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Summary (English)

This thesis studies various aspects of the Tutte polynomial, especially focusing on
the Merino-Welsh conjecture.

We write T (G;x, y) for the Tutte polynomial of a graph G with variables x and y.
In 1999, Merino and Welsh conjectured that if G is a loopless 2-connected graph,
then

T (G; 1, 1) ≤ max{T (G; 2, 0), T (G; 0, 2)}.

The three numbers, T (G; 1, 1), T (G; 2, 0) and T (G; 0, 2) are respectively the num-
bers of spanning trees, acyclic orientations and totally cyclic orientations of G.

First, I extend Negami’s splitting formula to the multivariate Tutte polynomial.
Using the splitting formula, Thomassen and I found a lower bound for the number
of spanning trees in a k-edge-connected graph. Our bound is tight for k even, but
for k odd we give a slightly better lower bound which we believe is not tight. We
prove that the minimum number of spanning trees in a 3-edge-connected graph
with n vertices is, not surprisingly, significantly smaller than the minimum num-
ber of spanning trees in a 4-edge-connected graph. However, we conjecture that
the minimum number of spanning trees of a 5-edge-connected graph is actually
obtained by a 6-edge-connected graph asymptotically.

Thomassen proved the following partial result for the Merino-Welsh conjecture.
Assume the graph G is loopless, bridgeless and has n vertices and m edges.
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If m ≤ 1.066n then T (G; 1, 1) ≤ T (G; 2, 0).
If m ≥ 4n− 4 then T (G; 1, 1) ≤ T (G; 0, 2).

I improve in this thesis Thomassen’s result as follows:

If m ≤ 1.29(n− 1) then T (G; 1, 1) ≤ T (G; 2, 0).
If m ≥ 3.58(n− 1) and G is 3-edge-connected then T (G; 1, 1) ≤ T (G; 0, 2).

Strengthening Thomassen’s idea that acyclic orientations dominate spanning trees
in sparse graphs, I conjecture that the ratio T (G; 2, 0)/T (G; 1, 1) increases as G
gets sparser. To support this conjecture, I prove a variant of the conjecture for
series-parallel graphs.

The Merino-Welsh conjecture has a stronger version claiming that the Tutte poly-
nomial is convex on the line segment between (2, 0) and (0, 2) for loopless 2-
connected graphs. Chávez-Lomelí et al. proved that this holds for coloopless
paving matroids, and I provide a shorter proof of their theorem. I also prove it
for minimally 2-edge-connected graphs. As a general statement for the convexity
of the Tutte polynomials, I show that the Tutte polynomial of a sparse paving
matroid is almost surely convex in the first quadrant. In contrast, I conjecture
that the Tutte polynomial of a sparse paving matroid with fixed rank is almost
never convex in the first quadrant.

The following multiplicative version of the Merino-Welsh conjecture was considered
by Noble and Royle:

T (G; 1, 1)2 ≤ T (G; 2, 0) T (G; 0, 2).

Noble and Royle proved that this multiplicative version holds for series-parallel
graphs, using a computer algorithm that they designed. Using a property of the
splitting formula which I found, I improve their algorithm so that it is applicable
to the class of graphs with bounded treewidth (or pathwidth). As an application,
I verify that the multiplicative version holds for graphs with pathwidth at most 3.
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Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring a Ph.D. in Applied Mathematics.

The thesis deals with a conjecture called the Merino-Welsh conjecture about the
Tutte polynomial in graph theory.

The thesis presents new results for three variations of the conjecture and suggests
new ways of investigating the Tutte polynomial.

Lyngby, 30-September-2015

Seongmin Ok
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Chapter 1

Introduction

This chapter presents the terminologies for graphs and matroids we will use through-
out. We follow mostly Diestel [Die10] for graphs and Oxley [Oxl11] for matroids.
We list some graph examples at the end of this section.

1.1 Graphs and directed graphs

We list the definitions, especially focusing on introducing the notion of spanning
tree, acyclic orientation and totally cyclic orientation.

A graph G has a nonempty set of vertices V (G), a set of edges E(G), and a set
of incidences I(G) ⊆ V (G)×E(G). A vertex v ∈ V (G) is incident with an edge
e ∈ E(G) if (v, e) ∈ I(G). If v is incident with e then v is an end of e. An edge
has at most two ends. An edge with only one end is called a loop. Two edges with
same set of ends are parallel. If the ends of e are u and v then we write e = uv.
If a graph G has no parallel pair of edges then we may consider e as a subset of
V (G) of size 2 and write e = {u, v}. A simple graph is a graph without parallel
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edges and loops. We shall always consider the incidence set I(G) as implicit and
we write G = (V (G), E(G)).

A subgraph of a graph G = (V,E) is a graph H = (V ′, E′) such that V ′ ⊆ V

and E′ ⊆ E. Possibly H = G. The subgraph G′ = (V,E \ {e}) for an edge
e is denoted by G − e and called the graph obtained from G by deleting (or
removing) e. If v ∈ V is a vertex of G = (V,E) but not the only vertex, then
G − v denotes the subgraph (V \ {v}, E′′) where E′′ is the set of edges in E not
incident with v. We call G− v also the deletion (or removal) of v from G. The
graph G/e, the contraction of a non-loop edge e, is obtained from G by removing
e and then identifying the ends of e. If e is a loop, then G/e = G − e. For a
sequence of edges and vertices, say x1, x2, . . . , xk, we write G− {x1, x2, . . . , xk} =

((G− x1)− x2 · · · )− xk). For F ⊆ E, we write G/F for the graph obtained from
G by a sequence of contractions of edges in F . The operations of deletion and
contraction are interchangeable, in the sense that (G− e)/f = (G/f)− e for any
pair of edges e and f . A graph obtained from G by a sequence of deletion and
contractions is called a minor of G.

A subgraph of G = (V,E) with vertex set V is called spanning. For X ⊆ V , the
graph G − (V \ X) is the subgraph of G induced by X, denoted by G[X]. If
Y ⊆ E, then the subgraph of G induced by Y is obtained from G = (V, Y ) by
removing the vertices without incident edges.

A sequence of edges e1, e2, . . . , ek, ei = uivi is a path if vi = ui+1 for each i and
the vertices u1, u2, . . . , uk, vk are distinct. We say that the path is from u1 to vk
and write it as u1u2 · · ·ukvk. A cycle is a sequence of edges e1, e2, . . . , ek, ei = uivi

such that e1, e2, . . . , ek−1 is a path and vk = u1. We denote it by u1u2 · · ·uku1.
The length of a path or a cycle is the number of edges in it. A loop is considered as
a cycle of length 1. If a graph G has a path between each pair of its vertices, then
G is connected. A graph is disconnected if it is not connected. An inclusion-
wise maximal connected subgraph is called a connected component or simply
a component. A graph without a cycle is a forest and a connected forest is a
tree. It is easy to see that a connected graph has a spanning tree. An edge e of
a graph G is called bridge if G − e has more components than G. A graph G is
k-connected if |V (G)| ≥ k+1 and G remains connected after removing k vertices
arbitrarily. A graph G is k-edge-connected if |E(G)| ≥ k and G stays connected
after removing k edges arbitrarily.
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A directed graph (or a digraph) G′ = (V,E) has a directed incidence set
D(G′) ⊆ V ×V ×E instead of the incidence set. Each edge appears precisely once
in D(G′). If (u, v, e) ∈ D(G′) and u 6= v then u is the tail of e and v is the head
of e. We write e = uv or e = (u, v). If (v, v, e) ∈ D(G′) then v is both the head
and tail of e. We say a digraph G′ is an orientation of a graph G = (V,E) if for
each edge, the two incident vertices (or one if the edge is a loop) in G is the same
as the head and tail in G′. In this case, we say G is the base graph of G′. A path
(a cycle) e1, e2, . . . , ek, ei = uivi of G is a directed path (a directed cycle) in
G′ if ei = (ui, vi) in G′ also. An orientation of G is acyclic if it has no directed
cycle. A totally cyclic orientation is an orientation such that each edge is in a
directed cycle. It is easy to show that a loopless graph has an acyclic orientation
and a bridgeless graph has a totally cyclic orientation.

Now we list some simple graphs that will be used later.

The complete graph on n vertices, denoted by Kn, is the graph with n vertices
such that each pair of vertices is connected by an edge. The wheel graph on n
vertices, n ≥ 4, is obtained from a cycle of length n − 1 by adding a new vertex
called the center adjacent to all vertices in the cycle. The ladder graph is
obtained from two paths of equal length, say u1u2 · · ·uk and v1v2 · · · vk, by adding
edges uivi for each i. The prism graph is obtained from two cycles of equal
length, say u1u2 · · ·uku1 and v1v2 · · · vkv1, by adding edges uivi for each i.

1.2 Matroids

Let E be a finite nonempty set. A matroid on E, say M , is a set system (E, I)

where I is a nonempty set of subsets of E satisfying the following:

1. If I ⊂ J and J ∈ I then I ∈ I.
2. If I, J ∈ I and |I| < |J | then there exists a x ∈ J \ I such that I ∪ {x} ∈ I.

The set E is called the ground set of M . The subsets of E in I are called
independent in M . A set is dependent if it is not independent. An inclusion-
wise maximal independent set is a basis of M . By (1), the set of bases completely
define a matroid. By (2), all bases have the same size, which is the rank of M
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and denoted by r(M). The rank function rM is defined by rM (A) = max
J∈I,J⊆A

|J |

for each A ⊆ E. It is easy to see that 0 ≤ rM (A) ≤ |A| for each A ⊆ E and
|A| = rM (A) if and only if A is independent. Hence the rank function completely
defines a matroid. We often write simply r(A) instead of rM (A) when we consider
a fixed matroid M . In Chapter 7, we write a matroid M as M = (E, r) where
E is the ground set and r is the rank function. A loop is an element not in any
independent set. A coloop is an element contained in every basis.

For two matroids M1 = (E1, I1) and M2 = (E2, I2) with E1 ∩ E2 = ∅, the direct
sum of M1 and M2, denoted by M1 ⊕ M2, is the matroid (E1 ∪ E2, I) where
I = {I ⊆ E1 ∪ E2 : I = I1 ∪ I2 for some I1 ∈ I1, I2 ∈ I2}.

A circuit is an inclusion-wise minimal dependent set. Thus a set is dependent if
and only if it contains a circuit. It follows that the set of circuits also completely
defines a matroid. A matroid is paving if every circuit has size at least the rank
of the matroid.

The restriction of a matroid M = (E, I) to a set S ⊆ E is the matroid on S,
denoted by M − (E \ S), whose rank function is the same as rM . In other words,
all the independent sets of M contained in S are precisely the independent sets
of M − (E \ S). If E \ S = {e} is a singleton then we write M − e. The dual
matroid, namely M∗, of a matroid M with rank function r is defined by using
the following function r∗ as its rank function:

r∗(A) = r(E \A) + |A| − r(M).

The bases of M∗ are precisely the complements of the bases of M . The matroid
M/e = (M∗ − e)∗ is called the contraction of e from M . A matroid obtained
from another matroid M by a series of deletions and contractions is a minor of
M . A matroid is sparse paving if itself and its dual are both paving.

Matroids can be thought of as a generalization of graphs. Given a graph G =

(V,E), the set system (E, I) where X ⊆ E is in I if and only if X has no cycle of
G becomes a matroid, called the cycle matroid of G. If M is the cycle matroid
of a graph G and e is an edge of G, then M − e and M/e are respectively the cycle
matroids of G− e and G/e.

Matroids will be considered substantially in Chapters 6 and 7.
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Chapter 2

The Tutte Polynomial

2.1 Introduction

In this chapter we shall introduce the definition of the Tutte polynomial and the
multivariate Tutte polynomial, together with their motivations and applications.
In Section 2.2 we show how to find the Tutte polynomial of the edge-disjoint union
of two graphs from certain information about the two edge-disjoint subgraphs
separately. The method was found by Negami [Neg87] and is named the splitting
formula. We shall use an approach different from [Neg87], starting with the
multivariate Tutte polynomial. The splitting formula for the multivariate Tutte
polynomial (Theorem 2.2.3) has not been mentioned explicitly in the literature as
far as I know. After that, we also prove a variant of the splitting formula which
shall be useful in chapter 5.

The Tutte polynomial, defined by Tutte [Tut54], has become one of the most
popular polynomial invariant of graphs. It has two variables and we shall use the
notation T (G;x, y) for the Tutte polynomial of a graph G with variables x, y. The
Tutte polynomial has several equivalent definitions and we give two of them which
are appropriate for our purpose. The first definition uses the rank of an edge set
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A ⊆ E(G), denoted by r(A), which is the number of edges in a maximal forest
contained in A.

T (G;x, y) =
∑

A⊆E(G)

(x− 1)r(E(G))−r(A)(y − 1)|A|−r(A). (2.1)

Equation (2.1) can be immediately used to define the Tutte polynomial of a ma-
troid, using the matroid rank function. The function r(A) used above coincides
with the rank function of the cycle matroid of G.

The Tutte polynomial can also be defined recursively, as follows. Let T (K̄n;x, y) =

1 when K̄n is the graph on n vertices with no edges. The above definition can be
used to show that the Tutte polynomial satisfy the following.

1. T (G;x, y) = xT (G− e;x, y) if e is a bridge.
2. T (G;x, y) = yT (G− e;x, y) if e is a loop.
3. T (G;x, y) = T (G− e;x, y) + T (G/e;x, y) if e is neither a bridge nor a loop.

On the other hand, it can also be shown that the Tutte polynomial is well-defined
using (1), (2) and (3) starting from T (K̄n;x, y) = 1. The equation (3) is also called
the deletion-contraction formula.

The invention of the Tutte polynomial was motivated by the chromatic polynomial
[Tut54]. The chromatic polynomial, denoted by P (G;λ), is a polynomial whose
values at positive integer k is the number of vertex-k-colorings of the graph G. The
chromatic polynomial satisfies the following for every edge e.

P (G;λ) = P (G− e;λ)− P (G/e;λ). (2.2)

Equation (2.2) can be thought of as a deletion-contraction formula since

(−1)nP (G;λ) = (−1)nP (G− e;λ) + (−1)n−1P (G/e;λ)

where n is the number of vertices of G. Tutte considered also the so-called flow
polynomial, which is dual to the chromatic polynomial, and generalized both
concepts into the Tutte polynomial. The chromatic polynomial is a specialization
of the Tutte polynomial in the following sense:

P (G;λ) = (−1)n−γ(G)λγ(G)T (G; 1− λ, 0)

6



where n = |V (G)| and γ(G) is the number of connected components of G. It is
easy to prove this by induction on the number of edges using (2.2). Similarly, it
can be shown that the flow polynomial (which we do not consider in the present
work) is a specialization of the Tutte polynomial.

In fact, any invariant satisfying the deletion-contraction formula is a specialization
of the Tutte polynomial as shown by the following theorem, proved by Oxley and
Welsh which they called the recipe theorem.

Theorem 2.1.1 (the recipe theorem [Wel99]). Let C be a class of matroids which
is closed under direct sums and the taking minors, and suppose that F is a function
defined on C and satisfies

F (M) = aF (M − e) + bF (M/e) for e ∈M, and

F (M1 ⊕M2) = F (M1)F (M2).

where M1⊕M2 is the direct sum of two matroids M1 and M2. Then F is given by

F (M) = a|E|−r(E)br(E)T (M ;
x0

b
,
y0

a
),

where x0 and y0 are the values of F on a coloop and a loop, respectively.

Some of the graph invariants satisfying the deletion-contraction formula are listed
below.

• the number of spanning trees, t(G) = T (G; 1, 1)

• the number of acyclic orientations, a(G) = T (G; 2, 0)

• the number of totally cyclic orientations, c(G) = T (G; 0, 2)

There are also many polynomial invariants of graphs which are specializations of
the Tutte polynomial. We saw that the Tutte polynomial, when restricted to the
x-axis, specializes to the chromatic polynomial. Some other examples are listed
below, with the corresponding curve on which the Tutte polynomial specializes.

• the flow polynomial : the y-axis
• the all-terminal reliability polynomial : the line x = 1

• the Jones polynomial : the curve xy = 1

• the q-state Potts model partition function : the curve (x− 1)(y − 1) = q
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For more thorough theory of the Tutte polynomial and its applications, see [BO92].

As the Tutte polynomial contains enormous information about graphs, there have
been various attempts to generalize the Tutte polynomial. I shall consider the
multivariate Tutte polynomial in particular.

The multivariate Tutte polynomial of a graph G is the polynomial

Z(G; q,v) =
∑

A⊆E(G)

qγ(A)
∏
e∈A

ve (2.3)

where q and v = {ve}e∈E(G) are commuting variables, and γ(A) is the number
of connected components of the graph (V (G), A). In the late 1960s, Fortuin and
Kasteleyn introduced (2.3) as an equivalent form of the q-state Potts model par-
tition function which plays an important role in statistical mechanics. For an
excellent presentation of the history of the multivariate Tutte polynomial and its
connection between graph theory and statistical mechanics, see [Sok05].

It is easy to see from (2.3) that the following generalized version of the deletion-
contraction formula holds for Z(G; q,v), where the vector v′ is v with ve omitted.

Z(G; q,v) = veZ(G/e; q,v′) + Z(G− e; q,v′)

In particular, if we set ve = w for a constant w for all edges e, then the two-variable
polynomial Z(G; q, w) satisfies

Z(G; q, w) = wZ(G/e; q, w) + Z(G− e; q, w)

and by the recipe theorem (Theorem 2.1.1), we get

T (G;x, y) = (x− 1)−γ(G)(y − 1)−|V (G)|Z(G; (x− 1)(y − 1), y − 1),

where q = (x−1)(y−1) and ve = y−1 for all e. Therefore, the multivariate Tutte
polynomial is indeed a generalization of the Tutte polynomial.

The indeterminates v = {ve}e∈E(G) can be thought of an edge-weight vector. One
advantage of the multivariate Tutte polynomial is that, as explained in Lemma
2.2.4 below, we can replace a component of a 2-cut by a single edge with an
appropriate edge-weight. In the following, we use the notation Lemma (2.2.4)
rather than Lemma 2.2.4 to indicate that the result itself is formulated later but
stated here for better readability.
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Lemma (2.2.4). Let G be a graph with two vertices, say x, y, such that G′ =

G − {x, y} is not connected. Let H be a component of G′. Then for each q and
v = {ve}e∈E(G), there are w and σ, described roughly below, such that

Z(G; q,v) = σZ(G−H + xy; q,v′)

where v′ is the edge-weight vector on G−H+xy which coincides with v on G−H,
and v′xy = w. The edge-weight w and the factor σ are defined in terms of q and the
edge-weights in the subgraph of G obtained from H by adding x and y with their
edges to H.

Lemma 2.2.4 has been a key tool in analyzing the computational complexity of the
Tutte polynomial. In a recent paper [GJ12], Goldberg and Jerrum used Lemma
2.2.4 extensively to classify the computational complexity of determining the sign
of the Tutte polynomial at almost every point in the real plane. In the paper
[JVW90] showing that the Tutte polynomial evaluation is computationaly hard,
the authors’ idea was the same as Lemma 2.2.4 but executed on the Tutte polyno-
mial without using the multivariate Tutte polynomial. Jackson and Sokal [JS09]
investigated the zeroes of the Tutte polynomial using the so-called serial and par-
allel reduction, and again the idea of replacing a 2-cut component by an edge is
proven to be useful.

2.2 Splitting formula

The main idea of this chapter is to express the Tutte polynomial of a graph from
some Tutte polynomials of ‘fragments’ which are defined below.

Let us consider a graph G being expressed as the union of two edge-disjoint sub-
graphs, say H and K. When |V (H)∩V (K)| = k and the vertices in V (H)∩V (K)

are distinctively labelled, we call H and K k-fragments. In other words, a k-
fragment is a graph with k labelled vertices. Unless otherwise stated we shall
use [k] = {1, 2, . . . , k} for the set of labels. Given two k-fragments, say H and K,
with the same set of labels, we define the graph H ⊕K as the union of H and K
where the vertices of the same labels are identified. The graph H ⊕K can also be
considered as a k-fragment using the labels inherited from H and K. Note that
according to the above formulation, we have G = H ∪K = H ⊕K. But since we
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are going to often ‘replace’ K with another k-fragment, we shall use the operation
⊕ instead of the union ∪.

S. Negami was the first to prove that when G = H⊕K, the Tutte polynomial T (G)

can be calculated using the information of the k-fragments H and K separately.
The information we need is of course the Tutte polynomials, but not only that
of H and K but also the Tutte polynomials of the graphs obtained from H and
K by identifying some of the labelled vertices. To express formally, let us discuss
beforehand the concept of partition lattice.

Let [k] = {1, 2, . . . , k}. A partition of [k] is a set of pairwise disjoint nonempty
subsets of [k] whose union is [k]. Each set in a partition is called a block. The
number of blocks of a partition P is denoted by |P |. We shall write Γ(k) to denote
the set of all partitions of [k]. A common way to give a partial order to Γ(k) is
to use the refinement order. A partition P is a refinement of another partition
P ′, denoted by P ≥R P ′, if for each block B of P , the partition P ′ has a block B′

such that B ⊆ B′. The order ≥R is called the refinement order.

A partially ordered set (S,≥) is a lattice if for each pair of elements u, v ∈ S,
there are the greatest lower bound (g.l.b.) u∧v and the least upper bound (l.u.b.)
u ∨ v, which are defined as the following:

1. an element s ∈ S is the g.l.b. of u and v if u ≥ s, v ≥ s and for each element
s′ such that u ≥ s′ and v ≥ s′, it holds that s ≥ s′.

2. an element t ∈ S is the l.u.b. of u and v if u ≤ t, v ≤ t and for each element
t′ such that u ≤ t′ and v ≤ t′, it holds that t ≤ t′.

Let P1, P2 be two partitions of [k]. It is easy to check that the following two
partitions are indeed P1 ∨ P2 and P1 ∧ P2 in (Γ(k),≥R).

• P1 ∨ P2 = {B1 ∩B2 : B1 ∈ P1, B2 ∈ P2 and B1 ∩B2 6= ∅},
• two integers n,m ∈ [k] are in the same block of P1∧P2 if and only if there is

a sequence n1, n2, . . . , ns such that n1 = n, ns = m and for each i, the pair
{ni, ni+1} is in a block of P1 or P2.

Thus (Γ(k),≥R) is a lattice, and we call Γ(k) the partition lattice.

10



A k-fragment H naturally induces a partition on its labelled vertices, or on the set
of used labels, such that vertices in the same component of H form a block. We
shall write H ` P when P ∈ Γ(k) and H is a k-fragment with labels from [k] such
that the vertices with labels i, j are in the same component of H if and only if i, j
are in the same block of P .

Now we illustrate the needed information of H to find T (H ⊕K). Let H be a k-
fragment and P ∈ Γ(k). For each block B of P , we identify the vertices of H with
labels in B into a single vertex. Let us denote the resulting graph by HP . To find
the Tutte polynomial of H⊕K where K is another k-fragment, the information we
need from H is the Tutte vector Tv(H), indexed by Γ(k), and whose entries are
T (HP ) for P ∈ Γ(k). We shall use Γ(k) as the index set of vectors and matrices in
the rest of this chapter. Also, the vectors are assumed to be column vectors unless
otherwise stated.

The following theorem is from Negami [Neg87]. A precise description of the matrix
N shall be given in Theorem 2.2.5.

Theorem 2.2.1 (Negami’s splitting formula). Let k > 0 and H,K be two k-
fragments. Then

T (H ⊕K) = Tv(H)t N Tv(K)

where N is a Γ(k) × Γ(k)-matrix whose entries are fractional functions of two
variables x, y. The entry corresponding to (P, P ′) ∈ Γ(k) × Γ(k) depends on the
number of connected components of HP and KP ′ .

Negami’s proof of Theorem 2.2.1 started with introducing his own polynomial
invariant of graphs, denoted by f(G; t, x, y). It has three variables, t, x and y, and
is defined recursively via the following rules.

1. f(K̄n; t, x, y) = tn,
2. f(G; t, x, y) = xf(G/e; t, x, y) + yf(G− e; t, x, y) for each edge e.

Note that unlike the standard Tutte polynomial, the second rule does not depend
on whether e is a bridge or a loop.

The following is from [Neg87].

Lemma 2.2.2. The polynomial f(G) is well-defined for each graph G.

11



Proof. We shall use induction on |E(G)|. Suppose that the statement is true for
|E(G)| < m. Let G be a graph with m edges. We may assume that m ≥ 2, and
let e, g be two distinct edges of G. We shall compare the deletion-contraction of e
after g with that of g after e.

xf(G/e) + yf(G− e)

= x(xf(G/e/g) + yf(G/e− g)) + y(xf(G− e/g) + yf(G− e− g)), and

xf(G/g) + yf(G− g)

= x(xf(G/g/e) + yf(G/g − e)) + y(xf(G− g/e) + yf(G− g − e)).

