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Summary (English)

Type 1 diabetes accounts for approximately 5% of the total diabetes population.
It is caused by the destruction of insulin producing β-cells in the pancreas. Var-
ious treatment strategies are available today, some of which include advanced
technological devices such as an insulin pump and a continuous glucose mon-
itor (CGM). Despite these technological advances in the treatment of type 1
diabetes, the disease still poses an enormous and constant challenge for the pa-
tients. To obtain tight glucose control the patients are required to assess how
much they will eat prior to the meal. They have to assess the timing, inten-
sity and duration of physical exercise in advance, to adjust the insulin dose
accordingly. Additionally, several uncontrollable and unpredictable factors such
as stress, hormonal cycles and sickness changing the metabolic state make this
task even more di�cult.

The development of the insulin pump and the CGM has paved the way for a
fully automatic treatment regime, the arti�cial pancreas. The idea is to connect
the CGM with the insulin pump via a control algorithm running on e.g. the
patients smart phone. The CGM observations are sent to the smart phone and
based on this information, the control algorithm computes the optimal dose
adjustment and sends instructions to the insulin pump.

To develop control algorithms, mathematical models of the physiological dy-
namics are needed. They attempt to describe the signi�cant dynamics of the
system and hence they approximate the system behavior. However, uncertainty
in the model occurs due to the nature of physiological systems and due to the
presence of unknown disturbances. An attractive approach to deal with this un-
certainty is to use stochastic di�erential equations (SDEs). In a model based on
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SDEs, the noise is separated into two terms: 1) a di�usion term occurring from
model misspeci�cations, e�ects of unknown disturbances, or just true stochas-
tic behavior of the system and 2) a measurement noise term representing the
serially uncorrelated error occurring due to the imperfect analysing equipment.
The di�usion term a�ects the evolution of the system directly.

The purpose of this PhD-project was to investigate the potential of SDEs in the
arti�cial pancreas development. Especially, the emerging continuous monitoring
of glucose levels makes SDEs highly applicable to this �eld. The current thesis
aims at demonstrating and discussing the bene�ts and challenges by using SDEs
compared to traditional methods on the basis of the results of the project.

First of all, we designed a clinical study to obtain high quality data from type
1 diabetes patients to identify the models from. The study included the main
factors in�uencing the glucose level: insulin boluses, meals, and exercise. A mod-
elling study showed that using SDEs in model development can be advantageous
in several ways. We were able to pinpoint model de�ciencies in a well-known
model and to track parameter variation probably caused by a di�erences in meal
type. This information could be added to the model to improve the �t. The
study was limited by the lack of a software capable of handling SDE models of
population e�ects instead of single-subject e�ects. A prototype of this type of
software was developed parallel to the end of the project. Thus, we could �nally
identify a population model of the e�ect of exercise on the insulin absorption
rate. The small amount of observations made it impossible to use SDEs to track
parameter variation. Instead, we formulated a model structure with showed to
be signi�cantly better than the base model with a constant rate.

Two studies speci�cally related to the CGM observations were performed dur-
ing the project. In the �rst study, we showed that SDEs could be used to
tune a control algorithm for overnight glucose control on the basis of CGM
observations. The tuned algorithm improved the controller performance in a
subsequent clinical study. Further attempts to deal with the problems related
to the CGM included a Bayesian estimation scheme. By incorporating prior
knowledge about the uncertainty in the CGM observations into the estimation
method, we succeeded in predicting the plasma glucose level with acceptable
con�dence from the CGM observations only.

Overall, the project con�rms that SDEs have a large potential within this �eld.
However, future modeling requires a robust software capable of handling the
nonlinear population SDE models. When this is available, larger modeling stud-
ies can be initiated and the impact of SDEs would be expected to increase.



Summary (Danish)

Type 1 diabetes udgør ca. 5% af den totale diabetespopulation. Sygdommen
skyldes en ødelæggelse af de insulin-producerende β-celler i bugspytkirtlen.
Forskellige behandlingsstrategier er tilrådighed i dag, hvoraf nogle inkluderer
avancerede teknologiske apparater, såsom en insulinpumpe og en kontinuert
glukosemonitor (CGM). På trods af disse teknologiske fremskridt i behandlingen
af type 1 diabetes, er sygdommen stadig en enorm og konstant udfordring for pa-
tienterne. For at opnå god glykæmisk kontrol, må patienterne på forhånd vurdere
hvor meget de vil spise. De må vurdere tidspunkt for og intensitet og varighed
af motion før start for at kunne justere doseringen af insulin derefter. Endvidere
vanskeliggøres dette af �ere ukontrollerbare og uforudsigelige faktorer såsom
stress, hormonelle variationer og sygdom, som alle ændrer den metaboliske sta-
tus.

Udviklingen af insulinpumpen og CGM'en har banet vejen for en fuldautoma-
tisk behandlingsmetode - en såkaldt kunstig bugspytkirtel. Ideen er at forbinde
CGM'en med insulinpumpen via en reguleringsalgoritme installeret på fx. pa-
tientens smartphone. CGM-observationerne bliver sendt til smartphonen og på
basis af denne information, beregner reguleringsalgoritmen den optimale do-
sisjustering og sender instruktioner til insulinpumpen.

For at udvikle reguleringsalgoritmer er matematiske modeller af den fysiolo-
giske dynamik nødvendige. De forsøger at beskrive de signi�kante dynamikker
i systemet og dermed approksimerer de systemets opførsel. Men modellerne in-
deholder usikkerheder på grund af fysiologiske systemers natur og på grund
af ukendte forstyrrelser i systemet. En attraktiv metode til at håndtere denne
usikkerhed er at bruge stokastiske di�erentialligninger (SD). I en model baseret
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på SD er støjen opdelt i to separate led: 1) et di�usionsled, som opstår fra
misspeci�kationer i modellen, e�ekten af ukendte forstyrrelser, eller blot en reel
stokastisk opførsel i systemet og 2) et målestøjsled, som repræsenterer de serielle
ukorellerede fejl, som opstår på grund af uperfekt analyseudstyr.

Formålet med dette PhD-projekt var at undersøge potentialet af SD i udviklin-
gen af den kunstige bugspytkirtel. Særligt brugen af CGM'en gør SD meget
anvendelige indenfor dette felt. Denne afhandling forsøger at demonstrere og
diskutere fordelene såvel som udfordringerne ved af benytte SD sammenlignet
med traditionelle metoder på basis af resultaterne fra projektet.

Først og fremmest designede vi et klinisk studie for at indsamle data af høj
kvalitet fra type 1 diabetikere til at identi�cere modellerne fra. Studiet inde-
holdte de faktorer med mest ind�ydelse på blodsukkeret: insulin, måltider og
motion. Et modelleringsstudie viste at brugen af SD i modeludvikling kan være
fordelagtig på �ere måder. Vi kunne præcisere mangler i en velkendt model og
spore variationen i et parameter, som sandsynligvis skyldes forskellige typer af
måltider. Denne information kan indbygges i modellen og forbedre modellen.
Studiet var begrænset af manglen af et software, som kan estimere SD-modeller
af populationse�ekter istedet for individuelle e�ekter. En prototype af denne
type software blev henimod slutningen udviklet parallelt med projektet. Hermed
kunne vi identi�cere en populationsmodel af e�ekten af motion på hastigheden
af insulin-absorptionen. Den relativt lille mængde af data gjorde det umuligt
at bruge SD til at spore parametervariationen. Istedet formulerede vi en mod-
elstruktur, som viste sig at være signi�kant bedre end en basismodel med en
konstant hastighed.

To studier relateret til CGM'en blev udført under projektet. I det første studie,
viste vi at SD kan bruges til at tune en reguleringsalgoritme til natlig blod-
sukkerkontrol på basis af CGM-observationer. Den tunede algoritme forbedrede
reguleringsevnen i et efterfølgende klinisk studie. Videre forsøg på at håndtere
problemerne relateret til CGM'en bestod i en Bayesiansk estimationsmetode.
Ved at indbygge a priori viden om usikkerheden ved CGM-observationerne ind
i estimationsmetoden, lykkedes det at prædiktere blodsukkerniveauet med ac-
ceptabel kon�dens alene på baggrund af CGM-observationerne.

Alt i alt bekræfter projektet af SD har et stort potentiale indenfor dette felt.
Men fremtidig modellering kræver et robust software, som kan håndtere disse
ikke-lineære populationsmodeller baseret på SD. Når dette er klar, kan større
modelleringsstudier blive påbegyndt og derved vil e�ekten af at benytte SD
forventes at stige.
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Chapter 1

Introduction

In 2008 the DIACON (DIAbetes CONtrol) project was founded by scientists
from DTU Compute (at that time DTU Informatics), Department of Endocrinol-
ogy at Hvidovre University Hospital and Novo Nordisk A/S. The overall aim was
to improve the treatment of diabetes by developing semi- and fully-automatic
insulin administration methods. This thesis focuses on the mathematical mod-
els related to the fully-automatic insulin administration. The semi-automatic
methods will not be addressed, but are published elsewhere [11, 12]. The devel-
oped models and systems have the potential to improve the quality of life for
patients with type 1 diabetes and to obtain tight glucose control to avoid the
medical complications associated with improper glucose control.

Already in the 1960s mathematical models of the insulin-glucose system in dia-
betes made their entry [15]. During 1980s models were used to support diagnosis
and treatment of diabetes [20]. As the therapy methods for type 1 diabetes have
advanced, mathematical models have gained more attention and impact in re-
lation to diabetes therapy.

Technology has likewise been a part of diabetes treatment for many years. The
portable insulin infusion pumps were developed in London during the late 1970s
[78]. In the same period, home monitoring of the glucose level from a �nger stick
sample became available for clinical practice [83, 95].



2 Introduction

This chapter describes the background and motivation for the DIACON project
as well as for this particular PhD-project. First, an introduction to type 1
diabetes is given followed by a description of the concept of an arti�cial pancreas
- the ultimate goal for many researchers within the �eld of diabetes technology.

Examples of models used in the development of an arti�cial pancreas are shortly
described. Furthermore, an introduction to the modelling approaches used in
the PhD-project is presented. Finally, the objective of the PhD-project and the
thesis outline is stated.

1.1 Type 1 Diabetes

Diabetes is one of the major health challenges of the 21st century. In 2011, 366
million people worldwide su�ered from diabetes [96]. Type 1 diabetes accounts
for approximately 5% of the total diabetes population [3]. Furthermore, the
incidence of type 1 diabetes is increasing.

Type 1 diabetes is caused by the destruction of insulin producing cells in the
pancreatic islets of Langerhans named β-cells. The selective destruction of the
β-cells is in most cases an autoimmune reaction while the rest remain idiopathic.
There is a strong genetic e�ect in the development of diabetes though not de-
terministic. No speci�c environmental factors are established as risk factors.

Insulin has an anabolic e�ect in multiple tissues. Those of importance for fuel
homeostasis are skeletal muscle, adipose tissue, and the liver where insulin en-
hances the uptake and storage of glucose, fat and amino acids. At the same
time, insulin counteracts the catabolism of the reserves. Variation in the insulin
level is crucial to fuel homeostasis and to maintain the glucose level in plasma
within a tight range. The net e�ect of insulin is a lowering of the plasma glucose
level while counter-regulatory hormones, such as glucagon, raise the plasma glu-
cose level. Thus, individuals with type 1 diabetes are constantly hyperglycemic
if not treated.

The disease can occur at any age but the onset is typically seen in childhood.
The symptoms are thirst, weight loss and polyuria, among others. Often the
search for diabetes is motivated by these symptoms. In Denmark, the diagnosis
is made by measuring the glucose level in a blood sample in fasting state. If the
glucose level is above 7 mmol/l the individual is diagnosed with type 1 diabetes.
In some cases an oral glucose tolerance test is necessary [26].

Prolonged hyperglycemia leads to a number of long term complications includ-
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ing diabetic retinopathy, neuropathy, nephropathy, and cardiovascular diseases.
As of today no cure exists and thus patients rely on exogenous insulin delivery
for the rest of their lives. The goal of insulin therapy is to mimic the phy-
siologic insulin pro�le. However, the insulin secretion from a normal pancreas
is a strictly controlled process regulated by several factors including changes
in circulating nutrients (glucose, amino acids and free fatty acids), hormones
(e.g. glucagon, somastotatin), and neural control factors making the regulation
extremely complex. Even though exogenous insulin is vital for the patients,
dosing of insulin must done be with extreme care as too much insulin can cause
hypoglycemia which in severe cases can be fatal.

Various treatment strategies are available today some of which include highly
advanced technological devices. Most of the patients use insulin pens to inject
long-acting insulin a few times daily and short-acting insulin boluses for every
meal - a multiple daily injections (MDI) therapy. In addition, the patients are
advised to check the glucose level with a glucose meter from �nger stick samples
several times a day and to take correction boluses or extra carbohydrates if
needed.

An alternative to insulin pens, especially used by many children, is an insulin
pump. An insulin pump delivers insulin continuously via a catheter placed in
the subcutaneous layer often in the abdomen. Furthermore, the patient can
manually dose insulin boluses via the pump in connection with a meal or for
correction. This treatment method is called continuous subcutaneous insulin
infusion (CSII) therapy. Combined with a continuous glucose monitor (CGM),
this therapy method comprises the system used for sensor augmented pump
therapy. A CGM uses a small sensor also placed in the subcutaneous layer. It
monitors the interstitial glucose level and typically reports the value every �ve
minutes. The CGM signal is shown in the display of the insulin pump. The rich
information from the CGM combined with the insulin pump allow the patient
to �ne-tune the insulin delivery and obtain tight glucose control.

Despite the technological advances in the treatment of type 1 diabetes, the dis-
ease still poses an enormous and constant challenge for the patients. To obtain
tight glucose control the patients are required to assess how much they will eat
before the beginning of a meal to avoid a high postprandial plasma glucose level.
They have to assess the timing, intensity and duration of exercise in advance
to adjust the insulin dose accordingly. Additionally, several uncontrollable and
unpredictable factors such as stress, hormonal cycles and sickness changing the
metabolic homeostasis will make this puzzle even more di�cult. While many
of these disturbances occur during day time, the circadian rhythms in hormone
levels demands the patient to check the glucose level even during night to avoid
possible nocturnal hypoglycemia.
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Fault detection,
monitoring and

control algorithms

Insulin pump

Continuous
glucose sensor

Target range
(70 - 140 mg/dL)

Portable Artificial Pancreas

Figure 1.1: An illustration of the concept behind an arti�cial pancreas. The
control algorithm could potentially be implemented on a smart
phone as illustrated here. Modi�ed from [75, 68]

Overall, it is obvious that patients with type 1 diabetes are required to have
a rather non-spontaneous life style to keep the risk of longterm complications
low and at the same time avoid severe hypoglycemia. Especially, children and
adolescents with type 1 diabetes are challenged by this restriction.

For more details about type 1 diabetes and treatment thereof, see [44].

1.2 The Arti�cial Pancreas

The technological advances in diabetes treatment (the insulin pump and the
CGM) have paved the way for a fully automatic treatment regime, the arti�cial
pancreas. The idea is to connect the CGM with the insulin pump via a control
algorithm running on e.g. the patients smart phone. The CGM observations
are sent to the control algorithm and based on this information the control
algorithm computes the optimal dose adjustment and send instructions to the
insulin pump. The system is illustrated in Figure 1.1.

The ultimate goal is to free the patients from all decisions regarding manage-
ment of their diabetes. The arti�cial pancreas should thus ideally be able to
keep the plasma glucose level in the normal range 24 hours a day. This would
decrease the risk of longterm complications due to hyperglycemia substantially
and at the same time eliminate severe hypoglycemia events. However, taking
into consideration the complex behavior of a physiological pancreas and the
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number of unknown disturbances a�ecting the plasma glucose level this is not
an easy task.

Currently, no commercial version of the arti�cial pancreas exists but the concept
has been known for 50 years [51]. The area is heavily researched worldwide and
each research group has its own strategy towards the system. Recent reviews
are found in [22], [46], and [8].

An important issue to mention is the problem of inaccuracy and the time lag in
the CGM signal with respect to the plasma glucose level. The time lag occurs
because the CGM is placed in the subcutaneous layer (the interstitial volume)
and is thus observing a lagged version of the plasma glucose level. The size of the
time lag is reported to be between 12-20 minutes [92]. The inaccuracy is usually
assessed by the mean absolute relative deviation (MARD) from a gold standard
method. Currently available sensors have a MARD in the range of 11.8-20.2%
[25]. The regulation of the plasma glucose level will be a�ected when the input
to the control algorithm is inaccurate and unreliable. Even though many control
algorithms are advanced enough to deal with this in some extent this problem is
still recognized as one of the largest barriers to automatic control of the plasma
glucose level [45, 85].

Furthermore, the subcutaneous delivery of insulin introduces a time delay from
the time of injection to the time of appearance of insulin in plasma (the site of
e�ect) due to the signi�cant absorption time from subcutis to plasma. Therefore,
it can take 90-120 minutes before the maximum e�ect on lowering of the plasma
glucose level is reached even for rapid-acting insulins [46]. This delay should
be handled carefully since once insulin is given there is no quick method to
withdraw it again automatically. However, methods to take into account the
previously delivered but still active insulin, the so-called "insulin-on-board" have
been suggested [32]. Some groups use a dual pump system with an additional
pump delivering glucagon to include a "brake" in the control algorithm [17, 80].
Glucagon counteracts the e�ect of insulin and can thus be used when too much
insulin is dosed.

Inter- and intra-individual variability poses further obstacles on the way to a
fully-automatic system. Insulin and meal absorption are both known to be
subject to signi�cant inter-variability which requires the control algorithm to be
customized to each patient. However, the substantial intra-individual variability
present in glucose metabolism due to stress, sickness, exercise, circadian rhythms
etc. is di�cult to handle from a control perspective.

Until now, the feasibility of the arti�cial pancreas has been proven by a number
of research centers in a clinical setting [48, 18, 86, 31, 81, 4]. Within the last
years, a number of groups have started to test an arti�cial pancreas outside the
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clinic [19, 58, 56].

1.3 Physiological Models in Arti�cial Pancreas

Modelling

The arti�cial pancreas development engages several research groups worldwide.
A number of di�erent approaches are being investigated. Di�erent devices and
di�erent control strategies are used as well.

Mathematical models comprise the core of the engineering in the arti�cial pan-
creas �eld in a number of ways. They are employed in control, prediction,
simulation of the glucose dynamics, and for investigating and quantifying patho-
physiological phenomenas of the system.

Models for control range from black-box models of low order designed entirely
on data, to larger nonlinear models based on physiological knowledge. The
purpose of these models is to provide predictions of the plasma glucose level
and insulin input within the time horizon that the regulation is concerned with.
They can be tuned to the individual patient and device either by adjusting a
single parameter or by estimating the entire model on data from that patient.
Some models are estimated online, hence taking on an adaptive approach to
deal with the signi�cant intra-variability [33].

Simulation models are important for the researchers as they can give an indi-
cation of the performance of the control algorithms and strategies. The best
candidates can then be tested further in clinical studies. The evaluation of con-
trol algorithms in a simulation environment has several advantages. First of all,
simulations accelerate the development process as they can give an indication
of the controller performance early in the process without the need of clinical or
animal testing. They enable a comprehensive investigation of insulin treatments
in near realistic conditions. Additionally, they allow the researchers to test var-
ious risk scenarios e.g. sensor/pump failures or parameter misspeci�cation to
analyse the controller robustness. All of these factors add to a substantial cost
reduction.

In this thesis the focus is put on the physiological models of the insulin-glucose
system in type 1 diabetes patients used within control and simulation.

The most well-known physiological model is the minimal model published in
1979 [9]. The original purpose of the model was to estimate insulin sensitivity
� i.e. how sensitive the dynamics of glucose is to changes in insulin. The term
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minimal refers to the fact that the model describes the key components of the
system. In [64] a version of the minimal model is used in a control algorithm
and the results are evaluated on a more complex physiological model acting as
simulator. The minimal model has also been used as basis for a simulation model
with extensions taking into account the meal response and the subcutaneous
insulin delivery. This model is identi�ed from data originating from studies
testing an arti�cial pancreas on type 1 diabetes patients [52]. Recently, this
model has been modi�ed to include the e�ect of subcutaneous glucagon delivery
as well [43].

In [34] a more complex model is presented. It is also based on the minimal
model, however, the model takes into account circadian rhythm in the insulin
sensitivity and the meal response depends on the type of carbohydrates in the
meal.

Currently, one model (the Virginia/Padova model) is accepted by the FDA
(Food and Drug Administration, USA) as a substitute of preclinical animal trials
for testing of closed-loop strategies [57]. This model is a high order nonlinear
model with a large number of parameters. The model describe the behavior of
the plasma glucose level in several cohorts of type 1 diabetes patients (adults,
adolescents and children). The model is estimated from data of approximately
200 healthy subjects and the parameter values are then adjusted to typical
values for type 1 diabetes patients [24, 67].

Another popular simulation model is the one by Hovorka [49, 47, 97]. The
model is characterised by the partitioning of the insulin e�ect on glucose into
three separate terms. Some of the parameters attain an oscillatory behavior
to include circadian rhythms. The model is formulated on the basis of clinical
studies on healthy subjects [49].

Finally, the largest existing simulation model was published in [84]. This model
divide the model into compartments representing the di�erent organs. The
parameter estimates are based purely on literature �ndings. In [99] a more
detailed overview of some of the mentioned models are presented and discussed.

1.4 Modelling Approaches

Mathematical models of physiological systems attempt to describe the signi�-
cant dynamics of the systems. Thus the models approximate the system to a
certain degree. Even if the goal is to describe the total dynamical behavior, the
model will never be able to explain all the variability as physiological systems
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are in�uenced by stochasticity due to the nature of the systems.

Traditionally, models used for especially simulation of the insulin-glucose system
in type 1 diabetes are based on ordinary di�erential equations (ODEs). While
the parameters are estimated from real life data or literature, the structure of
the models are based solely on knowledge about physiology. Solutions to ODEs
are deterministic. Consequently, the future progression of the system can be
predicted exactly from a set of initial values only. ODEs can be presented on
state space form as:

dxt

dt
= f(xt,ut,θ, t) (1.1)

yj = h(xtj ,utj ,θ, t) + εj (1.2)

Here (1.1) is the state equation describing the evolution of the system. xt is the
state vector, t is time, ut is an input vector and θ is a parameter vector. f(·) is
a known function - often nonlinear. Equation (1.2) is the observation equation
describing how the system is observed. yj is a vector of output variables, tj is
the sampling times, h(·) is a known function and εj ∼ N (0,Σ) is a random
error with mean zero and covariance Σ.

It is seen from (1.1) and (1.2) that all the residual deviation between the model
outcome and the observations is classi�ed as measurement noise and does not
a�ect the model evolution itself. This deterministic description of a physiological
system does not take into account the in�uence of changes in the metabolism due
to unknown disturbances, input uncertainties, or the true stochastic behavior
of the system. Hence, it does not present a realistic trajectory.

Furthermore, as the measurement noise includes unmodelled disturbances and
input uncertainties, the residuals will be correlated. This violates the assump-
tion of independence required by many statistical tests such as students t-test,
least squares and maximum likelihood. Consequently, the estimated model can-
not be validated with standard statistical tools.

An alternative approach to overcome these critical issues is to use stochastic
di�erential equations (SDEs) instead of ODEs. In a state-space model built
upon SDEs the noise is separated into two terms:

1) a di�usion term occurring from model misspeci�cations, e�ects of unknown
disturbances, or just true stochastic behavior of the system.
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2) a measurement noise term representing the serially uncorrelated error oc-
curring due to the imperfect analysing equipment.

A state-space model with SDEs can be formulated as:

dxt = f(xt,ut,θ, t)dt+ σw(xt,ut,θ, t)dwt (1.3)

yj = h(xtj ,utj ,θ, t) + ej (1.4)

In (1.3) σw(xt,ut,θ, t) is the di�usion term. wt is a Wiener process, i.e. it is a
non-stationary continuous stochastic process that starts in 0 (w0 = 0) and has
mutually independent Gaussian increments [65]. In (1.4) ej ∼ N (0,Σ) is the
independent measurement noise.

Solutions to SDEs are stochastic processes described by probability distribu-
tions. Thus simulations computed with SDE models include the uncertainty of
the simulation. The segregation of the noise into two separate terms a�ecting
the states and observations respectively, allows the noise to a�ect the states and
obtain independent residuals to meet the requirements for the statistical tests.

Furthermore, SDEs are a strong tool for pinpointing model de�ciencies and in-
vestigating the incorporation of additional information into the model to �nally
obtain an improved model [60, 91, 30]. In this way, model formulation can be
data driven as opposed to ODEs where the in�uence of data is restricted to the
parameter estimation. SDE models are often referred to as grey-box models as
they combine the strengths of white- and black-box models. Hence, with grey-
box models one can combine the information from data with prior physiological
knowledge. The parameters are physiological interpretative while at the same
time the information from data can be used to estimate and improve the model
in a statistical framework.

In practice, model identi�cation and parameter estimation in SDE models are
not trivial - see [28] for a review. A specialized software program, CTSM (Con-
tinuous Time Stochastic Modelling), was developed to handle estimation of this
type of models [59, 29, 61]. CTSM applies the likelihood principle to estimate
the parameters in SDE models [66, 37]. To compute the prediction errors for a
linear model, a continuous-discrete time Kalman �lter is used. For non-linear
models an extended Kalman �lter is applied [59]. The current version of CTSM
is a package for R which became available during the project [29].

SDEs have been applied to several areas within physiological and biological
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modelling. A signi�cant part of the work is done by former or present researchers
in our department [91, 72, 54, 70, 77, 69, 76].

The large inter-individual variability in physiological systems requires to be han-
dled speci�cally by the models. An attractive approach is to use hierarchical
models to accommodate this variability. These models tend to estimate param-
eters based on data from several subjects instead of a single subject and take
into account the inter- and intra-individual variability [5]. In these population
models, parameters can be speci�ed as

φi = g(θ,Zi) exp(ηi) (1.5)

where φi is the parameter vector for individual i, g(·) is a known function, θ
is overall population parameters and Zi are �xed covariates e.g. age, weight,
and gender. The random e�ects are introduced by ηi, and are independent and
multivariate normally distributed with mean zero.

A software that combines hierarchical modelling and modelling with SDEs was
developed and implemented as a package for R [54] and in NONMEM [91].
The method has been demonstrated in several papers [69, 54, 91]. However, the
population SDEmodels published until now are restricted in size and complexity.

1.5 Objectives of the PhD-Project

The purpose of this PhD-project was to investigate the potential of SDEs in
arti�cial pancreas modelling. This area involves mathematical models spanning
from simple low order linear models used for automatic control to complex non-
linear models of high order used for simulation. Bridging from prior developed
models we aimed at improving the predictive performance and simulation skills
and include the e�ects of exercise and hormonal changes. Especially, the emerg-
ing continuous monitoring of glucose levels makes SDEs highly applicable to
this �eld. First of all, the frequent sampling necessitates that the assumption
of independence between observations is obeyed. The segregation of the error
in SDEs helps to ensure this. Secondly, the inaccuracy of the CGMs requires
careful modelling of the noise for which SDEs provides an excellent tool. Fur-
thermore, the ability to pinpoint model de�ciencies can be used to extend the
state-of-the-art models to e.g. include e�ects of exercise in a data driven way.

The available software at the time of start of the project limited the possibilities.
However, parallel to this project CTSM was improved and changed to an R-
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package [29] making it much more e�cient due to the possibility to do parallel
computing and improved user-friendliness.

The current thesis aims at demonstrating and discussing the bene�ts and chal-
lenges by using SDEs compared to traditional methods on the basis of the results
of the project.

1.6 Thesis Outline

The thesis consists of six chapters in total. The reader is referred to the papers
and reports in the appendices for the full details about the work.

To develop mathematical models, clinical data from type 1 diabetes subjects
was needed. Thus the �rst task in the project was to design a study to collect
suitable data. In Chapter 2, the clinical study is described and the re�ections
on the study design are discussed.

InChapter 3 it is described how SDEs were used to pinpoint misspeci�cation in
a well-recognized model of the insulin-glucose dynamics and the study �ndings
are discussed.

The next step was to incorporate the e�ect of exercise on the system. Chapter
4 describes how a hierarchical model of the e�ect of exercise on the insulin
absorption rate was identi�ed and discusses the future improvements to the
model.

Chapter 5 presents and discusses two studies speci�cally related the CGM
where SDEs were used to tune a control algorithm based on real data and to
estimate a predictive model with a Bayesian approach.

Finally, Chapter 6 presents the main conclusions and suggestions for future
work.

