operating SNR point and assuming
perfect channel quality estimation. Gains of more than 1dB are
observed for high SNR compared to conventional turbo coded
BICM, and it is shown that the mapping functions designed
here significantly outperform current state of the art Turbo-
Trellis Coded Modulation and other existing constellation shaping
methods.

I. INTRODUCTION

It is well known that at high SNR, uniformly distributed
constellation input to a Gaussian channel achieves a rate that
is 1.53dB away from channel capacity, as given by Shannon.
In order to close that gap, a continuous Gaussian distributed
input is required. For discrete modulation used in any practical
digital communication system, that gap can be closed for
very high order constellations (high number of coded bits
per constellation symbol), which have a sampled Gaussian
distribution [1]. Signal shaping is the process of achieving
non-uniform input Probability Mass Function (PMF), from
the uniformly distributed data. Since this usually comes at the
cost of additional redundancy, the channel code rate has to
be increased in order to compensate and keep the same data
rate, or the constellation size has to be increased to accom-
modate the extra redundancy bits and retain the high spectral
efficiency. These in turn degrade the performance and/or lead
to increased complexity at the receiver. However, the energy
savings resulting from signal shaping can compensate for the
performance degradation. These energy savings at a given data
rate are referred to as Shaping gain.

In [2] an algorithm is derived for finding the optimal
PMF on an AWGN channel for a certain SNR, which was
later extended to cover fading scenarios in [3]. The exact
optimal PMF is however very hard to achieve in a practical
communication system, transmitting coded binary data. In [4],
the authors use a shaping code to explicitly select points

with low energy more often. This method results in a PMF
with only a few levels, and thus suffers a significant loss in
Mutual Information (MI) between the input and the output of
the channel w.r.t. a continuous Gaussian distribution. In [5]
superposition modulation is used together with an optimized
irregular convolutional code to combat this problem and
achieve a near-capacity performance. However, the decoding
complexity grows exponentially with the number of levels.
Furthermore, different transmission rates would require differ-
ent codes, which is impractical in a rate adaptive system, such
as e.g. LTE. In [6] the authors approximate the optimal PMF
with a dyadic one (to be defined in Section II). Dyadic PMFs
are attractive because they can be achieved with binary data
in a number of ways, e.g. with Variable Length Codes (VLC)
[6] or a many-to-one strategy [7]. In [7] Raphaeli proposed a
simple method for achieving a dyadic PMF, using the notion
of pragmatic turbo codes [8]. However, the PMF is fixed and
is designed for a certain SNR region, making it sub-optimal
if a change in the spectral efficiency is required.

In this work a rate-adaptive system is designed, by tuning
the transmit PMF depending on the SNR value and the desired
spectral efficiency. The desired PMF is achieved by a many-
to-one mapping function, and near-capacity performance is
reported for a wide SNR region when the mapping function
is combined with a turbo coded Bit Interleaved Coded Mod-
ulation (BICM) [9].

II. SYSTEM OVERVIEW AND MANY-TO-ONE SHAPING

In [10] it is shown how the optimal discrete PMF can
be approximated with a dyadic one. A dyadic PMF has
the form p(xi) = 2−li , where li is a positive integer, and
xi is the i′th symbol of the alphabet. The authors in [10]
prove that the dyadic PMF which minimizes the KLD =
D(papprox||poptimum) is found by Geometric Huffman Codes
(GHC), where KLD is the Kullback-Leibler Divergence,
poptimum is the capacity achieving PMF, and papprox is any
dyadic PMF. The MI between the input and the output of a
real-valued system (i.e. PAM), when signaling with the optimal
input PMF is given in Fig. 1, together with the Shannon
capacity, the MI with an uniform input PMF, and the MI with
GHC approximation. We see that even though the dyadic PMF
cannot achieve capacity, significant gains can still be expected
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Fig. 1. MI for different input PMFs

Fig. 2. Dyadic PMFs, approximating the optimal PMF for selected SNR
regions

at the examined SNR regions and modulation orders. We
also see that after a certain SNR, increase in the modulation
size is needed (around 15dB for e.g. 8PAM, or equivalently
64QAM) if Gaussian capacity is targeted. This is due to the
limited entropy of the small constellations. Examples of dyadic
approximations to the optimal PMF at different SNRs are
given in Fig. 2. The PMF for SNR ∈ [19; 21]dB is the one the
authors used in [7]. Higher or lower SNR will have different
optimal PMFs and dyadic GHC approximations.

The transmitter from [7], which we also use here, is given
in Fig. 3. The data are encoded, and then serial to parallel
converted. Puncturing is then applied to the parity streams, so
that the remaining parity and data bits can be rearranged into
m streams, where the size of the modulation format is 2m.
Each stream is then interleaved, and the signal is modulated.
The receiver is given in Fig. 4. The signal is demodulated and
the data are deinterleaved. The parity streams are de-punctured
and sent for decoding together with the data bits. In case of
iterative demapping, the decoder sends extrinsic information
back to the demapper, after proper puncturing and interleaving.

Dyadic PMF of the output symbols can be achieved by
decoding the binary stream into the constellation symbols
using an entropy rate source code, e.g. VLC [11]. The VLC
needs to be an entropy code, because otherwise there will
exist forbidden sequences in the code, and thus a part of
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Fig. 3. Turbo coded BICM transmitter
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Fig. 4. Turbo coded BICM system receiver

the data will be impossible to decode to any symbol. The
probabilities of the output symbols depend on the length of
the bit labels assigned to them. For dyadic PMFs, the prefix-
free Huffman code is an entropy rate code [11][12]. However,
the lack of any structure in the Huffman code results in a
severe synchronization problem, especially when there is no
error protection before it (as is the case if the VLC is used as
an inner code, or in this case - a mapping function).

In [7], the authors tackle this problem by appending am-
biguous bits (taking a value of both ’1’ and a ’0’) to each bit
sequence, after a constellation symbol is chosen. In this way
the dyadic PMF is retained, but the label length is constant
across symbols. This process can also be viewed as a many-
to-one mapping, where the ambiguous bits have the effect of
assigning multiple bit sequences with the same prefix (defined
by the Huffman code) to the same output symbol. An example
of such a mapping function is given in Table I, where the
ambiguous bits are labeled as ’X’. For example, constellation
symbol ‘-5’ will carry all sequences of length 5, that start
with ‘0010’, namely ‘00100’ and ‘00101’. If the data are
i.i.d., the probability of encountering this prefix sequence, and
thus this constellation symbol, is clearly 2−4. Compared to

TABLE I
EXAMPLE OF 8PAM MAPPING FUNCTION WITH OPTIMAL DYADIC PMF

Constellation symbol X -7 -5 -3 -1 1 3 5 7

Bit Label

0 0 0 1 1 0 0 0
0 0 1 0 1 1 0 0
1 1 0 X X 1 0 1
1 0 X X X X X 1
1 X X X X X X 0

p(X) 2−5 2−4 2−3 2−2 2−2 2−3 2−3 2−5
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conventional turbo coded BICM, the only difference in the
receiver is the demapper, which needs to take the many-to-one
ambiguities into account. Since the complexity of the turbo-
decoder dominates over that of the de-mapper, the complexity
of the receiver overall is not significantly increased.

A. Mapping design criteria for iterative and non-iterative
receivers

In a general BICM, when no iterations are allowed between
the de-mapper and decoder, binary-reflected Gray coding is
chosen since it provides maximum MI at the output of the
demapper with no a-priori knowledge at its input [13]. A
popular assumption is that the MI after the de-mappper in
that case does not improve with iterative de-mapping (or that
estimation of the bit at a certain position in the labeling scheme
does not benefit from knowing the rest of the bits), i.e. [14]:

I(Y ;X) =
∑

m

I(Y ; bm|b1, ...bm−1) ≈
∑

m

I(Y ; bm) (1)

where X is the channel input, Y is the channel output, and bm
is the m′th bit in the labeling scheme. However, (1) does not
hold in the general case. Having a channel code will introduce
dependencies between the bits, and (1) therefore has the form:

I(Y ;X) =
∑

m

I(Y ; bm|b1, ...bm−1) ≥
∑

m

I(Y ; bm) (2)

Where the last inequality turns into equality for binary-
reflected Gray mapping only in perfect conditions, such as
ideal interleaving, perfectly white noise, perfectly white data,
optimal de-mapper etc. The usual methods for generating an
EXIT chart, e.g. [15], do not take this into account, and the
EXIT function of a Gray mapper therefore appears completely
flat. In a practical system it will be slightly inclined. In Fig.
5, the bit-wise (

∑
m I(Y ; bm)) and symbol-wise (I(Y ;X))

MI are given for a 16PAM binary-reflected Gray mapping,
with the optimal maximum a-posteriori probability de-mapper.
We see that at low-to-medium SNR, gains can be expected
from iterative de-mapping even with Gray mappings. As the
SNR increases and the MI curve starts to level out, this
gain disappears. The many-to-one ambiguities will have the
effect of further inclining the EXIT function of the de-mapper,
resulting in a very good match with the EXIT function of the
turbo code, as can be seen from Fig. 6. The shaped system
will thus benefit from iterative de-mapping and decoding.
Moreover, it is well known that convolutional and turbo codes
perform best, when the systematic bits are not punctured.
Adding ambiguities on the bit positions can be considered as
puncturing, because at the receiver those bits will have equal
probability for a ‘1’ and a ‘0’. We are therefore designing
the mapper in a way, so as the unique bit positions resemble a
binary-reflected Gray code, and the systematic bits are mapped
to them. These criteria also ensure very good performance,
when iterations between the decoder and the de-mapper are
not allowed.

Fig. 5. Bit-wise vs. symbol-wise MI for binary-reflecetd Gray coded 16 PAM

Fig. 6. EXIT chart of 16PAM de-mappers

III. OBTAINING BINARY REFLECTED GRAY-LIKE
MANY-TO-ONE MAPPING FUNCTION

In [7], the authors use a single 16PAM mapping function
with label length of 6 bits, including the ambiguous bits.
As shown in Section I, that PMF of the symbols is optimal
only for a limited SNR range (Fig. 2, optimum PMF for
SNR ∈ [19; 21]dB ). A straight-forward way of obtaining a
mapping function for any dyadic PMF is to use a Huffman tree
[12]. However, this method will generally produce a mapping
function without any structure, and very far from the target
binary reflected Gray code. Here we propose a method for
designing the mapping function for a 1D constellation, with
the additional constraint that the dyadic PMF is symmetric
(we note that the GHC approximation from [10] does not
necessarily yield a symmetric dyadic PMF, even though the
optimal PMF is always symmetric).

A. Obtaining the optimal symmetric dyadic PMF

Let p be the optimum PMF of the constellation points and
the constellation have N points, p1:N is the PMF of the points
from 1 to N , and pi is the probability of point i. Let phalf

be the normalized version of p1:N/2 (we assume even number
of constellation points). For symmetric PMFs, it is clear that
phalf = 2p1:N/2.

Theorem 1: The symmetric dyadic PMF q which minimizes
D(q||p) is the one, for which qhalf is the GHC approximation
of phalf

Proof: D(q||p) =
∑N

i=1 qi log2
qi
pi

=∑N/2
i=1 2qi log2

2qi
2pi

= D(qhalf ||phalf ), where the last
two equalities follow from the fact that q and p are
symmetric. As proven in [6], D(qhalf ||phalf ) is minimized
by GHC, which proves the theorem.
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The loss in MI from constraining the dyadic PMF to a
symmetric one is given in Fig. 7 for a 16PAM constella-
tion. We only see loss in the low SNR region, up to 14
dB. Surprisingly, Raphaeli’s PMF [7], even though optimal
for around 20dB, performs very well also for lower SNRs.
We note that the GHC dyadic approximation from [6], and
the symmetric constraint we apply are considered optimal
in the sense that they minimize D(papprox||poptimum). This
optimality does not guarantee that these approximations result
in the minimum loss in MI between input and output (unless
D(papprox||poptimum) → 0), which is also what we can see
in Fig. 7. Finding such an approximation is currently an NP
hard problem [6]. This figure also shows that the PMF from
[7] suffers significant loss at high SNR.

The proposed algorithm for finding the binary reflected
Gray-like Huffman code is as follows:

• Consider the PMF of half the constellation points (e.g.
negative points in a symmetric PAM constellation)

• Assign an all-ones string to the point with shortest
label (symbol number N/2, where N is the number of
constellation points)

• for i = N/2− 1 down to 1 do
1) Copy label i+ 1 to label i
2) For label i, flip the right-most possible bit, making

sure the resulting table is prefix free (bit is high-
lighted in the example in Table II )

3) For label i, set bits (li+1; li] to 1, where li is the
length of label i (bits are underlined in the example
in Table II )

• Once the final label is reached, mirror the table to the
other half of the PMF, while flipping the left-most bit,
ensuring the labels are prefix free

An example of the obtained Huffman code is given in Table
II. The PMF we used there is an example 16PAM dyadic,
namely, optimized for SNR ∈ [22; 25]dB (see also Fig. 2).
As discussed above, the mapping function is obtained by
appending ambiguous bits to the short labels. Shaped QAM
PMFs are obtained as product of PAM PMFs, preserving the
Gray-code property.

IV. RESULTS

In this section we present results for the mapping functions
designed in Section III, and compare them with the system,
originally designed by Raphaeli in [7], and also other near-
capacity achieving schemes. The systems are compared in
terms of Bit Error Rate (BER) and Block Error Rate (BLER).
The BER analysis is chosen for easier comparison with other
systems and capacity. However, the BLER gives a better idea
of the achievable throughput in a real communication system
over a wide SNR range. Consequently, we report the achieved
throughput T in bits per channel use. It is calculated as
T = (1−BLER)η, where η is the spectral efficiency in bits

Fig. 7. MI loss from symmetric dyadic approximation

TABLE II
ALGORITHM FOR FINDING THE BINARY REFLECTED GRAY-LIKE HUFFMAN

CODE FOR A 16PAM DYADIC PMF

X i Bit label li
-15 1 1 0 1 0 0 5
-13 2 1 0 1 0 1 5
-11 3 1 0 1 1 4
-9 4 1 0 0 1 4
-7 5 1 0 0 0 4
-5 6 1 1 0 0 4
-3 7 1 1 0 1 4
-1 8 1 1 1 3

1 9 0 1 1 3
3 10 0 1 0 1 4
5 11 0 1 0 0 4
7 12 0 0 0 0 4
9 13 0 0 0 1 4

11 14 0 0 1 1 4
13 15 0 0 1 0 1 5
15 16 0 0 1 0 0 5

per channel use [b/cu]. Table III summarizes the analyzed
modulation schemes. QAM constellations are designed as
a product of two identical PAM constellations. Therefore,
lQAM
max = 2lPAM

max , where lmax is the length of the longest label
in the QAM/PAM modulation table.

The system parameters are 5000 information bits block
length, 20 turbo iterations, 5 demapping iterations, two con-
volutional component codes with polynomials (23, 37) in
standard octal notation and uniformly distributed puncturing

TABLE III
SUMMARY OF USED MAPPING FUNCTIONS

Constellation lmax Type
256QAM 12 Raphaeli’s [7]
64QAM 8

Designed in Section III
256QAM 10
1024QAM 14
1024QAM 16

64QAM 6

Binary-reflected Gray mappings
with uniform PMF

256QAM 8
1024QAM 10

IEEE ICC 2014 - Communications Theory

2115

88 Ph.D. Publications



i
i

�main� � 2016/4/7 � 14:09 � page 89 � #101 i
i

i
i

i
i

pattern. Simulated data rates (modulation spectral efficiency)
are between 3 and 9, with a step of 0.5 b/cu. We note, that
not all formats from Table III support all possible rates. This
is because the lowest possible code rate of the turbo code
in question is 1/3, and therefore constellation with bit label
length of e.g. 16 bits cannot support spectral efficiency of less
than 5.5 b/cu. We simulated 10000 blocks for each code rate
at each relevant SNR.

A. AWGN channel

As we saw in Fig. 7, Raphaeli’s PMF suffers from a severe
loss above a certain SNR. In Fig. 8, we see the performance
of the mapping functions at η = 7b/cu. The best performing
256QAM PMF is the one designed based on the Huffman
code from Table II. However, at this point the ambiguities
have a significant effect on the waterfall properties of the
turbo code. We see that Raphaeli’s mapping function (which
employs more ambiguities) performs worse than the conven-
tional system with uniform 256QAM, if BER below 10−3 is
targeted. When we increase the modulation order (equivalently
decrease the code rate), the gains are significantly improved
to about 0.9 dB. We see that even for these rather short block
lengths and very high spectral efficiency, we are very close to
uniform capacity (within 0.6dB at BER ≈ 10−5).