Since the order of deletion and contraction of two edges is interchangeable, f(G)

is well-defined by induction.

Negami first found a splitting formula for his polynomial f(G), and then obtained
the splitting formula for the Tutte polynomial using the following equation:

(x− 1)γ(G)(y − 1)|V (G)|T (G;x, y) = f(G; (x− 1)(y − 1), y − 1, 1),

which is not hard to prove by either induction on the number of edges or the recipe
theorem (Theorem 2.1.1).

We shall take a different approach which starts from the multivariate Tutte polyno-
mial. The splitting formula that I provide here has not appeared in the literature,
and it extends Negami’s spliting formula for the Tutte polynomial, Theorem 2.2.1.
It should be noted that if we assign the same edge weight w to all edges of a graph
G, then the multivariate polynomial satisfies

1. Z(K̄n; q, w) = qn and
2. Z(G; q, w) = wZ(G/e; q, w) + Z(G− e; q, w)

which implies Z(G; q, w) = f(G; q, w, 1). Thus, we may expect that the split-
ting formula for the multivariate Tutte polynomial would be similar to that of
Negami’s polynomial. We shall use the multivariate Tutte vector Zv(H) =

(Z(HP ))P∈Γ(k), an analogue of the Tutte vector Tv(H).

12



Theorem 2.2.3. Let H, K be two k-fragments. Then

Z(H ⊕K) = Zv(H)t N̂ Zv(K),

where N̂−1 is the Γ(k)× Γ(k)-matrix whose (Pi, Pj)-entry is q|Pi∧Pj |.

We shall point out that if we replace Z(H) with f(H) and replace q with t in
Theorem 2.2.3, then it is exactly Negami’s splitting formula for his polynomial
f(H) in [Neg87].

For brevity, a Γ(k)×Γ(k)-matrix whose (Pi, Pj)-entry is A(Pi, Pj) shall be written
as (A(Pi, Pj))Pi,Pj∈Γ(k). For example, N̂−1 = (q|Pi∧Pj |)Pi,Pj∈Γ(k).

Proof of Theorem 2.2.3. Recall that a k-fragment H induces a partition P ∈ Γ(k),
denoted by H ` P , if two labelled vertices of H are in the same connected com-
ponent precisely when they are in the same block of P . Let ZP (G) be the partial
summation of Z(G) defined by

ZP (G) =
∑

S⊆E(G),S`P

qγ(S)vS .

Thus, Z(G) =
∑

P∈Γ(k)

ZP (G).

We start by finding a splitting formula in terms of the vector Z ′v(G) = [ZP (G)]P∈Γ(k)

instead of Zv(G) = [Z(GP )]P∈Γ(k). The vector Z ′v(G) provides a simpler proof for
the splitting formula. However, the individual entries of Zv(G) are easier to cal-
culate and hence the statement is expressed using Zv(G). We shall see later that
there is an invertible matrix M such that Zv(G) = MZ ′v(G).

Firstly, we shall find a matrix N̂ ′ such that

Z(H ⊕K) = Z ′v(H)t N̂ ′ Z ′v(K)

for all k-fragments H and K.

Let us divide the summation

Z(H ⊕K) =
∑

S⊆E(H),T⊆E(K)

qγ(S∪T )wSwT
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up to the partitions S and T induce. That is,

Z(H ⊕K) =
∑

P1,P2∈Γ(k)

 ∑
S⊆E(H)
S `P1

∑
T⊆E(K)
T `P2

qγ(S∪T )wSwT

 (2.4)

Now we compare γH⊕K(S∪T ) with γH(S)+γK(T ). Let S ⊆ E(H) and T ⊆ E(K)

such that S ` P1 and T ` P2 for some P1, P2 ∈ Γ(k). We may consider S and T as
k-fragments themselves. When we compare the number of connected components
of the disjoint union of S and T with that of S ⊕ T , the only difference is between
the components of S and T containing the labelled vertices. The fragments S and
T have respectively |P1| and |P2| such components. In S ⊕ T , the condition that
vertices with labels i, j are in the same component is precisely the condition that
i, j are in the same block of P1∧P2, so that |P1∧P2| components of S⊕T contain
the labelled vertices. Therefore,

γ(S) + γ(T )− γ(S ⊕ T ) = |P1|+ |P2| − |P1 ∧ P2|,

and

γH⊕K(S ∪ T ) = γ(S ⊕ T ) = γ(S) + γ(T )− |P1| − |P2|+ |P1 ∧ P2|.

Putting it to Equation (2.4), we get

Z(H ⊕K) =
∑

P1,P2∈Γ(k)

 ∑
S⊆E(H)
S `P1

∑
T⊆E(K)
T `P2

qγ(S∪T )wSwT



=
∑

P1,P2∈Γ(k)

 ∑
S⊆E(H)
S `P1

∑
T⊆E(K)
T `P2

qγ(S)+γ(T )−|P1|−|P2|+|P1∧P2|wSwT



=
∑

P1,P2∈Γ(k)

 ∑
S⊆E(H)
S `P1

qγ(S)wS
∑

T⊆E(K)
T `P2

qγ(T )wT

 q|P1∧P2|−|P1|−|P2|

=
∑

P1,P2∈Γ(k)

ZP1(H) ZP2(K)q|P1∧P2|−|P1|−|P2|
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Thus, we have
Z(H ⊕K) = Z ′v(H)t N̂ ′ Z ′v(K) (2.5)

where N̂ ′ = (q|Pi∧Pj |−|Pi|−|Pj |)Pi,Pj∈Γ(k).

Now we find a matrix M such that Zv(H) = MZ ′v(H). Let us fix Pi ∈ Γ(k). For
ease of writing, we shall write Hi = HPi within the following formula and also
Hj = HPj

where Pj is an auxiliary partition in Γ(k). Since Hi has the same set
of edges as H,

Z(Hi) =
∑

S⊆E(Hi)

qγHi
(S)wS

=
∑

S⊆E(H)

qγHi
(S)wS

=
∑

Pj∈Γ(k)

∑
S⊆E(H)
S `Pj

qγHi
(S)wS

(2.6)

Let us compare γHi(S) with γH(S) when S ⊆ E(H) and S ` Pj . The graph Hi

is obtained from H by identifying some of the labelled vertices, so the difference
between γHi

(S) and γH(S) is from only the components containing at least one
of the labelled vertices. The graph (V (H), S) has |Pj | such components, whereas
in (V (Hi), S), the vertices with labels s, t lie in the same component if and only if
s, t are in the same block of Pi ∧ Pj , analogous to the previous situation. Thus,

γH(S)− γHi
(S) = |Pj | − |Pi ∧ Pj |,

and
γHi

(S) = γH(S)− |Pj |+ |Pi ∧ Pj |.

Putting it into Equation (2.6), we get

Z(Hi) =
∑

Pj∈Γ(k)

∑
S⊆E(H)
S `Pj

qγHi
(S)wS

=
∑

Pj∈Γ(k)

∑
S⊆E(H)
S `Pj

qγH(S)−|Pj |+|Pi∧Pj |wS

=
∑

Pj∈Γ(k)

 ∑
S⊆E(H)
S `Pj

qγH(S)wS

 q|Pi∧Pj |−|Pj |

=
∑

Pj∈Γ(k)

ZPj
(H)q|Pi∧Pj |−|Pj |

= M ′j · Z ′v(H)
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where M ′i is the vector indexed by Γ(k), whose Pj-entry is q|Pi∧Pj |−|Pj |.

Thus the multivariate Tutte vector Zv(H) = (Z(HP ))P∈Γ(k) can be obtained from
Z ′v(H) = (ZP (H))P∈Γ(k) in the following way:

Zv(H) = MZ ′v(H),

where M = (q|Pi∧Pj |−|Pj |)Pi,Pj∈Γ(k). The matrix M is invertible if and only if
the matrix (q|Pi∧Pj |)Pi,Pj∈Γ(k) is invertible. The latter is invertible because when
we consider the determinant, the highest degree of q appears only at the main
diagonal.

Thus M−1 exists, and Z ′v(H) = M−1Zv(H). Putting it into Equation (2.5), we
get

Z(H ⊕K) = Zv(H)t(M−1)tN̂ ′M−1Zv(K), (2.7)

where N̂ ′ = (q|Pi∧Pj |−|Pi|−|Pj |)Pi,Pj∈Γ(k).

Since N̂ ′ is obtained fromM by multiplying Pi-row with q−|Pi|, we have N̂ ′M−1 =

(q−|Pi|δ(Pi, Pj))Pi,Pj∈Γ(k) where δ(Pi, Pj) = 1 if Pi = Pj and 0 otherwise.

On the other hand, (M−1)t = (M t)−1 = (q|Pi∧Pj |−|Pi|)−1
Pi,Pj∈Γ(k). In the following

equations, we shall omit the subscript Pi, Pj ∈ Γ(k) but still the terms refer to the
matrices. Since

(q|Pi∧Pj |−|Pi|)(qPi∧Pj |)−1 = (q−|Pi|δ(Pi, Pj)),

we have
(q|Pi∧Pj |−|Pi|)−1 = (qPi∧Pj |)−1(q|Pi|δ(Pi, Pj)),

and

(M−1)tN̂ ′M−1 = (qPi∧Pj |)−1(q|Pi|δ(Pi, Pj))(q
−|Pi|δ(Pi, Pj)) = (q|Pi∧Pj |)−1.

Therefore, by Equation (2.7),

Z(H ⊕K) = Zv(H)t N̂ Zv(K),

where N̂ = (q|Pi∧Pj |)−1
Pi,Pj∈Γ(k).

Using Theorem 2.2.3, it is now easy to show the following useful property of the
multivariate Tutte polynomial which is mentioned in Section 2.1.
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Lemma 2.2.4. Let G be a graph with two vertices, say x, y, such that G′ =

G − {x, y} is not connected. Let H be a component of G′. Then for each q and
v = {ve}e∈E(G), there are w and σ defined by q and the weights of the edges not
in G−H such that

Z(G; q,v) = σZ(G−H + xy; q,v′)

where v′ is the edge-weight vector on G−H+xy which coincides with v on G−H,
and v′xy = w.

Proof. Let us consider H ′ = G − H as a 2-fragment with x, y being the labelled
vertices, and let K be the 2-fragment such that G = H ′ ⊕K. Then by Theorem
2.2.3,

Z(G) = Zv(H
′)t N̂ Zv(K).

On the other hand, the multivariate Tutte polynomial of G−H + xy is

Z(G−H + xy) = Zv(H
′)t N̂ Zv(K2)

where K2 is a single edge with weight w. Let

Zv(K) =

[
F1(q,v|K)

F2(q,v|K)

]
.

where v|K is the restriction of v to K. Since

Zv(K2) =

[
q(w + q)

q(w + 1)

]
,

by solving the linear equation

q(w + q)

q(w + 1)
=
F1(q,v|K)

F2(q,v|K)

with respect to w and setting σ =
F1(q,v|K)

q(w + q)
, we get

Z(G; q,v) = σZ(G−H + xy; q,v′).

Combining Theorem 2.2.3 with the following expression for the Tutte polynomial

T (G;x, y) = (x− 1)−γ(G)(y − 1)−|V (G)|Z(G; (x− 1)(y − 1), y − 1),

we get the splitting formula for the standard Tutte polynomial.

17



1

q(q − 1)(q − 2)


1 −1 −1 −1 2

−1 q − 1 1 1 −q
−1 1 q − 1 1 −q
−1 1 1 q − 1 −q
2 −q −q −q q2


Figure 2.1: The matrix N̂ for the multivariate splitting formula when k = 3.

1

(q − 1)(q − 2)


(y − 1)2 1− y 1− y 1− y 2

1− y q − 1 1 1 1− x
1− y 1 q − 1 1 1− x
1− y 1 1 q − 1 1− x

2 1− x 1− x 1− x (x− 1)2


Figure 2.2: The matrix N for the splitting formula when k = 3 and H,K are

both connected. q = (x− 1)(y − 1). See Theorem 2.2.5.

Theorem 2.2.5 (Negami’s splitting formula). Let H,K be two k-fragments. Then

T (H ⊕K) = Tv(H)t N Tv(K),

where N =
(

(x− 1)γ(HPi
)+γ(KPj

)−γ(H⊕K)(y − 1)|Pi|+|Pj |−|V (H⊕K)| N̂ij

)
Pi,Pj∈Γ(k)

and N̂ij is the (Pi, Pj)-entry of (q|Pi∧Pj |)−1
Pi,Pj∈Γ(k).

To illustrate, the matrix N̂ in Theorem 2.2.3 is shown in Figure 2.1 and the matrix
N in Figure 2.2 when k = 3. The first row and column correspond to the partition
with 3 blocks. The last row and column correspond to the partition with a single
block.

Theorem 2.2.5 immediately suggests the existence of the vector Tf (K) for each
k-fragment K such that

T (H ⊕K) = Tv(H)t Tf (K)

for every connected k-fragmentH, where Tf (K) is of dimension Γ(k) and its entries
are rational functions of x and y. Here we prove a uniqueness property of Tf (K)

and prove also that each entry of Tf (K) is a two-variable polynomial with positive
integer coefficients. The latter property will be used in Chapter 5.
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Theorem 2.2.6. Let K be a k-fragment. There is a unique vector Tf (K) such
that for each connected k-fragment H, the following holds:

T (H ⊕K) = Tv(H)t Tf (K). (2.8)

Moreover, each entry of Tf (K) is a polynomial in x, y with positive integer coeffi-
cients.

The existence of a vector Tf (K) satisfying (2.8) may seem to be a natural conse-
quence of Theorem 2.2.1, as we can set Tf (K) = N Tv(K). However, the matrix
N = N(H,K) varies depending on the number of connected components of both
H and K, so that the vector N Tv(K) may change according to whether H is
connected or not. The need for the assumption that H is connected in Theorem
2.2.6 is explained below with concrete examples.

Let K be the 2-fragment with two vertices and a single edge. If H is a connected 2-
fragment, then H⊕K is a graph obtained from H by adding an edge, say e, which
is neither a bridge nor a loop. Thus T (H ⊕K) = T (H ⊕K − e) + T (H ⊕K/e) =

T (HP1
) + T (HP2

), where P1 has two blocks and P2 has the single block {1, 2}.
That is, because of the uniqueness stated in Theorem 2.2.6, Tf (K) = [1, 1]t. But
if we choose H to be a graph which is not connected, for example a graph without
any edge, then H ⊕ K has a single nonloop edge and T (H ⊕ K) = x, whereas
T (HP1) = T (HP2) = 1 and T (H ⊕K) 6= T (HP1) + T (HP2). Therefore, we need to
assume H to be connected in Theorem 2.2.6.

The uniqueness of Tf (K) is also interesting for the following reason. In Section
3.1, we shall consider the splitting formula for the number of spanning trees, which
is essentially evaluating Negami’s splitting formula (Theorem 2.2.5) at the point
(1,1). But in that case, we will see that there are infinitely many matrices N(1, 1)

satisfying
t(H ⊕K) = tv(H)t N(1, 1) tv(K)

for all k-fragments H and K, when k ≥ 4. Also, we completely characterize these
matrices N(1, 1) in terms of so-called generalized inverse matrix.

Now we prove Theorem 2.2.6.

Proof of Theorem 2.2.6. The existence of Tf (K) satisfying (2.8) follows from The-
orem 2.2.1. We start by proving that Tf (K) is unique. I shall use (2.8) with various
trees for H, and then express Tf (K) in terms of these trees and K.
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Let Pi ∈ Γ(k). We shall construct a graph GPi from k independent vertices,
labelled by 1, 2, . . . , k. For each block of Pi, say B, we introduce a new vertex vB
which has an edge to each element of B. After that, we add a new vertex uPi

which has an edge to vB for each block B of Pi. We call this tree as GPi . For
another partition Pj ∈ Γ(k), the graph GPi

Pj
obtained from GPi by identifying the

labelled vertices using Pj , can be constructed also in the following way.

We have a vertex uPi
, together with vertices vB for each block B of Pi and ver-

tices wB′ for each block B′ of Pj . The sets {vB : B a block of Pi} and {wB′ :

B′ a block of Pj} are both independent. The vertex uPi has an edge to each vB
but not to wB′ for any B′. Lastly, for each block B of Pi and each block B′ of Pj ,
we have |B ∩B′| edges between vB and wB′ . We shall use these vertex notations
when referring to the vertices of GPi

Pj
.

Let us consider the Γ(k) × Γ(k)-matrix, namely M(k), whose Pi-row is Tv(GPi)t,
the transpose of the Tutte vector of GPi . In other words, the (Pi, Pj)-entry of
M(k) is the polynomial T (GPi

Pj
). Fix a k-fragment K. We know Tf (K) exists

and we also know that the Pi-entry of M(k)Tf (K) is the polynomial T (GPi ⊕K),
where GPi is considered as a k-fragment using the labels on its leaves. That is,
M(k)Tf (K) is a polynomial vector completely determined whenK is chosen. Let us
denote VK = M(k)Tf (K). Once we show that the determinant ofM(k) is a nonzero
polynomial, we can find its inverse M−1

(k) whose entries are fractional functions of
x and y. By applying M−1

(k) on the left of both sides of M(k)Tf (K) = VK , we get
Tf (K) = M−1

(k)VK , which means that such a vector Tf (K) satisfying T (H ⊕K) =

Tv(H)tTf (K) for any connected k-fragment H is unique.

Now we show that the determinant of M(k) is not zero. For a polynomial p(x, y)

with two variables x and y, let us call the monomial xiyj in p(x, y) with nonzero
coefficient such that i is the highest among which j is the highest, as the (y, x)-
term of p. We claim that the (y, x)-term of detM(k) has coefficient 1. We shall
use the following simple fact which is easy to prove.

Proposition 2.2.7. Let G be a connected graph. If G has n vertices and m edges
among which k edges are bridges, then the largest degree of y in T (G) is m−n+1.
Moreover, xkym−n+1 is the only monomial in T (G) obtaining the highest degree
of y and it has coefficient 1.

The above proposition implies that for any graph G, the (y, x)-term of T (G) has
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coefficient 1. Let s(Pi, Pj) and t(Pi, Pj) be the integers such that xs(Pi,Pj)yt(Pi,Pj)

is the (y, x)-term of T (GPi

Pj
). The determinant detM(k) is the sum of the products

sign(σ)
∏

Pj∈Γ(k)

T (G
σ(Pj)
Pj

), where σ ranges over all permutations on Γ(k). To prove

our claim, it is enough to show that the identitiy permutation is the only one
contributing to the (y, x)-term of detM(k).

Let us focus only on the (y, x)-term of T (GPi

Pj
) and set M̂(k) = (xs(Pi,Pj)yt(Pi,Pj))Pi,Pj∈Γ(k)

be the matrix consisting of the (y, x)-terms of T (GPi

Pj
). The graph GPi

Pj
is connected

for every Pi, Pj ∈ Γ(k), and it has |Pi| + |Pj | + 1 vertices and |Pi| + k edges. By
Proposition 2.2.7, we have t(Pi, Pj) = k − |Pj |, which is independent of Pi. That
is, for any permutation σ on Γ(k), the corresponding summand of det(M̂(k)) has
the same y-degree. Thus it is enough to consider the permutations maximizing the
x-degree, which counts the bridges of corresponding graphs by Proposition 2.2.7.

Let σ be a permutation on Γ(k) and let bσ(Pj) be the number of bridges in Gσ(Pj)
Pj

.

We are interested in finding σ which maximizes
∑

Pj∈Γ(k)

bσ(Pj). Recall that G
σ(Pj)
Pj

has three types of vertices, the vertex wB′ for each block B′ of Pj , the vertex vB for
each block B of σ(Pj), and the special vertex uσ(Pj). We shall consider the edges
between wB′ and vB first. For each block B′ of Pj , the edges incident with wB′ are
bridges if and only if |B′| = 1. Thus these edges do not change their contribution
to

∑
Pj∈Γ(k)

bσ(Pj) when σ varies. Therefore, to maximize
∑

Pj∈Γ(k)

bσ(Pj), we need

to maximize the number of bridges among the edges between uσ(Pj) and {vB :

B is a block of σ(Pj)}. Since Gσ(Pj)
Pj

has |σ(Pj)| edges incident with uσ(Pj) and

σ is a permutation, the total number of edges to consider is
∑

Pi∈Γ(k)

|Pi|, which is

independent of σ. If we choose σ to be the identity permutation, then all of those
edges are bridges and the upper bound

∑
Pi∈Γ(k)

|Pi| is realized. Let us show that

there is no other permutation σ such that all the edges incident with uσ(Pj) in
G
σ(Pj)
Pj

are bridges for every Pj . Note that if some wB′ has at least two neighbors

in Gσ(Pj)
Pj

, then the edges from uσ(Pj) to the neighbors of wB′ are not bridges. That

is, if in G
σ(Pj)
Pj

all edges incident with uσ(Pj) are bridges, then for each block B′

of Pj , the vertex wB′ has only one neighbor, which implies that σ(Pj) has a block
B containing B′. Hence Pj is a refinement of σ(Pj). Since Γ(k) forms a finite
lattice under the refinement order, the only permutation on Γ(k) which maps each
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partition to its refinement is the identity. Therefore, the (y, x)-term of detM(k) is∏
Pi∈Γ(k)

xs(Pi,Pi)yt(Pi,Pi) with coefficient 1, which completes the proof that Tf (K)

is unique.

Now we prove that the entries of Tf (K) are polynomials in x, y with positive
integer coefficients. We shall use induction on |E(K)| and k, the latter being the
number of labelled vertices of K.

For k = 1, we have T (H ⊕ K) = T (H)T (K) and Tf (K) = [T (K)]. Obviously
T (K) is a polynomial in x, y with positive integer coefficients. If |E(K)| = 0,
then T (H ⊕K) = T (H) so that all entries of Tf (K) are 0 but the entry for the
partition whose blocks are all singletons, which is 1. These are the base cases for
our induction.

Let K be an arbitrary k-fragment, and assume that we can find Tf (K ′) with
nonnegative entries for any (k − 1)-fragment K ′ with at most |E(K)| edges, and
also for any k-fragment K ′ with at most |E(K)|−1 edges. Suppose that K has an
edge, say e, such that at least one end of e is not labelled. With the natrual labelling
inherited from K, the graphs K/e and K − e can be considered as k-fragments.
Note that (H⊕K)/e = H⊕ (K/e) and (H⊕K)−e = H⊕ (K−e). If e is a bridge
of H⊕K, then T (H⊕K) = xT ((H⊕K)/e) = xT (H⊕(K/e)) = xTv(H)tTf (K/e).
That is, Tf (K) = xTf (K/e) and each entry of Tf (K) is a polynomial in x, y with
positive integer coefficients. The same argument works when e is a loop, resulting
in Tf (K) = yTf (K − e). If e is neither a loop nor a bridge of H ⊕K, then

T (H ⊕K) = T ((H ⊕K)− e) + T ((H ⊕K)/e) = T (H ⊕ (K − e)) + T (H ⊕ (K/e))

= Tv(H)tTf (K − e) + Tv(H)tTf (K/e) = Tv(H)t(Tf (K − e) + Tf (K/e)),

and hence Tf (K) = Tf (K − e) + Tf (K/e), whose entries are the polynomials with
positive integer coefficients because of the induction hypothesis.

Thus we may assume that all edges of K are connecting two labelled vertices, and
furthermore, all vertices of K are labelled. By a way similar to above, we may also
assume that K has no loop but E(K) 6= ∅. Let H be a connected k-fragment and
let e be an edge of K. Since H is connected, the edge e is not a bridge in H ⊕K,
so that T (H⊕K) = T ((H⊕K)−e)+T ((H⊕K)/e). By the induction hypothesis,
T ((H⊕K)−e) = T (H⊕ (K−e)) = Tv(H)tTf (K−e), where Tf (K−e) is a vector
whose entries are polynomials in x, y with positive integer coefficients.
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Now we look at T ((H ⊕ K)/e). Note that (H ⊕ K)/e is equal to HP ⊕ (K/e)

where P ∈ Γ(k) has a single block of size two containing the ends of e and all
other blocks of P are singletons. Since K/e is a (k− 1)-fragment with |E(K)| − 1

edges, by the induction hypothesis, we have T (HP ⊕ (K/e)) = Tv(HP )tTf (K/e).
On the other hand, each entry of Tv(HP ) is also an entry of Tv(H), so that there
is a (0, 1)-matrix MP of dimension Γ(k − 1) × Γ(k), depending only on P , which
satisfies Tv(HP ) = MPTv(H) for any k-fragment H. Thus T (HP ⊕ (K/e)) =

Tv(HP )tTf (K/e) = Tv(H)tM t
PTf (K/e) and we get

T (H⊕K) = T (H⊕(K−e))+T (HP⊕(K/e)) = Tv(H)tTf (K−e)+Tv(H)t(M t
PTf (K/e)).