The papers and reports addressed in the thesis are presented in the appendices.
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1.7 List of Publications

In this thesis, the following papers will be addressed (listed in order
of appearance in the thesis):
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Technical Report-2013-5, DTU Compute, Technical University of Den-
mark, 2013

• E�ects of Everyday Life Events on Glucose, Insulin, and Glucagon
Dynamics in Continuous Subcutaneous Insulin Infusion�Treated
Type 1 Diabetes: Collection of Clinical Data for Glucose Mod-
eling
Schmidt S, Finan DA, Duun-Henriksen AK, Jørgensen JB, Madsen H,
Bengtsson H, Holst JJ, Madsbad S and Nørgaard K
Diabetes Technology & Therapeutics vol: 14, issue: 3, pages: 210-217,
2012

• Model Identi�cation Using Stochastic Di�erential Equation Grey-
Box Models in Diabetes
Duun-Henriksen AK, Schmidt S, Røge RM, Møller JB, Nørgaard K, Jør-
gensen JB and Madsen H
Invited paper for Journal of Diabetes Science and Technology, March 2013,
Volume 7, Issue 2: pages 431�440

• Modelling the E�ect of Exercise on Insulin Pharmacokinetics
in "Continuous Subcutaneous Insulin Infusion" Treated Type 1
Diabetes Patients
Duun-Henriksen AK, Juhl R, Schmidt S, Nørgaard K and Madsen H
Technical Report-2013-13, DTU Compute, Technical University of Den-
mark, 2013

• Tuning of Controller for Type 1 Diabetes Treatment with Stochas-
tic Di�erential Equations
Duun-Henriksen AK, Boiroux D, Schmidt S, Skyggebjerg O, Madsbad S,
Jensen PR, Jørgensen JB, Poulsen NK, Nørgaard K and Madsen H
Proceedings of the 8th IFAC Symposium on Biological and Medical Sys-
tems, 2012

• Predicting Plasma Glucose From Interstitial Glucose Observa-
tions Using Bayesian Methods
Hansen AH, Duun-Henriksen AK, Juhl R, Schmidt S, Nørgaard K, Jør-
gensen JB and Madsen H
Submitted to Journal of Diabetes Science and Technology, July 2013
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Additionally, the following papers were published during the
PhD-project:

• Control of Blood Glucose for People with Type 1 Diabetes: an
in Vivo Study
Boiroux D, Schmidt S, Duun-Henriksen AK, Frøssing L, Nørgaard K,
Madsbad S, Skyggebjerg O, Poulsen NK, Madsen H and Jørgensen JB
Proceedings of the 17th Nordic Process Control Workshop, pages: 133-140,
2012, Technical University of Denmark, Kongens Lyngby

• Overnight Control of Blood Glucose in People with Type 1 Dia-
betes
Boiroux D, Duun-Henriksen AK, Schmidt S, Nørgaard K, Madsbad S,
Skyggebjerg O, Jensen PR, Poulsen NK, Madsen H and Jørgensen JB
Proceedings of the 8th IFAC Symposium on Biological and Medical Sys-
tems, 2012

• Psychosocial Factors and Adherence to Continuous Glucose Mon-
itoring in Type 1 Diabetes
Schmidt S, Duun-Henriksen AK and Nørgaard K
Journal of Diabetes Science and Technology, 2012 Jul 1;6(4):986-7

• Model-based Closed-loop Glucose Control in Type 1 Diabetes �
the DiaCon Experience
Schmidt S, Boiroux D, Duun-Henriksen AK, Frøssing L, Skyggebjerg O,
Jørgensen JB, Poulsen NK, Madsen H, Madsbad S and Nørgaard K
Accepted for publication in Journal of Diabetes Science and Technology,
June 2013

• Subdural to Subgaleal EEG Signal Transmission: The role of
distance, leakage and insulating a�ectors
Duun-Henriksen J, Kjær TW, Madsen RE, Jespersen B, Duun-Henriksen
AK, Remvig LS, Thomsen CE and Sørensen HBD
Clinical Neurophysiology, Volume 124, Issue 8, August 2013, Pages 1570�1577

• Clinical Evaluation of 3D/3DMRI-CBCT Automatching on Brain
Tumors for Online Patient Setup Veri�cation � A Step Towards
MRI-based Treatment Planning
Buhl SK, Duun-Henriksen AK, Kristensen BH and Behrens CF
Acta Oncologica, vol: 49, issue: 7, pages: 1085-1091, 2010

• The Use of Stochastic Di�erential Equations with Multiplicative
Noise in PK/PD Modelling
Røge RM, Møller JB, Duun-Henriksen AK and Madsen HM
Manuscript for submission to Journal of Pharmacokinetics and Pharma-
codynamics
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Chapter 2

Data Acquisition

Behind a good and robust model lies at least one and preferably more good
data sets. As stated in Section 1.3, some of the existing simulation models of
the insulin-glucose system in type 1 diabetes patients are based on data from
healthy subjects. To eliminate the risks of this physiological extrapolation we
worked with data obtained from type 1 diabetes patients alone.

The clinical studies can be designed in various ways ranging from strictly con-
trolled clamp and/or tracer studies to outpatient studies obtaining data from
CGMs, and meal and bolus diaries.

Together with the clinical partner of the DIACON project, the Department of
Endocrinology, Hvidovre University Hospital, we had the possibility to obtain
data from type 1 diabetes patients of high quality.

The purpose of this clinical study was to collect data during situations resem-
bling the everyday life of type 1 diabetes patients in a controlled environment.
This chapter describes the experimental design of the study and the considera-
tions behind it. Finally, a discussion follows about the applicability of the data
set. The chapter is based on Technical Report I in Appendix A and Paper A in
Appendix B.
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2.1 Study Design

We based the design of the study on classical experimental factorial design [71].
However, in clinical studies involving human subjects some ethical and practical
limitations naturally exists which need to be taken into the consideration when
designing the study.

In total 12 type 1 diabetes patients were included in the study. All of them
were treated with an insulin pump in their regular treatment. Each patient
went through two study days separated by at least three weeks. Hence, the
study consisted of 24 study days of which not two were identical.

The study investigated the e�ect of three factors on the plasma glucose level:
Meals (carbohydrates), insulin boluses and exercise. The three factors are be-
lieved to be the everyday life factors with the most signi�cant e�ect on the
plasma glucose level in type 1 diabetes patients. Each factor was examined on
two levels. The size of the levels were chosen to give a signi�cant change in the
plasma glucose level and on the same time resemble realistic values. See Table
2.1 for the de�nition and size of the levels.

One study day consisted of three events. An event corresponded to the intro-
duction of one of the three factors on one of the two levels. The e�ect of each
factor was observed for 150 min before the next event was initiated. Some of
the study days included a snack in the afternoon as the third event. The overall
design is depicted in Figure 2.1.

As mentioned, not two study days were identical. To avoid confounding the
e�ect of a factor with the e�ect of the order of events, all possible combinations
were included. However, as the patients had been fasting since the previous
night, the �rst event was always a meal; either unbolused or underbolused as
described in Table 2.1.

At least two hours prior to the start of the �rst event were spent on stabilizing
the patients plasma glucose level to the normal range with insulin boluses or
intravenously administrated glucose. The same happened after 150 min of ob-
servation of the third and last event before the patients left the clinic. Insulin
was administrated via the insulin pump and the patients spent the day in bed
except during exercise on a treadmill.

During the study day, plasma glucose values were obtained every ten minutes.
Additionally, the patients wore a CGMmeasuring the subcutaneous glucose level
every �ve minutes as well as an Actiheart device monitoring the activity level
and heart rate [2]. Additionally, blood samples for analyses of insulin, glucagon,
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Table 2.1: Description of event types. CHO: Carbohydrates, ICR: Insulin to
carbohydrate ratio, HR: Heart rate, ISF: Insulin sensitivity factor

Event type Levels Description
Meal Unbolused Solid food with drink. 1 g of CHO/kg body

weight. No meal bolus.
Underbolused Solid food with drink. 1 g of CHO/kg body

weight. 50% of the insulin bolus matching the
meal CHO content based on personal ICR.

Exercise Mild 20 minutes on a treadmill with HR equal to
0.5 x (maximum HR - resting HR) + resting
HR.

Moderate 20 minutes on a treadmill with a HR equal to
0.75 x (maximum HR - resting HR) + resting
HR.

Insulin bolus Small Insulin bolus estimated to lower plasma glu-
cose level by 3 mmol/L based on personal ISF.

Large Insulin bolus estimated to lower plasma glu-
cose level by 6 mmol/L based on personal ISF.

Snack NA Liquid. 0.4 g of CHO/kg of body weight.

cortisol, growth hormone, epinephrine and nor-epinephrine were obtained non-
equidistantly 23 times during the study day. These hormones are all known to
have an e�ect on the glucose dynamics under various circumstances [44].

2.2 Results

The obtained data set holds extensive information about the dynamics of the
glucose metabolism in patients with type 1 diabetes. Plots of all the time series
from the 24 data sequences are shown in Technical Report I in Appendix A.

2.3 Discussion

The purpose with this study design was to obtain a data set which included
information about the system in the state we wished to simulate or predict i.e.
everyday life conditions. However, we could not merely observe the patients in
their everyday life as several uncontrolled disturbances would corrupt the data.
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Figure 2.1: Illustration of the study design. T is the time since the start of the
�rst event. The �rst event was always a meal followed by half the
meal bolus or no bolus at all. The second event was either mild
or moderate exercise or a small or large insulin bolus. The third
event was either a snack, mild or moderate exercise or a small or
large insulin bolus.

Instead, we collected the data in a controlled environment with a minimum
number of disturbances to be able to isolate the e�ects of the factors of interest.

The selection of the time interval between two events was a trade-o� between
resembling the normal daily rhythm and our wish to separate each factor as
much as possible to avoid masking the individual e�ects. Normally, patients
with type 1 diabetes take an insulin bolus in connection with a meal to bring
down the postprandial plasma glucose level. This is also the case for clinical
studies testing control algorithms for an arti�cial pancreas � socalled closed loop
studies. This correlated timing of inputs complicates the modelling as described
in [36]. They showed that the separation of inputs has a quantitative e�ect on
the prediction accuracy of the estimated models. Therefore, even though far
from daily life treatment schemes we separated the e�ect of unbolused meals
and insulin boluses.

Two of the simulation models published today are estimated on data originating
from tracer and/or clamp studies [49, 24]. The advantage about clamp studies
in relation to modelling is that by keeping the glucose level constant you obtain
some kind of steady state condition. It is, however, an arti�cial steady state
and the identi�able parameters from clamp studies do not relate to the transient
behavior of the system but to the steady-state behavior.

Radioactive tracers can be used to observe the behavior of internal processes
of the glucose metabolism. In [24] they use tracers to estimate the endogenous
glucose production and in [49] they use them to estimate the e�ect of insulin on
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distribution/transportation, disposal and the endogenous glucose production.
We cannot from our data observe these processes directly and thus we restrict
ourselves with respect to the models we can estimate. However, as will become
clear later in this thesis, the SDEs allow us to identify some of this internal
variation. Thus, to some extent, we might be able to model these processes by
using prior physiological knowledge and the tools provided by the SDEs without
expensive and complicated tracer studies.

The experimental design of this study is di�erent from closed loop studies in
several ways. First of all, not two study days were identical. We believe that
this inhomogeneity is important to avoid confounding factor e�ects with "order"
or "time of day" e�ects. However, the limitations due to the fact that we are
dealing with human subjects could not be fully accomplished. Secondly, the
events were separated by 150 minutes whereas in closed loop studies boluses
are usually administrated together with a meal. Thus, as described earlier, the
prediction accuracy of models estimated from this data set could be improved
compared to models estimated from closed loop data. However, this hypothesis
needs to be investigated in a comparative study before any conclusions can be
made. Finally, we analysed several hormones not usually observed during closed
loop studies enabling us to assess the in�uence from these on the plasma glucose
dynamics.

Many of the hormones we analysed are related to the mental stress level. We
did not monitor the patients mental stress level except indirectly via the heart
rate. One could argue that the patients felt insecure in the beginning of the
study day or just before exercise and as a consequence changes in the stress
related hormones could be caused by this. The human factor in the study is a
challenge when trying to isolate the e�ect of di�erent inputs as neither they nor
we can control the stress level. Furthermore, as we only collected data during
the day from 7AM-17PM we cannot estimate the variation in hormone levels
through a 24 hour period. Especially, the dawn phenomena would be important
to include in a type 1 diabetes simulator and models for control [93]. Longer
study days lasting more than 24 hours would have increased the value of this
data set.

One major problem in the glucose modelling research �eld is the fact that the
di�erent research groups use their own data sets to estimate their models. This
makes it hard to compare the performance of the models between groups. This
has been pointed out by the world leaders within glucose modelling i 2009 in a
report saying that "A Web site describing di�erent models and the data support-
ing them should be made publicly available, with funding agencies and journals
requiring investigators to provide open access to both models and data" [87].
Unfortunately, not much e�ort has been put into the realization of this website
[85]. To our knowledge no general website currently exists. This reluctance to



20 Data Acquisition

share data and models slows the progress of the arti�cial pancreas development
which unfortunately a�ects the patients. We fully recognize the importance of
sharing data and wish to support the idea of availability of data sets by making
it accessible to others. The technical report in Appendix A contains the full in-
formation about the study and is suppose to introduce researchers who want to
work with the data to the study design and data �les. We are in the progress of
making the data set publicly available through the project website [74] together
with the report. The data set could potentially serve as a general validation set
for researchers to use for evaluating the model performance of future simulation
and prediction models.

Even though we gained an information rich data set we must recognize the
di�culties in transferring this information to everyday conditions. In real life,
patients do not eat standardized meals. They do various types of sport at
di�erent intensities. They get sick and stressed. They drink alcohol and co�ee.
On top of all this, the response to these disturbances are subject to intra-
individual variability. Thus, as pointed out in [88] it is important to remember
that models based on data from an organized study obtained in a predetermined
way will be much easier to control than real life patients.

Ideally, from the experience with this study we should have designed a new
study but the time and money were not available. Several new studies could
be suggested as there are many issues to investigate further. To fully under-
stand the interplay between glucose absorption from a meal and the endogenous
glucose production, tracers are necessary. Furthermore, to identify the relevant
circadian rhythms in the system, future studies should last at least 24 hours.
Finally, it is important to note that the observed e�ects of meals and exercise in
this study cannot be generalized to other meal and exercise types. Specialized
studies including several types of meal or exercise types are needed to identify
general models.



Chapter 3

Pinpointing Model
De�ciencies with Stochastic

Di�erential Equations

As explained in Chapter 1, SDEs provide an excellent tool to identify model
misspeci�cations and furthermore reveal how the model should be extended to
deal with these misspeci�cations in theory. In this chapter, we describe how
SDEs were used to identify misspeci�cation in a previously published model
[52]. The model identi�cation was based on the data obtained from the clinical
study described in Chapter 2. This chapter is based on Paper B in Appendix
C.

3.1 Model Identi�cation

The aim of this study was to investigate whether we could use SDEs to pinpoint
de�ciencies in an already published simulation model of the insulin-glucose sys-
tem in type 1 diabetes patients based on the clinical data from the study de-
scribed in Chapter 2. This was an invited paper and thus an additional purpose
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was to introduce the use of SDEs to the research society within diabetes tech-
nology.

As base model we chose the identi�able virtual patient (IVP) model [52, 53].
It is also referred to as the Medtronic virtual patient as Medtronic uses this
model in the development of their version of a arti�cial pancreas. The model
is named identi�able virtual patient because of its identi�ability from data nor-
mally available from clinical studies of arti�cial pancreas systems i.e. insulin and
carbohydrate delivery, plasma glucose, CGM observations, and insulin observa-
tions. A simpli�ed illustration of the IVP model is seen in Figure 3.1. The core
of the model resembles the minimal model. Despite its simplicity, the model
covers a more complex connection between insulin and glucose, and glucose ef-
fect on itself [9]. The insulin absorption from the pump and the meal absorption
are modelled as linear three- and two-compartment models. The model is non-
linear due to the e�ect compartment describing the pharmacodynamic e�ect of
insulin on glucose.

Initial attempts to estimate the parameters of the model showed that the part of
the model related to the CGM sensor was not appropriate. One of the reasons
for this inappropriateness is explained and dealt with in Chapter 5. Therefore,
we excluded the CGM observations from the estimation and removed the state
equations describing the dynamics between plasma and sensor glucose (Glucose
(int.) in Figure 3.1).

The resulting base model consisted of six state equations and two observation
equations (plasma insulin level and plasma glucose level). As the model does
not include the e�ect of exercise, only data sequences from study days without
exercise (in total four sequences from four patients) were used for model identi�-
cation in this study. The modelling was done in the newly developed R package
for continuous time stochastic modelling (CTSM) [29]. The current version only
allows for single-subject modelling. Thus the model was �tted individually to
each data sequence.

The �rst step was to identify an ODE version of the model og hence a model
with no di�usion terms. This model served as base model for the subsequent
SDE models. Identi�cation was done with maximum likelihood estimation � see
[59] for details about the estimation.

From this base model, we set out to identify the best SDE version of the model
including one non-zero di�usion term. The ODE base model was extended to
an SDE model including one di�usion term corresponding to a single state and
again estimated with maximum likelihood. This was repeated for each of the
six states of the system resulting in six SDE models in total.
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Figure 3.1: An illustration of the IVP model. In this study we did not estimate
the parameters and states related to the CGM observations. Solid
lines represent mass �uxes. Dotted lines represent e�ect �uxes.
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The quality of the models were evaluated with a likelihood ratio test as the ODE
base model is nested into all the SDE models. Thus, for each of the six SDE
models with one di�usion term a test statistic was computed and evaluated. If
we instead wanted to compare the SDE models directly, we could have used
e.g. Bayesian Information Criteria. The SDE model resulting in the largest
di�erence in likelihood estimate was appointed to be the best SDE version.
As the models were estimated separately for each data sequence, the overall
maximum likelihood estimate for each version of the model consisted of the sum
of maximum likelihood estimates for each data sequence.

In the paper by Kanderian et al., they introduce intra-individual variability in
some of the parameters to obtain an improved model �t [52]. They de�ne three
time windows in which the parameters are constant but at di�erent levels for
each window. With SDEs, we could instead use parameter tracking to avoid any
subjective assessment of the intra-individual variability. Hence, in the paper we
replaced the parameter related to the rate of meal absorption with a random
walk to investigate the data driven variation of this parameter during the study
day.

3.2 Results

First of all, we were able to show that adding a non-zero di�usion to the IVP
model improved the maximum likelihood value signi�cantly. The largest im-
provement was obtained when the non-zero di�usion term was added to the
state equation describing the pharmacodynamic e�ect of insulin on the plasma
glucose (Insulin e�ect in Figure 3.1). This indicates that this state equation
is the most misspeci�ed part of the IVP model according to our experimental
results.

One-step predictions and autocorrelation functions of the residuals showed the
improved model �t from the SDE model. It should be noted that all six SDE
models were signi�cantly better than the ODE base model (with no di�usion
term) based on the maximum likelihood estimate.

By tracking the parameter related to the meal absorption rate we saw that this
parameter varied according to the meal type. The data sequences included a
standard solid meal (event 1) and a juice drink (event 3). The estimated rate
of absorption was lower for the juice drink than for the solid meal.
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3.3 Discussion and Future Work

This study showed that using SDEs in model development can be advantageous
in several ways. We were able to pinpoint de�ciencies and to track parameter
variation probably caused by a di�erences in meal type. This information could
be added to the model to improve the �t.

The state equation representing e�ect of insulin on the plasma glucose level was
identi�ed as the most misspeci�ed part of the IVP model. From a physiological
point of view this is reasonable as this simpli�cation of the insulin e�ect is far
from the real situation.

If we had been able to not only identify but also model the variation in the
model parameters we could take into account the signi�cant misspeci�cation
by e.g. ascribing this variation to outer factors or observed variation in other
parts of the system. In this speci�c case, we identi�ed the e�ect compartment
representing the insulin e�ect as the most critical part of the model compared
to the clinical observations. Thus an intuitive next step would be to track the
related parameters - in this case the insulin sensitivity,Si, and a rate parameter,
p2, controlling the speed of the e�ect. We attempted to replace these parameters
with a random walk, but the estimation either failed before convergence or
showed no variation. Reasons for this are probably that the data sequences
were too short to estimate variation within the single data sequences. Longer
sequences (at least 24 hours) are needed to fully evaluate this variation and its
relation to circadian rhythms in one or more of the hormones we analysed in
the clinical study.

From the autocorrelation function of the residuals we can evaluate whether the
model is able to explain all systematic variation in the data. In this case, we
saw a large decrease in autocorrelation for the best SDE model compared to
the ODE model. However, any presence of residual correlation indicates that
an extra state needs to be added to the model. The number of states needed
can be determined from the partial autocorrelation function [73].

The choice of model showed to be reasonable as we were able to identify the
model for all four data sequences. It has been criticized for not being suitable
as simulation model [21], but as basis for model extension, this simple model
was the most appropriate compared to the Hovorka and Virginia/Padova model
[97, 24]. We did implement Hovorkas model as an SDE model but the size and
complexity of the model together with the small amount of data per patient and
the in�exibility of the old version of CTSM made it impossible to do rigorous
model identi�cation.
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The varying rate of glucose absorption from the meal identi�ed with a random
walk is believed to be due to the type of meal. However, we cannot reject that
the variation is simply due to the time of day - i.e. that the rate of absorption is
higher in the afternoon than in the morning. In [94] they show that the glucose
absorption at lunch and dinner is di�erent from the absorption at breakfast.
However, they �nd a higher absorption in the morning than at noon and evening
contrary to our �ndings.

The results in this study su�ers from the fact that the models were estimated
on each data set separately and from four patients only. Thus we must be care-
ful not to generalize the results to the underlying population. The statistical
measure used for �nding the best SDE model consisted of the sum of the in-
dividual maximum likelihood estimates. This measure has a drawback as we
cannot guarantee that the signi�cant improvements is caused by improvement
in all four data sequences or if the �nding originates from a major improvement
in one data sequences only. We checked that all individual likelihood values had
improved signi�cantly, but we did not check if the best overall model was the
best model for all individuals. Thus the �ndings may actually not be valid for
all four data sequences. If we were to use all 24 sequences we would need an
extension to the model including exercise e�ects. However, this extension would
add to the number of parameters to be estimated which we believed to be non-
identi�able and thus impossible to estimate from only a single data sequence.

In this study, we focused on short-term prediction. As the maximum likeli-
hood estimation is based on one-step prediction errors the model is naturally
optimized to make accurate predictions on the short term. However, it is im-
portant to note that the tools provided by SDEs could be used to identify a
robust simulation model as well. It would require a di�erent estimation criteria
focusing on the parameters related to the steady-state behavior of the system.
Furthermore, it would require that the degree of misspeci�cation is low meaning
that the di�usion terms are small. If however, the di�usion terms represent true
random behavior in the system they should be a part of the model as they would
re�ect the uncertainty related to this stochasticity.

To build on this work the main obstacle needs to be overcome. An appropriate
software capable of handling SDE model estimation from several subjects at the
same time is needed. Fortunately, the development of an extension to CTSM for
population models has recently begun. When this is ready, several approaches
can be tested. First of all, the study described here could be repeated with a
population model. This would overcome the problem of too few observations as
the parameters could be estimated from the four data sequences simultaneously.
All 24 data sequences could be included if they were cropped prior to exercise
events. Alternatively, we could use this model to identify the signi�cant e�ects
of exercise in the data with, e.g, parameter tracking and hence use all the data
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for estimation. In the next chapter, we describe our attempts to include exercise
in the model.
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Chapter 4

Exercise E�ects in Type 1
Diabetes

Exercise poses a major challenge to fully automatic control of the plasma glucose
level. The physiological responses of exercise are manifold and appear on short-
and long-term scales. Mathematical models of these responses are relevant for
both simulation models and control models.

In this chapter, a short description of the physiological responses to exercise and
the models found in literature is given. Next, the methods and results from a
modelling study related to exercise responses of the plasma insulin concentration
is described. This study was motivated by the results of the clinical study
described in Chapter 2, which showed that the plasma insulin concentration
increased during a 20 minutes exercise bout � see Paper A in Appendix B. The
modelling study was an initial step in the development of a population model (a
hierarchical model) of the exercise e�ect on the plasma insulin concentration.

To our knowledge, no mathematical model of exercise e�ects on glucose dynam-
ics take this increase in plasma insulin into account. Thus, the aim of this study
was to identify a relevant model structure based on a hierarchical SDE model
of this response. The chapter is based on the work in Technical Report II in
Appendix D.
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4.1 Physiological Responses of the Insulin and

Glucose Dynamics to an Exercise Bout

E�ects of single exercise bouts in type 1 diabetes patients are complex and de-
pendent on many factors. Thus it is a di�cult task for the patients to compen-
sate for the exercise by eating carbohydrates or decreasing the insulin delivery
prior to exercising. However, as well as healthy people, people with type 1
diabetes can bene�t from regular exercise. But the bene�ts on plasma glucose
control are not well established, illustrating the di�culties in managing diabetes
while maintaining an active life style. A recent meta-analysis study showed how-
ever, that training (regular exercise) has a positive e�ect on glycemic control in
type 1 diabetes [89].

Exercise increases insulin sensitivity both in healthy individuals and individu-
als with type 1 diabetes. In healthy individuals, the insulin secretion declines
during moderate-intensity exercise to counteract the increased insulin sensitiv-
ity. However, as type 1 diabetes patients lack the ability to adjust the insulin
secretion the result is hypoglycemia. Additionally, the endogenous glucose pro-
duction is inhibited if the plasma insulin level is high which will amplify the
hypoglycemia [44].

The meta-analysis in [89] showed that the response depends on exercise type, du-
ration, nutritional status, time of insulin bolus delivery, and pre-exercise plasma
glucose level. Whereas low-to-moderate exercise often results in hypoglycemia,
less severe hypoglycemia or even hyperglycemia are seen after high-intensity
exercise [39]. The latter is probably due to high counter-regulatory hormone ac-
tion stimulating the endogenous glucose production [44]. After prolonged exer-
cise, hypoglycemia may occur up to 6-15 hours after exercising [44, 89]. Not
only the glucose level but also the plasma insulin levels changes during exercise.
The latter depends on the time of bolus delivery, bolus size and injection site
[44]. The e�ects on the plasma insulin level make the response to exercise even
more unpredictable.

4.2 Models of Exercise Responses in Type 1 Dia-

betes

Several models have been suggested to take into account the acute (within hours)
responses of exercise in type 1 diabetes. They use e.g. heart rate or the percent-
age of an individuals maximum oxygen consumption rate to quantify exercise. In
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[27], an exercise extension to the minimal model is evaluated from simulations.
The extension consists of three parameters related to the insulin sensitivity and
utilization of glucose and insulin.

One study uses percentage of oxygen consumption rate and percentage of active
muscle mass to quantify exercise. The model takes into account blood �ow rate
changes and redistribution, changes in muscle glucose uptake, and changes in
liver glucose production and release. The model simulations are compared to
glucose data from the literature [63]. An extended version of this model takes
into account the glycogen depletion during exercise [62]. Furthermore, the study
in [42] extend this model to heavy intensity exercise, however it is not compared
to experimental data.

In [16], the minimal model is also used as basis to include the e�ects of exercise
quanti�ed by heart rate on longer lasting changes in insulin action and increased
glucose uptake. The model is estimated on data from type 1 diabetes patients in
a hyperinsulimic clamp study. A continuation of the work in [16] incorporated a
stronger e�ect of intensity and the e�ect of the duration of the exercise bout[23].

Some of the models include the e�ect on the insulin concentration in plasma by
assuming an increased insulin clearance rate during exercise [79, 63, 42].

4.3 Population Modelling of Plasma Insulin Chan-

ges During Exercise

In the clinical study described in Chapter 2, an increasing plasma insulin con-
centration was observed during the exercise bouts as a result of an increased
absorption from the infusion site in the subcutaneous layer [82]. The reason to
the increased absorption is not fully understood, but muscle contractions in the
surroundings of the injection site have been suggested. However, this hypothesis
does not agree with our results as the insulin pump was placed in the abdominal
or lumbar area. Hence, other hypotheses could be that the response is related
to an increased temperature or increased blood �ow in the peripheral tissue.

The aim of this study was to identify a model capable of describing the changes
in insulin absorption due to exercise. From the study described in the previous
chapter, we realized that the current version of CTSM would not be adequate to
identify a model for this e�ect due to the restriction to single-subject modelling.
Thus, parallel to this project a prototype of a population modelling extension
to CTSM was developed.
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Figure 4.1: Illustration of the three-compartment SDE base model describing
the pharmacokinetics of insulin delivered continuously from an
insulin pump. Lightnings indicate di�usion terms.