In Fig. 9 the throughput envelope curves are given.
The envelope is obtained by taking the throughput of
the best-performing combination code-rate/mapping func-
tion/modulation size at that SNR operating point. We see
that the performance is within 1dB from uniform capacity
(0.3dB at 8b/cu), and that steady shaping gains of 1dB and
above are achieved for high spectral efficiency (η > 5b/cu).
Raphaeli’s system, even though applicable for a wide SNR
range, cannot be used for η > 6.5b/cu, and at η > 6b/cu is
already outperformed by the mapping functions designed here.
The near-capacity Turbo Trellis Coded Modulation (TTCM)
from [16] at η = 5b/cu is also outperformed by about 1dB
(for that system we only report the error-free transmission
SNR point, or the SNR, for which the BER < 10−5). We
note that TTCM is generally limited by the constellation
size (namely increasing the constellation size increases the
complexity exponentially). For comparison we also plot the
performance of the sub-constellation shaping system from [4]
at η = 3b/cu with block length of 64800 bits, which employs
an LDPC code and 32APSK modulation. This system is also
significantly outperformed. We also note, that the explicit
shaping code in such a system significantly increases both
the receiver and transmitter complexity, whereas the mapping
functions designed here (as discussed in Section II) only add
complexity at the de-mapper, which is not so crucial overall.

B. Rayleigh fading channel

Our preliminary results suggested that fading channels will
require stronger codes, and therefore increase in modulation
size, if the spectral efficiency is to be kept high. This can
also be related to the design criteria of trellis codes. Namely
increasing the Euclidian distance is not the main design

Fig. 8. BER at 7 bits/symbol. Shannon capacity at 21.04dB, 1024QAM
uniform capacity at 22.28dB, 256QAM uniform capacity at 22.48dB

Fig. 9. Throughput envelope, AWGN channel

criterion, but maximizing the product of the metrics on the
shortest error-event path and maximizing the length of that
path [17]. Decreasing the code rate (reducing the puncturing)
directly increases this product for trellis (convolutional) codes.
In Fig. 10 the BER performance is given at η = 5b/cu.
We see that already here Raphaeli’s system is outperformed.
This is due to the required increase in modulation size. The
same follows for the TTCM from [18], designed specifically
for fading channels, where a 64QAM is used at this spectral
efficiency, and the 32 APSK from [4] at η = 3b/cu. In Fig.
11 a throughput envelope curve is given. We see that our
mappings perform close to capacity also on the fading channel
(within 1 − 1.5dB, depending on the modulation size and
SNR). The gain over the uniform system vanishes at high SNR
due to the limited size of the analyzed constellations (in this
case - 1024QAM). As seen from Fig. 10, large constellations
with low code rate experience an error-floor at around 10−4.
This may be partly contributed to the rather short block lengths
considered here. We note that the reported performance of both
TTCM systems from [13] (for AWGN channel) and [14] (for
fading channels) is achieved for much longer codes - 15000
information bits in [16] and 10000η information bits in [18],
whereas our system employs 5000 information bits only.

C. Iterative vs. non-iterative de-mapping

As discussed in Section II, even though usually employed
in non-iterative receivers, binary-reflected Gray mapping can
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Fig. 10. BER at 5 bits/symbol. Ergodic capacity at 17.15dB, 64QAM
uniform capacity at 19.70dB, 256QAM uniform capacity at 18.18dB,
1024QAM uniform capacity at 18.12dB

Fig. 11. Throughput envelope, i.i.d. Rayleigh fading channel

still be expected to benefit from iterations when used together
with many-to-one shaping and a turbo code. On Fig. 12 we
see this effect over a wide range of SNR (i.e. the throughput
curves) for AWGN and i.i.d. fading channels. The iterative
gain is kept for a wide region of SNR, due to the fact that as
the SNR increases, the envelope follows the performance of
the higher order modulation formats. i.e. the operating point
always falls in the region, where the MI curve appears linear
in the log-SNR domain, and the bit-wise MI is smaller than
the symbol-wise (see Fig. 5). Towards the very high SNR this
gain is not so pronounced because we are approaching the
point, where the MI for the largest constellation considered
(here 1024QAM), starts to level out.

V. CONCLUSION

In this paper a family of mapping functions were designed
for a turbo coded BICM system employing many-to-one
constellation shaping. The mappings were designed based on
a Huffman code with binary-reflected Gray code properties.
Performance of the mappings was analyzed on AWGN and
i.i.d. Rayleigh fading channels over a wide range of SNR
and spectral efficiencies. It was shown that they outperform
current state of the art TTCM, as well as the original many-
to-one shaping from [7], further reducing the gap to capacity.
It was also shown that iterative de-mapping improves the

Fig. 12. Illustration of the iterative processing gain

performance of binary-reflected Gray coded mappings, when
combined with a turbo code.
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Constellation Shaping for Fiber-optic Channels with
QAM and High Spectral Efficiency
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Abstract—In this letter the fiber-optic communication channel
with Quadrature Amplitude Modulation (QAM) input constella-
tion is treated. Using probabilistic shaping, we show that high
order QAM constellations can achieve and slightly exceed the
lower bound on the channel capacity, set by ring constellations
in [1]. We then propose a mapping function for turbo coded bit
interleaved coded modulation based on optimization of the mu-
tual information between the channel input and output. Using this
mapping, spectral efficiency as high as 6.5 bits/s/Hz/polarization
is achieved on a simulated single channel long-haul fiber-optical
link excluding the pilot overhead, used for synchronization, and
taking into account frequency and phase mismatch impairments,
as well as laser phase noise and analog-to-digital conversion
quantization impairments. The simulations suggest that major
improvements can be expected in the achievable rates of optical
networks with high order QAM.

Index Terms—Constellation shaping, fiber-optic communica-
tion, non-linear channel capacity.

I. INTRODUCTION

IN recent years, theoretical investigations into the fiber optic
channel capacity are gathering more and more attention, as

high Spectral Efficiency (SE) must be achieved to meet the
ever-growing demand for high data rates. It is well known, that
the non-linear Kerr effect in optical fibers limits the capacity
in such links, causing a drop in the maximum achievable
rate when increasing the input power [1]. In [1], the authors
outline the problem and calculate a lower bound on the channel
capacity, by optimizing ring constellations. Details on the
optimization can be found in [2]. Ring constellations, however,
are challenging for implementation and can only serve as
guidelines to the achievable rate. In [3], the lower bound is
increased significantly by making use of the long time correla-
tion of the Cross and Self Phase Modulation (XPM and SPM)
noise in Wavelength Division Multiplexing (WDM) channels.
Continuous Gaussian input is assumed there, which is not
realizable in practice. Constellation shaping is considered in
[4] [5] as a tool to increase the Mutual Information (MI)
between the channel input and output. Specifically in [5] trellis
shaping is used to achieve very high SE, close to the theoretical
lower bound, which adds some latency both in the transmitter
and receiver. In [4] shell-mapping is used to achieve shaping
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Department of Photonics Engineering, Technical University of Denmark, 2800
Kgs. Lyngby, Copenhagen: e-mail: meya@fotonik.dtu.dk
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gain, which quickly becomes impractical as the constellation
size is increased. A successful transmission over a long-haul
link was demonstrated in [6] using low density parity check
codes in combination with polar modulation and iterative
receiver, achieving high spectral efficiency. Polar modulation
is able to achieve a significant shaping gain over Quadrature
Amplitude Modulation (QAM) constellations, but it is more
difficult to realize when the transceiver is subject to limited
resolution and other practical constraints. QAM constellations
are desirable due to their simplicity and the possibility to
directly apply I/Q modulation/demodulation. In [6], digital
back-propagation is performed, something which will often
be difficult, especially in WDM systems, where the coupling
between the channels must be considered.

As part of our previous work [7], near-capacity achieving
coded modulation scheme was designed for AWGN chan-
nel, based on turbo-coded Bit-Interleaved Coded Modulation
(BICM), employing QAM constellations and constellation
shaping. In this paper, a feasibility study is performed for that
method on the fiber-optic communication channel, and a bit-to-
symbol mapping function is proposed that achieves high SE. A
comparison is also made between the achievable lower bounds
on the MI with QAM constellations and ring constellations [1],
which are often considered to be the best suited option for
highly non-linear channels. Unless stated otherwise, no digital
back-propagation will be performed on the received signal.

II. LOWER BOUNDS ON THE CHANNEL CAPACITY

In information theory, channel capacity is defined as the
maximum Mutual Information (MI) between the channel input
and output, where the maximization is performed over all
input Probability Density Functions (PDF) (Probability Mass
Functions (PMF) in case of discrete input). When the input is
constrained to some finite size alphabet, e.g. QAM constella-
tion, the constrained capacity and the capacity achieving PMF
are found by the Blahut-Arimoto (BA) algorithm [8] [9]. For
a channel with memory, the capacity is defined as [1]:

C =
1

N
max
p(XN )

I(XN ;YN ) (1)

where XN and YN are input and output vectors of length N ,
respectively, I(·; ·) is the MI between input and output, and
p(XN ) is the N−dimensional input PDF. Each dimension of
the input vector takes a value from the signal set. For accurate
MI estimation, N needs to be very large, however, even
moderate values would make (1) too complex to calculate,
since it requires Monte-Carlo estimation of the input-output

IEEE Photonics Techology Letters 2014 91



i
i

�main� � 2016/4/7 � 14:09 � page 92 � #104 i
i

i
i

i
i

2

relation. What can be calculated instead is the MI of the
averaged channel when the input symbols are independent
and identically distributed (i.i.d.), leading to a lower bound
on capacity. Applying average power constraint Pav to the
input to the channel, the lower bound is [1]:

Ĉ = max
p(X)
I(X;Y ) ≤ C, s.t. E

[
X2

]
≤ Pav (2)

where X is a scalar, and E [·] is the expectation operator.

A. MI with QAM Constrained Input

A requirement for the MI optimization algorithm is that the
input-output relation of the channel is known, i.e. we have
an expression for the probability p(Y |X). Since this is not
available, the usual practice is to numerically solve the non-
linear Schrödinger equation [10] for a long sequence of input
symbols, and then approximate the output density p(Y |X) for
each symbol of the input set with a non-circularly symmetric
Gaussian distribution, with mean and variance given by the
sample mean and variance. For a detailed description of
estimating the output density, the reader is referred to [1]. We
maximize the MI lower bound (2) w.r.t. the probabilities of the
points of a fixed 1024 QAM constellation, which is referred
to as probabilistic shaping. A single channel link is chosen
for the optimization, where both polarizations were employed.
The usual lumped amplification is considered, using Erbium
Doped Fiber Amplifiers (EDFA). The link parameters are as
follows:

• Total length : 800 km
• Fiber span length : 80 km
• EDFA noise figure : 3 dB
• Fiber dispersion : 17 ps / nm · km
• Fiber loss : 0.2 dB/km

The central wavelength is λ = 1.55 µm, and the signal
bandwidth is 28 GHz. The dispersion slope is assumed to
be zero. We simulate 105 symbols for MI estimation, which
makes the variations around the reported values negligible. The
achieved lower bounds are given in Fig. 1. For comparison we
also plot the lower bounds achieved with ring constellations,
optimized as in [2]. This optimization is only performed on
the radius of the first ring, and the rest of the rings are equally
spaced and equally occupied. Constellations of K = 64 rings
and maximum of 4096 and 1024 points are considered. Going
beyond that makes the brute force geometric optimization of
the rings challenging, and furthermore does not improve the
MI significantly, when full optimization on the location of
each point, the radius of each ring and the ring occupancy is
not performed [2]. Probabilistic shaping on the other hand is
a convex problem, and therefore tractable for large number of
rings. For example 1024 QAM can be seen as a special type of
ring constellation with 109 rings and unequal ring occupancy,
where the probability of each ring can further be optimized
through the PMF. We see in Fig. 1 that the 1024 QAM
probabilistic optimization studied here can achieve and slightly
exceed the lower bound on the channel capacity, set by the ring
constellations from [2]. The exact optimal PMF, however, is
very hard to achieve in practice. Furthermore, the optimum is
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Fig. 1. MI achieved by QAM and ring constellations.

different at different input power values. Approximations are
therefore needed in a flexible design. The last curve in Fig. 1
is the performance with the PMF, given in Fig. 2. A detailed
description of that PMF and how it is achieved in practice is
given in the next section.

III. CONSTELLATION SHAPING FOR PRAGMATIC TURBO
CODES

In [11], the authors propose a dyadic PMF approximation.
In a dyadic PMF all points have a probability, which can be
expressed as 2−d, where d is some integer. The method for
achieving a dyadic PMF relies on pragmatic turbo coding. The
transmitter for this method is given in Fig. 3. The data are
encoded, and then serial to parallel converted. Puncturing is
then applied to the parity streams, so that the remaining parity
and data bits can be rearranged into m streams, m being the
maximum number of coded bits per symbol. Each stream is
then interleaved, and the signal is modulated. Dyadic PMF is
achieved by a many-to-one mapping function. We found that
the original design from [11] performs poorly if the required
SE increases beyond a certain point [7]. This is partly due to
the 256QAM size constraint in [11], and also due to the PMF
and mapping not being optimized for high SNR. We therefore
propose the mapping function in Fig. 2, where the achieved
PMF is plotted, together with the symbol labels (we only plot
a 1-D PMF and mapping, i.e. 32PAM, and the 1024QAM
structure is achieved by taking a product of PAM with itself).
For this mapping function m = 8. Each symbol can take
multiple bit labels, making some symbols more likely to be
produced when the input binary data are i.i.d. For example
symbol ’-1’ takes all bit strings of length 8, which begin with
the prefix ’1111’ (16 different bit strings in total), making its
probability 2−4. Symbol ’-31’ only takes one bit string, and
its probability is therefore 2−8. It is crucial that the ambiguous
bit positions (marked with ’X’) are taken from the parity bits
of the turbo code, and the positions, where no ambiguities are
found for any symbol, are associated with the systematic bits
(see Fig. 3). This requirement is due to the fact, that these
ambiguities can be seen as non-stationary puncturing of the
bits, and the turbo codes respond better if the puncturing is
performed on the parity bits, instead of the data bits. Due
to space limitations, the algorithm for obtaining the mapping
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Fig. 2. 32 PAM mapping function for many-to-one constellation shaping
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Fig. 3. Turbo coded BICM transmitter for many-to-one constellation shaping

function is omitted here, but can be found in [7], together with
a more detailed explanation and performance analysis. Here
we only state that binary reflected Gray-like mapping structure
is one of the requirements. Even though the achieved PMF is a
heavily quantized version of the optimal one, we saw in Fig.1
that significant shaping gains can still be expected for wide
range of input power levels.

At the receiver, iterative processing between the decoder and
de-mapper is sometimes required, depending on the operating
SNR, achieved PMF, etc., in order to resolve the ambiguities,
induced by the many-to-one mapping, and achieve the full
shaping gain.

IV. PERFORMANCE IN PRESENCE OF IMPAIRMENTS

While Fig. 1 outlines theoretically achievable rates, the main
reason for analyzing QAM constellations is their practical-
ity. In this section we evaluate the Bit Error Rate (BER)
performance in the presence of various impairments, present
in optical systems, such as frequency offset, local oscillator
phase noise and limited Analogue to Digital Converters (ADC)
precision. All of them are crucial when constellations as large
as 1024 QAM must be detected. In order to evaluate the
system from the previous section, simulations are made for
the link from Section II, which take all of these impairments
into account. The transceiver parameters are given in Table I.

Data-aided carrier synchronization and equalization are per-
formed. To that end, QPSK pilot symbols are interleaved with
the coded symbol sequence. The pilots are spread throughout
the block in chunks of 20 symbols, in order to mitigate
the phase noise contribution to the frequency offset. A brute
force search is performed on the frequency offset, and the
maximum-likelihood solution is obtained. The constant mod-
ulus algorithm is used for equalization, based only on the pilot
sequences. The total amount of pilot overhead used is around
10%. This number can be decreased if more sophisticated
synchronization algorithms are used, however, this is outside
the scope of the present paper. Both polarizations are used for
transmission.

TABLE I
TRANSCEIVER PARAMETERS

Local oscillator linewidth 10kHz

Frequency mismatch 50MHz

ADC resolution 7 bits per real dimension

ADC sampling frequency 56GHz

Baudrate 28Gbaud

# turbo iterations 10

# de-mapping iterations 5

In Figs. 4 and 5 BER performance is shown as a function
of the input power for the link from Section II, at 6 and 6.5
bits/s/Hz/polarization input SE. We sweep the input power
with a step of 0.2 dBm in all cases, and the absence of a point
on a curve means that no errors were found for the duration of
the simulation. A specific SE is achieved by properly selecting
the code rate for each constellation. If the desired spectral
efficiency is η, the code rate must be R = η/m. The turbo code
we use here has two identical constituent convolutional codes
with generator polynomial (23, 37) in standard octal notation,
and memory M = 4. Code rate adjustments are performed
via uniformly distributed puncturing of the turbo code. The
block length used is L = 6000 symbols, and 50 blocks were
simulated in each case, making the total number of transmitted
information bits 3.6 · 106 in the first case, and 3.9 · 106 in
the second. The error free region in both cases therefore
corresponds to actual BER < 2.7 · 10−7 and 2.5 · 10−7,
respectively. As with most iterative systems, here we expect
an error floor to appear somewhere below these numbers. The
usual requirement for optical communication systems is BER
< 10−15. Therefore an outer code will be necessary. High rate
Reed-Solomon codes, e.g. the OTN standard defined (239,255)
code can bring the BER from 10−4 to 10−15 at the cost of
small additional redundancy [12]. As this will be required by
all modulation formats listed here, their relative performance
would not change, only the actual achieved data rates will
be reduced correspondingly. Simulation of this outer code is
omitted in this paper.