Since MP is a (0, 1)-matrix, the entries of M t
PTf (K/e) are also polynomials in x, y

with positive integer coefficients, and we can set Tf (K) = Tf (K−e)+M t
PTf (K/e),

proving the second property of Tf (K) as stated.

So far we have proved Theorem 2.2.6. Our proof suggests an algorithm to find
Tf (K) based on the deletion-contraction formula, which results in an exponential
time algorithm. But if we assume that the k-fragment K has bounded treewidth,
then we can find the Tutte polynomial of K as well as all other entries of the Tutte
vector of K, in polynomial time; c.f. [And98, Nob98]. Once we know Tv(K), we
have Tf (K) = N Tv(K) where N is a Γ(k)×Γ(k)-matrix defined in Theorem 2.2.5,
so that Tf (K) can be computed in time polynomial of |V (K)|.
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Chapter 3

Spanning Trees

This chapter is about the number of spanning trees, denoted by t(G) for a graph
G, which is equal to the value of the Tutte polynomial T (G) at (1, 1). We start
by investigating the splitting formula for spanning trees in Section 3.1, which is
a technique to find the number of spanning trees of a graph from the number of
some forests in two edge-disjoint subgraphs.

The splitting formula for spanning trees can be used to find asymptotic behaviour
of the number of spanning trees when we consider graphs with repeating structures,
for example the so-called wheel graphs, the ladder graphs, or the prism graphs and
so on. A practical application of the splitting formula is given in Section 3.2.5,
which leads us to the following counter-intuitive conjecture.

Conjecture (3.2.26). If k ≥ 5 is an odd number, then each k-regular k-edge-
connected graph on n vertices has more spanning trees than the n-cycle with edge-
multiplicity (k + 1)/2, which is (k + 1)-edge-connected (k + 1)-regular.

Section 3.2 is mostly from a paper by Ok and Thomassen [OT]. We investigate
the minimum number of spanning trees when the edge-connectivity, say k, is fixed.
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When k is even we present a tight lower bound, namely n
(
k

2

)n−1

where n is the

number of vertices, only attained by the cycle with edge-multiplicity k/2. When k
is odd, however, we do not know the precise answer and show the following results.

Theorem (3.2.9). Let k > 1 be an odd number and let G be a k-edge-connected
graph on n vertices. Then

t(G) ≥
(
kck
2

)n−1

,

where ck =

√
1 +

4

(k + 3)2 − 4
> 1. In particular, t(G) > 1.59n−1 if G is 3-edge-

connected and t(G) > 2.58n−1 if G is 5-edge-connected.

Theorem (3.2.10). Let G be a 3-edge-connected graph on n vertices. Then t(G) >

1.77n−1.

Theorem (3.2.18). Let G be a 5-regular 5-edge-connected graph on n vertices.
Then t(G) ≥ 7.6(n−1)/2 ≈ 2.7568n−1.

3.1 A splitting matrix for the spanning trees

The purpose of this section is to find a splitting formula for spanning trees. We
characterize completely the matrices that can be used in that formula. They turn
out to be so-called the generalized inverses of a matrix arising from a variation
of the splitting formula.

Let G be a graph with two edge-disjoint connected subgraphs H and K meeting at
k vertices. The splitting formula (Theorem 2.2.5) says that there is a fixed matrix
Nk such that the Tutte polynomial T (G) can be obtained by

T (G) = Tv(H)t Nk Tv(K) (3.1)

where Tv(H) depends only on H and Tv(K) depends only on K.

Since the number of spanning trees is the value of the Tutte polynomial at (1, 1), we
may expect that there must be a fixed matrix, say Nk(1, 1), such that an equation
similar to Equation (3.1) holds for spanning trees. But since the matrix Nk is
obtained from the inverse of a matrix whose entries are powers of (x− 1)(y − 1),
we cannot obtain such a matrix Nk(1, 1) from (3.1).
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But still, there is such a matrix Nk(1, 1) that t(G) = tv(H)t Nk(1, 1) tv(K) al-
though it is not unique when k ≥ 4. Here tv(H) denotes the evaluation of Tv(H)

at (1, 1). In this section we describe how to find Nk(1, 1) for each k ≥ 4.

We begin with establishing an equation similar to Equation (3.1) using the vector
t′v(H) = [tP (H)]P∈Γ(k) where tP (H) is the number of spanning forests of H such
that

1. each component contains a labelled vertex, and

2. two labelled vertices are in the same component if and only if they are in the
same block of P .

A forest, say F , satisfying 1,2 is said to induce the partition P and we write
F ` P . Recall that a similar concept was used when we found the splitting formula
for the multivariate Tutte polynomial in Chapter 2.

It is easy to see that there is a |Γ(k)| × |Γ(k)|-matrix Tk whose entries are either
0 or 1 such that

t(G) = t′v(H)t Tk t
′
v(K) (3.2)

whenever H and K are k-fragments and G = H ⊕ K. Specifically, the (Pi, Pj)-
entry of Tk is 1 if and only if fr(Pi)⊕ fr(Pj) is a tree where fr(Pi) is the forest with
k leaves, namely {1, 2, . . . , k}, and additionally one vertex for each block B of Pi
which is adjacent to each element of B. The forest fr(P ) may be thought of as a
representative of the forests inducing the partition P .

Recall that the size of a partition P is the number of blocks of P and denoted by
|P |. The forest fr(P ) for P ∈ Γ(k) has k + |P | vertices and k edges. Thus, if the
(Pi, Pj)-entry of Tk is 1 then fr(Pi) ⊕ fr(Pj) is a tree with k + |Pi| + |Pj | vertices
and 2k edges implying that |Pi| + |Pj | = k + 1. The matrix Tk is not invertible
when k ≥ 4. As an example, T4 is given in Figure 3.1. The two 1s outside the
two boxes correspond to the partition into singletons and the partition with a
single block. The two submatrices of dimensions 6× 7 and 7× 6 correspond to the
partitions with two blocks and the partitions with three blocks. Because of these
two non-square submatrices, the matrix T4 is not invertible. For k > 4, note that
Γ(k) contains 2k−1 − 1 partitions of size 2 and

(k
2

)
partitions of size k − 1. Using

this it is easy to see that Tk is not invertible for k ≥ 4.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.1: An auxiliary splitting matrix T4 for spanning trees. All 1-s (except
two) are inside the boxes.

Now we express the vector tv(H) = [t(HP )]P∈Γ(k) in terms of t′v(H). Recall that
the graph HP is obtained from H by, for each block B of P , identifying the labelled
vertices of H in B into a single vertex. The set of edges of a spanning tree of HP

forms a forest in H such that every component contains a labelled vertex. Thus,
it is a forest counted in tP ′(H) for some P ′ ∈ Γ(k).

Let T be a spanning tree of HP and E(T ) be its edge set, considered in H. If we
take E(T )⊕ fr(P ) and then contract the edges in fr(P ) then we get T back. Thus,
to find t(HP ), it is enough to sum up the numbers tP ′(H) for the partitions P ′

such that fr(P )⊕ fr(P ′) is a tree. That is,

t(HP ) =
∑

P ′∈Γ(k)
fr(P )⊕fr(P ′) is a tree

tP ′(H),

and using the matrix Tk defined above, we have

tv(H) = Tk t
′
v(H).

The initial goal of this section is to find a matrix Nk (more precisely Nk(1, 1)) such
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that
t(G) = tv(H)t Nk tv(K) for all H and K

which is equivalent to, by the above formula,

t(G) = t′v(H)t T tk Nk Tk t
′
v(K).

By Equation (3.2) and the fact that Tk is symmetric for all k, it is sufficient to
find a matrix Nk such that

Tk = Tk Nk Tk. (3.3)

The Nk satisfying Equation (3.3) is precisely what is called the generalized in-
verse matrix of Tk. It is known that for each non-regular square matrix, in
particular our Tk, there are infinitely many generalized inverse matrices of Tk. By
the above argument, each such matrix Nk satisfies the desired equation

t(G) = tv(H) Nk tv(K)t. (3.4)

I would like to point out that it is common to choose the so-calledMoore-Penrose
pseudoinverse as a ‘representative’ of the generalized inverse matrices. I have

calculated the Moore-Penrose pseudoinverse of T4. All entries are 0, 1,± 3

14
and

± 4

14
. It is not clear if that matrix has any particular significance compared to

other generalized inverses in our context, and therefore I omit it.

We have now shown the existence of Nk = Nk(1, 1). We now turn to uniqueness
(up to generalized inverses).

Recall that we showed the following.

1. Tk satisfies t(H ⊕K) = t′v(H)t Tk t
′
v(K) for all H,K.

2. Tk satisfies tv(H) = Tk t
′
v(H) for all H.

I shall now show that if M is a matrix such that

t(H ⊕K) = t′v(H)t M t′v(K) for all H,K (3.5)

then M = Tk, and also if M ′ is a matrix such that

tv(H) = M ′ t′v(H) for all H (3.6)
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then M ′ = Tk. It will then follow, by the above discussion, that Nk satisfies
t(H ⊕K) = tv(H)t Nk tv(K) for all H and K if and only if Tk Nk Tk = Tk.

Both claims will follow if we find a sequence of k-fragments, {FP }P∈Γ(k), indexed
by Γ(k) such that the Γ(k) × Γ(k)-matrix, whose P -column is t′v(FP ) for each
P ∈ Γ(k), is invertible. Suppose that we found such a sequence {FP }P∈Γ(k) and
let N be the invertible matrix whose column vectors are t′v(FP ). Let us assume
that a matrixM satisfies both (3.5) and (3.6). Then the (P, P ′)-entry of the matrix
product N t M N is t′(FP )t M t′(FP ′) = t(FP ⊕ FP ′) by (3.5). Hence, if we set L
be the Γ(k)× Γ(k)-matrix whose (P, P ′)-entry is t(FP ⊕ FP ′), then we have

(N t)−1 L N−1 = M (3.7)

and we know already that

(N t)−1 L N−1 = Tk (3.8)

so that M = Tk. The claim for (3.6) can be settled likewise.

Thus we aim at finding a sequence {FP }P∈Γ(k) such that the Γ(k)× Γ(k)-matrix
[t′v(FP )]P∈Γ(k) is invertible. I shall set FP = fr(P ), using the forest fr(P ) defined
earlier in this section and below again. For P ∈ Γ(k), the forest fr(P ) has k
leaves, labelled using {1, 2, . . . , k}, and additionally one vertex for each block B of
P which is adjacent to each element of B.

I shall show that N = [t′v(FP )]P∈Γ(k) is invertible by describing a Gaussian elim-
ination from N to the identity matrix. Let Ptriv be the partition into singletons.
The graph fr(Ptriv) is a matching with k edges, and the Ptriv-entry of t′v(fr(Ptriv))

is 1 and all other entries are 0. Thus, by column operations, we can ignore the
row and column of N corresponding to Ptriv. In the remaining submatrix of N , we
consider the partitions in which all blocks are singletons but one block with two
elements. Since we excluded the row for Ptriv, the columns of N corresponding
to these partitions have precisely one nonzero entry at the main diagonal which
is 1. Again by column operations, we remove all nonzero entries in the rows cor-
responding to these blocks except those 1’s in the main diagonal. This process
can inductively continued until N becomes the identity matrix, which means N is
invertible. Therefore, by (3.7) and (3.8), Tk is the unique matrix satisfying (3.5)
and (3.6) so that the following holds.

Theorem 3.1.1. Let k ≥ 2 be an integer and let Tk be the matrix defined after
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Equation (3.2). A matrix Nk satisfies

t(H ⊕K) = tv(H)t Nk tv(K) for all k-fragments H and K

if and only if Nk is one of the generalized inverse matrices of Tk, i.e. TkNkTk = Tk.

To sum up this section, we found that the analogue of the Tutte polynomial split-
ting formula holds for the number of spanning trees, although the splitting matrix
is not unique in general. We also completely characterized the matrices which can
be used in the splitting formula in terms of generalized inverse matrix. However,
I do not know whether there is an analogue for the number of acyclic orientations
or totally cyclic orientations. I believe that the matrix Nk in Theorem 2.2.1 is
invertible when we evaluate it at the points (2, 0) and (0, 2), so that the splitting
formulas for acyclic orientations and totally cyclic orientations follows easily from
Theorem 2.2.1, Negami’s splitting formula.

3.2 Minimum number of spanning trees in k-edge-
connected graphs

In this section we shall consider the minimum number of spanning trees in a k-
edge-connected graph on fixed number of vertices. The contents are mostly from
the paper by Ok and Thomassen [OT], but the proofs of the Lemmas 3.2.4 and
3.2.5 are modified since we use the splitting formula here.

The main tool we use is Theorem 3.2.1 below, called Mader’s lifting theorem.
Firstly, we define the lifting operation.

Given a vertex s with its two neighbors u and v, lifting the edges su and sv is
removing both edges su and sv and then adding uv. Note that we allow graphs
to have parallel edges, and we remove one edge from each parallel class containing
su and sv respectively and then add a single edge. A lifting at s is a lifting of
two edges incident with s. Lifting two parallel edges is simply removing those two
edges.

Theorem 3.2.1 (Mader’s lifting theorem [Mad78]). Let G = (V,E) be a graph
and let s ∈ V . For each pair a, b ∈ V − s, let λG(a, b) be the maximum number
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of pairwise edge-disjoint paths between a and b in G. If s is not incident with a
bridge and if the degree of s is not 3, then G has a lifting at s such that for the
graph G′ resulting from the lifting,

λG(a, b) = λG′(a, b)

for each pair a, b ∈ V − s.

The following two corollaries of the Mader’s lifting theorem is of interest to us.

Corollary 3.2.2. Let G be a k-edge-connected graph, k ≥ 2. Let s be a vertex of
G. If the degree of s is at least k+ 2, then G has a lifting at s resulting in another
k-edge-connected graph.

Corollary 3.2.3. Let G be a graph and let s be a vertex of G of even degree, say
2d. If G has at least k ≥ 2 pairwise edge-disjoint paths between any two vertices
except s, then G has a sequence of d liftings at s which result in a k-edge-connected
graph after removing the isolated vertex s.

In the following sections, we prove that a k-edge-connected graph on n vertices

has at least n
(
k

2

)n−1

spanning trees, which is tight when k is even (Theorem

3.2.7). However for k odd, we prove in Theorem 3.2.9 that there are more than(
kck
2

)n−1

spanning trees where ck is a constant such that ck > 1. I do not know

the precise minimum number of spanning trees for odd edge-connectivity, and the
investigation is focused on the following number τk:

τk = lim inf
n→∞

min
G a graph
|V (G)|=n

G k-edge-connected

t(G)1/n.

The discussion above says that τk =
k

2
for k even and τk ≥

kck
2

for k odd. We
shall prove that τ3 > 1.59 and τ5 > 2.58. See Theorem 3.2.9.

In section 3.2.3 we show that 1.77 < τ3 < 1.932. For 5-edge-connected graphs, we
confine our consideration to 5-regular graphs and show that a 5-regular 5-edge-
connected graph on n vertices has more than 2.7568n−1 spanning trees. In the last
section, Section 3.2.5, we establish an upper bound for ck (k odd) by finding the
number of spanning trees in a class of graphs we call multiprisms. This class leads
us to the following counter-intuitive conjectures.
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Conjecture (3.2.25). If k ≥ 5 is an odd number, then τk = τk+1.

Conjecture (3.2.26). If k ≥ 5 is an odd number, then each k-regular k-edge-
connected graph on n vertices has more spanning trees than the n-cycle with edge-
multiplicity (k + 1)/2, which is (k + 1)-edge-connected (k + 1)-regular.

3.2.1 Lifting a pair of edges

We shall consider here how the lifting operation changes the number of spanning
trees.

Let e = vu, f = vw be two adjacent edges of a graph. Lifting e, f is the operation
of replacing e, f by an edge uw if u 6= w. If u = w we simply remove both edges
e, f . By lifting at v we mean that we lift a pair of edges incident with v. A
complete lifting at a vertex v with even degree is a sequence of liftings at v until
no edges are left at v. Then we remove v.

For the following lemma, we define a constant hd depending on a positive integer
d as follows:

hd = min
d1,d2,...,dk

min
H

∏k
i=1 di
t(H)

,

where the minimum is taken over all sequences of positive integers d1, d2, . . . , dk

with varying length k such that
k∑
i=1

di = 2d, and over all connected graphs H on

k vertices with degree sequence d′1, d
′
2, . . . , d

′
k such that d′i ≤ di for each i.

In the above definition of hd, the graph H has at most d edges, so h1 = 1. Fur-
thermore, h2 = 2, h3 = 8/3 and h4 = 18/5 = 3.6, which are attained by a 2-cycle,
a 3-cycle, and a 3-cycle plus a parallel edge, respectively.

Lemma 3.2.4. Let G be a graph with a vertex v of degree 2d. Let G′ be a graph
obtained from G by a complete lifting at v. Then t(G) ≥ hdt(G

′), where hd is
defined as above.

Proof. We shall use the splitting formula to both G and G′ with the common
subgraph H = G− v and its complements in G and G′. Let K be the subgraph of
G consisting of v and its incident edges, and let K ′ be the subgraph of G′ induced
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by the edges not in H. We shall denote the neighbors of v in G by v1, v2, . . . , v2d

which are not necessarily distinct so that the edges vvi are all the edges incident
with v. We may assume that the labelling is chosen such that the complete lifting
to obtain G′ produced the edges v2i−1v2i for i = 1, 2, . . . , d except those i where
v2i−1 = v2i.

The splitting formula for spanning trees (Theorem 2.2.6) says that

t(G) = tv(K) · tf (H), t(G′) = tv(K
′) · tf (H),

where tf (H) is a vector with nonnegative integer entries determined by H. Thus
it is enough to show that for each appropriate partition P ∈ Γ(2d), the entries of
tv(K) = [t(KP )] and tv(K ′) = [t(K ′P )] satisfy the following:

t(KP ) ≥ hd t(K ′P ) (3.9)

The graph KP is obtained from the star graph K which may have parallel edges by
identifying some of the non-center vertices, thus it is still a star graph with parallel
edges. Let us say that KP has vertices v, v1, v2, . . . , vk and di edges between v and

vi for i = 1, 2, . . . , k. We know
k∑
i=1

di = 2d and t(KP ) =

k∏
i=1

di.

Since the vertex set of K ′ is that of K without v and the graphs KP and K ′P
are obtained by identifying vertices according to the same rule P , the graph K ′P
has vertices v1, v2, . . . , vk. Also, K ′ is obtained from K by a complete lifting at
v, so that the vertex degrees of K ′ is not more than that of K, which holds also
between K ′P and KP . That is, the degree d′i of vi in K

′
P is at most di. If K ′P is

not connected then Equation (3.9) is trivial. Otherwise, t(KP )/t(K ′P ) is one of
the fractions in the definition of hd which the constant hd is minimizing. Thus,
Equation (3.9) holds and so does the lemma.

Lemma 3.2.5. Let G be a graph with a vertex v of degree d ≥ 3. Let G′ be a

graph resulting from lifting edges vu, vw in G. Then t(G) ≥ (1 +
4

d2 − 4
)t(G′).

Proof. We repeat the proof of Lemma 3.2.4. Let H = G − v be the common
subgraph of G and G′, and let K and K ′ be respectively the subgraphs of G and
G′ induced by the edges not in H. From the splitting formula for spanning trees
(Theorem 2.2.6), we have

t(G) = tv(K) · tf (H), t(G′) = tv(K
′) · tf (H)
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where tf (H) is a vector with nonnegative integer entries determined by H. Thus
it is enough to show that

t(KP ) ≥ d2

d2 − 4
t(K ′P ) (3.10)

where KP and K ′P are obtained from K and K ′ respectively by identifying some
of the neighbors of v according to a partition P .

SinceK is a star graph possibly with parallel edges,KP is also such a graph andK ′P
is obtained by lifting two edges in KP . Let us say K has vertices v, v1, v2, . . . , vk

with di edges between v and vi for i = 1, 2, . . . , k and K ′ is obtained by lifting vv1

and vv2. If d1 = d2 = 1 then t(K ′P ) = 0 and Equaton (3.10) is trivial. Otherwise

t(KP )

t(K ′P )
=

d1d2

(d1 − 1)(d2 − 1) + (d1 − 1) + (d2 − 1)
=

d1d2

d1d2 − 1
≥ d2

d2 − 4

where the last inequality comes from

d1d2 ≤
(
d1 + d2

2

)2

≤
(
d1 + d2 + · · ·+ dk

2

)2

=
d2

4
.

3.2.2 k-edge-connected graphs

In this subsection we show that a k-edge-connected graph on n vertices has at

least n
(
k

2

)n−1

spanning trees, which is tight when k is even. When k is odd,

we show that there is a constant ck > 1 such that every k-edge-connected graph

on n vertices has more than
(
kck
2

)n−1

spanning trees, implying that the former

bound is not tight.

Let G be a connected graph with n vertices and m edges. Consider the pairs (e, T )

where e ∈ E(G) and T a spanning tree of G containing e. For each e ∈ E(G)

we have t(G/e) such pairs and for each T , we have n − 1 such pairs. Therefore

(n − 1)t(G) =
∑

e∈E(G)

t(G/e). Hence, G has an edge e such that
t(G/e)

t(G)
≤ n− 1

m
.

We restate this conclusion as the following observation.

Observation 3.2.6. Let G be a connected graph with n > 1 vertices and m edges.
Then G has an edge e such that t(G) ≥ m

n− 1
t(G/e).
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Theorem 3.2.7. Let G be a k-edge-connected graph on n vertices. Then G has at

least n
(
k

2

)n−1

spanning trees. Moreover, G has more than n
(
k

2

)n−1

spanning

trees unless k is even and G is a cycle whose edge-multiplicities are all
k

2
.

Proof. We shall use induction on n. Since G is k-edge-connected, the minimum

degree of G is at least k and thus m ≥ kn

2
. By Observation 3.2.6, G has an edge

e such that t(G) ≥ m

n− 1
t(G/e) ≥ kn

2(n− 1)
t(G/e). By the induction hypothesis,

t(G/e) ≥ (n − 1)(k/2)n−2 so that t(G) ≥ n(k/2)n−1. If equality holds, then k is

even, m =
kn

2
, and G/e is a cycle where all edge-multiplicities are k/2. Moreover,

any edge can play the role of e. This implies that all edge-multiplicities in G are
k/2. If H denotes the subgraph of G obtained by replacing every multiple edge by
a single edge, then H has the property that the contraction of any edge results in
a cycle. Then also H is a cycle.

For k even Theorem 3.2.7 is tight. However, for k odd we present a lower bound
for the number of spanning trees in a k-edge-connected graph of the form cn−1

with c > k/2.

By Mader’s lifting theorem (Theorem 3.2.1) and Menger’s Theorem, given a k-
edge-connected graph and a vertex of degree ≥ k+ 2, we can find a lifting without
decreasing the edge-connectivity. By Lemma 3.2.5, a lifting always decreases the
number of spanning trees and hence the minimum number of spanning trees of a
k-edge-connected graph on n vertices must be obtained by a graph whose degrees
are only k or k + 1. We state this as an observation for later use.

Observation 3.2.8. If G is a k-edge-connected graph on n vertices with minimum
t(G), then each vertex of G has either k or k + 1 incident edges.

Now we prove the following lower bound for odd edge-connectivity.

Theorem 3.2.9. Let k > 1 be an odd number and let G be a k-edge-connected

graph on n vertices. Then t(G) ≥
(
kck
2

)n−1

, where ck =

√
1 +

4

(k + 3)2 − 4
> 1

Proof. Let e be an edge for which
t(G)

t(G/e)
is maximum. By Observation 3.2.6 we
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know
t(G)

t(G/e)
≥ k

2
. If the vertex of G/e resulting from the contraction of e, say v,

has degree bigger than k+ 1, then using Theorem 3.2.1 we can lift a pair of edges
at v such that G/e after the lifting is still k-edge-connected. We do the lifting at v

until the degree of v is at most k+1. Let H be the resulting graph. If
t(G)

t(H)
≥ kc2k

2
then we call e a good edge. Note that, if H 6= G/e, then by applying Lemma 3.2.5

at the last lifting, we see that e is good. Also, if e has multiplicity at least
k + 1

2
,

then
t(G)

t(H)
≥ t(G)

t(G/e)
≥ k + 1

2
>
kc2k
2

so that e is good. If one of the ends of e has

degree at least k+ 1, then either e has multiplicity at least (k+ 1)/2, or the vertex
obtained by the contraction of e has degree at least k+ 2, so that e is good. Thus
e is not good only if the ends of e both have degree precisely k. In particular, both
ends of e have odd degree.