Initially, a base model was identi�ed. This was a linear three-compartment
model suggested in [97]. The model was changed into an SDE by adding di�usion
to two of the three compartments as indicated in Figure 4.1 by lightnings. Our
hypothesis was that the absorption rate parameter, ka, increased during exercise.

In total, we had 24 data sequences available from the clinical study. Due to
unstable insulin plasma levels in the stabilization period prior to the �rst event,
seven of the 24 sequences was disregarded in this study. Consequently, the model
was identi�ed from 17 sequences including approximately 23 observations each
- see Appendix A for details on sampling scheme.

The insulin plasma concentration had to be strictly positive. As the state is
in�uenced by di�usion, the only way to ensure that the state values remain pos-
itive is to make the di�usion state-dependent. However, the estimation method
in CTSM cannot handle this state-dependency. To overcome this issue, the state
was transformed with a Lamperti transformation to a state equation without
state-dependent di�usion. Furthermore, the variance of the measurement error
was forced to attain a minimum value as preliminary estimations showed that
the parameter estimation brought it to zero. The minimum value was based on
literature �ndings.

We used three approaches to model the e�ect of exercise on the insulin absorp-
tion rate. In the �rst approach, we attempted to track the variation in the
absorption rate parameter with a random walk as with the meal absorption
rate parameter in Paper B. However, initial attempts to estimate this varia-
tion showed that it was not feasible due to lack of observations. In the second
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approach, the relationship between the insulin absorption rate parameter and
exercise was modelled as a linear dependency without taking into account that
the patients in the clinical study exercised on two levels - mild and moderate.
Thus, the third approach was to separate the e�ect of mild and moderate exer-
cise on the insulin absorption rate parameter. In this model formulation the
absorption rate parameter, ka was speci�ed as a constant plus two terms re-
lated to mild and moderate exercise, respectively � see Technical Report II for
details (Appendix D).

Parameters were estimated as for the model in Paper B with maximum likeli-
hood estimation, however, the hierarchical structure of the model in this study
requires a two-stage approach to estimate the parameters � see Technical Re-
port II for more details. The models were compared to the base model with
a likelihood-ratio test and with Akaike Information Criteria and Bayesian In-
formation Criteria. Posterior identi�ability was checked from the conditional
likelihood pro�les for each estimated parameter.

4.4 Results

From likelihood-ratio tests, Akaike Information Criteria, and Bayesian Informa-
tion Criteria the model taking into account the exercise intensity showed to be
the best model to describe the e�ect of exercise on the insulin absorption. The
increase in absorption rate was largest for moderate exercise compared to mild
exercise. In Figure 4.2, the one-step predictions from the model for one of the
17 data sequences are depicted. The increase in plasma insulin level related to
exercise is captured by the model and the compliance with the observations is
in general good. However, the associated uncertainty is large.

4.5 Discussion and Future Work

This study showed that the response of the plasma insulin concentration to
exercise is signi�cant and should be taken into account in future models of the
exercise e�ects in type 1 diabetes patients. It is important to note that this
model is estimated from data from patients using an insulin pump. Whether
the model can explain the response in patients using insulin pens still has to be
determined.

In the study, the two exercise intensities were represented separately by binary
variables indicating whether the patient was exercising or not. A more general
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way of quantifying exercise is as mentioned to use the heart rate as indicator of
exercise. However, for some of the data sequences used in this study, the heart
rate information was unavailable due to monitoring problems.

Undoubtedly, the development of a realistic model of the e�ects of exercise
requires highly customized clinical studies. First of all, the sampling time during
the exercise bout should be short. One suggestion is to extend the exercise bout
to 30 minutes and analyse plasma insulin concentration every �ve minutes during
and immediately after. Also, the e�ect of the timing between the exercise bout
and the bolus injection has to be investigated.

The e�ect of exercise was not individualised in the model. However, it is rea-
sonable to assume that the observed e�ect depends on the individual patients
weight, level of �tness, pump placement etc. To incorporate this individualisa-
tion into the model also requires more clinical studies.

The next step could be to combine the optimal model from this study with
e.g. the model used in Paper B to estimate the e�ect of this increased plasma
insulin concentration on the plasma glucose level from the entire data set. If
this combined model is not adequate to explain the data, SDEs could be used
to identify additional e�ects of exercise e.g. on the insulin sensitivity or the
glucose disposal. The optimal way of doing this would of course be to use
the signi�cance of the di�usion terms as a guide to identify those parameters
in�uenced by exercise. If this is not possible, the same approach as the one
used in this study could be used � i.e. de�ne a structure of the dependency and
estimate the di�erent model candidates. A good candidate for this structure
could be the model suggested by [16], due to its simplicity, the fact that it
is based on the minimal model as the model in Paper B, and due to the fact
that exercise is quanti�ed by heart rate which is available for most of the data
sequences in our data set. A critical prerequisite for these suggestions for future
work, is that the prototype of the population extension to CTSM is further
developed.

As this study was conducted at the end of the PhD-project, the results are
preliminary. Further improvements to the model could be made by removing
insigni�cant parameters from the model. The posterior identi�ability check
showed that the variance of the measurement error was unidenti�able � i.e. the
pro�le did not show a minimum. This is probably due to the speci�cation of the
error model as additive instead of proportional or that the estimation method
compensates for a bad prediction by relying fully on the observations. Thus
other base models should be tested. In [98], they suggest to use a more complex
model with two parallel absorption routes - one fast and one slow absorption
route with saturable local degradation. With this structure, the in�uence of
exercise could be added by increasing the fraction of insulin molecules traveling
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through the fast absorption route during exercise and/or by decreasing the local
degradation and thus increase the amount of insulin that appears in plasma.

The population modelling approach is crucial in these models. The variability
between and within individuals is recognized as one of the major challenges to
the realisation of the arti�cial pancreas. With this type of hierarchical models,
this variability can be estimated, categorized as inter- or intra-individual vari-
ability, and to some extent be explained from demographic, pathophysiological
or environmental factors that may in�uence the behavior of the insulin-glucose
system. This extra information can be used to customize models for simulation
or control to individuals. From the prior knowledge about the above mentioned
factors, the parameters can be estimated from this information instead of ex-
pensive and time-consuming clinical studies. To improve the models compliance
with the individual patient, a combination of prior knowledge and data could
be used in a Bayesian context as suggested in [40]. However, for the population
model to be robust and representative, it has to be based on a large number of
representative subjects.



Chapter 5

SDEs in Automatic Control
of the Glucose Level

Several strategies for automatic control of the plasma glucose level have been
applied by the large number of research groups involved in arti�cial pancreas
projects. The most often applied methods are proportional, integrative and
derivative (PID) control, fuzzy-logic methods and Model Predictive Control
(MPC) [46].

One of the aims of the DIACON project was to develop and test automatic
control algorithms to regulate the glucose level in type 1 diabetes patients. For
this purpose we used the MPC strategy.

As pointed out in Chapter 1, the inaccuracy of the CGMs is one of the major
problems for the realization of the arti�cial pancreas. During the project, two
studies related to CGMs were done. The �rst of them deals with tuning of a
control algorithm designed for overnight glucose control based on CGM obser-
vations. The second one deals with prediction of the plasma glucose level from
CGM observations alone using a nonlinear SDE model and a Bayesian estima-
tion method. This chapter shortly describes the two studies and the results of
them. Finally, the perspectives of the studies are discussed and future work is
suggested. The chapter is based on the work in Paper C in Appendix E and
Paper D in Appendix F.
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5.1 The DIACON Arti�cial Pancreas

In the DIACON project we focused on MPC for several reasons. With MPC it
is possible to implement constraints in a systematic way. In this case, it is very
bene�cial with a predictive controller due to the time delays related to insulin
absorption and glucose di�usion from plasma to the subcutaneous layer. MPC
has appointed as the most promising strategy for glucose control [21].

A key component of an MPC controller is the model used for prediction of
the future output (plasma glucose values) and future input (insulin delivery).
Whereas models for simulation are often non-linear and high dimensional, mod-
els used for control purposes are typically simpler and in most cases linear since
they are derived from a linear system description.

5.1.1 Tuning of Controller with SDEs (Paper C)

This study deals with estimation of the optimal tuning of a Kalman Filter in
an MPC controller for glucose control. The �rst version DIACON controller
was based on a linear second order model with three patient speci�c parameters
related to the e�ect of insulin on the plasma glucose level [14, 10]. These patient
speci�c parameters are already used by the patients or their physician in the
normal daily treatment. The controller was designed to stabilize the plasma
glucose level overnight. This time of day was chosen due to the absence of
disturbances such as meals, exercise, and stress.

We initially modelled the system by an ARIMAX model which includes an in-
tegrator to ensure o�-set free tracking [65, 50]. The structure of the stochastic
part of the models is a trade o� between o�set-free control and model-plant mis-
match. The parameter governing the in�uence of the integrator was determined
from initial simulations [13].

After a preliminary clinical pilot study it became clear that the stochastic part
was misspeci�ed � i.e. the gain of the build-in Kalman �lter was not properly
tuned. The controller was too sensitive to deal with the noisy signal from the
CGM as the corresponding variance estimate was too small [7]. A situation
from the pilot study is shown in Figure 5.1. When starting automatic control
(at 22:00) the local trend was increasing whereas the global trend was decreasing.
The model predicted an increase in plasma glucose from the local trend and thus
suggested a large bolus as compensation.

The local trend was however not physiological in the sense that is was not



5.1 The DIACON Arti�cial Pancreas 39

18:00 20:00 22:00 00:00 02:00 04:00 06:00
2

4

6

8

10

12

14

16

B
lo

o
d
 G

lu
c
o
s
e
 [
m

m
o
l/
L
]

 

 

Normoglycemic range
Reference
Blood glucose (measured)
Blood glucose (predicted)

0 2 4 6 8 10 12 14
0

2

4

Time [hr]

In
s
u
lin

 [
U

/h
r]

 

 

Injected insulin
Predicted insulin

Figure 5.1: Top: CGM observations (solid line) and plasma glucose prediction
at the start of automatic control (dashed line) from the �rst pilot
study. As seen, the controller relies too much on the local trend.
Bottom: Insulin delivered by the pump (solid line) and predicted
insulin delivery (dashed line).
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Figure 5.2: Result of the �rst pilot study. Top: Glucose observations, YSI:
Plasma glucose values (gold standard), Hemocue: Glucose values
[38]. The right CGM acted as feedback to the controller. Bottom:
Insulin delivery from the pump.

caused by a disturbance in the plasma glucose level but simply variation in the
CGM signal. The bolus suggestion from the controller (which was delivered to
the patient) caused the plasma glucose to decrease into the hypoglycemic range
and intravenously glucose had to be administrated at 00:00 to avoid severe
hypoglycemia. The complete CGM and plasma glucose traces from the pilot
study are plotted in Figure 5.2.

With CTSM we had the possibility to estimate the optimal Kalman �lter gain
directly from the data instead of from simulations. The model was implemented
as a second order linear SDE model with two identical di�usion variances with
zero covariance. Two CGM sensors monitored the glucose level every �ve min-
utes throughout the night. Data from both of them were used for the estimation
(see Figure 5.2).

The structural parameters were �xed according to the patients speci�c values.
The variance of the di�usion terms and of the normally distributed measurement
noise were estimated with a modi�ed maximum likelihood estimation. Normally,
the maximum likelihood estimation is based on one-step predictions. However,
in this case, the estimation was based on three-step predictions. The ratio
between the system and measurement noise variances are directly related to the
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Kalman �lter gain in the controller.

5.1.2 Prediction of Plasma Glucose From CGM Observa-
tions Using SDEs and a Bayesian Estimation Method
(Paper D)

In a later study, a more physiological approach was investigated [41]. In this
study, the base model was the same nonlinear model as the one used in the
study described in Chapter 3 (the IVP model). However, here we extended it
with a submodel representing the transport of glucose from plasma to the inter-
stitial space where the CGM sensor is placed. Insulin plasma, plasma glucose,
and CGM observations were available. The meal input was disregarded as we
used overnight data originating from the clinical feasibility study of the control
algorithm studied in Paper C [81].

The focus was to investigate if the IVP model could be used as prediction model
in an arti�cial pancreas - or more speci�cally if an SDE version of the IVP model
could predict the plasma glucose level from the CGM observations alone. We
took into account the fact that the CGM is not observing the plasma glucose
level directly by adding an extra state representing the interstitial glucose level
as described in [52]. Thus we included two separate observation equations -
one observing the plasma glucose level and one observing the interstitial glucose
level (and an extra one for plasma insulin).

Initially, the forward selection method based on maximum likelihood estimation
was applied to identify the relevant di�usion terms as described in [30]. The
CGM provided a new observation every �ve minutes and the plasma glucose
level was analysed with a gold standard method (YSI) every thirty minutes.
Consequently, the number of observations was unequally distributed between
the two types of observations. Moreover, the two observation types are very
di�erent in terms of accuracy and observes two distinct glucose concentrations.

The fact that maximum likelihood estimation weights every single observation
equally poses a problem when dealing with models including two observation
processes with di�erent accuracy and number of samples. The initial model
identi�cation resulted in a very accurate prediction of the dense CGM observa-
tions but an inaccurate prediction of the YSI observations (see Figure 5.4). This
is due to the equally weighting of the observations in the maximum likelihood
estimation. To some extent, the likelihood will increase when the observation
type with the highest number of observations can be predicted accurately by
the model.
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By including prior knowledge about the inaccuracy of the CGM and thus em-
ploying a Bayesian estimation method, the problem of equally weighting was
overcome and the plasma glucose predictions were improved.

5.2 Results

Both studies involved data from one patient only. However, the results in Paper
D using the Bayesian method was cross-validated on a second data set from
another study night.

5.2.1 Tuning with SDEs, Paper C

In Figure 5.3, the situation from the beginning of automatic control in the �rst
pilot study is shown � now with the Kalman gain found from data with the
SDE model. The prediction is now more realistic compared to the actual overall
behavior of the glucose level.

Another pilot study was conducted and showed an improved controller perfor-
mance - see Appendix E for the plot. Finally, we went into the real clinical
study to evaluate the feasibility of the DIACON controller in overnight control.
The results of the study are described in [81].

5.2.2 Bayesian Estimation Method, Paper D

The predictions of the plasma and interstitial glucose level with the maximum
likelihood estimate are shown in Figure 5.4. It is clear that the optimal likelihood
estimate is not optimal in this case as the aim is to predict the plasma glucose
level with acceptable con�dence.

With the Bayesian approach including prior information regarding the accuracy
of the CGM and the YSI analysis methods, the predictions are improved as
shown in Figure 5.5. The plasma glucose level is predicted more accurately
and with less uncertainty whereas the opposite holds for the interstitial glucose
observations.

To test the predictive performance of the model based on the Bayesian approach,
the predictions were recomputed - this time excluding the insulin and YSI data
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Figure 5.3: Top: CGM observations (solid line) and plasma glucose prediction
(dashed line) from the �rst pilot study at the time of start of
automatic control if the data tuned Kalman gain had been used.
The normal range is indicated as the green area. Bottom: Insulin
delivered by the pump (solid line) and suggested insulin supply
(dashed line).
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Figure 5.4: Prediction of plasma glucose (PG) and interstitial glucose (IG)
observations using maximum likelihood estimation. The green
ribbon re�ects the normoglycaemic range. The purple observa-
tion is an outlier not used in the estimation nor prediction. Top:
One-step prediction and 95 % prediction band of the plasma glu-
cose observations. The prediction is not in agreement with the
observations. Steep transitions are seen when there is a change in
the interstitial glucose observations. Middle: One-step prediction
of the interstitial glucose observations and 95% prediction band.
The prediction band is unrealistically narrow, re�ecting the fact
that the model seeks to explain the sensor error exactly, not re-
�ecting that the plasma glucose observations are analysed with a
gold standard method. Bottom: Insulin delivery (ID) as boluses.
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Figure 5.5: Prediction of plasma glucose and interstitial glucose observations
using Bayesian estimation. Green ribbon re�ects the normogly-
caemic range. The purple observation is an outlier not used in
the Bayesian estimation nor prediction. Top: One-step predic-
tion and 95% prediction band of the plasma glucose observations.
Small adjustments are seen when a new plasma glucose observa-
tion is obtained, but the prediction is in general agreement with
the observations. Bottom: One-step prediction of interstitial glu-
cose observations and 95% prediction band.
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Figure 5.6: Prediction of plasma glucose and interstitial glucose using only
interstitial glucose observations. Green ribbon re�ects the normo-
glycaemic range. The purple observation is an outlier not used
in the Bayesian estimation nor prediction. Top: One-step predic-
tion of plasma glucose and 95% prediction band. The dynamics
of plasma glucose are captured in the prediction and the predic-
tion band covers all but two plasma glucose observations. Bottom:
One-step prediction of interstitial glucose.

except the initial YSI observation. To some extent, this resembles the real life
situation where the only available information about the plasma glucose level is
the CGM observations and a few daily calibrations.

The predictions were cross-validated on data from the same patient on another
study night. Hence, Figure 5.6 shows the prediction of the same study night
as in Figure 5.5, but with a model estimated with data from the other study
night. As seen, the model is capable of predicting the plasma glucose level with
a quite good level of con�dence. However, towards the end of the study night the
uncertainty increases. This would interfere with the performance of a potential
controller. Thus, if a second YSI observation was used a calibration at a later
point, the con�dence at this time would improve.



5.3 Discussion and Future Work 47

5.3 Discussion and Future Work

The studies show two distinct applications of SDEs in automatic control of the
glucose level and two di�erent approaches handled the inaccuracy of the CGM.
The models are two di�erent candidates for MPC representing each end of the
range of models. The model in Paper C is simple and linear, though it is still
based on physiological knowledge as the model in Paper D. The latter exploits
the fact that the CGM sensor does not directly observe the state we wish to
control (the plasma glucose level) whereas the �rst model assumes that the
output is the plasma glucose level and all di�erences are classi�ed as noise. In-
corporating the explicit physiological di�erence between the plasma glucose and
the interstitial glucose in the model has previously shown to be advantageous
[55, 35].

The deterministic parameters of the simple model in Paper C was not estimated
from data but based on prior knowledge. If the parameter values are not known
by the patient it could be bene�cial to use the same approach as in Paper D with
a Bayesian (or maximum likelihood) estimation of these parameters. However,
the two methods require di�erent types of data and information to be estimated
and calibrated. The model in Paper D needs plasma glucose observations and
plasma insulin observations to be fully estimated while the model in Paper C
only needs a series of CGM observations, the known patient speci�c parameters,
and information about the insulin input.

The Kalman �lter tuning in Paper C was based on data from only one patient
and only one study night. The second pilot study on the same patient showed
an improvement in robustness and was less a�ected by non-physiological dis-
turbances, indicating that the intra-variability was non-signi�cant in this case.
For the sake of simplicity, the same Kalman gain value was used throughout the
entire clinical study involving several patients following the second pilot study.
In general however, we would except the gain to be in�uenced by both inter-
and intra-variability caused by physiological variation and device related vari-
ation [6]. To accommodate the inter-individual variability, the Kalman �lter
gain should be tuned for the individual patient prior to the start of automatic
control.

The controller should ideally be able to adapt to both kinds of variability and
thus an adaptive approach is needed. Both models could in principle be im-
plemented in an adaptive algorithm where model parameters were estimated
on-line to take into account the intra-variability. The intra-variability occurs
due to the physiological changes that occur over time (exercise, stress or medi-
cation) and due to the fact that the CGM sensor is exposed to biofouling [92].
During the DIACON project, we showed that adaptive tuning with recursive
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least squares for a similar model to the one in Paper C, improves overnight
control in a simulation study [13]. For the model in Paper D, the parameters
related to the interstitial glucose level and the CGM observations could be es-
timated adaptively. Estimation of all the parameters would require insulin and
plasma glucose observations which are not available outside the clinic.

One of the direct advantages of using SDEs to estimate this type of models is that
we obtain an estimate of the prediction uncertainty. With respect to control, this
is important as pointed out in [1]. The extra information in terms of uncertainty
can be used to include extra safety constrains based on the probability density.
The constraints can be asymmetric taking into account the severity of acute
hypoglycemia versus the long-term risks related to hyperglycemia.

From the initial estimations in Paper C based on one-step predictions we con-
cluded that a step-size of one (corresponding to 5 minutes) resulted in a too
sensitive Kalman gain. This assessment was done on the basis of the prediction
by the MPC model with the corresponding estimated Kalman �lter gain. By
reorganizing the dataset, we were able to force CTSM to base the maximum
likelihood estimation on the three-step prediction which showed to improve the
relevant prediction. Three steps (15 minutes) correspond to the controller ac-
tuation rate. This accordance between controller actuation rate and estimation
criteria could be causing the observed improvement. However, more data is
needed to document the validity of this hypothesis. Ideally, the estimation
could be based on multiple prediction horizons corresponding to the length of
the prediction horizon used by the controller (0-15 minutes).

In Paper D, we use the initial YSI observation to calibrate the model. In real life,
CGMs are calibrated from �nger stick measurements analysed with a glucose
meter. The glucose meters are less accurate than the YSI analysis which o�
course would interfere with the prediction accuracy of the model. Thus the real
life performance of the model would be expected to be less good than what
we obtained. The di�erences between YSI analysis and glucose meters are not
only due to the di�erent technical speci�cations and methods but also due to
the fact that glucose meters are used with capillary blood whereas the YSI
analysis in our study is done on venous blood. The glucose concentration can
vary signi�cantly between the two pools under certain circumstances [90].

These studies illustrate that SDEs have a large potential in the development of
models for MPC of the glucose dynamics when it comes to handling the CGM
problems. The studies are based on results from a single subject and thus more
studies are needed to validate the models and their applicability. Future studies
should include clinical testing of an adaptive version of the model in Paper C.
For the model in Paper D, the next step would be to estimate the model on
data from several patients to con�rm the present results. Furthermore, the
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model could be extended to include meals as the model presented in Paper B in
Appendix C.
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Chapter 6

Conclusions

A fully automatic dosing system for type 1 diabetes would lighten the patients
from the constant burden of managing their diabetes. However, many obstacles
have to be overcome before the arti�cial pancreas becomes a reality. In this
project we investigated how SDEs can aid in the process of reaching this goal.
Several areas within the �eld was investigated.

First of all, we designed a clinical study to collect information rich data for
model identi�cation. This was motivated by the fact that data obtained during
clinical studies testing arti�cial pancreas systems does not show an adequate
excitation as the aim of this type of studies is to keep the glucose level in
target. Furthermore, the inputs are often correlated in time. As an alternative
to this method, we developed a study design where events were separated by 150
minutes and the order of events was di�erent between study days. The study
included meals, insulin boluses and exercise bouts. Plasma glucose, insulin
observations and CGM observations were obtained. Furthermore, we analysed
a number of hormones known to be important for glucose metabolism. Thus,
the data set holds a lot of information about the counter-regulatory responses.
This information still has to be fully utilized. The data set is fully documented
and will become available for other researchers from the DIACON webpage.

Future clinical studies should provide us with 24 hour pro�les of the insulin-
glucose dynamics to be able to fully identify diurnal variation. Additionally,
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tracer studies would be necessary to estimate the endogenous glucose produc-
tion.

In a modelling study, we showed that by using SDEs we could identify the most
misspeci�ed part of a well known model of the insulin-glucose dynamics in type
1 diabetes. This part was the pharmacodynamic part of the model representing
the insulin e�ect on plasma glucose. Furthermore, we identi�ed variation in the
glucose absorption from a meal probably due to di�erent meal types. However,
the study was limited by the lack of a robust software capable of handling
population SDE models and by too short data sequences. Thus, the �ndings
need to replicated in a larger study when the required software is available,
before using them for further model development either towards a predictive
model for control, alarm purposes, or for a simulation model.

As a �rst step towards a model including the e�ects of exercise on insulin and
glucose dynamics we modelled the increase in insulin absorption during exer-
cise as observed in our clinical study. Parallel to this study a prototype of a
population modelling extension to CTSM was developed which allowed us to
build a population model including �xed and random e�ects. Ideally, we should
have used parameter tracking to estimate changes in the absorption rate, but
the data set included only two observations during the exercise period which
is inadequate to drive the tracking. Instead, we assumed a model structure for
this relationship which showed to be signi�cantly better than a base model with
constant absorption rate. Future studies should include more clinical data to
understand the relationship better and testing whether more advanced models
are needed.

CGMs plays an important role in the arti�cial pancreas system and have been
identi�ed as one of the major obstacles to automatic control due to the asso-
ciated inaccuracy and delay. This was con�rmed by initial attempts to model
the CGM signal and by a clinical pilot study testing an algorithm for overnight
glucose control. Two studies related to the CGMs were performed during the
project. In the �rst study, we showed that SDEs could be used to tune a control
algorithm for overnight glucose control on the basis of CGM observations from
the initial pilot study. The tuned algorithm improved the controller performance
in a subsequent clinical study. The improvement would expect to increase if the
algorithm is tuned in an individual and even device speci�c way. Furthermore,
if the tuning is incorporated into an adaptive scheme the results would expect
to improve even further due to the inherent presence of diurnal variation in the
human metabolism and the fact that the CGM sensor is exposed to biofouling.

Further attempts to deal with the problems related to the CGM included a
Bayesian estimation scheme. The approach can take into account the problem
in maximum likelihood estimation of insulin-glucose dynamics, namely that the
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number of observations from the CGM is usually much higher than the num-
ber of observations of the plasma glucose level analysed with a gold standard
method. By incorporating prior knowledge about the uncertainty in the CGM
observations into the estimation method, we succeeded in predicting the plasma
glucose level with acceptable con�dence based on the CGM observations alone.

Overall, the results in this project con�rm that SDEs have a large potential
within arti�cial pancreas modelling. However, as pointed out earlier, future
modelling requires a robust software capable of handling the nonlinear pop-
ulation SDE models. When this is available larger modelling studies can be
initiated and the impact of SDEs would be expected to increase.
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1 Introduction

This report is a supplement to a data set from a clinical study performed at Hvidovre University Hospital,
Denmark as a part of the DIACON (Diabetes in Control) project in 2009-2010. The DIACON project is
an interdisciplinary team situated in Denmark with both clinicians and scientist involved in the project.
The aim of the DIACON project is to develop automatic treatment methods for type 1 diabetes and
thereby improve the quality of life for the patients. The ultimate goal is to obtain fully closed loop
control of the blood glucose level. This is known as the artificial pancreas and consists of continuous
subcutaneous insulin infusion (CSII) from a pump, a continuous glucose monitor (CGM) obtaining the
blood glucose level and finally, a control algorithm regulating the insulin pump based on feed back from
the CGM. The controller determines the optimal amount of insulin to keep the blood glucose in the target
range. An illustration of the components of an artificial pancreas is seen in Figure 1.

In the development of control algorithms for an artificial pancreas, virtual type 1 diabetes patients are
a useful tool for pre-clinical testing and verification. The advantages are several: acceleration of the
development process, lower costs, and the possibility of testing extreme treatment strategies without
having to deal with the ethical aspects.

One of the purposes of the DIACON project is to develop a robust and reliable model of the insulin-blood
glucose dynamical system. To be able to do this we needed a data set including observations of the system
in type 1 diabetes patients.

Since the insulin-blood glucose system is a very complex system affected by many different factors such
as meals, physical exercise and changes in stress level etc., the study had to be quite controlled. Further,
a previous ambulant study had shown that out clinic data is too noise corrupted and unreliable due

∗Contact author:
Technical University of Denmark
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Figure 1: Illustration of the artificial pancreas.

to unknown disturbances and incorrect reportings by the involved patients. For these reasons the data
collection was performed in clinic and designed to mirror the every day life of type 1 diabetes patients.

Meals, insulin boluses, and physical exercise were included as factors (controlled inputs) since they are
believed to be have the greatest effect on the blood glucose level. By separating the occurrence of the
factors and initiate them in changing order a total of 24 different sequences were constructed. The
obtained data set is extensive and hence use full for many different modeling purposes.

The present report can be seen as an introduction to the study design and a guide to the data files
including all data. It is intended for students, researchers or clinicians who wish to use the data for
modeling purposes or get insight in to the insulin-blood glucose dynamics.

Furthermore, the majority of the results of this study has been published in the paper ”Effects of Everyday
Life Events on Glucose, Insulin, and Glucagon Dynamics in Continuous Subcutaneous Insulin Infusion-
Treated Type 1 Diabetes: Collection of Clinical Data for Glucose Modeling” in the journal ”Diabetes
Technology and Therapeutics”, see [2] for details.

The following sections will explain the study design in detail including subject statistics followed by a
presentation of all the data observed and a guide to the data files following this report.

2 Description of the study design

As mentioned in the introduction, to collect data suitable for advanced modelling of type 1 diabetes is
it advantageuos to do a controlled in-clinic study to avoid disturbances by uncontrolled factors. This
section describes the study design.

