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Summary (English)

This Ph.D. thesis titled “Assessing Miniaturized Sensor Performance using Su-
pervised Learning, with Application to Drug and Explosive Detection” is a part
of the strategic research project “Miniaturized sensors for explosives detection
in air” funded by the Danish Agency for Science and Technology’s, Program
Commission on Nanoscience Biotechnology and IT (NABIIT), case number:
2106-07-0031. The project, baptized “Xsense” was led by professor Anja Boisen,
DTU Nanotech. DTU Informatics participate in the project as data analysis
partner.

This thesis presents advances in the area of detection of vapor emanated by ex-
plosives and drugs, similar to an electronic nose. To evaluate sensor responses a
data processing and evaluation pipeline is required. The work presented herein
focuses on the feature extraction, feature representation and sensor accuracy.
Thus the primary aim of this thesis is twofold; firstly, present methods suit-
able for assessing sensor accuracy, and secondly improve sensor performance by
enhancing the preprocessing and feature extraction.

Five different miniaturized sensors are presented. Naturally, each sensor require
its own special preprocessing and feature extraction techniques before the sensor
responses can be applied to supervised learning algorithms. The technologies
used for sensing consist of Calorimetry, Cantilevers, Chemoselective compounds,
Quartz Crystal Microbalance and Surface Enhanced Raman Scattering. Each
of the sensors have their own strength and weaknesses. The reasoning for using
multiple sensors was the desire to investigate the feasibility for an integrated
multisensor solution. A unique setup of multiple independent detectors is able
to vastly enhance accuracy compared to what a single sensor can deliver.
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As we are detecting hazardous compounds this enables the need for sensors to
deliver not only decisions but also certainty about decisions. This requirement is
handled by introducing classifiers that offer posterior probabilities and not only
decisions. The three probabilistic classification models utilized are Artificial
Neural Networks, Logistic Regression and Gaussian Processes. Often, there
is no tradition for using these methods in the communities of the prescribed
sensors. Here, a method of too much complexity is often undesired so it is a
balance when to utilize more sophisticated methods. For this reason, an array
of methods that only discriminate between samples are used as baseline. The
methods used vary from sensor to sensor, as these methods serve as baseline
performance when introducing new methods.

The most widely used baseline method in this thesis is the k-nearest-neighbor
algorithm. This method is of particular interest in the application of sensors,
as the sensors are designed to provide robust and reliable measurements. That
means, the sensors are designed to have repeated measurement clusters.

Sensor fusion is presented for the sensor based on chemoselective compounds.
An array of color changing compounds are handled and in unity they make
up an colorimetric sensor array. In this setting it is valuable to qualify which
compounds in the colorimetric sensor array are important. That knowledge en-
ables the ability to either reduce the size of the sensor or replace less sensitive
and unimportant compounds with more selective and responsive compounds. A
framework based on forward selection Gaussian Process classification is demon-
strated to successfully identify a set of important compounds.



Summary (Danish)

Ph.D.-projektet “Assessing Miniaturized Sensor Performance using Supervised
Learning, with Application to Drug and Explosive Detection” er et led i det stra-
tegiske forskningsprojekt “Miniaturized sensors for explosives detection in air”,
som er af Det Strategiske Forskningsr̊ads Programkomite for Nanovidenskab og
-teknologi, Bioteknologi og IT (NABIIT), bevilling 2106-07-0031. Projektet er
blevet døbt ”Xsense” og blev ledet af professor Anja Boisen, DTU Nanotech.
DTU Informatik deltager i projektet som data analyse partner.

Formålet med projektet har været at udvikle nano-sensorer med henblik p̊a at
skabe grundlaget for en elektronisk næse, som kan detektere farlige stoffer f.eks.
sprængstoffer. En s̊adan næse ville kunne bruges i lufthavne, hos anti-terror
korps, i afsøgningen af vejsidebomber, m.v. og dermed kraftigt reducere den
menneskelige risiko.

Forskningsarbejdet har haft to primære mål. For det første at præsentere me-
toder, som var i stand til at vurdere sensorernes nøjagtighed. For det andet at
forbedre sensorernes ydeevne gennem optimeret signalbehandling og datamodel-
lering. Ved identifikation af farlige stoffer, er der behov for en sensor som kan de-
tektere med høj nøjagtighed, men ogs̊a behov for vurdering af hvor p̊alidelighed
denne er.

Arbejdet har involveret fem forskellige kemiske nano-sensorer og fokuseret p̊a
udvikling, optimering og evaluering af metoder og modeller til databehand-
ling. Sensorne viser sig i stand til at detektere sprængstoffer som ofte bliver
benyttet af terrorister s̊avel som stoffer i forbindelse narkotika bekæmpelse.
Nøjagtigheden kan forbedres hvis systemet indeholder flere sensorer. Fordele
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ved en integreret enhed er undersøgt og de er indikationer at nøjagtigheden kan
forbedres i et multisensor system.



Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modeling, Technical University of Denmark, in partial fulfillment of the require-
ments for acquiring the Ph.D. degree in engineering. The Ph.D. project was a
part of the strategic research project named “Xsense - Miniaturized sensors for
explosives detection in air”, led by Professor Anja Boisen, DTU Nanotech, and
funded by the Danish Agency for Science and Technology’s, Program Commis-
sion on Nanoscience Biotechnology and IT (NABIIT).

The Xsense project worked towards the development of four individual sensor
technologies for detection of explosives. All of the sensor technologies can po-
tentially be incorporated into a single miniaturized device. The main hypothesis
of the project is that sufficient reliability can only be ensured by merging several
independent measuring principles.

The main idea behind this Ph.D. project was to develop the signal processing
pipeline for each sensor and then perform sensor fusion. This objective however
turned out to be a little too optimistic. A complete device was never built and
the work herein is exclusively about the processing of data obtained using the
individual sensors and the application of machine learning methods to assess
the performance of the sensors. Fortunately the work conducted in Xsense has
spurred a new project named MUSE, which in many ways is a continuation of
Xsense. The application area is different, but the sensor technologies are similar
and there is a greater focus on sensor integration. There is also a continuity of
personnel. Several of the researchers in MUSE participated in Xsense, and now
these people have more experience and know-how.

In Xsense, each sensor technology was developed and refined by people at DTU
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Nanotech and Department of Chemistry, Syddansk University respectively. All
data was collected by researchers at DTU Nanotech though. Due to the data
flow in Xsense, my project turned out to be provider of data analysis knowledge
for the researchers developing the sensors. My research has therefore been very
much about handling the data produced by these sensors, assessing the sensor
performance and then handing the results to the scientists at DTU Nanotech.
Thus, whenever data has been handled, the overall goal was always to assess
and possibly improve the sensor performance.

The starting point was to use existing techniques, and if the sensor was able to
deliver flawless performance using these techniques, no refinement in the signal
processing was made. For this very reason, the research conducted has not at
all been equally balanced among the sensors. Some of the sensing principles
were mature and there was already a lot of work published on those, whereas
others were rather new and here there was often more room for improvement.

Also a lot of traditional statistical hypothesis testing and design of experiments
have been carried out. Not all experiments used an experimental design as it
turned out that most “sensor people” are not aware of the issues solved by the
application of a proper experimental design. So this Ph.D. project has been
educational not just for me but also for the people at DTU Nanotech. Two
different worlds have meet and we have all come out richer.

In the early days of the project, no data was produced as the sensors were
under development. Fortunately I was able to get hold of data similar to the
data that would be produced within Xsense, but with the application of ecstacy
detection. The thesis contains a chapter about detection of ecstasy using quartz
microbalance sensors. This sensor was also developed at DTU Nanotech in
another project called Nanonose.

The thesis consists of a summary report and a collection of six research papers
written during the period 2008–2012. Four of the papers have been published
elsewhere whereas the remaining two still have to be published. One is still
in draft (paper F) while the other has been submitted. A total of 15 research
papers have been co–authored in the period, but only the papers that contained
contributions in the signal processing of sensor data have been included in the
thesis.

The introductory chapter will explain chemical sensing and the need for new
devices for explosives detection. Knowledge about chemical detection is not
assumed. Readers knowledgeable in the area on explosives detection can go
directly to the end of the chapter. There, an outline of the thesis is given as
well as a list of the main contributions contained herein. The list of contributions
is best read in order to know where the thesis advances current methods.
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Chapter 2 will then explain how machine learning in the context of sensors can be
employed. Readers with knowledge in machine learning can skim this chapter,
however attention should be given to section 2.3. Here I explain specifically
how the models were applied for the sensors, as well as which performance
measures were used. Further, the implementation details for each model are
given although not explained. If the implementation of the model was not done
by either me or my collaborators, I will give references to the software that was
used. Interested readers can find in-depth explanations in the referred material.
Likewise it is also my aim to publish the majority of the code used to create the
results presented throughout this thesis so others can reproduce the results.

Chapter 3 and 4 extract and present the main advances in the area of signal
processing and how specifically the models explained in chapter 2 were applied.
Advances have been made mostly on the sensors based on quartz microbalance
crystals and chemoselective colorimetric compounds and the two chapters are
based on the papers B-F. These papers are provided mostly as supporting
information to chapter 3 and 4.

The material covered in paper A is only covered briefly in the main part of
the thesis (chapter 1 and 5). The paper shows proof-of-concept measurements
made on the four sensors in the Xsense project and justify the application of a
multisensor approach. The paper can be read as stand-alone. With these words,
I wish you happy reading and I hope you will have an informative ride.

Lyngby, 31-December-2012

Tommy Sonne Alstrøm
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Nomenclature

Terms

Term Meaning
Analyte A chemical constituent or substance that is exposed to a

sensor and undergo analysis.
Antipersonnel
mine

Landmine is specifically designed to harm humans.

Chemoselective Selective compound that reacts with just one functional
group in the presence of others.

Deflagrate A substance that is suddenly and violently ignited, i.e. an
explosive.

Density
estimation

Estimation of the concentration of a detected vapor.

Difference map A graphical representation of the response of a
colorimetric sensor array.

Dot Refers to a circular dot on a colorimetric sensor array.
The dot consist of a dye that has been spotted on a piece
of silica gel and then dried.

Dye Refers to a given chemo-selective compound employed in
a colorimetric sensor array. One dye corresponds to one
sensor.

False alarm A positive detection that turned out to be false.
Precursor A substance that participates in the chemical reaction

that produces another substance.
Solvent Substance that are used to dissolve compounds.
Trace detection Detection of small amount of analyte vapor in air.



xviii Nomenclature

Treatment In terms of classical analysis of experiments, the
treatment is the act of exposing the object of interest to
the factors that is under investigation. In the context of
sensors, a treatment refers to the act if exposing the
sensor to a control or a target compound.

Abbreviations

Term Meaning
i.i.d. Independent and identically distributed
1-NN 1-nearest-neighbor
ANN Artificial Neural Network
AXO Abandoned explosive ordnance
CDF Cumulative distribution function
DPI Dots per inch
DTA Differential Thermal Analysis
DTA Differential Thermal Analysis
EP Expectation Propagation
ERW Explosive Remnants of War
GP Gaussian Process
GPR Gaussian Process Regression
GTD Global Terrorism Database
GTI Global Terrorism Index
HCA Hierarchical Cluster Analysis
HCL Hierarchical Cluster Analysis
ICBL International Campaign to Band Landmines
IED Improvised Explosives Device
k-NN k-nearest-neighbor
LHS Left hand side
LOOCV Leave-One-Out Cross Validation
LR Linear regression
MAE Mean Absolute Error
NMF Non-negative Matrix Factorization
PC Principal Components
PCA Principal Component Analysis
PCR Principal Component Regression
ppm parts-per-million
QCM Quartz Crystal Microbalance
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RCBD Randomized Complete Block Design
RGB Red-green-blue color model
RHS Right hand side
RMAE Relative Mean Absolute Error
RT Room Temperature
RT Room Temperature
SERS Surface Enhanced Raman Scattering
SLR Sparse Logistic Regression
SotA State of the Art
SVD Singular Value Decomposition
UXO Unexploded ordnance

Notation

Symbol Meaning
D The dimensionality of the data being treated.
D Denotes the dataset D = {xi, yi}Ni=1

E[f ] Expectation of f .
ε A normal distributed random variable used to add noise to

models.
E(·) The error function.
ED(·) The data dependent part of the error function.
Ew(·) The data independent part of the error function.
Eh[f ] The expectation with respect to the distribution measure h,

Eh[f ] =
∫
f(x)h(x)dx

h(·) Denotes the activation function used in a neural network.
Ik(i,j) An image matrix for channel k where the channels are RGB.

Ibef The image of a colorimetric sensor array before exposure.
Iaft The image of a colorimetric sensor array that has been

exposed.
Idif The difference image of a colorimetric sensor array.
k − CV k fold cross validation, k can be a number.
k(x,x′) A kernel function or the covariance function.
K The number of classes in a data set.
m(x) The mean function prior of a Gaussian Process.
M The dimensionality of a reduced subspace based on X.
Nerr The total number of missclassified points in a classification

problem.
Nk The total number of measurements in a given dataset with

class label k.
N The total number of measurements in a given dataset.



xx Nomenclature

Nk
tr The number of training points for class k.

R The set of real numbers.
R0+ The set of non-negative real numbers, R0+ = {x | 0 ≤ x < ∞}
x A vector of dimensionality D that contains a measurement.
xm,n Corresponds to element X(m,n).
X A D ×N data matrix.
X(m,n) The element on the mth row and nth column in the matrix

X.
yi The label that is associated with measurement xi.
θ Vector that contains hyperparameters.
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Chapter 1

Introduction

This Ph.D. project concerns the detection of explosives and drugs in air and is
a part of “Xsense”. The Xsense project has worked towards the development
of four individual sensor technologies for detection of explosives. The sensor
development has primarily been driven by two aims; to provide new tools for
the fight against terrorism and to provide cost efficient yet reliable sensors that
can be applied in the area of demining.

To meet either of these goals, a sensor platform that can detect explosives is
required. Detection of explosives is complicated due to the existence of a vast ar-
ray of explosive substances. The list of explosives employed by terrorists is long
and the detection is further complicated by terrorists often producing their own
explosives, usually referred to as an improvised explosives device (IED) [Wernick
and Von Glinow, 2012, Rollings and Wyler, 2012].

The situation of landmines is likewise complex as there exist an estimated 650
different types of antipersonnel mines around the world [Habib, 2007]. Antiper-
sonnel landmines are specifically designed to harm humans and is typically dug
into soil. Landmines are mostly an issue in developing countries where the local
inhabitants are often forced to cultivate minefields or they will starve [Landmine
Monitor, 2012].
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The detection of drugs is closely related to the fight against terrorism1. The
funding of terror cells is often (in part) achieved by the manufacturing and
distribution of illicit drugs [Costa et al., 2010]. Hence, it is a natural step to
investigate how well sensors can detect drugs.

Nevertheless, the primarily objective of the Xsense project was to develop a
miniaturized sensor platform for the detection of explosives so we will start there.
Due to the complexity of the detection of explosives, the playing field had to be
narrowed down and the sensors were tested on a few selected compounds which
will be detailed later. Furthermore, the sensors has been deployed exclusively in
a laboratory setting where numerous proof-of-concept measurements has been
made. The issue of mixed compounds (IEDs) is not handled explicitly in the
project, but instead several substances that is used to manufacture explosives
are measured standalone.

Measurements have also been performed on an array of non-explosive substances
that served as control. A list that details all of the applied substances and their
possible application can be found in appendix G. Finally, the task of getting the
explosives to the sensor in a real world setting is not handled within the Xsense
project. It is basically assumed that this is handled by an external device called
a preconcentrator that will collect samples in sufficient amounts.

Today vapors emanating from explosives are mainly detected by canines, elec-
tronic nose and sniffing probes [Furton and Lawrence, 2001, Singh, 2007, Yinon,
2003]. The electronic nose is the device that combines chemical-sensing and
pattern-recognition systems; in nature it could be the sensing organ of an ani-
mal like the nose of a bomb-sniffing dog or rat as illustrated on figure 1.1. The
sensor can recognize specific molecules and can be applied in many areas of
research, such as food quality analysis, medical diagnostics, explosives, toxins
detection, and environmental. Further, the sensor has shown high capability for
detecting substances, such as ammonium nitrate and mineral explosives (salts)
in low concentrations [Gui et al., 2009]. Nevertheless, the traditionally applied
electronic nose technique has limitations due to the detection problems at low
analyte concentrations, as well as at high or low temperature and humidity.

The minimization of false alarms is identified as a priority in sensing devices [Yi-
non, 2003, Gui et al., 2009]. Currently, the screening and identification of suspi-
cious substances is often done by canine units or specialized teams which employ
sophisticated methods e.g. terahertz pulsed spectroscopic imaging [Fitch et al.,
2007, Barber et al., 2005], gas chromatography, mass spectroscopy [Barshick
and Griest, 1998] or long-range Raman spectrometry [Carter et al., 2005]. The

1In this work we are only concerned with the detection of illicit drugs and explosives. Legal
substances such as medicine or fireworks are not what is in focus here.
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Figure 1.1: The two state of the art explosives detection units at work. Image
of the dog is courtesy of [Danminar, 2012] and the rat is courtesy of [APOPO,
2012].

screening is characterized by a high assignment of personnel and high costs [Shea
and Morgan, 2007]. Furthermore, in relation to the requested volume the meth-
ods are often slow. Airport screening requires systems to handle up to 10 pas-
sengers per minute [Shea and Morgan, 2007]. Canine units work swiftly but
require breaks, have significant upkeep cost and can only be applied by expert
handlers [Shea and Morgan, 2007].

Todays market shows a demand for portable multisensor instruments [Air, 2012,
Rki, 2012, Ins, 2012]. These instruments are sensitive enough to detect low con-
centrations of analytes and can within a few seconds identify common volatile
compounds. For example, in the product “GDA 2” by AirSense Analytics, a
combination of different sensors is applied. The product comprises an ion mo-
bility spectrometer, a photo ionization detector, two semiconductor gas sensors
and an electrochemical cell. Other detecting combinations like an array of chem-
ical sensors [Stetter et al., 2000, Suslick et al., 2004a, Kostesha et al., 2010] or
a surface modified with different sensing layers can also be called a multisensor
approach.

The use of detection systems based on multisensor approaches could tremen-
dously help in the fast identification of explosives, reduce false alarms and pro-
vide new opportunities for the real-time analysis of explosives [Xsense, 2012].
A simultaneous application of a variety of sensor techniques, which are based
on different physical principles, will enhance the collection of data where erro-
neous detections are statistically independent. This improves the possibility to
reliably detect presence of explosives molecules with a high confidence [Stetter
et al., 2000, Raman et al., 2009].

The application of multisensor detection technologies has a great perspective in
the identification of different analytes. In the cases of demining, a minimum
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acceptable clearance rate of 99.6% has been set by United Nations [Kimberg,
1996]. Obtaining this rate is almost impossible using a single detection tech-
nique. Trained dogs are by many considered the best known explosives detector,
but they require excessive training and are greatly obstructed by the environ-
ment. In severe cases their accuracy may be as low as 50% [Habib, 2007].

The sensors within this thesis measure responses based on chemical reduction-
oxidation reactions, molecular interactions, etc. so there is a need for some
introductory remarks about the nomenclature of trace detection.