Now we repeat the contractions of an edge with maximum
t(G)

t(G/e)
, followed by

liftings whenever possible, until only two vertices are left. Because of parity, among
the n − 2 contractions, at most d(n − 2)/2e of them are edges whose ends both
have odd degree. Thus at least b(n − 2)/2c times we get an additional factor of
c2k, so that

t(G) ≥ k ·
(
k

2

)n−2

c
2b(n−2)/2c
k >

(
kck
2

)n−1

.

Theorem 3.2.9 shows that although Theorem 3.2.7 is tight for even edge-connectivity,
it is not for any odd edge-connectivity. In the following two subsections we focus
on k-edge-connected graphs where k = 3, 5.

3.2.3 3-edge-connected graphs

Let G be a 3-edge-connected graph on n vertices. By Theorem 3.2.9, the lower

bound t(G) ≥ n

(
3

2

)n−1

is not tight. Kostochka [Kos95] showed that a cubic

simple 2-connected graph on n vertices has at least 8n/4 ≈ 1.68n spanning trees.
This result is essentially best possible because of the cubic 2-connected graphs
obtained by a collection of K4’s minus an edge by adding a matching. In this
section, we prove the following theorem.
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Theorem 3.2.10. Let G be a 3-edge-connected graph on n vertices. Then t(G) >

1.77n−1.

Kreweras [Kre78] showed that the prism graph on n vertices has approximately
1.93n spanning trees; see Section 3.2.5. Thus 1.77 < c3 < 1.93. By Observation
3.2.8, a 3-edge-connected graph on n vertices with minimum number of spanning
trees has vertex degrees only 3 and 4. Thus by Lemma 3.2.4, the following Theorem
3.2.11 is enough to prove Theorem 3.2.10. Note that a cubic graph with more than
two vertices has the same connectivity and edge-connectivity.

Theorem 3.2.11. Let G be a 3-connected cubic graph on n vertices. Then t(G) >

1.77n−1.

An often used operation to construct a 3-connected cubic graph is to join two
edges, i.e. for non-parallel edges e, f , we replace each edge by a path of length
2 and connect the two new vertices of degree 2 by an edge. Note that joining
two non-parallel edges in a 3-connected cubic graph results in another 3-connected
cubic graph. The following lemma explains how the number of spanning trees
changes after joining.

Lemma 3.2.12. Let G be a graph with two non-parallel edges e and f . Let G′ be
the graph obtained from G by joining e and f . Then t(G′) ≥ (4 − r)t(G), where
r = t(G/e/f)/t(G) ≤ 1.

Proof. We only consider the case when e, f are not adjacent, but the other case
can be done likewise. Let e = ab and f = cd. Let T be a spanning tree of G.
Then T −e−f is a spanning forest of G in which each component contains at least
one of a, b, c and d. We shall consider how many ways T − e− f can be extended
to a spanning tree in G and G′ respectively. For example, if T − e − f has two
components such that one of them contains a, c and the other contains b, d, then
we can extend T − e − f in two ways to a spanning tree of G, whereas there are
eight ways for G′. In fact, there are at least four times as many extensions in G′

as extensions in G, unless T contains both e and f , in which case we have a factor
3. Thus, t(G′) ≥ 4(t(G)− t(G/e/f)) + 3t(G/e/f) = (4− r)t(G).

To prove Theorem 3.2.11, we shall consider the following two operations to con-
struct 3-connected cubic graphs.
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1. Let v be a vertex v in a graph such that deg(v) = 3 and all three neighbors
of v are distinct. Then the blow-up of v is obtained by joining two of the
incident edges of v.

2. Select three edges, which may not be pairwise distinct, but not all the same,
and subdivide each of them so that we have three new vertices of degree 2.
Add a new vertex v and an edge from v to each of the three vertices of degree
2. We call this a vertex-addition.

Since a blow-up is a join of two non-parallel edges, we get the following observation
by Lemma 3.2.12.

Observation 3.2.13. Let G be a graph with a vertex v of degree 3 whose neighbors
are all distinct. Let G′ be the graph obtained from G by a blow-up of v. Then
t(G′) ≥ 3t(G).

Barnette and Grünbaum [BG69] and independently Titov [Tit75] gave a charac-
terization of 3-connected graphs which implies that every 3-connected cubic graph
can be obtained from K4 by successively joining edges. We shall here prove a
stronger result for cubic graphs.

Theorem 3.2.14. Let G be a 3-connected cubic graph with more than two vertices.
Then G can be constructed from K4 or K3,3 by blow-ups and vertex-additions, such
that blow-ups are never used consecutively.

Proof. Our proof consists of two parts. We show that if G has no induced subgraph
which is a subdivision of another 3-connected graph, then G is one of K4, K3,3

or the prism on 6 vertices defined in Section 3.2.5. Then we assume that G has a
maximal induced subgraph, say H, which is a subdivision of another 3-connected
graph H∗, and we show that G can be obtained from H∗ by a vertex addition,
possibly followed by a blow-up.

Suppose that G has no proper induced subgraph which is a subdivision of a 3-
connected cubic graph. Let C be a cycle in G of minimum length so that C has
no chord. Let v be a vertex in G − V (C). Since G is 3-connected, Menger’s
Theorem implies that G has three paths P1, P2, P3 where Pi = vui1u

i
2 . . . u

i
kiui,

C ∩ Pi = {ui} for each i and the paths P1, P2, P3 share only v. Let v be such a
vertex with k1 + k2 + k3 being smallest. Note that some ki may be 0, implying
that Pi is an edge. If G has an edge between the non-endvertices of two Pi’s, say
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u1
iu

2
j , then by taking v = u1

i instead and using P1 ∪ P3 and u1
iu

2
ju

2
j+1 . . . u

2
k2 , we

get a smaller sum of the lengths of the paths unless u2
j is the neighbor of v in

P2. Similarly, we deduce that u1
i is also the neighbor of v in P1. In this case,

vu1
1u

2
1 is a triangle and hence C must also be a triangle, so that the vertex set of

C ∪ P1 ∪ P2 ∪ P3, say V , induces a subgraph of G which is a subdivision of the
prism graph. Thus by the assumption, G itself is the prism graph.

Hence we may assume that G has no edge between the non-endvertices of Pi’s.
Denote by G[V ] the subgraph of G induced by V . Suppose k1 ≥ 1 and some u1

i

has a neighbor on C different from u1. Because of the minimality of k1 + k2 + k3,
we have i = k1 and by taking v = u1

k1 and using its two neighbors on C, we see
k2 = k3 = 0. Therefore G[V ] is a subdivision of either the prism graph or K3,3,
so that again G itself is either the prism graph or K3,3. The remaining case leaves
no other edge in G[V ] than C ∪ P1 ∪ P2 ∪ P3, which is a subdivision of K4. Thus
in this case G itself is K4. This completes the first part.

Now we assume that G has an induced proper subgraph which is a subdivision of a
3-connected cubic graph. Let H be a maximal such subgraph. Let us call a path in
H suspended if its ends both have degree 3 in H and all other vertices in the path
have degree 2 in H. Suspended paths intersect only at their ends. By replacing
each suspended path of H by an edge between its ends, we get a 3-connected cubic
graph, which we denote H∗. Since G is 3-connected, H has at least two suspended
paths. If G has a vertex, say v, outside H which has neighbors in at least two
distinct suspended paths of H, then the subgraph of G induced by V (H) ∪ {v} is
a subdivision of a 3-connected graph, which must be G because of the maximality
of H. Then G can be obtained from H∗ by the vertex-addition of v. Thus we
may assume that for each vertex in V (G) \ V (H), its neighbors in H, if any, are
in a single suspended path of H. Also, we may assume that |V (G) \ V (H)| > 1.
If V (G) \ V (H) = {u, v}, then u and v are adjacent, and they have neighbors in
distinct suspended paths. Thus we can obtain G from H∗ by first vertex-adding
u and then a blow-up to make v. Therefore, we assume that |V (G) \ V (H)| > 2.

Since G is 3-connected, at least one component of G − V (H) has edges to two
distinct suspended paths of H. Thus G has a path of length > 1 between distinct
suspended paths of H which intersects H at only its ends. Let P = v0v1 . . . vk be
such a path with smallest length. Since P has no chord, the subgraph of G induced
by H ∪ P is a subdivision of a 3-connected graph, so that V (H) ∪ V (P ) = V (G),
implying k ≥ 4. By assumption, the neighbors of v1 and vk−1, respectively, are in
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different suspended paths of H. Let v be the neighbor of v2 in H. Then either
v0v1v2v or vv2v3 . . . vk contradicts the minimality of P , a contradiction which
completes the proof.

Let c be the positive real solution of the equation x6 − 3x4 = 3 which is approx-
imately c ≈ 1.8108. Note that a vertex-addition is equivalent to a joining of two
edges and then joining the new edge with an edge.

Lemma 3.2.15. Let G0 be a 3-connected graph and let G be a graph obtained
from G0 by joining two non-parallel edges of G0, where e denotes the joining edge.
Let G′ be a graph obtained from G by joining e with another edge f . Then either
t(G′) ≥ c2t(G) or t(G′) ≥ c4t(G0).

Proof. Let r = t(G/e/f)/t(G) be as in Lemma 3.2.12. Let r′ = t(G/e)/t(G) so
that t(G)/t(G − e) = 1/(1 − r′). Since r′ ≥ r, Lemma 3.2.12 implies t(G′) ≥
(4− r)t(G) ≥ (4− r′)t(G). If 4− r′ ≥ c2 then we are done. Thus we may assume
that 4 − r′ < c2, equivalently 1 − r′ < c2 − 3. Since r′ ≤ 1, t(G′) ≥ 3t(G). By
modifying the equation for c, we get 3/(c2 − 3) = c4, so that

t(G′) ≥ 3t(G) =
3t(G)

t(G0)
t(G0) ≥ 3t(G)

t(G− e)
t(G0) =

3

1− r′
t(G0) >

3

c2 − 3
t(G0) = c4t(G0).

Proof of Theorem 3.2.11. We shall prove t(G) ≥ (3c2)(n−1)/4 by induction on
n = |V (G)|, where c is the constant used in Lemma 3.2.15. We may assume
that n ≥ 8 because K4, K3,3 and the prism on 6 vertices have 16, 81 and 75
spanning trees, respectively. By Theorem 3.2.14, G can be obtained from K4 or
K3,3 by repeatedly applying vertex-additions and blow-ups. If the last operation
is a vertex-addition, then by Lemma 3.2.15, t(G) ≥ c2t(G′) or t(G) ≥ c4t(G′′)

for some 3-connected cubic graph G′ with n − 2 vertices or G′′ with n − 4 ver-
tices, so we are done. Otherwise, G can be obtained from a 3-connected cubic
graph using a vertex-addition and then a blow-up. By Observation 3.2.13, a blow-
up multiplies the number of spanning trees by at least 3, so that using Lemma
3.2.15, t(G) ≥ 3c2t(G′) or t(G) ≥ 3c4t(G′′) for some 3-edge-connected cubic graph
G′ with n − 4 vertices or G′′ with n − 6 vertices. By the induction hypothesis,
t(G) ≥ (3c2)(n−1)/4 > 1.77n−1.
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3.2.4 5-regular 5-edge-connected graphs

Let G be a 5-regular 5-edge-connected graph. A 5-cut is a set of edges E with
|E| = 5 such that G− E is disconnected. If one of the components of G− E is a
single vertex, then we call E trivial. Otherwise we call E nontrivial. A 5-side
is a set X ⊆ V (G) such that δ(X)(that is, the set of edges with precisely one end
in X) is a nontrivial 5-cut. If a 5-side X has the property that no nontrivial 5-cut
contains an edge with both ends in X, then X is called minimal.

Lemma 3.2.16. Let G be a 5-regular 5-edge-connected graph. If G has a nontrivial
5-cut, then G has a minimal 5-side.

Proof. Let A be a 5-side which is not minimal. Then some nontrivial 5-cut S =

δ(B) contains an edge uv with u ∈ A ∩B and v ∈ A ∩Bc. Let T = δ(A). One of
the sets A∩B, A∩Bc, Ac∩B or Ac∩Bc is empty because G is 5-edge-connected,
S, T are 5-cuts and 5 is odd. Since u ∈ A ∩ B and v ∈ A ∩ Bc, either Ac ∩ B or
Ac ∩Bc is empty, so that either A ∩B or A ∩Bc is a 5-side strictly smaller than
A. If it is not minimal, then we repeat the argument until we eventually find a
minimal 5-side.

Lemma 3.2.17. Let G be a connected graph with a connected subgraph H. If G′

is the graph obtained by contracting H into a single vertex, then t(G) ≥ t(H)t(G′).

Proof. For each pair S, T of spanning trees of H,G′, we can expand the contracted
vertex of G′ using S to get a spanning tree of G.

Theorem 3.2.18. Let G be a 5-regular 5-edge-connected graph on n vertices.
Then t(G) ≥ 7.6(n−1)/2 ≈ 2.7568n−1.

Proof. We shall use induction on n. Being 5-regular and 5-edge-connected, G has
no edge of multiplicity at least 3. If G has a nontrivial 5-cut, then by Lemma
3.2.16, we can find a minimal 5-side, and we let e = uv be an edge inside that
minimal side. Otherwise let e = uv be an arbitrary edge.

Suppose firstly that e has multiplicity 1. Then G/e has a vertex of degree 8, which
we can completely lift using Theorem 3.2.1. Denote the resulting 5-regular 5-edge-
connected graph by G′. By Lemma 3.2.4, t(G/e) ≥ 3.6t(G′). Now we consider
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G− e. Since e is not contained in any nontrivial 5-cut, G− e has at least 5 edge-
disjoint paths between any pair of vertices distinct from the ends of e. Thus by
Theorem 3.2.1, we can completely lift u, v in G−e so that the resulting graph, say
G′′, is 5-edge-connected and 5-regular. By Lemma 3.2.4, t(G − e) ≥ 4t(G′′) and
by the induction hypothesis,

t(G) = t(G/e) + t(G− e) ≥ 3.6t(G′) + 4t(G′′) ≥ 7.6(n−1)/2.

Now we may assume that every edge of G with multiplicity 1 is contained in a
nontrivial 5-cut. Let X be a minimal 5-side. Since the edges inside X are not
contained in any nontrivial 5-cut, every edge inside X must be a double edge.
Hence every vertex in X is incident with δ(X), so that X is the 5-double-cycle
which has 80 spanning trees. By Lemma 3.2.17, t(G) ≥ 80t(G/X), and by the
induction hypothesis, t(G) ≥ 7.6(n−1)/2.

3.2.5 The number of spanning trees of the multiprisms

In this section we investigate a class of (2s + 1)-regular (2s + 1)-edge-connected
graphs that we believe may have the minimum number of spanning trees.

The prism on 2n vertices, PR2n, is the Cartesian product of Cn and K2. In other
words, it has the vertex set

V (PR2n) = {u1, u2, . . . , un, v1, v2, . . . , vn}

and the edge set

E(PR2n) = {uiui+1 : 1 ≤ i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n} ∪ {uivi : 1 ≤ i ≤ n},

where un+1 = u1, vn+1 = v1.

The multiprism MP2n(s) is the (2s+ 1)-regular graph on 2n vertices defined as
follows:

1. Let v1, v2, . . . , v2n be the vertices, and add s edges between vi and vi+1 for
each i, and also between v1 and v2n.

2. Add edges v1v4, v3v6, v5v8, . . . , v2n−1v2.
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Figure 3.2: Two drawings of the multiprism MP12(2)

Note that when n is even, the multiprismMP2n(s) can be obtained from the prism
PR2n by adding parallel edges along a Hamiltonian cycle. See Figure 3.2.

We shall firstly use the splitting formula for spanning trees to find t(MP2n(s))

asymptotically. The technique can be used to find the asymptotic behaviour of
the number of spanning trees of graphs with repeating structures, such as the wheel
graphs, the ladder graphs, the prism graphs and so on. Thereafter, we find a closed
expression of t(MP2n(s)) using an idea of M. Rubey [Rub00]. We mentioned the
formula without proof in [OT].

We start by explaining why we can remove a constant number, in this case s+ 1,
of edges from MP2n(s) for each n without changing lim

n→∞
t(MP2n(s))1/(2n). We

shall use the Rayleigh’s monotonicity law from electrical network theory.

A graph G can be considered as an electrical network where each edge represents
a resistance of 1 ohm. Then the effective resistance between two vertices s and t,
denoted by rG(s, t), can be measured using the number of spanning trees in the
following way; c.f. [Tho90].

rG(s, t) =
t(G/st)

t(G)
,

where G/st is the graph obtained from G by identifying the vertices s and t.

From the electrical point of view, it is intuitively clear that if we add a new
resistance between two points in an electrical network, then the effective resistance
between any pair of points cannot increase, since we made a possibly new way for
the electricity to flow. This property, called the Rayleigh’s monotonicity law,

44



can be stated formally using graph theoretical terms as in Theorem 3.2.19 below.
See [BSST40, Tho90] for proofs.

Theorem 3.2.19 (Rayleigh’s monotonicity law). Let G be a graph and let s, t be
two distinct vertices of G. Let e be an edge connecting two vertices of G which
does not belong to G. Then

rG+e(s, t) ≤ rG(s, t).

Lemma 3.2.20. Let G be a connected graph on n vertices. Then for every pair
s, t of two vertices of G, we have

rG(s, t) ≤ n− 1.

Proof. Let us choose a path P between s and t in G. Then rst(P ) ≤ n − 1. We
shall build up G from P by adding edges one by one. By Theorem 3.2.19, the
effective resistance rst(P ) never increases and thus

rG(s, t) ≤ rP (s, t) = n− 1.

Proposition 3.2.21. Let G be a graph with n vertices. If e is an edge of G such
that G− e is connected, then

t(G− e) ≥ t(G)

n
.

Proof. We may assume that e is not a loop. Let e = st. By Lemma 3.2.20,

rG−e(s, t) ≥ n− 1,

which means
t(G/e)

t(G− e)
≥ n− 1.

Hence
t(G− e)
t(G)

=
t(G− e)

t(G− e) + t(G/e)
=

1

1 + t(G/e)
t(G−e)

≥ 1

n
.
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Figure 3.3: The graph Ln obtained from MP2n(s) by removing s+ 1 edges. The
bold edges represent s parallel edges.

Proposition 3.2.21 implies that if we remove s + 1 edges from MP2n(s), then the
number of spanning trees changes by at most ns+1, a polynomial in s.

Recall the following two theorems.

Theorem 3.2.22 ([Alo90]). Let G be a k-regular connected simple graph with n
vertices. Then

t(G) ≥ (k(1− o(1)))
n
.

Theorem 3.2.23 ([Kos95]). Let G be a connected simple graph on n vertices with

degree sequence 1 < k = d1 ≤ d2 ≤ d3 ≤ · · · ≤ dn. Let d(G) =

n∏
i=1

di. Then

t(G) ≥ d(G)k−nO(log k/k).

Theorems 3.2.22 and 3.2.23 imply that, for fixed minimum degree, the number
of spanning trees is at least an exponential function of the number of vertices.
Clearly, the number of spanning trees of a regular graph is bounded above by an
exponential function of the number of vertices.

Thus, to find the asymptotic behaviour of t(MP2n(s)), we consider the graph Ln
in Figure 3.3 obtained fromMP2n(s) by removing s+1 edges using the observation
before Theorem 3.2.22. It is easy to see that

lim sup
n→∞

t(MP2n(s))1/(2n) = lim sup
n→∞

t(Ln)1/(2n),

lim inf
n→∞

t(MP2n(s))1/(2n) = lim inf
n→∞

t(Ln)1/(2n).
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(a) R (b) R′

Figure 3.4: Two graphs R and R′ to be added to Ln to form Ln+1 and
Ln+1/un+1vn+1. The bold edges represent s parallel edges.

The graph Ln has 2n vertices, u1, u2, . . . , un and v1, v2, . . . , vn, and edges uivi for
1 ≤ i ≤ n, uiui+1 for 1 ≤ i < n and vivi+1 for 1 ≤ i < n. The edges in the path
u0v0v1u1u2 . . . are replaced by s parallel edges.

To find the number t(Ln), I shall use the splitting formula (Theorem 2.2.6). Note
that the graph Ln+1 can be obtained from the 2-fragment Ln with labelled vertices
un, vn by adding the 2-fragment R in Figure 3.4 with labelled vertices a1, b1. The
splitting formula for spanning trees, obtained from Theorem 2.2.6 by setting x = 1

and y = 1, states that

t(Ln+1) = tv(Ln)t tf (R)

where

tv(Ln) =

[
t(Ln)

t(Ln/unvn)

]
, tf (R) = N2(1, 1) tv(R) =

[
0 1

1 0

] [
t(R)

t(R/a1b1)

]
.

But to find t(Ln+2) again from Ln+1, we need to know the Tutte vector

tv(Ln+1) =

[
t(Ln+1)

t(Ln+1/un+1vn+1)

]

which contains the number t(Ln+1/un+1vn+1) also. Similarly to above, the graph
Ln+1/un+1vn+1 can be obtained from Ln by adding R′, and from the splitting
formula we get

t(Ln+1/un+1vn+1) = tv(Ln)t tf (R′)

where

tf (R′) = N2(1, 1) tv(R
′) =

[
0 1

1 0

] [
t(R′)

t(R′/a1b1)

]
.
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Therefore, the Tutte vector tv(Ln+1) is

tv(Ln+1)t = [t(Ln+1) t(Ln+1/un+1vn+1)] = tv(Ln)t [tf (R) tf (R′)].

Since

tf (R) =

(
0 1

1 0

)(
t(R)

t(R/a1b1)

)
=

(
s2 + 2s

s2

)
and

tf (R′) =

(
0 1

1 0

)(
t(R′)

t(R′/a1b1)

)
=

(
s+ 1

s

)
,

the Tutte vector tv(Ln+1) is equal to

tv(Ln+1)t = tv(Ln)t

(
s2 + 2s s+ 1

s2 s

)
.

Using tv(L1) = (s, 1),

tv(Ln) = (s, 1)

(
s2 + 2s s+ 1

s2 s

)n−1

. (3.11)

The eigenvalues of the matrix (
s2 + 2s s+ 1

s2 s

)
are

λ± =
1

2
s
(
s+ 3±

√
s2 + 6s+ 5

)
,

and asymptotically λ+ =

(
s+

3

2
+O(

1

s
)

)2

. So far we have shown the following.

Theorem 3.2.24. LetMP2n(s) be the multiprism on 2n vertices, which is (2s+1)-
regular and (2s+ 1)-edge-connected. Then

lim
n→∞

[t(MP2n(s))]
1/(2n)

= lim
n→∞

t(Ln)1/(2n) = lim
n→∞

λ
1/2
+ = s+

3

2
+O(

1

s
).

Recall that our interest was in the following number for odd k, k ≥ 3:

τk = lim inf
n→∞

min
|V (G)|=n

G k-edge-connected

t(G)1/n.
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Theorem 3.2.9 showed that τk >
k

2
for each odd k ≥ 3, but the lower bound in

Theorem 3.2.9 tends to
k

2
as k tends to infinity. On the other hand, the cycle

of length n with edge-multiplicity
k + 1

2
gives τk ≤

k + 1

2
. The multiprisms we

investigated above gives asymptotically s+
3

2
=
k

2
+ 1 which is bigger than

k + 1

2
.

We believe that the multiprisms have asymptotically minimum number of spanning
trees among k-edge-connected k-regular graphs for odd k, and hence we conjecture
the following.

Conjecture 3.2.25. If k ≥ 5 is odd, then τk = τk+1 =
k + 1

2
.

Conjecture 3.2.26. Let

τ ′k = lim inf
n→∞

min
|V (G)|=n

G k-edge-connected
G k-regular

t(G)1/n.

If k ≥ 5 is odd, then τ ′k > τ ′k+1 =
k + 1

2
.

In other words, Conjecture 3.2.26 claims that if k ≥ 5 is odd, then each k-edge-
connected k-regular graph on n vertices has more spanning trees than the cycle

of length n with edge-multiplicity
k + 1

2
, which is (k + 1)-edge-connected (k + 1)-

regular.

For the sake of completeness we find an explicit formula for t(Ln) and t(MP2n(s)).
The number t(Ln) is an entry of the vector tv(Ln) given by Equation (3.11).

t(Ln) =
λn+ − λn−√
s2 + 6s+ 5

.