We examine the 1024QAM from Fig. 2, the original
mapping function from [11], and also a 256QAM mapping
we designed as part of our previous work [7]. At η = 6
bits/s/Hz/polarization (Fig. 4), the mapping from [11] results
in a rather high error floor when the non-linearities start to take
effect. The error floor fluctuates due to the limited number of
simulated blocks, however, the effect is still clearly visible.
The 1024QAM shaped system we propose here is clearly
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Fig. 4. BER performance with 6 bits/s/Hz/polarization input data rate.

outperforming the rest. All of them, however, are able to reach
an ”error-free” performance. When the data rate is increased to
6.5 bits/s/Hz/polarization, only the mapping from Fig. 2 has an
”error-free” region, where the other constellations fail (Fig. 5).
When operating at 28 Gbaud the achieved throughput is 336
and 364 Gbps, respectively. As mentioned, the pilot overhead
used for synchronization in this design is around 10%, and
taking into account the potential additional redundancy from
the above-mentioned outer code, the actual data throughput
achieved here is 283.4 and 307.1 Gbps, respectively.

Multi-channel systems are out of the scope of this paper. It is
clear that in a WDM environment the XPM will dominate the
SPM effects. The overall performance in that case will clearly
be degraded, but whether shaping gain can still be achieved
and how the XPM affects the shaped system is left as future
research.

V. COMPLEXITY ANALYSIS

The main problem with running turbo coded systems at high
rates is the complexity of the decoder. Extreme parallelization
would be needed for the proposed design. Parallel architectures
do exist for turbo codes, but a problem remains that the
throughput of the decoder generally does not scale linearly
with the degree of parallelization, see e.g. [13]. The proposed
design would therefore require hundreds of parallel BCJR
decoders, in order to achieve the above-mentioned speeds at
state of the art clock frequencies. Memory is another issue
for turbo decoders. The module, dominating the memory
requirement is the branch metric calculator. If the accuracy
in bits of the stored messages is Q, this requirement is
∝ Q · L ·M · η, which is of the order of a few hundred of
kilobytes for practical values of Q for each BCJR decoder.
We note that all of these parameters can be optimized, in
order to reduce the complexity. The number of turbo and
decoding iterations can also be reduced. We found that going
for example to 2 de-mapping iterations and 10 turbo iterations
it is still possible to reach an ”error-free” performance (Fig.
5). Even with these optimizations, implementing turbo coded
schemes for optical communications remains a challenging
task.

VI. CONCLUSION

In this paper constellation shaping for QAM input to a
fiber optic channel was considered. We showed that when the
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256QAM uniform
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256QAM shaped [11]
1024QAM uniform
1024QAM shaped

10 turbo iterations
2 de−map iterations

Fig. 5. BER performance with 6.5 bits/s/Hz/polarization input data rate.

optimization of ring constellations is restricted as in [1], QAM
with probabilistic shaping is able to achieve a better lower
bound on the achievable rate than the ring constellations. A
QAM communication system was then simulated, employing
a specific shaping method, where the performance limiting
channel impairments and transceiver imperfections were taken
into account. Many-to-one mapping was combined with a
turbo code in order to optimize the PMF of a 1024QAM
constellation. This constellation was then used to demonstrate
how spectral efficiency up to 6.5 bits/s/Hz/polarization can be
achieved on a 800km link, suggesting even higher efficiencies
on shorter distances.
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Abstract—In this paper the capacity of a Multiple Input
Multiple Output (MIMO) channel is considered, subject to
average power constraint, for multi-dimensional discrete input,
in the case when no channel state information is available at
the transmitter. We prove that when the constellation size grows,
the QAM constrained capacity converges to Gaussian capacity,
directly extending the AWGN result from [1]. Simulations show
that for a given constellation size, a rate close to the Gaussian
capacity can be achieved up to a certain SNR point, which
can be found efficiently by optimizing the constellation for the
equivalent orthogonal channel, obtained by the singular value
decomposition. Furthermore, lower bounds on the constrained
capacity are derived for the cases of square and tall MIMO
matrix, by optimizing the constellation for the equivalent channel,
obtained by QR decomposition.

I. INTRODUCTION

In next generation communication systems, high spectral
efficiency will be needed in order to satisfy the exponential
increase in data rate. The Multiple Input Multiple Output
(MIMO) principle with large number of transmit and receive
antennas (massive MIMO) will be a key technology to achiev-
ing this high spectral efficiency [2]. The ergodic capacity of
the MIMO channel was found in [3], and is achieved when
the input is a continuous Gaussian with variance given by
the power constraint. However, practical transceivers demand
signaling with constellations from a finite alphabet, making
the analytical calculation of the Constellation Constrained
Capacity (CCC) difficult. In [4][5] Blahut and Arimoto de-
rive an iterative algorithm for finding the capacity and the
capacity achieving input distribution on an AWGN channel.
This algorithm was later modified in [6] to cover MIMO
fading channels. However, the complexity of the algorithm
grows exponentially both with the constellation size and the
number of transmit antennas, making it impractical to calculate
the CCC beyond e.g. 2x2 64QAM transmission. In order to
cope with this problem, the authors in [6] conjecture, that
when the input is taken as a Cartesian product of 1D PAM
constellations, the Probability Mass Function (PMF) of the
discrete points factorizes into the PMFs of each dimension,
thus reducing the complexity of the optimization to 1D. As part
of [7] we proved this conjecture to be true. On the other hand,
Mutual Information (MI) is usually calculated using Monte-
Carlo estimation of the normalized likelihood functions. When
the number of receive antennas (the dimensionality of the ob-
servations) grows, the complexity still increases dramatically.

In [8] the authors derive an analytical approximation of the
MI when the input is uniformly distributed. However, it is
seen to be inaccurate at low and high SNR. In [9] a better
approximation is derived for high SNR via expansion of the
MI. Lower and upper bounds are derived in [9] [10] based on
the relation between the MI and the Minimum Mean Squared
Error. Those bounds are only valid for uniform PMF, and are
also quite inaccurate for low-to-moderate SNR. High SNR
asymptotic behavior of the MI is studied for arbitrary input
distribution in [11], where only AWGN channel is considered.

To our knowledge, the CCC of MIMO channels in the
moderate SNR region, which is where practical communi-
cation systems tend to operate, is yet to be characterized.
Furthermore, in that region the largest shaping gain can be
expected for constellations of practical size [12]. The main
contributions of this paper are as follows:

• It is proven, that as the constellation size grows, the CCC
of MIMO channels approaches the Gaussian capacity,
directly extending the AWGN result from [1]. The con-
vergence rate is also the same as in [1]. For a given
constellation size, information rates close to Gaussian
capacity can be achieved up to a certain SNR point, which
can be efficiently found by optimizing the constellation
for the equivalent orthogonal channel, obtained by the
Singular Value Decomposition (SVD).

• Lower bounds on the CCC of MIMO channels are
derived for any SNR, based on the QR decomposition
of the channel, using the diagonal elements of the upper-
triangular R matrix. The bounds hold for the cases of
square and tall MIMO matrix.

• It is shown empirically that in the low-to-mid SNR region
the CCC is the same as the capacity of the equivalent
orthogonal channel, obtained by the SVD, whereas in the
mid-to-high SNR the above-mentioned lower bound can
be used to characterize the MI.

II. CHANNEL MODEL AND CCC OF ORTHOGONAL
CHANNELS

We consider a standard MIMO channel model:

Y = HX +W, (1)

where X is M -dimensional complex random variable vector
X = [X1, X2, . . . XM ]T , which can be continuous, or discrete
taking values from the complex-valued set XM , obtained as
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the Cartesian product of the basic 1D set X . This can be
a QAM, APSK, PAM etc. complex-valued set. The matrix
H represents the [NxM ] complex-valued channel, assumed
here to have full rank R = min(M,N). The N dimensional
complex AWGN W is assumed here to have unit variance and
Y is the N dimensional channel observation. The received
SNR with these assumptions is defined as SNR= Pav/M . We
assume the channel realization is known at the receiver, but not
at the transmitter. When the input is continuous, the ergodic
capacity is achieved by Gaussian input distribution and can be
found as [13]:

CG = EH

[
log2 det

(
IN +

Pav

M
HHH

)]
, (2)

where EH [·] denotes the expectation operator w.r.t. H, IN is
a [NxN ] identity matrix, (·)H means conjugate transpose and
Pav =

∑|XM |
i=1 p(xi)α|xi|2 is the average power constraint at

the transmitter. Here α is some scaling coefficient, and xi is
the i − th point in the constellation. In this paper the focus
is on finding the capacity and capacity achieving PMF when
a fixed input constellation is used and without channel state
information at the trasmitter, i.e. uniform power allocation
and no pre-coding are employed. The channel capacity when
signaling with XM and averaging among the possible channel
realizations can be expressed as [6]:

C = max
p(X),α

EH [I(X;Y |H)] =

= max
p(X),α

|XM |∑

i=1

p(xi)

(
log2

1

p(xi)
+ Ti

)
, (3)

s.t.
|XM |∑

i=1

p(xi)α|xi|2 = Pav and
|XM |∑

i=1

p(xi) = 1

where I(·; ·) is the MI and:

Ti = EH

[∫

y

p(y|xi,H) log2 p(xi|y,H)dy

]
. (4)

As mentioned before, when the order of modulation and
number of dimensions of the signal grow, maximizing (3) is
impractical even when performed offline due to the exponential
increase in the number of parameters to be optimized, and
because it involves numerically calculating the expectation
and integration in (4). We found that sufficiently accurate
calculation of the MI on e.g. 64QAM 2x2 requires more than
105 samples of the observation space, resulting in a likelihood
matrix of size [105x22·6]. Assuming larger constellations and
larger antenna arrays, e.g. 256QAM and 8x8 set-up, which is
already of interest in practical scenarios for single user MIMO
in the e.g. IEEE 802.11ac WLAN standard, the number of
samples in the output, needed for accurate estimation of the MI
grows exponentially, thus making the calculations challenging
for a standard computer.

A. Capacity of orthogonal channels

In this section we consider the CCC of orthogonal channels
(or set of parallel channels). This means that the channel

matrix can be expressed as diagonal, for which M = N = R.
For each channel realization, the likelihood is Gaussian and
factorizes as:

p(Y |X,H) =

M∏

k=1

p(Yk|Xk,Hkk), (5)

where Hkk is the element on the k − th row and k − th
column of H, and Xk is a random variable, representing the
k− th dimension of X , taking values from X . As we prove in
[7], when the input constellation is constructed as a Cartesian
product of M 1D constellations X , the capacity achieving
PMF factorizes into its marginal PMFs on each dimension.
The conditional distribution p(X|Y,H) then also factorizes as
p(X|Y,H) =

∏
k=1:M p(Xk|Yk,Hkk) [7]. The capacity can

then be expressed as:

Ĉ = max
p(X)

EH [I(X;Y |H)] =

max
p(X)

EH [H(X|H)−H(X|Y,H)] =

max
p(X)

EH

[
M∑

k=1

[H(Xk|Hkk)−H(Xk|Yk,Hkk)]

]
=

M∑

k=1

max
p(Xk)

EHkk
[I(Xk;Yk|Hkk)] , (6)

where H is the entropy function. When the channel matrix
elements are identically distributed, (6) simplifies to:

Ĉ = M max
p(Xi)

EHii
[I(Xi;Yi|Hii)] (7)

for any i ∈ [1;M ], subject to power constraint on the i − th
input P i

av = Pav/M .

III. CAPACITY OF INTERFERENCE CHANNELS

In this section the core results of the paper are derived. Let
U,S and V be the SVD components of H : H = USVH . We
assume that S is ordered, so that its first R diagonal elements
are non-zero. Let us then consider 3 different channel models:

1) Y = HX+W : one realization of the channel from (1)
2) Ŷ = SX̂ + W : the channel, obtained by the SVD,

where Ŷ = UHY and X̂ = VHX
3) Ỹ = SX + W : orthogonal channel, where S is the

diagonal channel matrix.
We denote the MI on each channel as a function of the
input distribution with I1(·), I2(·) and I3(·), respectively. Let
δ(·) denote the Dirac-delta function. We will also need the
following PDFs:

1) p1(X) =
∑

i=1:|XM | wiδxi

2) q1(X) =
∑

i=1:|XM | wiδSxi

3) p2(X) =
∑

i=1:|XM | wiδVHxi

4) q2(X) =
∑

i=1:|XM | wiδSVHxi

5) pG(X) = N (0, diag(Pav/M))
6) qG(X) = N (0,SSHdiag(Pav/M))

In the first 4 PDFs, wi ≥ 0 for all i and
∑

i=1:|XM | wi = 1.
In the last 2 PDFs, diag(Pav/M) is the covariance matrix
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of the Gaussian, which is a diagonal matrix with elements
Pav/M or Sii

2Pav/M , respectively. Let p∗1 denote the optimal
PMF (or the PMF with optimal weights wi) for Channel 3),
i.e. p∗1 = argmax I3(p1(X)). Likewise, p∗2 is the PMF with
the same weights on the rotated version of the original QAM
constellation. We will need the following auxiliary theorems:

Theorem 1: For any input PDF, p1(X), the mutual in-
formation on the non-orthogonal channel is the same as
on the equivalent orthogonal channel with rotated input:
I1(p1(X)) = I2(p2(X))

Proof: Given in the Appendix.
Theorem 2: When P 1

av = P 2
av = · · · = PM

av = Pav/M , the
MI on all three channels with a continuous Gaussian input is
the same: I1(pG(X)) = I2(pG(X)) = I3(pG(X))

Proof: Given in the Appendix.
In [1] the authors prove that as the size of the constellation
grows, Shannon capacity can be approached for AWGN chan-
nels. The proof relies on the fact that the MI is continuous in
the quadratic Wasserstein space. The loss, incurring from the
discrete nature of the input is then continuous in the quadratic
Wasserstein distance W2 between the discrete PMF and the
continuous Gaussian distribution. The quadratic Wasserstein
distance between two probability measures μ and v from the
same space is defined as:

W2(μ, v) = inf
{(

EX,Y

[
||X − Y ||2

])1/2}
, (8)

where X and Y are governed by laws μ and v respectively,
and the minimum is taken over all joint distributions of (X,Y )
[1][14]. In Section II-A we showed that the capacity of an
orthogonal channel is the sum of the capacities on each parallel
channel, and therefore:

lim
|X |→∞

I3(p∗1(X)) = I3(pG(X)). (9)

Using the above results, we state the following theorem:
Theorem 3: Consider the interference channel model

1). As the size of the constellation grows, the CCC is
lim|X |→∞ I1(p∗1(X)) = I1(pG(X))

Proof: The continuity of the MI in the W2 space result
from [1], together with the strict concavity of the MI in the
input distribution [15] mean that when SNR> 0:

lim
|X |→∞

I3(p∗1(X)) = I3(pG(X)) ⇔

lim
|X |→∞

W2(q1(X), qG(X)) = 0. (10)

When S is full rank, if for some joint PDF p(X,Y ) we have
that EX,Y

[
||X − Y ||2

]
= 0 ⇒ ESX,SY

[
||SX − SY ||2

]
=

ESX,SY

[
||S(X − Y )||2

]
= 0. Then the following is true:

lim
|X |→∞

W2(q1(X), qG(X)) = 0 ⇔

lim
|X |→∞

W2(p1(X), pG(X)) = 0. (11)

The distribution pG(X) is rotationally invariant, and therefore
W2(p

∗
1(X), pG(X)) = W2(p

∗
2(X), pG(X)). Then applying

(10) we have:

lim
|X |→∞

W2(q2(X), qG(X)) = 0 ⇒

lim
|X |→∞

I2(p∗2(X)) = I3(pG(X)). (12)

By Theorems 1 and 2 we have I1(p∗1(X)) = I2(p∗2(X)) and
I3(pG(X)) = I1(pG(X)) which proves the theorem.

Consequences of Theorem 3: The main consequence is that
as the constellation size grows, Gaussian capacity can be
approached for the interference channel for any SNR> 0. This
is a direct extension of the result in [1] for AWGN channel.
However, there is also a very practical application of Theorem
3: if for a fixed constellation size the CCC of the orthogonal
channel approaches the Gaussian capacity, similar CCC can be
expected on the equivalent interference channel without pre-
coding. Using similar arguments as in [1], the rate at which
the gap to Gaussian capacity vanishes can be estimated as
O(1/|X |).