2.1 Study design

The clinical study was designed from the theory of classical design of experiments. The basis was a
factorial design with three main factors, each investigated on two levels. The factors and the defined
levels are described in detail in section 2.2. The study consisted of 24 different sequences (study days) in
which the three factors were combined differently.

In every day life the factors affecting the blood glucose level are often confounded, e.g., a meal is usually
accompanied by a insulin bolus. Hence it can be difficult to estimate the true effect of each factor.
To avoid problems with unidentifiability due to confounding factors, the occurrence of the events was
separated in time by 150 minutes. A study day included three different events in total.

The combination and order of event types is seen in Figure 2. The first event was always a meal since
the patients had been fastening for at least 10 hours before start. The second and third event was either
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Figure 2: Schematic overview of the study design. In total the study included 24 different sequences. T is study
time.

a bolus, exercise or a snack. Prior to the first event was a stabilization period from 8AM to 10AM (T=0
min) to bring the blood glucose level in the normal range. Likewise, was the last event (T=300 min)
followed by a stabilization period to make the patient ready to leave the clinic.

2.2 Event types

In this study the three events investigated was: Meal including fast-acting carbohydrates, exercise on a
treadmill and insulin boluses. Each event type was studied at two levels. Additionally, some study days
included a liquid snack. A description of the levels is seen in table 1.

The meal was either given with half the meal bolus or with no bolus at all. The size of the meal bolus was
determined from the subjects weight and personal insulin-to-carbohydrate ratio (ICR). ICR is defined as
the amount of carbohydrate in milligrams one unit of insulin can counterbalance. The energy composition
of the meal was 52% carbohydrates, 18%protein and 30% fat. It included simple carbohydrates form white
bread, ham, cheese, margarine, marmalade, milk and juice. The snack was a protein drink with an energy
composition of 89% carbohydrates and 11% protein. The size of the meal and snack was determined from
the body weight as seen in Table 1.

Exercise was separated in a mild and moderate level, the former defined as 50% of interval between resting
heart rate and maximum heart rate and the latter as 75%. An insulin bolus was separated into a small
and large bolus, a small bolus was defined to lower blood glucose by 3 mmol/L based on the personal
insulin sensitivity factor (ISF) and a large bolus was defined to lower blood glucose by 6 mmol/L based
on personal ISF. ISF is defined as point drop in plasma glucose (mmol/L) per unit of insulin.

Table 1: Description of event types

Event type Levels Description
Meal Unbolused Solid food with drink. 1 g of CHO/kg body

weight. No meal bolus.
Underbolused Solid food with drink. 1 g of CHO/kg body

weight. 50% of the insulin bolus matching the
meal CHO content based on personal ICR.

Exercise Mild 0.5 x (maximum HR - resting HR) + resting
HR.

Moderate 0.7 x (maximum HR - resting HR) + resting
HR.

Bolus Small Insulin bolus estimated to lower blood glucose
level by 3 mmol/L based on personal ISF.

Large Insulin bolus estimated to lower blood glucose
level by 6 mmol/L based on personal ISF.

Snack NA Liquid. 0.4 g of CHO/kg of body weight.
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2.3 Data collection

During the study day blood glucose level was analyzed every ten minutes. Insulin level was analyzed
every ten minutes 30 minutes after an event otherwise every 30 minutes. Additionally, glucagon, cortisol,
growth hormone, and epinephrine and norepinephrine levels were analyzed according to the same scheme
as insulin. The CGM recorded the sensor glucose level every 5 minutes. The Actiheart recorded activity
and heart rate every minute.

3 Description of patients and equipment

This section present physiological details about the patients and details regarding the equipment used
for monitoring and analysis.

3.1 Patients

Twelve type 1 diabetes patients participated in the study. They were all recruited from the diabetes
clinic at Hvidovre Hospital. All were treated with insulin aspart (Novo Nordisk, BagsvÃ¦rd, Denmark)
using a pump (Paradigm 522/722 from Medtronic, Northridge, CA) for at least six months before the
first visit. The patient characteristics are shown in table 2.

Table 2: Patient Characteristics

Female sex 75%
Age 34.3±9.1 years
Body mass index 25.1±4.3 kg/m2

Diabetes duration 16.5±10.2 years
C-peptide 0.097±0.078 nmol/L
Hemoglobin A1c 6.7±0.4%
Total daily insulin 0.63±0.11 U/kg/day

3.2 Equipment for blood analysis

The blood samples drawn during the study where analyzed for different hormone concentrations and
blood glucose concentration. This section describes the methods and equipment used for these analysis.

Blood glucose was analyzed with gold standard equipment (YSI2300 STAT Plus, Yellow Springs Instru-
ments, Yellow Springs, OH).

Insulin aspart was analyzed with a specific immunoassay using the LOCI-technology at Novo Nordisk
A/S, Måløv, Denmark.

The glucagon analysis was made with a pancreas specific glucagon assay with a low detection limit at the
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen,
Copenhagen, Denmark. The glucagon assay was directed against the C-terminal of the glucagon molecule
(antibody code no. 4305) and therefore measures glucagon of mainly pancreatic origin

Cortisol was analyzed with Solid-phase chemiluminiscense competitiv immunometric assay and growth
hormone was analyzed with Solid-phase two-site chemiluminiscense immunometric assay both on Im-
mulite 2000 (Siemens Healthcare Diagnostics) at Department of clinical biochemistry, Hvidovre Hospital,
Denmark.

For the plasma catecholamine extraction procedure the The concentration of epinephrine and nore-
pinephrine was determined by HPLC with electrochemical detection (Pcat extraction kit part no: 45-0141,

4



Thermo Fisher Scientific, California, USA). The column was a Prodigy 3u ODS (3) C18 (2 mm x 100
mm, particle size 3 µm, phenomenex). The mobile phase consisted of 55 mM sodium acetate, 1 mM
octanesulfonic acid, 0.1 mM Na2EDTA and 8% Acetonitrile, adjusted to pH 3.2 with 0.1M acetic acid,
and was degassed using an on-line degasser. Twenty µl of the samples were injected and the flow rate
was 0.15 mL/min. The electrochemical detection was accomplished using an amperometric detector (An-
tec Decade from Antec, Leiden, The Netherlands) with a glassy carbon electrode set at 0.8 V, with an
Ag/AgCl as reference electrode.

3.3 Activity monitor and continuous glucose monitor

To monitor the activity level of the patients, the Actiheart (CamNtech Ltd., Cambridge,UK) was used.
The Actiheart monitors heart rate and activity from an accelerometer. During the study the patients also
wore a CGM (Paradigm Real-Time, Medtronic) observing the glucose level in the subcutaneous layer.

4 Description of data files

For each study day a .csv file with all the data exits. All types of outputs and covariates are included.
The time resolution is in minutes. Furthermore, an info file and comments file are included for each
sequence.

Some of the data files includes missing observations. Look in the comments file for information about
missing observations and other discrepancies between the planned sequence and what was performed.

In the table below all the input and outputs are stated in the order they appear in the data file. First
column is a time vector which is followed by four inputs vectors corresponding to carbohydrates, insulin
delivery, IV glucose administration and prescribed exercise level determined from the beats per minute
(BPM). Hereafter blood glucose (YSI) and sensor glucose (CGM) values are stated followed by insulin
plasma concentration and the remaining hormones stated in section 2.3. Finally, data and information
from the Actiheart are listed.

The content of the info file can be seen in table 4. It contains information about the study: date, and
sequence no., and information about the patient, e.g., age, weight, resting heart rate (HR), and basal
insulin rate settings for the pump.

The comments files include a time vector corresponding to the one in the data files and the comments
from the physician in charge of the study. They also include blood pressure observations obtained during
the study day.

The data files are named with a number representing the participant and the letter ’a’ or ’b’ indicating
whether it is the first or the second study day for that participant. E.i. the data file for participant
no. 3’s second event is named 03b data.csv. The info and comments files are named 03b info.csv and
03b comments.csv respectively.

4.1 Conversion of units

In glucose modelling and diabetes research, different units are used for blood glucose and sensor glucose
level. The most often used unit for insulin is units. In table 5 is the different conversion factors for
glucose and insulin stated. For the plots presented later in this report, the unit for cortisol was changed
from nmol/L to ng/mL. This conversion is also included in the table.
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Table 3: Data file content

Variable Unit Description

TT [min] Trial time
CHO [g] Carbohydrate intake
Iin [U] Insulin delivery from the pump
Gin [g] I.V. Glucose delivery
EX [BPM] Prescribed exercise level
YSI [mmol/L] Plasma glucose level
CGM [mmol/L] Subcutanoues glucose level
Iout [pM] Insulin concentration in plasma
GG [pM] Glucagon concentration in plasma
CS [nmol/L] Cortisol concentration in plasma
GH [ng/mL] Growth hormone concentration in plasma
AL [ng/mL] Adrenaline concentration in plasma
NL [ng/mL] Noradrenaline concentration in plasma
ACT [Counts] Activity level
CL BPM [BPM] Observed heart rate (cleaned)
Raw BPM [BPM] Observed heart rate (raw)
OK/Rec [-] Index indicating whether the BPM recording is properly

recorded (OK) or had to be recovered (Rec)
ECG (µV ) [µV ] Eccocardiogram observations used to calculate ACT
Lt s [s] Amount of lots seconds in the current minute in the Actiheart
J/ep [Joule] Joules per epoch
J/ep/kg [Joule] Joules per epoch per kilo body weight

5 Plots of data

This section presents plots of the entire data set. In Table 6 an overview of the entire study is presented.

Each plot presents the specific sequence and timing and size of inputs: Meals, insulin boluses and intra-
venously administrated glucose. Furthermore, all the analyzed observations are plotted, e.g., YSI, CGM,
Insulin aspart, glucagon, heart rate, activity, norepinephrine, epinephrine, cortisol and growth hormone.
The title of the plots is participant no. and a or b referring to the first or second study day for that
participant. Note that for participant no. 01 they are named 01b and 01c since we performed a pilot
study on this participant which is not included. Participant no. 9 was excluded from the study due to
pregnancy and no data exists from this participant. An additional participant was included instead (no.
13).
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Table 4: Info file content

Variable Description

Date Date of the study day
Sequence no. 1:24
Patient ID Initials and date of birth
Patient trial no. States the patients no. of visit.
Age Age in years
Sex M/F
Weight Body weight in kg
Height Height in meters
Norm. ICR The patient’s normal insulin-to-carbohydrate ratio
Norm. ISF The patient’s normal insulin sensitivity factor
Basal insulin rate Time interval: Basal rate
Target BG The target blood glucose
Resting HR Resting heart rate
Maximum HR Maximum heart rate
Actiheart Device A or B
Sensor placement States the placement of the sensor on the body
Pump placement States the placement of the pump on the body
Diabetes debut Year of diabetes debut
Medication List of the patient’s medication (if any)

Table 5: Conversion of units

Glucose [1] 1 mmol/L 18.0182 mg/dL
Insulin[1] 6 pM 1 mU/L
Cortisol [1] 1 nmol/L 2.759 ng/mL
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Table 6: Overview of the clinical DIACON study 2009-2010

Patient # Event 1 Event 2 Event 3 Short code
01 b Meal w/o bolus Moderate exercise Large bolus 0bMOeLb
01 c Meal w ½bolus Moderate exercise Small bolus ½bMOeSb
02 a Meal w ½bolus Small bolus Mild exercise ½bSbMIe
02 b Meal w ½bolus Mild exercise Small bolus ½bMIeSb
03 a Meal w/o bolus Large bolus Mild exercise 0bLbMIe
03 b Meal w ½bolus Large bolus Moderate exercise ½bLbMOe
04 a Meal w ½bolus Small bolus Snack ½bSbSn
04 b Meal w ½bolus Mild exercise Large bolus ½bMIeLb
05 a Meal w ½bolus Moderate exercise Snack ½bMOeSn
05 b Meal w/o bolus Small bolus Snack 0bSbSn
06 a Meal w ½bolus Large bolus Mild exercise ½bLbMIe
06 b Meal w ½bolus Moderate exercise Large bolus ½bMOeLb
07 a Meal w/o bolus Mild exercise Small bolus 0bMIeSb
07 b Meal w/o bolus Moderate exercise Small bolus 0bMOeSb
08 a Meal w/o bolus Mild exercise Snack 0bMIeSn
08 b Meal w/o bolus Large bolus Moderate exercise 0bLbMOe
10 a Meal w ½bolus Moderate exercise Small bolus ½bMOeSb
10 b Meal w ½bolus Mild exercise Snack ½bMIeSn
11 a Meal w ½bolus Large bolus Snack ½bLbSn
11 b Meal w/o bolus Mild exercise Large bolus 0bMIeLb
12 a Meal w/o bolus Small bolus Moderate exercise 0bSbMOe
12 b Meal w/o bolus Moderate exercise Snack 0bMOeSn
13 a Meal w/o bolus Small bolus Mild exercise 0bSbMIe
13 b Meal w/o bolus Large bolus Snack 0bLbSn
The code in the last column is combined of the three event during the study day.
0b corresponds to a meal w/o bolus and ½b corresponds to a meal w/ half bolus.
Lb corresponds to at large bolus. Sb corresponds to a small bolus. MOe corresponds to
moderate exercise. MIe corresponds to mild exercise. Sn corresponds to a snack.
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Figure 3: Results from trial 01b. Note that the S.C. insulin is above zero according to table ll at all times even
though it is hard to see.

9



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

s

Stabilization Meal w. ½ bolus Moderate exercise Small bolus

Trial no. 01c

datap$TT

g/
m

in

0
5

10

I.V. Glucose Amount of CHO

datap$TT

U
/m

in

0
1

2 S.C. Insulin

datap$TT

B
P

M

50
15

0 Prescribed exercise

● ● ● ● ●
● ●

● ●
● ● ● ● ● ●

●

●

● ●

●

● ●

● ●

●

●
●

●

●
●

●

● ● ●
●

● ● ●
● ● ●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ●

datap$TT[subsetYSI]

m
m

ol
/L

● ● ● ● ●
● ●

● ●
● ● ● ● ● ●

●

●

● ●

●

● ●

● ●

●

●
●

●

●
●

●

● ● ●
●

● ● ●
● ● ●

● ● ● ● ● ● ●
●

●
●

● ● ● ● ●

●

●
●

●●●●●
●

●
●●

●

●●●●●●●●

●
●●

●●●●●●●●●
●

●

●
●●

●●
●

●
●●●

●●
●●●●●●●●

●

●
●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●
●

2
6

10
14

datap$TT[subsetCGM]

●

●

YSI
CGM

0
50

10
0

15
0

Trial time [min]

pM

●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
● ●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

datap$TT[subsetGG]

0
2

4
6

8
10

pM

● Insulin ● Glucagon

BPM

B
P

M

0
50

10
0

15
0

0
30

0
60

0
90

0
C

ou
nt

s
Heart rate Activity

0
2

4
6

Trial time [min]

ng
/m

L

● ● ●

●

●
●

●

●
●

●

●

●

●

● ● ●
●

● ●
● ● ●

●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

●

●
● ●

●
● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

Trial time [min]

● ●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ● 0

50
10

0
15

0

−100 0 100 200 300 400

●

●

Noradrenaline
Adrenaline

●

●

Growth hormone
Cortisol

ng
/m

L

Trial time [min]

Figure 4: Results from trial 01c. Note that the S.C. insulin is above zero according to the info file.
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Figure 5: Results from trial 02a. Note that the S.C. insulin is above zero according to the info file.
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Figure 6: Results from trial 02b. Note that the S.C. insulin is above zero according to the info file.
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Figure 7: Results from trial 03a. Note that the S.C. insulin is above zero according to the info file.
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Figure 8: Results from trial 03b. Note that the S.C. insulin is above zero according to the info file.
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Figure 9: Results from trial 04a. Note that the S.C. insulin is above zero according to the info file.
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Figure 10: Results from trial 04b. Note that the S.C. insulin is above zero according to the info file.
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Figure 11: Results from trial 05a. Note that the S.C. insulin is above zero according to table ll at all times even
though it is hard to see.
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Figure 12: Results from trial 05b. Note that the S.C. insulin is above zero according to table ll at all times even
though it is hard to see.
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Figure 13: Results from trial 06a. Note that the S.C. insulin is above zero according to the info file.
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Figure 14: Results from trial 06b. Note that the S.C. insulin is above zero according to the info file.
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Figure 15: Results from trial 07a. Note that the S.C. insulin is above zero according to the info file.
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Figure 16: Results from trial 07b. Note that the S.C. insulin is above zero according to table ll at all times even
though it is hard to see.
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Figure 17: Results from trial 08a. Note that the S.C. insulin is above zero according to the info file.
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Figure 18: Results from trial 08b. Note that the S.C. insulin is above zero according to the info file.
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Figure 19: Results from trial 10a. Note that the S.C. insulin is above zero according to the info file.
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Figure 20: Results from trial 10b. Note that the S.C. insulin is above zero according to the info file.
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Figure 21: Results from trial 11a. Note that the S.C. insulin is above zero according to the info file.
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Figure 22: Results from trial 11b. Note that the S.C. insulin is above zero according to the info file.
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Figure 23: Results from trial 12a. Note that the S.C. insulin is above zero according to the info file.
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Figure 24: Results from trial 12b. Note that the S.C. insulin is above zero according to the info file.
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Figure 25: Results from trial 13a. Note that the S.C. insulin is above zero according to the info file.
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Figure 26: Results from trial 13b. Note that the S.C. insulin is above zero according to the info file.
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Original Article

Effects of Everyday Life Events on Glucose, Insulin,
and Glucagon Dynamics in Continuous Subcutaneous

Insulin Infusion–Treated Type 1 Diabetes:
Collection of Clinical Data for Glucose Modeling

Signe Schmidt, M.D.,1 Daniel A. Finan, M.S., Ph.D.,2 Anne Katrine Duun-Henriksen, M.S.,2

John Bagterp Jørgensen, M.S., Ph.D.,2 Henrik Madsen, M.S., Ph.D.,2 Henrik Bengtsson, B.Sc., M.B.A.,3

Jens Juul Holst, M.D., DMSc,4 Sten Madsbad, M.D., DMSc,1 and Kirsten Nørgaard, M.D., DMSc1

Abstract

Background: In the development of glucose control algorithms, mathematical models of glucose metabolism are
useful for conducting simulation studies and making real-time predictions upon which control calculations can
be based. To obtain type 1 diabetes (T1D) data for the modeling of glucose metabolism, we designed and
conducted a clinical study.
Methods: Patients with insulin pump–treated T1D were recruited to perform everyday life events on two
separate days. During the study, patients wore their insulin pumps and, in addition, a continuous glucose
monitor and an activity monitor to estimate energy expenditure. The sequence of everyday life events was
predetermined and included carbohydrate intake, insulin boluses, and bouts of exercise; the events were in-
troduced, temporally separated, in different orders and in different quantities. Throughout the study day, 10-
min plasma glucose measurements were taken, and samples for plasma insulin and glucagon analyses were
obtained every 10 min for the first 30 min after an event and subsequently every 30 min.
Results: We included 12 patients with T1D (75% female, 34.3 – 9.1 years old [mean – SD], hemoglobin A1c
6.7 – 0.4%). During the 24 study days we collected information-rich, high-quality data during fast and slow
changes in plasma glucose following carbohydrate intake, exercise, and insulin boluses.
Conclusions: This study has generated T1D data suitable for glucose modeling, which will be used in the
development of glucose control strategies. Furthermore, the study has given new physiologic insight into the
metabolic effects of carbohydrate intake, insulin boluses, and exercise in continuous subcutaneous insulin
infusion–treated patients with T1D.

Background

Mathematical models of glucose metabolism are
useful in developing glucose control algorithms for

patients with type 1 diabetes (T1D); they are invaluable in
performing preclinical simulation research, and they may be
used online to make predictions of future glucose values.1

Quantitative knowledge about the metabolic effects of con-
tinuous subcutaneous insulin infusion (CSII) therapy with
short-acting analog insulin in patients with T1D, however, is
sparse. To date, most glucose modeling data have been de-
rived from short-term observation of type 2 diabetes popu-

lations under fasting conditions.2 These studies do not reflect
intraday variability, and it is unclear whether the results can
be extrapolated to a heterogeneous T1D population. Another
approach to the modeling of glucose metabolism is to use
insulin and continuous glucose monitoring (CGM) data from
previous closed-loop studies.3 Unfortunately, access to such
data is often restricted. More easily accessible are ambulatory
data from patients using CGM; however, ambulatory data are
not amenable to model development because the system in-
puts are not introduced in a predetermined, organized order,
and uncertainty in the data is high because of unmeasured or
inaccurately recorded influences resulting in limited accuracy

1Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark.
2Department of Informatics and Mathematical Modeling, Technical University of Denmark, Kongens Lyngby, Denmark.
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of the models, as evidenced by metrics such as root mean
squared error values and mean square prediction error.4,5 To
collect high-quality T1D data suitable for developing accurate
models of glucose metabolism, we designed an in-clinic study
addressing inter-individual variability in everyday situations
in adults with CSII-treated T1D. Data will be used in the
construction of a virtual T1D clinic for preclinical simulations
of different glucose control strategies including a closed-loop
system. The DiaCon Study Group is working for better dia-
betes control in general, and glucose modeling is one of the
group’s main research areas. The aim of this article is to
present the study protocol, design considerations, and results
of the clinical study.

Subjects and Methods

Participants

We recruited 12 patients with T1D from the outpatient di-
abetes clinic at Hvidovre University Hospital, Hvidovre,
Denmark. Patient characteristics were as follows: female sex,
75%; age, 34.3 – 9.1 years (mean – SD); body mass index,
25.1 – 4.3 kg/m2; diabetes duration, 16.5 – 10.2 years; C-peptide,
0.097 – 0.078 nmol/L (C-peptide was measured 2 h after meal
simulation); hemoglobin A1c, 6.7 – 0.4%; and total daily insulin,
0.63 – 0.11 U/kg/day. For a minimum of 6 months, patients had
been treated with insulin aspart (Novo Nordisk, Bagsværd,
Denmark) using the Paradigm� 522/722 insulin pump (Med-
tronic, Northridge, CA). During the study, patients also used a
CGM device (Paradigm Real-Time) from Medtronic and an
Actiheart� (CamNtech Ltd., Cambridge, UK), which estimates
activity energy expenditure based on heart rate (HR) and ac-
celerometer measurements. Insulin was infused, and CGM
devices were inserted into the subcutaneous tissue on the lower
abdomen or the lower back. Patients who reported uncertainty
about the accuracy of their insulin pump settings performed
basal rate and bolus guide testing and optimized pump settings
accordingly the first in-clinic study day.6

The study protocol was approved by the regional ethics
committee, and the patients gave informed consent to par-
ticipation. No remuneration was given.

Experimental design

We devised a modified factorial design study with 24 dif-
ferent study days with predetermined daily life events influ-
encing blood glucose (BG). Each study day consisted of three
different events. The event types and sequences of events are
described in Tables 1 and 2. Patients were randomly assigned
to complete two different study days separated by at least 3
weeks. Except for the duration of the events, the patients spent
the day reclining in bed. Study days started at 8:00 a.m. The
first 2 h were free of events, designed to stabilize the BG and
the effects of transportation to the hospital. The first event of
the day was at 10:00 a.m. and was always a meal. The second
event was at 12:30 p.m. and was either an insulin bolus or a 20-
min bout of exercise, and the third event was at 3:00 p.m. and
was an insulin bolus, an exercise bout, or a snack. The events
at 12:30 p.m. and 3:00 p.m. were never of the same type on the
same study day. At 5:00 p.m. patients’ BG was stabilized, and
they were subsequently discharged.

The meal, insulin bolus, and exercise events had two levels
as described in Table 1. The meal came either with no insulin

or with an insulin bolus corresponding to 50% of the bolus
needed to cover the carbohydrate (CHO) content of the meal
estimated from the patient’s insulin to CHO ratio. The meal
bolus was given when the patient started eating. The size
of the meal was determined by the weight of the patient (1 g of
CHO/kg of body weight) with a composition by energy of
52% CHO, 18% protein, and 30% fat. The CHOs were simple,
and the meal included white bread, ham and cheese, marga-
rine, marmalade, milk, and juice. The snack was a juice drink
(ProvideXtra, Fresenius Kabi, Bad Homburg, Germany) with
89% of the energy coming from CHO and 11% from fat. The
snack size was determined by the patient’s weight (0.4 g of
CHO/kg of body weight). Meals were ingested over ap-
proximately 15 min, and snacks over 5 min.

The exercise event was running, performed on a treadmill.
Mild and moderate exercise was quantified by HR and de-
fined as 50% and 75% of the HR reserve, respectively. HR
levels were calculated using the formula of Karvonen et al.:7

HRstudy¼% intensity · (HRmax�HRrest)þHRrest

The patient’s HR was measured online, and the speed of the
treadmill was adjusted to achieve the prescribed HR. As a
safety precaution, we measured blood ketones before exercise
if the plasma glucose (PG) was > 252 mg/dL.

The ‘‘small’’ and ‘‘large’’ insulin boluses were estimated to
lower PG by 54 and 108 mg/dL, respectively, based on the
patient’s insulin sensitivity factor.

We instructed patients not to exercise or consume alcohol
on the day before the in-clinic study and to fast starting at
10:00 p.m. On the morning of the study day, patients cali-
brated their CGM devices at home with capillary blood. Upon
arrival at the hospital a sampling cannula was placed in an
antecubital vein. If PG was < 54 mg/dL at any time, another
cannula was placed in the other arm, and intravenous glucose
was give to raise PG to 94 mg/dL.

We performed 10-min PG measurements throughout the
experiment (YSI2300 STAT Plus, Yellow Springs Instruments,
Yellow Springs, OH). Blood samples for insulin and glucagon
analysis were obtained every 10 min for the first 30 min after
an event and subsequently every 30 min. Sensor glucose (SG)
values (i.e., CGM measurements) were obtained at 5-min in-
tervals and automatically stored in the insulin pump. After
the end of the study day, insulin infusion data, CGM data, and
activity and HR data were downloaded from the respective
devices. To further improve the physiological understanding
of glucose dynamics during CSII treatment, samples for
growth hormone, cortisol, epinephrine, and norepinephrine
analysis were drawn at the same intervals as insulin and
glucagon; however, these data will be reported separately
elsewhere.

Changes in concentrations are reported instead of specific
values because the baseline values of each event differed
markedly as a result of subject-to-subject physiological vari-
ability as well as the different sequences of events on different
study days. If not otherwise specified, results in the text are
mean – SD values. A 5% level is used for significance testing.
These significance tests are assuming mutually independent
data points; however, future modeling studies should contain
parametric descriptions of the autocorrelation structure of
data.8 Area under the curve (AUC) was calculated using the
trapezoid rule to quantify the effects of the events.
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Results

We present mean changes in PG, SG, plasma insulin, and
glucagon concentrations for the three event types: CHO in-
take, exercise, and insulin bolus. These data are shown in
Figures 1–3.

CHO intake

Three event types included CHO intake: the unbolused
meal, the underbolused meal (50% meal bolus), and the un-
bolused snack. The unbolused meal was served on 12 study
days, and the underbolused meal was served on another 12
study days. Eight patients were randomized to have the same
type of meal on both study days; four patients had the un-
bolused meal on one study day and the underbolused meal on
the other. Six subjects had one of the eight snack events, and
one subject completed two study days including a snack event
(Tables 1 and 2).

After the meals, PG increased throughout the observation
period (Fig. 1). Peak values at 150 min were 232.8 – 43.4 mg/
dL and 120.2 – 53.1 mg/dL (P = 10 - 5) above baseline for the

unbolused and the underbolused meals, respectively. After
60 min, mean PG and AUC for the two meal event types were
significantly different; SG values did not statistically differ
until 110 min, and SG AUC differed only the last 20 min of the
observation period. PG after the snack peaked at 60 min
(78.3 – 33.5 mg/dL) and then decreased again. In the first
60 min after the underbolused meal, plasma insulin rose to
135.5 – 70.2 pmol/L above baseline and then fell again. After
the unbolused meal, plasma insulin remained stable, but after
the snack event there was a slight decrease in plasma insulin
to 35.4 – 42.9 pmol/L at 120 min. Glucagon concentrations
and AUC after the meals were not significantly different.

Exercise

Nine subjects performed mild exercise on 10 study days.
Eight subjects performed moderate exercise on 10 study days
(Tables 1 and 2). One moderate exercise event was excluded
from the analysis because the subject received intravenous
glucose at the beginning of the event. There were no signifi-
cant differences in mean concentrations or AUC for PG, SG,
plasma insulin, or glucagon following mild and moderate

Table 1. Event Type and Sequence Descriptions

Description of event types

Meal Unbolused Solid food with drink. 1 g of CHO/kg of body weight. No meal bolus
Underbolused Solid food with drink. 1 g of CHO/kg of body weight. 50% of the insulin

bolus matching the meal CHO content based on personal ICR
Exercise Mild 0.5 · (maximum HR - resting HR) + resting HR

Moderate 0.7 · (maximum HR - resting HR) + resting HR
Bolus Small Insulin bolus estimated to lower PG by 54 mg/dL based on personal ISF

Large Insulin bolus estimated to lower PG by 108 mg/dL based on personal ISF
Snack NA Liquid. 0.4 g of CHO/kg of body weight.