1.1 Chemical sensing

All of the sensors presented in this theses are chemical sensors that is used
for vapor detection emanating by explosives (or drugs), also denoted as trace
detection. Trace detection is the detection of a small amount of molecules in
air. While the sensor manufacturing is very different all of them still rely on
the evaporation of the chemical target denoted analyte. An analyte is the sub-
stance or chemical constituent that is undergoing analysis, either classification
or density estimation. Classification is the act of identifying which compound
is reacting with the sensor whereas density estimation is the task of estimating
how much of the compound is present.

Often, the target analyte is dissolved into some kind of carrier liquid or carrier
gas. This carrier is denoted a solvent. Solvents are widely used in the production
of chemical constituents, whether these are cosmetics, explosives or something
else. Whenever one of our sensors is utilized it is always designed with the
detection of a specific compound in mind. An experiment is then conducted
with the target analyte and some alternative analytes could for example be
solvents that are used to create explosives as well as other compounds. As such,
solvents serve as potential false alarms for the compound that we really want
to detect. If solvents were not included in the experiment, the experimenter
really does not know if the sensor is detecting the solvent or the target molecule,
unless of course it can be argued by other means that the sensor made a positive
detection.

1.2 Antiterrorism

Over the past decade, explosives have been a preferred tool for terrorists [Wer-
nick and Von Glinow, 2012, Rollings and Wyler, 2012]. The organization of
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Figure 1.2: Types of weapons used in terrorist attacks in the period 2002-2011.
The most common choice is explosives followed by firearms. Figure courtesy
of [Global Terrorism Index, 2012].

Compound Incidents Fatalities Injuries

Ammonium Nitrate (AN) 94 139 328
Royal Demolition Explosive (RDX) 22 121 437
Triacetone Triperoxide (TATP) 3 17 26

Trinitrotoluene (TNT) 1272 1695 6177

Table 1.1: Confirmed instances where the listed compounds were used to
perform an attack [Global Terrorism Database, Dec, 2012].

Global Terrorism Index (GTI) has compiled figures of all recorded attacks in
2002-2011 and here explosives clearly shows to be the weapon of choice, which
is shown on figure 1.2.

The issue of terrorism is a global concern and almost every country in the world
is affected by the threat posed by terrorism. GTI has computed the threat
posed by terrorism according to a heuristic on the scale 0-10 for 158 countries,
and inspection of the results geographically shown in figure 1.3 reveals that
terrorism is indeed a worldwide concern. The figure also shows that the density
of terrorist attacks is highest in Columbia, the Middle-east, India, Pakistan and
the Philippines.

In the scope of Xsense we have measured four compounds commonly applied
by terrorists. These are the three explosives RDX, TATP and TNT and the
salt ammonium nitrate (widely found in fertilizers). The compounds and the
recorded number of incidents are listed in table 1.1. RDX and TNT are military
class compounds whereas TATP is a recently applied compound utilized in IEDs
that is easily manufactured using ordinary house-hold chemicals.
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Figure 1.3: The top map illustrates the worldwide threat calculated according
to the global terrorism index. The red dots on the bottom map marks geo-
graphical locations of attacks. Figures courtesy of [Global Terrorism Index,
2012].

It should be noted that table 1.1 only enumerates the number of confirmed
instances. Often the compound cannot be identified precisely, e.g. in the well-
known Oklahoma bombing where 168 fatalities and 650 injured were listed,
the explosive type is listed as unknown, even though it is the general notion
that ammonium nitrate was used it cannot be established beyond reasonable
doubt [Hoffman, 1998]. The perhaps most well-known recent example happened
in Norway, 2011, where a terrorist attacked the prime minister’s office building
located in Oslo using a lethal bomb based on ammonium nitrate [Pol, 2011a].
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The explosive TATP is not widely used but is well known in Denmark. Here,
we had two recent incidents (2007 and 2010) of failed terrorist attacks where
the police made arrests before the attacks were completed [Pol, 2011b, 2008].

Two more compounds where measured and although not often utilized (no
records where found in the GTD) by terrorists they are still highly relevant.
The first one is HMX (Octogen) which is closely related to RDX as the two
compounds are chemically close and in the production of RDX up to 10% of
the produced RDX turns out to be HMX (see appendix F). HMX is also often
mixed with TNT and thus it is possible that HMX has already been applied by
terrorists but merely it could not be detected post-blast.

The other compound measured was 2,4-dinitrotoluene (DNT). DNT is a byprod-
uct of TNT as TNT decomposed into DNT in time so an indirect method of
detecting TNT is to detect DNT. DNT has higher vapor pressure than TNT
and is therefore easier to collect and detect compared to TNT.

As a final note, the fatalities/injuries in table 1.1 is the minimum as only con-
firmed numbers are included. A total of of 50,098 incidents that included explo-
sives are recorded. If the incidents2 that resulted in more that 100 victims are
extracted, a total of 396 incidents are recorded with a total of 19,353 fatalities
and 59,106 injuries [STA].

1.3 Demining

Antipersonnel mines were first applied on a wide scale in World War II and
has been widely used since then [ICBL, 2012]. Originally a military weapon,
landmines has evolved to become an issue for civilian life as well. This is due
to mine fields remaining intact in former battle areas after ended conflicts. In
the year 2011 the portion of civilian casualties was at 72% out of all recorded
casualties.

In the mission of demining the International Campaign to Band Landmines
(ICBL) is a significant organization on the goal of worldwide demining and
most of the information contained in this section is based on the reports made
by the Landmine and Cluster Munition Monitor research by ICBL3.

2excluding incidents within legitimate warfare.
3Landmine and Cluster Munition Monitor is the research and monitoring initiative of the

International Campaign to Ban Landmines (ICBL) and the Cluster Munition Coalition (CMC)
and has provided civil-society reporting on landmines, cluster munitions and other explosive
remnants of war since 1999. The ICBL is the author of the reports. Human Rights Watch is
the publisher of reports from 1999-2004 and Mines Action Canada is the publisher of reports



8 Introduction

Demining took place in 1997 with the creation of the “Ottawa treaty”. The
Ottawa treaty is a framework for putting a total ban of landmines into place.
Countries that have signed the treaty also commits to clearance of minefields
and assisting affected communities. ICBL calls for a total ban on usage of
antipersonnel mines, as well as clearance of emplaced landmines and explosive
remnants of war (ERW). ERW refers to ordnance left behind after an ended
conflict such as explosive devices that failed to detonate (UXO) or equipment
that has been abandoned (AXO). Both UXO and AXO pose a significant threat
to local communities. Removal of ERW is also related to antiterrorism, since
military groups recover ERW and use them to manufacture their own explosives
devices (IEDs). Landmines are almost a worldwide problem, with presence of
minefields in Asia, Africa, South America and Europe (see figure 1.4). Fortu-
nately the creation of new minefields has almost come to a stop. In 2011–2012
only two governments applied new antipersonnel mines, Myanmar and Syria.
The list of countries containing new minefields is a bit wider though, as non-
state armed groups also deploy antipersonnel mines. This has been recorded to
happen in Afghanistan, Colombia, Myanmar, Pakistan, Thailand, and Yemen.

It is mostly in developing countries that minefields are a problem. The list
of countries that have most casualties due to landmines are dominated by de-
veloping countries located in Africa and the Middle-east. The number of ca-
sualties in 2011 on countries with over 100 casualties, with the number of ca-
sualties in parentheses was: Afghanistan(812), Pakistan(569), Colombia(538),
Myanmar(381), Cambodia(211), South Sudan(206), Libya(184), Somalia(146),
Iraq(141), and Sudan(122).

In recent years the number of casualties is declining. The number of registered
casualties since the year 2000 is displayed in figure 1.5. The numbers are antic-
ipated to be more precise in the latter years as more countries have developed
registration procedures as the years went by, e.g. in year 2000 it was estimated
that the total number of casualties was about 20,000 even though the recorded
number is just 8,000. A total of 4,286 casualties by ERW was registered in the
year of 2011, a significant decrease since the year 2000. The amount of casualties
in year 2011 among children was 42% and in some countries the percentage was
as high as 61%, so ERW are mostly hurting children. According to [Landmine
Monitor, 2012] the appearance of minefields is decreasing and “Worldwide, an
area covering some 3, 000km2 remains to be cleared of antipersonnel mines”.

Current demining techniques are expensive compared to laying new mines. In
2007, [Habib, 2007] reported that the production cost of an antipersonnel mine
was about 3-30US� whereas the cost of clearing one mine was ranging between
300-1,000US�. One of the major reasons is that minefields must be cleared using

from 2004 onward.
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Figure 1.5: The number of casualties per year from explosive remnants of war.
Although the number of casualties rise on a few instances the number of casu-
alties is generally decreasing. The graph is based on numbers from [Landmine
Monitor, 2012].

multiple techniques, otherwise the required minimum acceptable clearance rate
of 99.6% cannot be achieved. This situation calls for the development of efficient
methods.

Despite the need for new reliable detection devices there is yet to be developed a
satisfactory mobile and portable solution. Sensors must not only easily detect a
variety of hidden explosives but they must also be able to detect illegal chemicals
and products of the explosives industry. A further requirement is that the
sensing device should be portable, rapid, highly sensitive, specific (minimize
false alarms), and inexpensive [Schmidt et al., 2011a].

1.4 Explosive detection using a multisensor ap-
proach

The main hypothesis in the Xsense project is that sufficient reliability can only
be ensured by merging several independent and sensitive measuring principles.
The basic scientific goal of the Xsense project was on the development and
refinement of miniaturized sensors in order to achieve a detection limit towards
explosives in the parts-per-billion range. DNT and TNT were the major test
molecules as TNT is commonly found in landmines, and DNT is a byproduct of
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TNT. DNT that leaks to the surrounding soil is generally easier to detect than
TNT thus TNT is located by detecting DNT.

The proposed multisensor system is based on four miniaturized sensors: calori-
meter, cantilever, colorimetric array, and surface enhanced Raman scattering
(SERS). The four utilized sensors are shown on figure 1.6.

SERS is increasingly used as a versatile analytical tool for both chemical and
biochemical sensors in liquid and gas phase. In fact, single molecule detection
with SERS has been demonstrated [Kneipp et al., 1997]. SERS-based sensors
rely on increasing the number of inelastically scattered photons from an ana-
lyte adsorbed on a so-called SERS substrate. A new class of SERS substrates
has been developed at DTU Nanotech using standard clean-room silicon pro-
cessing techniques [Talian et al., 2009]. This class of substrates demonstrates
a signal enhancement factor of up to 7.8 · 106 due to plasmonic effects from a
nanostructured and silver coated surface.

Calorimetry is widely applied to investigate thermal properties of various sample
analytes. The micro-calorimetric sensing device used in Xsense is based on
differential thermal analysis (DTA) where the temperature difference between
two highly sensitive temperature sensors is measured [Yi et al., 2008a, b, Senesac
et al., 2009, Greve et al., 2010]. One sensor is loaded with a sample analyte and
the other is left blank. Using integrated heating elements both sensors are heated
at a constant rate while the differential temperature is continuously measured.
At certain temperatures the sample will sublimate, melt, evaporate or deflagrate
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which results in a change in differential temperature.

The cantilever based sensor is an established micro- and nano-mechanical sens-
ing tool for trace detection of biochemical compounds [Raiteri et al., 2001, Fritz,
2008, Boisen et al., 2011]. The response of cantilever-based sensors can be
measured by monitoring change in resonance frequency of the cantilevers. A
negative frequency shift is generated through mass added to the surface of the
cantilevers [Fritz et al., 2000, Sushko et al., 2008]. Generally, the larger the res-
onance frequency change, the higher the amount of a given analyte is present in
the sample. The change in resonance frequency of each cantilever is measured.
The surface of the cantilever is functionalized with receptor molecules designed
to specifically bind target analytes [Gimzewski et al., 1994].

Colorimetric sensing is a technique which can be useful in both detection and
identification of volatile organic compounds in air and liquids [Kostesha et al.,
2011, Zhang and Suslick, 2005, Nielsen et al., 2008]. Chemoselective compounds
are capable of changing colors when exposed to analytes or analyte mixtures.
The colorimetric sensor array technique showed great potential for real-time4

monitoring of analytes such as DNT, acids, alcohols and arenas with sensitivity
below the parts-per-million (ppm) range [Kostesha et al., 2010]. Chemoselective
compounds are capable of recognizing specific analytes; this recognition is a
function of intermolecular interactions, basically weak, non-covalent interactions
or donor-acceptor interactions.

As mentioned in the introduction, multisensor devices are emerging such as the
GDA 2. But, while the “GDA 2” is a handheld device it has a weight of 4.2 kg.
The methods proposed in Xsense enables use of micro- and nano sized sensors
and these sensors can facilitate a even lighter handheld device that can contain
a multitude of sensors. This is a great strength in the goal of developing high
accuracy sensors. Suppose that the sensor measuring techniques in Xsense are
completely independent and that each sensor have an accuracy of just 75%. A
multisensor approach would under these assumptions have an accuracy of 99.6%.
The main hypothesis of the Xsense project is exactly that; to investigate to what
extent the sensors are independent, and what accuracy can be obtained by a
combined solution as opposed to each of the sensor individually.

1.5 Sensor evaluation framework

The development of a multisensor system begins with the development of the
individual sensor technologies. Some of the technologies in Xsense are rather

42 minutes of analyte exposure is needed for the current sensor.
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new and here we hypothesize that the accuracy of these sensors can be improved
if more specifically designed methods are developed. The work carried out
herein is about handling data produced by these sensors and how the sensor
performance can be assessed.

The generic framework that is repeated throughout the thesis is, 1) collection of
sensor data, 2) preprocessing and feature extraction, 3) assessment of the sensor
performance using machine learning. The procedure is illustrated in figure 1.7.

Some requirements were put on the machine learning methods. The current
state of the art (SotA) machine learning method for the given sensor field is
included as baseline. But as we are detecting hazardous compounds we require
that the classifier offers posterior probabilities and not only classifications.

When working with sensors the quality and accuracy of the sensor have to be
assessed. In our measurement setup we often work both in the two-class setting
and themulticlass setting. In the two-class setting, we are looking to identify the
analyte as either an explosives or non–explosives. In the multiclass setting we are
working in a more precise setting where either the exact name of the analyte is
used (e.g. DNT) or the chemical family of the analyte (e.g. DNT is an explosive
substance). When working in the multiclass setting, the goal is to understand
the strength of the sensor better and often the results are illustrated using a
confusion matrix. A confusion matrix illustrates the amount measurements that
was not classified correctly and where the sensor has weaknesses.

When comparing classifiers, often they are compared using the McNemar sig-
nificance test [McNemar, 1947]. The McNemar is a paired test which uses the
number of cases where two classifiers disagree about a decision. One p–value is
calculated for each comparison. In the cases of multiple hypothesis testing, the
framework proposed by Storey [Storey, 2002] is applied. Based on the p–values
an expected positive false discovery rate (E[pFDR]) is calculated. This rate is
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used to calculate the expected quantity of wrongly significant results relative to
all significant results.

1.6 Outline

The remainder of the thesis is structured as follows; Chapter 2 gives a brief
review of the origins of machine learning and describes the machine learning
methods that is applied in subsequent chapters. The focus of the chapter is on
the models and how they are applied and not so much how exactly the training
is handled. Often the training involves the minimization of a cost function.
Where appropriate the cost function will be described as well, but concerning
the numerical optimizations that is carried out, readers are referred to reference
material.

Chapter 3 shows some advanced made to quartz microbalance crystal (QCM)
sensor detection and estimation of concentration levels. QCM based sensors are
highly linear, yet sophisticated non-linear methods have often been applied and
in particular artificial neural networks. A data set is presented and analyzed us-
ing both linear and non–linear methods, and a recommendation on the handling
of data based on QCM sensors is summarized.

Chapter 4 includes several advances made to the colorimetric sensor array data
processing. First, the preprocessing of images is described and then the tradition
feature extraction process is detailed. Next follows some advances made on
visualization of colorimetric sensor arrays and the issues with current feature
selection methods are highlighted. Then follows advanced in the handling and
modeling of colorimetric sensor array data. Finally a generic framework based
on Gaussian process classification is introduced and used to identify important
chemoselective compounds.

Chapter 5 introduces the multisensor approach that formed the backbone of the
Xsense project. The chapter extracts the main results that is more elaborately
presented in appendix A. A dataset inspired by a post-blast5 car bomb scenario
was created. The analytes are measured on all four sensors under identical
conditions. Based on the findings it is rendered probably that a multisensor
approach comprising the aforementioned sensors will improve the overall pre-
diction accuracy.

Chapter 6 summarizes the thesis, highlights the innovations and put them into

5The situation after a detonation have occurred and forensics collect samples in order to
identify the explosives that was used
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perspective.

Papers B-F are in most part covered in chapter 3 and 4 and serve as supporting
information. Finally, appendix G enumerates the analytes that has been applied
in the work presented in this thesis.

Contributions

Here follows a condensed list of scientific contributions contained in this thesis:

� Improved performance of density estimation on quartz microbalance crys-
tal based sensors by applying Gaussian process regression [chapter 3, pa-
per B].

� Improved the visualization and interpretation of data collected from col-
orimetric sensor arrays by application of the cumulative density function
[chapter 4].

� Developed a unified approach to perform both sensor selection and analyte
classification for colorimetric sensor arrays. This is achieved by use of
sparse logistic regression [paper C].

� Improved accuracy in prediction performance for colorimetric sensor ar-
rays by improving the feature extraction. The color representation is car-
ried out using distribution methods and the Hausdorff distance [chapter 4,
paper D, E].

� Developed a sensor selection and sensor fusion scheme that based on Gaus-
sian process classification for colorimetric sensor arrays. The sensor selec-
tion effectively identifies sensors that will improve prediction performance
when sensor fusion is performed [chapter 4, paper E].

� Improved classification accuracy by applying 1-nearest-neighbor majority
voting for SERS-based sensors [paper A].

� Improved signal visualization of responses from calorimetric sensors by
conducting noise reduction using Gaussian process regression [paper A].
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Chapter 2

Learning Theory in the
context of sensors

Modern day machine learning concerns the processing and handling of data.
Data is typically divided into two groups: labeled or unlabeled, and which
machine learning method should be applied depends on the data. Labeled data
is for example data gathered for prediction tasks, e.g. prediction of explosives or
prediction of the amount of explosives. Here, the experimenter will collect data
simultaneously with labeling each measurement appropriately. On the contrary
unlabeled data is data gathered without labels, but where the experimenter has
collected data without labels and e.g. would like to discover structures in the
data in order to gain insight. Discovering these structures can be used to label
the data and thus create a labeled dataset. To reflect the distinction between
labeled and unlabeled data, machine learning methods are traditionally divided
into three categories:

� Unsupervised learning concerns unlabeled data. Typical usage is to
discover structure in data in an objective manner, i.e. the algorithm has
no knowledge of labels. In the context of sensors, unsupervised learning
is often applied to visualize the data.

� Supervised learning concerns the handing of labeled data. The goal is
to construct an algorithm that is able to predict labels. When handing
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sensor data, the algorithm is used to determine what the sensor measured
and possibly also quantify how much is measured.