Theorems 2 and 3 are proven for one realization of the
channel. However, they can be extended to cover the ergodic
case:

Theorem 4: lim|X |→∞ maxp1(X) EH [I1(p1(X))] = CG

Proof: Let us re-define p∗1(X|Hk) =
argmax I1(p1(X)|H = Hk) as the optimal PMF for
the k − th channel realization. By Theorem 3 we have that:

lim
|X |→∞

W2(p
∗
1(X|Hk), pG(X)) = 0 (13)

for all k. The Wasserstein distance is a distance measure, and
therefore [14]:

W2(p
∗
1(X|Hk), p

∗
1(X|Hj)) ≤

W2(p
∗
1(X|Hk), pG(X)) +W2(p

∗
1(X|Hj), pG(X)). (14)

Taking the limit of large constellations, we get:

lim
|X |→∞

W2(p
∗
1(X|Hk), p

∗
1(X|Hj)) ≤

lim
|X |→∞

W2(p
∗
1(X|Hk), pG(X))+

+ lim
|X |→∞

W2(p
∗
1(X|Hj), pG(X)) = 0. (15)

The continuity of the MI means that due to the vanishing
Wasserstein distance, in the limit of infinitely large constel-
lations, if the optimal PMF on channel j achieves Gaussian
capacity, it must also achieve similar capacity on channel k:

lim
|X |→∞

I1(p∗1(X|Hk)|H = Hk) = I1(p∗1(X|Hj)|H = Hk)

= I1(pG(X)|H = Hk) (16)

for any j and k. Then for the average MI we have:

lim
|X |→∞

EH [I1(p∗1(X,Hk))− I1(pG)] = 0 (17)

for any k, which proves the theorem.

IEEE ICC 2015 97



i
i

�main� � 2016/4/7 � 14:09 � page 98 � #110 i
i

i
i

i
i

A. Lower bounds via QR decomposition

Let H = QR be the QR decomposition of H, where Q is
unitary and R is upper-triangular. A well known method for
detection of MIMO signals uses the form of R to successively
detect each layer by removing the interference from the pre-
viously detected layers - Successive Interference Cancellation
(SIC). In this section we analyze the maximum rate which
can be achieved by SIC under uniform power allocation and
i.i.d. on the elements of the channel matrix, for the case of
M ≤ N , and therefore R = M .

We introduce two more channel models - Channels 4) and
5), with MI I4(·) and I5(·), respectively:

4) Ẏ = RX +W , where Ẏ = QHY
5) Ÿ = diag(R)X +W ,

where diag(R) means the matrix with the diagonal elements
of R on its diagonal, and zeros elsewhere. Rotation does not
change the multivariate Gaussian with i.i.d. on each dimension,
and the noise distribution is therefore unchanged. Similarly to
p∗1(X), we define the optimal discrete PMF input to Channel
5) as p∗5(X) = argmax I5(p(X)).

Theorem 5: I1(p∗5(X)) ≥ I5(p∗5(X))
Proof: We express the MI on Channel 4) with input

p∗5(X) as:

I4(p∗5(X)) = H(X)−H(X|Ẏ ) =

= H(X)−H(XM |Ẏ )−
∑

i∈{1:M−1}
H(Xi|Ẏ , X{i+1:M}) ≥

≥ H(X)−H(XM |Ẏ )−
∑

i∈{1:M−1}
H(Xi|Ẏ ), (18)

where the last inequality follows from the fact, that condition-
ing does not increase the entropy. Using this argument again,
we can write:

H(XM |Ẏ ) ≤ H(XM |ẎM ) = H(XM |ŸM ), (19)

where we have also used the fact, that on the M − th layer
of Channel 4) there is no interference, and the conditional
distributions p(ẎM |XM ) and p(ŸM |XM ) for Channels 4) and
5) are the same. Consequently, for the same input p∗5(X),
p(XM |ẎM ) and p(XM |ŸM ) are also the same.

Due to the i.i.d. of the channel elements, and applying the
chain rule for entropy multiple times, for any i we have:

H(Y |XM , H) = H(Y |Xi, H) =

H(QHY |XM , H) = H(QHY |Xi, H) ⇒
H(Ẏ |XM , H) +H(XM ) = H(Ẏ |Xi, H) +H(Xi) ⇒ (20)

H(Ẏ , XM |H) = H(Ẏ , Xi|H) ⇒
H(XM |Ẏ , H) +H(Ẏ ) = H(Xi|Ẏ , H) +H(Ẏ ) ⇒

H(XM |Ẏ , H) = H(Xi|Ẏ , H) ≤
≤ H(XM |Ÿ , H) = H(Xi|Ÿi, H). (21)

Equation 20 follows from the fact, that due to the i.i.d. of the
channel elements the marginal distributions on each dimension

of X are identical. In (21) we have used that by definition,
Channel 5) is orthogonal. Inserting (21) in (18) we have:

I4(p∗5(X)) ≥ H(X)−
∑

i∈{1:M}
H(Xi|Ẏ ) ≥

= H(X)−
∑

i∈{1:M}
H(Xi|Ÿi) = I5(p∗5(X)). (22)

Similarly to Theorem 1, we have that I4(p∗5(X)) =
I1(p∗5(X)), which proves the theorem.

We have arrived at a lower bound for the channel capacity.
The MI I5(p(X)) can be easily optimized and calculated, in a
manner, similar to I3(p(X)), since the channel is orthogonal.
We only need the elements on the diagonal of the R matrix.
Even though Theorem 5 was proven for p5(X)∗, it actually
follows for any p(X), for which the dimensions of X are i.i.d.,
e.g. the uniform PMF.

In the case of continuous Gaussian input with uniform
power allocation, the proof of Theorem 5 can be simplified.
We can notice that the outputs of Channels 4) and 5) in that
case are Gaussians, with respective covariance matrices:

Σ̇ = Cov
[
Ẏ
]
=

Pav

M
RRH +ΣW (23)

Σ̈ = Cov
[
Ÿ
]
=

Pav

M
diag(R)diag(R)H +ΣW , (24)

where ΣW is the diagonal covariance matrix of the noise. It
is then trivial to show that:

det Σ̇ ≥ det Σ̈ ⇒ I4(pG(X)) ≥ I5(pG(X)), (25)

with equality if SNR = ∞.

B. Discussion of the theorems in Section III

The main implication of the theorems in this section is
that while the ergodic Gaussian capacity of the orthogonal
channels, obtained from the SVD of each channel realization
can be approached with a finite size constellation, it can be
expected that the ergodic Gaussian capacity of the interference
channel is also approached with the same constellation, having
the same PMF. As discussed in Section II-A, the CCC and
the capacity achieving PMF of the orthogonal channel are
easily calculated by the Blahut-Arimoto algorithm, taking Hii

in (7) to have the distribution of the singular values of the
MIMO matrix. For large MIMO it is shown in [16] that the
singular values distribution of Gaussian distributed channel
matrix coefficients follows a quarter-quadratic law, which can
be used to generate singular values for the 1D optimization.
For small matrices the SVD is simple to calculate, and the
distribution can be accurately approximated by Monte Carlo
methods. When calculating the QR decomposition based lower
bounds, the distribution of the elements on the diagonal of
the R matrix is needed. Even though this distribution is not
known, similar approach can be taken - draw matrices H from
their known distribution, perform the QR decomposition on
each H, and use the diagonal elements of R instead of Hii

when maximizing (7).
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As we mentioned in the introduction, complex-valued input
sets are the focus here. When X is the popular QAM set, which
is a product of two real-valued PAM sets, the reduction in
complexity is relevant further down to the PAM set. Theorems
4 and 5 can then be used without loss of generality. Equation
(7) becomes Ĉ = 2M maxp(Xi) EĤii

[
I(Xi;Yi|Ĥii)

]
, where

Ĥ is the real-valued equivalent of H, and each dimension of
the input is taken from the corresponding PAM set. This is the
model we consider in the following sections.

C. Some near-optimal input PMFs

Since we will exclusively use orthogonal channels to ap-
proximate the capacity in (3), it is worth examining the
implications the distribution of the singular values has on the
optimal PMF of X . Figure 1 depicts the optimal 8PAM compo-
nent PMFs, i.e. p(X) = argmaxES11

[
I(X1; Ŷ1|S11)

]
, for

transmission of different rank R = M = N at the same aver-
age SNR, for which EH [I3(p∗1(X))] ≈ CG. It is interesting
to see how the shape of the optimal PMF changes when we
increase the rank. This can be contributed to the fact, that
the distribution of the singular values broadens. The AWGN
channel can be considered as MIMO with zero variance of
the singular values. The optimal input PMF on the AWGN
channel therefore approaches the continuous Gaussian for this
SNR. On the scalar fading channel, the singular values are
Rayleigh distributed. As the rank of transmission grows, the
distribution of singular values approaches the broader quarter-
circular law. The optimal PMF in that case must account for
broader range of SNR. It is well known, and can also be seen
in [6], that uniform PMF approaches capacity at low and high
SNR. The optimal PMF is therefore pushed to uniform when
the rank of transmission increases. In Fig. 2, the histogram
of the elements on the diagonal of the R matrix is shown.
We see that it is narrower than the distribution of the singular
values. We will use this fact in the next section to analyze the
rates, achieved on the orthogonal Channels 3) and 5).

IV. NUMERICAL CALCULATION OF CAPACITY

In this section we provide Monte Carlo based calculation
of the capacity for various channels. In Fig. 3, the ergodic
capacity for the 2x2 i.i.d. MIMO Rayleigh fading channel,
i.e. EH [I3(pG(X))] is shown, together with the 64QAM
CCC, i.e. maxEH [I1(p(X))], the capacity of the SVD based
orthogonal channel, i.e. maxEH [I3(p(X))], and the QR
decomposition based lower bound - maxEH [I5(p(X))]. We
directly see the region, where the limits in Theorem 4 are
approached: up to around SNR= 10dB. As the SNR increases,
the gap to capacity also increases due to the limited size of the
constellation. As shown in [10], when the input to an ortho-
gonal channel is discrete, orthogonal inputs can be suboptimal.
In Fig. 3 this effect can be seen, as maxEH [I1(p1(X))] =
maxEH [I2(p2(X))] > maxEH [I3(p1(X))], or a rotated
version of the original QAM performs better on the orthogonal
channel. The QR based lower bound in the low SNR is seen
as a worse approximation than the SVD based capacity. In this
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Fig. 1. 8PAM PMFs for different channels at average SNR = 8dB. The
scaling coeficient α, resulting in the optimal PMF is indicated in the legend.
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Fig. 2. Histogram of the singular values and the elements on the diagonal of
the R matrix for MIMO of different rank

regime the noise is the limiting factor, and the inequality in
(25) becomes more and more strict. In the moderate to high
SNR we see that the lower bound becomes tighter, and exceeds
the SVD based channel capacity. This is due to the distribution
of the diagonal elements of the R matrix (see Fig. 2). Tighter
distribution means that the optimal PMF does not need to
account for high and low instantaneous SNR, where uniform
PMF is optimal, i.e. the channel is more stable. The SVD based
channel on the other hand has optimal PMF, which must be
robust to deep fades and vanishing fades. It is therefore pushed
to uniform PMF, resulting in lower average MI.

In Fig. 4, the SVD based channel capacity for a 8x8
setup is given, together with the QR decomposition based
lower bounds. For SNR < 10, 16, and 24dB for 64, 256
and 1024 QAM, respectively, the SVD based capacity is
approaching Gaussian capacity, and we can therefore expect
that in those SNR regions, maxEH [I1(p1(X))] is also close
to the Gaussian capacity. As before, the QR based lower
bounds are worse at low SNR, but become better at moderate
to high SNR. The envelope of the two curves - the SVD and
QR based capacities - can therefore serve as an approximation
to the CCC of the MIMO channel for the entire SNR region.

V. FUTURE WORK

As mentioned before, in this paper lower bounds are derived
only for the case of M ≤ N . When M > R, the last layer
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of Channel 4) will no longer be interference free, which was
a necessary condition for stating (19). An interesting area for
future research is to provide non-trivial lower bounds for the
case of M > R.

VI. CONCLUSION

In this paper the capacity of a MIMO channel with discrete
input was considered in the case when no channel knowledge
at the transmitter is available. It was proven that as the con-
stellation size grows, the capacity of the interference channel
converges to the capacity of the equivalent orthogonal channel,
obtained by the SVD, and consequently approaches Gaussian
capacity. Simulations showed that values close to that rate can
be achieved up to a certain SNR point for QAM constellations
of a given size. Using the Blahut-Arimoto algorithm, the
capacity of the orthogonal channel can be easily calculated,
and the SNR threshold can be obtained, together with the
capacity achieving PMFs for each SNR point. These PMFs can
then be used on the ergodic interference channel, and similar
capacity can be expected up to the SNR threshold. Lower
bounds on the constellation constrained capacity were also
derived for MIMO channels with square or tall matrix, using
the capacity of the QR decomposition based channel. The
envelope of the SVD based approximation and the QR based
lower bounds can then be used to estimate the constellation
constrained capacity for the entire SNR region.

VII. APPENDIX

A. Proof of Theorem I

Since U is a rotation matrix, we have:

H(Ŷ |·) = H(UŶ |·)− log2 |detU| = H(UŶ |·) = H(Y |·).

Similarly H(X|·) = H(X̂|·). Then it is clear that:

I(X;Y |H) = I(X̂;Y |H) = I(Y ; X̂|H) = I(Ŷ ; X̂|H).

B. Proof of Theorem II

The distribution pG(X) is rotationally in-
variant, i.e. X ≡ VHX ⇒ I2(pG(X)) =
I3(pG(X)) and by Theorem 1 I2(pG(X)) = I1(pG(X)).
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Abstract Exploiting temporal correlations in the phase, achievable rates are studied and a blind trellis-
based receiver is presented. Gains of 0.5 bit per symbol are found in point-to-point links irrespective of
the symbol rate. These gains disappear in network configurations.

Introduction
Lower bounds on the capacity of optical fiber sys-
tems have been studied1 by treating the fiber non-
linearities as additive and white, i.e., uncorrelated,
Gaussian noise (AWGN). Recent studies con-
sider the dependence on modulation format2, and
temporal3 and additionally spectral4 correlations
due to cross-phase modulation (XPM). By exploit-
ing the correlations of the phase noise, revised
rates have been reported3,4 that improve consid-
erably on the previous bounds1. These increased
achievable rates have been calculated for Gaus-
sian input and point-to-point links. To our knowl-
edge, only one implementation to obtain these
rates has been presented4, yet it uses knowledge
of the sent symbols and is therefore not immedi-
ately applicable in practice.

In this paper, in place of Gaussian input, we
consider uniformly distributed quadrature ampli-
tude modulation (QAM) symbols to show achiev-
able rates for a correlation-aware receiver that
exploits the strong temporal correlations within
a block of symbols. A blind trellis-based phase
tracking algorithm is also presented. Point-to-
point links and optical fiber networks are studied.

Phase Noise Receiver
We consider the transmission of a block of N
symbols xN over an optical fiber system and
model the input-output relation at time k as

yk = xk exp(jφk) + nNLI
k + nASE

k , (1)

where the complex Gaussian variates nNLI
k and

nASE
k denote the additive nonlinear interference

noise (NLI) and the amplified spontaneous emis-
sion (ASE) noise from amplifiers, respectively.
The phase noise term φk has temporal corre-
lation between neighboring symbols mainly due
to XPM, and is further assumed to be block-
wise constant3. This assumption is justified by the

auto-correlation function (ACF) shown in Fig. 2,
which is discussed later in detail.

We exploit the intra-block correlation to calcu-
late achievable rates as follows, without making
explicit use of frequency correlation4. At the re-
ceiver, the angle between xk and yk is estimated
for every k. This angle includes both the corre-
lated phase noise φk as well as the additive noise
terms nNLI

k and nASE
k . Note that there might be

correlations in nNLI
k , but they are not considered

in this work. The mean angle φ̄k of w past sym-
bols is calculated as a moving-window average,

φ̄k = ]
w∑

l=1

x∗k−lyk−l, (2)

where x∗ is the complex conjugate of x. We are
allowed to use all yk but only past xk to obtain
an achievable rate, which becomes apparent by
the chain rule of mutual information between in-
put and output sequences1. If the phase noise
samples ](x∗kyk) are not or are only weakly cor-
related, then φ̄k ≈ 0. The XPM-induced phase
noise of the received symbol yk is compensated
by a phase rotation,

y′k = yk · exp(−jφ̄k). (3)

Finally, an achievable rate is calculated from
the symbols y′k using circular Gaussian statis-
tics on a symbol-by-symbol basis6. We call this
correlation-aware processing a phase noise (PN)
receiver, while we speak of an AWGN receiver
when correlations are neglected and the rates are
calculated directly from yk with circular Gaussian
statistics.