Description of sequences

1st event 2nd event 3rd event Sequence no.

Meal unbolused Bolus, small Exercise, mild 1
Exercise, moderate 2
Snack 3

Bolus, large Exercise, mild 4
Exercise, moderate 5
Snack 6

Exercise, mild Bolus, small 7
Bolus, large 8
Snack 9

Exercise, moderate Bolus, small 10
Bolus, large 11
Snack 12

Meal underbolused Bolus, small Exercise, mild 13
Exercise, moderate 14
Snack 15

Bolus, large Exercise, mild 16
Exercise, moderate 17
Snack 18

Exercise, mild Bolus, small 19
Bolus, large 20
Snack 21

Exercise, moderate Bolus, small 22
Bolus, large 23
Snack 24

CHO, carbohydrate; HR, heart rate; ICR, insulin to carbohydrate ratio; ISF, insulin sensitivity factor; NA, not applicable; PG, plasma
glucose.
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exercise. PG levels decreased by 43.4 – 27.4 mg/dL and
63.2 – 52.5 mg/dL after mild and moderate exercise, respec-
tively (Fig. 2). Plasma insulin displayed a biphasic pattern:
peak values after 20 min of mild and moderate exercise were
26.0 – 17.1 pmol/L and 26.3 – 51.6 pmol/L above baseline,
respectively, followed by a decline to 29.5 – 25.3 pmol/L and
44.5 – 42.8 pmol/L below baseline values at 120 min. A slight
decrease in glucagon concentrations was observed after ini-
tiation of exercise followed by an increase and peak at the 30-
min mark of 2.1 – 2.0 pmol/L for mild exercise and 2.0 – 1.5
pmol/L for moderate exercise. Mean energy expenditure was
64 – 33 kcal and 117 – 42 kcal during mild and moderate ex-
ercise, respectively (P = 0.01). There was no correlation be-
tween the decrease in BG concentration and activity energy
expenditure.

Insulin bolus

A small insulin bolus was given to nine patients and a large
bolus to seven patients (Tables 1 and 2). Following the injec-
tion of small (1.3 – 0.2 U) and large (2.8 – 1.4 U) insulin bo-
luses, PG decreased by 71.8 – 31.9 mg/dL and 92.6 – 27.5 mg/
dL, respectively, after 120 min (P = 0.14) (Fig. 3). PG AUCs did
not significantly differ. Plasma insulin peak times were 30 min
for both small and large boluses, and the respective peak
values were 29.9 – 24.0 pmol/L and 74.6 – 30.7 pmol/L above
baseline (P = 0.002). Glucagon concentrations were lower at all
times after the large insulin bolus event compared with the

small, but the difference was statistically significant only at 10
and 30 min.

CGM accuracy

The mean absolute difference between paired SG and PG
for all study days in total was 28.9 mg/dL (95% confidence
interval, 17.6–42.0 mg/dL), and the mean absolute relative
difference was 21.6% (17.9–25.2%). When patients were fasting,
reclining in bed, and only receiving their basal insulin infusion
(8:00–10:00 a.m.), mean absolute difference for all study days in
total was 8.9 mg/dL (5.3–12.5 mg/dL), and mean absolute
relative difference was 11% (6.5–15.5 %). CGM accuracy de-
creased during rapid changes in PG. On all study days, CGM
values were lower than the actual PG values when PG was
increasing but also when PG was stable in the hyperglycemic
ranges (< 198 mg/dL). Only during sharp decreases in PG and
when PG was stable in the normoglycemic range did CGM
values correspond to or exceed YSI measurements.

Discussion

We devised a new in-clinic protocol based on daily life
events including meals, snacks, insulin boluses, and exercise
to obtain T1D data for glucose modeling. CHO intake and
changes in insulin delivery are the two most important vari-
ables in glucose control in T1D. We designed the study such
that these two variables on 12 of the 24 study days were in-
troduced simultaneously, as they often are in real life. On

Table 2. Patient Characteristics and Study Day Event Sequences

Patient Sex
Age

(years)
BMI

(kg/m2)

Diabetes
duration
(years)

HbA1c
(%)

Total daily
insulin

(U/kg/day)
Study
day

Event 1
(CHO/
insulin) Event 2 Event 3

1 F 51 23.1 43 6.4 0.45 1 65 g/— Moderate exercise 1.3 U of insulina

2 65 g/2.2 U Moderate exercise 0.6 U of insulinb

2 M 41 22.2 8 6.9 0.61 1 75 g/3.8 U 1.4 U of insulina Mild exercise
2 75 g/3.8 U Mild exercise 1.4 U of insulina

3 F 35 26.9 26 6.9 0.50 1 75 g/— 2.4 U of insulinb Mild exercise
2 75 g/2.9 U 2.4 U of insulinb Moderate exercise

4 F 26 21.4 13 6.7 0.72 1 65 g/3.3 U 0.9 U of insulina Snack 28 g of CHO
2 65 g/3.3 U Mild exercise 1.9 U of insulinb

5 M 31 23.5 23 5.8 0.73 1 75 g/3.4 U Moderate exercise Snack 31 g of CHO
2 75 g/— 1.7 U of insulina Snack 31 g of CHO

6 M 49 25.1 7 6.1 0.47 1 85 g/4.3 U 1.3 U of insulinc Mild exercise
2 85 g/4.3 U Moderate exercise 2.6 U of insulinb

7 F 25 23.8 8 6.9 0.76 1 75 g/— Mild exercise 1.5 U of insulina

2 75 g/— Moderate exercise 1.5 U of insulina

8 F 29 32.6 19 7.0 0.67 1 85 g/— Mild exercise Snack 32 g of CHO
2 85 g/— 3.2 U of insulinb Moderate exercise

9 F 38 20.3 13 6.8 0.57 1 65 g/2.7 U Moderate exercise 1.0 U of insulina

2 65 g/2.7 U Mild exercise Snack 25 g of CHO
10 F 34 34.7 12 7.1 0.78 1 105 g/— Mild exercise 5 U of insulinb

2 105 g/8.8 U 5 U of insulinb Snack 44 g of CHO
11 F 29 24.4 14 6.6 0.66 1 65 g/— 1.5 U of insulina Moderate exercise

2 65 g/— Moderate exercise Snack 28 g of CHO
12 F 23 23.3 12 7.1 0.62 1 65 g/— 1.1 U of insulina Mild exercise

2 65 g/— 2.2 U of insulinb Snack 27 g of CHO

aLarge insulin bolus.
bSmall insulin bolus.
cThe subject should have had a large insulin bolus (2.6 U) according to the randomization; however, as this amount of insulin would likely

have caused severe hypoglycemia, it was decided to overrule the planned sequence and administer a small insulin bolus instead.
CHO, carbohydrate; HbA1c, hemoglobin A1c.
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FIG. 1. Changes in (a) plasma glucose, (b) sensor glucose, (c) plasma insulin aspart, and (d) glucagon after ingestion of an
unbolused liquid snack (0.4 g of carbohydrate/kg of body weight), after an unbolused solid meal (1.0 g of carbohydrate/kg of
body weight), and after a solid meal with 50% of the insulin bolus needed to cover the carbohydrate content of the meal based
on the patients’ insulin to carbohydrate ratios. Data are mean – SEM values.

FIG. 2. Changes in (a) plasma glucose, (b) sensor glucose, (c) plasma insulin aspart, and (d) glucagon during and after a 20-min
bout of mild and moderate exercise ona treadmill. The dotted boxes indicate the exercise period. Data are mean – SEM values.
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other study days we separated CHO intake and insulin bolus
temporally to be able to observe the responses to each system
input. Practical T1D measurement heruristics involve a si-
multaneity between CHO intake and insulin boluses. Un-
fortunately, this simultaneity disadvantages some useful
dynamic modeling strategies that cannot satisfactorially dis-
tinguish the very different effects of these two system inputs.
It has been shown quantitatively in simulation studies that
there is a substantial positive correlation between the pre-
diction accuracy of models and the degree of separation of the
inputs from which they were identified.9

Different levels of CHO intake and insulin boluses were
also applied to the protocol. The levels were chosen to gain
both fast and slow changes in PG and to challenge the system
as much as possible while maintaining realistic values.

Exercise can induce decreases in PG with risk of hypogly-
cemia during, immediately after, or hours after finishing the
activity. However, exercise can also induce hyperglycemia
depending on insulin concentration and the type and inten-
sity of exercise.10 We incorporated into our study protocol
both mild and moderate exercise to study these effects.

Each of the 12 subjects was studied on two separate days
performing two different sequences of events. In some cases
the two study days contained identical events, but in different
order; in other cases the events were different. This makes it
possible to test the inter-individual performance of the models
under identical and dissimilar experimental conditions and to
some extent also the intra-individual performance, although a

2-day study does not fully reflect the intra-individual vari-
ability. From a clinical perspective, the effects of the different
study events are not fully separated; nevertheless, with ad-
vanced statistics, such as mixed effects modeling,11 it is pos-
sible to further separate the events and obtain more
information across the study population.

One of the DiaCon Study Group’s aims is to develop a
closed-loop system to improve glucose regulation in T1D. We
have based our closed-loop system on the subcutaneous–
subcutaneous approach, which has the greatest potential for
commercialization in the near future.12 High-quality insulin
pumps are readily available, and sensor performance is
steadily improving. The Actiheart used in this study records
data for energy expenditure estimations that have to be per-
formed retrospectively. Devices providing the information in
real-time are, however, available, which makes it possible to
integrate activity in a control algorithm.

We prioritized to perform glucagon analyses to gain insight
into the glucagon dynamics in patients with T1D treated with
CSII, but also to collect data for potential modeling purposes.
Although we intend to develop an algorithm controlling
glucose solely by insulin delivery, other groups are working
on bihormonal closed-loop solutions based on dual pumps
delivering both insulin and glucagon.13,14 It remains to be
determined how the strategies will ultimately perform in an
integrated system.

Plasma insulin increased, as anticipated, following the in-
fusion of a half-size meal bolus and remained stable during

FIG. 3. Changes in (a) plasma glucose, (b) sensor glucose, (c) plasma insulin aspart, and (d) glucagon after a small and a
large insulin bolus. The sizes of the small and large insulin boluses were based on the patients’ insulin sensitivity factors and
an intended decrease in plasma glucose of 54 mg/dL and 108 mg/dL, respectively. Data are mean – SEM values.
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the unbolused meal. The slight, unexpected decrease in
plasma insulin after the unbolused meal was most likely a
result of the preceding exercise and insulin bolus events and
not an effect of the meal itself. The greater increase in gluca-
gon concentration after the meals compared with after the
snack reflects the foods’ differing protein content.

During the 20-min bouts of mild and moderate exercise
plasma insulin increased. This observation is consistent with
the results of one study of exercise in T1D insulin pump
users.15 In contrast, other studies concluded that exercise did
not induce increases of insulin concentrations in CSII-treated
patients.16–18 The observed increase in plasma insulin could
be explained physiologically by increases in skin blood flow
during exercise for thermoregulatory purposes.19

The difference in mean energy expenditure during mild
and moderate exercise was statistically significant. Never-
theless, changes in PG, SG, plasma insulin, and glucagon
during and after exercise did not significantly differ during
the 2-h observation period. A tendency toward a greater de-
crease in PG following moderate exercise was, however, ob-
served, and statistical significance may have been achieved
with a larger patient sample. Glucose control in relation to
exercise in T1D is complex, and the results of our study should
not be extrapolated to other intensities or durations of exercise
or exercise performed under different conditions, at different
hours of the day, at different time intervals from meals, or
with different levels of plasma glucose, insulin, and glucagon.
Although there was no simple linear association between
activity energy expenditure and decrease in PG during exer-
cise, data analysis might reveal a more complex relation in-
cluding the counterregulatory hormones that can be modeled
and used in a control algorithm.

The decrease in PG after infusion of the large insulin bolus
was less than estimated; however, if the observation period
had been of the same length as the insulin action time the
estimated value might have been achieved. The decrease in
PG after infusion of the small bolus, on the other hand, was
even larger at 120 min than the estimated total decrease. One
explanation for this could be a carryover effect from previ-
ous events (e.g., exercise or the meal with the half-size meal
bolus).

Accuracy of the CGM was also studied. Mean absolute
relative difference for all study days was higher than reported
data (21.6% vs. 15.2%).20 The reason for this divergence could
be that these previous studies were performed during eu- and
hypoglycemia, whereas most subjects in our study spent a
considerable amount of time in the hyperglycemic ranges.
Furthermore, the study subjects experienced rapid changes in
BG, and CGM values are known to differ from YSI values in
these situations.

A limitation of multi-event study days is that PG will vary
from the beginning of one event to the next. In our study the
different sequences of events further resulted in different
baseline values within the same event type, which is why only
changes in baseline values are reported in the text and figures.
From a strict physiologic point of view it is impossible to draw
firm conclusions based on this type of data. On the other
hand, these data are highly suited for the intended modeling
purposes using advanced pharmacokinetic/pharmacodynamic
modeling methods.21–23 The patients spent the study day re-
clining in bed, which may not be representative of outpatient
life. The reason for choosing this setup and introducing the

events temporally separated was to eliminate the confound-
ing effects of other activities (e.g., the catecholamine response
elicited from physical activity).

In conclusion, we have conducted a clinical study based on
a novel protocol whereby we have gathered information-rich
T1D data for glucose modeling. The next steps will be to de-
velop models of glucose metabolism to be implemented in a
virtual T1D clinic. The virtual clinic will be used for simula-
tions of different glucose control strategies including a closed-
loop glucose control system.
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Abstract

Background:
The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust 
and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with 
standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that 
can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the 
uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation 
ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies.

Methods:
An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as 
the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters 
are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-
ratio tests. Finally, parameter tracking is used to track the variation in the “time to peak of meal response” 
parameter.

Results:
We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in 
the prediction and uncorrelated errors. Tracking of the “peak time of meal absorption” parameter showed that 
the absorption rate varied according to meal type.

Conclusion:
This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were 
obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical 
tools for model validation and model development.

J Diabetes Sci Technol 2013;7(2):431–440

ORIGINAL ARTICLE
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Introduction

Several studies have shown promising potential for automatic insulin delivery in the treatment of type 1 diabetes 
mellitus (T1DM) patients. In the development of control algorithms for an artificial pancreas, virtual T1DM patients are 
a useful tool for preclinical testing and verification. The advantages are several: acceleration of the development 
process, lower costs, and the possibility of testing extreme treatment strategies without having to deal with the 
ethical aspects. The acceptance of virtual preclinical testing is growing and thus also the need for robust and reliable  
models for simulation. Currently, several dynamic models of the blood glucose (BG)–insulin system in T1DM patients 
exist.1–4 The simplest models are used for simulating BG response after an intravenous glucose tolerance test, and 
the most advanced and complex models are used for simulating BG response to a meal [in terms of amount of 
ingested carbohydrates (CHOs)] and to continuous subcutaneous insulin infusion (CSII) from a pump. One of the 
most complex models has been approved for preclinical in silico testing of control algorithms by the U.S. Food and 
Drug Administration.5

The existing models can be categorized as white-box models based on ordinary differential equations (ODEs).  
White-box models are mainly constructed on the basis of physiological knowledge about the system. Solutions to ODEs 
are deterministic functions of time, and hence these models are built on the assumption that future concentrations and 
effects can be predicted exactly.

An essential part of model validation is the analysis of the residual errors (the deviation between the true observations 
and the one-step predictions provided by the model). This validation method is based on the fact that a correct model 
leads to uncorrelated residuals. This is rarely obtainable for white-box models. Hence, in these situations, it is not 
possible to validate ODE models using standard statistical tools. However, by using a slightly more advanced type 
of differential equations, this problem can be solved. By replacing ODEs with stochastic differential equations (SDEs),  
we can obtain uncorrelated residuals both by systematically improving the model and because of the way the 
stochasticity enters the system.

Stochastic-differential-equation-based models are referred to as grey-box models because the structure of the model is 
built on a combination of physiological knowledge, as white-box models, and on statistical information based on the 
observations, as black-box models, which are entirely built on data. Hence, stochastic-differential-equation-based grey-box 
models (SDE-GBs) can be seen as a mix of white-box and black-box models as sketched in Figure 1. An SDE-GB can 
be written as

Figure 1. Illustration of the concept of grey-box modeling. White-box 
models are based mainly on knowledge about the system. Black-box 
models are built on statistical information from the data. Grey-box 
modeling combines the two approaches.

dxt = f(xt,ut,t,q)dt + s(ut,t,q)dw              (1)

yk = h(xk,uk,tk,q) + ek                     (2)

The equations describing the dynamics of the states of 
the system, xt, are formulated in continuous time and are 
separated in a drift term, f(xt,ut,t,θ), and a diffusion term, 
σ(ut,t,θ)dω. The observations, yk, are linked to the states 
through the observation equations, Equation (2), which 
are typically formulated in discrete time and include the 
measurement error, ek. ut represents the inputs and θ the 
parameters of the system.

As seen in Equations (1) and (2), the SDE-GB separates 
the residual error into two separate error terms:

•	 The diffusion, σ(ut,t,θ)dω, representing model approximations and noise originating from unknown disturbances to 
the system, e.g., changes in metabolism due to physical activity, altered stress level, hormone cycle, or simply true 
stochastic behavior and
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•	 The measurement noise, ek, representing the serially uncorrelated error occurring due to imperfect accuracy and 
precision of the analyzing equipment.

Solutions to SDEs are stochastic processes that are described by probability distributions. This property allows for 
maximum likelihood estimation.6

In physiological modeling, SDE-GBs are obvious choices from a theoretical point of view due to their ability to describe 
the stochastic, complex, and unpredictable nature of these systems. The separation of the residual error into diffusion 
and measurement noise results in a more correct description of the prediction error. If the model is describing the data 
properly, this formulation will lead to uncorrelated residuals.

Inclusion of the diffusion has another advantage, mainly related to the model building itself. By investigating the 
diffusion terms, one can retrieve information about how to improve an insufficient model. Diffusion terms that are 
estimated to be relatively large indicate a model mismatch for the relevant part of the model. Accordingly, the diffusion 
terms can help in the search for a more reliable model.7 SDE-GBs have been found to be useful within many areas of 
mathematical modeling of biological and physiological systems.8–12

This article focuses on the advantages of using SDE-GBs when modeling the glucoregulatory system in T1DM patients. 
We start out from a previously published ODE-based model3 and use SDEs and statistical analysis to extend the model  
by adding significant diffusion terms.

Methods

Data
Data from a clinical study conducted at Hvidovre University Hospital as a part of the DIACON project were used.13 
Four CSII-treated T1DM patients performed four different study sequences, including standardized meals and insulin 
boluses. During each study day, three events took place. The first event took place after at least 120 min of BG 
stabilization. It consisted of a standardized solid meal [1 g CHO/kg body weight (BW)] with either a half-meal-size 
insulin bolus calculated on the basis of the patient’s insulin sensitivity factor and insulin-to-carbohydrate ratio or with 
no bolus at all. The second event was introduced 150 min after the meal and was a small or large bolus defined as a 
bolus that would lower BG by 54 or 108 mg/dl, respectively. Finally, after another 150 min, the patient was given a 
standardized liquid snack (event 3; 0.4 g CHO/kg BW). The combination of events on the four study days is depicted 
in Table 1. Patients spent the day in bed and received their normal basal rate of insulin during the whole study day. 
Blood glucose samples were obtained every 10 min (YSI2300 STAT plus, Yellow Springs Instruments, Yellow Springs, OH) 
and plasma insulin concentration was sampled nonequidistantly 23 times during the trial day.

Table 1.
Description of the Four Study Sequences

Patient Event 1 Event 2 Event 3

1 Meal + ½ bolus
65 g CHO + 3.3 U

Small bolus
0.9 U

Snack
28 g CHO

2 Meal without bolus
75 g CHO

Small bolus
1.6 U

Snack
31 g CHO

3 Meal + ½ bolus
105 g CHO + 8.8 U

Large bolus
5.0 U

Snack
44 g CHO

4 Meal without bolus
65 g CHO

Large bolus
2.2 U

Snack
27 g CHO

The Initial White-Box Model
We used the Identifiable Virtual Patient (IVP)3,14 as an 
initial white-box basis for formulating our grey-box model. 
The IVP model is an extended minimal model, including 
meal absorption and CSII. This initial model will be 
presented as an SDE-GB with diffusion. The insulin 
pharmacokinetic (PK) model is a two-compartmental 
model:

dIsubc = 1
t1

⎛
⎜
⎝

ID
CI

 – Isubc

⎞
⎟
⎠
dt + sIsubcdw1             (3)

dIp = 1
t2

(Isubc – Ip)dt + sIpdw2               (4)

where Isubc represents the subcutaneous concentration of insulin (mU/liter) and ID is the input from CSII (mu/min) 
representing the insulin basal delivery rate and boluses. Ip represents the plasma insulin concentration (mU/liter). In this 
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study, the diffusion term parameterized as σdω. σ is a scaling parameter for the diffusion, and dω is assumed to be a 
Wiener process for which the increments are normally distributed.15 The remaining parameter definitions are given in 
Table 2. The glucose–insulin dynamics are described as

dIeff = p2(SIIp – Ieff)dt + sIeffdw3                                                      (5)

dGp = 
⎛
⎜
⎝
– (GEZI + Ieff)Gp + EGP + D2

tm
 + 

GIV

tgVg

⎞
⎟
⎠
dt + sGpdw4                                    (6)

where Ieff is the pharmacodynamic (PD) effect of insulin (min-1) on the BG level, Gp (mg/dl). GIV is the intravenous 
glucose input (mg) administrated during the stabilization period if needed and is modeled as a vector of zeros except 
at the time instants where glucose was given during the clinical study. The meal absorption is described as a two-
compartment model:

dD1 = 
⎛
⎜
⎝

AgCHO
Vg

 + D1
tm

⎞
⎟
⎠
dt + sD1dw5                                                  (7)

dD2 = 1
tm

(D1 – D2)dt + sD2dw6                                                    (8)

where CHO is the rate of ingestion of carbohydrates (mg/min). D1 (mg) and D2 (mg) represent the digestive system.

Table 2.
Identifiable Virtual Patient Model Parameters
Name Unit Description Nominal valuea

τ1 min Time constant related to the insulin movement between the subcutaneous layer  
and plasma 40–131

τ2 min Time constant related to the insulin movement between the subcutaneous layer  
and plasma 10–70

CI liter/min Insulin clearance 0.54–2.01

p2 1/min Delayed insulin action on BG level 8.14 × 10-3–2.33 × 10-2

SI liter/(mU × min) Insulin sensitivity 9.64 × 10-5–1.73 × 10-3

GEZI 1/min Glucose effectiveness at zero insulin 1.00 × 10-8-6.39 × 10-3

EGP mg/(dl × min) Endogenous glucose production rate at zero insulin 0.6–3.45

τm min Peak time of meal absorption 27–107

τg min Time constant for the intravenous glucose administration 1

Ag Dimensionless Bioavailability for carbohydrates 0.9

VG dl/kg BW Volume of distribution for glucose 1.93–4.14
a The values are obtained from Kanderian and coauthors3 except Ag and τg, which were fixed during the estimation.

To specify which states we observe and to introduce measurement error, we construct two observation equations 
linking the observations to the actual state—one for each type of observation: YSI (representing the BG level) and IA 
(representing the insulin level in plasma). For our model, the set of observation equations can be written as

YSI = Gp + exp(eYSI),   exp(eYSI) ∈ N(0,SYSI)                                              (9)

IA = Ip + exp(eIA
),   exp(eIA

) ∈ N(0,SIA
)                                               (10)

where S represents the variance of the measurement noise for each of the two types of observations. The sequence of 
measurement errors, e, is assumed to be independent and identically distributed. If we expect time correlated errors, 
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e.g., if we used observations from a continuous glucose monitor, the correlated noise could be implemented in the 
model as a state.

Stochastic Differential Equation Grey-Box Model Construction
Because of the complex structure of SDEs, estimation of parameters in an SDE-GB is not trivial except for some simple 
cases. Instead, a maximum likelihood method in combination with an extended Kalman filter is used to estimate 
the parameters.12,15 The likelihood function is formulated using the one-step prediction errors, εk, and the associated 
variances, Rk|k-1:15

L(q;YN) = p(YN|q)                                                            (11)

= 
⎛
⎜
⎝
∏

N

k=1
 

exp(– 
1
2 ek R-1   ek)k|k–1

√det(Rk|k–1)(√2p)dim(YN)

⎞
⎟
⎠
p(y0|q)                                                 (12)

YN is the set of observations, and y0 is the initial conditions. For a given set of parameters and initial states, εk and Rk|k-1  
are computed by a continuous-discrete extended Kalman filter as described previously.8,15 The parameter estimates are 
found by maximizing the log-likelihood:

q
^  = argmax{log(L(q;YN|y0))}.                                                    (13)

The corresponding value of the log-likelihood is the observed maximum likelihood value for that data set and 
model. All computations were done using the free statistical software, R (version 2.15.1), and the “CTSMR-package” 
(Continuous Time Stochastic Modeling in R).16

To improve the IVP model using SDEs, the following forward selection strategy was used:

Step 1: The parameters of the ODE version of the model were estimated for each data set. The following parameters 
were fixed: Ag = 0.9 as in Dalla Man and coauthors,1 τg = 1 min, and all diffusion terms were fixed to zero. All initial 
conditions were fixed except for Ieff.

Step 2: One diffusion term at a time was now estimated together with the parameters estimated in step 1 for each data 
set. This was done six times corresponding to the six diffusion terms in Equations (3)–(8).

Step 3: A likelihood-ratio test was used to identify the SDE-GB resulting in the most significant improvement compared 
with the ODE. The test statistic is6

D = 2(log(S
i

L) – log(S
i

L0))                                                      (14)

where i = 1–4, corresponding to each of the four data sets. L and L0 are the likelihood values obtained in Equation (13)  
for the SDE-GB and ODE model, respectively. D is χ2(f) distributed, where f is the difference in number of parameters 
between the two models—in this case, f = 1.

Step 4: The model found in step 3 was extended by repeating the procedure in step 2. This time, yet another diffusion 
term was estimated. Hereby, the procedure was repeated five times. The best model now including two nonzero diffusion 
terms was identified with a likelihood-ratio test against the best SDE-GB identified in step 3. Analysis showed  
that it was not feasible to estimate more than two diffusion terms in the IVP model, given the limited size of each  
data set.

Step 5: In order to illustrate another method for systematic model improvement, we performed parameter tracking to 
pinpoint model deficiencies.8 Parameter tracking can be used to identify parameters with systematic variation due to  
factors or disturbances not included in the model, e.g., changing hormone levels or other unknown factors influencing 

T
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the system. By changing the parameter of interest into a state and by setting the drift term to zero, the parameter is 
allowed to vary as a random walk as dictated by the data. This will reveal any presence of a systematic structure that 
can be included in the model subsequently.

Results

Model Evaluation
The performance of the models is evaluated from the likelihood-ratio tests and by examining the one-step predictions 
and the autocorrelation function (ACF) for the standardized residuals. One step corresponds to the time between two 
samples. The ACF of the residuals shows whether the residuals are correlated.9,17 The standard deviations given in the 
following figures are equal to √diag(Rk|k–1).

A one-step prediction of the BG level from the ODE model and the ACF for the YSI residuals are seen in Figure 2.  
The one-step prediction is inaccurate, and especially after the bolus at 150 min, the predictions clearly deviate from 
the observations. The ACF shows that the YSI residuals are highly correlated and thus cannot be considered as 
independent. The same holds for the three other patients. The prediction of the insulin level from the ODE model and 
the corresponding ACF for the insulin residuals are shown in Figure 3 for patient 1. The prediction seems acceptable, 
although the limited number of observations (n = 23) makes it hard to assess. Based on the corresponding ACF,  
the residuals appear to be correlated. The next step in the model development was to estimate the model parameters, 
including one nonzero diffusion term. Table 3 shows the results from the likelihood-ratio test performed in steps 3 
and 4. As seen from the six likelihood-ratio tests in step 3, we found that the largest improvement was achieved with  
a nonzero diffusion term on the PD effect of insulin on the BG level, Ieff in Equations (5) and (6).