� Reinforcement learning which is closely related to supervised learning
although here the data labels are not explicit. In reinforcement learning
the computer algorithm has the ability to learn from a delayed reward,
e.g. in a game of checkers.

Handling of sensor data is mostly in the supervised learning domain. As such
the majority of this chapter is about supervised learning.

Before delving into the world of machine learning some opening remarks on no-
tation are in order. When measuring the sensor responses are digitalized using
a sensor dependent system. The response is either a scalar response or a mul-
tivariate response. A multivariate response is a readout that consists of more
than one scalar, e.g. a spectrum or multiple quantities measured simultane-
ously. In case of a scalar response, the response is denoted x. If the response is
multivariate the scalars are stacked into a vector x = (x1, . . . , xD). The variable
D denotes the number of scalars that are measured each time a sensor readout
is performed. This number D is referred to as the dimensionality of the data
which naturally emerges when data is represented using the vector space model.
In this model each observation corresponds to a column in the data matrix
X = [x1 x2 · · · xN ] where N denotes the total number of measurements (or
data points). Throughout this thesis we assume that X ∈ R

D×N .

The remainder of this chapter will first give a brief overview of the history of
machine learning and formally define machine learning. This is followed by a
overview of the methods that is applied in later chapters. No attempt to explain
the models exhaustively and derive how algorithms learn the models has been
made. Such derivations is found in referred material listed for each method as
they are explained.

2.1 A brief history of machine learning

The concept of learning was put in a machine learning context in the late 1940’s.
One of the pioneers of machine learning was Claude E. Shannon. Although
Shannon is often proclaimed as the “father of the information age” he also made
significant contributions which helped spur the development of machine learning.
In 1949 he wrote a paper6 discussing how a computer could be programmed

6To my best knowledge this is the oldest reference to the concept of a learning machine.
Alan M. Turing published a famous paper in 1936 describing the “Turing Machine”. While the
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to play chess [Shannon, 1950a]. Although Shannon did not specifically use the
term “machine learning” or “artificial intelligence” he did discuss possible future
evolvements from the theoretical framework presented in the paper. Considering
the importance of modern machine learning, it is quite humorous that Shannon,
in his introduction, tones down the importance of such application by writing
“Although perhaps of no practical importance, the question is of theoretical
interest” [Shannon, 1950a]. The items he enumerated include numerous areas
that have been solved successfully since then:

“(1)Machines for designing filters, equalizers, etc.
(2)Machines for designing relay and switching circuits.
(3)Machines which will handle routing of telephone calls based on
the individual circumstances rather than by fixed patterns.
(4)Machines for performing symbolic (non-numerical) mathematical
operations.
(5)Machines capable of translating from one language to another.
(6)Machines for making strategic decisions in simplified military op-
erations.
(7)Machines capable of orchestrating a melody.
(8)Machines capable of logical deduction.”

Shannon (1950a)

In the following year Shannon managed to build a machine which was possi-
bly the very first example of machine learning. The example is manifested in
an electrically controlled mouse named Theseus [Shannon, 1950b]. Figure 2.1
displays the machine built by Shannon and Theseus at work. The mouse is set
loose in a 5�5 maze and expected to locate a predefined tile. By exploring, the
mouse learns the layout of the maze remembering the position of walls. Once
the maze has been fully explored the mouse is able to navigate through the
maze flawlessly. The maze can be altered on the fly and the mouse will adapt
and relearn the new layout. AT&T Inc. has put a video online where Shannon
is presenting the machine [Shannon, 1950b]. The video is an example of the
brilliance of one of the great pioneers of information theory.

Other important developments happened in the year of 1950. In this year Alan
M. Turing published the famous paper titled “Computing Machinery and Intel-
ligence” where he considers the question “Can machines think?” [Turing, 1950].
Turing even refers to the concept of a “learning machine” – a mechanical ma-
chine with the ability to learn from experience. However it was not until a few

Turing Machine is a learning machine as such, his paper described more on how an algorithm
could be implemented in machinery and not so much on the topic of how a machine could be
programed to learn from experience.
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Figure 2.1: Image of Theseus at work (left) and the controlling electronics
under the hood (right). Courtesy of [MIT Museum].

years later John McCarthy coined the term “artificial intelligence”. In 1955 Mc-
Carthy wrote a proposal for support for the “Dartmouth Artificial Intelligence
Conference” held in 1956 where he defined the term. In an interview given by
McCarthy he explained:

Interviewer: “You’re credited with coining the term ”artificial intel-
ligence” just in time for the 1956 conference. Were you just putting
a name to existing ideas, or was it something new that was in the
air at that time?”

McCarthy: “Well, I came up with the name when I had to write
the proposal to get research support for the conference from the
Rockefeller Foundation. And to tell you the truth, the reason for
the name is, I was thinking about the participants rather than the
funder.”

“Claude Shannon and I had done this book called ”Automata Stud-
ies,” and I had felt that not enough of the papers that were submitted
to it were about artificial intelligence, so I thought I would try to
think of some name that would nail the flag to the mast. ”

Skillings (2006)

A few years later, in 1959, the term “machine learning” was used by Arthur
L. Samuel – perhaps for the first time. In his paper “Some Studies in Machine
Learning Using the Game of Checkers” Samuel discussed how he had created a
computer program that was able to learn how to play a better game of checkers
than himself. Samuel, Shannon and others often described machine learning
as a computer algorithm with the ability to learn from experience. McCarthy
proposed a more concise definition in a publication from 2007:
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“It [AI] is the science and engineering of making intelligent machines,
especially intelligent computer programs. It is related to the similar
task of using computers to understand human intelligence, but AI
does not have to confine itself to methods that are biologically ob-
servable.”

McCarthy (2007)

Machine learning is often thought of as a branch of artificial intelligence as the
two disciplines have very similar goals. How the two fields are different can be
learned by looking at a definition given by Tom M. Mitchell:

“The field of machine learning is concerned with the question of
how to construct computer programs that automatically improve
with experience.”

Mitchell (1997)

That is, machine learning concerns construction of computer programs whereas
artificial intelligence is broader. Further Mitchell formally defines what a ma-
chine learning program exactly is:

“A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with expe-
rience E.“

Mitchell (1997)

To achieve the above mentioned goals, modern machine learning relies heavily
on statistics. In fact, modern machine learning and statistics are so closely
knit together that often one cannot tell when a practitioner is doing machine
learning or statistics. The distinction is discussed by Neil D. Lawrence in a
recent lecture titled “What is machine learning?” [Lawrence, 2010]. Lawrence
refers to a conversation in particular between Zoubin Ghahramani and Tony
O’Hagan. They discussed whether machine learning is indeed just statistics
or not. Based on the discussion Lawrence states that statistics and machine
learning is not the same, because the two fields have ultimately different goals.
Lawrence explains

“Statistics and machine learning are fundamentally different. Statis-
tics aims to provide a human with the tools to analyze data. Machine
learning wants to replace the human in the processing of data.”

Lawrence (2010)
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To summarize, both disciplines are engaged about the handling of data, they
use similar tools, often the same tools, but the end goal for machine learning
research is ultimately different than statistical research.

2.2 Unsupervised learning

Visualizing the data in X can sometimes be challenging especially if D is higher
than three or four. In this thesis unsupervised learning is used both for vi-
sualizing the data matrix X and for performing dimensionality reduction. The
main idea behind the methods presented in this section is that there exists some
latent structure in the data that is more suitable for representing the data. If
such a structure exists then the potential for dimensionality reduction of data
is there. Further, possibilities for making meaningful visualizations using just a
few dimensions also exists.

2.2.1 Principal component analysis

Principal Component Analysis (PCA) was originally proposed by Karl Pearson
in 1901 [Pearson, 1901]. The concept of the procedure is to transform the
data stored in X to a new coordinate system that is more suitable to represent
the data (to reiterate, X is a representation of the data in Euclidean space
of dimension D). This is achieved by a linear transformation of X. Then
PCA will identify a new set of basis vectors, principal components (PCs). The
first PC identified is the direction which contains the most variance, hence the
main assumption of PCA is that this is the direction that will best capture
the structure of the data.The second direction is now identified as the direction
of second-most variance with the constraint that it has to be orthogonal to
the previous basis vector(s) and so forth. The idea is illustrated in figure 2.2
in the two dimensional case. The two variables in question are quite strongly
correlated. The line of worst fit which is orthogonal to the line of best fit
is mostly projecting noise and is thus not needed. PCA works very well for
high dimensional data provided that the signal-to-noise ratio is sufficiently high.
Otherwise the identified basis vectors will mostly display noise.

Various algorithms exist to compute PCA [Eldén, 2007, Shlens, 2009], but
the most commonly used is singular value decomposition7 (SVD). SVD is the

7SVD is used due to computational advantages. When SVD is used to perform PCA, the
matrix X is centered by subtracting the mean off each measurement type (i.e. each row)
before calculating the factorization.
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Figure 2.2: PCA as illustrated by the inventor Karl Pearson [Pearson, 1901].
In the example there is just one variable which is a latent structure that is a
linear combination of the two variables x and y. In modern day machine learning
the y-axis is denoted as x2 as this is the second observed variable. The letter y
is usually used for labels in supervised learning. Permission granted by Taylor
& Francis group, copyright 1901.

following matrix factorization

X = SΣV� (2.1)

where S ∈ R
D×M and V ∈ R

M×N are orthogonal, that is S�S = I and
V�V = I. The matrix Σ ∈ R

M×M
0+ is a diagonal matrix with elements

Σ = diag(σ1, σ2, · · · , σM ) and is ordered such that σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0.
The value of M will be the minimum of M = min(D,N). The parameter M can
also be chosen to be smaller in which case the above equation no longer holds
and the factorization becomes an approximation using the first M principal
components. This corresponds to dimensionality reduction.
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NMF

=×

PCA

=×

Original

Figure 2.3: Non–negative matrix factorization as introduced by Lee and Seung.
The matrices to the left graphically illustrate the identified basis vectors. Colors
on gray scale represent positive values, white corresponds to zero and colors
containing red represent negative values. The middle matrices are the loadings
matrices. Adapted by permission from Macmillan Publishers Ltd: Nature [Lee
and Seung, 1999], copyright 1999.

Of final note the amount of variance explained by the mth PC is often calculated
and displayed when making PCA plots or conducting dimensionality reduction.
The amount of variance explained by the mth PC is calculated as

Var(PCm) =
σm∑
i σi

(2.2)

A strategy for dimensionality reduction is to choose M such that the new sub-
space explains 95% or 99% of the variance in the data.

2.2.2 Non-negative matrix factorization

Non–negative Matrix Factorization (NMF) is a linear vector–space projection
method much like PCA, but with different considerations and assumptions. The
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method is applicable provided that the data contains no negative values8, that
is X ∈ R

D×N
0+ . In this case NMF will identify basis vectors and loadings that

have no negative values as well. This should increase the interpretability of both
the basis vectors and the loadings. The NMF model is

X ≈ AS (2.3)

whereA ∈ R
D×M
0+ and S ∈ R

M×N
0+ . The method is also known as Positive Matrix

Factorization [Paatero and Tapper, 1994] but is largely credited to Daniel D.
Lee and H. Sebastian Seung [Lee and Seung, 1999] due to their proposal of a
computationally simple procedure to estimate A and S.

NMF will often identify more sparse basis vectors which are easier to interpret,
see figure 2.3. The NMF basis vectors identified comprise various recognizable
facial features and then the loading matrix displays how much of each feature is
needed to construct a face. PCA identifies a drastically different solution where
most basis vectors are hard to interpret. Interestingly, even though the PCA
identifies a much more complex basis and loadings matrix, the face constructed
using PCA is of similar quality to the naked eye.

2.3 Supervised learning

In supervised learning the data is accompanied with a label so data is measured
as a pair (x, y). The label y is either a univariate continuous variable or a
discrete variable. Handling of continuous data is regression. Handling of discrete
variable is classification. There exists a few variations of classification problems
depending on the nature of the discrete variable. Suppose that observations
have to be identified to belong to one of K distinct classes. In this case the data
is called nominal. If K = 2 the classification problem is called binary, and for
K > 2 the classification problem is multinomial (or multiclass). The last type
of data, which is not handled is this thesis, is ordinal data. Here the K distinct
classes can be ordered according to some scale.

As in the unsupervised case the data is stored in a design matrix X and the
labels in a vector y. Typically supervised learning problems are formulated as
the problem of learning a function f(·) that maps observations to labels

yi = f(xi) (2.4)

where xi is the ith measurement and yi is the corresponding label. The function
f(·) is manifested in the form of a mathematical model. Supervised learning

8Or all negative values are set to zero.
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x1 x2 xN

Run 1

Run 2

Run N

Figure 2.4: Leave-one-out cross validation illustrated. In each run exactly one
test point is used (the colored) and N − 1 points are used to train the classifier.
Each point is used as test point exactly once

concerns how one identifies the model that “best” maps the observations to
labels. The handling of labeled data leaves open questions such as how should
the outcome of f(·) be handled, how do we choose between multiple inferred
models and how is the quality of a model assessed. These issues will be discussed
in this section as well as how supervised learning is employed in the framework
of sensors.

The subject of model evaluation, model selection and decision theory is rather
large thus in this section only the theory applied in this thesis is explained.
Further information can be found in the books [Berger, 1985, Bishop, 2006,
Hastie et al., 2008, Chen et al., 2010].

2.3.1 Model evaluation

In supervised learning, the data stored in X is divided into two separate matri-
ces: the training set matrix, Xtr and the test set matrix, X∗. The model used
to approximate the function f(·) is decided based on the data in Xtr. Further
the model is also inferred based on Xtr. This stage is often called the inference
stage. The performance of the model is now evaluated on the test set X∗ in the
decision stage.

The purpose of dividing the data into two portions is to be able to estimate the
generalization error. The generalization error is a measure of how well a sensor
performs on unknown data. This corresponds to real world scenarios where
a sensor is always measuring unknown data. Obviously the true generalization
error can never be known and must be estimated from data. A realistic estimate
thus requires a very rich data set that encompass a broad range of classes. In
the case of having limited number of measurements, the generalization error
can be estimated using the method of leave-one-out cross validation (LOO-
CV) [Hansen and Larsen, 1996]. The leave-one-out cross validation scheme is
illustrated in figure 2.4. A rather significant disadvantage of LOO-CV, is that
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LOO-CV requires the training of N models which quickly becomes infeasible
due to computational cost. In this case, precision on the generalization error
estimate can be sacrificed by dividing the data into equally sized portions thus
reducing the amount of needed models. This concept is called K-fold cross
validation (K-CV).

2.3.2 Model selection

The supervised methods explained throughout this chapter all have tuneable
parameters that will have influence on the performance. The topic of model
selection handles how the parameters are chosen to best represent the observed
data. However, the caveat is that we want the model that performs best on
unknown test data and not on the training data. In order to meet this goal
the parameterization of f(x) is changed to include the model parameters. The
function then is f(x,w) where w denotes model parameters. Two methods are
employed depending on the type of parameters. The first method is again cross
validation. Here, the cross validation is performed over the training set, and
then the model that performs with the best generalization error is being used.
This model is trained anew on the entire training set, before prediction on the
test set is performed.

The second method that is employed to estimate the model parameters is the
method of maximum likelihood. Here, the model parameters are formulated in
the context of a prior probability function p(w). The effect of the observed data,
D = {xi, yi}Ni=1, is likewise expressed through a probability function p(D|w).
Now, given Bayes’ rule [Bishop, 2006, Laplace, 1812, MacKay, 1992a] the pos-
terior p(w|D) takes the form

p(w|D) =
p(D|w)p(w)

p(D)
(2.5)

The equation is often put in words:

posterior =
likelihood× prior

evidence
(2.6)

In the case where we have no knowledge about the prior p(w), i.e. all model
parameters are equally likely before observing data such that p(w) is a uniform
distribution, the posterior is proportional to the likelihood

p(w|D) ∝ p(D|w) (2.7)

In maximum likelihood, one looks at the probability p(D|w) as a function of w
and then maximizes this function in respect to w. As equation (2.7) shows, this
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corresponds to choosing the value of w that maximizes the posterior probability
of w.

In some models, the prior p(w) is not chosen to be uniform but is governed by
some other distribution. In this case, the prior for w is written as p(w|θ) where
θ is a vector that contains the hyperparameters. Hyperparameters are quantities
that control the distribution of the model parameters. Given hyperparameters,
the posterior now takes the form

p(w|D, θ) =
p(D|w, θ)p(w|θ)

p(D|θ) (2.8)

Hence, the likelihood function must now be optimized both in terms of w and
θ. However, the hyperparameters are optimized in the evidence function (again,
the evidence distribution is interpreted as a function of θ)

p(D|θ) =
∫

p(D|w)p(w|θ)dw (2.9)

that is, all model parameters w are considered by integrating over w. This
approach is called marginalization over w, and for this reason equation (2.9) is
often referred to as marginal likelihood.

2.3.3 Performance measures

Performance measures are different depending on the type of data being handled.
We begin with classification, where each measurement is mapped to one of K
classes. Generally the number of classes in a data set is denoted K, and has
nothing to do with the K in “K-fold cross validation”.

First we consider a discriminant function which is a model that directly maps
an observation to a label. The way the performance of classifiers is measured in
this thesis is by the accuracy, defined as

Accuracy =
Number of correctly classified measurements

Total number of measurements
(2.10)

From the Accuracy measure follows another measure that is also often reported,
which is the “classification error rate” defined as 1 - Accuracy.

When measuring highly dangerous chemicals such as explosives, classifiers must
not only be able to classify explosives, they must also be able to measure the
certainty of the classifier regarding the decision. One way to achieve this is to
model the posterior probability

p(Ck|x) = f(x) (2.11)
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Models that model the posterior probability directly are called discriminative
models. Prediction is carried out by mapping x to the label that has the highest
posterior probability. This approach obtains the highest accuracy which also
seem rather intuitive [Bishop, 2006].

For continuous data the performance measure must reflect the ability to predict
a scalar. The most simple measure one might think of is the mean absolute
error defined as

MAE =
1

N

N∑
n=1

|yn − ŷn| (2.12)

In essence the MAE measures how much a prediction is off the mark on average.
This measure is often inappropriate in the context of sensors, because sensors
often operate over a large range of values, and prediction accuracy is important
for values in both the lower and higher range. This issue is fixed by the mean
relative absolute error

RMAE =
1

N

N∑
n=1

∣∣∣∣yn − ŷn
yn

∣∣∣∣ (2.13)

This measure calculates how much an error is off the mark on average in per-
centage! Thus prediction errors in the entire range are equally important.

2.4 Regression

Handling continuous data is done using a regression model however there are
numerous ways to model continuous data. Overall we distinguish between linear
and non-linear models. Linear models are suited for data that can be modeled
linearly, either by directly applying the data to the model or by introducing
non-linear features based on the original data.

Four different models are discussed, first the classic linear regression model.
This model has issues in the case where the dimensionality of the data is greater
than the number of measurements D > N . This deficiency can be handled in
a number of ways. Two strategies are introduced, one being the concept of
regularization and the other being that of dimensionality reduction. Finally
two non-linear methods are introduced, one being artificial neural network re-
gression which is a classic well-known model. The other Gaussian process re-
gression (GPR) which has advantages compared to the other models but also
dis-advantages. The main advantage of GPR when working with sensors is that
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Gaussian process models (GP) also inherently model prediction uncertainty9.
The regression models introduced in this section are almost the same that are
used for classification, only the models are changed to handle nominal data.