Blind Trellis-Based Phase Tracking
While the PN receiver produces an achievable
rate, it requires knowledge of the past symbols,
which makes it impractical. In order to build a
practical receiver we model the phase noise as
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Fig. 1: Power spectral density (PSD) of the estimated phase
noise φ̄k, and a true Wiener process. The estimate is obtained
from symbols after fiber transmission of 9 WDM channels.

a Wiener process,

φk = φk−1 + βvk, (4)

where the samples vk ’s are i.i.d. and drawn from
a standard Gaussian distribution. The scalar β2

is obtained offline from the PN receiver:

β2 = Ek[(φ̄k − φ̄k−1)2]. (5)

Figure 1 shows a good match between the power
spectral density (PSD) of the phase noise pro-
cess φ̄k obtained from simulation data, and the
theoretical PSD of a Wiener process with β2 ≈
1.02·10−5, thus justifying the Wiener phase noise
model. Based on it, we implement a trellis-based
receiver5 where each state represents the dis-
tribution of the phase noise given the channel
output samples, p(φk|yN1 ). The phase is discre-
tized into a finite number of bins within a lim-
ited range that is obtained offline from the PN re-
ceiver. A large number of bins improves the phase
estimate φk but increases the complexity. The
model (4) allows for the factorization of p(φk|yN1 )

into p(φk, y
k
1 )p(yNk+1|φk), which can be efficiently

calculated by the BCJR algorithm. The posterior
distribution of the input is then

p(xk|yN1 ) =
∑

φk

p(φk|yN1 )p(xk|φk, yk). (6)

The second term in Eq. (6) is calculated using
Bayes’ theorem, where the likelihood p(yk|φk, xk)

is circular Gaussian with zero mean and variance
estimated offline. The posterior shown in Eq. (6)
is used in the achievable rate calculation and in
the demodulation process5. The PN receiver and
this trellis algorithm work for any input distribution.

Numerical Analysis
We investigate a single-polarization wavelength
division multiplexing (WDM) system where each
WDM channel uses 1024-QAM and a sinc pulse
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Fig. 2: ACF of point-to-point (p2p) WDM systems at different
symbol rates (solid), and different network configurations at
100 GBd (dashed). Inset: Zoomed ACF for up to 50 symbols.

shape. The guard band between neighboring
channels is 2% of their bandwidth and the overall
spectral width is constant at 510 GHz. We study
Nch=5, 9, 15 WDM channels, with a symbol rate
of 100, 56, and 33 GBd, respectively.

The signal propagates over 1000 km of stan-
dard single-mode fiber with γ=1.3 (W·km)-1 and
D=17 ps/nm/km. Ideal distributed amplification
is employed to compensate for the fiber loss of
α=0.2 dB/km. Fiber propagation is simulated us-
ing the split-step Fourier method with 32 samples
per symbol and 0.1 km step size. Optical add-
drop multiplexers (OADMs) are inserted into the
link when a network setup is studied. An OADM
is modeled by ideal band-pass filtering of the cen-
ter WDM channel, creating new WDM neighbors
and combining the old center channel and the
new neighbors. We consider point-to-point (p2p)
links, links with one OADM at 500 km, and with
an OADM every 100 km, i.e., 9 OADMs in total.

At the receiver, the center WDM channel is ide-
ally band-pass filtered, digitally back-propagated
(DBP) to remove self-phase modulation, and
down-sampled. The received symbols are ei-
ther not processed further (AWGN receiver), pro-
cessed with the PN receiver, or with the blind trel-
lis phase tracking, and achievable rates are calcu-
lated on a symbol-by-symbol basis using circular
Gaussian noise statistics. We also tested condi-
tional bivariate Gaussian statistics and found no
significant difference in achievable rates. The pa-
rameter w of Eq. (2) is set to 40 for the considered
optical system parameters. Simulations show that
w in the range between 30 and 80 is not critical for
calculating φ̄k.

The temporal ACF of the phase noise is shown
in Fig. 2. We use simulation data and the block-
wise phase noise model3 for computing the ACF.
We observe that temporal correlations are re-

102 Ph.D. Publications



i
i

�main� � 2016/4/7 � 14:09 � page 103 � #115 i
i

i
i

i
i

−15 −13 −11 −9 −7 −5 −3 −1
6.5

7

7.5

8

8.5

9

33
GBd

(N
ch
=
15

)

56
GBd

(N
ch
=
9)

10
0

GBd
(N

ch
=
5)

0.5
bit/sym

Launch power per WDM channel [dBm]

A
ch

ie
va

bl
e

ra
te

[b
it/

sy
m

]

AWGN receiver PN receiver
64-Trellis 128-Trellis

Fig. 3: Achievable rates for three WDM systems. The gain
from the PN receiver (dashed) and the trellis processing
(markers) over the AWGN receiver (solid) is 0.5 bit/sym at the
optimum power for every WDM configuration.

duced when the symbol rate per channel is de-
creased (recall that the total WDM bandwidth is
kept constant), and also when network elements
are inserted in the fiber. We will next analyze
whether the correlations that are apparent from
the ACF translate into rate gains.

Achievable rates for the three different WDM
setups are compared in Fig. 3. For the AWGN
receiver, the maximum rate for 15 channels is
7.9 bits per symbol (bit/sym) and increases to
8.1 bit/sym for 5 channels. This is because for
fewer WDM channels, single-channel (SC) DBP
is able to cancel a larger amount of nonlin-
earities. Exploiting the block-wise correlations in
the receiver improves the achievable rate by
0.5 bit/sym, which is comparable to simulations
with Gaussian input3. The gain from the PN re-
ceiver is found to be constant for all three WDM
setups, despite the dependence of the ACF on
the per-channel symbol rate shown in Fig. 2.

The rates obtained with blind phase tracking
(markers in Fig. 3) closely approach the rates of
the PN receiver for all considered configurations.
We also observe that 64 trellis states are suffi-
cient to get full gains at relevant powers.

Achievable rates for Nch=5 channels and three
different network setups are shown in Fig. 4. For
the AWGN receiver, the maximum rates are about
8.1 bit/sym, independent of the network configu-
ration. When one OADM is inserted in the cen-
ter of the link, the rate of the PN receiver is re-
duced from 8.6 bit/sym to 8.4 bit/sym, which is a
decrease in gain by 0.2 bit/sym in comparison to
the 0.5 bit/sym for the p2p case without OADMs.
This is because the coherent build-up of corre-
lations is effectively terminated half-way during
propagation. Further simulations show that the
center of the link is the worst among all potential
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Fig. 4: Achievable rates for Nch=5 WDM channels and three
link configurations: point-to-point (p2p), one OADM after 500
km, and one OADM every 100 km (9 OADMs in total). The
fiber length is always 1000 km.

locations of one OADM with respect to achievable
rates. In a network with 9 OADMs, the gain is re-
duced to less than 0.1 bit/sym due to repeated fil-
tering of the co-propagating WDM channels and
the addition of new, uncorrelated channels. For all
network setups, the trellis processing gives rates
very close to the PN receiver.

For a long-haul p2p fiber system6 with dual-
polarization 16-QAM at 28 GBd, 60 spans of 100
km each, lumped amplification and SC DBP, we
found that the gain by applying the PN receiver
was 0.1 bit/sym. This limited gain is mainly at-
tributed to lumped amplification leading to less
temporal correlation of the XPM phase noise4.

Conclusions
We show gains in achievable rate of up to
0.5 bit/sym by exploiting correlation in the nonlin-
ear phase noise. These gains are also obtained
by trellis-based processing without knowledge of
input symbols. Larger gains are expected by us-
ing models that resemble the XPM-induced cor-
relations better than a block-wise constant phase.
Especially correlations in the additive NLI noise
term could be investigated.
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Low-Complexity Tracking of Laser and Nonlinear
Phase Noise in WDM Optical Fiber Systems

Metodi P. Yankov, Student Member, IEEE, Tobias Fehenberger, Student Member, IEEE, Luca
Barletta, Member, IEEE, and Norbert Hanik, Senior Member, IEEE

Abstract—In this paper the wavelength division multiplexed
(WDM) fiber optic channel is considered. It is shown that for ideal
distributed Raman amplification (IDRA), the Wiener process
model is suitable for the non-linear phase noise due to cross phase
modulation from neighboring channels. Based on this model, a
phase noise tracking algorithm is presented. We approximate
the distribution of the phase noise at each time instant by a
mixture of Tikhonov distributions, and derive a closed form
expression for the posterior probabilities of the input symbols.
This reduces the complexity dramatically compared to previous
trellis based approaches, which require numerical integration.
Further, the proposed method performs very well in low-to-
moderate signal-to-noise ratio (SNR), where standard decision
directed (DD) methods, especially for high order modulation, fail.
The proposed algorithm does not rely on averaging, and therefore
does not experience high error floors at high SNR in severe
phase noise scenarios. The laser linewidth (LLW) tolerance is
thereby increased for the entire SNR region compared to previous
DD methods. In IDRA WDM links the algorithm is shown
to effectively combat the combined effect of both laser phase
noise and non-linear phase noise, which cannot be neglected in
such scenarios. In a more practical lumped amplification scheme
we show near-optimal performance for 16QAM, 64QAM and
256QAM with LLW up to 100kHz, and reasonable performance
for LLW of 1MHz for 16QAM and 64QAM, at the moderate
received SNR region. The performance in these cases is close
to the information rate achieved by the above mentioned trellis
processing.

Index Terms—Phase noise, WDM, optical fiber communication,
Wiener process, Cross phase modulation

I. INTRODUCTION

THE non-linear phase noise (NLPN) is the main factor for
the currently limited achievable rates on the wavelength

division multiplexed (WDM) optical fiber channels [1]. Due to
the interaction between self and cross phase modulation (SPM
and XPM, resp.) effects, the amplified spontaneous emission
(ASE) noise and chromatic dispersion in the fiber, the non-
linear phase rotation due to SPM and XPM generally cannot
be canceled completely at the receiver. Furthermore, XPM and
SPM introduce memory in the channel, which makes optimal
detection even more challenging. Recent works have gone
into modeling this memory [2]–[4], and shown that the phase
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noise is highly correlated in time and frequency. A model
is also proposed that allows to calculate the auto correlation
function (ACF) of the phase noise. Using the time domain
ACF properties, the authors in [2] separate the contribution of
the noise into linear and non-linear part, and thereby are able
to show potential increase in the maximum achievable rate
in a point to point WDM link. A strategy for canceling the
phase noise is proposed in [5], based on a frequency domain
equalizer. This work is extended in [6] to a multi-carrier
modulation, which is shown to be beneficial in combating
XPM interference. Gaussian input is assumed in [2] [5] [6],
which is not currently realizable in practice.

On top of the NLPN, fiber-optic systems generally suffer
from phase noise due to imperfect lasers. The non-zero laser
line width (LLW) results in time-varying carrier phase offset.
The Wiener process has previously been shown to be accurate
in modeling the laser phase noise, and also the NLPN for a few
particular cases [7]. For QPSK constellations simple methods
such as Viterbi and Viterbi are shown to be effective for carrier
phase recovery. Extensions of this method to larger order
constellations are possible, e.g. [8]. However, they generally
require hard decision on the signal’s amplitude before the
phase is estimated. Other types of decision directed (DD)
methods are available for higher order constellations, e.g. [10]
[11] [12]. In [12], a second order DD phase-locked loop (PLL)
method is employed, which is shown to be effective also
in the presence of frequency fluctuations. We highlight the
method from [10] as very popular among engineers, due to its
simple implementation. DD methods typically require an SNR
relatively high to the order of modulation (equivalently, low
symbol error rate (SER)). Alternatively, the phase offset may
be estimated from very long window averages, which makes
the system unreliable in severe phase noise scenarios, since the
phase varies significantly within the window. Another problem
with the method from [10] is its vulnerability to phase slips.
A modulation size independent method was derived in [14]
for quadrature amplitude modulation (QAM) constellations,
which aims at forcing the received symbols in each quadrant
to the original square shape, and uses a PLL-like circuit to
track the phase offset. This method also suffers greatly at low
SNR/high SER, however it is very simple to implement. The
above methods do not generally exploit the Wiener process
model for the phase noise in order to improve the estimate.
The authors in [13] propose an extension to the algorithm
from [10], where a pilot-based coarse estimation is combined
with the sub-sequent DD estimation, in order to combat the
phase-slip problem.

IEEE Journal of Lightwave Technology 2015 105



i
i

�main� � 2016/4/7 � 14:09 � page 106 � #118 i
i

i
i

i
i

2

Iterative decoding and laser phase-noise cancellation is
proposed in [15], later extended to cover the above mentioned
NLPN in WDM systems [16]. Up to 16QAM is considered
there. The clear problems with iterative receivers are com-
plexity and latency.

In [17], a Kalman filter is used that needs to be linearized
since the output is not a linear function of the phase noise. The
Kalman filter approach has low complexity and was shown
to be near-optimal in some cases [18]. However, it suffers
performance degradation for high information rates and SNRs.
In a more general approach [19] the phase is discretized
into bins, and trellis processing is used for phase tracking,
Mutual Information (MI) calculation and demodulation. This
method allows for processing of non-linear functions of the
phase. Both [17] and [19] are basically a special case of
the sum-product algorithm for finding marginal and posterior
distributions, which can be represented with a graph. In [20]
this algorithm is presented in the context of phase noise, where
the graph may be constructed as a Markov chain. Several
approximations are also proposed there for constant ampli-
tude modulation, such as phase-shift keying (PSK). Of these
approximations we mention the modeling of the distribution
of the phase noise as a Tikhonov (also known as von Mises)
distribution.

In this paper we show that the Wiener process is suitable
for modeling the phase noise due to XPM in WDM systems
with ideal distributed raman amplification (IDRA). Then we
propose a simple approximate detector based on phase noise
tracking, which is able to combat the combined effect of laser
phase noise and NLPN in the fiber-optic channel. Focus is
given on discrete input constellations, particularly QAM.

II. CHANNEL MODEL

The fiber channel model under investigation is given in
Fig. 1. Data is modulated into constellation symbols x, which
are drawn from a finite size alphabet X . The modulated
symbols are then passed through a Nyquist pulse shaping
filter and up-converted to the desired carrier frequency on
the frequency grid. During upconversion laser phase noise
is introduced, which is modeled by a Wiener process. The
signal is then combined with the other channels, and sent
on Nspan spans of optical fiber. In order to compensate for
attenuation, IDRA is employed [1]. At the receiver, the WDM
channel is down-converted to baseband, while introducing
laser phase noise identically distributed to the transmitter’s.
The interfering channels are filtered out, and the desired
channel is sent for baseband processing. This includes digital
back-propagation (DBP) of the channel of interest only, in
order to remove SPM, and the subsequent phase noise tracking
algorithm. The signal after DBP is denoted as y. We are
interested in the MI between x and y

I(X;Y ) = H(X)−H(X|Y ) =

H(X) + lim
K→∞

1

K
log2(p(xK1 |yK1 )), (1)

where xK1 and yK1 denote the input and output sequences from
time 1 to K, respectively, and we have used the convergence

properties of the entropy function for long sequences [21].
Evaluating the joint and/or conditional probability of the
entire sequences is an exponentially complex problem, and
so a typical receiver will usually approximate p(xK1 |yK1 ) ≈∏
k p(xk|yK1 ), or even p(xK1 |yK1 ) ≈∏

k p(xk|yk). When such
a mismatched receiver is employed, the result is an upper
bound on the entropy H(X|Y ) [21], that gives an achievable
information rate (AIR), which is a lower bound on the MI rate
in (1).

A. Simplified Channel Model

In order to design a phase noise tracking algorithm, we
employ the following simplified model of a standard phase
noise channel

yk = xk exp(j(θtxk + θrxk + θNLk )) + wk, (2)

where j =
√
−1 is the imaginary unit. The phase noise

contribution from the transmitter, receiver and the non-linearity
(θtx, θrx and θNL, respectively) are all modeled by a Wiener
process, e.g., for the transmitter term

θtxk = θtxk−1 + ∆txvk, (3)

where the vk’s are standard i.i.d. Gaussian variables, and
∆2
tx is the process noise variance. If we assume independent

sources, they can be combined into a single phase noise
process θ with parameter ∆2 = ∆2

tx + ∆2
rx + ∆2

NL, and the
channel model becomes

yk = xk exp(jθk) + wk. (4)

The term wk is a sample of additive white Gaussian noise
(AWGN) with zero mean and variance assumed to be known
at the receiver. When the phase noise is generated by a
local oscillator (LO) with a certain spectral width around the
central frequency (in case of lasers the more popular term is
linewidth), the parameter ∆ is found as

∆2 = 2πfWTs, (5)

where fW is the width of the spectrum in Hz at −3dB of
the maximum value (also known as full-width half-maximum
bandwidth), and Ts is the sampling time in seconds.