Figure 3. (Top) One-step prediction and 95% prediction interval  
from the ODE model and observations of the insulin plasma level for 
patient 1. The prediction is acceptable. (Bottom) The ACF for the 
insulin residuals from the ODE model. Despite the acceptable fit, the 
residuals are correlated.

Figure 2. (Top) One-step prediction and 95% prediction interval from 
the ODE model and YSI observations for patient 2. The starting time 
of each event is indicated by 1, 2, and 3. The prediction is not in 
total agreement with the observations, particularly after the bolus at  
150 min. (Bottom) The ACF for the YSI residuals from the ODE model. 
The sketched 95% confidence interval corresponds to an uncorrelated 
process. If more than 5% is outside this region, the process cannot be 
assumed to be uncorrelated. The residuals are strongly correlated in 
this case.

In the following, we define this model as SDE-GB 1. 
The one-step prediction of the BG level from SDE-GB 1  
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Figure 4. (Top) One-step prediction and 95% prediction interval 
from the SDE-GB 1 and YSI observations for patient 4. The prediction 
has improved from the ODE model prediction. The starting time of 
each event is indicated by 1, 2, and 3. (Bottom) The ACF for the YSI 
residuals from the SDE-GB 1. Almost no significant correlation is left.

for patient 4 is seen in Figure 4. The prediction has 
improved markedly, and the prediction uncertainty has 
also decreased substantially.

The ACF for the YSI residuals in Figure 4 shows that the 
residuals now can be considered as almost independent 
only by the inclusion of a single nonzero diffusion term 
in the state representing Ieff in Equations (5) and (6). 
Subsequently, SDE-GB 1 was extended as described in 
step 4. From the sequence of likelihood-ratio tests, we 
concluded that the largest improvement was achieved 
with an additional nonzero diffusion term on the state 
describing the insulin plasma level, Ip in Equations (3) 
and (4) as stated in Table 3. This model is named SDE-
GB 2 and includes two nonzero diffusion terms in total. 
Based on the individual likelihood values (for each data 
set) found in Equation (13), we saw that the obtained 
likelihood value had improved significantly only for 
patients 1 and 2. Thus we consider this model only for 
these two patients.

To illustrate the effect of the additional diffusion term, 
Figure 5 shows the one-step prediction of the insulin 
level from SDE-GB 1 and the ACF for the residuals for 

Figure 5. (Top) One-step prediction and 95% prediction interval from 
SDE-GB 1 and observations of the insulin plasma level for patient 1. 
The prediction is acceptable. (Bottom) The ACF for the insulin residuals 
from SDE-GB 1. Some correlation is still present.

Table 3.
Estimated Log-Likelihood Values and  
Test Statistics and P Values from the Likelihood-
Ratio Tests

log(∑L) Da P valueb

ODE model -510.3 — —

SDE-GB σIp -494.0 32.6 1.13 × 10-8

SDE-GB σIsc -494.3 32 1.54 × 10-8

SDE-GB σIeff -326.9 366.8 0

SDE-GB σG -357.7 305.2 0

SDE-GB σD1 -331.1 358.4 0

SDE-GB σD2 -337.1 346.4 0

SDE-GB σIeff+σIp -319.9 14 0.00018

SDE-GB σIeff+σIsc -324.6 4.6 0.032

SDE-GB σIeff+σG -326.9 0 1

SDE-GB σIeff+σD1 -326.9 0 1

SDE-GB σIeff+σD2 -326.9 0 1
a The test statistic D is computed from Equation (14) as the 

likelihood ratio between the ODE model and the following six 
models in the table (SDE-GB σIp-D2), and between SDE-GB σIeff 
and final five models in the tables (SDE-GB σIeff+Ip-Ieff+D2).

b Based on a χ2(1) distribution.
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patient 1. The ACF has improved from the ODE model, but some correlation is still present. Figure 6 shows the one-
step prediction of the insulin level from SDE-GB 2 together with the ACF for the residuals. The extra nonzero diffusion 

Figure 7. A result of parameter tracking. The one-step prediction and 
95% prediction interval of the peak time of the meal absorption shows 
that the peak time is shorter for the liquid meal than the solid meal 
as expected.

Figure 6. (Top) One-step prediction and 95% prediction interval from 
SDE-GB 2 and observations of the insulin plasma level for patient 1.  
The prediction has improved from the ODE model and SDE-GB 1.  
(Bottom) The ACF for the insulin residuals from SDE-GB 2. No significant 
correlation is left.

term removes the correlation between the residuals.

Parameter tracking
Kanderian and coauthors3 introduced intraday variation 
by separating data in time windows and estimating 
some of the parameters within these windows. The time 
windows are found on the basis of subjective predefined 
criteria for the model fit. Using the SDE-GB approach, 
we do not need to define such criteria to be able to 
investigate parameter variation. By changing a parameter 
into a state, we allow the parameter to vary over time. 
We can then track the variation in the parameter value.

As the patients are served two types of meals (solid and  
liquid), we would expect the peak time of meal absorption, 
τm, to differ for the two meals. We expanded SDE-GB 1 
by adding a state representing τm. The state was modeled 
as a random walk:

dtm = stmdw7                        (15)

With this formulation, we could track τm and identify the 
possible factors affecting the variation of this parameter.  
In Figure 7, a result of this tracking is seen. As expected, 
τm is estimated to be shorter after a liquid snack than 
after a solid meal. A future step would be to replace the 
random walk with an equation including meal type as 
the explanatory variable. We were not able to do this 
due to the limited size of the data sets. However, another 
case using parameter tracking for model expansion is 
presented elsewhere.8

Discussion
In this article, a systematic approach for formulating 
SDE-based glucoregulatory  grey-box models has been 
described. Using an ODE-based model as basis, the 
approach consists of a sequential method for obtaining a 
statistical validated SDE-based model. The steps include 
identification of the needed diffusion terms from a 
combination of forward selection, model testing, and 
model validation. The final model provides a robust and 
validated description of the data and provides much more 
accurate and realistic predictions.

We have focused on short-term prediction, which is relevant if the model is to be used for prediction in model 
predictive control of T1DM. In this case, the prediction is updated every time a new observation is available and 
cannot drift far away. SDE-GBs will be superior to ODE models for pure simulation as well, although this requires a 
careful investigation of the diffusion, which is out of the scope of this article.18
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The fact that the diffusion term was found to be significant for the state describing the PD effect of insulin on the BG 
level could indicate that the drift term of this part of the model is too simple to explain the true physiological relation.  
It might, however, also indicate that this part of the system is exposed to true physiological variation.

The advantages of SDE modeling are several. The most important is the possibility to use statistical tools for model 
selection and validation. Very few physiological systems, if any, contain states that can be predicted exactly. Since most 
statistical test principles rely on a full description (probabilistic distribution) of the future state values of the system, 
such statistical test procedures will lead to wrong conclusions about parameters and effects if they are based on an 
ODE model. The fact that SDE-GBs provide improved parameter estimates for models describing systems influenced by 
disturbances, i.e., nondeterministic states, has been shown elsewhere.19

Another advantage is the ability to pinpoint model deficiencies and to explore where and how to improve the model, 
as shown here with the peak time of meal absorption parameter τm. Parameter tracking with SDE-GBs is a strong tool in 
investigating how physiological variation influences the parameters of the models. This is recognized as the largest 
technical challenge in the development of simulation models.20 A systematic method for SDE-GB development is 
described by Kristensen and coauthors.7

The main disadvantage with SDE modeling is that it requires more complex estimation methods, which are not a 
part of standard modeling software tools. A full establishment of SDEs in diabetic modeling requires, first of all, an 
implementation of the estimation algorithms in commonly used software. Additionally, the computational burden is 
significantly larger for SDE-GBs, which puts demands on the researcher’s computer capacities. A first step toward fully 
recognizing the potential of SDE models is to use the ACF of the residuals as model validation as we have shown 
here. This is a fruitful way to test for independence.

The presence of the diffusion term in a state representing, e.g., a concentration can make the concentration drop below 
zero and thereby conflict with the physical understanding. To avoid this, a state-dependent diffusion term can be used  
to force the noise to decrease to zero when the concentration decreases to zero.10

To construct a reliable and robust virtual T1DM patient, the underlying model should not only represent an individual 
patient; it should ideally be a population SDE model based on clinical data from a large population. Population models 
include population parameters and random effects representing the intersubject variability in the parameter values.21,22 
This type of model has shown great potential within PK/PD modeling.9

Conclusion
The aim of this article was to use clinical data and an existing ODE model of a T1DM patient to illustrate the most 
important aspects and advantages of SDE-GB modeling. Data from four patients were used to estimate parameters in 
an ODE model and two SDE-GBs. Addition of a single diffusion term resulted in significant improvements in the ODE 
model in terms of predictions and prediction uncertainty. The ACF of the residuals confirmed that the SDE-GBs were 
statistically valid as opposed to the ODE model.

We have shown that SDE-GBs offer a solid framework for using statistical tools for model building and validation. 
Parameter tracking proved to be a useful tool to reveal the variation in the parameter describing the time to peak 
absorption of the meal. More reliable model predictions and the possibility to evaluate the uncertainty of the predictions  
as provided by the SDE-GBs will improve the reliability and potential of virtual T1DM patients.
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Abstract

Introduction: The artificial pancreas is believed to ease the burden of constant management of type 1
diabetes for the patients substantially. An important aspect of the artificial pancreas development is the
mathematical models used for control, prediction or simulation. A major challenge to the realization of
the artificial pancreas is the effect of exercise on the insulin and plasma glucose dynamics. In this report,
we take the first step towards a population model of exercise effects in type 1 diabetes. We focus on the
effect on the insulin pharmacokinetics in continuous subcutaneous insulin infusion (CSII) treated patients
by modelling the absorption rate as a function of exercise. Methods: Three models are estimated from
17 data sequences. All of them are based on a linear three-compartment base model. The models are
based on stochastic differential equations to allow noise to enter the dynamics. In the first model, the
insulin absorption rate parameter is replaced by a random walk. In the second model, the relationship
between the absorption rate and exercise is modelled as a linear dependency, while in the third model this
linear relationship depends on the intensity. A Lamperti transformation is used to ensure non-negative
state values. A special focus is put on the structural identifiability of the base model, while the posterior
identifiability is checked for all models from the conditional likelihood profiles. Results: The first model
is disregarded due to the small number of observations during the exercise bout. From likelihood-ratio
tests and information criteria, the third model is appointed as the best model to model the relationship
between exercise and the insulin absorption. The posterior identifiability check showed that it was not
possible to identify the variance of the measurement variance. Conclusion: A model to predict the insulin
appearance in plasma during exercise in CSII treated patients is identified. Further clinical studies are
needed to confirm the increase in insulin plasma concentration during exercise in type 1 diabetes patients.
These studies should include dense sampling to allow for a fully data driven identification of an appropriate
model.
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1 Introduction

The treatment of type 1 diabetes opposes a major challenge on the patients and their health care providers.
Thus many initiatives are investigated to ease the burden and to simplify the daily management of
the disease. A promising approach is the so-called artificial pancreas consisting of an insulin pump
delivering insulin continuously, a continuous glucose monitor (CGM) and a control algorithm to regulate
the insulin infusion automatically based on feedback from the CGM. The insulin pump and the CGM
are commercially available today, but the patients are required to regulate the pump themselves several
times daily. Hence, the connection of the pump and CGM via a control algorithm are believed to ease
the management of type 1 diabetes for the patients substantially [1].

Currently, the research activities within the artificial pancreas area is rapidly developing due to an
increasing number of researchers and technological advances. One of the main challenges for an artificial
pancreas is the management of the plasma glucose level during and after exercise. The exercise effects
on the blood glucose level are adverse and depends on intensity, duration, timing related to meals and
insulin boluses, and type of activity [31].

Mathematical models resembling the dynamics of insulin-glucose system are important tools in the de-
velopment of control algorithms for the artificial pancreas. Virtual type 1 diabetes patients enable the
researchers to test various treatment scenarios and identify the most promising algorithms prior to ex-
pensive and time-consuming clinical studies.

Until now several models have been suggested to mimic the dynamic relation between exogenous insulin
and blood glucose in type 1 diabetes. They include the transport of glucose from meals to the plasma
[34, 7, 15]. Few models have dealt with the effect of exercise on the insulin sensitivity and blood glucose
level [5, 6, 33, 18, 13, 8, 26].

Clinical studies investigating the effects of exercise in type 1 diabetes have mainly focused on the effects
on changes in plasma glucose [31]. Several studies have however shown a significant increase in insulin
absorption during physical activity in type 1 diabetes patients [11, 29, 30, 36, 3, 28, 27]. The cause of this
increase is not clarified, but increasing blood flow or temperature in the peripheral area of the body could
be the cause. In [2], they show that a hot bath and local massage at the injection site increase the speed of
the insulin absorption after a subcutaneous injection. To our knowledge, the increase related to exercise
has not been investigated from a pharmacokinetic modelling perspective. However, to understand the
glucose dynamics during exercise it is necessary to determine whether the increase is caused by changes in
insulin pharmacokinetic or pharmacodynamic parameters or if it is unrelated to the insulin concentration.

In this report, a model of the effects of exercise on the insulin pharmacokinetics is developed. We identify
a proper population model for the effect of exercise on the subcutaneous absorption of insulin delivered
continuously by an insulin pump. The model could potentially be implemented into a simulation model
of the insulin-glucose dynamics.

We employ stochastic differential equations (SDEs) instead of the traditional ordinary differential equa-
tions (ODEs). In SDEs, the residual noise is split into a diffusion term and a normally distributed and
uncorrelated measurement noise. This helps to ensure that the residuals are independent as required
by standard statistical model validation tools. Furthermore, the noise is allowed to enter the system to
account for the inherent uncertainties in all models of physiological systems. Finally, SDEs provide us
with a method to pinpoint model deficiencies and to suggest how to extent the model to capture the
relevant behavior [17, 32].

The structure of the paper is the following: In Section 2, the clinical data set is described. Then, in
Section 3 the models and methods are described including a identifiability check. In Section 4, the results
are presented. Section 5 presents a discussion of the study. Finally, in Section 6 the conclusions are
stated.

2



2 Data

The insulin data for this study originates from a clinical study on 12 subjects with type 1 diabetes treated
with continuous subcutaneous insulin infusion (CSII). The insulin pump was placed in the subcutaneous
layer in either the abdominal or gluteal area. The purpose of the clinical study was to evaluate the effect
of insulin boluses, meals and exercise on the plasma glucose level [27, 10]. Beside plasma glucose, insulin
plasma levels were analysed. The insulin type was insulin aspart Novorapid - a fast acting insulin type.

Each patient went through two study days separated by at least three weeks. A study day consisted of a
two hour stabilization period followed by three events separated by 150 min. The three event types were
meals, insulin boluses and a 20 minutes-run on a treadmill at a predetermined heart rate (HR). Not two
of the total 24 study days were identical as the order of events where different from study day to study
day. The predetermined HR corresponded to either mild exercise with a HR equal to 50% of (maximum
HR - resting HR) + resting HR or moderate exercise with a HR equal to 75% of (maximum HR - resting
HR) + resting HR.

Insulin observations were sampled at a non-equidistantly sampling scheme with higher frequency just after
each event and analysed with a LOCI technology. For each study day a data sequence was obtained.
In some of the data sequences the plasma insulin concentration was not in steady-state during the
stabilization period prior to the first event. Thus we removed data sequences with at min-max range
> 5mU/L during the stabilization period to ease the model estimation. Six of the study days included
exercise on mild level, eight of them included exercise on moderate level, while three of them did not
include exercise.

3 Methods

Our interest is to model population characteristics related to exercise. To identify a proper model taking
into account the inter-individual variability we use a population modelling approach. This type of models
is build as hierarchical models where the parameters are estimated in a two-stage manner. Individual
parameters are modelled as a combination of fixed population effects and random individual effects as
seen in (1):

θi = h(θpop, Zi) · exp(ηi) (1)

Here θi is the parameter value for individual i, h(·) is a known function, θpop is the overall population
parameter (fixed effect), Zi are covariates (age, weight, gender etc.), and ηi ∼ N(0,Ω) is the individual
random effect. In the first stage, the random effects, ηi’s, are estimated for each individual. The fixed
effect parameters, θpop, are estimated in the second stage with the entire data set from an approximate
population likelihood function [32].

In the single-subject modeling case, the R-package CTSM-R (Continuous Time Stochastic Modelling in
R) can be used to identify SDE models [9]. However, currently CTSM cannot handle population models.
Thus as a part of this study, a prototype of an population modelling extension to CTSM was developed.

The modelling procedure is the following. First, a base model is estimated without any exercise effects.
A number of extensions to this model are then estimated to identify the most appropriate model of the
exercise effects.

3.1 The Base Model

A linear three-compartment ODE model is used as basis to describe the pharmacokinetics of subcutaneous
infused insulin in a single subject as suggested by Wilinska et al. [34]. The model is illustrated in Figure
1.

3
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Figure 1: Illustration of the three-compartment model describing the pharmacokinetics of insulin delivered con-
tinuously from an insulin pump. Lightnings indicate diffusion terms.

The absorption is characterized by an identical rate parameter, ka between all three compartments. Two
compartments are affected by diffusion.

The total SDE model is presented on state-space form in (2) and (3):

d



Isc1
Isc2
Ip


 =




(Ipump − ka · Isc1)dt
(ka · Isc1 − ka · Isc2)dt+ σIscdωIsc

(ka

VI
· Isc2 − ke · Ip)dt+ σIpdωIp


 (2)

where Isc1 [mU] and Isc2 [mU] represent the subcutaneous layer and deeper tissues, respectively, and
Ip [mU/L] represents plasma. Ipump is the input from the pump [mU/min]. ka [min−1] is the absorption
rate and ke [min−1] is the clearance rate of insulin from plasma. VI is the volume of distribution [L]. σIsc
and σIp are diffusion scaling parameters. ωIsc and ωIp are Wiener processes with independent Gaussian
increments [19]. They constitute the diffusion terms entering the system.

The observations are linked to the system with the observation equation:

log(yk) = log(Ipk) + ek (3)

where yk are the discrete observations of plasma insulin concentration and ek ∼ N(0, ξ) is the measure-
ment noise.

To introduce the hierarchical structure of the model, the parameters are specified for each individual as
in (1). The individual initial values and parameters are:

θi =




Isc10i
Isc20i
Ip0i
kai
kei
VIi
σIsci
σIpi
ξi




=




Isc10 · exp(ηi1)
Isc20 · exp(ηi1)

Ip0i
ka · exp(ηi2)
ke · exp(ηi3)
VI · weighti

σIsc
σIp
ξ




(4)

where weighti is the body weight [kg] of individual i. ηi1, ηi2, ηi3 ∼ N(0,Ω) where Ω is a diagonal matrix
with three element: ΩIsc, Ωka, and Ωke. The measurement noise is modelled as an exponential error
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to approximate the assumption of a proportional measurement error. Furthermore, the variance of the
measurement noise, ξ is parameterized as ξ = Smin +S, where Smin is fixed to the a reasonable minimum
variance and S is estimated. The value of Smin is found from a mean value of estimated %CVs (coefficient
of variation) for the relevant concentration range in [25].

As seen in (2), Ip is affected by additive diffusion and thus negative values can be obtained. This is
problematic, first of all because it is non-physiological, but also due to the structure of the observation
equation in (3) which cannot be computed when Ipk < 0. Instead, we use a multiplicative state-dependent
diffusion term for Ip to ensure that the state is strictly positive:

dIpi =

(
kai
VIi
· Isc2i − kei · Ipi

)
dt+ σIpi

Ipi dωIp (5)

3.2 Lamperti State Transformation

As CTSM cannot handle state-dependent multiplicative diffusion we transform the state, Ipi into a space
where this multiplicative noise becomes additive, zIpi . This can be done by a Lamperti transformation. A
description of the derivation of the Lamperti transformation is out of the scope of this report. However,
details about the transformation can be found in [14, 24, 23, 4, 22]. We consider a general system
equation:

dxt = f(xt, t, ut)dt+ σxtxtdωxt (6)

where xt represents the states and ut represents the inputs to the system. We can then choose a trans-
formed equation, zt as:

zt = ψ(xt) =

∫
1

s
ds

∣∣∣∣∣
s=xt

= log(xt) (7)

According to the theory behind the Lamperti transformation, zt is governed by:

dzt =

(
f(exp(zt), t)

exp(zt)
− 1

2
σ2
xt

)
dt+ σxtdωzt (8)

As seen, the transformation eliminates the state-dependent diffusion term from xt. Repeating this pro-
cedure for Ipi, we get the transformed state, zIpi

:

dzIpi
=

(
kai

VIi
· Isc2i − kei · exp(zIpi

)

exp(zIpi
)

+
1

2
σ2
Ipi

)
dt+ σIpi

dωzIp (9)

The observation equation in (3) simply transforms into:

log(yki) = zIpik + eki (10)
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For technical reasons, we used the following observation equation for the rest of the study:

yki = exp(zIpik) + eki (11)

The Lamperti-transformation ensures that the diffusion term is additive while the parameters are the
same as in the original model in (5) and (3).

3.3 Structural Identifiability

Prior to parameter estimation, the identifiability of the model is checked to make sure that we can
find a reliable estimate of the model. Two types of identifiability exists: Structural identifiability and
identifiability related to the experimental conditions. In the following, the structural identifiability of
the base model for a single subject is investigated. For the sake of simplicity, the observation equation
is considered to be continuous, but the result applies to the discrete observation equation as well. First,
the state-space model in (2) is rewritten into the general form for linear state-space models:

dxt = (Axt +But) dt+ Σdωt (12)

yt = Cxt + et (13)

For the base model, the matrices A, B, C and Σ are specified as:

A =



−ka 0 0
ka −ka 0

0 ka

VI
−ke


 B =




1
0
0




C =
[
0 0 1

]
Σ =




0 0 0
0 σIsc 0
0 0 σIp




(14)

To determine whether the model is structural identifiable, the transfer functions, Gp and Hp are used. Gp

and Hp describe the relationship between the input and output, and the noise and output, respectively:

yt = Gp · ut +Hpεt (15)

where εt is the part of the output that cannot be predicted exactly (the difference between the observed
and estimated concentration). First, we consider the deterministic part of the model and hence Gp, which
can be found from the following the relationship:

Gp = C (pI −A)
−1
B (16)

We are able to observe Gp from ut and yt in the following form:

Gp =
bjp

j + bj−1p
j−1 + ...b0

alpl + al−1pl−1 + ...a0
(17)
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where al = 1. In our case j = 0 and l = 3. From (16) and (14) we find:

Gp =

k2
a

VI

(p+ ka)
2

(p+ ke)
(18)

If the model is structural identifiable we are able to identify ka, ke, and VI from a0, a1, a2, and b0 in
(17). We can obtain four equations from (17) to determine ka, ke, and VI from (17) and (18):

b0
a2p2 + a1p1 + a0

=

k2
a

VI

(p+ ka)
2

(p+ ke)
⇒ (19)

b0 =
k2
a

VI
a0 = k2ake

a1 = ka (ka + 2ke) a2 = 2ka + ke
(20)

Four equations and only three parameters is an overdetermined system. While there is no guarantee for
all equations to be fulfilled there will be a solution in some appropriate norm (L2). Thus the system is
structurally identifiable. Regarding the identifiability of the noise parameters, the analytical solution is
cumbersome. However, the following holds for the number of identifiable noise parameters:

# of ident. noise parameters ≤ nm+m (m+ 1) /2 (21)

where n is the order of the system, in our case n = 3 and m is the number of outputs; in our case
m = 1. Thus we can identify at most four noise parameters. The model is specified with only three noise
parameters as seen in (2) and (3). For more details about structural identifiability see [20]. Whether the
base model is identifiable from the experimental conditions is checked in a posterior manner from the
estimated conditional likelihood profiles for each parameter – see Section 4.

3.4 Exercise Effects

The aim of the study is to investigate the effect of exercise on the absorption rate parameter, ka. To
include this effect, three approaches are investigated. The first one exploits the ability of SDEs to track
parameter variation. The parameter, ka is modelled as a random walk to investigate if the absorption
rate increases during exercise:

dka = 0 dt+ σkadω3 (22)

where σka
is a scaling diffusion parameter. The model with this specification is named Model A

In the second approach, we specify ka as:

ka = k̄a + α · Ex (23)

where k̄a represents the basal rate and α determines the effect of exercise, Ex. Ex is specified as a vector
with the value 0 when the patient is not exercising and the value 1 during exercise. This model is named
Model B.
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With the third approach we take into account the fact that the subjects exercised on two different intensity
levels. Thus we extend (23) to:

ka = k̄a + αmild · Exmild + αmoderate · Exmoderate (24)

Here, αmild and αmoderate determines the effect of mild and moderate exercise, respectively. Exmild and
Exmoderate are specified as Ex just for each of the two levels. This model is named Model C.

In all cases the model becomes non-linear. Hence, the identifiability check presented earlier cannot be
used for the extended models. However, the posterior check is performed for these models as well.

3.5 Parameter Estimation with CTSM

The parameters are estimated by minimising the likelihood function resulting in maximum likelihood
estimates. Introducing random effects to the model changes the way the likelihood function is computed.
Only the distribution of the random effects are really interesting, but technically the individual ηi must
be estimated for a set of parameters. Thus the optimisation turns into a two step optimisation procedure:
The overall model parameters (population or first stage) and the individual (or second stage) parameters.

For a given set of population parameters the second stage optimisation identifies the ηi’s for each subject.
The numerical noise for the individual log-likelihood function is sufficiently small such that the gradi-
ent based quasi-Newton optimisation can be used. Each subject is independent and depending on the
computer the speed of this part of the estimation can be significantly increased when running in parallel.

For this report 17 data sequences are used. Some of these data sequences came from the same person being
studied over two different days. For now all trials are considered independent. The numerical noise from
each of the 17 log-likelihood functions accumulate making the resulting population log-likelihood function
quite noisy and unsuitable for a deterministic gradient based optimisation. The genetic algorithm is a
stochastic optimiser which attempts to mimic evolution. An initial population is randomly drawn. A
selection of the parameters yielding the best log-likelihood values breeds a new population. This process
is continued until the fitness function does not improve over a period or when the computational budget
is spend. For each of the three models, 1000 iterations are computed with a population of 50 resulting in
50.000 evaluations of the population log-likelihood. Each of them requires the second stage optimisation
of the individual log-likelihood. The 1000 iterations take about 35 hours using 17 cores at the DTU
High-Performance- Computing servers.

Details on the population log-likelihood can be found in [16]. Details on the individual log-likelihood can
be found in [17].

3.6 Model Comparison

As the base model is nested into all the extended models, the models in Section 3.4 are compared to
the base model in (2) and (3) by a likelihood-ratio-test (LRT). The likelihood ratio, λy, between two
likelihoods can be written as:

λy = log(LExt (θ; y))− log(LBase (θ; y)) (25)

where LExt(θ; y) and LBase(θ; y) are the maximum likelihood estimates for the parameters θ given the
data y of one of the extended models including exercise and the base model, respectively.

Under the null-hypothesis (claiming that the base model and the extended model perform equally), the
random variable −2λ(y) follows a χ2

(p−q) distribution, where p and q are the number of the parameters

in the base model and the extended model, respectively [21].
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As the different models with an exercise extension are not nested, their performance is compared with
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).

4 Results

Preliminary estimations showed that VI was practically unidentifiable for the base model. Thus we fixed
VI for the rest of the study. The fixed parameters are seen in Table 1.

Table 1: Value of fixed parameters

Parameter Value
Smin 0.438 [25]
VI 0.19 [12]
Ip0i This value was fixed to the value

of the first observation for each subject.

In the following, the three extended models will be evaluated.

4.1 Preliminary Model Evaluation

Initial estimations of Model A showed that the specification of ka as an random walk was not appropriate.
The variation in ka was not significant. Thus this model was disregarded in the further evaluation.

4.2 Posterior Identifiability Check

The posterior identifiability is checked from the conditional likelihood profiles. They are computed for
each estimated parameter by fixing all parameters except the parameter of interest and estimating the
negative log-likelihood function. In Figure 2, the estimated profiles for the base model are seen. For all
parameters except the variance of the measurement noise, S, the profile has a minimum. The same holds
for Model B and Model C as seen in Figure 3 and 4.

The parameter estimates are within an acceptable range of the minimum for all parameters. The discrep-
ancy between the estimate and the minimum of the curve for ΩIsc0 (the first element of the Ω matrix) in
Figure 2 is caused by graphical issues. The curvature of the profiles around the minimum indicates the
size of the uncertainty of the estimates. All three models seem to have a large uncertainty of k̂e (ke.pop
in the figures).

4.3 Model Comparison

The models are evaluated by comparing the maximum likelihood estimates with LRT, AIC and BIC.
The estimates and the corresponding statistical measures can be seen in Table 2. As seen, Model C is
assessed as the best model from all the criteria. Both Model B and Model C explain significantly more
of the variability in the data than the base model.