2.4.1 Linear regression

Linear regression was most likely proposed by Gauss [Stigler, 1981] and uses the
model

y = w0 +w�x (2.14)

where w is usually called the weight vector or the loadings vector. From the
equation it is seen that w is of length D, and in this thesis we further require
all numbers to be real numbers i.e. w ∈ R

D. Inspection of the equation reveals
that one would require D + 1 equations to uniquely solve the set of equations.
Having more equations (observations) will results in an overdetermined system10

where there are too many equalities to be met. In this case one can estimate
the vector w using the method of least squares.

The idea is to find the solution that comes as close as possible to solving the
equations by solving the minimization problem

X0 = [x0 x1 · · · xn] (2.15)

where x0 is a vector of length D containing ones. Using the above design matrix
the least squares estimate of w is

w = (X0X
�
0 )

−1X�
0 y (2.16)

The set of equations generated by the above expressions is usually referred to
as the normal equations. It can be shown that given the measurements follow
a linear model and are contaminated by Gaussian distributed noise this is the
optimal estimate of w [Bishop, 2006]. The model described here forms the basis
of both prediction models applied later.

Applying least square regression corresponds to minimizing the function

ED(w) =
1

2

n∑
i=1

(yi − ŷi)
2 (2.17)

9Although one has to remember that the uncertainty predicted is under the assumption
that the model is correct, as the uncertainty is modeled within the model.

10Unless some observations are linearly determined by others.
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That is, least square minimizes the sum of the squared error. The concept of
an error function is important in supervised learning. In linear regression the
solution is found in closed form, but in other instances the model is learned by
some minimization of an error function, often derived by maximum likelihood.

The case arises if one has an under-determined system. In this scenario there are
too few equations to estimate w uniquely, i.e. an ill-posed problem11. Further
constraints must be put onw in order to make the solution unique and tractable.
We use the approach of regularization. The basic idea behind regularization is
imposing penalties for large values in w. The system will now have a unique
solution and often be converted to a well-posed problem thus avoiding over-
fitting. The error function is separated into a data dependent part ED(w) and
a data independent part Ew(w,λ)

E(w) = ED(w) + Ew(w,λ) (2.18)

There are various choices of Ew(w,λ) which will be introduced as they are
applied.

2.4.2 Principal component regression

Principal component regression (PCR) is an alternative strategy to handle the
issue of under-determined systems. Principal component regression is a linear
regression method that is related to regularized least squares regression and
partial least squares regression [Eldén, 2007, Bishop, 2006]. It is essentially a
combination of linear regression and PCA. The parameters to be chosen when
using principal component regression are which principal components to include
in the regression. We include principal components in the model ordered by their
variance choosing the highest variance component. The new set of variables
generated is used as input to a linear regression model.

2.4.3 Artificial neural network regression

The artificial neural network model is originally inspired by a mathematical
formulation on the processes happening in the brain, introduced by [McCulloch
and Pitts, 1943]. However, much credit is given to Rosenblatt [Rosenblatt,
1962] for his perceptron model which is illustrated on figure 2.5. The network is
a feed-forward network where data flows through the network in order to reach

11The problem might have been ill-posed anyway as well-posed problems also require sta-
bility in the solution of w.
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Figure 2.5: Figure by courtesy of Christopher M. Bishop [Bishop, 2006]

a prediction. For each dimension in x a corresponding input node is given and
for each output an output node is given. What makes the network special is the
hidden layer consisting of M nodes zj. Essentially each hidden node has its own
linear model associated. Following the principle of neurons, the hidden nodes
can be either active or inactive. This is formally achieved by wrapping each
linear model with an activation function h(·). In this work we use the tangent
hyperbolic sigmoidal function zj = tanh(aj), h : R → [−1; 1]. The output node
thus becomes a linear combination of M activation functions. Formally the
model for node yk can be written as

yk(x,w) =
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xj

)
(2.19)

The equation specified corresponds to the network displayed in figure 2.5.

Training neural networks is generally a non-convex problem however the rewards
for such a complex model is the gain of a very general approximation possibil-
ity. Therefore neural networks with one hidden layer are said to be universal
approximators. This knowledge is largely due to [Hornik et al., 1989, Hornik,
1991, 1993] who published a series of papers investigating which type of func-
tions could be approximated. Using the tangent hyperbolic sigmoidal function
as activation function, almost any function can be approximated, provided the
network has a sufficiently large number of hidden units.

Unfortunately, introduction of each hidden node results in D + K additional
parameters that must be estimated. Thus the big issue when using ANN is not
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the flexibility in approximation capability, but to find the best solution. A great
deal of research has gone into how to estimate the weights.

The training used throughout this thesis is based on an implementation by [Sig-
urdsson et al., 2004]. This is a two-layer feed-forward network with tangent
hyperbolic sigmoidal function as activation function. When used for regression
there is only one output unit, thus the k subscript vanishes.

Here the number of hidden units is assumed to be found by other means, e.g.
by CV whereas the model parameters w are governed by a zero mean Gaussian
prior (see section 2.3.2). Stacking all weights into one vector w the prior is

p(w|α) = N (w|0, α−1I) (2.20)

and the corresponding error function becomes

E(w) = ED(w) +
α

2
‖w‖22 (2.21)

The value α is optimized by marginal likelihood as described in section 2.3.2.
The network training is performed by iteratively optimizing the error function
for a given α and then performing evidence optimization on α. The initial value
for α is always α = 1/D.

2.4.4 Gaussian process regression

The theory behind Gaussian process regression goes back as far as 1880 [Lau-
ritzen, 1981], but was put into a machine learning context by [Williams and
Rasmussen, 1996]. A Gaussian process (GP) is completely specified by its mean
function and covariance function. Gaussian process is defined as [Rasmussen
and Williams, 2006a], “A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution.”

Suppose that the function f(·), that maps observations to labels, is taken to be
a real random process. Two new functions are defined, the mean function m(x)
and the covariance function k(x,x′) of the process:

m(x) = E [f(x)] (2.22)

k(x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] (2.23)

The formal Gaussian process is written as

f(x) ∼ GP (m(x), k(x,x′)) (2.24)



34 Learning Theory in the context of sensors

where m(x) is the mean function of the real process k(x,x′)

Sensor measurements are (almost) always noisy, however when we build a model
of a sensor response, what we would really like to model is the sensor and not
the noise. As such, a natural model to assume is

y = f(x) + ε (2.25)

Prediction is in this case

f(x∗) =
N∑
i=1

αik(xi,x∗) (2.26)

To summarize, the covariance function is the heart of prediction using GP, and
it is paramount to choose a suitable covariance function. Of popular choice is
the squared exponential kernel

k(x,x′) = exp

(
−‖x− x′‖22

2�2

)
(2.27)

The specific choice of covariance function is introduced as the GPR framework
is applied. Generally we use the implementation made by [Rasmussen and
Nickisch, 2010].

2.5 Classification

Classification is closely related to the regression models, as classification is a
special case of regression where the prediction variable is constrained to be
discrete. There are essentially three families of classification methods: cluster
based classifiers, linear classifiers and nonlinear classifiers. They have different
assumptions, e.g. cluster based classifiers assume that the data points measured
are clustered. In turn, that means cluster based methods might extrapolate
poorly depending on the type of sensor response, e.g. if theoretical insight about
the sensor reveals a linear dependence between the measured variables and the
responses linear classifiers are better suited. Non-linear methods assume that a
non-linear effect may exist. All three types of classifiers have been used and will
be explained in this section. The explanations are typically shorter compared
to the regression section, and only the differences when moving from regression
to classification are highlighted.
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Figure 2.6: A. Black diamond refers to a new test point that is going to be
classified. The k-nn classifier in this case identifies the three closest points. B.
The green line represents the decision place in case only the closest point (1-nn)
is being used to classify unknown points. Figures courtesy of [Bishop, 2006].

2.5.1 k-nearest-neighbor

The k-nearest-neighbor (k-NN) is an effective classification technique that has
the general assumption that points belonging to the same class should clus-
ter together. As such it can be characterized as a cluster based classification
algorithm. The basic idea is illustrated in figure 2.6.

When testing an unknown data point, the Euclidean distances for all known
points are calculated. The classes of the closest k points are then identified and
the unknown point is classified using majority voting of these known points.
In the event of a tie, the algorithm uses the nearest neighbor among the tied
classes to break the tie selecting the closest point as the class.

2.5.2 Vector-space classification

In vector-space classification, the data is represented in a subspace of lower
dimensionality than the original space. Training consists of finding a suitable
subspace as representative for each class. When classifying an unknown data
point, the data point is projected into each subspace. The subspace that rep-
resents the data point best (calculated as residuals) is chosen as the correct
class.
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This is done as follows; the training points stored in X is factorized using either
NMF or PCA. Using CV the optimal dimensionality of the subspaces are found
where the subspaces are required to be of the same dimensionality. After training
we have one matrix per class. When classifying test points, the data points are
projected into each of the subspaces. Classification is made by identifying the
unknown class as the subspace that represents the data point best.

2.5.3 Sparse logistic regression

The logistic regression model is an extension of the linear regression model.
Although the name implies regression the logistic regression model is a classi-
fication model. The idea is to use the output of a linear regression model and
then “squash” it using the logistic sigmoid function

σ(y) =
1

1 + exp(−y)
(2.28)

The sigmoid function has a domain y ∈ R and a range of σ(y) = [0, 1], thus
it maps the real space into a number that can be interpreted as a probability.
Binary logistic regression is now defined by the model

p(C1|x) = σ(w�x) (2.29)

with p(C2|x) = 1 − p(C1|x). The model is extended to a multiclass model by
using the normalized exponential (also called softmax)

p(Ck|x) = exp(w�
k x)∑

j exp(w
�
j x)

(2.30)

For the logistic regression model a closed form solution of w no longer exists
and one must be estimated using iterative techniques.

To promote a sparse solution and to handle over-fit, we use L1 regularization.
This is achieved by adding the term to the error function where λ is the model
selection parameter.

Ew(w) = λ‖w‖1 (2.31)

The error function is minimized using the Projection L1 method described by
Schmidt et al. [Schmidt et al., 2007].

2.5.4 Gaussian process classification

Gaussian process classification comes naturally now that Gaussian Process re-
gression has been explained. As in the case with GPR the framework is imple-
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mented using [Rasmussen and Nickisch, 2010]. The model choice of covariance
function is still the same, as is the choice of a mean function, but having discrete
variables the modeling changes.

Here we consider the binary case so the labels are now y = +1 for the target
class and y = −1 for all other classes. The cumulative Gaussian12 is considered

p (yi|f (xi)) =

yi·f(xi)∫
−∞

N (t|0, 1) dt = Φ(yi · f (xi)) (2.32)

which is parameterized by a given function value, f(xi). Hence, the model, or
free parameter is the function value, f(xi), and by taking a Bayesian approach,
we can directly consider the posterior over the function defined by the finite set
of random variables, f = [f(x1), f(x2), ..., f(xN )]

�
, i.e.,

p (f |y,X) =
p (y|f ) p (f |X)∫
p (y|f ) p (f |X) df

=
p (y|f ) p (f |X)

p (y|X)
(2.33)

The prior for f(x) is then a Gaussian process as specified in (2.24).

Given the probit likelihood model, the posterior over p (f |y,X) needs to be ap-
proximated and here the Expectation Propagation (EP) which provides a Gaus-
sian approximation to the posterior is used [Rasmussen and Williams, 2006a].

The prediction for a new input x∗ is obtained by first computing the predictive
distribution, p(f∗|y,X,x∗), which is Gaussian due to the EP approximation
(f∗ = f(x∗)). The probability of a given class C1 is computed by

p (C1|y,X,x∗) =
∫

p (y = +1|f∗) p(f∗|y,X,x∗)df∗ (2.34)

and p (C2|y,X,x∗) = 1− p (C1|y,X,x∗).

2.5.5 Artificial neural network classification

The neural network framework used for classification is largely identical to the
framework presented in the regression case with two differences which are high-
lighted in this section. Again the implementation provided by [Sigurdsson et al.,
2004] is used.

12Also known as the probit model
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First, number of output nodes is increased to K − 1, i.e. the number of classes
in the dataset minus one, and then the outputs are converted to probabilities
by using a modified softmax

p(Ck|x) = exp(yk(x))

1 +
∑K−1

k′=1 exp(yk′(x))
(2.35)

where the output from each node yk is defined in (2.19). The probability for
class K is then

p(CK |x) = 1−
K−1∑
k=1

p(Ck|x) (2.36)

The other difference is the addition of outlier detection. Outlier detection aims
to locate random label noise which could lead to wrong decisions. Having out-
lier detection should improve the networks ability to predict accurately. The
outlier probability is introduced in the data dependent part of the model as the
hyperparameter β, leading to the error function

E(w) = ED(w, β) + αEw(w) (2.37)

β is a scaled outlier probability as detailed in [Sigurdsson et al., 2004] with the
range β = [0; 1/(K − 1)].



Chapter 3

Quartz crystal microbalance
sensors

Quartz crystal microbalance (QCM) devices, originally proposed by Günter
Sauerbrey [Sauerbrey, 1959], are often used as gas sensors. The working princi-
ple of a QCM sensor resemble a tuning fork. The resonance frequency response
of QCM sensors is close to linear with respect to mass change. The crystal
itself is not selective and will change mass whenever some molecule is present
on the crystal. To make the sensor selective the crystal is coated with some
kind of chemical. The coating is specifically chosen or designed to detect a
predetermined type of analyte. Some coatings are chosen as responders to rele-
vant background molecules as well. This is done to strengthen the sensor in an
environment which contains a rich amount of molecules.

In this chapter we examine a QCM sensor consisting of eight different coatings.
A picture of one of the crystals is shown on figure 3.1. The sensor is used to
detect both the type of gas (classification) and the gas density (regression). We
investigate current QCM state-of-the-art classification and density estimation
techniques. Classification methods previously applied to QCM sensors are prin-
cipal component analysis [Lu et al., 2009, Rosengren et al., 2009, Si et al., 2007],
hierarchical cluster analysis [Ying et al., 2008, Sepcic et al., 2004] and artificial
neural networks [Gulbag et al., 2008]. However NMF has never been tried de-
spite the fact that QCM sensor responses are almost always positive. In this
chapter we conduct classification using ANN, SVD and NMF.
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Figure 3.1: Picture of an uncoated QCM device.

For density estimation three different methods are evaluated; Principal compo-
nent regression, artificial neural network and Gaussian process regression. PCR
is a linear method that performs well with a limited amount of training points
although it handles non–linearity in data poorly. To overcome this problem,
neural networks have usually been applied as the non–linear model [Gulbag
et al., 2008, Saraoglu and Kocan, 2010, Mumyakmaz et al., 2008, Özmen et al.,
2006]. However, GPR is so far an untried method for QCM data. GPR, a non–
linear method like ANN, should be able to perform well with a limited amount
of data points.

3.1 Detection of Ecstasy

The dataset is focused on the detection of Ecstasy. The analyte “benzodioxol”
is an important precursor for Ecstasy. The other analytes in the dataset are
compounds used in the production of Ecstasy but can also be found elsewhere.
Hence they serve as a natural background.

The data is measured using eight different coatings thus the dimensionality
of the data is D = 8. Six different analytes were measured, K = 6, which
are: acetone, benzodioxol, ethanol, heptane, pentanol and water. Each analyte
was measured at six different concentration levels, listed in table 3.1. Each
experiment is repeated three times, thus the dataset contains a total of N = 108
measurements. Details on the measurement system is found in appendix B.

PCA is used to visualize the entire dataset more effectively, see figure 3.2. The
sensor response for each analyte is almost on a linear manifold of its own, hence
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Level Acetone Benzodioxol Ethanol Heptane Pentanol Water
1 2125 820 900 628 103 288
2 4250 1640 1800 1526 192 575
3 8500 3280 3600 2512 300 1150
4 18200 6575 7200 5025 416 2300
5 32400 13150 14400 10050 600 4600
6 72800 26300 28800 20100 1400 9200

Table 3.1: List of concentration levels for each of the analytes. All concentra-
tion levels are in ppm.

the usage of linear methods is justified and reasonable. Also, it seems that PC1
and PC2 is sufficient to classify benzodioxol and pentanol whereas the other
analytes are very close, especially at low concentration levels.

3.1.1 Data partitioning

The data is partitioned into a training set and a test set. Learning curves
are produced for each algorithms so the size of the training set will vary. The
number of training points per analyte, denoted Nk

tr, will have a lower bound at
Nk

tr = 3 and an upper bound of Nk
tr = 12. The upper bound corresponds to an

experimental setup where all concentration levels for each analyte are included
twice.

The training set size is increased in roughly the same manner as an experimenter
would include more and more experiments. The training set is expanded as
follows: each analyte must be represented evenly in the training set - thus
the training set size Ntr is a multiple of K. Furthermore, each concentration
level within each analyte is represented as evenly as possible, e.g. for Nk

tr = 6
each concentration level is represented exactly once. The data partitioning is
graphically illustrated in figure 3.3.

3.1.2 Model evaluation

The two–tiered model described in section 1.5 is adopted where classification and
concentration level estimation is carried out separately. Output from the sensor
is applied to a classifier. Based on the decision made by the classifier, a given
regression model is selected with one regression model per analyte. Altogether,
the output from the framework is both an analyte name and a concentration
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Figure 3.2: The data visualized using PCA. The symbol size represents the
concentration level: the higher the concentration the bigger the symbol.

level.

Each data partitioning and subsequent model training and evaluation is per-
formed 100 times. This is done to ensure that we are not comparing the algo-
rithms on a training/test set that turned out to be an exception rather than the
norm. The models are evaluated using LOO-CV, hence all numbers reported
are the generalization estimate.

3.1.3 Analyte classification

As mentioned in the introduction, the performance of three methods is assessed.
Of particular interest is the performance of NMF compared to the two SotA
methods in detection using QCM sensors, SVD and ANN. Before the results are
displayed some notes on how model selection and model training were performed
is given.
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A. B. C.

Figure 3.3: Illustration of three different data partitioning scenarios. Each
square corresponds to a data point. The collection of blank squares constitute
the test set and the collection of colored squares constitute the training set.
The cki denotes concentration level i for analyte k. Here acetone corresponds to
k = 1 and water is k = 6. A. Nk

tr = 3. B. Nk
tr = 6. C. Nk

tr = 8.

Model training

The model parameters are in all cases selected based on cross validation. For
SVD and NMF will use leave–one–out cross validation (LOO-CV). However,
due to computational limitations, model selection for ANN classification is 6–
fold cross validation. The each fold will contain one data point per analyte.
The performance of the classifiers are evaluated based on the classification error
rate, already defined in section 2.3.1, but stated for completeness

Eerr =
Nerr

N
(3.1)

Training of NMF

NMF assumes that all values in X is non–negative so all negative values in the
dataset are set to zero. Effectively it means pentanol will be classified without
using the contribution from HDFD (see appendix B, figure B.3).