B. The Non-Linear Term

In order to validate the Wiener model for the NLPN, we
simulate an IDRA link, and examine the power spectral density
(PSD) of the phase noise process. For demonstration, we
choose a link with 5 channels at 100 GBaud each, of total
length 4000km (the other fiber parameters are standard, and
are listed in Table II), without transmitter and receiver phase
noise. The input constellation in this case is 256QAM and the
input power is −4dBm, which we found to be optimal at this
distance. As shown in [2] [22], the NLPN is highly correlated
within a window of several tens of symbols, which can be
exploited in order to estimate the actual phase noise samples
as

θ̂k = 6
k+L/2∑

l=k−L/2
ylx
∗
l , (6)
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Fig. 1. Optical fiber channel model. Fiber parameters are defined in Section IV.

where L + 1 is the window size, (·)∗ denotes complex
conjugate, and 6 (·) denotes the angle of a complex number.
We then compare the estimated PSD of {θ̂k} to the theoretical
PSD of a Wiener process given by the Lorentzian function with
process noise variance

∆2 = Ek

[
(θ̂k − θ̂k−1)2

]
. (7)

Example PSDs are given in Fig. 2 for different values of
L. The PSD of {θ̂k} is obtained by Welch’s method [23]
with 106 samples, which were divided into 1999 blocks, 1000
samples each, with 50% overlap. Depending on the window
size reasonable match can be obtained to the theoretical model.
Long window results in relatively smooth PSD due to the
better estimation in presence of noise. This would translate
to better modeling of {θk} by the Wiener process. However,
it leads to underestimation of ∆2

NL. Decreasing L results in
stronger oscillations at high frequency, and a large bias in the
low frequency. In the rest of the paper the window size for
estimating the samples θk, and thereby ∆2, is chosen to be
L = 20, which as we see in Fig. 2 is a reasonable compromise
between modeling accuracy and bias.

III. PHASE NOISE TRACKING

As mentioned in Section II, in order to compute AIRs, we
need to compute the posterior probability of the input sequence
p(xK1 |yK1 ), which we approximate as

∏
k p(xk|yK1 ), resulting

in a lower bound on the MI rate. In this section we propose an
efficient algorithm for calculating the posterior distributions at
each time recursively.

Marginalizing the phase noise at time k, the posterior can
be re-written as

p(xk|yK1 ) =

∫ π

−π
p(xk, θk|yK1 )dθk

=

∫ π

−π
p(xk|θk, yK1 )p(θk|yK1 )dθk

=

∫ π

−π

p(xk)p(yk|xk, θk)

p(yk|θk)
p(θk|yK1 )dθk (8)

∝
∫ π

−π

p(xk)p(yk|xk, θk)

p(yk|θk)
p(yk|θk)p(yKk+1|θk)p(θk|yk−11 )dθk

(9)

=

∫ π

−π
p(xk)p(yk|xk, θk)p(yKk+1|θk)p(θk|yk−11 )dθk. (10)

To get to (8) we used the fact that given the state θk,
the input samples are independent of the past and future:

Normalized frequency f " Ts
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S
D
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100
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h
(3̂k ! 3̂k!1)

2
i

PSD of f3̂kg

L = 10;"2 = 1:05 " 10!4

L = 20;"2 = 2:50 " 10!5

L = 100;"2 = 1:00 " 10!6

Fig. 2. Lorentzian PSD of a Wiener process (dashed lines) with process noise
variance as in (7), together with the PSD of the phase noise {θ̂k} (solid lines),
for the link given in Section II-B. Depending on the choice of the window L
a good match can be found to the theoretical model.

p(xk|θk, yK1 ) = p(xk|θk, yk). To get to (10) we have used the
fact that output samples are independent of the past given the
phase: p(yKk+1|θk, yk−11 ) = p(yKk+1|θk), and we have removed
the factor p(yKk+1|yk−11 ) that does not depend on xk and θk.
The first and second term under the integral in Eq. (10)
are the prior distribution of the constellation symbols and
the likelihood of the output at time k, respectively. In order
to derive expressions for the last two terms, we first define
forward and backward recursions for the posterior distributions
p(θk|yk1 ) and p(yKk |θk), which we model by mixtures of M
and N Tikhonov distributions, respectively

p(θk|yk1 ) =

M∑

m=1

αm,kt(wm,k; θk), (11)

p(yKk |θk) =
N∑

n=1

βn,kt(un,k; θk). (12)

The terms αm,k and βn,k are non-negative mixing coefficients,
and are such that

∑
m αm,k = 1 and

∑
n βn,k = 1. The

Tikhonov distribution at θ with a complex parameter w is
defined as

t(w; θ) =
exp(Re [w · exp(−jθ)])

2πI0(|w|) , θ ∈ [−π;π), (13)
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and 0 elsewhere. In (13), I0 is the zero-th order modified
Bessel function of the first kind and Re [z] is the real part
of z. We now derive mixture parameters for the predictive
backward recursion term that appears in Eq. (10)

p(yKk+1|θk) =
N∑

n=1

β̄n,kt(ūn,k; θk)

=

∫ π

−π
p(yKk+1|θk+1, θk)p(θk+1|θk)dθk+1

=

∫ π

−π
p(yKk+1|θk+1)g(θk,∆; θk+1)dθk+1

=
N∑

n=1

βn,k+1

∫ π

−π
t(un,k+1; θk+1)g(θk+1,∆; θk)dθk+1,

(14)

where g(µ, σ; z) is the Gaussian probability density function
(PDF) at z with mean µ and standard deviation σ. The update
parameters can then be found as

β̄n,k = βn,k+1, ūn,k =
un,k+1

1 + ∆2|un,k+1|
, (15)

where we have used the fact that the convolution of a Gaussian
and Tikhonov distributions is a Tikhonov with a modified
complex parameter [20]. In order to complete the recursion,
the updates for βn,k and un,k are found from the following:

p(yKk |θk) = p(yk|θk, yKk+1)p(yKk+1|θk)

=
N∑

n=1

β̄n,k
∑

xk∈X
p(xk)p(yk|xk, θk)t(ūn,k; θk)

∝
N∑

n=1

∑

xk∈X
µn,k(xk)t(ūn,k + 2 · SNR · ykx∗k; θk), (16)

where the likelihood p(yk|xk, θk) is expressed as a Tikhonov
approximation to the Gaussian

p(yk|xk, θk) ≈
2 · SNR · I0(2 · SNR|ykx∗k|)t(2 · SNR · ykx∗k; θk)

exp(SNR(|yk|2 + |xk|2))
. (17)

In (16) we have used the fact that the product of two Tikhonov
distributions may also be expressed as a Tikhonov distribution
in order to calculate the sub-component mixture coefficient

µn,k(xk) =
β̄n,k · p(xk)I0(|ūn,k + 2 · SNR · ykx∗k|)

I0(|ūn,k|) exp(SNR · |xk|2)
. (18)

Due to the discrete nature of the input signal, the number
of components needed for tracking the phase noise grows
exponentially with time. In order to avoid this problem, we
propose an approximation to the inner sum in (16), where at
each step we only take the sub-component with the largest
mixing coefficient

x̂n,k = arg max
xk∈X

µn,k(xk), (19)

un,k = ūn,k + 2 · SNR · ykx̂∗n,k, (20)

βn,k = B · µn,k(x̂n,k), (21)

where B is such that
∑N
n=1 βn,k = 1.

Similarly we express the predictive forward distribution
appearing in (10), as

p(θk|yk−11 ) =
M∑

m=1

ᾱm,kt(w̄m,k; θk), (22)

where

ᾱm,k = αm,k−1, w̄m,k =
wm,k−1

1 + ∆2|wm,k−1|
. (23)

The update parameters are found as

ρm,k(xk) =
ᾱm,k · p(xk)I0(|w̄m,k + 2 · SNR · ykx∗k|)

I0(|w̄m,k|) exp(SNR · |xk|2)
, (24)

x̂m,k = arg max
xk∈X

ρm,k(xk), (25)

wm,k = w̄m,k + 2 · SNR · ykx̂∗m,k, (26)

αm,k = A · ρm,k(x̂m,k), (27)

where A is such that
∑M
m=1 αm,k = 1. We are now ready to

express the posterior distribution (10) as

p(xk|yK1 ) = p(xk)
M∑

m=1

ᾱm,k

N∑

n=1

β̄n,k×
∫ π

−π
p(yk|xk, θk)t(ūn,k; θk)t(w̄m,k; θk)dθk. (28)

Using the expression for the likelihood (17), the integrand in
(28) becomes a product of three Tikhonov distributions in θk,
which is again a scaled Tikhonov of θk

p(yk|xk, θk)t(ūn,k; θk)t(w̄m,k; θk) ∝
I0(|w̄m,k + ūn,k + 2 · SNR · ykx∗k|)

I0(|w̄m,k|)I0(|ūn,k|) exp(SNR(|yk|2 + |xk|2))
×

t(w̄m,k + ūn,k + 2 · SNR · ykx∗k; θk), (29)

where we have removed the proportionality factors, indepen-
dent of θk and xk. The scaling factor goes out of the integral
in (28), and the remaining Tikhonov distribution integrates to
one. The expression for the posterior is then

p(xk|yK1 ) = p(xk)
M∑

m=1

ᾱm,k

N∑

n=1

β̄n,k×

I0(|w̄m,k + ūn,k + 2 · SNR · ykx∗k|)
I0(|w̄m,k|)I0(|ūn,k|) exp(SNR(|yk|2 + |xk|2))

. (30)

The expression (30) is a sum of N ·M elements, which is
very efficiently calculated in the log domain, using the large
value approximation of the modified Bessel function

I0(w) ≈ exp(w)√
2πw

. (31)

Typical values of |w̄| and |ū| are above 200, for which the
approximation in (31) is accurate.

A. Summary

The complete algorithm is summarized in the following
steps:
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1) Initialize:

αm,0 = 1/M, βn,K+1 = 1/N,

wm,0 =
1

∆2
ej(m·

2π
M −π), un,K+1 =

1

∆2
ej(n·

2π
N −π)

(32)

2) Forward recursion - equations (23),(25)-(27)
3) Backward recursion - equations (15),(19)-(21)
4) Posteriors calculation - Eq. (30)

The initialization values are chosen such that each compo-
nent corresponds to a Gaussian distribution of the phase with
variance ∆2, and the means of the components are uniformly
spaced within [−π;π).

B. Phase Noise Distribution

The phase noise PDF at each time is not explicitly calculated
by the algorithm, but can be found, if needed for further
processing, as

p(θk|yk1 ) ∝ p(yKk+1|θk)p(θk|yk1 )

=
N∑

n=1

β̄n,kt(ūn,k; θk)
M∑

m=1

αm,kt(wm,k; θk). (33)

An example distribution update is given in the surface plot in
Fig. 3 for a standard Wiener phase noise channel, simulated
via (4), with parameter ∆ = 0.05 and 256QAM input. The
distribution is given as a surface plot, where the height of the
surface is described by the color bar. We evaluate the phase
noise distribution for all phases within [−π;π), with a reso-
lution of 2π/512 radians. We also plot the actual phase noise
realizations. In this case the number of mixture components
in the forward and backward recursions is M = N = 4. We
clearly see the different components, one of which tracks the
true phase noise realization. Due to the unknown initial phase
and the 4-fold symmetry of the constellation, there is phase
ambiguity in multiples of π/2 radians. In order to combat this
problem, we insert pilot symbols at rate P , which give an
absolute reference for the phase. Pilot symbols are accounted
for in the model by changing the PMF p(xk) at the pilot
instants to an indicator function, which is ’1’ for the true sent
symbol, and ’0’ otherwise. Even though this is a sub-optimal
pilot design, it suffices for our further analysis. The resulting
phase noise distribution after pilot insertion is given in Fig. 4.

C. Relation to Other Algorithms

When the PDFs p(θk|yK1 ), p(θk|yk1 ) and p(yKk |θk) are
modeled by a Gaussian, the solution of the recursions is the
Kalman filter [9]. The difference between our approach and the
Kalman filter is visible in Eq. (28). If the densities are modeled
as Gaussians, the likelihood p(yk|θk, xk), which is a non-linear
function of the phase θk, needs to be linearized in order to
make the integration simple, as done here. The linearization
leads to sub-optimal performance of the Kalman filter. We
note that the Tikhonov distribution may be seen as a Gaussian
“wrapped” around ±π. Example of the distribution with mean

Fig. 3. Probability distribution of the phase noise at time k (given by the
surface plot), together with actual phase noise samples, given by the red
line (pale line on black and white printer). Brighter color represents higher
probability, given by the side color bar.

Fig. 4. Probability distribution of the phase noise at time k after insertion of
P = 0.2% pilot symbols. Brighter color represents higher probability, given
by the side color bar. Note the different scale w.r.t Fig. 3 due to the absence
of the π/2 ambiguity.

−π/4 and different variances is given in Fig. 5, together
with the Gaussian and a wrapped Gaussian, as defined in the
legend. The latter distribution and the Tikhonov have support
set [−π;π). For small variance the three distributions coincide
due to the exponentially vanishing tail of the Gaussian. For
large variance we see the wrapping becoming significant and
the distributions diverging from each other.

The trellis approach from [19] replaces the above distri-
butions with histograms. This means that the integrations for
the updates (Eq. (14) and its forward recursion analogue) and
the posterior calculation (Eq. (28)) become sums. For large
constellations and fine resolution of the phase, the complexity
increases significantly.

The approach in [20] also employs Tikhonov distributions,
however, only for PSK constellations. There, the information is
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Fig. 6. One section of the graph, used for estimating the posterior distribu-
tions. Factors are given as rectangles, and variables with circles. The factors
are represented by the corresponding distributions.

already included in the phase and therefore phase tracking and
posterior calculation can be performed simultaneously. The
focus here is on QAM constellations.

We note that all of the above approaches, including the one
proposed in this paper, in principle employ the sum-product
rules for estimating densities in graphs. In this particular case,
the graph represents a first-order hidden Markov chain. One
section of the graph for this algorithm is given in Fig. 6. The
variable nodes are given as circles, and the factor nodes as
rectangles. The direction of the messages ξ is given by the
arrows, and the messages themselves are calculated as:

• ξ1 = p(θk−1|yk−11 )
• ξ2 - Eq. (22)
• ξ3 - Eq. (14)
• ξ4 = p(yKk+1|θk+1)
• ξ5 = ξ2 · ξ3
• ξ6 =

∫ π
−π ξ5 · p(yk|θk, xk)dθk

• ξ7 = p(xk)

According to the sum-product rule, the unnormalized distribu-
tion at each variable is the product of all incoming messages.
Then we find p(xk|yK1 ) ∝ p(xk, yK1 ) = ξ6·ξ7, which is exactly
the expression in Eq. (10).

D. Complexity

In the following we refer to the proposed algorithm as
Tikhonov mixture model (TMM) algorithm.

The complete algorithm can be cast into the log-domain
with standard max-log approximations. Thus the complexity
is dominated by the computation of Euclidean distances (ED),
needed for calculating the largest mixing coefficients in (19)
and (25). There, the complexity is linear in the constellation
size and the number of mixing coefficients. The forward and
backward recursions require one max-log operation at each
time across M and N elements (for the normalization in (21)
and (27), respectively), in order to calculate the updates in (15)
and (23). The calculation of the posterior requires one max-log
across N ·M elements, bringing the total number of max-log
operations to ≈ O(K · (M · N + M + N)). Typical values
of M and N are as small as 2 or 4, so we conclude that the
complexity is still dominated by the EDs calculation, which
requires complex multiplication. We compare these numbers
to the DD algorithm [10], where a cost function of the EDs to
the closest constellation symbol is calculated for Np candidate
phases, and the minimum is taken as the phase rotation. The
number of EDs (complex multiplications) needed is therefore
O(K ·Np · |X |). Typical number of test phases (taken directly
from [10]) is Np ≈ 16 for |X | ≤ 16 and Np ≈ 64 for |X | ≤
256. Our method requires O(K · (M + N) · |X |), which for
256QAM and M = N = 2 Tikhonov components is more
than an order smaller.

One issue with the sequential processing of our algorithm is
the latency. We note that even though very long sequences are
needed for the convergence limK→∞− 1

K log2 p(x
K
1 |yK1 ) =

H(X|Y ), a real receiver does not aim at computing the
entropy. The value of K may therefore be kept at a reasonable
value, while keeping the posteriors in (30) accurate.

IV. RESULTS

We examine the performance of the TMM algorithm mainly
in terms of AIR in bits/channel use. In case of a stan-
dard Wiener phase noise channel 1 bit/channel use means
1 bit/s/Hz/complex dimension. In case of the WDM link,
1 bit/channel use means 1 bit/s/Hz/polarization/complex di-
mension. The input power in the latter case is defined as input
power per channel. In all cases, the AIR is estimated from a
block of length 105 symbols.