Table 2: Results of LRT, AIC and BIC

Model Number of estimated −log(L) p-value from LRT AIC BIC
parameters

Base model 10 927 - 1878 1799
Model B 11 897 9.436896e-15 1817 1729
Model C 12 895 1.221245e-15 1815 1720
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Figure 2: Conditional loglikelihood profiles for the base model. The red points indicate the parameter estimates.
x10.pop and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the
model. ka.pop and ke.pop are ka and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke,
and Omega.ka are the diagonal elements of Ω.
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Figure 3: Conditional loglikelihood profiles for Model B The red points indicate the parameter estimates. x10.pop
and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the model
.ka.pop and ke.pop are k̄a and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke, and
Omega.ka are the diagonal elements of Ω.
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Figure 4: Conditional loglikelihood profiles for Model C. The red points indicate the parameter estimates. x10.pop
and x20.pop are the initial values of Isc1 and Isc2, respectively. S in the plot corresponds to log(S) in the model.
ka.pop and ke.pop are k̄a and ke, respectively. s12 = log(σIsc) and s3 = log(σIp). Omega.ISC0, Omega.ke, and
Omega.ka are the diagonal elements of Ω.
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The parameter estimates for all three models are seen in Table 3. For Model C, the moderate intensity
exercise results in a larger absorption rate than mild exercise.

Table 3: Parameter estimates from the base model, Model B, and Model C

Base Model Model B Model C

Isc10 87.4 58.3 61.8
Isc20 35.9 56.3 52.2
ka 0.023 0.026 0.024
ke 0.079 0.077 0.076
σIsc 2.94 2.61 2.48
σIp 0.030 0.027 0.026
S 0.000 28 0.000 34 0.000 75
ΩIsc 0.379 0.226 0.299
Ωka 0.122 0.112 0.112
Ωke 0.142 0.150 0.146
α 0.007 62
αmild 0.009 61
αmoderate 0.005 15

4.4 Model Predictions

From the above results, Model C with an intensity-dependent absorption rate is appointed as the best
model to explain the dynamics. The one-step predictions from Model C for 3 representative data sequences
are seen in Figure 5, 6 and 7. In general, the predictions are acceptable and the model does seem to
capture the increase related to exercise. Especially, in Figure 7 the compliance between the predictions
and the observations is good. The width of the prediction interval is however large in this case. The
prediction in Figure 6 does not seem to follow the dynamics of the observations very well. The increase
during exercise is underestimated and the increase due to the insulin bolus is overestimated. Finally,
the prediction in Figure 6 underestimates the increase during exercise while the prediction of the bolus
increase is acceptable.

4.5 Model Check

Diagnostic plots of the standardised residuals of Model C are depicted in Figure 8. Note that the initial
value was fixed to the value of the first observations and thus the corresponding residual is equal to
zero. The plots confirm that the model does not seriously violate the assumption of equally and normally
distributed residuals.

5 Discussion

The purpose of this study is to evaluate three model extensions describing the relationship between
exercise and the insulin absorption rate in CSII treated type 1 diabetes patients. From the model
evaluations we appoint Model C as the best model extension. This model takes into account the intensity
of the exercise bout. From a physiological point of view this is a reasonable hypothesis. The two separate
terms for mild and moderate exercise could be replaced by the heart rate or percentage of maximum
oxygen consumption.

During the estimation, seven of the 24 data sequences were disregarded due to non-steady initialization.
The non-steady behavior could be caused by previously injected insulin in the early morning or changes
in the basal delivery rate prior to study start. In future studies with these data, the observations from
the initial stabilization period could be eliminated to avoid this problem. However, it is important to be
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Figure 5: Data sequence no. 8. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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Figure 6: Data sequence no. 9. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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Figure 7: Data sequence no. 10. Top: One-step predictions from Model C (Blue line). The observations are
represented by dots. The grey area indicates 95% prediction interval. Middle and bottom: Insulin and exercise
inputs.
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aware of any insulin boluses delivered during or in the hours prior to the stabilization period as some of
the insulin would still be present in plasma at the time of the first event. Insulin is present in plasma
upto 4-5 hours after the injection.

In the estimation, we have to assume that the data set was obtained from 17 individuals due to limitations
in the software prototype. The original data set included 12 patients in total. Each patient went through
two study days resulting in 24 data sequences. The 17 data sequences which were left after the initial
data cleaning came from 10 patients. Thus we mix the inter-individual variability with the inter-occasion
variability. In future versions of the software, the possibility to distinguish between these two variabilities
is a necessity to ensure a correct handling of the variability.

The specification of the insulin absorption rate parameter ka in Model A includes a random walk. This
kind of parameter tracking is one of the main advantages of SDE models due to its ability to identify
hidden relationships in the data. The random walk is predicted along with the other state predictions
by a Kalman Filter. The data sequences included 23 observations each sampled non-equidistantly. The
exercise bout lasted 20 minutes and plasma insulin was sampled at the start, after ten minutes, and at
the end of the exercise bout. Thus, we had very few observations to drive the random walk. This could
be the reason to the failure of Model A. Longer exercise bouts and very rich sampling are needed to use
this method for model extension.

The clinical study investigated the effect of 20 minutes of exercise on a treadmill. Thus, the results cannot
be extrapolated to other types of sport or other durations. Furthermore, the effect can be different for
other types of insulin as well. To fully evaluate and model the effect of exercise on insulin kinetics in CSII
treated type 1 diabetes patients, a clinical study designed to investigate this effect specifically is needed.

More complex models of the insulin pharmacokinetics have been proposed in the literature. In [35] 11
models were compared including the base model used here. The authors conclude that a more complex
model is the most suitable model to explain the insulin dynamics. However, as the purpose of this study
was to add complexity to the model, we prioritised to start with a simple model as base model.

The effect of exercise on the insulin absorption must be assumed to be exposed to inter-individual vari-
ability. Thus, the model fit would probably improve further by adding a random effect to αmild and
αmoderate. This would likely improve the prediction of the increase in plasma insulin concentration dur-
ing exercise, but as for the random walk in Model A, this extension would require longer time series to
be identified.

As the software is a prototype, we cannot obtain the standard deviations of the parameters nor the
covariances. Thus, the results are only tentative as we cannot fully validate the model. If we assume that
the model is valid, the next step would be to perform covariate analysis to identify relationships between
the individual ηi’s and relevant covariates, e.g., age, level of fitness, weight, and gender.

The posterior identifiability check showed that for the base model, Model B, and Model C it is not possible
to estimate a realistic variance of the measurement noise. This could indicate that the models are not
able to fully capture the dynamics. Hence, the Kalman filter used in the estimation attempts to improve
the fit by minimizing this variance.

The identified model has the potential to incorporated into a larger model of the insulin as well as glucose
dynamics during exercise. The impact of the increased plasma insulin concentration on the plasma glucose
concentration due to exercise still has to be investigated.

6 Conclusion

This study investigated the effect of exercise on the insulin absorption rate in CSII treated type 1 diabetes
patients. Former models of exercise responses of the insulin-glucose system do not take this relationship
into account. Three candidates for model extension of a population insulin pharmacokinetic model were
evaluated. For all three models, the insulin absorption rate was assumed to be affected by exercise. In
the first candidate, the absorption rate parameter was modelled as random walk. In this way, the model
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structure was based completely on information from the data. However, as the data set did not include
enough observations sampled during the exercise bout to drive the estimation, this model was disregarded.
The two remaining models described a linear relationship between exercise and the absorption rate. One
model included an absorption rate independent of intensity, and one included an intensity–dependent
absorption rate. These two models were compared to a base model with a constant absorption rate
with LRT, AIC and BIC. From these measures, the model with an intensity dependent absorption rate
was evaluated as the best model to describe the data. A posterior identifiability check showed problems
in estimating the variance of the measurement variance. The predictions from the best model showed
that the model did capture behavior of the system and thus the model could be incorporated into an
existing model of the insulin-glucose system in type 1 diabetes. Further clinical studies are needed to fully
understand the increase in insulin plasma concentration during exercise. These studies should include
dense sampling to allow for a fully data driven identification of an appropriate model.
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[11] E. Fernqvist, B. Linde, J. Östman, and R. Gunnarsson. Effects of physical exercise on insulin absorption in
insulin-dependent diabetics. a comparison between human and porcine insulin. Clinical Physiology, 6(6):489–
497, 1986.

[12] A. Haidar, M. Wilinska, J. Graveston, and R. Hovorka. Stochastic virtual population of subjects with type
1 diabetes for the assessment of closed loop glucose controllers. 2013.
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Abstract: People with type 1 diabetes need several insulin injections every day to keep
their blood glucose level in the normal range and thereby avoiding the acute and long term
complications of diabetes. One of the recent treatments consists of a pump injecting insulin
into the subcutaneous layer combined with a continuous glucose monitor (CGM) frequently
observing the glucose level. Automatic control of the insulin pump based on CGM observations
would ease the burden of constant diabetes treatment and management. We have developed a
controller designed to keep the blood glucose level in the normal range by adjusting the size
of insulin infusions from the pump based on model predictive control (MPC). A clinical pilot
study to test the performance of the MPC controller overnight was performed. The conclusion
was that the controller relied too much on the local trend of the blood glucose level which is
a problem due to the noise corrupted observations from the CGM. In this paper we present a
method to estimate the optimal Kalman gain in the controller based on stochastic differential
equation modeling. With this model type we could estimate the process noise and observation
noise separately based on data from the first clinical pilot study. In doing so we obtained a more
robust control algorithm which is less sensitive to fluctuations in the CGM observations and
rely more on the global physiological trend of the blood glucose level. Finally, we present the
promising results from the second pilot study testing the improved controller.

Keywords: Stochastic differential equations, Model predictive control, Kalman filters, Artificial
pancreas, Type 1 diabetes.

1. INTRODUCTION

Type 1 diabetes is a chronic disease characterized by
destruction of the insulin producing beta cells of the
pancreas. Insulin is crucial for the regulation of the blood
glucose level and people with type 1 diabetes are therefore
dependent on exogenous insulin supply. The size of the
insulin dose must be determined carefully. Underdosing
can result in a too high blood glucose level (hyperglycemia)
which in the long term can lead to, e.g. kidney failure,
blindness or nerve damage. Too much insulin (in case
of overdosing) can lead to a too low blood glucose level
(hypoglycemia) which can have serious acute effects such
as coma or even death.

? Funding for this research as a part of the DIACON project from
the Danish Council of Strategic Research (NABIIT project 2106-07-
0034) is gratefully acknowledged.

The insulin is most often delivered subcutaneously either
via a pen needle or an insulin pump. The pump delivers a
steady basal rate combined with meal boluses (dosages to
cover meals) to resemble the normal insulin secretion from
a healthy pancreas.

Patients are adviced to check their blood glucose level
with finger prick measurements several times a day to
obtain tight diabetes control [American Diabetes Asso-
ciation (2012)]. The goal is to keep their blood glucose
level as close to normal range (4.00-8.00 mmol/L) as pos-
sible without compromising safety. Instead of finger prick
measurements more and more patients rely on continu-
ous glucose monitors (CGM) to keep track of the blood
glucose level. The CGM uses minimally invasive sensors
capable of reporting the glucose level every five minutes.
The sensor is placed in the subcutaneous layer and thus
the observations are delayed in relation to the discrete
capillary blood glucose observations that normally are



Continuous Glucose 
Monitor (CGM)

Insulin PumpControl Algorithm

Artificial Pancreas

Fig. 1. An overview of the closed loop system consisting of
a computer with the control algortihm, a CGM and
an insulin pump.

measured from the finger tips. In addition, the sensors
can experience problems with accuracy and precision due
to physical, chemical and biological factors [Keenan et al.
(2011); Hovorka (2006)].

Even though insulin pump therapy and CGMs can lead to
better diabetes control, the treatment still requires con-
stant attention and action from the patient. Furthermore,
many patients with type 1 diabetes live in fear of getting
severe hypoglycemia during sleep, while they are unable
to react.

Several research groups are working on closing the loop
with an automatic control algorithm regulating the insulin
delivery based on feedback from the CGM [Cobelli et al.
(2011); Hovorka (2011)]. The general principle behind this
artificial pancreas is illustrated in Fig. 1.

We have developed a control algorithm based on model
predictive control (MPC) that predicts future blood glu-
cose values on the basis of the current level. If the control
algorithm predicts hyperglycemia, insulin is delivered to
bring the blood glucose level down to normal. If the control
algorithm predicts hypoglycemia it decreases or shuts off
the insulin supply until the blood glucose level increases
again.

To test the performance of the controller we did a clinical
pilot study on a type 1 diabetes subject. The challenge
was to keep the blood glucose level in the normal range
overnight. In Fig. 2 the blood glucose level is shown. At the
time of starting the closed loop (22:00) the local trend was
increasing but the global trend was decreasing after a meal
with a corresponding insulin bolus. The MPC prediction
of the blood glucose level at this time is also seen in
Fig. 2. Due to the local increasing trend this prediction
is unrealistically increasing and the controller suggests a
too large bolus to compensate for this increase. This lead
the subject into hypoglycemia and the clinician had to
administrate I.V. glucose to bring the blood glucose level
up again immediately.

The main conclusion from this pilot study was that the
large amount of noise in the system was preventing the
controller from predicting the blood glucose level and thus
delivering the correct insulin bolus.

In this paper we address this problem by estimating the
process and observation variances separately in the MPC
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Fig. 2. Top: CGM observations (solid line) and blood
glucose prediction at the time of closing the loop
(dashed line) from the first pilot study. As seen,
the controller relies too much on the local trend.
Bottom: Insulin delivered by the pump (solid line)
and predicted insulin supply (dashed line).

controller using stochastic differential equations with data
from the pilot study. This paper describes this novel
procedure and presents the promising results from the
second pilot study testing the improved MPC controller.

2. THE PILOT STUDY SETUP

The data used for tuning the controller came from the
first pilot study performed overnight on a type 1 diabetes
subject. We chose to do the study overnight because the
amount of disturbances to the system, e.g. meals and
exercise are minimal at this time of day. In [Boiroux
et al. (2012)] details about the setup is described. The
subject wore an insulin pump (Medtronic Paradigm Veo,
Minneapolis, USA) and two CGMs (Dexcom Seven Plus,
San Diego, USA) measuring the glucose level every five
minutes. From the two CGMs we had 162 and 158 ob-
servations, respectively and both were used for parameter
estimation. The first 270 minutes of the pilot study were
open loop where the patient was in control of the insulin
supply and the last 540 minutes were closed loop.

3. CONTROLLER DESIGN

3.1 Control algorithm

The control algorithm is based on a single input-single
output model in continuous time. It is a second order
model with the following transfer function:

Hs(s) =
M

(τs+ 1)2
(1)

(2)

The output is the blood glucose level in mmol/L and the
input is the insulin supply from the pump in mU/min,
the standard unit for insulin. τ is the insulin action time
defined as the time in minutes it takes to reach the
minimum blood glucose level after an insulin injection. M
is defined as:

M = −τ exp(1)ISF (3)



ISF is the insulin sensitivity factor defined as the maxi-
mum decrease in blood glucose level per unit of insulin.
M and τ are patient specific and estimated from patient
data. The insulin pump injects a bolus every 15 minutes
based on the decision of the controller and the glucose level
is observed every five minutes with the CGM. The bolus
size is computed on the basis of the current glucose level
and the blood glucose prediction. For more details on the
MPC, see [Boiroux et al. (2012)].

Since the system is influenced by stochastic disturbances
we modeled the system by an ARIMAX description:

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1
ε(t) (4)

q−1 is the backward shift operator, y(t) is the output, u(t)
is the input as previously defined. ε(t) is Niid(0, ζ

2). A and
B are:

A(q−1) = 1 + a1q
−1 + a2q

−2 (5a)

B(q−1) = b1q
−1 + b2q

−2 (5b)

C is defined as:

C(q−1) = 1− αq−1 (6)

α is a tuning parameter. The model in (6) is obtained by
considering the noise term, ε(t) as a sum of white noise
and a drift term. In this way the MPC control will ensure
off set free tracking. In this paper we used α = 0.99. For
more details on the choice of α see [Huusom et al. (2010)].

We can realize (4) as a discrete state-space model on
innovation form:

xk+1 =Axk +Buk +Kεk (7)

yk =Cxk + εk (8)

where xk is the blood glucose level [mmol/L] above basal
level (6 mmol/L), uk is the insulin input in [mU/min]
above a basal rate of 14 mU/min , yk is the observed blood
glucose level above basal level, εk is the innovation noise:

εk = yk − Cxk|k−1 (9)

A, B, C, and K are matrices in canonical form. For the
first pilot study they were defined as:

A =

[ −(a1 − 1) 1 0
−(a2 − a1) 0 1

a2 0 0

]
B =

[
b1

b2 − b1
−b2

]

K =

[
α− (a1 − 1)
−(a2 − a1)

a2

]
C = [1 0 0]

(10)

As seen in Fig. 2 and stated in the section 1 this controller
design was too sensitive to noise which resulted in a
unrealistic prediction by the controller. For this reason we
reformulated the model into a third order model in which

Input Insulin-blood glucose 
system

MPC Controller

Observation
noise

Process
noise

Fig. 3. An illustration of the closed loop system including
process and observation noise.

the C polynomial in (6) was changed into a third order
polynomial:

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3 (11)

This change resulted in the following Kalman gain, K, in
(10):

K =

[
c1 − (a1 − 1)
c2 − (a2 − a1)

c3 + a2

]
(12)

(the matrices A, B, and C remained unchanged). The
coefficients in (11) correspond to the coefficients in:

χ(z) = z3 + c1z
2 + c2z + c3 (13)

which is the characteristic polynomial of (A − KC). By
choosing the optimal eigenvalues of (A−KC) i.e. optimal
roots of (13) we obtain the best balance between a low
sensitivity to noise and a fast decay of the estimation
error. If the eigenvalues are close to 1 the controller is less
sensitive to noise (and relying more on the global trend)
but results in a slow decay of the estimation error. If the
eigenvalues are close to 0 the decay of the estimation error
is fast but on the other hand the controller is very sensitive
to noise and thereby rely too much on the local trend as
we saw in the first pilot study.

The optimal placement of the eigenvalues inside the unit
circle depends on the amount of noise present in the
system. Therefore we decided to use the data from the
first pilot study to determine the optimal eigenvalues of
(A − KC). We kept α = 0.99 as one of the eigenvalues
and estimated the remaining two eigenvalues from an
stochastic differential model as described in the following
section.

3.2 Stochastic differential equations model

Earlier work with stochastic differential equations has
mainly dealt with modeling of dynamical systems [Kris-
tensen et al. (2005); Overgaard et al. (2007); Tornøe et al.
(2004)]. In this paper we introduce a novel approach
for parameter estimation in control algorithms based on
stochastic differential equations.



Within the field of biomedical control, stochastic differ-
ential equations are highly relevant. Dealing with these
often very complex systems, as in this case the insulin-
blood glucose system, we have to take into account all the
uncertainties not explained by the model in the controller.
Especially, when we want to use a very simple model as the
one in (1). Uncertainties can be present in the input to the
system or occur due to other factors interfering with the
system e.g. release of stress hormones or physical exercise.

In a stochastic differential model noise is entering the
system in two separate entrances: a process noise and a
observation noise as seen in Fig. 3. Using this method
we could estimate the process and observation variances
separately and thereby obtain a more realistic noise model.
From here we could find the optimal roots of the charac-
teristic polynomial in (13).

To estimate the process and observation variances we
used CTSM (Continuous Time Stochastic Modelling), a
freeware program available on the web. See [DTU Infor-
matics, Technical University of Denmark (2012)] for more
information. The control algorithm was first transformed
from the continuous time transfer function in (1) into an
ordinary differential equation by inverse Laplace:

y + 2τ
dy

dt
+ τ2 d

2y

dt2
= Mu(t) (14)

and from here to the stochastic state space model which
in the general linear case can be written as:

dxt = (A(θ)xt +B(θ)ut)dt+ σ(θ)dωt (15)

yk = C(θ)xk + ek (16)

xt is the state vector, xk is the discrete state vector, ut
is the input vector, yk is the output vector in discrete
time, θ is a vector of parameters, A(·), B(·), σ(·), and
C(·) are nonlinear functions, {ωt} is a standard Wiener
process representing the process noise and ek is a white
noise process representing the observation noise for which
we assume that ek ∈ N(0, S).

In this case, (15) is:

[
dx1t

dx2t

]
=







0 1

−1

τ2

−2

τ



[
x1t

x2t

]
+




0
1

τG
M

τ2
0



[
u1t

u2t

]

 dt

+

[
σ 0
0 σ

]
dωt

(17)

and the discrete observation equation is:

yk = [1 0]

[
x1k

x2k

]
+ ek (18)

x1t is the glucose level [mmol/L] above basal level, x2t

is the derivative of the glucose level [mmol/L/min], u1t

is the insulin input from the pump above the basal rate,
u2t is the intravenously glucose input administered by the
clinician in case of severe hypoglycemia [mmol/L]. The
parameters are τ , M , τG, σ, and S. We decided to fix all
parameters except from σ and S because all of them are

subject specific and known by the subjects themselves or
the clinician. The fixed parameter values used for variance
estimation were τ = 300 min, M = -4.077 min·mmol/L/U
and τG = 1 min. See [Boiroux et al. (2012)] for more details
about the choice of these values.

3.3 Estimation of variance parameters

Parameter estimation was based on the Maximum likeli-
hood criteria, see [Kristensen and Madsen (2003); Kris-
tensen et al. (2004)]. Since the subject wore two CGMs
we had two stochastically independent data sets. The
likelihood function is the joint probability density of all
the observations assuming that the parameters are known:

L(θ;Y ) = p(Y |θ) (19)

where Y =
[
γ1
N1
, γ2
N2

]
. θ is now the parameter vector only

including the parameters we wish to estimate.

We assume that the densities are Gaussian and implicitly
described by the mean and variance. Thus the likelihood
function can be expressed as:

L(θ;Y ) =
L∏

i=1




Ni∏

k=1

exp
(
− 1

2 (ε
i
k)T (Rik|k−1)−1εik

)

√
det(Rik|k−1)(

√
2π)




·p(yi0|θ)

(20)

L is the number of datasets, in this case two, y0 are initial
values of Y and:

ŷk|k−1 = E{yk|γk−1, θ} (21)

Rk|k−1 = V ar{yk|γk−1, θ} (22)

are the one-step ahead prediction and variance, respec-
tively. The one-step prediction error is:

εk = yk − ŷk|k−1 (23)

The exact solution is computationally infeasible so an ap-
proximative method is used. For a given set of parameters
and initial states, x0, the one-step ahead prediction error
and variance are estimated from a continuous-discrete
Kalman filter. The output prediction equations are com-
puted as:

ŷk|k−1 = Cx̂k|k−1 (24)

Rk|k−1 = CPk|k−1C
T + S (25)

Pk|k−1 is the predicted state covariance. The innovation
equation is defined as the prediction error in (23). And
the Kalman gain is determined by:

Kk = Pk|k−1C
TR−1

k|k−1 (26)

From here we can update the state and state covariance
equations:



  

T [min] CGM level [mmol/L]

0 5.71

5 5.88

10 5.99

15 5.82

20 5.99

25 6.04

30 6.04

35 5.99

40 5.82

45 5.82

50 5.93

55 6.27

... ...

T [min] CGM level [mmol/L]

0 NA

5 NA

10 5.99

15 NA

20 NA

25 6.04

30 NA

35 NA

40 5.82

45 NA

50 NA

55 6.27

... ...

T [min] CGM level [mmol/L]

0 NA

5 5.88

10 NA

15 NA

20 5.99

25 NA

30 NA

35 5.99

40 NA

45 NA

50 5.93

55 NA

... ...

T [min] CGM level [mmol/L]

0 5.71

5 NA

10 NA

15 5.82

20 NA

25 NA

30 6.04

35 NA

40 NA

45 5.82

50 NA

55 NA

... ...

Original dataset

New 
datasets

Fig. 4. The original data sets were separated into three
different data sets with missing observations (NA)
replacing those observations present in the other two
new data sets.

x̂k|k = x̂k|k−1 +Kkεk (27)

Pk|k = Pk|k−1 −KkRk|k−1K
T
k (28)

And finally, we can predict the state and covariance by
solving the differential equations:

dxt|k
dt

= Ax̂t|k +But, t ∈ [tk, tk+1 [ (29)

dPt|k
dt

= APt|k + Pt|kA
T + σσT , t ∈ [tk, tk+1 [ (30)

Once the approximative likelihood function has been com-
puted, the optimal parameter estimates are found by min-
imizing the log-likelihood function:

θ̂ = arg min
θ∈Θ

{−ln(L(θ;Y |y0))} (31)

This parameter estimation is per default based on the
one-step ahead prediction as seen above. In our case the
step size is 5 minutes corresponding to the time between
two CGM observations. Since the controller regulates the
insulin infusion every 15 minutes, we found it beneficial
to base the parameter estimation on the three-step ahead
prediction instead.

To handle this, we did a reconstruction of the original data
file used for the parameter estimation in CTSM. From
each original data set we constructed three new data sets
starting in t0, t1, and t2, respectively. As illustrated in
Fig. 4, we replaced the two following observations with
missing observations and repeated this pattern throughout
the new data sets.

In the Kalman filter a missing observation is handled by
setting the Kalman gain, Kk, to zero and thus the state
predictions are computed from the state equations only
until a new observation is available.
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Fig. 5. Top: CGM observations (solid line) and blood
glucose prediction (dashed line) from the first pilot
study if the tuned Kalman gain had been used in the
MPC controller. The normal range is indicated as the
green area. Bottom: Insulin delivered by the pump
(solid line) and suggested insulin supply (dashed line).

3.4 Tuning of control algorithm

The variance parameters, i.e. the process noise, σ, and the
observation noise, S, were estimated to 0.0037 ± 0.00043
and 0.30± 0.030 respectively. We used the estimated pro-
cess and observation variances to compute the Kalman
gain, K, by a pole placement method as mentioned in sec-
tion 3.1. First the continuous state space model in (15) was
discretized and from here the two remaining eigenvalues
could be computed by solving a Riccati equation. Together
with α we computed the roots and thereby the coefficients
in the characteristic polynomial in (13) and finally K in
(12). The estimated values of the coefficients and K are:

c1 = −2.61 c2 = 2.28 c3 = −0.67 (32)

K = [0.36 − 0.66 0.30] (33)

4. RESULTS

We simulated the first pilot study again, this time with
the improved Kalman gain, K, in the MPC algorithm. As
seen in Fig. 2 the controller originally overestimated the
blood glucose prediction at the time of closing the loop. In
Fig. 5 the same situation is shown, this time with the new
K estimated on the basis of observed data. The controller
now relies more on the global trend and the predictions
are more realistic. The suggested bolus is likewise smaller
and would not cause a hypoglycemic event as the bolus
given in the first pilot study.

A second pilot study was performed on the same subject
to validate the new algorithm before initiating a larger
clinical study. This time the study was performed during
day time but without any normal day time disturbances
(e.g. meals and exercise) to mimic night time. The result is
shown in Fig. 6. The subject had a very low blood glucose
level from the beginning of the pilot study. Intravenously
glucose was administrated at 10:00 and 12:00 to compen-
sate.
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Fig. 6. Top: Results of the second pilot study after the
controller had been tuned. The loop is closed at
11:00. The left CGM (solid blue curve) serves as
input to the controller. The blood glucose prediction
(dashed line) at 12:10 is also shown. YSI observations
are blood glucose observations considered as gold
standard. Bottom: Insulin delivered by the pump
(solid line) and predicted insulin supply (dashed line).

Note that the insulin delivery is updated every 15 minutes
as new CGM measurements are available. Thus the insulin
delivery profile differs from the predicted profile.

The blood glucose prediction from the improved control
algorithm at 12:10 is also seen in Fig. 6. At this point in
time the CGM measurements are rapidly increasing due to
the glucose administrated intravenously at 12:00. As seen,
the controller predicts a slower and more realistic increase
in blood glucose due to the improved performance. The
rapid increase is an artificial situation and does not occur
in daily life. The controller is thereby acting as expected
and characterizes the local increase as noise.

Even though tuning has improved the prediction perfor-
mance, the left CGM measurements decrease below the
normal range after 14:00. This could indicate that despite
the improvements, the intravenously glucose administra-
tion still causes the controller to overestimate the needed
bolus size.

In general, the second pilot showed that the controller is
able to keep the blood glucose level in the normal range
after 12:00 despite the prior disturbances. However, since
the second pilot study further improvements have been
implemented to increase the robustness.