Now we find the exact formula of t(MP2n(s)). The formula is complicated, but
we now try to explain the ideas leading to the formula. Rubey [Rub00] used the
following method to calculate the exact number of spanning trees of prisms, and we
apply it to the multiprisms. We do the calculation only when n is even, although
the same method can be applied to when n is odd resulting in a slightly different
exact formula.

Let us start with drawingMP2n(s) as in Figure 3.5, where the bold lines represent
s parallel edges.
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Figure 3.5: Curves from inside to outside of MP2n(s).

The drawing has two faces, the inner and the outer, with boundary cycle of length
n. We choose a point x in the inner face and another point y in the outer face.
Let us consider a simple curve C on the plane from x to y not containing the
vertices of MP2n(s). We also require that the curve C visits each face of the
drawing at most once. We shall call such a curve an xy-curve. The set of edges
of MP2n(s) intersecting with C is completely determined by an edge of the inner
boundary cycle, another edge of the outer boundary cycle and the orientation,
either clockwise or anticlockwise unless the two chosen edges are on the same
quadrangle. Thus there are precisely 2n(n− 1) + n distinct sets of edges obained
from such curves.

For each of such set of edges, say E(C) for a xy-curve C, the complementMP2n(s)−
E(C) is a spannng connected subgraph of MP2n(s) so that it contains spanning
trees of MP2n(s). Since a tree drawn on the plane has only a single face, each
spanning tree of MP2n(s) avoids a curve connecting x and y, implying that by
summing up t(MP2n(s) − E(C)) over all possible E(C) we count each spanning
tree of MP2n(s) at least once. Moreover, if C1, C2 are two xy-curves such that
E(C1) 6= E(C2), then the closed curve C1 ∪ C2 separates the vertices of MP2n(s)

so that no spanning tree of MP2n(s) is contained in both MP2n(s) − E(C1) and
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MP2n(s)− E(C2). Therefore, the summation∑
E(C)

t(MP2n(s)− E(C))

is precisely t(MP2n(s)). The rest of this section is to find individual t(MP2n(s)−
E(C)) and then sum up the results.

Let Ln be the graph in Figure 3.3 on 2n vertices and denote ln = t(Ln). If a
xy-curve C passes through f quadrangular faces for an odd number f , then

t(MP2n(s)− E(C)) = sf−1ln−f

and there are 2n such sets E(C) if f > 1 and n sets if f = 1.

If f is even then t(MP2n(s)−E(C)) = sf−2ln−f or sf ln−f and each case happens
half the times out of 2n possibilities of E(C). Hence∑
E(C)

t(MP2n(s)− E(C)) = nln−1 +
∑

3≤f≤n−1
f odd

2nsf−1ln−f +
∑

2≤f≤n
f even

(nsf−2ln−f + nsf ln−f )

= nln−1 + 2n

n/2−1∑
f=1

s2f ln−2f−1 + n(1 + s2)

n/2−1∑
f=0

s2f ln−2f−2.

Using

t(Ln) =
λn+ − λn−√
s2 + 6s+ 5

we get

t(MP2n(s)) =
1√

s2 + 6s+ 5

nλn−1
+ + 2n

n/2−1∑
f=1

s2fλn−2f−1
+ + n(1 + s2)

n/2−1∑
f=0

s2fλn−2f−2
+

−nλn−1
− − 2n

n/2−1∑
f=1

s2fλn−2f−1
− − n(1 + s2)

n/2−1∑
f=0

s2fλn−2f−2
−


Since the summations are geometric,

t(MP2n(s)) =
n√

s2 + 6s+ 5

[
λn−1

+ + 2s2λ
n−1
+ − λ+s

n−3

λ2
+ − s2

+ (1 + s2)
λn+ − sn

λ2
+ − s2

−λn−1
− − 2s2λ

n−1
− − λ−sn−3

λ2
− − s2

− (1 + s2)
λn− − sn

λ2
− − s2

]
.
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Chapter 4

Acyclic and Totally Cyclic
Orientations

4.1 Acyclic and totally cyclic orientations

In [MW99], Merino and Welsh posed the following conjecture which is still open.
The numbers t(G), a(G) and c(G) are respectively the number of spanning trees,
acyclic orientations, and totally cyclic orientations of G.

Conjecture 4.1.1 ([MW99]). Let G be a bridgeless loopless graph. Then

t(G) ≤ max{a(G), c(G)}. (4.1)

Thomassen showed that Inequality (4.1) is true for graphs with n vertices and m

edges where m ≤ 16

15
n or m ≥ 4n − 4. His strategy is to find bounds for a(G),

c(G), and t(G) separately in terms of the number of vertices and edges.

The purpose of this section is to improve these results as follows:
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Theorem (4.1.9). Let G be a loopless graph with n vertices and m edges. If
m ≤ 1.29(n− 1), then t(G) ≤ a(G).

Theorem (4.1.15). Let G be a 3-edge-connected graph with n vertices and m edges.
If m ≥ 3.58(n− 1), then t(G) ≤ c(G).

We begin with recalling some definitions. Given a graph G, an orientation π (or
π(G)) on G is a directed graph on G. For e ∈ E(G) with tail u and head v, we
write π(e) = (u, v) and call it the orientation of e (with respect to π). A loop is
considered to have two orientations by convention.

The following is an upper bound for t(G) used in [Tho10].

Theorem 4.1.2 ([Tho10]). Let G be a graph on n vertices with degrees d1, d2, . . . , dn.
Then

t(G) ≤ d1d2 . . . dn−1

with the equality if and only if di = 0 for some i < n or the vertex of degree dn is
incident with all edges.

Proof. The theorem is clearly true for graphs on two vertices. We may also assume
that G has no loops.

We shall prove the theorem by induction on n. If di = 0 for some i < n or the
vertex of degree dn, say vn, is incident with all edges then t(G) = d1d2 . . . dn−1.
So assume that G has an edge e not incident with vn. We may assume that e
connects two vertices of degrees d1 and d2. Then

t(G) = t(G− e) + t(G/e)

≤ (d1 − 1)(d2 − 1)d3d4 . . . dn−1 + (d1 − 1 + d2 − 1)d3d4 . . . dn−1

= (d1d2 − 1)d3d4 . . . dn−1

< d1d2d3 . . . dn−1

Corollary 4.1.3 ([Tho10]). Let G be a graph on n vertices and m edges. Then

t(G) <

(
2m

n

)n−1

.
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Proof. Let dn be the maximum degree of G. The sum of degrees is 2m, and the
product of other degrees is maximized when 2m− dn is evenly distributed.

Also we have simple bounds for a(G) and c(G).

Lemma 4.1.4 ([Tho10]). Let G be a loopless connected graph on n vertices. Then

a(G) ≥ 2n−1.

Proof. A spanning tree of G has precisely 2n−1 acyclic orientations. It is enough
to show that any acyclic orientation can be extended to another acyclic orientation
when a non-loop edge is added.

Let D be an acyclic digraph and let u, v be two distinct vertices of D. If D has
a directed path from u to v and also from v to u, then the union of these two
paths is a closed walk (with possibly repeating directed edges) so that it has a
directed cycle inside, contradiction to the assumption that D is acyclic. Thus we
may assume that D has no directed path from u to v, and an edge uv can be added
to D, oriented from v to u so that the augmented orientation is still acyclic.

Lemma 4.1.5 ([Tho10]). Let G be a bridgeless connected graph on n vertices.
Then

c(G) ≥ 2m−n+1.

Proof. A bridgeless connected graph can be constructed from a cycle by recursively
adding paths which intersect the previous graph only at its ends. We consider
such a construction of G. The starting cycle has two totally cyclic orientations.
Whenever we add a new path, we may orient the path into two different directed
paths (or cycles) and still get a totally cyclic orientation. Since adding a new path
always increases m− n by 1, we have c(G) ≥ 2m−n+1.

Using Corollary 4.1.3 and Lemma 4.1.5, Thomassen proved the following.
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Theorem 4.1.6 ([Tho10]). Let G be a bridgeless graph with n vertices and m

edges. If m ≥ 4n− 4, then
t(G) ≤ c(G).

Also, using an inductive argument, he proved the following.

Theorem 4.1.7 ([Tho10]). Let G be a loopless graph with n vertices and m edges.

If m ≤ 16

15
n, then

t(G) ≤ a(G).

For graphs with small average degree, the following simple bound is stronger than
Corollary 4.1.3.

Observation 4.1.8. Let G be a graph with n vertices and m edges. Then

t(G) ≤
(

m

n− 1

)
.

Using Observation 4.1.8, we can improve the constant
16

15
≈ 1.067 in Theorem

4.1.7.

Theorem 4.1.9. Let G be a loopless bridgeless graph with n vertices and m edges.
If m ≤ 1.29(n− 1), then t(G) ≤ a(G).

Proof. We shall use the Stirling’s approximation:
√

2πn(
n

e
)n ≤ n! ≤ e

√
n(
n

e
)n.

By Observation 4.1.8, the number t(G) is at most(
m

n− 1

)
=

m!

(n− 1)!(m− n+ 1)!

≤ e

2π

(
m

(n− 1)(m− n+ 1)

)1/2
mm

(n− 1)n−1(m− n+ 1)m−n+1

Dividing the numerators and denominators by n − 1, and setting α =
m

n− 1
, the

last formula becomes

e

2π
√
n− 1

(
α

α− 1

)1/2(
αα

(α− 1)α−1

)n−1

(4.2)
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By Theorem 4.1.7, we may assume that m ≥ 16

15
(n − 1), so that α ≥ 16

15
and

α

α− 1
≤ 16. Therefore, it is enough to show that

2e

π
√
n− 1

(
αα

(α− 1)α−1

)n−1

≤ 2n−1.

We have
2e

π
√
n− 1

< 1 for n > 3 and the function f(x) =
xx

(x− 1)x−1
is increasing

for x > 1 and f(x) = 2 at x = 1.2938... . Since the statement is easy to check
for n ≤ 3, we conclude that if α ≤ 1.29, or equivalently m ≤ 1.29(n − 1), then
t(G) ≤ a(G).

Note that when m = 4n, the number
(
m

n

)
is approximately 9.48n whereas

Thomassen’s bound is (
2m

n
)n = 8n. Thus for c(G), this approach does not im-

prove Theorem 4.1.6. Instead, we shall improve the multiplicative constant 4 in
Theorem 4.1.6 by imposing an additional condition on the graphs. For that we
shall use the notion of flippable edges defined below.

Let π be an acyclic (totally cyclic) orientation on a graph G. Let e be an edge.
If the orientation on G obtained from π by reversing the orientation of e is still
acyclic (totally cyclic), then e is a flippable edge of π. Recall that we write
π(e) = (x, y) when e = xy and the orientaion of e in π is from x to y. If X ⊆ V

is a vertex subset of a graph G = (V,E), then δ(X) is the set of edges having one
end in X and the other end not in X. In a directed graph, δ+(X) is the set of
directed edges with tail in X and head not in X. We define δ−(X) = δ+(V \X).

The following observations follow immediately.

Observation 4.1.10. Let G be a graph with an acyclic orientation π. A directed
edge π(e) = (v, w) is not flippable if and only if π(G)− e has a directed path from
v to w.

Observation 4.1.11. Let G be a graph with a totally cyclic orientation π. A
directed edge π(e) = (v, w) is not flippable if and only if G has a vertex set Xe

such that δ+(Xe) = {e}.

The concept of flippable edges in acyclic and totally cyclic orientations were consid-
ered in [FPS01, CF], as a connection between the so-called hyperplane arrangement
and the orientations of graphs.
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Proposition 4.1.12 ([CF]). Let G be a connected simple graph with n vertices
and m edges. Then each acyclic orientation on G has at least n−1 flippable edges.

Proof. Let π be an acyclic orientation on G, and let v, w be two distinct vertices of
G connected by a directed path from v to w. Let P be a longest directed path in
π(G) from v to w. Suppose that a directed edge π(e) = (x, y) in P is not flippable.
Then π(G)− π(e) has a directed path from x to y, which must not intersect with
P because of acyclicity. With this path and P − π(e), π(G) has a path from v to
w longer than P which is a contradiction to the choice of P . Thus every edge of
P is flippable, and the set of flippable edges of π form a connected subgraph of G,
which means π has at least n− 1 flippable edges.

Note that we need G to be simple in Proposition 4.1.12. A multigraph in which
each edge has another parallel edge does not have an acyclic orientation with
flippable edges.

We shall need the following counterpart to Proposition 4.1.12. Note that for planar
graphs, Propositions 4.1.12, 4.1.13 are equivalent by duality.

Proposition 4.1.13. Let G be a 3-edge-connected graph with n vertices and m
edges. Then each totally cyclic orientation on G has at least m − n + 1 flippable
edges.

Proof. We prove that the set of non-flippable edges has no cycle in the underlying
graph G. We shall use induction on the number of vertices. We may assume
that G has at least three vertices. For contradiction, suppose that G is a smallest
counterexample and π be a totally cyclic orientation on G in which some of its
non-flippable edges form a cycle C. Each non-flippable edge, say e0, is associated
with a vertex set, denoted by Xe0 , such that δ+(Xe0) = {e0}. Let e be an edge of
C. Because C is a cycle, π has another non-flippable edge f ∈ δ(Xe). Let π′ be
the orientation on G/f induced by π. Note that π′ is also totally cyclic. We claim
that e is nonflippable in π′.

Let us consider the four subsets of V (G) divided by the cuts δ(Xe) and δ(Xf ).
From f ∈ δ(Xe) and δ+

π (Xe) = {e}, we see that π(f) is from Xc
e ∩Xf to Xe ∩Xc

f .
There are three cases for e:
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1. If π(e) is fromXe∩Xc
f toXc

e∩Xf , then δ+
π (Xe∩Xf ) = δ−π (Xc

e∩Xc
f ) = ∅ since

δ+(Xe) = {e} and δ+(Xf ) = {f}. It implies that Xe ∩Xf = Xc
e ∩Xc

f = ∅
because π(G) is strongly connected. Thus e and f form a 2-edge-cut, a
contradiction to G being 3-edge-connected.

2. Suppose that π(e) is from Xe ∩ Xf to Xc
e ∩ Xf . Then δ−π (Xc

e ∩ Xc
f ) = ∅,

implying Xc
e ∩Xc

f = ∅. Note that δ+
π (Xe ∩Xf ) = {π(e)}, which is an edge

cut in G/f making e non-flippable in π′.

3. The remaining case is that π(e) is from Xe ∩Xc
f to Xc

e ∩Xc
f . Similarly to

(2), we see Xe ∩Xf = ∅ and δ−π (Xc
e ∩Xc

f ) = {π(e)}.

Suppose that C has an edge e′ different from e and f . If f /∈ δ(Xe′) then e′ remains
non-flippable in π′. If f ∈ δ(Xe′) then by the claim above e′ is non-flippable in π′.
Thus every edge of C remains non-flippable in π′, contradiction to the induction
hypothesis.

Therefore, the set of non-flippable edges form a forest, so that the number of
flippable edges is at least m− n+ 1.

Using Proposition 4.1.13, we can find a lower bound on c(G) which is stronger
than Lemma 4.1.5.

Proposition 4.1.14. Let G be a 3-edge-connected graph. If G has n edges and m

vertices, then c(G) ≥
(

6

5

)n−2

6 · 2m−n−1

Proof. We use induction on n. We may assume that G has no loop. Since it is
easy to check the inequality when n = 2, we also assume that n > 2.

By Proposition 4.1.13, each totally cyclic orientation on G has at least m− n+ 1

flippable edges. Hence the sum of the numbers of flippable edges in all totally
cyclic orientations on G is at least (m−n+ 1)c(G), so that we can choose an edge

e such that e is flippable in at least
m− n+ 1

m
c(G) totally cyclic orientations.

Let 2D be the number of totally cyclic orientations on G in which e is flippable.
Let S = c(G)− 2D. Since a totally cyclic orientation π on G has e as its flippable
edge if and only if π(G− e) is totally cyclic on G− e, we have c(G− e) = D and
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c(G/e) = D + S. Because of the choice of e,

S ≤ n− 1

m
c(G) ≤ 2(n− 1)

m− n+ 1

m− n+ 1

2m
c(G) ≤ 2(n− 1)

m− n+ 1
D.

Thus,
c(G)

c(G/e)
=

2D + S

D + S
≥ 2m

m+ n− 1
≥ 6

5
. The last inequality comes from

2m ≥ 3n, because G is 3-edge-connected. Note that G/e is again 3-edge-connected
with n− 1 vertices and m− 1 edges. By the induction hypothesis,

c(G) ≥ 6

5
c(G/e) ≥

(
6

5

)n−2

6 · 2m−n−1.

Uisng Proposition 4.1.14 with Lemma 4.1.5, we can improve Theorem 4.1.6 for
3-edge-connected graphs.

Theorem 4.1.15. Let G be a 3-edge-connected graph with n vertices and m edges.
If m ≥ 3.58(n− 1), then t(G) ≤ c(G).

Proof. Let α =
m

n− 1
. Lemma 4.1.5 says that

t(G) <

(
2m

n

)n−1

< (2α)n−1.

And Proposition 4.1.14 says that

c(G) ≥
(

6

5

)n−2

6 · 2m−n+1 >

(
6

5

)n−1

2(α−1)(n−1).

Thus it is enough to have that

2α ≤ 6

5
· 2α−1,

which is true for α ≥ 3.5748... .

On the other hand, Proposition 4.1.12 cannot give a useful lower bound for a(G)

because of the following example. See Figure 4.1.

Let us fix a constant c > 0. For sufficiently large t and n = bct2c, we consider the
graph G obtained from the complete graph Kt by adding a path of length n− t+1
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Figure 4.1: Graphs showing that it is impossible to get an exponential lower
bound > 2n for a(G) even when G has high average degree

between two vertices of Kt so that G has n vertices. The average degree of G is
asymptotically

t2 − t+ 2(n− t+ 1)

n
= 2 +

1

c
+ o(1),

and we have an upper bound for the acyclic orientation such that

a(G) ≤ t! · 2n−t+1 < tt2n−t+1 = (2 + o(1))n,

so that a lower bound of type a(G) > Kn for a constant K > 2 is impossible even
if we assume that G is 2-connected, simple and has high average degree.

In [Tho10], Thomassen proved the following theorem.

Theorem 4.1.16. If G is a loopless graph of maximum degree at most 3, then
t(G) ≤ a(G).

Thomassen used the following reduction lemma but the proof in [Tho10] missed a
little detail. Here we prove the lemma again to complete Theorem 4.1.16.

Lemma 4.1.17. A counterexample to Theorem 4.1.16 with minimum number of
edges must be a simple bridgeless cubic graph.

Proof. Assume that G is a counterexample to Theorem 4.1.16 with the minimum
number of edges. If G has a bridge then we remove it and by applying the min-
imality of G to the resulting two components, we get t(G) ≤ a(G) which is im-
possible. If v ∈ V (G) is incident with a double edge but no other edge, then
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t(G) = 2t(G−v) ≤ 2a(G−v) = a(G), hence G has no such vertex. If v ∈ V (G) has
only two incident edges vv1, vv2 where v1 6= v2, then let H = G− v+ v1v2. By the
assumption on G we have t(H) ≤ a(H) and it is easy to check that t(G) ≤ 2t(H)

and a(G) ≥ 3a(H), so that t(G) ≤ a(G) which is a contradiction. Thus we may
assume that G is a cubic bridgless connected graph.

Suppose that G has a double edge between two vertices y, z and also xy, zu ∈ E(G)

where {x, u} ∩ {y, z} = ∅. We may assume that x 6= u. Let H = G− y − z + xu.
Then t(H) ≤ a(H) by the minimality ofG. It is easy to see that a(G) ≥ 4a(H). We
shall show that t(G) ≤ 3.5t(H), so that t(G) ≤ a(G) which is a contradiction. By
the Rayleigh’s monotonicity (Theorem 3.2.19), the effective resistance rH(x, u) =
t(H/xu)

t(H)
is at least the effective resistance between x and u after identifying all

other vertices in H into one, which is 1/2. Thus 2t(H/xu) ≥ t(H) or equivalently
t(H/xu) ≥ t(H − xu), and

t(G) = 5 t(H − xu) + 2 t(H/xu) ≤ 3.5 t(H − xu) + 3.5 t(H/xu) = 3.5 t(H).

Thomassen asked the following questions in [Tho10].

1. Is t(G) ≤ a(G) when m ≤ 2n− 2?
2. Is t(G) ≤ c(G) when m ≥ 2n− 2?

But both were answered negatively by Noble and Royle [NR14]. They provided
an example with 2n−2 edges, see Figure 4.2 for t(G) > a(G) and consider its dual
for t(G) > c(G).

Noble and Royle stated that they do not know of a graph with m < 2n − 2 and
t(G) < a(G), but by slightly modifying their graph, we can find such an example.

Let G be a cycle of length n where n− k of its edges are replaced by two parallel
edges. It is easy to see that

t(G) = (n+ k)2n−k−1,

a(G) = 2n − 2.
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Figure 4.2: Noble and Royle’s example

Hence, if n > 2k+2 then t(G) > a(G). By taking the dual of G we obtain a graph
with n′ vertices and 2n′+ k− 4 edges such that t(G) > c(G) where n′ = n− k+ 2.

Therefore, we replace Thomassen’s questions by the following weaker questions:

Open Problem 1. Let G be a graph with n vertices and m edges. Is there a
constant c > 0 such that the following hold?

1. If G is loopless and m ≤ 2n− c · log n edges, then t(G) ≤ a(G).
2. If G is bridgeless and m ≥ 2n+ c · log n edges, then t(G) ≤ c(G).

The above example suggests that the constant c, if it exists, must be at least 1
when the base of the logarithm is 2.

If Open Problem 1 has a negative answer perhaps the following holds:

Open Problem 2. Let G be a loopless bridgeless graph with n vertices and m

edges. Are the following true for each ε > 0 and sufficiently large n?

1. If G is loopless and m ≤ (2− ε)n, then t(G) ≤ a(G).
2. If G is bridgeless and m ≥ (2 + ε)n, then t(G) ≤ c(G).

63



64



Chapter 5

The Merino-Welsh
Conjecture for Bounded

Treewidth

5.1 Introduction

In chapters 3, 4 we considered the Merino-Welsh conjecture. The multiplicative
version of the Merino-Welsh conjecture is stated below for convenience.

Conjecture 5.1.1. Let G be a loopless bridgeless graph. Then

T (G; 1, 1)2 ≤ T (G; 2, 0)T (G; 0, 2).

In 2014, Noble and Royle proved Conjecture 5.1.1 for series-parallel graphs.

Theorem 5.1.2 ([NR14]). Let G be a 2-connected series-parallel graphs. Then

T (G; 1, 1)2 ≤ T (G; 2, 0)T (G; 0, 2).
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Noble and Royle’s proof is based on an algorithm which resulted in a ‘test-space’
of 18 graphs such that, the statement holds for all series-parallel graphs if it holds
for the test-space.

I extended their method using my version of the splitting formula, Theorem 2.2.6,
so that it is applicable to the class of graphs with bounded treewidth or pathwidth.
Let Ck be the class of loopless bridgeless graphs with treewidth (or pathwidth) at
most k. If my algorithm halts in finite time for Ck, then the algorithm produces a
test-space of k-fragments such that the Conjecture 5.1.1 holds for Ck if it holds for
the test-space. I applied the algorithm for graphs with pathwidth at most 3, and
it resulted in a test-space of 5242 2- and 3-fragments, and it showed the following.

Theorem 5.1.3. Let G be a loopless bridgeless graph of pathwidth at most 3. Then

T (G; 1, 1)2 ≤ T (G; 2, 0)T (G; 0, 2).

In Section 5.2 we define the pathwidth and present well-known basic properties of
pathwidth. Then we present a natural construction of all 2-connected graphs with
pathwidth at most 3 using simple local operations, mostly adding one vertex at a
time. The detailed algorithm using the splitting formula shall be given in Section
5.3.

5.2 Treewidth and pathwidth

This section is to present the concept of pathwidth for completeness and provide a
list of simple local operations on 2- and 3-fragments which construct all 2-connected
graphs of pathwidth at most 3, starting from a single edge.

Given a graph G, a path decomposition of G is a pair (P, {Bx}x∈V (P )) where
P is a path and Bx ⊆ V (G) for each x ∈ V (P ) such that the following conditions
hold.

• For each edge e of G, there is an x ∈ V (P ) such that Bx contains both ends
of e.
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• For each u ∈ V (G), the set {x ∈ V (P ) : u ∈ Bx} induces a subpath of P ,
namely Pu.

The setsBx are called the bags. Thewidth of a path decomposition (P, {Bx}x∈V (P ))

is defined by max
x∈V (P )

|Bx| − 1 and the pathwidth of G, denoted by pw(G), is the

minimum width over all tree decompositions of G. For surveys on width parame-
ters, see [Bod93, Lov05].