To reiterate classification using NMF, the data matrix X is factorized according
to

X ≈ AS (3.2)

where A ∈ R
D×M
0+ and S ∈ R

M×N
0+ . One subspace, Ak, is found as a represen-

tation for each analyte. The subspaces are required to be of equal size. The
size of the subspaces M is estimated by LOO-CV on the training set. Allowable
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subspace size is in the interval M ∈ {2, . . . ,min(Nk
tr − 1, 10)}. Note that M

must be less than the amount of training points – so if Nk
tr = 3, the subspace

size is automatically chosen to be M = 2.

Training of NMF consists of estimating A and A. Each element of matrices A
and S is initialized to a value drawn from a uniform distribution in the interval
]0; 1[. The stopping criterion for the algorithm is either 30 iterations or 10−4 as
relative error, whatever comes first.

Training of SVD

Classification using SVD is identical to the NMF classification method except for
the matrix factorization. The matrix factorization is carried out using SVD in-
stead and basis vectors are included based on their eigenvalues, always choosing
the basis vector with the highest eigenvalue. As with NMF the model selec-
tion parameter is the subspace size M , which is found using LOO-CV, again
constrained to the subspace size for each analyte being identical. For model
selection the allowable subspace size is M ∈ {1, . . . ,min(Nk

tr − 1, 7)}.

Training of ANN

The neural network has an input layer, a hidden layer and an output layer. The
network has eight inputs – one per crystal, and six outputs – one per analyte.
The number of hidden units in the network is found using 6-CV. The number
of hidden units tested was two to six.

Prior to training the entire dataset is whitened (made zero mean and scaled to
unit variance). The error function E(w) has two hyper–parameters α and β.

E(w) = ED(w, β) + αEW (w) (3.3)

where ED(w, β) is the cross-entropy error function and EW (w) is a regulariza-
tion term as explained in section 2.4.3. The hyperparameters are initialized to
α = 8 and β = 0 and the network weights are initialized using a zero mean Gaus-
sian with variance equal to α. The stopping criterion for the network training is
either 100 iterations or if the hyperparameters are updated with a margin lower
that 10−5. Each network training cycle is repeated 10 times and the network
with the lowest training error ED(w, β) is selected.
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Figure 3.4: Learning curves for the classification algorithms on a test set. The
shaded area is the standard error on the mean.

Results

Figure 3.4 shows learning curves for the three algorithms. The SVD classifier
is the preferred method regardless of the amount of training points. The per-
formance of SVD classification is superior to both ANN and NMF. Using only
3 training points per analyte we gain remarkable accuracy – only misclassifying
3% of the test points. ANN is quite poor initially but as the amount of training
point increases ANN classification catches up. But clearly, given the almost
linear responses of QCM sensors, a method such as ANN is hardly justified –
at least for this data. A numerical representation of figure 3.4 can be found in
appendix B, table B.1.

3.1.4 Concentration estimation

Concentration estimation is conducted using PCR, ANN and GPR. Linear re-
gression could have been, but since we mostly have under-determined systems
it would overfit. Instead PCR is included as this is the most typical approach
to handle overfitting in QCM sensing. Of special interest is the performance of
GPR since no previous work has been done in QCM sensing with this method.

Model training

The model parameters for ANN and PCR are selected based on cross validation.
For GPR three different covariance functions are tested. One could argue that
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the choice of covariance function is a model parameter, however, we take the
view that it’s a separate model type. Using this notion, there are no model
parameters in GPR.

When performing concentration estimation, only points measured on the same
analyte are used. The performance measure used is the mean relative absolute
error, already defined in section 2.3.1, but stated for completeness

MRAE =
1

Nk
tr

Nk
tr∑

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.4)

where yi is the true concentration, ŷi is the predicted concentration.

Training of PCR

The parameters to be chosen when using principal component regression are
which principal components to include in the regression. We include principal
components in the model ordered by their variance choosing the highest variance
component. The number of allowable components is M ∈ {1, . . . ,min(Nk

tr, 8)}.

Training of ANN

Training of neural networks for regression uses the same configuration as for
classification. For each analyte, one neural network containing one output neu-
ron is trained, where the output neuron is the concentration level estimate.
Alternatively, one could have trained one network with one output neuron per
analyte, however, comparing ANN with the other models becomes unjust as the
models are no longer trained on the same data. This is the only reason for the
choice of one ANN per analyte.

Training of GPR

A Gaussian process is completely specified by its mean function and covariance
function, therefore these are the two functions that must be defined when using
GPR. A zero mean Gaussian is used, hence to make this prior plausible the
empirical mean is subtracted from the data. The empirical mean and empirical
variance are calculated using the training set alone and as such the test data is
not guaranteed to have either zero mean or unit variance.
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Three different covariance functions are used, all based on the squared expo-
nential covariance function

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)�M(x− x′)

)
+ σ2

nδpq (3.5)

where σ2
f , σ

2
n and M are the hyper–parameters. Choosing Miso = �−2I yields

the isotropic squared exponential function where � is the length–scale. Choos-
ing Mard = diag(�)−2I yields automatic relevance determination. The two
approaches are combined by adding the covariance functions together thus cre-
ating the third covariance function. The hyperparameters are found using the
marginal likelihood approach as discussed by [Rasmussen and Williams, 2006a].
During optimization up to 1000 function evaluations are allowed. The initial
values for hyper–parameters are drawn from a zero–mean Gaussian distribution
with unit variance. In order to avoid bad local minima, 10 optimizations are
run, and then the hyperparameters that yield the best marginal likelihood are
chosen.

Results

Learning curves for concentration level estimation are shown in figure 3.5. ANN
is generally worst, probably because there are too few training points to train
an adequate neural network solution, or because it is too hard to find a good
solution, just as was the case for classification. For a small amount of points,
Nk

tr = 3, the best regressor is PCR. Only for benzodioxol concentration esti-
mation is PCR surpassed, where the GP ARD+ISO combination is the best.
At Nk

tr = 4, GPR generally performs similar to PCR and for Nk
tr ≥ 5 GPR is

either the superior method or on par for all choices of analyte. At Ntrain = 12
the GPR method offers superior accuracy. There is no significant indication
of which of the three covariance functions is the best although the combined
covariance function seems slightly better.

3.2 Related work

QCM sensors have been applied in many different scenarios, and also been
studied using supervised learning, both to identify analytes and to conduct
density/concentration level estimation.

Among the most used classification schemes are principal component analysis,
hierarchical cluster analysis (HCL) and artificial neural networks. Both PCA
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Figure 3.5: Learning curves for the regression algorithms. On the x-axis is the
number of training points per analyte, Nk

tr. On the y-axis is the log of the mean
relative absolute error log(MRAE). The shaded area is 2 times the standard
error on the mean. The standard error is multiplied to enhance visibility.

and HCA have been commonly applied to visualize QCM data and to argue
that a classifier could easily be built [Lu et al., 2009, Rosengren et al., 2009,
Si et al., 2007, Ying et al., 2008, Sepcic et al., 2004]. ANN has been applied
as well, recently by Gulbag et al., where an approach using probabilistic neural
networks coupled with radial basis functions is applied [Gulbag et al., 2008].

For concentration level estimation, partial least squares (PLS) has been used
on QCM sensors with success by Si et al. [Si et al., 2007] to estimate the con-
centration level of ethanol and toluene. Wang and Shih [Wang and Shih, 2006]
used multivariate linear regression to compute the concentrations of methanol
and carbon disulfide. Artificial neural networks have been applied as density
estimators in a vast range of applications. Saraoglu and Kocan used ANN to
estimate the blood glucose value by breath from patients [Saraoglu and Ko-
can, 2010]. Mumyakmaz et al. applied a model based on two networks where
one ANN classifies analytes and the other ANN quantifies the concentration
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ratios [Mumyakmaz et al., 2008]. The quantifying ANN handles three different
analytes (acetone, chloroform and methanol) simultaneously by having one out-
put neuron per analyte. Ozmen et al. applied ANN to estimate concentration
levels in mixtures of analytes. They conducted experiments of three analytes
(acetone, ethanol and trichloroethylene) but in their mixtures consisted of two
analytes at various concentration levels [Özmen et al., 2006].

3.3 Summary

A two–tiered data analysis framework has successfully classified responses from
an eight–dimensional polymer coated QCM sensor. By using linear methods
such as SVD and NMF, remarkable high accuracy (> 96%) is obtained, even
with as low as 3 training points per analyte. Having one training point per
analyte per concentration level (Nk

tr = 6, SVD has a classification accuracy of
99.8%. NMF does not perform to the level of SVD, but for a limited amount of
training points NMF is still better than ANN. This study clearly shows that one
should think twice before applying ANN to QCM sensors. The theory behind
QCM states that the responses should be linear, and as such there is little reason
to introduce a highly non-linear method such as ANN. Furthermore, ANN are
notoriously hard to train and requires a lot of computational effort, especially
compared to SVD which can be computed in seconds on modern computers.

For concentration level estimation, the Gaussian process regression quickly be-
came better than the linear method, and both methods are significantly better
than ANN. The issue with ANN regression being most likely that it is too hard
to identify the proper solution.

The best case scenario for GPR is a mean relative error of 3%. However the GPR
method does have difficulties when having just three training points per analyte.
Likely this is due to the zero mean Gaussian prior and the way data partitioning
is performed. For training sets where the lowest and/or highest concentration
levels are omitted the GPR will perform poorly. In general the GPR will predict
zero concentrations outside the training interval. The performance outside the
training interval could probably be improved by adding a growing term to the
prior or using a thin–plate spline kernel as covariance function [Wahba, 1990].

Arguably the GPR performs close to the level of an ideal concentration level
estimator. The expected error of an ideal estimator is related to the variance
of the measurement points [Bishop, 2006]. As the PCA plots show, there is
notable variance between measurements of the same concentration level, so it is
not possible to create an estimator with zero estimation error.
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To sum up, one should use GPR to perform concentration level estimation for
QCM instead of PCR or ANN. If there are issues with too many data points,
sparse approaches exist [Smola and Bartlett, 2000].



Chapter 4

Colorimetric sensors

A colorimetric sensor array is an ensemble of chemoselective13 compounds, typ-
ically called dyes that will undergo a color change when exposed to molecules in
air or a target substance (analyte). Each dye can also be considered as a single
sensor so we will also refer to a dye as a “sensor”. Hence, a colorimetric sensor
array is in essence a multisensor approach where each sensor is based on the
same technology.

Measuring with a colorimetric sensor array is considered to be a two-step pro-
cedure. Prior exposure to an analyte, each dye is digitally recorded typically
using a flatbed scanner or a digital camera. The sensor array is then exposed to
the target and the colors are recorded again. Figure 4.1 shows an example of a
colorimetric sensor array where RDX have been measured. Each dye is realized
as a dot on the material that makes up the sensor array.

This chapter gives an overview of the advances made in the signal processing
of colorimetric sensor array. The results presented are largely based on results
from the papers in appendix C, D, E and F. Section 4.1 describes how the
colorimetric sensor arrays are digitalized and how the dyes are located on the
sensor array. The positioning of the dyes is an issue that must be handled due
to two factors; First, the arrays are manufactored and digitalized by hand so

13Chemoselectivity is when a compound have a preferential reaction over a set of other
possible reactions.
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A. B.

Figure 4.1: Example of a colorimetric sensor array. A. The sensor array before
exposed to the target analyte. B. The sensor array exposed to RDX at 100�.
Some sensors change color, some evaporate and finally some remains unchanged.

the exact dye localization changes from array to array. Secondly, some analytes
may change the size and geometry of a dye.

In section 4.2 the sensor arrays that have been utilized is described as well as
the analytes that was measured.

Section 4.3 gives an overview of the traditional methods of visualizing colori-
metric data. The traditional approaches like utilization of difference images
have some weaknesses that are often ignored, such as the lack of uniqueness and
the inability to visualize repeated measurements in a condensed manner. An
alternative visualization technique based on the cummulative density function
that copes with these weaknesses is introduced. However, the introduced vi-
sualization method have other weaknesses, so the technique should be used as
complementary to existing techniques.

The next section, section 4.4 handles the presented datasets and give some
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results on the sensor accuracies. Traditional feature extraction techniques are
employed and we argue that these can be improved. Further, we show the
sparse logistic regression model works well in analyzing sensor performance.
The method is benchmarked against k-nearest-neighbor classification which is
the de-facto standard classier for colorimetric sensor arrays.

In section 4.5 a traditional statistic analysis is performed and is used to improve
the colorimetric sensor accuracy. Traditionally, the color change of the sensors
is used as the sensor response, but in this section we show that the original color
also have an effect on the sensor response.

Finally, in section 4.6 new dye color representation techniques are introduced.
These techniques are based on distance measures between the sensor responses
and as such they do not fit well into the traditional classifiers that assumes a
vector-space representation. To handle this issue while also performing sensor
selection, we introduce a forward selection paradigm based on Gaussian process
classification.

4.1 Preproccesing of images

Before the colorimetric sensor array are analyzed using computers the sensor
response digitalized using an ordinary flatbed scanner (Epson V750-M Pro Per-
fection scanner). The images are captured immediately14 after immobilization
of dyes and after exposure of analytes. Pictures were obtained at 600 DPI in
a lossless format using the red-green-blue (RGB) color scheme with 8 bits per
color. An image captured in the RGB color scheme produces a matrix for each
of the RGB color channels. Formally the image is written as Ik(i,j) which cor-
responds to the value of pixels at row i, column j for color channel k where
k = {1, 2, 3}. The range for i and j varies from image to image as the images
are captured by manual labor.

4.1.1 Dye localization

After digitalization the next step is to locate the dyes. All the sensor arrays
are fabricated by hand and therefore the exact dye location varies. The algo-
rithm for locating dyes have changed during the research project and different

14Due to the manual fabrication process, the dyes that where spotted in the initial part of
the process was exposed to the surrounding environment for up to 15 minutes whereas the
dyes that were spotted in the latter part was only contaminated for a few seconds.
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algorithms have been used in different papers [Alstrøm and Larsen, 2011]. The
algorithms has largely been inspired by the approach used in DNA micro-array
spot localization explained by [Bemis, 2004]. In this section, the most recent
version of the algorithm will be described. This algorithm is based purely on
the images before exposure to target analyte. This is because exposing the sen-
sor array to certain analytes will cause the dyes to completely vanish (to the
perception of the scanner). Figure 4.1 show examples of dyes that completely
vanish when exposed to target analyte. The gray dyes in the lower left corner
has become the same color as the background.

Initially the sensor array before exposure, denoted Ibef is smoothed using a
symmetric Gaussian filter. Each weight in Gaussian filter is calculated as

hg(n1, n2, σ) = exp

(
−n2

1 + n2
2

2σ2

)
(4.1)

where the parameters have been chosen as n1 and n2 is in the set {−2,−1, 0, 1, 2}
and σ = 3. The width and standard deviation has been experimentally chosen
with the aim to of remove undesired artifacts from the sensors while at the same
time maintaining the size of the dot and keeping the primary color unaffected.
The filter is normalized such that the filter sums to one:

h(n1, n2, σ) =
hg(n1, n2, σ)∑

n1,n2
hg(n1, n2, σ)

(4.2)

A circular averaging filter has also been considered and was used in earlier
versions of the algorithm. This filter has a similar structure as a Gaussian filter
in the sense that it computes an weighted average over an area with larger
weights in the center. Realizations of the filters are shown on figure 4.2.

The filter is linearly applied to Ibef where the corresponding filtered image is
denoted as Ĩ. An example of the noise reduction properties of the filters is found
in figure 4.3. The artifact in the lower left corner of figure 4.3A is particularly
troublesome when identifying dots, so it’s exactly defects like this we seek to
remove. While the circular averaging filter almost manages to completely remove
the artifact the Gaussian filter is superior in this regard.

The next step of the algorithm is to separate colors from dyes from the back-
ground color. To do this we assume that the majority of the image consists
of clean silica gel. Figure 4.4 shows the histograms of the image displayed in
figure 4.1A where it is clearly seen that the majority of pixel values are light
gray. Having this assumption in mind, the background is removed by first
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Figure 4.2: A. Gaussian filter will smooth pixels more drastically which in turn
will smear out defects that consist of only a few pixels. B. Circular averaging
filter that was used in earlier version of the algorithm.

finding the most frequent pixel value for each color channel excluding zeros15

bk = argmax
x �=0

∣∣∣{n | Ĩk(i,j) = x
}∣∣∣ ∀i, j (4.3)

where {b ∈ Z
3 | bk > 0 ∧ bk < 256}. A new matrix is now calculated by

subtracting b from each pixel of the image

B(i,j) =
∥∥∥b− Ĩ(i,j)

∥∥∥2
2

∀i, j (4.4)

The matrix B can be visualized as a gray scaled image by coloring elements
equal to zero as black and then gradually coloring increasing values increasingly
white. Based on the matrix B a new black–white image is constructed and
stored in the matrix B̃ such that {B̃ ∈ R

m×n : B(i,j) = B2
(i,j)}. The matrix B̃

is constructed by choosing the pth quantile as a threshold (initially set to 0.80)
for when a value should be set to one. All values below the threshold is set to
zero and all values above the threshold is set to one. The matrix is a binary
mask for pixels that is considered as a potential dye location. Finally, since the
dyes are realized as circular dots all holes are filled. The process is illustrated
in figure 4.5.

The next step is to identify possible locations to search for the circular dots that
makes up a dye. The mean value of the binary image matrix is calculated for

15Zeros may exist in the image due to a rare need to manually rotate the image before the
algorithm processes the image. Some of the captured images had the sensor placed askew
inside the scanner.
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A. B. C.

Figure 4.3: A. Raw image of a dot taken from figure 4.1A. B. The dot is
smoothed using the circular averaging filter. Some remains of the artifacts in
the lower left corner remains. C. The dot is smoothed using the Gaussian filter.
The artifacts has almost been completely removed.
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Figure 4.4: A. Histogram of red channel. B. Histogram of green channel. C.
Histogram of blue channel.

each row and column producing two vectors mrow and mcolumn

mrow,i =
1

n

∑
j

B̃(i,j) ∀i (4.5)

mcolumn,j =
1

m

∑
i

B̃(i,j) ∀j (4.6)

If these vectors are considered as a graph, the graph will have peaks in the areas
where there is much mass of ones (i.e. potential dye pixels). Before identifying
peaks the the vectors are smoothed using a 3rd order Savitzky–Golay [Savitzky
and Golay, 1964]. The process is illustrated in figure 4.6.

The algorithm requires some manual tuning. The user is required to define the
number of dyes that must be localized. Looking and the lower right corner of
the images in figure 4.5 there are some remnants of the letters “RDX” that is
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A. B. C.

Figure 4.5: A. The enhanced gray scaled image that created based on the
background matrix B calculated for the measurement displayed on figure 4.1.
B. The corresponding black-white image when using the 0.8 quantile. C. The
black-white when holes has been filled.

marked as potential dye. The labeling is always made in the lower right corner,
so the algorithm starts searching from the upper left corner and then searches
row-wise. But once the algorithm has found the prescribed number of dyes the
search is terminated. The user is then asked to confirm the dye locations. If
the dye locations were not correct, the algorithm restarts lowering the threshold
with 0.01 and then the process is repeated.