5. CONCLUSION

This work illustrates how MPC can benefit from stochastic
differential equations modeling. By estimating the process
and observation noise in two separate terms the Kalman
gain was calibrated to the actual system with a rather
simple and effective method using stochastic differential
equations. Additionally, we based the parameter estima-
tion on the three-step ahead prediction instead of the one-
step ahead prediction which was in accordance with the
time between controller inputs. It is important to note
that this method is not only restricted to this specific
application but can be used within many areas dealing
with control of complex and stochastic systems.

Currently, a clinical study testing our artificial pancreas
controller is ongoing including several subjects and differ-
ent scenarios.
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Abstract 

Background: 

One way of constructing a control algorithm for an artificial pancreas is to 

identify a model capable of predicting plasma glucose (PG) from interstitial 

glucose (IG) observations. Stochastic differential equations (SDEs) make it 

possible to account both for the unknown influence of the continuous glucose 

monitor (CGM) and for unknown physiological influences. Combined with 

prior knowledge about the measurement devices, this approach can be used to 

obtain a robust predictive model.  

Method 

A stochastic-differential-equation-based grey-box (SDE-GB) model is 

formulated on the basis of an identifiable physiological model of the 

glucoregulatory system for type 1 diabetes mellitus (T1DM) patients. A 

Bayesian method is used to estimate robust parameters from clinical data.  The 

models are then used to predict PG from IG observations from two separate 

study occasions on the same patient.  

Results 

First, all statistically significant diffusion terms of the model are identified 

using Likelihood ratio tests, yielding inclusion of 𝜎!!", 𝜎!! and 𝜎!!". Secondly 

estimates using Maximum Likelihood are obtained, but prediction capability is 

poor. Finally a Bayesian method is implemented. Using this method the 

identified models are able to predict PG using only IG observations. These 

predictions are assessed visually. We are also able to validate these estimates 

on a separate data set from the same patient. 
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Conclusions 

This study shows that SDE-GBs and a Bayesian method can be used to 

identify a reliable model for prediction of PG using IG observations obtained 

with a CGM. The model could eventually be used in an artificial pancreas 
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INTRODUCTION 

The use of continuous glucose monitors (CGMs) on patients with type-1 

diabetes mellitus (T1DM) has a positive effect on glycaemic control.[1–5] The 

advantages of continuous glucose monitoring are many, but there are also 

several well-documented problems.[6–8] These include: time-delay between 

plasma glucose (PG) and interstitial glucose (IG),[3–5] the drift of sensor 

sensitivity[9] and vulnerability to calibrations during rapidly increasing or 

decreasing glucose levels.[10,11] For optimal use of CGMs in the 

management of T1DM, e.g. for closed-loop control, it is necessary to know 

the relationship between PG and IG.[12] Due to the well-known issues with 

the sensor, the main challenge related to automatic control of the glucose is to 

predict PG from IG observations measured by a CGM. To do this, the 

dynamical relation between the PG and IG levels needs to be well described.  

 

Modelling glucose dynamics using observations from CGMs is challenging. 

As described by Facchinetti et al. three of the major problems are:[13] a) PG 

observations have to be collected parallel with IG observations, b) a precise 

model for PG-IG dynamics is needed, c) sensor errors should be modelled as 

stochastic processes.  

 

When using real-life data obtained with a CGM, the autocorrelation of data 

becomes an issue, requiring specific modelling techniques. This will be 

discussed in this paper. As the observations are closely sampled (e.g. 5 min. 

sample rate), interdependence between data points or autocorrelation is 

present.[14–16] Several approaches to overcome sensor issues, including 
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autocorrelation, have been investigated. Data-driven autoregressive models 

have been used by Reifman et al.[16] Chase et al. modelled sensor errors using 

Gaussian processes.[17] Breton and Kovatchev used a non-Gaussian Johnson 

distribution and autoregressive (AR(1)-processes).[18] One suggestion by 

Guerra et al. is to use deconvolution-based enhancement algorithms that, in 

real-time, improve CGM accuracy.[19]  

In this study we use SDE-GBs and a Bayesian method to address all three 

issues described by Facchinetti et al.  

 

When investigating the glucose-insulin dynamics (e.g. in closed-loop studies), 

patients receive inputs to excitate glucose values, such as meals, giving a 

positive excitation and insulin, giving a negative excitation. This article 

accommodates the need for an understanding of the dynamics with no external 

positive excitation. The negative excitation is provided by a continuous 

subcutaneous insulin infusion (CSII).  

 

Glucose-insulin dynamics are a part of the complex, partly unknown, fuel 

metabolism.[20] Stochastic behaviour should therefore be considered in the 

modelling. One way of doing this is to apply stochastic-differential-equation-

based grey-box (SDE-GB) models. Such models are established using a 

combination of physiological knowledge and statistical information from data. 

In general a SDE-GB model can be written as: 

𝑑𝑥! = 𝑓 𝑥! ,𝑢! , 𝑡,𝜃 𝑑𝑡 + 𝜎 𝑥! ,𝑢! , 𝑡,𝜃 𝑑𝜔       (1)  

𝑦! = ℎ 𝑥! ,𝑢! , 𝑡! ,𝜃 + 𝑒!                                    (2) 
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where the states are described by the vector 𝑥!, 𝑓(⋅) is the drift term and 

𝜎 ⋅ 𝑑𝜔 is a diffusion term with 𝜔 as a Wiener process.[21] The states are 

unobserved, but the vector, 𝑦!, of discrete time observations is linked to the 

states as described by the function ℎ(⋅). The observations are contaminated by 

the measurement noise, 𝑒!. The input is represented by 𝑢! and 𝜃 represents the 

parameters.  

 

The advantage of using SDE-GB models as compared to ordinary differential-

equations-based models, is that noise is included in the state equations in 

terms of 𝜎 ⋅ 𝑑𝜔. As the noise affects the state equations, the overall system 

will have a stochastic influence, reflecting the fact that future values of the 

states can never be predicted exactly. The system noise enters through the 

dynamics of the system and will reveal e.g. model deficiencies, random 

fluctuations in the system or unknown inputs.[22] Residual information and 

analysis can be used in the validation process of the model building to ensure 

that uncorrelated residuals are obtained.[21] Uncorrelated residuals indicate 

that the model is adequate in the sense that all the systematic variation in the 

observations is described. Elaborations of these advantages exist in several 

articles.[22–27] Solutions to SDEs are stochastic processes. These stochastic 

processes are described by probability distributions.[28] This property enables 

the use of Maximum Likelihood techniques, thereby maintaining a data-driven 

model estimation.[29] In this paper the parameters of the Medtronic Virtual 

Patient (MVP)[30] model are estimated in an SDE-GB setting using the 

Maximum Likelihood principle. First, a method for identifying the need for 

diffusion terms, using forward selection, is presented. Secondly parameters are 
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estimated using Maximum Likelihood. Finally a Bayesian method is used to 

estimate the parameters related to the observation equations. These parameters 

are cross-validated on a different data set from the same patient. 

METHODS 

The data used in this study originates from an overnight closed-loop study, 

conducted as a part of the DIACON project.[31] Patient characteristics and 

study set-up are described by Schmidt et al.[32] Plasma glucose and plasma 

insulin were sampled every 30 min. Plasma glucose was analysed using 

YSI2300 STAT Plus (Yellow Springs Instruments, Yellow Springs, OH). 

Every 5 min. a subcutaneous glucose value was obtained using a DexCom 

SevenPLUS (DexCom, San Diego, CA) CGM. Insulin Aspart (Novorapid, 

Novo Nordisk, Bagsværd, Denmark) was administered using a Paradigm Veo 

(Medtronic, Northridge, CA) insulin pump. Patients were euglycemic (PG 

level 70-144 mg/dl) at study start. It is assumed that an evening meal given 

four hours before study start does not influence the glucose dynamics. For this 

study, data from one patient on two independent nights, at least two weeks 

apart was used for model identification. The first data set, Data1, originates 

from a closed-loop study night, and the second data set, Data2, originates from 

an open-loop study night.  

 

The initial model 

The MVP model was used as the basis for formulating the SDE-GB model. In 

essence, the model is based on the Bergman Minimal Model.[33,34] Fisher 

modified the model, replacing insulin secretion with insulin infusion.[35] In 

this study, we focus on the kinetics and dynamics when patients are at rest. 
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This reduces the model to the five equations below describing glucose-insulin 

dynamics with no meal input. 

The insulin dynamics are described by: 

𝑑𝐼!" =
!
!!

!"
!
− 𝐼!" 𝑑𝑡 + 𝜎!!"𝑑𝜔!                         (3)  

𝑑𝐼! =
!
!!

𝐼!" − 𝐼! 𝑑𝑡 + 𝜎!!𝑑𝜔!                           (4)  

𝑑𝐼!"" = 𝑝! ⋅ 𝑆! ⋅ 𝐼!  −  𝑝! ⋅ 𝐼!"" 𝑑𝑡 + 𝜎!!""𝑑𝜔!   (5) 

where 𝐼!" , 𝐼! and 𝐼!"" are the subcutaneous insulin concentration [!"
!
], the 

plasma insulin concentration [!"
!
] and the effect of insulin [ !

!"#
], respectively.  

The glucose dynamics are described as: 

𝑑𝐺! = − 𝐺𝐸𝑍𝐼 + 𝐼!"" ⋅ 𝐺! + 𝐸𝐺𝑃 𝑑𝑡 + 𝜎!!𝑑𝜔!    (6)  

𝑑𝐺!" =
!
!!

−𝐺!" + 𝐺! 𝑑𝑡 + 𝜎!!"𝑑𝜔!                            (7) 

where 𝐺! and 𝐺!" are states representing the plasma glucose concentration 

[!"
!"
] and subcutaneous interstitial glucose concentration [!"

!"
], respectively. 

The models contain a diffusion term 𝜎𝑑𝜔 where 𝜎 is a scaling parameter and 

𝜔 is assumed to be a Wiener process with normally distributed 

increments.[25] To accommodate available data, in our study 𝜏! = 𝜏!, as 

insulin kinetics is very data-dependent.[36] The remaining parameters are 

defined in Table 1.  

 

For our study the observation equations are: 

𝑌𝑆𝐼 = 𝐺! + exp(𝑒!"#)                                  (8) 

𝐶𝐺𝑀 = 𝐺!" + exp(𝑒!"#)                              (9) 

𝐼𝑁𝑆 = 𝐼!" + exp(𝑒!"#)                                 (10) 
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where 𝑒!"# ∈ 𝑁(0, 𝑆!"#), 𝑒!"# ∈ 𝑁(0, 𝑆!"#) and 𝑒!"# ∈ 𝑁(0, 𝑆!"#)  are 

mutually independent white noise processes, and S is the variance of each 

measurement noise, respectively. 

The Maximum Likelihood principle 

The likelihood function captures all the information in the data about the 

parameters. For time-series data, the likelihood function is a product of one-

step conditional densities. Due to the Gaussian increments of the Wiener 

processes, it is assumed that the conditional densities are Gaussian. In order to 

evaluate this, one-step conditional predictions are needed. These are calculated 

using an extended Kalman filter,[23,24] and the likelihood function has been 

identified as the key inferential quantity conveying all information in 

statistical modelling including uncertainty.[29,37]  

Using the one-step prediction error, 𝜖!, and the associated variances, 𝑅!|!!!, 

for the extended Kalman filter, it is possible to formulate a Bayesian method. 

Bayes Theorem can be applied to obtain an improved estimate by forming the 

posterior probability density function:[29]  

                                 𝑝 𝜽 𝛶! = !(!!|𝜽)!(𝜽)
!(!!)

∝ 𝑝(𝛶!|𝜽)𝑝(𝜽)     (11)  

where 𝛶! is the set of observations and 𝜽 is a vector of parameters.  

Assuming Gaussian distributions, the posterior probability density function 

becomes: 

𝑝 𝜽 𝛶! =
!"# !

!!!
!!!|!!!

!!   !!

!"# !!|!!! !!
!"# !!

!
!!! 𝑝 𝑦! 𝜃               (12) 

×  𝑝𝑟𝑖𝑜𝑟(𝜽! ,𝛴!) 
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where 𝑦! is the initial conditions and 𝜽! and 𝛴! are the mean and covariance 

of a prior distribution. The parameter estimates are found by minimising the 

negative log-posterior probability density function: 

𝜽 = argmin   −𝑙𝑛 𝑝 𝜽|𝛶! ,𝒚!                         (13) 

where 𝜽  is the Bayesian estimate. This estimate and the covariance matrix,  

can be used as new prior knowledge for further estimation.  

In order to mimic potential future applications, three different setups for the 

prior knowledge have been considered:  

i) A theoretical prior knowledge for the variance of the measuring 

devices: 𝑝𝑟𝑖𝑜𝑟(𝜽!"), shown in the appendix.. 

The prior knowledge of the YSI device is based on Khan et al.[38] 

For the DexCom SevenPLUS it is set as arbitrary but based on the 

user guide.[39] For the insulin measurement device it is set as 

arbitrary.  

ii) A prior knowledge formed by the estimate and covariance 

(𝜽!!,𝛴𝜽!!) of Data1: 𝑝𝑟𝑖𝑜𝑟(𝜽𝟏𝟏) 

iii) A prior knowledge formed by the estimate and covariance 

(𝜽!!,𝛴𝜽!!) of Data2: 𝑝𝑟𝑖𝑜𝑟 𝜽𝟐𝟐  

 

Modelling process 

All computations are performed using the statistical software, R (version 

2.15.1), and the “CTSM-R package”.[40] The identified models are cross-

validated by analysing the predictions from two study nights from the same 

patient. The following steps, are followed for both data sets – see Table 2:  

 



11 of 33	
  

Step 1 (Diffusion term identification and Maximum Likelihood): 

In the initial model building process for diffusion step inclusion, forward 

selection and Likelihood ratio tests are used.[23,24] a) The parameters of the 

initial ordinary differential equation model,  𝜎 = 0, are estimated. b) The 

diffusion terms are included, one at a time, and the parameters are estimated 

again. c) Wilk’s likelihood ratio test is applied to identify the most significant 

improvement.[29]  

d) Steps b-d are repeated until addition of extra diffusion terms does not give a 

statistically significant improvement. 

e) For Data1 and Data2 each respective Maximum Likelihood parameter 

set,  (𝜽!,𝛴𝜽!) and (𝜽!,𝛴𝜽!) is estimated.  

 

Step 2-6 (A Bayesian method): 

Step 2: 

For Data1 and Data2, each respective Bayesian estimate,  (𝜽!!,𝛴𝜽!!) and 

(𝜽!!,𝛴𝜽!!), is obtained using the measurement device prior knowledge 

𝑝𝑟𝑖𝑜𝑟(𝜽!").  

Step 3:  

With the estimates obtained in Step 2, the predictions of PG for Data1 and 

Data2, are calculated using only the respective IG to verify the prediction 

capabilities. 

Step 4: 

The new prior knowledge 𝑝𝑟𝑖𝑜𝑟(𝜽𝟏𝟏) and 𝑝𝑟𝑖𝑜𝑟(𝜽𝟐𝟐) is formed from 

(𝜽!!,𝛴𝜽!!) and (𝜽!!,𝛴𝜽!!).  

Step 5:  
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From Data1, 𝑝𝑟𝑖𝑜𝑟(𝜽𝟏𝟏),  is used in a new Bayesian estimation using Data2. 

Thereby a cross-validation estimation, giving a new Bayesian parameter 

estimation 𝜽!" (subscript is read as: prior knowledge from Data1 used to 

estimate Data2) is obtained. Likewise with 𝑝𝑟𝑖𝑜𝑟(𝜽𝟐𝟐). 

Step 6: With the obtained estimates 𝜽!" and 𝜽!", the predictions of PG for 

Data1 and Data2, are obtained using the respective IG observations only. 

 

 

RESULTS 

For all estimates presented, identifiability has been established by testing 

different starting points of the estimation. The forward selection method gave 

statistical reason for diffusion term inclusion, and resulted in the terms 𝜎!!", 

𝜎!! and 𝜎!!". For all results involving Data1 an outlier was removed in the 

estimation and prediction. It is represented by a purple circle in the relevant 

figures.  

 

 

Maximum Likelihood (Step 1) 

For the Maximum Likelihood investigation only the results from Data1 are 

presented. Results from Data2 show identical modelling behaviour. Using 

CTSM-R, the one-step-ahead prediction of PG and IG is obtained with 

calibration at each data point. As seen in Figure 1 the Maximum Likelihood 

estimate, 𝜽!, will seek to explain all the variation in the data without reflecting 
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that the truth is better described by the PG observations. Thus the prediction of 

PG shows the unwanted IG dynamics.  

 

It is evident that the overall prediction of PG follows the dynamic of the IG 

observations. Steep transitions in the prediction of PG are a direct result of a 

steep transition in IG observations. These transitions and the overall dynamic 

behaviour are attributed to the Maximum Likelihood estimate, visualising the 

challenge of the estimation technique. The parameter estimates are not 

presented, as the visual inspection shows suboptimal predictions. This is most 

easily seen by the persistent deviation between the predictions and the data 

over longer periods for the PG observations. 

 

 

A Bayesian method (Step 2) 

Figure 2 shows the predictions from a Bayesian estimation, 𝜽!!, by 

implementation of prior knowledge, 𝑝𝑟𝑖𝑜𝑟(𝜽!"). It is evident that the 

prediction of PG follows the actual PG observations more precisely than 

Figure 1.  

The prediction of IG is not as precise as before and the confidence interval is 

wider; a direct consequence of the Bayesian method. The Bayesian method 

makes the prediction band for IG statistically meaningless. As we are only 

interested in the PG prediction, this is a minor problem. The IG prediction 

band will not be shown in the remaining results. 

The prediction of PG is improved and the 95% prediction band is narrower. 

From a visual inspection it is seen that 𝑆!"# has decreased and 𝑆!"# has 



14 of 33	
  

increased, as expected. The estimates, standard deviations and the correlation 

table are presented in the appendix for both Data1 and Data2, increasing the 

reproducibility.[41] 

It is not meaningful to statistically compare Step 1 and Step 2, as information 

criteria are defined from the pure likelihood function; therefore a visual and 

physiological improvement are assessed. 

 

 

Model validation 

As it is desired to predict PG from IG observations, predictions without 

knowledge of the PG or insulin observations are computed.  

 

Data 1 

Prediction using   𝜽𝟏𝟏 (Step 3) 

Figure 3 shows the one-step-ahead prediction using  𝜽𝟏𝟏 of PG using only IG 

observations. The prediction follows the true PG dynamic well. The 95%-

prediction band contains all but one PG observation. 

 

 

Prediction using 𝜽!" (Step 6) 

Figure 4 shows the predictions using 𝜽!" and only IG observations. The 

dynamics of PG is captured well. The 95% prediction band contains all but 

one PG observation.  
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Data 2 

Predicting using  𝜽𝟐𝟐 (Step 3) 

Figure 5 shows Data2, with virtually no dynamic in the PG observations and 

the IG observations are very fluctuating and unphysiological. Despite this 

difference in observations, when predicting using  𝜽𝟐𝟐,  it is seen that the one-

step-ahead prediction of PG using only IG observations follows the PG 

dynamic well. The 95% prediction band contains all but one PG observation.  

 

Predicting using 𝜽!" (Step 6) 

Figure 6 shows the prediction using 𝜽!". It is still possible to predict the 

dynamics of PG using only IG observations. There is a tendency that the 

predictions are slightly elevated compared to PG observations, but the 95% 

prediction band, contains all PG observation.  

 

 

 

DISCUSSION 

This study shows that it is possible to predict PG from IG observations using a 

Bayesian method. This finding indicates that the final model can be used as a 

control algorithm that is implementable in a pump system.  
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Maximum likelihood (Step 1) 

Using Maximum Likelihood estimation, the IG influence on the PG prediction 

is evident. The many closely spaced observations have a tremendous influence 

on the likelihood.[29] The optimisation minimises the one-step prediction, and 

as there are more IG observations, the optimiser will gain more from 

explaining the IG dynamics. To avoid this, a Bayesian method is suggested as 

a solution.    

 

A Bayesian method (Steps 2, 5 and 6) 

It is assumed that the global parameter set for a patient will vary between 

days. This variation is assumed to have a limited span. This assumption 

enables us to cross-validate within the same patient. We expect that the 

parameter estimates from a given night will be similar to parameter estimates 

from another night. This allows us to use prior knowledge from one study 

night to estimate a new parameter set.  

 

The ideal solution for a Bayesian method implementation is estimation of the 

optimal prior knowledge. However, an estimation of the variance of the 

variance of the measurement device requires a large amount of data. Instead, 

the literature was used to approximate measurement-device prior knowledge. 

The 95% prediction band is wide on the IG prediction since a Bayesian 

method is used. But as the focus of the study is prediction of PG this is 

accepted. The 95% prediction bands for PG are narrow.  
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As discussed by Donnet and Samson, Bayesian methods have been proposed 

and implemented for population pharmacokinetics/pharmacodynamics SDE-

GB.[42] Using CTSM-R it is possible to implement Bayesian estimation on a 

single subject, obtaining valid and interpretable models. Future studies should 

include several patients and preferably population modelling. 

 

Physiological modelling 

The SDE-GB models applied allow for a physiological, opposed to a purely 

statistical, interpretation of the models, since the model structure is based on 

physiology. From a visual inspection it is evident that the statistical best model 

is not the physiologically and technologically most correct model.  

The use of CTSM-R allows optimal conditions for the modelling procedure: 

i.e. continuous-time dynamics with discrete time observations and a possibility 

of adopting a Bayesian modelling framework. This gives fewer parameters to 

estimate, which in turn gives a more robust estimation. Furthermore, previous 

knowledge is often given as differential equations, and therefore easily 

incorporated into existing models.[42] This maintains the physiological 

meaning of the model, and gives it interpretability for both the modellers and 

medical experts.  

The examination of the covariance matrixes reveals that there is no severe 

parameter correlation. The covariance matrix has great potential in 

constructing a virtual patient database. Randomly selected parameter sets can 

be used to construct an infinite number of simulations for use as initial 

investigations, instead of costly human experiments.  
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Perspectives 

A natural progression is to extend the Bayesian method to data where other 

factors, such as meals, have an influence. Building on Reifman et al.[16] a 

combination of data-driven AR models and Bayesian probability models 

should be investigated. The Bayesian probability ensures physiological 

interpretability and the AR processes capture sensor dynamics.  

New optical-sensor techniques are currently under development as an 

alternative to the electrochemical transducer. Vaddiraju et al. provides an 

overview of advantages, disadvantages and perspectives.[7] 

To obtain more knowledge about PG-IG dynamics, experiments with multiple 

glucose sensors, both electrochemical and optical, should be considered. 

Advantages of a multiple glucose sensor approach are not well investigated 

but reports describing the advantages exist.[43,44] 

 

 

Conclusion 

The aim of this article was to extend an existing model describing PG-IG 

dynamical behaviour to SDE-GB form. With the SDE-GB model, and clinical 

data from a closed-loop study, parameters were estimated. The initial 

investigation used a Maximum Likelihood approach. Afterwards a Bayesian 

method was investigated.  

 



19 of 33	
  

Using the Maximum Likelihood approach gave statistically reliable result, but 

there were deficiencies, as the ability to predict PG from IG observations was 

poor.  

A Bayesian method was successfully implemented and it has been shown that  

parameters can be estimated using CTSM-R.  

Using a Bayesian estimate we were able to predict PG using IG observations. 

Furthermore we were able to cross-validate parameter estimates using a 

different data set from the same patient. Using prior knowledge from a 

previous study night, we were able to estimate usable parameters, indicating a 

close relation in intrapatient parameters.  

 

These findings indicate that the model can be incorporated in an artificial 

pancreas that can be used as a closed-loop controller. 
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Name Unit Description 

EGP [mg/(dL×min)] Endogenous glucose production rate, estimated at zero insulin 

GEZI [1/min] Effect of glucose per se to increase glucose uptake into cells and 
lower endogenous glucose production at zero insulin 

𝑝! [1/min] The delay in insulin action following an increase in plasma insulin 

𝑆!  [L/(mU×min)] Insulin sensitivity 

𝜎!!"  - Scaling of diffusion term for interstitial insulin 

𝜎!!  - Scaling of diffusion term for blood insulin* 

𝜎!!""  - Scaling of diffusion term for insulin effect* 

𝜎!!  - Scaling of diffusion term for PG observation 

𝜎!!"  - Scaling of diffusion term for IG observation 

𝑆!"# - Variance of measurement noise of the PG observations 

𝑆!"#  - Variance of measurement noise of the IG observations 

𝑆!"# - Variance of measurement noise of the insulin observations 

𝜏! [min] Time constant related to the insulin movement between the 
subcutaneous tissue and plasma 

𝜏! [min] Time constant related to the glucose movement in the subcutaneous 
layer 

ID [IU/min] INPUT. Insulin delivery to the subcutaneous layer 

C [L/min] Clearance of insulin in the subcutaneous tissue (1.2**) 

BA - Bioavailability of insulin (0.7***) 

Table 1: Identifiable parameters in Medtronic Virtual Patient on SDE-GB form.  
* Found to be insignificant – see results 
**Clearance is fixed conservatively according to patient characteristic32–34 

*** Bioavailability is fixed conservatively according to Hori et al.35 

PG: plasma glucose, IG: interstitial glucose 
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 Step 1 
ML 

estimation* 

Step 2 
Bayesian 

estimation* 
using  𝑝𝑟𝑖𝑜𝑟(𝜃!") 

Step 3 
Prediction** 

Step 4 
Form prior 

Step 5 
Cross-

validation 
Bayesian 

estimation* 

Step 6 
Prediction** 

Data1 

 
𝜽! 

 

 
𝜽!! 

 
𝑋! 

 
𝑝𝑟𝑖𝑜𝑟(𝜽!!)   𝜽!" 𝑋!" 

Data2 

 
𝜽! 

 

 
𝜽!! 

 
𝑋! 𝑝𝑟𝑖𝑜𝑟(𝜽!!) 𝜽!" 𝑋!" 

Table 2: Flow of the modelling process.  
* All observations in the data set are used for estimation.   
** Only IG-observations are used in the prediction of PG in this step. 
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Figure 1: (Overall) Predicting with 𝜽𝟏 using both PG and IG observations. The green ribbon 
reflects the normoglycaemic range. The purple observation is an outlier not used in the Maximum 
Likelihood estimation nor prediction. (Top) One-step prediction and 95% prediction band of the 
PG observations. The prediction is not in agreement with the observations. Steep transitions are 
seen when there is a change in the IG observations. (Middle) One-step prediction of the IG 
observations and 95% prediction band. The prediction band is unrealistically narrow, reflecting 
the fact that the model seeks to explain the sensor error exactly, not reflecting that the PG 
observations are the truth. (Bottom) Insulin delivery as boluses. 

 



27 of 33	
  

 

Figure 2: (Overall) Prediction with 𝜽𝟏𝟏 using both PG and IG observations. Green ribbon reflects 
the normoglycaemic range. The purple observation is an outlier not used in the Bayesian 
estimation nor prediction. (Top) One-step prediction and 95% prediction band of the PG 
observations. Small adjustments are seen when a new PG observation is obtained, but the 
prediction is in agreement with the observations. (Bottom) One-step prediction of IG observations 
and 95% prediction band. 
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Figure 3: (Overall) Predicting with 𝜽𝟏𝟏 using only IG observations. Green ribbon reflects the 
normoglycaemic range. The purple observation is an outlier not used in the Bayesian estimation 
nor prediction. (Top) One-step prediction of PG and 95% prediction band. The dynamics of PG 
are captured in the prediction and the prediction band covers all but one PG observation. 
(Bottom) One-step prediction of IG.   
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Figure 4: (Overall) Prediction with 𝜽𝟐𝟏 using only IG observations. Green ribbon reflects the 
normoglycaemic range. The purple observation is an outlier not used in the Bayesian estimation 
nor prediction. (Top) One-step prediction of PG and 95% prediction band. The dynamics of PG 
are captured in the prediction and the prediction band covers all but two PG observations. 
(Bottom) One-step prediction of IG. 
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Figure 5: (Overall) Prediction with 𝜽𝟐𝟐 (open-loop study) using only IG observations. Green 
ribbon reflects the normoglycaemic range. (Top) One-step prediction of PG and 95% prediction 
band. Despite the limited dynamics PG is predicted well with all but one PG observations within 
the 95% prediction band. (Middle) One-step prediction of IG. (Bottom) Insulin delivery per hour. 

 

 

 



31 of 33	
  

 

Figure 6: (Overall) Prediction with 𝜽𝟏𝟐 (open-loop study) using only IG observations. Green 
ribbon reflects the normoglycaemic range. (Top) One-step prediction of PG and 95% prediction 
band. Despite the limited dynamics PG is predicted well with all PG observations within the 95% 
prediction band. (Bottom) One-step prediction of IG.  
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