Let (P, {Bx}x∈V (P )) be a path decomposition of G. We may define an assignment
φ : E(G) −→ {Bx}x∈V (P ) such that for each e ∈ E(G), the bag φ(e) contains both
ends of e. Throughout this chapter, we shall assume that every path decomposition
comes with such an assignment, normally assumed implicitly.

Let S ⊆ V (P ) where (P, {Bx}x∈V (P )) is a path decomposition of G. The subgraph
of G with vertex set

⋃
x∈S

Bx and edge set
⋃
x∈S

φ−1(Bx) is called the subgraph of G

induced by S and denoted by G[S]. If P ′ is a subgraph of P , then G[V (P ′)] is
also denoted by G[P ′].

We shall add the following two restrictions on path decompositions, which do not
change the pathwidth.

1. For each edge xy of P , each component of P − xy contains at least one Pu
for some u ∈ V (G).

2. Bx * By for any distinct x, y ∈ V (P ).

Note that u,w ∈ V (G) are adjacent only if Pu, Pw intersect in P . Let xy be an
edge of P . By the condition 1, Bx ∩By is a vertex cut of V (G) if G is connected.
By the condition 2, this vertex cut has size at most pw(G). Let Cx and Cy be
the components of P − xy containing x and y respectively, where xy is an edge
of P . The graphs G[Cx], G[Cy] are two subgraphs of G, meeting at Bx ∩ By and
partitioning E(G). We shall consider these subgraphs as |Bx ∩By|-fragments.

Let G be a graph with a path decomposition (P, {Bx}x∈V (P )). Let the vertices of
P be p0, p1, . . . , pr following the order on P . Theorem 5.2.2 below is about what
kind of operations are needed to obtain G[p0p1 . . . pi+1] from G[p0p1 . . . pi].

We begin with the following lemma.
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Lemma 5.2.1. Let G be a loopless 2-connected graph. If pw(G) ≤ 3, then G has
a path decomposition (P, {Bx}x∈V (P )) of width pw(G) such that for each edge e of
P , the two components of P − e both induce connected subgraphs of G.

Proof. It is trivial if |V (G)| ≤ 4. We shall assume |V (G)| > 4.

Let (P, {Bx}x∈V (P )) be a path decomposition of G with width pw(G) such that∑
x∈V (P )

|Bx| is the smallest. If a bag Bx contains another bag By then each of the

bags between x and y in P contains By, so that we may contract the first edge of
P on the path from y to x and get a smaller

∑
x∈V (P )

|Bx|. Thus no bag can contain

another bag.

Suppose that P has an edge e such that among the two components of P − e,
namely P1 and P2, one of them, say P1, induces a disconnected subgraph of G.
Let e = xy such that x ∈ V (P1). Let C be one of the components of G[P1]. If
V (C) = {v} is a singleton, then we may delete v from all the bags in P1 and still get
a path decomposition of G with the same width, contradicting to the minimality of∑
x∈V (P )

|Bx|. Thus we may assume that each component of G[P1] contains at least

two vertices. Since G is connected, the set V (C)∩Bx separates C from the rest of
G. But |Bx ∩ By| ≤ 3, so that one of the components of G[P1] is separated from
the rest of G by one vertex, contradicting to the assumption that G is 2-connected.
Thus G[P1] is connected, resulting in a contradiction to the existence of e.

To illustrate the operations in the following theorem, we shall use the notation
(H,C) for a k-fragment H whose labelled vertices are the elements of the set C.

Theorem 5.2.2. Let G be a loopless 2-connected graph. If pw(G) ≤ 3 and
|V (G)| > 4, then G can be constructed from the smallest connected 2-fragment
(K2, {u, v}) by applying one of the following six types of operations repeatedly.
Moreover, we may assume that the last operation to obtain G is to add an edge
between the labelled vertices of a 2-fragment.

1. An expansion of a 2-fragment (H, {u, v}) is the 3-fragment (H ′, {u, v, v′})
where H ′ is the graph obtained from H by adding a new vertex v′ and an
edge vv′.
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2. A restriction of a 3-fragment (H, {u, v, w}) is the 2-fragment (H, {u, v}).
3. Adding an edge to a fragment (H,C) is to make a fragment (H ′, C)

where H ′ is obtained from H by adding an edge connecting two distinct ver-
tices in C.

4. Adding a wedge to a fragment (H,C) is to make a fragment (H ′, C)

where H ′ is the graph obtained from H by adding a new vertex v being adja-
cent to two distinct vertices in C. The edges incident with v have multiplic-
ities at least 1.

5. Adding a claw to a 3-fragment (H,C) is to make a 3-fragment (H ′, C)

where H ′ is the graph obtained from H by adding a new vertex v being ad-
jacent to three distinct vertices in C. The new edges have multiplicities at
least 1.

6. A transition of a 3-fragment (H, {u, v, w}) is the 3-fragment (H ′, {u, v, w′})
where H ′ is the graph obtained from H by adding a new vertex w′ which is
joined to w with at least one edge.

Proof. By Lemma 5.2.1, we can find a path decomposition (P, {Bx}x∈V (P )) of G
such that for each edge e of P , the two components of P −e both induce connected
subgraphs of G. Let P = x0e0x1 . . . er−1xr where xi ∈ V (P ) and ej ∈ E(P ) for all
i, j. For i = 0, 1, . . . , r − 1, let Gi = G[{x0, x1, . . . , xi}] and let Ci = Bxi

∩ Bxi+1
.

We shall consider Gi as a |Ci|-fragment where Ci is the set of labelled vertices.
If G0 is not K2, then we can choose two vertices u, v ∈ Bx0 such that u, v are
adjacent in G since G0 is connected and |G0| > 1. By adding a bag Bx−1

= {u, v}
to Bx0

in P and assign one of the edges connecting u, v to Bx−1
, we may assume

that G0 is K2 and |C0| = 2. Likewise, we shall add Bxr+1
to Bxr

in P where
G[xr+1] is K2, so that Gr is a 2-fragment from which G is obtained by adding an
edge between the two labelled vertices.

The proof is done once we show that we may obtain Gi+1 from Gi in all cases
using the operations in the statement. Note that |Ci| = |Bxi

∩ Bxi+1
| so that

2 ≤ |Ci| ≤ 3. We may assume that no bag is contained in another bag except Bx0

and Bxr+1 . Each of the following cases are reduced using appropriate relabelling
of the labelled vertices.

Case 1. |Bxi+1
| = 3. Let Bxi+1

= {a, b, c}. We may assume that Ci = {a, b} since
no other bag contains Bxi+1 . There are two possibilities for Ci+1, either {a, b} or
{a, c}. If Ci+1 = {a, b}, then the vertex c is adjacent to only a, b in G. Since G
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is 2-connected, both a, b are neighbors of c so that (Gi+1, Ci+1) can be obtained
from (Gi, Ci) by adding a wedge for c, possibly with additional applications of the
operation (3) if some edges between a, b are assigned to Bxi+1 .

Suppose Ci+1 = {a, c}. If b and c are not adjacent in G, then a is a cutvertex of
G, which is impossible. Thus b and c are adjacent, and we expand (Gi, Ci) using
an edge between b and c. Afterwards, we may add edges between a, b, c and then
we restrict the set of labelled vertices to {a, c}, obtaining (Gi+1, Ci+1).

Case 2. |Bxi+1 | = 4. Let Bxi+1 = {a, b, c, d}. We divide the case up to the sizes
of Ci and Ci+1. The addition of edges between the vertices a, b, c and d shall be
done implicitly except those edges which are added explicitly by other operations.

Case 2-1. |Ci| = 2 and |Ci+1| = 2. Let Ci = {a, b}. There are three possibilities
for Ci+1, which are {a, b}, {a, c} and {c, d}. Suppose Ci+1 = {a, b}. If c and d are
not adjacent in G then we add two wedges to (Gi, Ci). Otherwise, we may assume
that c is adjacent to either a or b and we firstly expand Ci into {a, b, c}. And then
we add either a wedge or a claw for d, and finish by restricting {a, b, c} back to
{a, b} to obtain (Gi+1, Ci+1).

Suppose Ci+1 = {a, c}. If d is not adjacent to c then we add a wedge for d to
(Gi, Ci). After that we expand {a, b} to {a, b, c} and finish by restricting it to
{a, c}. If d is adjacent to c, the vertex d is adjacent to at least one of a, b, so we
expand {a, b} to {a, b, d} then transit to {a, b, c}. After that we restrict to {a, c}
and obtain (Gi+1, Ci+1).

If Ci+1 = {c, d}, then the edges between {a, b} and {c, d} contains two independent
edges; otherwise G has a cutvertex. We may assume that a, c are adjacent and so
do b, d. We can expand {a, b} to {a, b, c} then transit to {a, c, d}. We finish by
restricting {a, c, d} to {c, d}.

Case 2-2. |Ci| = 2 and |Ci+1| = 3. Let Ci = {a, b}. The set Ci+1 can be either
{a, b, c} or {a, c, d}. Suppose Ci+1 = {a, b, c}. If c is not adjacent to d then both a
and b are neighbors of d. Thus we add a wedge to (Gi, Ci) and then expand Ci to
{a, b, c}. If c and d are adjacent, we firstly expand Ci to {a, b, d} and then transit
to {a, b, c}.

Suppose Ci+1 = {a, c, d}. We may assume that b, d are adjacent in G, because if
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both c, d are not adjacent to b then a is a cutvertex of G. Now we expand {a, b}
to {a, b, c} then transit to {a, c, d}.

Case 2-3. |Ci| = 3 and |Ci+1| = 2. Let Ci = {a, b, c}. The set Ci+1 can be either
{a, b} or {a, d}. If Ci+1 = {a, b} then we add a wedge or a claw for d and then
restrict {a, b, c} to {a, b}. Suppose Ci+1 = {a, d}. The vertex d must be adjacent
in G to at least one of b, c. We may assume that b, d are adjacent. Now we transit
from {a, b, c} to {a, c, d} then restrict it to {a, d}.

Case 2-4. |Ci| = 3 and |Ci+1| = 3. Let Ci = {a, b, c}. The set Ci+1 can be
either {a, b, c} or {a, b, d}. If Ci+1 = {a, b, c} then we add a wedge or a claw for d.
Suppose Ci+1 = {a, b, d}. If c, d are adjacent in G then we transit from {a, b, c} to
{a, b, d}. Otherwise we restrict {a, b, c} to {a, b} and then expand it to {a, b, d}.

We covered all possible changes from Gi to Gi+1 using the given operations. Thus
Gr can be obtained from the 2-fragment K2, and at last, G can be obtained from
Gr by adding an edge.

We remark that for each of the operations (1) – (6) in Theorem 5.2.2, say Oi, there
is a fragment KOi

such that applying Oi to a fragment H is equivalent to take
H ⊕KOi

, possibly followed by relabelling.

5.3 An algorithm to test the Merino-Welsh conjec-
ture

We present an algorithm to test the multiplicative Merino-Welsh conjecture (Con-
jecture 5.1.1; mMW-conjecture for short), for the class of graphs with treewidth
(or pathwidth) at most k. It is a generalization of Noble and Royle’s idea [NR14]
which was used to series-parallel graphs, or in other words, the graphs of treewidth
at most 2. My version of the splitting formula (Theorem 2.2.6) is essential in my
generalization of the algorithm. Noble and Royle did not know whether the al-
gorithm would finish in finite time before actually running it on computer, and
neither do I know whether my algorithm finishes in finite time. But for path-
width 3, my algorithm produced a list of 5242 fragments which confirmed that the
mMW-conjecture holds for graphs of pathwidth at most 3.
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The crucial idea is the following concept of replacement between two fragments
with respect to the mMW-conjecture.

Definition 5.3.1. Let G and H be connected k-fragments. We say G is replace-
able by H if for each k-fragment K, T (H ⊕ K; 1, 1)2 ≤ T (H ⊕ K; 2, 0)T (H ⊕
K; 0, 2) implies T (G⊕K; 1, 1)2 ≤ T (G⊕K; 2, 0)T (G⊕K; 0, 2).

In other words, if the mMW-conjecture has a counterexample which is G⊕K for
some k-fragment K, then H⊕K is also a counterexample to the mMW-conjecture.
Hence when G is replaceable byH, we may ‘ignore’ G from consideration regarding
the mMW-conjecture.

To use the concept of replacement in an algorithm, we present a sufficient condition
below that a fragment is replaceable by another. Recall that Γ(k) is the set of
partitions of [k] = {1, 2, . . . , k}. The Tutte vector Tv(G) and the graph GP for a
k-fragment G and P ∈ Γ(k) are defined in Section 2.2, before Theorem 2.2.1.

Theorem 5.3.2. Let G and H be connected k-fragments. Let the three numbers
a

G/H
, c

G/H
, and t

G/H
be defined as the following:

• a
G/H

= min{a(GP )/a(HP ) : P ∈ Γ(k), a(HP ) 6= 0}.
• c

G/H
= min{c(GP )/c(HP ) : P ∈ Γ(k), c(HP ) 6= 0}.

• t
G/H

=∞ if for some P ∈ Γ(k), we have t(HP ) = 0 but t(GP ) 6= 0.
Otherwise t

G/H
= max{t(GP )/t(HP ) : P ∈ Γ(k), t(HP ) 6= 0}.

If a
G/H

c
G/H
≥ t2

G/H
, then G is replaceable by H.

Proof. Let av(G), cv(G), and tv(G) be the evaluations of the Tutte vector Tv(G) at
(2, 0), (0, 2), and (1, 1) respectively, and similarly define av(H), cv(H), and tv(H)

for H. Let us fix a k-fragment K. By Theorem 2.2.6, there is a vector Tf (K)

whose entries are polynomials in x, y with positive integer coefficients such that
T (G⊕K) = Tv(G) · Tf (K) and T (H ⊕K) = Tv(H) · Tf (K). By evaluating both
equations at (2, 0), we have a vector af (K) whose entries are nonnegative integers
such that a(G ⊕K) = av(G) · af (K) and a(H ⊕K) = av(H) · af (K). Using the
definition of a

G/H
, we get

a
G/H

a(H⊕K) =
∑

P∈Γ(k)

(
a

G/H
a(HP )

)
[af (K)]P ≤

∑
P∈Γ(k)

a(GP )[af (K)]P = a(G⊕K),
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where [af (K)]P denotes the P -entry of the vector af (K).

Similarly, we can show c
G/H

c(H ⊕K) ≤ c(G⊕K) and t
G/H

t(H ⊕K) ≥ t(G⊕K).
Therefore, if the multiplicative Merino-Welsh conjecture holds for H ⊕ K, i.e.,
t(H ⊕K)2 ≤ a(H ⊕K)c(H ⊕K), then by the assumption t2

G/H
≤ a

G/H
c
G/H

, we
get

t(G⊕K)2 ≤ t2
G/H

t(H⊕K)2 ≤ a
G/H

c
G/H

a(H⊕K)c(H⊕K) ≤ a(G⊕K)c(G⊕K),

and hence G is replaceable by H.

My algorithm recursively extends a list of 2-fragments and 3-fragments starting
from L = {K2}, where K2 is the 2-fragment whose base graph is the complete
graph on 2 vertices. At each step, we apply the operations (1) – (6) in Theorem
5.2.2 to the fragments in L, and if the resulting fragment is not replaceable by
any fragment in L then we add the new fragment into L. If the new fragment is
replaceable then we discard it. The algorithm stops when no more irreplaceable
fragment is found. In the algorithm, we only need the vectors av(H), cv(H) and
tv(H) for each fragment H in L instead of the whole graph structure of H.

Theorem 5.3.3 below explains that if my algorithm stops, then the mMW-conjecture
holds for graphs with pathwidth 3 if and only if it holds for my list L. However,
it should be noted that the operations in Theorem 5.2.2 may produce graphs with
bridges. For example, a path can be constructed from the 2-fragment K2 by re-
peatedly applying the expansion (operation (1)) and restriction (operation (2)).
The mMW-conjecture does not hold for graphs with bridges, so we need to exclude
graphs with bridges. Thus we are interested in only the fragments arising from
2-edge-connected graphs. We need to exclude such a k-fragment H that even if
we add a complete graph on its labelled vertices, H still has a bridge. Such a case
happens if and only if the number of totally cyclic orientation of HP , or c(HP ), is
zero where P is the partition with a single block containing all elements. There-
fore, in the algorithm, we discard the new fragments whenever its number c(HP )

is zero. This exclusion of bridges is assumped implicitly in the proof of Theorem
5.3.3.

Now we explain why my list L is a ‘test-space’ for the mMW-conjecture if the
algorithm stops.
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Theorem 5.3.3. Suppose that we have a finite list L of 2-fragments and 3-
fragments such that

1. L contains the smallest connected 2-fragment K2 and
2. For each fragment F ∈ L, the result of applying any of the operations (1)–(6)

in Theorem 5.2.2 to F is replaceable by a fragment F ′ ∈ L.

If Conjecture 5.1.1 holds for every graph obtained from a 2-fragment in L by adding
an edge between its labelled vertices, then the conjecture holds for all loopless bridge-
less graphs with pathwidth at most three.

Proof. Let G be a loopless bridgeless graph of pathwidth three. The mMW-
conjecture holds for G if it holds for each block of G, so we may assume that
G is 2-connected. Note that the operations in Theorem 5.2.2 always produce con-
nected fragments when applied to connected fragments, so that we can talk about
the replaceability.

We shall write the operations in Theorem 5.2.2 on the right side of the fragment
to which they are applied, so that HO1O2, or (HO1)O2 denotes the fragment
obtained from a fragment H by applying O1 and then O2, where Oi is one of the
operations in Theorem 5.2.2 for each i.

By Theorem 5.2.2, there is a sequence of operations O1, O2, . . . , ON such that
K2O1O2 · · ·ON is the graph G. Moreover, the statement of Theorem 5.2.2 also
allows us to assume that K2O1O2 · · ·ON−1 is a 2-fragment, and ON is the addition
of an edge bewteen the labelled vertices of a 2-fragment. We prove that the mMW-
conjecture holds for all graphs obtained by this sequence of operations applied to
the 2-fragment K2, which include all 2-connected loopless graphs of pathwidth at
most three.

LetO1, O2, . . . , ON be a sequence of operations in Theorem 5.2.2 such thatK2O1O2 · · ·ON
is well-defined and ON is the addition of an edge between the labelled vertices of a
2-fragment K2O1O2 · · ·ON−1. Because of the property (2) of our list L, the frag-
ment K2O1 is replaceable by a fragment F1 ∈ L. Note that for each k, applying
the sequence OkOk+1 · · ·ON to a fragment, say H, is equivalent to take H ⊕ K
for a fragment K depending on the sequence of operations. By the definition of
replaceability (Definition 5.3.1), the mMW-conjecture holds for K2O1O2 · · ·ON if
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it holds for F1O2O3 · · ·ON . Likewise, for i = 2, 3, . . . , N − 1, we can find a frag-
ment Fi ∈ L such that Fi−1Oi is replaceable by Fi. At the end, the condition we
assumed in the statement implies that the mMW-conjecture holds for FN−1ON ,
and by the definition of the replaceability, the conjecture holds for FN−2ON−1ON ,
FN−3ON−2ON−1ON , and so on. Eventually we have that the conjecture holds for
K2O1O2 · · ·ON , thereby completing the proof.

We used a computer program to find such a finite list L as stated in Theorem 5.3.3.
The result is a sequence of 5242 fragments, say F1, F2, . . . , F5242. The sequence
has the property that for each Fi and for each operation Oj , the fragment FiOj
is either equal to Fi′ for some i′ > i or replaceable by Fi′′ for some i′′ < i. A
fragment Fi is never replaceable by another fragment Fi′ with i′ < i, but we
cannot guarantee that Fi is also not replaceable by a fragment Fi′′ with i′′ > i. In
fact, 469 fragments out of those 5242 are replaceable by another fragment included
later in the list. Thus we may say that we have a list of 4773 mutually irreplaceable
fragments which satisfy the assumptions of Theorem 5.3.3. For the actual code
and the complete list, see http://www2.compute.dtu.dk/∼seok/.

An algorithm for graphs with treewidth (or pathwidth) at most k for k ≥ 3 can
be obtained by simply changing the operation set (Theorem 5.2.2). A tree decom-
position or a path decomposition of bounded width naturally provides a finite list
of simple operations to construct all of such graphs, and the replacement criterion
(Theorem 5.3.2) can be used regardless of the widths. But the list for treewidth
3, if finite, seems to contain more than 10,000 fragments, which was beyond the
computational power I used.
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Chapter 6

Convexity of the Tutte
Polynomial

6.1 Convexity of the Tutte polynomials on the line
segments with slope -1

Recall that the Merino-Welsh conjecture holds for any graph G for which the Tutte
polynomial T (G) is convex on the line segment between (0, 2) and (2, 0).

In this section we prove that the Tutte polynomial T (G) is convex on the line
segment from (0, 2) to (2, 0) if G is a minimally 2-edge-connected graph. The
proof is in the context of matroids and therefore we introduce some notions from
matroid theory.

Two disticnt elements e, f in a matroid are called parallel if {e, f} is a circuit.
The relation e ∼ f if e = f or {e, f} are parallel defines an equivalence relation on
the ground set of a matroid. We call a corresponding equivalence class a parallel
class. It is easy to check the following.
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(∗) If e, f are parallel in a matroidM and C is a parallel class ofM not containing
e, then e, f are parallel in both M/C and M − C.

The following two properties of the Tutte polynomial can be obtained directly
from the definition (2.1) of the Tutte polynomial. A coloop is an element which
is contained in every basis.

1. T (M ;x, y) = T (M−e;x, y)+T (M/e;x, y) if e is neither a loop nor a coloop.
2. T (M ;x, y) = yT (M − e;x, y) = yT (M/e;x, y) if e is a loop.

The formula (1) is called the deletion-contraction formula. From (1) and (2), it is
easy to prove the following by induction on k.

Observation 6.1.1. Let M be a matroid and let C be a parallel class of M . Let
|C| = k. If C itself is a component of M , then

T (M ;x, y) = (yk−1 + yk−2 + · · ·+ y + x)T (M/C;x, y).

Otherwise,

T (M ;x, y) = (yk−1 + yk−2 + · · ·+ 1)T (M/C;x, y) + T (M − C;x, y).

Now we prove the following.

Theorem 6.1.2. Let M be a matroid in which each element has another element
parallel to it. Then the polynomial T (M ;x, y) is a sum of the terms ya(x + y)b

with nonnegative integer coefficients. Therefore for each real number c > 0, the
polynomial T (M ; c− y, y) is convex in the interval [0, c].

Proof. We prove by induction on the number of parallel classes of M . If M has
only one parallel class and it has size k, then

T (M ;x, y) = yk−1 + yk−2 + · · · y + x

so the statement holds since k ≥ 2.

Suppose that M has a parallel class C and C ( M . By (∗) we can apply the
induction hypothesis to both M/C and M − C. From Observation 6.1.1, if C is

78



itself a component of M then

T (M ;x, y) = (yk−1 + yk−2 + · · ·+ y + x)T (M/C;x, y)

and hence T (M ;x, y) has the desired property since k ≥ 2. If C is not a component
of M , then

T (M ;x, y) = (yk−1 + yk−2 + · · ·+ 1)T (M/C;x, y) + T (M − C;x, y)

and again by the induction hypothesis the polynomial T (M ;x, y) is a sum of the
terms ya(x+ y)b with nonnegative integer coefficients.

We remark that we get the same conclusion in Theorem 6.1.2 when M has loops.
By restricting the class to the cycle matroids of graphs we get the following.

Corollary. Let G be a graph in which each edge is parallel to another edge. Then
the polynomial T (G; 2− y, y) is convex in [0, 2].

Since T (M ;x, y) = T (M∗; y, x) for each matroid M , the dual statement of Theo-
rem 6.1.2 is the following.

Corollary 6.1.3. Let M be a matroid in which each edge is in a cocircuit of size
2. Then T (M ;x, c− x) is convex in [0, c] for each c > 0.

Corollary 6.1.4. Let G be a minimally 2-edge-connected graph. Then the poly-
nomial T (G;x, 2− x) is convex in [0, 2].

Corollary 6.1.3 also provides a shorter proof of the following theorem of Chávez-
Lomelí et al. [CLMNRI11]. A matroid is called paving if the minimum size of a
circuit is at least the rank of the matroid.

Theorem 6.1.5 (Chávez-Lomelí et al.[CLMNRI11]). LetM be a coloopless paving
matroid. For each real number c > 0, the Tutte polynomial T (M ;x, y) is convex
on the line segment between (0, c) and (c, 0).