A. Standard Wiener Phase Noise Channel

We start by analyzing a standard Wiener phase noise chan-
nel, which is simulated via (4). In Fig. 7, the AIRs are given
for a channel with fW · Ts = 8 · 10−5 and 256QAM input.
This is beyond the capabilities of the DD algorithm [10], and
our simulations also confirm that the DD algorithm fails with
such parameters, giving lower bounds on the MI well below
zero. We examine the performance of the TMM algorithm
with M = N = 2 and 4 mixture components, and pilot rates
of P = 0.005, 0.01, 0.02, and 0.05. For reference, we also
plot the AIR on an AWGN channel without phase noise, and
what is achieved by the trellis algorithm from [19] with pilot
rate P = 0.002 and 128 states. The rate loss due to the pilot
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Fig. 7. Comparison of pilot rates for the TMM algorithm. From bottom curve
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fW · Ts = 8 · 10−5, 256QAM input. For small pilot rates the algorithm is
unstable.
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Fig. 8. Comparison with the DD algorithm. The trellis and the TMM
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is tested with sliding window length of 30 and 100 symbols. Inset: very
high rate (low BER, respectively). Standard Wiener phase noise channel,
fW · Ts = 8 · 10−6, 256QAM input.

symbols is taken into account in the AIR calculation by scaling
the entropy H(X) in (1) by 1 − P . For such large values of
∆2 and insufficient pilot rate the algorithm is unstable, and
often switches to adjacent π/2 components. This leads to very
poor lower bounds on the MI, sometimes even negative. At
pilot rate above 1% the algorithm is stable, and we see only
marginal improvement going from 2 to 4 mixture components.
The performance is sub-optimal at high rates, however a stable
behavior is observed over the entire SNR range.

In Fig. 8 we show the performance at a smaller value
fW ·Ts = 8 ·10−6. In this case the algorithm from [10] is able
to operate with minor SNR penalty at BER = 10−3 with an
averaging window of size around 30. This window represents
the length over which test phases are evaluated, and should not
be confused with the window L we used in Section II-B for
estimating ∆2. As seen from Fig. 8, the achievable rate with

SNR, dB
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DD [10], window length = 100 symbols
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Fig. 9. BER at high SNR for the TMM algorithm and the DD algorithm
[10] with 256QAM input, standard Wiener phase noise channel, fW · Ts =
8 · 10−6. For the DD algorithm, at low SNR short windows result in high
BER, whereas at high SNR long windows result in high error floor. The TMM
algorithm performs well for the entire region.

this window size is close to the maximum H(X) = log2 |X |,
which corresponds to the above mentioned low BER and SER.
However, when the SNR is reduced, the algorithm fails due
to the higher SER. Increasing the window length helps at the
lower SNRs, and at 100 symbols a stable behavior is observed
down to SNR= 15dB. Long averaging windows, however,
result in a sub-optimal performance at high SNR, where the
AIR appears to achieve a maximum value, smaller than H(X).
This is because small-scale, fast variations of the phase noise
are not captured by the long window averaging. This would
correspond to an error floor after de-mapping. The TMM
algorithm on the other hand achieves stable performance, close
to the reference trellis based AIR at significantly reduced
complexity, for the entire SNR region.

To further illustrate the problem with the error floor, we
analyze the BER at high SNR. On Fig. 9, the BER is given
at fW · Ts = 8 · 10−6. We assume Gray labeling of the
symbols. The algorithm from [10] requires differential coded
modulation, which technically will increase the BER slightly.
Therefore we can argue that the comparison is fair, with a
slight advantage given to the DD algorithm. At high SNR, the
TMM algorithm experiences up to 1dB loss compared to the
DD algorithm with averaging window of length 30 symbols.
However, at low SNR (BER ≈ 10−1), such window length
results in around 2dB loss compared to the TMM algorithm.
Increasing the window length helps, but results in very high
BER at high SNR. For completeness, in Table I the SNR
penalty to the AWGN channel performance at BER= 10−3

is given for several combinations of modulation format and
LLW. The window length of the DD algorithm is 30, and we
simulated SNRs up to 40dB. The TMM algorithm employs
4 components and P = 0.002 pilot rate. For high values
of fW · Ts the DD algorithm completely fails with this
window length, while reception with the TMM algorithm is
still possible. As mentioned above, decreasing the window size
of the DD algorithm might improve the penalty and allow for
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TABLE I
SNR PENALTY @ BER=10−3 . INFINITE PENALTY MEANS THAT THE

REQUIRED BER IS NOT ACHIEVED.

fW · Ts 5 · 10−6 1 · 10−5 5 · 10−5 1 · 10−4 5 · 10−4

256QAM, TMM 1.1dB 1.3dB 4.9dB 7.8dB ∞
256QAM, DD [10] 0.6dB 0.9dB ∞ ∞ ∞

64QAM, TMM 1.0dB 1.2dB 2.2dB 4.4dB 9.8dB

64QAM, DD [10] 0.5dB 0.7dB 1.7dB ∞ ∞
16QAM, TMM 0.9dB 1.1dB 1.2dB 1.3dB 3.1dB

16QAM, DD [10] 0.1dB 0.2dB 0.3dB 0.9dB ∞

transmission, but will result in increased penalty at lower SNR
(higher BER, respectively).

B. IDRA WDM Optical Fiber Link

Next we evaluate the TMM algorithm in a WDM optical
link. The link is simulated using the split-step Fourier method
(SSFM). The fiber and transceiver parameters are given in
Table II. Single polarization transmission is used and single-
channel digital back-propagation is performed on the central
channel, which is the channel of interest.

In Fig. 10, the AIRs are given as a function of the launch
power per channel. For reference, we calculate the AIR with
a pseudo-ideal phase noise removal (PIPNR). This is achieved
by pre-processing the output samples as ẏk = yke

−jθ̇k .
The estimates of the phase noise θ̇k are obtained similar
to (6), but from a window of past samples only, i.e. θ̇k =
6
∑k−1
l=k−L−1 ylx

∗
l . This is done in order for the calculated

values to be AIRs. To better understand this, observe that
the probability p(xK1 |yK1 ) may be expressed from the product
rule as p(xK1 |yK1 ) ∝∏

k p(xk|yK1 , xk−11 ), which means that if
lower bounds on the MI are targeted, only past samples may
be used to obtain mismatched probability distribution.

In Fig. 10 we also plot the AIR in the idealized case of no
laser phase noise without any processing. In this case we as-
sume memoryless channel and model the likelihoods p(yk|xk)
as Gaussian distributions with known mean and variance. To
put the values of the LLW in the perspective of Section IV-A,
we estimated the value of ∆2

NL at the optimal input power in
the idealized case of fW = 0 to be ∆2

NL ≈ 2.5 · 10−5. The
term fW ·Ts then becomes ≈ 3.9·10−6, 4.2·10−6 and 6·10−6

in the 3 cases of LLW, respectively. The window size for the
DD algorithm is optimized to 500 (we note that the AIR at the
optimal input power increases very slowly for window sizes
from 200 to 500, and then starts to decrease). The pilot rate
for the trellis and the TMM algorithm is fixed to a minimal
value of P = 0.002. The TMM algorithm has M = N = 4
mixture components. We see that the performance of the TMM
algorithm is close to the pseudo-ideal one. The AIR in the
idealized case without processing is below what is achieved
in the 10kHz case when phase noise tracking is performed.
This is due to the non-zero value of ∆NL. The consequence
of this observation is two-fold:

1) Even if ideal lasers are used, correlations in the NLPN
can still be exploited by tracking it in order to improve

TABLE II
SYSTEM PARAMETERS, IDRA TRANSMISSION

Span length 100 km
Symbol rate 100 GBaud

Number of channels 5
Guardband 2 GHz (2% of symbol rate)

Total bandwidth 510 GHz
Oversampling factor 32

Pulse shape sinc

LLW 0 kHz, 10 kHz and 100 kHz
Fiber loss α = 0.2 dB/km

Non-linear coefficient γ = 1.3 (W·km)−1

Dispersion D = 17 ps/(nm·km)
Central wavelenght λ0 = 1.55 µm

SSFM step 0.1 km

Pin, dBm
-8 -7 -6 -5 -4 -3 -2 -1 0

A
IR

, b
it 

/ c
ha

nn
el

 u
se

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

trellis, #states = 128
no processing, 0kHz LLW
PIPNR
TMM, M=N=4
DD [10], window length = 500 symbols

LLW=10kHz

LLW=100kHz

Fig. 10. AIRs after 40 spans, 256QAM, at different LLWs at transmitter and
receiver, 100GBaud.

the performance.
2) The algorithm for tracking should be able to account for

the combined effect of laser phase noise and NLPN.
The latter observation suggests that even when perfect know-
ledge is available for the lasers, the combined phase noise
process variance should always be estimated as ∆2 = ∆2

tx +
∆2
rx + ∆2

NL for the desired link set-up. In case the lasers are
not ideally characterized, the process noise variance may be
estimated from training data via (7). The latter approach is
also more robust to instabilities.

C. EDFA WDM Optical Fiber Link

In order to assess the performance of the TMM algorithm in
a more practical scenario, we consider a lumped amplification
scheme, where Erbium doped fiber amplifiers (EDFA) are
inserted at the end of each fiber span, instead of the Raman
pump. The new system parameters are given in Table III. The
fiber parameters are the same as in Table II.

In this case we employ both polarizations. DBP is not
performed here, but only electronic chromatic dispersion
compensation in the frequency domain. Polarization mode
dispersion is neglected in the SSFM.
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TABLE III
SYSTEM PARAMETERS, EDFA TRANSMISSION

Symbol rate 28 GBaud
Number of channels 17

Guardband 0.56 GHz (2% of symbol rate)
EDFA noise figure 4 dB

LLW 10 kHz, 100 kHz and 1 MHz

We also study the performance of the algorithm for smaller
constellations, where the LLW tolerance is generally higher.
AIRs are given for 256QAM, 64QAM and 16QAM, at 10
spans, 30 spans and 50 spans, respectively, in Fig. 11 for
10kHz LLW, Fig. 12 for 100kHz LLW and Fig. 13 for 1MHz
LLW. The distances and constellation sizes are chosen such
that the maximum AIR at the optimal input power is smaller
than ≈ 3

4 log2 |X |, which is the desired operating point for
energy and spectral efficient communications. This point can
be seen as the maximum SNR, at which the slope of the
MI with discrete input on a Gaussian channel is the same
as for Gaussian input, i.e., where the AIR is not yet limited
by the size of the constellation. For such information rates and
sufficiently large values of ∆, DD methods generally perform
poorly due to the high SER, regardless of the modulation
format.

At 10kHz LLW the TMM algorithm achieves near-optimal
performance in all cases up to the optimal input power for
the respective distances and constellations. We only see an
instability for very high input power and low SNR in the
case of 16 QAM after 50 spans. Similar to the IDRA case,
the DD algorithm from [10] requires around 500 samples for
averaging out the noise. At 100kHz LLW, the phase noise
cannot be considered constant for such a long period, and the
DD algorithm fails. The TMM method requires increase in
the pilot rate to P = 0.005, and achieves stable performance,
close to that of the trellis method. We note that the number of
states in the trellis was increased to 256, and we see that in
the case of 256 QAM there is still around 0.5 bits/channel use
gap to the PIPNR rate. For smaller constellations 256 states
are enough to see convergence in the performance. At 1MHz
LLW the TMM method becomes sub-optimal, however, still
achieves reasonable performance for 16 QAM and 64 QAM.
The pilot rate in this case is increased to P = 0.05. The gap
to the trellis method is around 0.4 and 0.2 bits/channel use for
64 QAM and 16 QAM, respectively.

V. DISCUSSION AND FUTURE WORK

As shown earlier, the trellis method from [19] achieves near-
PIPNR performance in nearly all cases of interest, however,
it is very complex. This is particularly the case for large
values of ∆, where the entire range [−π;π) must be covered
with very fine precision. Recently, the authors in [24] studied
this problem, and proposed a low-complexity solution, which
basically reduces the state space and thus the complexity
of the algorithm. A comparison in terms of complexity and
performance between the TMM and the solution from [24]
would be of interest, but out of the scope of this paper.
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Fig. 11. AIRs with 10kHz LLW for different modulation formats at different
distances. The DD method requires long averaging window. The TMM closely
approaches the trellis method in all cases.
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Fig. 12. AIRs with 100kHz LLW for different modulation formats at different
distances. The DD method cannot be used. The trellis method requires more
states than before. The TMM requires a slight increase in the pilot rate, but
still achieves a performance close to that of the trellis method in all cases.

As mentioned in Section II-B, the choice of the window
length L for estimating ∆2 may improve the quality of the
Wiener process model for the NLPN. We found that the
AIRs in Section IV vary only slightly for L ∈ [10; 100],
which means that the proposed method is generally robust to
variations and instabilities in the estimation of ∆. We note that
Eq. (6) may be seen as a convolution of the signal yk ·x∗k with
a rectangular pulse. Optimizing the pulse shape may further
improve the quality of the model.

A remark on the pilot symbols assumptions in our design
follows. In cases of very narrow linewidth, we have confirmed
that if the initial π/2 ambiguity is avoided, the algorithm
is stable in tracking the phase noise and does not require
subsequent pilots. Even though the P = 0.002 is negligible
in terms of reduced spectral efficiency, if the initial phase
noise value is known, the pilots may be entirely removed.
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Fig. 13. AIRs with 1MHz LLW for different modulation formats at different
distances. The DD method cannot be used. The TMM method requires an
increased pilot rate, and achieves stable performance, with a loss compared
to the trellis method of 0.4 and 0.2 bits/channel use for 64 QAM and 16
QAM, respectively.

This is a reasonable assumption when e.g. previous blocks are
decoded correctly, and such information can be extracted. We
note that due to the increasing order of modulation in optical
fiber systems, inserting pilot symbols is becoming a more and
more popular approach in the research community due to the
improved equalization they provide. The same pilots that are
used for equalization may generally be used for phase noise
tracking.

VI. CONCLUSION

An algorithm was proposed for tracking the phase noise
in wavelength division multiplexed optical fiber channels.
It was shown that in ideal distributed raman amplification
(IDRA) links, the proposed method can effectively combat
the combined effect of laser phase noise and non-linear phase
noise, outperforming previous decision directed methods, at
significantly reduced complexity compared to previous trellis
methods. Near optimal performance can be achieved for IDRA
links, but also in more practical lumped amplification links
with dual polarization input. Depending on the severity of the
phase noise, pilot symbols may be introduced, which allow
for stable performance on a wide variety of SNRs, achievable
information rates and laser linewidths.
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ABSTRACT

In this paper lower bound on the capacity of multi-dimensional
linear interference channels is derived, when the input is
taken from a finite size alphabet. The bounds are based on
the QR decomposition of the channel matrix, and hold for
any input distribution that is independent across dimen-
sions. Calculation of the bounds can be performed on a
per-dimensions basis via look-up tables of the information
rates of 1D channels.

1. INTRODUCTION

The capacity of a set of linearly interfering channels when
the input is taken from a finite size alphabet has been
a long standing problem in information theory. In the
case of the Multiple Input Multiple Output (MIMO) chan-
nel with Gaussian input the capacity has been found [1].
When the transmitter has perfect knowledge of the chan-
nel, it can align the input to the channel eigen modes and
allocate the power based on the water-filling strategy. When
the channel is known at the receiver only, i.i.d. Gaus-
sian input is optimal. It has been shown in [2] that when
the input is discrete, both orthogonalization and water-
filling power allocation are sub-optimal. Low and high
SNR asymptotic expressions for the capacity in the dis-
crete case are derived based on the Mutual Information
(MI) - Minimum Mean Squared Error (MMSE) relation
[3][4][5]. Due to the requirement for high spectral effi-
ciency on current communication systems, the mid-SNR
is usually where they operate. The MIMO Constellation
Constrained Capacity (CCC) in this region remains un-
known. The capacity of a standard impulse response chan-
nel with discrete input is another open problem in the area
of linear interference channels. The general method for
computing it relies on trellis processing [6], which quickly
becomes intractable when the channel memory increases.
Some extensions and simplifications exist, e.g. [7], which
usually attempt to shorten the memory length, however,
they still suffer from the inherent complexity of the trellis
description.

In [8] we derived a lower bound on the CCC of the
ergodic MIMO channel with i.i.d. matrix elements using
the QR Decomposition (QRD) of the channel. Here we
generalize this result to the single channel realization case,

and we use it to also bound the Achievable Information
rate (AIR) on a general impulse response channel.

2. CHANNEL MODEL AND COMPLEXITY
PROBLEM

Consider a standard MIMO channel model:

Y = HX +W, (1)

where X is M -dimensional complex random variable vec-
tor X = [X1, X2, . . . XM ]T , which is discrete and takes
values from the complex-valued set XM , obtained as the
Cartesian product of the basic 1D set X . This can be a
QAM, APSK, etc. complex-valued set. The matrix H
represents the [NxM ] complex-valued channel, W is N
dimensional complex AWGN, assumed here to have unit
variance and Y is the N dimensional channel observa-
tion. We assume the channel realization is known at the
receiver, but not at the transmitter. The realization of a
random variable, e.g. X , at time k will be denoted as xk

(xk in the case of 1D variable), and the sequence from
time t to k as xk

t = [xt,x2, . . .xk]
T .