The user can also manually mark areas with zeros such that these areas will
not be searched. This is required for sensor arrays that e.g. have defects on
the surface as these defects often have colors different that the background.
There exist a number of features of more pragmatic nature which make the
dye localization process smoother for the investigator. These are described in
a MATLAB toolkit of the dye localization algorithm, found in the published
toolkit for colorimetric sensor arrays listed on page xi.

4.1.2 Aligning images

Dye localization on the image after exposure to analyte is carried out differently.
This is mainly due to the fact that some dyes completely vanish. Instead, the
image pairs that comprise a measurement are aligned. The image Ibef is used
as a reference image and then the image captured of the sensor after exposure,
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Figure 4.6: Example of how the potential search areas are located. A. Visu-
alization of the row-wide average. B. The binary image. C. Illustration of the
smoothing effect of the Savitzky–Golay filter D. Visualization of the column-
wide average.

denoted Iaft is translated and rotated to align with the reference image. The
aligning of images are considered as an optimization problem formally put on
the form

min
t,θ

‖Ibef − g(Iaft, t, θ)‖1/(mn) (4.7)

where t is an (x, y) translation, θ is a rotation and g(·) is the function that
implements the transformation: first rotating the images using nearest neighbor
interpolation, then translating (x, y)–pixels according to t. The parameters
(t, θ) are initialized to zero.

The value of the expression that is minimized can be interpreted as the amount
of color per pixel where a fully black pixel is fixed at a value of zero. At perfect
image alignment, all the background pixels will be black16 and all dye pixels

16Of course this statement is subject to scanner precision and that no defects have occurred
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will have the weakest possible color, hence, blackness per pixel should be max-
imized. The optimization problem is solved using a UCMINF implementation
by [Nielsen, 2001], which can be found in a public available toolbox [Nielsen,
2010].

Once the optimization problem has been solved a difference matrix is calculated

Idif = Ibef − g(Iaft, t̂, θ̂) (4.8)

The values in Idif can be both positive and negative, so the difference matrix
does not represent a real image. On figure 4.8 a subset of the difference matrix is
visualized. By taking the absolute value of all the elements in Idif, visualization
is possible as all values now fall into the range of RGB images.

4.1.3 Feature extraction

The final step of colorimetric preprocessing before the data is suitable to ma-
chine learning methods is feature extraction. As mentioned in chapter 1, one of
the major research topics covered in this thesis is the pursuit of optimal feature
extraction/dye representation for colorimetric sensors. In this section, the most
typical single feature approach is covered as well as other single feature ap-
proaches. A single feature approach is a feature extraction method that reduces
the sensor response to a single number, i.e. the mean statistic.

The typical feature extraction methodology of colorimetric sensor arrays consists
of extracting the mean color change of each dye for each color channel (RGB).
A digitalized dye consist of up to several hundred pixels, therefore summarizing
a color change with just one color is quite convenient. However, in order for the
mean to be a robust and informative measure of color change, the pixels of a
dye have to be normally distributed (or at least have a symmetric distribution
with one mode). One of the more extreme examples of a response from a
colorimetric sensor is visualized in figure 4.7. The dye color distribution is a
bimodal distribution and the color that is calculated as the mean color is rarely
found in the color distribution. Clearly, in this case the mean color fails to
capture the essential properties of the sensor response.

Other possible single feature approaches could be to use either the median or
mode. Just as the case with the mean, the median requires a symmetric dis-
tribution with one mode. On the other hand the mode does not require the
distribution to be symmetric and could potentially be more robust. However, all

to the background while exposing the sensor array to the target analyte. For the measurement
setup used this assumption turned out to be reasonable.
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Figure 4.7: An example of a specific dye of colorimetric sensor array exposed
to the explosive analyte HMX. A. The sensor before exposure. B: The enhanced
(more light is added) difference image. C: Histogram of the difference color of
the blue channel.

the aforementioned statistics have the weakness that they consider each channel
in the RGB color scheme as independent of each other. A multi-mode statistic
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A. B. C.

Figure 4.8: Illustration of the coffee stain effect. The images are a magni-
fication of dot 27 from figure 4.1. A. Control image. B. Exposed image. C.
Difference image.

does not have this weakness and will find the most occurring color in the dye.
These four feature extraction methods will be compared in section 4.4.

There is an additional significant concern that can affect the accuracy of the
feature extraction. This is the coffee stain effect which is a consequence of the
drying of the dye. During spotting17 the dye is liquid and once the dye is onto
the silica gel the dye begin to dry, leaving a dark rim as illustrated on figure 4.8.
The color of the outer rim is unreliable as the effect is not reliably reproducible.
To accommodate for the coffee stain effect, a smaller area of a dye is used for
feature extraction, corresponding to 2/3 of the dye radius, the figure that is
traditionally used (see appendix E).

4.2 Datasets

The sensor arrays have been employed on a wide range of compounds. These
compounds can basically be divided into five different categories; 2) Target:
the target substances which in this chapter is either explosives or drugs. 2)
Control: a blank measurement that is used to make sure the sensor did measure
“something” (e.g. room temperature on the table). 3) Real world disturber:
substances which are commonly found in real world scenarios that may disturb
and possible ruin measurements (e.g. aldehydes). 4) Precursor: compound that
is used to manufacture target chemical and may also be a part of the target
chemical (e.g. ammonium nitrate). 5) Positive false alarm: A compound that
is part of the target chemical but also widely used elsewhere (e.g. acetone). It
can also be a compound that is known to have affinity with some of the sensors

17The process of spotting the dyes onto the silica gel.
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Category Nk Treatment Nk

Acid 32
Acetic acid (AA) 10
Formic acid (FA) 11

Hydrogen chloride (HCl) 11

Alcohol 20
Ethanol (EtOH) 7
Methanol (MeOH) 6
Propanol (PrOH) 7

Aldehyde 12
Nonanal (NA) 6
Octonal (OA) 6

Arene 10 Toluene (Tol) 10

Environment 12
100� 6

Room temperature (RT) 6

Explosive 20
Dinitrotoluene (DNT) 16
Trinitrotoluene (TNT) 4

Ketone 7 Acetone (Ac) 7

Salt 16
Potassium chloride (KCl) 5

Ammonium chloride (NH4Cl) 6
Sodium chloride (NaCL) 5

Table 4.1: The first proof-of-concept dataset collected, named dataset “A”. It
consists of N = 129 measurements in total. The numbers specified by Nk are
the number of measurements made per class, depending on the class label being
the category or the treatment.

in the array.

Three datasets have been collected with three different sensor arrays. The first
sensor array utilized comprised 15 sensors [Kostesha et al., 2010]. The sensor
array was employed on 15 different analytes that was divided into 7 class labels
based on chemical families. The dataset also contains control measurements
conducted at both room temperature and 100�. This is required as the ex-
plosives are heated to 100� when measuring,18 whereas analytes belonging to
the other chemical families are measured at room temperature. The dataset is
detailed in table 4.1. A detailed explanation follows: most of the chemistry on
the sensor array was known to be sensitive to acids hence acids are included as

18The explosives have low vapor pressure so at room temperature there is almost no vapor
present. The explosives are then heated in order to decrease the time required to perform
measurements.
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Category Nk Treatment Nk

Drug 6
Isosafrole (IA) 2

Lysergic acid diethylamide (LSD) 2
Phenylacetone (PhA) 2

Environment 8
100� 4

Room temperature (RT) 4

Explosive 8

Dinitrotoluene (DNT) 2
Octogen (HMX) 2

Cyclotrimethylenetrinitramine (RDX) 2
Triacetone Triperoxide (TATP) 2

Table 4.2: The second dataset collected, named dataset “B” consists of N =
22 measurements in total. The numbers specified by Nk are the number of
measurements made per class, depending on the class label being the category
or the treatment.

possible false alarm [Nielsen, 2012]. The alcohols are also possible false alarm
since alcohols are commonly used as solvents when manufacturing explosives.
The aldehydes included are real world disturber as aldehydes are secrete from
commonly found bugs. Arenes, and in particular Toluene is used to produce
TNT and is included as a precursor. Acetone is a widely used solvent that is a
possible disturber. The salts included are chosen based on two different condi-
tions; KCl and NH4CL are present in air in maritime climate (e.g. Denmark)
as these evaporate from the ocean. And finally, NaCl is widely found but can
also be used to produce explosives.

The second dataset collected was measured using the same sensors as in the
previous sensor array with one added sensor [Kostesha et al., 2011]. The scope
here was to measure illicit drugs and other types of explosives. The chemicals
categorized as drugs were: Isosafrole, a precursor for an array of drugs such
as Ecstacy and Metamphetamine; LSD, a commonly known hallucination drug;
Phenylacetone, a precursor for an array of drugs such as Ampethamine and
Metamphetamine. The drugs have sufficiently high vapor pressure to be mea-
sured at room temperature. The new explosives included were HMX, RDX and
TATP, which have already been described in chapter 1. These explosive are
measured at 100�.

The final dataset consists of 31 sensors, 16 old and 15 new. The dataset is
collected using a randomized complete block design (RCBD) which is detailed
in appendix F, page 222. The list of analytes and measurements are shown
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Category Nk Treatment Nk

Acid 45
Acetic acid (AA) 15
Formic acid (FA) 15

Hydrogen chloride (HCl) 15

Alcohol 27
Ethanol (EtOH) 13
Methanol (MeOH) 14

Amine 42
Ethylendiamine (EDA) 14

Propylamine (PA) 14
Triethanolamine (TEA) 14

Arene 14 Toluene (Tol) 14

Environment 28
100� 14

Room temperature (RT) 14

Explosive 56

Dinitrotoluene (DNT) 14
Octogen (HMX) 14

Cyclotrimethylenetrinitramine (RDX) 14
Triacetone Triperoxide (TATP) 14

Ketone 13 Acetone (Ac) 13

Salt 14 Potassium nitrate (KNO3) 14

Thiol 14 Mercaptoethanol (ME) 14

Table 4.3: The last dataset collected, named dataset “C”. It consists of N =
253 measurements in total. The numbers specified by Nk are the number of
measurements made per class, depending on the class label being the category
or the treatment.

in table 4.3. Amines were included in this dataset as they are also widely
used solvents. The salt included are the kind that can be used to produce
homemade explosives, but is also widely used in fertilizers. The sulfur analogue
of alcohols, thiols are used to measure food freshness and was mostly included
in the experiment in order to investigate new areas of application, but thiols
can also be considered common real-world disturbers.



4.3 Visualization of colorimetric data 65

TATPRDXHMXDNT100C
P
C

2

PC 1

P
C

2

PC 1

B.A.

Figure 4.9: Visualization using principal component analysis of the data pre-
sented in section 4.5. A. PCA using 100� and DNT. B. More explosives added
to the plot; HMX, RDX and TATP. Note, PC 1 and PC 2 changes as new data
are added.

4.3 Visualization of colorimetric data

Data from colorimetric sensors is often visualized using principal component
analysis. If the sensor signal is strong as is often the case with colorimetric sensor
array experiments, PCA will successfully display class dispersion. Visualization
examples are shown in figure 4.9. Here the data is nicely visualized in the
case of two classes, however when three more explosives are added, the class
dispersion lessens and it is no longer clear to what extend the sensor is able
to distinguish between classes. Furthermore, added new data will change the
principal component which will also change the plots in figure 4.9. So, one
disadvantage of plots made using PCA is that adding new points will change
the plot as whole.

Another major trend in colorimetric sensing is visualization using difference
maps (or analogously, difference images). A difference map is calculated as
follows; 1) extract the mean color difference for each sensor array, 2) for each
analyte, calculate the mean response, 3) convert the mean values to integers by
rounding off, then take the absolute value 4) enhance the final results by linearly
expanding a predefined color range to span the entire RGB range. Figure 4.10
shows two difference maps calculated using the prescribed procedure. The pro-
cedure can be modified in a number of ways e.g. by using another statistic than
the mean or by taking the absolute values of Idif and displaying the result as an
RGB image.
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A. B.

Figure 4.10: Difference maps based on the data presented in section 4.5. Dye
#24 is highlighted - this is a very good detector of DNT although it is not
easily shown using difference maps. A. Mean difference map of 100�. B. Mean
difference map of DNT.

The above procedure has some clear disadvantages; due the the need of taking
absolute values, the corresponding difference map is not unique, i.e. for a given
color channel the color change can be in both a negative or positive direction
on the RGB color scale, which is two different colors on the exposed image. But
in the difference map the color will be the same. Further, a difference map is
arbitrary due to the color expanding. So why is difference maps so heavily used?
Most likely due to difference maps being easy to interpret but also because the
response is visualized in the same domain as the original sensor.

An alternative visualization that complement the difference map well is plot of
the empirical cumulative density function (CDF) as shown on figure 4.11. The
plot is the empirical CDF function plotted using colors. The CDF plot shows
clear and significant differences in the response, even though it may be hard
to spot these color differences in the difference map. For dye 24 – red, the
situation described earlier is occurring, the control measurement changes color
in one direction whereas the explosives change color in another direction. On
the CDF plot (figure 4.11), a clear signal separation is visualized whereas on
the difference map (figure 4.10) only a vague signal separation is displayed.
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Figure 4.11: CDF plot of selected dyes using the data presented in section 4.5.
Dye 12 is a very good DNT detector. Dye 12 is discriminative for DNT whereas
dye 19 and 24 are not discriminative for DNT but for explosives in general.

Another advantage of CDF is the ability to visualize signal spread and even
raw measurements. If the resolution of the CDF function is chosen to be the
same as the number of measurements, the color changes will happen where the
measurement are located. The notable disadvantage of CDF plots are that they
are harder to interpret and understand for untrained users. Further, displaying
the entire dataset will clutter the plot and often a few selected dyes/color com-
binations must be chosen. However these dyes can easily be identified using e.g.
a statistical test such as the Mann–Whitney–Wilcoxon test [Wilcoxon, 1945,
Mann and Whitney, 1947]. The dyes presentation here are found using exactly
this method, see appendix F for further details.
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4.4 Detection using single value statistics on dif-
ference colors

In section 4.1.3 the traditional feature extracting for colorimetric sensors was
explained. In this section we investigate how well the single value statistics
perform. The goal is the establish if one statistic is universally better than the
other. It could be that the best statistic depends on both the dataset and the
classifier employed. To mitigate this effect the the feature extraction methods
are investigated on three different datasets using four different classifiers. The
goal is to identify if one of the single feature extraction methods are optimal.
The optimal feature extracting method could easily depend on both the classifier
and the dataset. By using multiple datasets and multiple classifiers we are in
position to make more generic conclusions.

The classifiers used to evaluate the features are: 1–nearest-neighbor (1-NN), k–
nearest-neighbor (k–NN), sparse logistic regression (SLR) and artificial neural
networks (ANN). The reason for choosing these classifiers are as follows; 1–
NN and k–NN are basically the de-facto method when analyzing colorimetric
sensor responses (see section 4.7), and these are included to establish a baseline
performance. The reason for choosing SLR, is because this is the “simplest”
of classifiers that offers two important properties; 1) SLR is a probabilistic
classier19. 2) We seek to qualify which dyes in the sensor are important. This
knowledge enables the ability to either reduce the size of the sensor or replace
less sensitive dyes. ANN is mainly included in order to investigate if the usage
of a non–linear model improves prediction performance.

Model training

In order to estimate the generalization error the data is partitioned using 10–fold
stratified cross validation (CV). The methods perform model selection within
each fold, again using 10–fold stratified CV. The performance of the classi-
fiers are evaluated based on the classification error rate, already defined in sec-
tion 2.3.1, but stated here for completeness

Eerr =
Nerr

N
(4.9)

where Nerr is the number if misclassified measurements and N is the total
number of measurements.

19It is a probabilistic classier in the sense that it models the posterior class probability
directly, i.e. a discriminative model.
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k–nearest neighbor

For k–NN, the model selection parameter is the number of neighbor that is
used to perform classification. All possible values of k is probed during model
selection.

Sparse logistic regression

Sparse logistic regression uses L1 regularization in the error function. The error
function was specified in equation (2.18), but written for completeness

E(w) = ED(w) + λ‖w‖1 (4.10)

where ED(w) is the data dependent error function for ordinary logistic regres-
sion. During training, the weights w are initialized to zero. Possible regulariza-
tion values are λ = [0, 10].

Training of artificial neural networks

The neural network applied is the usual two-layered feed-forward network with
error function specified in equation (2.37), but stated for completeness

E(w) = ED(w, β) + αEw(w) (4.11)

The hyper-parameter are initialized to α = D and β = 0. Each network training
cycle is repeated ten times and the network with the lowest error rate on the on
training set is selected.

The number of hidden units is the model parameter. To estimate the number
of hidden units, we assume that the misclassification error is roughly convex in
terms of number of hidden units, that is, we minimize Eerr(Nhu). The training
begins with two hidden units. Hidden units are iteratively added until Eerr(Nhu)
stop decreasing. At that point, the “optimal” Nhu is identified. Of course,
given the noise in the data and the fact that ANN training is a non-convex
optimization problem, the above scheme will likely identify different values for
optimal Nhu for each run. Nevertheless this scheme should provide a good
estimation for a suitable number of hidden units.
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Method Median Mode Multi-mode Mean Combined

A-1-NN 5.40 5.83 5.27 5.33 5.40
A-K-NN 5.77 6.20 5.40 5.15 5.52
A-SLR 5.71 5.52 6.08 5.71 5.71
A-ANN 5.52 5.40 5.52 5.71 5.64

B-1-NN 1.77 1.77 2.18 1.91 1.77
B-K-NN 1.64 1.50 1.91 1.64 1.64
B-SLR 1.36 1.36 1.91 1.36 1.36
B-ANN 1.36 1.09 1.50 1.36 1.36

C-1-NN 6.05 6.12 6.15 6.05 6.05
C-K-NN 5.91 6.05 5.94 6.12 6.05
C-SLR 6.79 6.69 6.65 6.72 6.79
C-ANN 6.40 6.37 6.19 6.47 NaN

Total 1 2 6 3 1

Table 4.4: Summary of how well the features and classifiers perform compared
to random guessing i.e. how many times better the classifier is compared to
random guessing. The best performers are highlighted. The figures that cor-
respond to flawless prediction are; 8 for dataset A, 3 for dataset B, and 9 for
dataset C. A figure of 1 would correspond to random guessing.

4.4.1 Comparing the statistics

Since the sensors have a different amount of classes, we find it better to assess
the quality of the classifiers by using the classification rate relative to random
guessing as the classification rate alone can be misleading. For example a clas-
sification rate of 0.33% for sensor B would only be as good as random guessing
while for sensor A and C it would be better than random guessing. The ratio
is calculated as (Ncorrect ·NC)/N , where NC is the number of points correctly
classified, N is the total number of points and NC is the number of classes.

Table 4.4 shows the best statistic is the multivariate mode which is the best
performer in six out of twelve cases20. However, all the other features are also
represented at least once as the top performer, so the results indicate that in
order to build the most accurate classifier one must extract all of the proposed
features from the colorimetric sensor and then let the feature selection be part
of the model selection process.

20This table is based on the results one presented in table C.2, page 168. During the writing
of this thesis, it was discovered that Octonal was wrongly categorized as alcohol so all the
numbers for dataset A has been recomputed.