Proof. If M has a loop then either every element of M is a loop or M has rank 1
and it is the cycle matroid of a graph on two vertices possibly with parallel edges
and loops. Thus the Tutte polynomial T (M ;x, y) is a sum of the terms ya and
yb(x+ y) so that the statement holds.
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If each element of M is contained in a cocircuit of size 2 then we apply Corollary
6.1.3.

Thus we may assume that M has no loops and has an element e not in a cocircuit
of size 2. Since every minor of a paving matroid is again paving, we use induction
onM−e andM/e so that the equation T (M ;x, y) = T (M−e;x, y)+T (M/e;x, y)

completes the proof.

6.2 Convexity of the Tutte polynomial in the first
quadrant

This section is about almost all matroids. We prove, among other things, that
the Tutte polynomial of a sparse paving matroid is asymptotically almost surely
convex in the first quadrant {(x, y) : x, y ≥ 0}. To be precise, we consider the
set Mn of all matroids on the set [n] = {1, 2, . . . , n} and by writing almost all
matroids with property P have property Q we mean

lim
n→∞

|{M ∈Mn : M has both P and Q}|
|{M ∈Mn : M has P}|

= 1.

Recall that a matroid is paving if the minimum size of a circuit is at least the
rank of the matroid. A sparse paving matroid is a paving matroid whose dual
matroid is also paving. We prove the following.

Theorem 6.2.1. Almost all sparse paving matroids have the property that their
Tutte polynomials are convex in {(x, y) : x, y ≥ 0}.

We shall use the following characterization of the sparse paving matroids. An r-set
is a subset of [n] of size r.

Lemma 6.2.2 (Knuth [Knu74]). Let C be a collection of r-sets. There is a sparse
paving matroid on [n] with rank r whose set of circuits of size r is C if and only if
for all distinct C1, C2 ∈ C, |C1 4 C2| > 2.

Let M be a sparse paving matroid on [n] with rank r and λ circuits of size r. By
Lemma 6.2.2, each (r + 1)-set contains a basis of M . Hence from the definition
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(2.1) of the Tutte polynomial,

T (M ;x, y) =

r−1∑
i=0

(
n

i

)
(x−1)r−i+

(
n

r

)
+λ(xy−x−y)+

n∑
i=r+1

(
n

i

)
(y−1)i−r. (6.1)

Although Equation 6.1 provides a simple formula for the Tutte polynomial of
a sparse paving matroid, what we need in this section is the coefficients of the
monomials xiyj , instead of (x−1)i(y−1)j . I found the following simple expression
of the coefficients.

Theorem 6.2.3. Let M be a sparse paving matroid on n elements with rank r
and λ circuits of size r. If 1 ≤ r ≤ n− 1, then the Tutte polynomial of M is

T (M ;x, y) =

r∑
i=0

(
n− i− 1

r − i

)
xi +

(
n

r

)
+ λ(xy − x− y) +

n−r∑
i=0

(
n− i− 1

n− r − i

)
yi.

Proof. Let

L(n, r) =

r∑
i=0

(
n

r − i

)
(x− 1)i for n ≥ r ≥ 0,

R(n, r) =

r∑
i=0

(
n− i− 1

r − i

)
xi for n > r ≥ 0

and R(n, n) = xn for each n ≥ 0.

We shall prove L(n, r) = R(n, r) for n ≥ r ≥ 0 by induction.

The following are immediate:

L(n, 0) =

0∑
i=0

(
n

0− i

)
(x− 1)i = 1

L(n, n) =

n∑
i=0

(
n

n− i

)
(x− 1)i = ((x− 1) + 1)n = xn

R(n, 0) =

0∑
i=0

(
n− i− 1

0− i

)
xi = 1

R(n, n) = xn by definition.
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Using the binomial equation
(
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
for n − 1 ≥ r ≥ 1, we

also have

L(n, r) = L(n− 1, r − 1) + L(n− 1, r) for n− 1 ≥ r ≥ 1 and

R(n, r) = R(n− 1, r − 1) +R(n− 1, r) for n− 1 > r ≥ 1

By directly calculating we have R(n, n− 1) = R(n− 1, n− 2) +R(n− 1, n− 1) as
well.

Therefore, using induction on n, it is true that L(n, r) = R(n, r) for all n ≥ r ≥
0.

The following lemma decides whether the Tutte polynomial of a sparse paving
matroid is convex in the first quadrant.

Lemma 6.2.4. LetM be a sparse paving matroid on [n] with rank r, 2 ≤ r ≤ n−2.
Let λ be the number of circuits of size r in M . The Tutte polynomial T (M ;x, y)

is convex in {(x, y) : x, y ≥ 0} if and only if

λ2 ≤ 4

(
n− 3

r − 2

)(
n− 3

n− r − 2

)
.

Proof. As a two-variable polynomial, T = T (M ;x, y) is convex in {(x, y) : x, y ≥ 0}
if and only if T 2

xy ≤ TxxTyy in {(x, y) : x, y ≥ 0} where the subscripts denote the
partial derivatives. From Equation 6.1 we know that Txy = λ is a constant. Since
every coefficient of the Tutte polynomial is a positive integer, so are the coefficients
of the polynomials Txx and Tyy and hence the Tutte polynomial T (M ;x, y) is
convex in {(x, y) : x, y ≥ 0} if and only if

λ2 ≤ Txx(0, 0)Tyy(0, 0).

By Theorem 6.2.3,

Txx(0, 0)Tyy(0, 0) = 4

(
n− 3

r − 2

)(
n− 3

n− r − 2

)
and the proof is complete.
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There are precisely two sparse paving matroids on [n] with rank 1, namely the
uniform matroid and the cycle matroid of the graph with n− 1 parallel edges and
a loop. The Tutte polynomial of a uniform matroid is convex in the first quadrant
whereas the Tutte polynomial of the latter is not. The sparse paving matroids
on [n] with rank n − 1 are precisely the dual matroids of those two and the dual
operation preserves the convexity of the Tutte polynomial in the first quadrant.

Let J(n, r) be the Johnson graph whose vertices are r-sets in [n] and two vertices
A,B are adjacent if and only if |A4B| = 2. By Lemma 6.2.2, a set C of vertices
in J(n, r) is the set of circuits of size r in a sparse paving matroid of rank r if and
only if C is independent in J(n, r). Let C be an independent set of J(n, r). Since
each (r − 1)-set is contained in at most one element of C and each r-set contains
r subsets of size r − 1, we have

|C| ≤ 1

r

(
n

r − 1

)
=

1

n− r

(
n

r

)
.

Also, the set of complements Cc = {Cc : C ∈ C} satisfies the same condition
|C1 4 C2| > 2 for each pair of distinct C1, C2 ∈ Cc and hence

|C| = |Cc| ≤ 1

r

(
n

n− r

)
.

On the other hand, J(n, r) has a proper Zn-coloring such that a set A is assigned
the color

∑
i∈A

i (mod n). Therefore, J(n, r) has an independent set of size at least

1

n

(
n

r

)
. We summarize the above as the following observation.

Observation 6.2.5. A sparse paving matroid on [n] with rank r has at most

min

{
1

n− r

(
n

r

)
,

1

r

(
n

r

)}
circuits of size r. There is a sparse paving matroid on [n] with rank r with at least
1

n

(
n

r

)
circuits of size r.

We remark that the independence number of J(n, r) was also considered in the
context of constant weight codes; c.f. [EB96].

Theorem 6.2.6. Let M be a sparse paving matroid on n elements with rank r. If
2 ≤ r ≤ n−2, then the Tutte polynomial T (M ;x, y) is convex in {(x, y) : x, y ≥ 1}.
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Proof. Let T = T (M ;x, y) and let λ be the number of circuits ofM of size r. As in
Lemma 6.2.4, the two-variable polynomial T is convex in {(x, y) : x, y ≥ 1} if and
only if λ2 ≤ Txx(1, 1)Tyy(1, 1) where the subscripts denote the partial derivatives.

From Equation 6.1 we have Txx(1, 1) = 2

(
n

r − 2

)
and Tyy(1, 1) = 2

(
n

r + 2

)
. By

Observation 6.2.5, λ2 ≤ 1

r

1

n− r

(
n

r

)2

and it is easy to check

1

r

1

n− r

(
n

r

)2

≤ 4

(
n

r − 2

)(
n

r + 2

)
when 2 ≤ r ≤ n− 2 which completes the proof.

Let T = T (M ;x, y) be the Tutte polynomial of a sparse paving matroid on [n]

with rank r, 2 ≤ r ≤ n − 2. By Theorem 6.2.6, T is convex in {(x, y) : x, y ≥ 1}.
By Theorem 6.1.5, T is convex on the line segment between (0, c) and (c, 0) for
each positive real number c, since a sparse paving matroid with a coloop has
corank 1. But it is not true in general that T is convex in {(x, y) : x, y ≥ 0}.
One such example is the sparse paving matroid on 14 elements with rank 2 and
7 disjoint circuits of size 2; see Lemma 6.2.4. There are infinitely many sparse
paving matroids whose Tutte polynomials are not convex in {(x, y) : x, y ≥ 0}, in
contrast to Theorem 6.2.6.

Proposition 6.2.7. There are infinitely many sparse paving matroids whose Tutte
polynomials are not convex in {(x, y) : x, y ≥ 0}.

Proof. Let r be a fixed number and let n be large enough. By Observation 6.2.5
we can find a sparse paving matroid on [n] with rank r and Θ(nr−1) circuits of
size r. By Lemma 6.2.4, the Tutte polynomial of such a matroid is not convex in
the first quadrant if the square of the number of circuits of size r is larger than

4

(
n− 3

r − 2

)(
n− 3

n− r − 2

)
= Θ(n2r−3),

which is true and thus completes the proof.

On the other hand, we shall now prove that almost all sparse paving matroids on [n]

have the property that their Tutte polynomials are convex in {(x, y) : x, y ≥ 0}.
The proof uses the fact that almost all matroids and almost all sparse paving
matroids have rank close to n/2; c.f. [MNWW11, LOSW13, PvdP14]. We prove
the following weaker version here for completeness.
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Lemma 6.2.8. Almost all sparse paving matroids on [n] have rank between n/3

and 2n/3.

Proof. A matroid is completely determined by its set of bases. Thus, the number
of matroids on [n] with rank r is less than 2(n

r) and the number of matroids on [n]

with rank at most n/3 is less than

bn/3c∑
i=0

2(n
i) < n 2( n

bn/3c).

Using Stirling’s formula, we get
(

n

bn/3c

)
<

(
33

22

)n/3
< 1.89n for sufficiently large

n. The number of matroids on [n] with rank bigger than 2n/3 is also less than
n 21.89n

by duality.

On the other hand, by Observation 6.2.5 the graph J(n, bn/2c) has an independent

set of size
1

n

(
n

bn/2c

)
= O

(
2n

n3/2

)
. Using all of its subsets, we can find more than

21.99n

distinct sparse paving matroids on [n] with rank bn/2c when n is sufficiently
large. Therefore, the number of matroids on [n] with rank either less than n/3 or
bigger than 2n/3 is vanishing compared to the number of sparse paving matroids
with rank bn/2c.

Theorem 6.2.9. Almost all sparse paving matroids have the property that their
Tutte polynomials are convex in {(x, y) : x, y ≥ 0}.

Proof. By Lemma 6.2.4 and Observation 6.2.5, it is enough to show that

1

r2

(
n

r

)2

≤ 4

(
n− 3

r − 2

)(
n− 3

n− r − 2

)
(6.2)

for almost all sparse paving matroids. By Lemma 6.2.8 almost all sparse paving
matroids have rank between n/3 and 2n/3, and it is routine to check Equation (6.2)
when n/3 ≤ r ≤ 2n/3 and n is sufficiently large, by expanding the factorials.

Based on the proof of Proposition 6.2.7, I conjecture that if we fix the rank, then
the Tutte polynomial is almost never convex in the first quadrant, in contrast to
Theorem 6.2.9.
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Conjecture 6.2.10. Let r be a fixed positive integer. The proportion of the sparse
paving matroids on [n] with rank r, whose Tutte polynomials are convex in {(x, y) :

x, y ≥ 0}, tends to 0 as n tends to infinity.

By Proposition 6.2.7 and the discussion above Observation 6.2.5, if we can show
that most of the independent sets of the Johnson graph J(n, r) has relatively large
size then Conjecture 6.2.10 is true. For example, we may ask whether the following
property P holds for an infinite class of graphs.

Property P: We say that an infinite class G of graphs has property P if there
exists a constant c > 0 such that

lim
n→∞

min
G∈G

|V (G)|=n

# of independent sets of G with size at least cα(G)

# of independent sets of G
= 1

where α(G) is the maximum size of an independent set of G.

In other words, a class G has property P if for each graph in G, almost all inde-
pendent sets have relatively large size.

Suppose that for a fixed positive integer r, the class Jr = {J(n, r) : n > r} of the
Johnson graphs has P. Then Observation 6.2.5 implies that almost all independent

sets of J(n, r) has size at least
c

n

(
n

r

)
and in turn, it implies that almost all sparse

paving matroids on [n] with rank r has at least
c

n

(
n

r

)
circuits of size r. Since

c2

n2

(
n

r

)
> 4

(
n− 3

r − 2

)(
n− 3

n− r − 2

)
= Θ(n2r−3)

for fixed r and large n, Lemma 6.2.4 shows that Conjecture 6.2.10 is true.

So, if the class Jr of the Johnson graphs J(n, r) with fixed r has the property P,
then Conjecture 6.2.10 holds.

In the rest of this section we make some general comments on the property P for
various graph classes. For example, the graphs with a fixed upper bound on the
chromatic number has the property P whereas we loose this property if we only
assume that the chromatic number is bounded by a function of n, the number of
vertices, which tends to ∞ as n→∞.

Let us consider the class Ck = {G : G a graph with chromatic number χ(G) ≤ k}.
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If G ∈ Ck has n vertices, then the independence number α(G) is at least
n

k
. Let

α(G) = dn where d ≥ 1

k
. Let c <<

1

k
be a small positive number. Let I be an

independent set of size dn in G.

By choosing c small enough compared to
1

k
, we may assume that almost all subsets

of I have size greater than cn. These sets are all independent so that G has at

least
2dn

2
independent of size greater than cn. On the other hand, the number of

subsets of V (G) of size at most cn is
cn∑
i=0

(
n

i

)
< cn

(
n

cn

)
and by Stirling’s formula,(

n

cn

)
= O

(
1√
n

(
1

cc(1− c)1−c

)n)
.

Since the fraction
1

cc(1− c)1−c , as a function of c in the interval (0, 1), has a

maximum at c = 1/2 and tends to 0 as c tends to either end, by choosing small
enough c we can ensure that the number of subsets of V (G) of size at most cn is
much less than 2dn. That is, almost all independent sets of G have size at least cn
and thus the class Ck has the property P.

On the other hand, if we consider the class

Cf = {G : G a graph with chromatic number χ(G) ≤ f(|V (G)|)}

where f is any increasing function which tends to infinity, for example f(n) = log n,
then Cf does not have P. We give a proof below.

Let b be a large integer and let d be so large that f(d) > b + 1. We may assume

that d is much larger than b. Let a = d log 4

log b
de. Note that

ba ≥ b
log 4
log b d = 4d.

We construct a graph G from a disjoint copies of Kb and adding d new mutually
independent vertices all adjacent to each of the ab vertices of the disjoint complete
graphs.

The independent sets of G are either a subset of the d pairwise independent vertices
or a set obtained by choosing at most one vertex from each of the copies of Kb.
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Thus the independence number of G is α(G) = d. Since G has Kb+1 as a subgraph
the chromatic number χ(G) ≥ b + 1 and it is easy to color G with b + 1 colors.
Thus χ(G) = b+ 1.

Since f is an increasing function, f(|V (G)|) = f(ab + d) ≥ f(d) > b + 1 = χ(G).
Thus G is in the class Cf . Suppose that Cf has the property P with a constant
c > 0. The number of independent sets in G of size larger than a is definitely less
than 2d. On the other hand, the number of independent sets of size ≤ a is at least

ba ≥ 4d >> 2d. We may take b sufficiently large such that a = d log 4

log b
de < cd. In

that case, almost all independent sets of G has smaller size than cd which implies
that the class Cf does not have the property P.

Let us consider again the motivation for property P, namely Conjecture 6.2.10. It
suffices to prove that the class Jr of the Johnson graphs J(n, r) with fixed r has
the property P, but the chromatic number of the Johnson graph J(n, r) is at least
n− r+ 1 since J(n, r) has a clique of size n− r+ 1 consisting of all r-subsets of [n]

containing a fixed (r − 1)-set. So our discussion above on the property P cannot
be used to prove Conjecture 6.2.10.

Instead, we may consider the symmetry of the Johnson graph. I conjecture the
following.

Conjecture 6.2.11. There is a constant c > 0 such that if G is a vertex-transitive
graph, then the proportion of the independent sets of size at least cα(G) in the set
of all independent sets of G tends to 1 as |V (G)| tends to infinity.

Or we may consider just the regularity, and ask the following question.

Question 1. Is there a constant c > 0 such that if G is regular, then almost all
independent sets of G has size at least cα(G)?
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Chapter 7
Fractions involving the Tutte

polynomials

7.1 Introduction

This section is an outline of Section 7.2. We conclude this section with a possible
consequence to physics.

Thomassen’s partial proof [Tho10] of the Merino-Welsh conjecture [MW99] is based
on the following idea.

• In sparse graphs, the acyclic orientations dominate the spanning trees.
• In dense graphs, the totally cyclic orientations dominate the spanning trees.

In Section 7.2, I consider Conjecture 7.2.1 below as an attempt to strengthen
Thomassen’s idea. Recall that the numbers a(G), c(G) and t(G) respectively de-
note the number of acyclic orientations, totally cyclic orientations and spanning
trees of a graph G. The parentheses around labels of conjectures and theorems
indicate that they will be introduced formally later.
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Conjecture (7.2.1). Let G be a connected loopless graph. If e ∈ E(G) is not a
bridge, then

a(G)

t(G)
≤ a(G− e)
t(G− e)

Conjecture 7.2.1 claims that the sparser the graph is, the more dominant acyclic
orientations are over spanning trees. The conditions on G and e are simply to
ensure that all numbers in the inequality are positive. Conjecture 7.2.1 and its
counterpart for totally cyclic orientations lead to the following.

Conjecture (7.2.4). Let H and G be connected, loopless and bridgeless graphs in
the following statements.

• If a(G) ≥ t(G), then a(H) ≥ t(H) for any spanning subgraph H of G.
• If c(G) ≥ t(G), then c(H) ≥ t(H) for any supergraph H of G on the same
vertex set.

• If H is a subgraph of G such that

t(G) > max{a(G), c(G)} and t(H) > max{a(H), c(H)},

then any subgraph K of G containing H also satisfies

t(K) > max{a(K), c(K)}.

The last statement is a type of interpolation theorem for the counterexamples of
the Merino-Welsh conjecture.

I shall explain in Section 7.2 that Conjecture 7.2.4 follows from Conjecture 7.2.3
below. The subscript x denotes the partial derivative with respect to the variable
x.

Conjecture (7.2.3). Let M be a matroid and let e be an element of M . At each
point on the line segment between (0, 2) and (2, 0), we have

TM/eTM−ex − TM/e
x TM−e ≥ 0. (7.1)

The line segment between (0, 2) and (2, 0) is drawn as B in Figure 7.1. The regions
A,B and C in Figure 7.1 are respectively:
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Figure 7.1: The regions related to Conjecture 7.2.3

• A = {(x, y) : x, y ≥ 1},
• B = {(x, y) : x, y ≥ 0, x+ y = 2},
• C = {(x, y) : x, y ≥ 0, x+ y ≥ 2}.

If Inequality (7.1) holds on B for every matroid M and every edge e then Conjec-
ture 7.2.4 is true. As a supporting evidence, I prove that (7.1) holds in A when
M is the cycle matroid of a series-parallel graph. I expect that (7.1) holds in a
larger region, namely C in Figure 7.1, for every matroid M . However, we cannot
extend the region to entire first quadrant since there are matroids M for which
(7.1) fails in a small region close to the origin. The cycle matroids of the wheel
graphs provide such examples. If M is the Tutte polynomial of the wheel graph
on 11 vertices, then TM/eTM−ex − TM/e

x TM−e is negative when x, y are positive
numbers smaller than 0.3.

My proof that Inequality (7.1) holds in the region A for series-parallel graphs uses
a stronger statement, namely Theorem 7.2.9 below.

Theorem (7.2.9). If M = (E, r) is the cycle matroid of a series-parallel graph,
then for each positive integer k,∑

e∈A⊆E
r(A)+r(Ac)=k

r(A)− r(Ac) ≥ 0 (7.2)

We will see in the next section that if (7.2) holds for every matroid M in a minor-
closed class of matroids, say C, then (7.1) holds for every M ∈ C in the region
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A = {(x, y) : x, y ≥ 1}. Thus, it follows from Theorem 7.2.9 that the inequality
(7.1) in Conjecture 7.2.3 holds for series-parallel graphs in the region A = {(x, y) :

x, y ≥ 1}.

We finish this introductory section with a possible consequence of Theorem 7.2.9
to physics.

Sokal explained in [Sok05] that the Tutte polynomial of a graph G on the curve (x−
1)(y−1) = q is the partition function, say ZPotts(G), of the q-state Potts model
where the so-called coupling constant (in this case y− 1) is the same for all edges.
In particular, in the region {(x, y) : x, y > 1} the model is called ferromagnetic.
Conjecture 7.2.6 below claims that Theorem 7.2.9 holds for all matroids. If true,
it implies that the gradient vector field of the ratio T (G/e)/T (G− e) in the region
{(x, y) : x, y > 1} always points toward upper-left for any graph (or matroid)
G. Therefore, it follows that the ratio ZPotts(G/e)/ZPotts(G− e) is an increasing
function of the coupling constant y − 1, regardless of the base graph G and the
number of states q.

7.2 Fractions involving the Tutte polynomial and
the Merino-Welsh conjecture

In this section we formulate some conjectures involving fractions of the Tutte
polynomial. We verify one of those conjectures for series-parallel graphs. For an
overview of the relationship between the conjectures, see Section 7.1 first.

Intuitively, my idea here is that maybe the sparser the graph is, the more dominant
the acyclic orientations are over the spanning trees. To be precise, I expect the
following to hold.

Conjecture 7.2.1. Let G be a connected loopless graph and let e be an edge, not
a bridge. Then

a(G)

t(G)
≤ a(G− e)
t(G− e)

.

By interchanging terms, we get the following inequality about a fraction of the
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Tutte polynomial, as follows.

T (G− e; 1, 1)

T (G; 1, 1)
≤ T (G− e; 2, 0)

T (G; 2, 0)

Thus, I conjecture the following.

Conjecture 7.2.2. For each loopless connected graph G and an edge e which is

not a bridge, the fraction
T (G− e)
T (G)

is an increasing function of x on the line

segment {(x, 2− x) : 0 ≤ x ≤ 2}.

For notational convenience, I shall write as TG for the Tutte polynomial of G
instead of T (G) throughout this chapter.

Let L be the line segment between the points (0, 2) and (2, 0). By the assumptions
of Conjecture 7.2.2, e is neither a bridge nor a loop. Using the deletion-contraction
formula, we have

TG−e

TG
=

TG−e

TG−e + TG/e
=

1

1 + TG/e/TG−e

and the question is whether
TG/e

TG−e
is a decreasing function of x on L.

One way to show that
TG/e

TG−e
is indeed decreasing on L is to consider the gradient.

If the gradient of
TG/e

TG−e
, as a function on the xy-plane, points toward the left-

upper side on L then the fraction is a decreasing function of x on L. To be precise,
what I want to prove is the following where the subscripts x and y denotes the
partial derivatives with respect to the variables x and y.[

TG/e

TG−e

]
x

≤ 0 and
[
TG/e

TG−e

]
y

≥ 0 on L. (7.3)

To prove the two inequalities in (7.3), it is enough to prove the inequality in the
following conjecture.

Conjecture 7.2.3. Let M be a matroid and let e be an element of M . At each
point on the line segment between (0, 2) and (2, 0), we have

TM/eTM−ex − TM/e
x TM−e ≥ 0.
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Now we explain why Conjecture 7.2.3 implies (7.3).

The partial derivatives in (7.3) are[
TG/e

TG−e

]
x

=
T
G/e
x TG−e − TG/eTG−ex

(TG−e)2
, and[

TG/e

TG−e

]
y

=
T
G/e
y TG−e − TG/eTG−ey

(TG−e)2
.

If we consider G as a matroid instead of a graph and take its dual G∗, then since
TG(x, y) = TG

∗
(y, x), we have TGy (a, b) = TG

∗

x (b, a) and[
TG/ey TG−e − TG/eTG−ey

]
at (a,b)

=
[
TG
∗−e

x TG
∗/e − TG

∗−eTG
∗/e

x

]
at (b,a)

,

which means that the numerators of the two gradients are in some sense dual to
each other. Therefore, Conjecture 7.2.3 implies (7.3).