The AIR on the channel when signaling with XM ,
having Probability Mass Function (PMF) p(X), and av-
eraging among the possible channel realizations is given
by the MI:

I(X;Y ) = EH [I(X;Y |H)] =

H(X)− EH [H(X|Y,H)] . (2)

The standard method for calculating the MI is to generate
a long enough pair of input-output sequences, and use the
fact, that the entropy converges [6]:

H(X|Y,H) = − lim
K→∞

1

K

K∑

k=1

log2 p(xk|yk,H). (3)

The probability above is calculated from Bayes theorem:

p(xk|yk,H) =
p(yk|xk,H)p(xk)∑

xk∈XM p(yk|xk,H)p(xk)
(4)

Since the normalization term in (4) must be calculated, the
complexity grows exponentially with M . Furthermore,
in order to see the convergence in (3), K must also be
increased with M . Going beyond e.g. 64QAM on a 3x2
channel on a standard computer becomes challenging.
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3. LOWER BOUNDS

Let H = QR be the QR decomposition of H, where Q is
unitary and R is upper-triangular. A well known MIMO
receiver utilizes the form of R to successively cancel the
interference from previously detected layers, hence Suc-
cessive Interference Cancellation (SIC), in the following
manner: the received samples are pre-processed as Ŷ =
QHY , and the channel model becomes Ŷi =

∑M
j=i Ri,jXj .

Assuming the layers i + 1 to M are correctly decoded
by the following channel code, the symbols can be re-
modulated and subtracted from the current layer i. Here
we use a similar technique to derive a lower bound on the
channel capacity.

Since Q is unitary and doesn’t change the entropy of
Y , and thus the MI, we can write:

I(X;Y |H) = H(X)−H(X|Ŷ |H) =

H(X)−
∑

i=1:M

H(Xi|Ŷ , XM
i+1,H) ≥

H(X)−
∑

i=1:M

H(Xi|Ŷi, X
M
i+1,H) = I(X;Y |H), (5)

where we have used the fact, that conditioning does not
increase the entropy. In order to calculate the terms in the
sum, we express the posterior probabilities similar to (4):

p(Xi|Ŷi, X
M
i+1,H) =

p(Xi)p(Ŷi|Xi, X
M
i+1,H)

∑
Xi

p(Xi)p(Ŷi|Xi, XM
i+1,H)

(6)

Since we condition on the following layers, the likelihood
above can be expressed as:

p(Ŷi|Xi, X
M
i+1,H) = N (Ŷi|

∑

j=i:M

Ri,jXj , 1) =

N (Ŷi −
∑

j=i+1:M

Ri,jXj |Xi, 1), (7)

where Ri,j is the element on the i−th row and j−th col-
umn of R, and N (x|μ, σ2) is a 1D Gaussian function at
x, with mean and variance μ and σ2, respectively. Us-
ing (7), lower bound on the MI on each layer can be cal-
culated independently from an SNR-MI Look-Up Table
(LUT), where the SNR is given by |Ri,i|2E

[
X2

i

]
. When

M <= N , the achievable rate on the M−th layer co-
incides with the actual capacity for that layer. However,
when M > N , there is residual interference on the N+1-
st to the M−th layers from layers, which are not yet de-
coded, and the resulting lower bound becomes poorer. In
order to improve it, we model the residual interference as
noise, which is a standard practice in communications en-
gineering. The likelihood we use on layers i > N is then:

N (ŶN −
∑

j=i+1:M

RN,jXj |RN,iXi, σ̂i), (8)

where σ̂i = 1+
∑

j=N :i−1 |RN,j |2E
[
X2

i

]
. In this case it

is clear, that in the asymptotically high SNR we have:

lim
E[X2

i ]→∞
I(X;Y |H) = H(X), (9)

whereas:

lim
E[X2

i ]→∞
I(X;Y |H) =

H(X)−
∑

i=N+1:M

H(Xi|Y,H, SNRi), (10)

where the conditional entropy is larger than zero, because
limE[X2

i ]→∞ SNRi =
RN,i∑

j=N:i−1 RN,j
, which is a finite

number.

3.1. Relation to auxiliary channel lower bounds

A simple upper bound on the entropy of a variable X with
PDF p(X) can be obtained by using an auxiliary proba-
bility function p̄(X) �= p(X). If X is generated by its
original PDF, then the upper bound is found by calculat-
ing the entropy function from X , but using p̄(X) [6]:

H̄(X) = − 1

K

∑

k

log2 p̄(xk) ≥ H(X)

A lower bound on the MI is derived in a similar man-
ner. Say there is a channel with input-output sequence pair
x → y, governed by the laws pY |X(Y |X), and pX|Y (X|Y ) =

pY |X(Y |X)pX(X)∑
X pY |X(Y |X)pX(X) . Then if y is generated by the law

pY |X(Y |X), the lower bound is calculated as:

I(X;Y ) = H(X)− H̄(X|Y ) ≤
H(X)−H(X|Y ) = I(X;Y ), (11)

where H̄(X|Y ) is calculated using some valid PMF p̄X|Y (X|Y ) �=
pX|Y (X|Y ).

Turning back to the R channel, we use the auxiliary
probability distribution p̄(X|Y,H):

p̄(X|Ŷ ,H) =
M∏

i=1

p̄(Xi|Ŷ , XM
i+1,H)

=
M∏

i=1

p̄(Ŷ |Xi, X
M
i+1,H)p(Xi)∑

Xi
p̄(Ŷ |Xi, XM

i+1,H)p(Xi)
,

where:

p̄(Ŷ |Xi, X
M
i+1,H) =

N (Ŷi −
∑

j=i+1:M

Ri,jXj |Ri,iXi, 1), (12)

which leads to the same lower bound.

3.2. Impulse response channels

Consider a standard impulse response channel:

yk =
∑

i=0:l

hixk−i + wk, (13)
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where h = [h0, h1, . . . hl]
T is the impulse response. Equiv-

alently, the channel may be expressed in its matrix form:

yk1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0

h1 h0 · · ·
...

...
...

. . .
...

hl hl−1
. . .

...

0 hl
. . .

...

0
. . . . . .

...
...

. . . h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× xk
1 + wk

1 . (14)

The MI with channel knowledge at the receiver is now
calculated as:

I(X;Y |h) = H(Y |h)−H(Y |X,h) =

= − 1

K
log2 p(y

K
1 |h)−H(W ) (15)

The standard approach to calculating (15) is to use a trellis
to calculate p(yK1 ) =

∏
1:K p(yk|y1:K−1). One section of

such trellis is given in Fig. 1. The interfering symbols are
cast into the state: Sk = {Xk−l, ...Xk−1}, and the current
symbol governs the transition. Marginalizing the state, the
desired probability at time k is p(yk1 ) =

∑
sk

p(sk, y
k
1 ),

where each term is calculated recursively [6]:

p(sk, y
k
1 ) =

∑

xk

∑

sk−1

p(sk−1, y
k−1
1 )p(yk|xk, sk)p(xk|sk)

Since the number of states is given by |S| = |X |l, the di-
mensionality problem is the same as for the MIMO chan-
nel. The equivalent of the above mentioned 3x2 64QAM
here is 64QAM with maximum 2 taps, or similarly - 16QAM
with maximum 3 taps, for a standard PC. Trellis pruning
techniques may be utilized both in case of MIMO and im-
pulse response channels, leading to the so-called sphere
detection [9]. Sphere detection is popular, but is still lim-
ited in the number of nodes which can be pruned before
the performance degrades significantly. Another approach
for the impulse response channel is to use an auxiliary
channel of shorter length [7]. The same problem exist here
- the more the channel is shortened, the worse auxiliary
channel we can find, and thus worse lower bounds.

Instead we can use the QRD based lower bounds. If
the channel is expressed as in (14), the QR decomposi-
tion may be performed, and a bound may be obtained by
the above mentioned LUT. In this case M = N , and so
Eq. (7) is used. This method is independent of the mem-
ory length. The only bottleneck is the QRD computation,
which for very long sequences may become problematic.
In this paper we used K = 104, which we found was
enough to see convergence for 16QAM constellations. The
QRD on the

[
104x104

]
matrix was computed in a few sec-

onds on the PC we used. We note that the channel matrix
in this case is highly structured and periodic, and the R
matrix therefore may be expected to also hold some struc-
ture. For example, in all our simulations the diagonal ele-
ments of the R matrix either converged to some value, or

�
�

�
���

�
�

�
�

Figure 1. Trellis representation of the impulse response
channel (13)

to some periodic pattern. However, exploiting this period-
icity is left for future research.

4. RESULTS

4.1. MIMO channel

In Fig. 2(a) the lower bounds from Eq. (5) are shown
for a 2x2 MIMO with 64QAM input, together with the
true MI, as calculated from Eq. (2). The input PMF is
uniform. For comparison, we also plot the AIRs with the
popular linear MMSE receiver processing [9]. We see that
the true information rate is closely approached by the pro-
posed method. The MMSE processing also calculates a
lower bound, however, poorer than the QRD based one.
As mentioned in Section 3, in the case of M > N , the
bounds will not be as tight. In Fig. 2(b) the AIRs are
shown for a 3x2 MIMO with 64QAM input. We see a
significant underestimation, especially in the high SNR
region. However, we note that the transmit diversity sys-
tem is generally not used for maximizing throughput, and
therefore a practical system would not operate at this high
SNR region with an input of rank, which is larger than
rank(H) ≤ min(M,N). In the low-to-mid SNR, the
QRD based bound may still be used. In Fig. 2(c) the AIRs
on a 8x8 system are shown, where the full-complexity al-
gorithm can no longer be used. The QRD based lower
bound follows the slope of the Gaussian capacity, and
converges to H(X). When we further increase M , more
terms are added in the conditional entropy in Eq. (10),
and the lower bound becomes worse. However, the slope
at low-to-mid SNR is still the same as the Gaussian capac-
ity. Finally in this section we note, that the uniform PMF
is not a requirement. The bounds hold for any PMF, which
is independent across dimensions. The consequence is
that optimization can also be performed using the auxil-
iary function (7). The PMF, which is optimized for the
auxiliary channel can then be used on the true channel, and
the AIR in that case is still bounded by what is achieved
in (5). Some results obtained by the well known Blahut-
Arimoto algorithm for optimization of the input PMF on
an ergodic MIMO channel may be found in [8].

4.2. Impulse response channel

We also analyze the QRD based lower bound on a fixed
impulse response channel, where h is obtained from stan-
dard Gaussian distribution. In Figures 3(a) and 3(b) we
see the AIRs on an impulse response channel with l = 3
and l = 6, respectively (channel as given in the caption).
Without loss of generality, we sort the channel elements
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Figure 2. AIRs on MIMO channels of different size
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Figure 3. Achievable information rates for the chan-
nels: a) h = [0.37 − 0.18i,−0.35 + 0.05i,−0.20 −
0.26i,−0.23− 0.17i]T ; b) h = [−0.18− 0.47i,−0.35−
0.26i, 0.37−0.06i,−0.26+0.25i,−0.17+0.27i,−0.23+
0.18i,−0.20 + 0.05i]T

in descending order of their amplitude. The input sym-
bols are i.i.d., and so this does not change the AIRs, but
makes the implementation of the trellis simpler, since the
state actually represents previous symbols. In the general
case, we would like our state to represent the symbols, re-
sponsible for largest interference. We compare the QRD
based bounds with the trellis based method, which casts
Ntaps previous symbols into the state, and the rest l −
Ntaps symbols are modeled as noise, similar to Eq. (8).
When Ntaps = l the AIR is the true CCC. For compari-
son we also include the AIRs using OFDM. We note that
OFDM with Gaussian input and water-filling power allo-
cation is the power constrained channel capacity. On the
short channels, the QRD based lower bound closely ap-
proaches the constrained capacity, achieved with the trel-
lis algorithm. It is slightly outperformed in the low SNR
by OFDM, and slightly outperforms OFDM in the mid-to-
high SNR. When we increase the channel length, the trel-
lis based algorithm can be used with up to 3 taps on the PC
we used for simulations. The QRD bound in this case is
able to provide larger improvement over the OFDM. Both
figures show that orthogonalization of the channel when
the input is discrete can be sub-optimal, confirming the
results from [2][8].

5. CONCLUSION

In this paper some of the more popular linear interference
channels are studied. Lower bounds on the AIRs are de-
rived using the QR decomposition of the channel. In case
of linear 1D channels with memory, the QRD is performed
on the matrix form of the channel. Based on the diagonal
elements of the R matrix, an SNR-AIR look-up table can
be efficiently used to find lower bounds on capacity. These
bounds were shown to closely approach the true constel-
lation constrained capacity, where the latter can be com-
puted by standard PC, and were also shown to have good
performance in terms of slope and distance to Gaussian
capacity in most cases of interest.
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Appendix B

Mapping functions for

many-to-one turbo-coded

BICM

In this Chapter we provide the mapping functions that were used in this
thesis. The symbol 'X' in the mapping represents ambiguity - that is,
both '0' and '1' are mapped to that bit position. We only plot the 1D
marginal mapping functions, as obtained by the algorithm from PA-

PER 2. Note that the 256QAM for AWGN channel and the optimized
256QAM for the WDM channel are identical.
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Figure B.1: 8PAM marginal mapping function for the 64QAM constellation used
in Section 5.2. m = 8.

119



i
i

�main� � 2016/4/7 � 14:09 � page 120 � #132 i
i

i
i

i
i

120 Mapping functions for many-to-one turbo-coded BICM

−31 −29 −27 −25 −23 −21 −19 −17 −15 −13 −11 −9 −7 −5 −3 −1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

0.02

0.04

0.06

0.08

p X
(X

)

symbol X

1 
0 

1 
1 

1 
0 

0 

1 
0 

1 
1 

1 
0 

1 

1 
0 

1 
1 

1 
1 

X
 

1 
0 

1 
1 

0 
1 

X
 

1 
0 

1 
1 

0 
0 

X
 

1 
0 

1 
0 

0 
0 

X
 

1 
0 

1 
0 

0 
1 

X
 

1 
0 

1 
0 

1 
X

 X
 

1 
0 

0 
0 

1 
X

 X
 

1 
0 

0 
0 

0 
X

 X
 

1 
0 

0 
1 

0 
X

 X
 

1 
0 

0 
1 

1 
X

 X
 

1 
1 

0 
1 

X
 X

 X
 

1 
1 

0 
0 

X
 X

 X
 

1 
1 

1 
0 

X
 X

 X
 

1 
1 

1 
1 

X
 X

 X
 

0 
1 

1 
1 

X
 X

 X
 

0 
1 

1 
0 

X
 X

 X
 

0 
1 

0 
0 

X
 X

 X
 

0 
1 

0 
1 

X
 X

 X
 

0 
0 

0 
1 

1 
X

 X
 

0 
0 

0 
1 

0 
X

 X
 

0 
0 

0 
0 

0 
X

 X
 

0 
0 

0 
0 

1 
X

 X
 

0 
0 

1 
0 

1 
X

 X
 

0 
0 

1 
0 

0 
1 

X
 

0 
0 

1 
0 

0 
0 

X
 

0 
0 

1 
1 

0 
0 

X
 

0 
0 

1 
1 

0 
1 

X
 

0 
0 

1 
1 

1 
1 

X
 

0 
0 

1 
1 

1 
0 

1 

0 
0 

1 
1 

1 
0 

0 

Figure B.2: 32PAM marginal mapping function for the 1024QAM constellation
used in Section 5.2. m = 14.
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Figure B.3: 32PAM marginal mapping function for the 1024QAM constellation
used in Section 5.2. m = 16.
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Figure B.4: 16PAM marginal mapping function for the 256QAM constellation used
in Section 5.3 and Section 5.2. m = 10.
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Figure B.5: 32PAM marginal mapping function for the 1024QAM constellation
used in Section 5.3. m = 14.
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List of Acronyms

ACF auto-correlation function

ADC analog-to-digital conversion

AIR achievable information rate

ASE ampli�ed spontaneous emission

AWGN additive white Gaussian noise

BER bit error rate

BICM bit-interleaved coded modulation

BLER block error rate

BAA Blahut-Arimoto algorithm

CCC constellation constrained capacity

CD chromatic dispersion

DBP digital back-propagation

DD decision directed

EDFA Erbium doped �ber ampli�er

EM expectation-maximization

EXIT extrinsic information transfer

FEC forward error correction
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122 List of Acronyms

FWM four wave mixing

GHC geometric Hu�man codes

IDRA ideal distributed Raman ampli�cation

ISI inter symbol interference

IT information technology

KLD Kullback-Leibler divergence

LDPC low-density parity check

LLW laser linewidth

LO local oscillator

LUT look-up table

MAP maximum a-posteriori probability

MI mutual information

MIMO multiple-input multiple-output

MMSE minimum mean squared error

NLPN non-linear phase noise

NLSE non-linear Schrödinger equation

OFDM orthogonal frequency division multiplexing

OSNR optical SNR

PAM pulse amplitude modulation

PDF probability density function

PMD polarization mode dispersion

PMF probability mass function

PSD power spectral density
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QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

QRD QR decomposition

RV random variable

SE spectral e�ciency

SER symbol error rate

SNR signal-to-noise ratio

SPM self-phase modulation

SSFM split-step Fourier method

SSMF standard single mode �ber

SVD singular value decomposition

WDM wavelength division multiplexing

XPM cross-phase modulation
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