4.4 Detection using single value statistics on difference colors 71

The considered classification methods all perform similarly. As expected the
simplest method, 1-NN is the best performer on the smallest dataset B. For
dataset A, the k-NN method is the best performer and on dataset C the SLR
method is the best performer. The non-linear ANN is performing well. As is
the case with ANN, there is a high number of parameters to estimate and the
fact that SLR is better than ANN except in one instance where they are equal,
implies that linear methods such as SLR is better suited to model data from
colorimetric sensor arrays.

Interestingly 1-NN performs better than k-NN on dataset C, indicating that
there is high variance in the data, as k-NN should perform at least as good as
1-NN. The situation likely arises because of noise in the dataset and it seems
that to obtain a good estimate of model parameters require a finer partitioning
than 10–fold cross validation.

The logistic regression method demonstrated equal classification ability com-
pared to k-NN and due to the added perks in terms of sparsity and probabilistic
decisions, SLR is preferable to k-NN. The results do not merit the use of a non–
linear method such ANN. This is likely because there is not enough training data
and since the experimental process of colorimetric sensors is time consuming,
methods that work with fewer points are more appealing.

The results about which statistic to are more ambitious. The multi-mode statis-
tic is the overall best choice, but any of the feature extraction statistics are the
best choice at least once. What can be concluded though is that it is not given
beforehand that the traditional approach of using the mean is the best choice.

4.4.2 Detection of explosives

Two datasets have been collected with the purpose of detection of explosives,
dataset A (table 4.1)and dataset C (table 4.3). The first dataset was collected
using the 1st generation sensor array which consisted of just 15 sensors. It turned
out that the sensor array was not very good at detecting the exact analyte in
question, but was able to identify the group of the analyte with greater precision.
The sensors in the array consisted exclusively of chemoselective dyes specifically
designed to react with explosives. Therefore, it was no surprise to see the array
could detect explosives accurately but struggled with other compounds.
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Figure 4.12: Confusion matrix for dataset A computed using the highest
performing configuration as indicated in table 4.4.

4.4.3 Detection of drugs

This dataset is the smallest only consisting of N = 14 data point. The purpose
of the dataset was to establish if the sensor array could be used to detect illicit
drugs as well as military class explosives. The confusion matrix computed using
the multi-mode 1-NN configuration is shown in figure 4.14. Due to the low
number of measurements collected per class, any conclusions drawn from this
dataset should be taken with moderation. The sensor is able to distinguish
drugs from explosives as all except one of the misclassification are due to false
negatives (drugs/explosives classified as environment). However, a PCA plot of
the data strongly suggests that the low classification accuracy is mostly due to
the limited amount of measurements, and of more measurements were collected
a linear classier with higher accuracy could be computed [Kostesha et al., 2011].
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Figure 4.13: Confusion matrix for dataset C computed using the highest
performing configuration as indicated in table 4.4.

4.5 Improving detection accuracy by calibrating
colors

In section 4.4, the only information used by the classification methods are the
class labels. Put in terms of traditional Design and Analysis of experiments
(DoE) [Montgomery, 2009], the model used is

yijkl = μikl + εijkl (4.12)

where yijkl is the sensor response, μikl is the treatment effect and εijkl is the
noise induced at each measurement assumed to be independent and identically
distributed (i.i.d.). For the analysis in this section, the mean color difference is
used as sensor response as this is the response traditionally used. The treatment
effect μikl is effect of exposing the sensor to a given analyte (i.e. the class label).
The i index refers to different treatments, i = {1, 2, . . . , Na}. The j index refers
to repeated measurements, j = {1, 2, . . . , N}. The index k and l are the sensor
response index, i.e. we operate with Ns sensors with L = 3 channels for each
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forming configuration as indicated in table 4.4.

sensor (RGB); k = {1, 2, . . . , Ns}, l = {1, 2, 3}. Thus we have NsL systems
of equations that must be analyzed as each sensor array yields a total of NsL
readouts per measurement.

The data presented in table 4.3 was collected using the randomized complete
blocked design approach (RCBD). In this design, the measurements are grouped
into B = 15 blocks, and within each block each analyte is exposed to the sensor
array exactly once. The exact experimental details can be found in appendix F.
The purpose of the design is to enable more precise estimation of effects since
the variation from block to block can be removed; hence the RCBD is often
referred to as a noise reducing design. Adding the block effect to the model
yields

yijkl = μikl + βjkl + εijkl (4.13)

where βjkl is the effect of the j’th block. As the experiment was designed
according to the scheme where each repetition was in a distinct block, j can be
replaced as the block index instead of the repetition index j (βjkl instead of i).
For each of our NsL systems there will be B block effect variables. All of these
variables must be zero; otherwise there is an effect from the blocking. Thus the
null hypothesis that can be applied is

H0 : β1kl = β2kl = · · · = βBkl = 0

H1 : βjkl �= 0 for at least one j
(4.14)

The equation is augmented further by considering if the difference color con-
tains all the information about color change, i.e. the color of a sensor before
exposure might have influence on the color after exposure. This corresponds
to conducting analysis of covariance (ANCOVA) originally proposed by [Fisher,
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1938]. Formally, the color before exposure to analyte is a possible covariate (or
concomitant variable) of the sensor response:

yijkl = μikl + βjkl + αikl(xijkl − x̄i·kl) + εijkl (4.15)

whereαikl is a linear regression coefficient. If αikl is different than zero, then
the color response before exposure has influence on sensor response (k, l) for
treatment i. The null hypothesis when testing for significant covariates is

H0 : αikl = 0

H1 : αikl �= 0
(4.16)

The model specified in equation (4.15) is considered the complete model and is
applied to the data. Using that model, adjusted responses that averages out the
effects from blocks and covariates is calculated.

The hypothesis tests (4.14) and (4.16) reveals that both blocking effects and
the covariate effects are significant. 25 out of the 31 sensors are subject to
blocking effects. Significance of the covariate effects depend on the treatment
(analyte) and on the sensor as well, but in the case of explosives approximately
2/3 of the responses showed to have a covariate effect. The p-values are shown
in appendix F, page 234–239.

4.5.1 Evaluation using k-nearest-neighbor

The impact of the noise reduction model (4.15) is investigated by use of k-
nearest-neighbor. The classifier was trained used the double LOOCV scheme,
where the inner loop estimates a value for k and the outer loop estimates the
generalization error, just as described earlier.

Initially the data is converted to a binary classification in the explosives versus
rest problem. Here it turned out that the sensor was very accurate even for
the unadjusted values, making three false alarms (non-explosives identified as
explosives) and zero false negatives (explosives identified as non-explosives). For
the adjusted values however, no errors was made.

To elaborate further, the data is handled as a multiclass problem using the
analyte names as class labels. For the unadjusted values a total of 114 measure-
ments are correctly classified corresponding to an accuracy of 45.1%, as shown
in figure 4.15. For the adjusted values, a total of 159 measurements are cor-
rectly classified corresponding to an improved classification accuracy of 62.8%,
as shown in figure 4.16.
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Figure 4.15: Confusion matrix calculated using k-nearest-neighbor on unad-
justed values according to model (4.12). The overall accuracy is 45.1%.

In real-world scenarios, it would be difficult to calibrate for colors as the cali-
bration is dependent on the analyte being measured. However, this result can
be used as an incentive to refine the production process of colorimetric sensor
arrays. If the sensor arrays always have the same color before exposure, no cal-
ibrations should be needed, and only the block effect will come into place. The
block effect, in real-world scenarios, could be handled by performing a series of
control measurements along with the real detection measurement.
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Figure 4.16: Confusion matrix calculated using k-nearest-neighbor on adjusted
values according to model (4.15). The overall accuracy is 62.8%.

4.6 Using histogram and manifold methods

In the lack of conclusive results based on single feature methods, a natural step
is to use other measures to represent the color from the sensor response. One
idea is to make better use of the pixels that constitutes a measurement. One
measurement can consist of up to 1000 pixels so reducing a measurement to just
one number is a drastic compression and it is likely that valuable information
is lost due to this compression. Two family of methods as applied; distance
measures based on the Hellinger distance and distance measures based on the
Hausdorff distance. Each of these distance measures come in different flavors,
which will be explained in depth in this section.
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The i’th example (dye) is represented by Xi = {xi1, . . . , xini}, where xij is the
j’th three–dimensional difference RGB pixel value between control and exposed,
and ni is the number of pixels considered for the representation of the i’th
example. For several classifiers a notion of distance between examples is a key
component. To construct a distance between two examples in the bag-of-words
representation, we propose to represent each multi-instance example with a
distribution and use the Hellinger distance as a metric between two examples.
The motivation behind this approach is that differences between distributions,
which are not directly measurable through the mean (or other moments), can
still be detected. This approach was demonstrated to be effective in several
application areas, e.g., disease classification using flow cytometry [Carter et al.,
2009a] and document classification [Carter et al., 2009b].

4.6.1 Hellinger Distance

The Hellinger distance measures similarity between two probability measures
fi(x) and fk(x) and is given by

dHe(fi, fk)
2 =

∫ (√
fi(x) −

√
fk(x)

)2
dx (4.17)

i.e., the Euclidean distance between the square-root of the PDFs.By completing
the square of the integrand, the Hellinger distance can be rewritten to the
following equivalent alternative:

dHe(fi, fk)
2 = 2− 2

∫ √
fi(x)fk(x)dx (4.18)

If the probability measures are equal the Hellinger distance is dHe(fi, fj)
2 = 0.

On the contrary, if the probability measures fi(x) and fk(x) are completely
non-overlapping, then dHe(fi, fj)

2 = 2.

Parzen window Kernel density estimator

The Hellinger distance requires a choice of model to construct the probabil-
ity measure. The first one to consider is the Parzen window Kernel density
estimator. Assuming an underlying probability density function fi such that
xij ∼ fi for j = 1, 2, . . . , ni, one can associate Xi with the following kernel
density estimate

fi(x) =
1

ni

ni∑
k=1

K(x− xik) (4.19)
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where the kernel used is the isotropic squared exponential kernel

K(x) = 1/(2πσ2)D/2 exp(−‖x‖22/2σ2) (4.20)

As the sensor responses are RGB values the dimensionality is D = 3. The kernel
parameter is chosen to be σ2 = 1 which seems like a reasonable smoothing.

To utilize the KDE a revision of the Hellinger distance expression is required.
Looking at the integral term in (4.18), we inject a new term∫ √

fi(x)fk(x)dx =

∫
fi(x) + fk(x)

fi(x) + fk(x)

√
fi(x)fk(x)dx (4.21)

which enables us to split the integral in two:∫ √
fi(x)fk(x)dx =∫

fi(x)

fi(x) + fk(x)

√
fi(x)fk(x)dx+

∫
fk(x)

fi(x) + fk(x)

√
fi(x)fk(x)dx (4.22)

Rearranging by moving the denominator into the square root yields∫ √
fi(x)fk(x)dx =∫

fi(x)

√
fi(x)fk(x)

(fi(x) + fk(x))
2 dx+

∫
fk(x)

√
fi(x)fk(x)

(fi(x) + fk(x))
2 dx (4.23)

Defining a new function T (x) enables further simplification

T (x) =
fi(x)

fi(x) + fk(x)
(4.24)

Also notice that the two terms on the RHS in equation (4.23) are on the form
of expectation. Combining T (x) and expectation yields∫ √

fi(x)fk(x)dx = Efi

[√
T (x)(1 − T (x))

]
+ Efk

[√
T (x)(1 − T (x))

]
(4.25)

Substituting the result from (4.25) into (4.18) finally yields the Hellinger dis-
tance on the alternative form

dHe(fi, fk)
2 = 2− 2

(
Efi

[√
T (x)(1− T (x))

]
+ Efk

[√
T (x)(1 − T (x))

])
(4.26)
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where Eh[f ] =
∫
f(x)h(x)dx. A sample-based version of this expression is

computed by replacing the expectations with their sample averages and the
distributions with their kernel estimates,

Efi [
√
T (x)(1− T (x))] ≈ 1

ni

ni∑
j=1

√
T (xij)(1− T (xij))

Naturally, the distance calculation can be directly applied to a K-NN classifier.
This approach can be considered an alternative to a set distance between two
collections instances.

Gaussian distribution

The second approach applied to the Hellinger distance is the multivariate normal
distribution using a full covariance matrix

fi(x) =
1

(2π)
d/2|Σi|d/2

exp

(
−1

2
(μi − x)

�
Σi

−1 (μi − x)

)
(4.27)

where μi is the mean and Σi the covariance matrix. Both parameters are esti-
mated by maximum likelihood. Once the parameters are estimated the Hellinger
distance can be calculated in closed form. The result is derived by [Jebara et al.,
2004] for the general case of a product probability kernel. Such a kernel is on
the form

Kp(fi, fj) =

∫
RD

fi(x)
pfk(x)

pdx (4.28)

Setting p = 1/2, we get the integral on the RHS of equation (4.18). Using the
result derived by [Jebara et al., 2004] when fi and fj are Gaussian distributions
with D = 3 yields

dHe(fi, fk)
2 =

2− 4
√
2
|Σ†|1/2
|Σi||Σk| exp

(
−1

4

(
μ�

i Σ
−1
i μi + μ�

k Σ
−1
k μk + μ†�Σ†μ†

))
(4.29)

where Σ† = (Σ−1
i +Σ−1

k )−1 and μ† = Σ−1
i μi +Σ−1

k μk.

4.6.2 The Hausdorff Distance

The Hausdorff distance measures distance between two point sets, and it is
small if all points in each set are close to some point in the other set. It is a
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Chemical M P IM MH G E[pFD] #Significant

Acids 1 2 2 6 0 0.89 11
Alcohols 0 0 0 0 3 0.15 3
Amines 1 0 1 0 0 1.02 2
Explosives 0 3 0 7 1 0.98 11

Table 4.5: Number of instances the best performing method is significantly
better than another method. The methods are Mean, Parzen, Inner Mean, Mod.
Hausdorff and Gaussian. E[pFD] is the expected positive false discoveries and n
is the number of significant results. The inner mean is explained in appendix E.

fundamentally different measure than the Hellinger distance, e.i. the Hausdorff
distance becomes larger as the two point sets becomes further apart. On the
contrary, having to completely separating point sets the Hellinger distance will
at most be two, no matter how far apart the point sets are. This property could
be useful for comparing sensor color, as the amount of color change could be
important.

First define the distance between two points xi and xk as the Euclidean distance
d(xi,xk) = ‖xi − xk‖2. The distance between a point xi and a set Xk is then
d(xi,Xk) = min

xk∈Xk

d(xi,xk). The Hausdorff distance is defined as

dHa(Xi,Xk) = max

{
max
xi∈Xi

d(xi,Xk), max
xk∈Xk

d(xk,Xi)

}
(4.30)

As an alternative approach one can use the modified Hausdorff distance which
is more robust in the presence of noise and outliers

dMH(Xi,Xk) = max

{
1

NXi

∑
xi∈Xi

d(xi,Xk),
1

NXk

∑
xk∈Xk

d(xk,Xi)

}
(4.31)

It should be noted that this distance is not a metric as the triangle inequality
is not fulfilled [Dubuisson and Jain, 1994].

4.6.3 Evaluation using k-nearest-neighbor

The k-nearest-neighbor classifier is applied to each sensor for each representation
technique. The dataset presented in table 4.3 is used to investigate the proposed
methods. The dataset is reduced to a five-class dataset as we only want to
investigate the performance on the chemical families that the sensor has proven
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Figure 4.17: Individual error for the sensors. The dotted line corresponds to
random guessing. For acids and explosives it is 17.8% and 22.1% respectively.
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able to detect. Based on the results shown in figure 4.13 the chemical families
are: acids, alcohols, amines and explosives. For each of the labels, the accuracy
for each sensor is calculated using 1-vs-all. In this setting, the chosen chemical
family that is to be detected is kept as the class label and all other measurements
are labeled as ’other’.

To judge the differences in classification performance the McNemar significance
test [McNemar, 1947] is employed. The McNemar significance is a paired test
which uses the the number of instances where two classifiers disagree about a
decision. From this test p–values for each comparison is calculated21 and use
the multiple hypothesis framework proposed by Storey [Storey, 2002]. Based on
the p–values the expected positive false discoveries (E[pFD]) for our significant
differences is calculated, that is, the expected quantity of wrongly significant
results among all identified significant results. These finding are summarized
in table 4.5 and the performance of the individual sensors are displayed in fig-
ure 4.17.

The overall best performing distance measure is the modified Hausdorff method
although it is notable that this method is not best even once for alcohols whereas
it is best on numerous occasions for acids and explosives. Looking into the
individual sensors reveal that the top sensor for acids largely overlap with the
top sensors for explosives (also see appendix F).

4.6.4 Evaluation using Gaussian process classification

It is clear that the distance measures are capturing “something” that the mean
cannot and that the distance measures generally performs on par or better than
the mean. However, using distance measures it is no longer applicable to fuse
the sensors simply by stacking the responses in a vector-space model. One so-
lution is to use a classifier that is designed to work on distances, i.e. a kernel
classifier. Having distance measure d(X i,Xj) we can apply a distance substi-
tution approach [Haasdonk and Bahlmann, 2004] using the squared exponential
kernel

k (Xi,Xj) = exp

(
−1

�
d(Xi,Xj)

)
(4.32)

where � is the length scale. If the distance measure is a metric the corresponding
Gram matrix produced using the above expression is guaranteed to be a positive
semi-definite matrix [Haasdonk and Bahlmann, 2004].

21The null hypothesis is that the two classifiers have equal classification accuracy against
the alternative that one classifier is better than the other.
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We note that a valid covariance function may be constructed directly for the
Hellinger distance by considering the inner product given by the integral which
is known as the Probability Product Kernel [Jebara et al., 2004]; however, to
make a fair comparisons we treat the Hellinger distance like the other distance
measure and employ (4.32) when converting any distance measure to a Gram
matrix Also note that since the modified Hellinger distance is not a metric,
the distance substitution kernel may not be positive definite [Haasdonk and
Bahlmann, 2004]. The same may apply to the Hellinger distances based on
Parzen windows as these distances are calculated using approximations.

The use of kernels provides a convenient way of integrating information from dif-
ferent sensors by combining different kernels as a weighted sum. Thus, different
sensors can be combined by constructing the following kernel

k (Xi,Xj) = σ2I+
M∑

m=1

αmk
(
Xm

i ,Xm
j

)
(4.33)

where each kernel function is the distance substitution kernel with one of the
respective metrics.

Initially we want to establish the performance of GP in the same setting as
k-NN. The results from this approach are shown in figure 4.18. In the case of
explosives, the modified Hausdorff is again the top performer for the first two
dyes, which is again dye 19 and 30. However for dye 28 and 24 the modified
Hausdorff coupled with GP yields an error of 21% and 30% respectively. This
might very well be an effect of the modified Hausdorff not being a valid metric
and as such the corresponding kernel might not be psd [Dubuisson and Jain,
1994]. But as the case of k-NN, the figure does not show a clear indication of
which method is superior although it seems that modified Hausdorff is able to
capture more information about dye 19 and 30 than the the methods.