Suppose that Conjecture 7.2.3 is true. Then by the previous discussion,[
TM/e

TM−e

]
at (x,2−x)

is decreasing in [0, 2], and hence[
TM−e

TM

]
at (x,2−x)

is increasing in [0, 2], so that

t(G− e)
t(G)

=
TG−e(1, 1)

TG(1, 1)
≤ TG−e(2, 0)

TG(2, 0)
=
a(G− e)
a(G)

whenever all four numbers t(G− e), t(G), a(G− e) and a(G) are positive.

The last inequality implies
a(G)

t(G)
≤ a(G− e)
t(G− e)

so that if a(G) ≥ t(G) for some connected graph G then a(H) ≥ t(H) for any
connected spanning subgraph H of G.

On the other hand, by applying Conjecture 7.2.3 between the points (1, 1) and
(0, 2), it implies that if c(G) ≥ t(G) for some connected graph G then for any graph
H obtained from G by adding edges between vertices of G, we have c(H) ≥ t(H).

We may combine last two paragraphs to conjecture the following.
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Conjecture 7.2.4. In this conjecture, we consider only the connected, loopless
and bridgeless graphs.

• If a(G) ≥ t(G), then a(H) ≥ t(H) for any spanning subgraph H of G.
• If c(G) ≥ t(G), then c(H) ≥ t(H) for any supergraph H of G on the same
vertex set.

• If H is a subgraph of G such that

t(G) > max{a(G), c(G)} and t(H) > max{a(H), c(H)},

then any subgraph K of G containing H also satisfies

t(K) > max{a(K), c(K)}.

Conjecture 7.2.4 is a type of interpolation theorem for the counterexamples of the
Merino-Welsh conjecture. Recall that Conjecture 7.2.3 is stronger than Conjecture
7.2.4.

If each coefficient of the polynomial TM/eTM−ex −TM/e
x TM−e is a positive integer

then Conjecture 7.2.3 is obviously true. But it is not the case. If we choose M
to be the cycle matroid of the wheel graph on 6 vertices and e to be an edge
incident with the center, then the low-order terms of TM/eTM−ex − TM/e

x TM−e

have negative coefficients, for example −4xy. But all the higher order terms have
positive coefficients and Conjecture 7.2.3 holds for this M .

As a generalization of Conjecture 7.2.3, I suspect that the polynomial TM/eTM−ex −
TM/e
x TM−e is nonnegative on the region {(x, y) : x, y ≥ 0, x+y ≥ 2}. As a starting

approach, I considered the following.

Conjecture 7.2.5. Let M be a matroid and let e be an element of M . If we
express

TM/eTM−ex − TM/e
x TM−e

as a polynomial in x− 1 and y − 1 instead of x and y, then every coefficient is a
positive integer.

If true, Conjecture 7.2.5 implies that TM/eTM−ex − TM/e
x TM−e is nonnegative in

the region {(x, y) : x, y ≥ 1}.

We now consider a possible approach to Conjecture 7.2.5. We focus on the poly-
nomial TM/eTM−ex − TM/e

x TM−e.

95



When e is a loop or a coloop, M/e = M − e and TM/eTM−ex −TM/e
x TM−e = 0, so

Conjecture 7.2.5 holds trivially. Suppose that M is a direct sum of two matroids,
say N and K (meaning that every circuit of M is either in N or in K). We may
assume that e ∈ N . Then

TM/e = TN/eTK and TM−e = TN−eTK ,

so that

TM/eTM−ex − TM/e
x TM−e = TN/eTK

(
TN−ex TK + TN−eTKx

)
−TN−eTK

(
TN/ex TK + TN/eTKx

)
=
(
TN/eTN−ex − TN/ex TN−e

)
(TK)2,

which has the same sign as TN/eTN−ex − TN/ex TN−e. Thus we shall consider only
the connected, loopless and coloopless matroids.

Now we find a way to express the coefficient of (x− 1)i(y − 1)j in the polynomial
TM/eTM−ex −TM/e

x TM−e. For convenience, we write E−e for E\{e} when E is the
ground set of M and e ∈ E. I shall use the following rank-generating formulation
of the Tutte polynomial, where r is the rank function of M .

TM (x, y) =
∑
A⊆E

(x− 1)r(M)−r(A)(y − 1)|A|−r(A)

We shall use also rM/e(A) = r(A+e)−1 and rM−e(A) = r(A) for every A ⊆ E−e.
Putting them into the above equation, we get (for TM/e and TM−e instead of TM )

TM/e(x, y) =
∑

A⊆E−e

(x− 1)r(M/e)−rM/e(A)(y − 1)|A|−rM/e(A)

=
∑

A⊆E−e

(x− 1)r(M)−r(A+e)(y − 1)|A|+1−r(A+e)

and

TM−e(x, y) =
∑

B⊆E−e

(x− 1)r(M−e)−rM−e(B)(y − 1)|B|−rM−e(B)

=
∑

B⊆E−e

(x− 1)r(M)−r(B)(y − 1)|B|−r(B).

Hence,

TM/eTM−ex − TM/e
x TM−e =

∑
A⊆E−e

∑
B⊆E−e

(r(M)− r(B))(x− 1)X(A,B)(y − 1)Y (A,B)

−
∑

A⊆E−e

∑
B⊆E−e

(r(M)− r(A+ e))(x− 1)X(A,B)(y − 1)Y (A,B)

=
∑

A⊆E−e

∑
B⊆E−e

(r(A+ e)− r(B))(x− 1)X(A,B)(y − 1)Y (A,B),
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where X(A,B) = 2r(M) − r(A + e) − r(B) − 1 and Y (A,B) = |A| + |B| + 1 −
r(A+ e)− r(B).

Therefore, the coefficient of (x− 1)i(y − 1)j in TM/eTM−ex − TM/e
x TM−e is∑

A,B⊆E−e
X(A,B)=i
Y (A,B)=j

r(A+ e)− r(B).

If this number is nonnegative for all i, j and all matroids M = (E, r) and e ∈ E,
then Conjecture 7.2.5 follows.

Fixing X(A,B) is equivalent to fixing r(A + e) + r(B), and fixing Y (A,B) addi-
tionally is in effect fixing also |A|+ |B|. Thus, I would like to show that∑

A,B⊆E−e
|A|+|B|=i

r(A+e)+r(B)=j

r(A+ e)− r(B) ≥ 0

regardless of the matroid M , element e, and numbers i and j.

The summation can be refined by fixing the union of A and B, as a multiset,
instead of |A|+ |B|. Let us write the multiset formed by unifying two sets A and
B as A ]B. In order to prove Conjecture 7.2.5, it is sufficient to show that∑

A,B⊆E−e
A]B=C

r(A+e)+r(B)=k

r(A+ e)− r(B) ≥ 0. (7.4)

In other words, in this summation we fix k and C, and the summation is taken
over all pairs A,B of subsets of E−e satisfying those two conditions. If C contains
two copies of an element f , then each pair (A,B) counted in the summation must
have f in both A and B. Let C ′ be the subset of C consisting of the elements
counted twice. Then∑

A,B⊆E−e
A]B=C

r(A+e)+r(B)=k

r(A+ e)− r(B) =
∑

A,B⊆E−e
A′]B′=C\C′

r(A′+e+C′)+r(B′+C′)=k

r(A′+ e+C ′)− r(B′+C ′).

Since

r(A′ + e+ C ′)− r(B′ + C ′) = (r(A′ + e+ C ′)− r(C ′))− (r(B′ + C ′)− r(C ′))
= rM/C′(A

′ + e)− rM/C′(B
′),
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if we can show that∑
A∪B=E−e,A∩B=∅
r(A+e)+r(B)=k

r(A+ e)− r(B) =
∑

e∈A⊆E
r(A)+r(Ac)=k

r(A)− r(Ac) ≥ 0

for all k, all matroidsM and every element e, then (7.4) holds and hence Conjecture
7.2.5 follows.

These considerations show that Conjecture 7.2.5 follows from Conjecture 7.2.6
below.

Conjecture 7.2.6. Let M = (E, r). For all e ∈ E and all k ≥ 1,∑
e∈A⊆E

r(A)+r(Ac)=k

r(A)− r(Ac) ≥ 0.

We now prove Conjecture 7.2.6 for series-parallel graphs. For that we need the
following two lemmas.

Lemma 7.2.7. Let M = (E, r) be a matroid with a cocircuit of size 2, say {e, f}.
Let M1 = M/f and say M1 = (E1, r1). If Conjecture 7.2.6 holds for M1, then it
holds for M .

Lemma 7.2.8. Let M = (E, r) be a matroid with a circuit of size 2, say {e, f}.
Let M1 = M − f and say M1 = (E1, r1). If Conjecture 7.2.6 holds for M1, then it
holds for M .

Note that, although Lemmas 7.2.7 and 7.2.8 are similar, one does not follow from
the other by taking dual matroids.

Proof of Lemma 7.2.7. I shall divide both summations into cases up to r(A+f)−
r(A) and r(Ac+e+f)−r(Ac) then compare them individually to prove the lemma.

By the definition of M1, we have E1 = E − f , r1(A) = r(A + f) − 1. Assuming
Conjecture 7.2.6 for M1 we have the following for each k.∑

e∈A⊆E1

r1(A)+r1(E1−A)=k

r1(A)− r1(E1 −A) ≥ 0. (7.5)
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I shall partition the summation in (7.5) into two parts according to r1(A)−r1(A−e)
(which is the same as r(A+ f)− r(A− e)− 1, and either 0 or 1) as follows. The
last terms in the following equations, I(k) and J(k), are brief notations of the
summations for later use.∑

e∈A⊆E1

r1(A)+r1(E1−A)=k
r1(A)=r1(A−e)+1

r1(A)−r1(E1−A) =
∑

e∈A⊆E1

r1(A−e)+r1(E1−A)=k−1
r1(A)=r1(A−e)+1

r1(A−e)+1−r1(E1−A) = I(k),

∑
e∈A⊆E1

r1(A)+r1(E1−A)=k
r1(A)=r1(A−e)

r1(A)−r1(E1−A) =
∑

e∈A⊆E1

r1(A−e)+r1(E1−A)=k
r1(A)=r1(A−e)

r1(A−e)−r1(E1−A) = J(k)

The inequality (7.5) is equivalent to I(k) + J(k) ≥ 0 for each k. Note that if
e ∈ A ⊆ E1, then r1(A− e) = r(A− e) and r1(E1 −A) = r(E1 −A). Thus

I(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A+f)=r(A−e)+2

r(A− e) + 1− r(E1 −A) and

J(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k
r(A+f)=r(A−e)+1

r(A− e)− r(E1 −A).

We want to show the following inequality for each k ≥ 1. Again, F (k) is a notation
for later use.

F (k) =
∑

e∈A⊆E
r(A)+r(E−A)=k

r(A)− r(E −A) ≥ 0.

The summation is on the pairs (A,E − A). I shall partition the pairs depending
on f ∈ A or f /∈ A. I shall also divide the cases up to r(A + f) − r(A − e − f),
which is either 1 or 2 and equal to r1(A∩E1)−r1(A∩E1−e)+1 when e ∈ A ⊆ E.
There are four cases.

Case 1. f ∈ A, and r(A+ f) = r(A− e− f) + 2.

The part of the summation F (k) corresponding to this case is the following.∑
e,f∈A⊆E

r(A)+r(E−A)=k
r(A)=r(A−e−f)+2

r(A)− r(E −A)
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Let us consider the summation as A1 = A−f ranging over the subsets of E1 = E−f
containing e instead of A ranging over A ⊆ E containing both e and f . Since we
assumed f ∈ A and r(A) = r(A− e− f) + 2, we have

k = r(A) + r(E −A) = r(A1 − e) + 2 + r(E1 −A1),

and

r(A)− r(E −A) = r(A1 − e) + 2− r(E1 −A1)

so that this partial summation equals to∑
e∈A1⊆E1

r(A1−e)+r(E1−A1)=k−2
r(A1+f)=r(A1−e)+2

r(A1 − e) + 2− r(E1 −A1).

By renaming the dummy variable A1 to A again and putting a short notation
F1(k), we get the partial summation of F (k) for this case as

F1(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+2

r(A− e) + 2− r(E1 −A).

The remaining cases use exactly same process, hence we only write the results.

Case 2. f ∈ A, and r(A+ f) = r(A− e− f) + 1.∑
e,f∈A⊆E

r(A)+r(E−A)=k
r(A)=r(A−e−f)+1

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A+f)=r(A−e)+1

r(A−e)+1−r(E1−A) = F2(k).

Case 3. f /∈ A, and r(A+ f) = r(A− e− f) + 2.∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A+f)=r(A−e)+2

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+2

r(A−e)−r(E1−A) = F3(k).

Case 4. f /∈ A, and r(A+ f) = r(A− e− f) + 1.∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A+f)=r(A−e)+1

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+1

r(A−e)−r(E1−A) = F4(k).
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Note that F1(k) + F3(k) = 2I(k − 1) and F2(k) ≥ J(k − 1). Also,

I(k − 1) + F4(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+2

(r(A− e) + 1− r(E1 −A))

+
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+1

(r(A− e)− r(E1 −A))

≥
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+2

(r(A− e)− r(E1 −A))

+
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A+f)=r(A−e)+1

(r(A− e)− r(E1 −A))

=
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2

(r(A− e)− r(E1 −A))

= 0,

since in the last summation a set A with e ∈ A ⊆ E1 satisfies r(A−e)+r(E1−A) =

k− 2 if and only if r((E1−A+ e)− e) + r(E1− (E1−A+ e)) = k− 2 so that their
corresponding summands cancel out. Therefore,

F (k) = F1(k)+F2(k)+F3(k)+F4(k) ≥ 2I(k−1)+J(k−1)−I(k−1) = I(k−1)+J(k−1)

is nonnegative for each k by the assumption.

Proof of Lemma 7.2.8. The proof idea of Lemma 7.2.8 is same as Lemma 7.2.7 but
the calculations are little different. Recall thatM is a matroid (E, r) with a circuit
of size 2, namely {e, f}, and M1 = M − f . We write M1 = (E1, r1), E1 = E − f
and r1(A) = r(A) for all A ⊆ E1. We assumed Conjecture 7.2.6 for M1, that is,∑

e∈A⊆E1

r1(A)+r1(E1−A)=k

r1(A)−r1(E1−A) =
∑

e∈A⊆E
r(A)+r(E1−A)=k

r(A)−r(E1−A) ≥ 0 (7.6)

for each k. I shall partition the summation in (7.6) into two parts upto r(A) −
r(A− e) as follows. The last terms in the following equations, I(k) and J(k), are
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brief notations for later use.∑
e∈A⊆E1

r(A)+r(E1−A)=k
r(A)=r(A−e)+1

r(A)−r(E1−A) =
∑

e∈A⊆E1

r(A)+r(E1−A)=k
r(A)=r(A−e)+1

r(A−e)+1−r(E1−A) = I(k),

∑
e∈A⊆E1

r(A)+r(E1−A)=k
r(A)=r(A−e)

r(A)− r(E1 −A) =
∑

e∈A⊆E1

r(A)+r(E1−A)=k
r(A)=r(A−e)

r(A− e)− r(E1 −A) = J(k).

The inequality (7.6) is equivalent to I(k) + J(k) ≥ 0 for each k.

What we want to show is that the following formula∑
e∈A⊆E

r(A)+r(E−A)=k

r(A)− r(E −A) = F (k)

is nonnegative for each k. I used A′ instead of A to indicate that A′ is a subset of
M1 − e instead of M . The summaion is over the sets A ⊆ E such that e ∈ A. I
shall divide the cases depending on (1) f ∈ A or f /∈ A, (2) r(A)− r(A− e− f),
and (3) r(E − A + f) − r(E − A − f). The values of (2) and (3) are either 0 or
1, but if f ∈ A, we ignore r(E − A + f) − r(E − A − f) so there are six cases in
total. We use r(A+ e+ f) = r(A+ e) = r(A+ f) for all A ⊆ E − e− f without
mentioning.

Case 1. f ∈ A, r(A) = r(A− e− f) + 1.

The partial summation of F (k) corresponding to the sets A with these two condi-
tions is the following. ∑

e,f∈A⊆E
r(A)+r(E−A)=k
r(A)=r(A−e−f)+1

r(A)− r(E −A).

Let A1 = A − f so that r(A) + r(E − A) = r(A1 − e) + 1 + r(E1 − A1) and
r(A) − r(E − A) = r(A1 − e) + 1 − r(E1 − A1). Using A1 instead of A, we may
rewrite the above summation as the following.∑

e∈A1⊆E1

r(A1−e)+r(E1−A1)=k−1
r(A1)=r(A1−e)+1

r(A1 − e) + 1− r(E1 −A1).
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By renaming the dummy variable A1 back to A and putting a brief notation F1(k),
we get the partial summation of F (k) for this case as

F1(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A)=r(A−e)+1

r(A− e) + 1− r(E1 −A).

The remaining cases use exactly same process, and hence we only write the results.

Case 2. f ∈ A, r(A) = r(A− e− f).∑
e,f∈A⊆E

r(A)+r(E−A)=k
r(A)=r(A−e−f)

r(A)− r(E −A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k
r(A)=r(A−e)

r(A− e)− r(E1 −A) = F2(k).

Case 3. f /∈ A, r(A) = r(A− e− f) + 1, r(E −A+ f) = r(E −A− f) + 1∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A)=r(A−e)+1

r(E−A+f)=r(E−A−f)+1

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−2
r(A)=r(A−e)+1

r(E1−A+f)=r(E1−A−f)+1

r(A−e)−r(E1−A) = F3(k).

Case 4. f /∈ A, r(A) = r(A− e− f) + 1, r(E −A+ f) = r(E −A− f)∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A)=r(A−e)+1

r(E−A+f)=r(E−A−f)

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A)=r(A−e)+1

r(E1−A+f)=r(E1−A−f)

r(A−e)+1−r(E1−A) = F4(k).

Case 5. f /∈ A, r(A) = r(A− e− f), r(E −A+ f) = r(E −A− f) + 1∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A)=r(A−e)

r(E−A+f)=r(E−A−f)+1

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A)=r(A−e)

r(E1−A+f)=r(E1−A−f)+1

r(A−e)−1−r(E1−A) = F5(k).

Case 6. f /∈ A, r(A) = r(A− e− f), r(E −A+ f) = r(E −A− f)∑
e∈A⊆E,f /∈A

r(A)+r(E−A)=k
r(A)=r(A−e)

r(E−A+f)=r(E−A−f)

r(A)−r(E−A) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k
r(A)=r(A−e)

r(E1−A+f)=r(E1−A−f)

r(A−e)−r(E1−A) = F6(k).

Note that F6(k) = 0 since the summands for A cancels out with the summand for
E1 −A+ e. By the same reason, F3(k) = 0. Also, by setting B = A− e in F5(k),
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we get

F5(k) =
∑

e∈A⊆E1

r(A−e)+r(E1−A)=k−1
r(A)=r(A−e)

r(E1−A+f)=r(E1−A−f)+1

r(A− e)− 1− r(E1 −A)

=
∑

B⊆E1−e
r(B)+r(E1−e−B)=k−1

r(B+e)=r(B)
r(E1−B+e)=r(E1−B−e)+1

r(B)− 1− r(E1 −B − e).

Let C = E1 −B. Then

F5(k) =
∑

e∈C⊆E1

r(E1−C)+r(C−e)=k−1
r(E1−C+e)=r(E1−C)

r(C)=r(C−e)+1

r(E1 − C)− 1− r(C − e).

By renaming the dummy variable C to A, we get F5(k) = −F4(k).

Thus F (k) =

6∑
i=1

Fi(k) = F1(k) + F2(k). Since F1(k) = I(k) and F2(k) = J(k),

we have F (k) = I(k) + J(k) ≥ 0 for each k.

Theorem 7.2.9. Conjecture 7.2.6 is true for all series-parallel graphs. If M =

(E, r) is the cycle matroid of a series-parallel graph, then for each integer k ≥ 1,∑
e∈A⊆E

r(A)+r(E−A)=k

r(A)− r(E −A) ≥ 0.

Proof. Every series-parallel graph can be constructed from a single edge by serial-
and parallel-extensions. Therefore, by Lemmas 7.2.7 and 7.2.8, it is enough to
prove Conjecture 7.2.6 for when M is the cycle matroid of the graph with a single
edge, which is trivial to check.

I believe that a stronger version of Conjecture 7.2.5 is also true, by deleting and
contracting a subset instead of an element, as follows.

Conjecture 7.2.10. Let M be a matroid and S be a proper nonempty subset of
M . If we consider

TM/STM−Sx − TM/S
x TM−S
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as a polynomial in x− 1 and y − 1 instead of x and y, then every coefficient is a
positive integer.

In the same way as we strengthened Conjecture 7.2.5 to Conjecture 7.2.6, we now
strengthen Conjecture 7.2.10 to Conjecture 7.2.11. We give the statement first,
and then explain why it is stronger than Conjecture 7.2.10.

Conjecture 7.2.11. Let M = (E, r) be a matroid and ∅ 6= S ⊆ E. Then∑
S⊆A⊆E

r(A)+r(M−A)=k

r(A+ S)− r(E −A+ S) + r(E − S)− r(E) ≥ 0

for each nonnegative integer k.

Note that if S consists of a single element e which is not a bridge of M + e, then
Conjecture 7.2.11 becomes Conjecture 7.2.6.

Proof that Conjecture 7.2.11 implies Conjecture 7.2.10: We start by expressing each
term in the formula TM/STM−Sx − TM/S

x TM−S using the rank-generating formu-
lation of the Tutte polynomial.

TM/S(x, y) =
∑

A⊆E−S

(x− 1)rM/S(E−S)−rM/S(A)(y − 1)|A|−rM/S(A)

=
∑

A⊆E−S

(x− 1)r(E)−r(A+S)(y − 1)|A|+r(S)−r(A+S)

TM−S(x, y) =
∑

B⊆E−S

(x− 1)rM−S(E−S)−rM−S(B)(y − 1)|B|−rM−S(B)

=
∑

B⊆E−S

(x− 1)r(E−S)−r(B)(y − 1)|B|−r(B)

Hence, the formula can be expressed as

TM/STM−Sx −TM/S
x TM−S

=
∑

A,B⊆E−S

(r(E − S)− r(B))(x− 1)X(A,B)(y − 1)Y (A,B)

−
∑

A,B⊆E−S

(r(E)− r(A+ S))(x− 1)X(A,B)(y − 1)Y (A,B)

=
∑

A,B⊆E−S

Z(A,B, S)(x− 1)X(A,B)(y − 1)Y (A,B),
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where
X(A,B) = r(E) + r(E − S)− r(A+ S)− r(B)− 1,

Y (A,B) = |A|+ |B|+ r(S)− r(A+ S)− r(B),

Z(A,B) = r(A+ S)− r(B) + r(E − S)− r(E).

Thus, the coefficient of (x−1)i(y−1)j in TM/STM−Sx −TM/S
x TM−S is the sum of

Z(A,B) over all pairs (A,B) such that A,B ⊆ E−S, X(A,B) = i and Y (A,B) =

j.

Fixing X(A,B) and Y (A,B) is equivalent to fixing both r(A + S) + r(B) and
|A|+ |B|. Thus, Conjecture 7.2.10 claims that∑

A,B⊆E−S
|A|+|B|=i

r(A+S)+r(B)=j

(r(A+ S)− r(B) + r(E − S)− r(E))

is nonnegative for all i, j.

I shall replace the condition |A|+ |B| = i in the above summation with A]B = C

where C is a multiset consisting of some elements of E − S with multiplicity at
most 2, and A]B is the multiset obtained by unifying A and B. This replacement
refines the summation and hence strengthens the claim. Thus, if for all matroids
M , subsets S, C and all j the following holds:∑

A,B⊆E−S
A]B=C

r(A+S)+r(B)=j

(r(A+ S)− r(B) + r(E − S)− r(E)) ≥ 0,

then Conjecture 7.2.10 follows. We may simplify the summation by removing the
cases where C contains an element of multiplicity 2. Suppose that C ′ is the set of
elements of C with multiplicity 2. If A ]B = C, then C ′ ⊆ A and C ′ ⊆ B, and if
we denote A′ = A− C ′ and B′ = B − C ′,

r(A+ S)− r(B) = r(A′ + S + C)− r(B′ + C)

= (r(A′ + S + C)− r(C))− (r(B′ + C)− r(C))

= rM/C(A′ + S)− rM/C(B′),

so that Conjecture 7.2.11 implies Conjecture 7.2.10.
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