To fuse the different sensors a forward selection method using the following steps
is applied. 1) For a given sensor, perform a grid search of hyperparameters σ2,
αm and �. 2) Find the hyper parameters by optimizing the evidence in GP using
the optimal point found in the grid as initial guess. 3) Perform leave-one-out
cross validation to get classification error. 4) Choose the sensor that yields the
lowest classification error.

When fusing the dyes one by one using forward selection we find no significant
results between the methods (figure 4.19). To get a significant result (according
to McNemar testing) the performance must at least differ 2.4 percent points but
already with one dye we are below that margin.

The modified Hausdorff method is however the overall best performing method.
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Figure 4.18: Confusion matrix calculated using k-nearest-neighbor on unad-
justed values according to model (4.12). The overall accuracy is 45.1%.
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Figure 4.19: Confusion matrix calculated using k-nearest-neighbor on unad-
justed values according to model (4.12). The overall accuracy is 45.1%.

It is particularly strong for classifying explosives. In the fusing scheme the
modified Hausdorff method also works well and is the overall best performer.

4.7 Related work

Over the past years colorimetric sensor arrays has been developed and success-
fully applied in various areas. In 2000 a paper co-authored by Kenneth S. Suslick
was published in Nature [Rakow and Suslick, 2000]. Since then, Suslick has pi-
oneered work in applying the colorimetric sensor arrays in various areas, such
as the application of the colorimetric sensor array for detecting volatile organic
compounds in the gas phase [Suslick et al., 2004b, Rakow et al., 2005] as well
as for identifying different organic compounds in the liquid phase [Zhang and
Suslick, 2005, Zhang et al., 2006].

The colorimetric sensor is a fascinating technique for detecting different chemical
compounds belonging to various classes, like amines, cyanides, alcohols, arenes,
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ketones, aldehydes and acids in the parts-per-million (ppm) and parts-per-billion
(ppb) ranges [Rakow et al., 2005, Lim et al., 2009, Zhang and Suslick, 2007]. A
more elaborate description on the state-of-the-art for chemical sensing is given
in paper found in appendix F.

The feature extraction and sensor evaluation has not been improved since the
paper published by Suslick in 2004 [Suslick et al., 2004b]. All papers subsequent
to this paper follows the same line of data processing. First, the data is extracted
using dye localization, the dot size is reduced to accommodate for the coffee
stain effect and the mean difference color response is extracted and represented
in a vector-space model. The data is then visualized suing principal component
analysis and hierarchical cluster analysis [Janzen et al., 2006, Suslick et al.,
2010, Luo et al., 2010]. The hierarchical cluster analysis is carried out using
the Euclidean distance between measurements so in essence this corresponds to
performing 1-nearest-neighbor.

4.8 Summary

This chapter highlighted the major developments made for colorimetric sensor
arrays. The entire processing pipeline was described, from the preprocessing of
images to the classification of analytes and identification of important chemos-
elective compounds.

There are numerous ideas on how to further explore the results put forward
in this chapter, especially the results presented in section 4.6. Obviously the
issues for dye number 14, 24 and 28 (figure 4.18) when combining the modified
Hausdorff with Gaussian process classification is an issue that must be put un-
der scrutiny. The issue could be that the Modified Hausdorff distance is not
a real metric which is required in order to guarantee that the resulting kernel
is positive semi-definite. Another issue is that the Modified Hausdorff is quite
prone to outliers. This is an issue only a few bad pixels are required to ruin
a measurements. An easy way to solve this could be to remove the outliers
by doing image smoothing as specified in section 4.1. Expanding the Hellinger
distance measure by using Gaussian mixture models is also worthwhile to con-
sider. Finally, in the lack of one distance measure clearly outperforming the
others, it could be of interest to combine all the features extracting methods by
either using multiple kernel learning or further developing the MKL-equivalent
covariance function presented in equation (4.33)

Other ideas are to explore is based on the results in section 4.5. Measuring the
dye color before exposing the sensor to analyte enhances the signal substan-
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tially. These finding could possibly be build into the framework of Manifold
and Histogram methods. The ideas presented here are currently being inves-
tigated in collaboration with Ryota Tomioka22 and a paper is currently under
development. This paper compiles the major research findings presented in this
chapter as well as the possible enhancements listed.

22Assistant Professor at Department of Mathematical Informatics, The University of Tokyo



Chapter 5

Multisensor approach for
dection of explosives

The other three sensors within the Xsense project were only briefly described.
This is because all the work that has been carried on these sensors is contained
within a recently submitted paper (appendix A), and it would make little sense
to spend too much time on writing a chapter repeating everything in the same
format. The main innovation of the paper is the multisensor approach, where
measurements were collected under identical conditions utilizing all the sensors
in the Xsense project. The highlights of the paper found in appendix A is briefly
presented here.

By using the technologies shown in figure 5.1 it is possible to simultaneously
detect explosives in trace concentrations. These are the sensors that were de-
scribed in the introduction (section 1.4) and the working principles will not be
repeated here. Instead readers are refered to appendix A.

A dataset consisting of the four analytes were collected; ammonium nitrate
(AN), 2,4-diaminotoluene (DAT), 2,4-dinitrotoluene (DNT), and diesel. The
dataset is inspired by a post-blast scenario of e.g. a car bomb. The number
of measurements as well as the classification results (obtained using 1-nearest-
neighbor) is shown in table 5.1.
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Figure 5.1: Illustration of the four sensing techniques: (A). Calorimetric sen-
sor; (B). Cantilever sensor; (C). Colorimetric sensor; (D). SERS sensor.

Analyte Calorimetric Cantilever Colorimetric SERS

AN 2/3 N.D 2/2 8/8
DAT 3/3 N.D 6/7 5/5
DNT 3/3 3/3 5/5 6/6
Diesel N.D N.D 4/4 N.D

Table 5.1: Detection rates of the four sensors. False positives are not included
in the table although it should be emphasized that there are neither false pos-
itives nor false negatives for DNT. Some scenarios are marked as no detection
(N.D.) as by inspecting the sensor response it was deemed that the sensor was
not able to detect the analyte in question, but only show that the analyte was
not causing false alarms for DNT.

As described in the introduction, all of the Xsense sensors were designed to
detect TNT so it is no surprise that all the DNT measurements were identified
correctly for all the sensors. More interestingly it seems that the colorimetric
sensor is the most versatile in the current setup. However, comparing e.g. the
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cantilever and the colorimetric sensors on the grounds on these results is unfair.
The cantilever is functionlized using just one chemoselective compound whereas
the colorimetric sensor utilized 41 compounds. The situation more confirms two
ideas: one) sensor fusion improves detection (as has been described in chapter 4,
a colorimetric sensor array is sensor fusion, it is just that they are build on the
same technology), and two) The sensors seems to compliment each other well,
although it is questionable whether their detection patterns are independent.
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Chapter 6

Conclusion and future work

This thesis has shown advanced on the data analysis of data collected using
five different sensors. The first one was based on quartz crystal microbalance
crystals (QCM). The inclusion of the QCM sensor was mostly an opportunity
that presented itself back when the sensors within the Xsense project was still
being developed. Handling the QCM data was a very good experience and given
that QCM resembles cantilever sensing closely it also allowed me to be setup
nicely for future data. The cantilever sensor is a sensor that is chemically coated
just like QCM, so QCM and cantilevers can be considered very much alike, only
the medium is different.

The task for the QCM sensor was the detection of benzodioxol, an important
precursor for ecstasy. Despite the fact that QCM produces close to linear re-
sponses it has been a growing trend to apply artificial neural networks to both
classify analytes and to perform density estimation. One of the hypothesis when
the QCM data was analyzed (from a signal processing point of view), was that
adequate performance would be obtained using linear methods to both classify
and estimate concentration levels.

In chapter 3 [paper B] we showed that the linear method SVD greatly out-
performs ANN in classification and given that SVD is much faster than ANN,
based on the dataset, it makes little sense to apply ANN. In regression a similar
picture showed. ANN was again outperformed by the linear PCR method but
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also the GPR, and it actually turned out that GPR was overall the best method.
Likely because GPR can adapt to the minor non-linearities that sneak into any
dataset that is measured from real-world. To summarize, linear methods such
as SVD and PCR are preferable over ANN. GPR might provide an extra edge
when estimated concentrations but with the application of GPR some model
complexity follows.

The majority of the work presented has mostly concerned colorimetric data han-
dling and here a number innovations was proposed. The main hypothesis that
we wanted to investigate was the possibility to improve the feature extraction
for colorimetric sensors. In chapter 4 we showed that the traditional approach
can be improved in two ways. First, ff the colors are calibrated, or the colors be-
fore exposure is included in the analysis the classification accuracy is improved.
Secondly, by using more advanced methods to represent the sensor response,
such as the modified Hausdorff, the overall system accuracy is improved.

In the same chapter, we also proposed satisfactory solutions to the important
problem of sensor fusion for colorimetric sensor arrays. This was solved by a
Gaussian Process approach, where the algorithm successfully identified sensors
that improved the accuracy.

With the combination of Gaussian Process classification and the modified Haus-
dorff some issues arose. The modified Hausdorff is not a real metric and as such
the Gram matrix that is calculated based on the modified Hausdorff might vi-
olate the requirements of positive semidefinite matrices. These issues will be
looked upon in the near future and if we can solve them the results will be
included in the upcoming paper. With this paper, a toolbox that contains all
the code that I have written during the project will also be released. When we
begun to use colorimetric sensors, we found that there was quite a lot of work
required to even begin to handle the data. This toolbox should help making
colorimetric sensor arrays more accessible to other research groups. Also, the
results (and the accompanying software) on feature selection presented should
enable researchers to analyze their sensors better and enable them to iteratively
design better colorimetric sensor arrays.

The remaining three sensors within the Xsense project where briefly described
in chapter 5. The main innovation of the work was the multisensor approach,
where measurements were collected under identical conditions utilizing all the
sensors in the Xsense project. The results should be considered as a proof of
concept and they imply that the sensors within the Xsense project are suitable
to be combined and that the overall accuracy would be improved in all four
sensors were integrated.

The work within the Xsense group has spurred the project, “Multisensor DVD-



95

platform - MUSE”, Danish Council for Strategic Research grant 11-115314 and
led by Anja Boisen, DTU Nanotech. Within this project, future work will in-
clude system integration of sensors which will enable the possibility for collect-
ing simultaneous measurements from all sensors. The system integration will
facilitate automatic data collection that will provide sufficient data to enable
the possibility of using data fusing. Only then can a full multisensor system
utilizing sensors based on different physical properties be proclaimed.

The sensors included initially are SERS and cantilevers, as these are the tech-
nologies that fits into the designed integrated system. The application is dif-
ferent too, here the goal is to measure sepsis in blood and hormones in waste
water. However, a lot of the work that was presented in thesis, and especially
the work with sensor fusion developed for the colorimetric sensor array serve as
a platform. Kernel methods are very suitable for data fusion as kernels naturally
allow sensors with widely different signals to be merged. In this framework, one
has to design kernels that fit the data well and then they can be merged. I am
personally very excited and grateful that I can be apart of this new research
project.
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Appendix A

Miniaturized multisensory
approach for the highly
sensitive and selective
detection of explosives

Tommy S. Alstrøm, Natalie V. Kostesha, Filippo G. Bosco, Michael S. Schmidt,
Jesper K. Olsen, Michael Bache, Jan Larsen, Mogens H. Jakobsen, and Anja
Boisen. Miniaturized multisensory approach for the highly sensitive and se-
lective detection of explosives. Submitted to Journal of Materials Chemistry,
2013.

The paper was submitted to the Journal of American Chemical Society (JACS)
and was rejected with the editor suggesting that we submit the paper to a more
specialized journal. JACS being one of the most important journals in the field
of chemisty with an impact factor of 9.91 (2011), we were happy they took the
paper under consideration and gave reviews that have improved this work. The
paper is now submitted to Journal of Materials Chemistry.

The layout of the paper has been revised.
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ABSTRACT

Substances like explosives, explosives derivatives, and energetic materials are
extremely dangerous, even in small quantities. To this date no single measure-
ment technology has demonstrated the desired detection performance. In the
attempt to improve the overall detection accuracy, we propose a miniaturized
multisensory approach for sensing explosives, in real-time with the perspective
of integrating them into a handheld device. This makes our approach relevant
for defense, clearance, and security applications. The sensing system, which is
similar to an electronic nose, is based on the application of a unique setup of
four sensors based on calorimetric, cantilever, colorimetric, and surface enhanced
Raman spectroscopy. Although the sensors are yet to be integrated, we have
conducted an experiment where the measurements are collected simultaneously
utilizing all sensors. Hence, it is garanteed that the sensors worked under iden-
tical conditions. The identification of 2,4–dinitrotoluene as well as background
molecules such as ammonium nitrate, 2,4–diaminotoluene, and diesel is demon-
strated. To improve the responses from the sensors, the data is preprocessed
and enhanced using methods such as least squares regression and Gaussian pro-
cess regression. The preprocessed sensor responses are then identified as one

∗To whom correspondence should be adressed
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of the target analytes using a 1–nearest neighbor approach. Finally the perfor-
mance of each the sensors are compared. All of the sensors were able to detect
2,4–dinitrotoluene without error, even though the chemically closely related 2,4–
diaminotoluene was in the dataset. Further, it turned out at the sensors were no
able to detect the other analytes without error. The individual error patterns
for the sensors are not identical either, which indicates that a single integrated
device containing all sensors would enhance detection performance.

A.1 Introduction

Preventing the development, production, stockpiling, transport and use of illegal
explosives, is one of the most significant challenges for law enforcement agencies.
The detection techniques and equipment (sensors) must not only detect a variety
of hidden explosives, but must also be able to detect components that can be
used for fabrication of such explosives.

For most explosives the equilibrium vapor concentration is in the range from
parts-per-million (ppm) to parts-per-billion (ppb) range, making detection a
challenging task. Ideally, explosive identification systems have to be quick,
precise and deliver a high level of confidence. This requires reliable, selective
and sensitive detection techniques that provide identification of trace amounts
of explosives within a few minutes.

The minimization of false alarms1,2 is identified as a priority in chemical sens-
ing devices. Currently, the screening and identification of suspicious substances
is often done by canine units or specialized teams which employ sophisticated
methods e.g. terahertz pulsed spectroscopic imaging3,4, gas chromatography,
mass spectroscopy5 or long-range Raman spectrometry6. The screening is char-
acterized by a high assignment of personnel and high costs7. Furthermore, in
relation to the requested volume the methods are often slow. Airport screening
requires systems to handle up to 10 passengers per minute7. Canine units work
swiftly but require breaks, have significant upkeep cost and can only be applied
by expert handlers7

The use of detection systems based on multisensory approaches could tremen-
dously help in the fast identification of explosives, reduce false alarms and pro-
vide new opportunities for the real-time analysis of explosives8. A simultane-
ous application of a variety of sensor techniques, which are based on different
measurement principles, will enhance the collection of data where erroneous de-
tections are statistically independent. This improves the possibility to reliably
detect presence of explosives molecules with a high confidence9,10.
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The application of multisensory detection technologies has a great perspective in
the identification of different analytes and today’s market also show a demand
for portable multisensory instruments11–13. These instruments are sensitive
enough to detect low concentrations of analytes and can within few seconds
identify common volatile compounds, such as ammonia, methane, phosphine,
chlorine, carbon monoxide, hydrogen sulfide and other dangerous gases in air.
For example, in the product “GDA 2” by AirSense Analytics, a combination of
different sensors is applied. The product comprises an ion mobility spectrometer,
a photo ionization detector, two semiconductor gas sensors and an electrochemi-
cal cell. Other detecting combinations like an array of chemical sensors9,14,15 or
a surface modified with different sensing layers can also be called a multisensory
approach. While the “GDA 2” is a handheld device with a weight of 4.2 kg, we
propose the use of micro- and nano sized sensors which can facilitate a handheld
device that is even lighter and which can contain a multitude of sensors. These
sensors also facilitate the realization of miniaturized sensor systems to be used
in for example security and surveillance, potentially allowing the sensor unit to
have a footprint of only a few mm2.

The four measurement techniques that are being investigated are : calori-
meter, cantilever, colorimetric array, and surface enhanced Raman spectroscopy
(SERS). The utilized sensors are shown on Figure A.1.

Calorimetry is widely applied to investigate thermal properties of various sam-
ples analytes. In this work we present a micro-calorimetric sensing device (Fig-
ure A.1A) that is based on differential thermal analysis (DTA) where the tem-
perature difference between two highly sensitive temperature sensors is mea-
sured16–19. One sensor is loaded with a sample analyte and the other is left
blank. Using integrated heating elements both sensors are heated at a constant
rate while the differential temperature is continuously measured. At certain
temperatures the sample will sublimate, melt, evaporate or deflagrate which
results in a change in differential temperature. Using the calorimetric sensor,
we have previously demonstrated successful detection of TNT, PETN and RDX
molecules20,21.

The cantilever based sensor is an established micro- and nano-mechanical sens-
ing tool for trace detection of bio-chemical compounds22–24. The response of
cantilever-based sensors can be measured by monitoring change in resonance fre-
quency of the cantilevers. A negative frequency shift is generated through mass
added to the surface of the cantilevers25,26. Generally, the larger the resonance
frequency change, the higher the amount of a given analyte is present in the
sample. We measure the change in resonance frequency on chips each contain-
ing eight cantilevers (Figure A.1B)27. The cantilever’s surface is functionalized
with receptor molecules designed to specifically bind target analytes28. In this
work cantilevers are employed in the detection of DNT molecules. For this
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Figure A.1: Illustration of the four sensing techniques: (A). Calorimetric
sensor; (B). Cantilever sensor; (C). Colorimetric sensor; (D). SERS sensor.

purpose the gold coated surface of the cantilever beams is functionalized with a
tetraTTF-calix[4]pyrrole (TTF) molecule, specifically synthesized to bind nitro-
aromatic compounds, such as 1,3,5-trinitrobenzene (TNB), DNT and TNT29,30.
We deploy TTF coated cantilever chips as well as untreated reference chips

Colorimetric sensing is a chemo-sensing technique which can be useful in both
detection and identification of volatile organic compounds in air and liquids31–33.
Chemo-selective compounds are capable of changing colors when exposed to ana-
lytes or analyte mixtures. The colorimetric sensor array technique (Figure A.1C)
presented by Kostesha et al. showed great potential for real-time (2 minutes of
analyte exposure is needed for the current sensor) monitoring of analytes such
as DNT, acids, alcohols and arenes with sensitivity below ppm15,34. Chemo-
selective compounds are capable of recognizing specific analytes; this recognition
is a function of intermolecular interactions, basically weak, non-covalent inter-
actions or donor-acceptor interactions.

SERS is increasingly used as a versatile analytical tool for both chemical and
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biochemical sensors in liquid and gas phase. In fact, single molecule detection
with SERS has been demonstrated35. SERS-based sensors rely on increasing
the number of inelastically scattered photons from an analyte adsorbed on a
so-called SERS substrate. A new class of SERS substrates have been devel-
oped at DTU Nanotech using standard cleanroom silicon processing techniques
(Figure A.1D)36. This class of substrates demonstrates a signal enhancement
factor of up to 7.8 · 106 due to plasmonic effects from a nanostructured and
silver coated surface. In this paper we demonstrate how this new class of sub-
strates can be used to greatly improve the Raman enhancement thus enabling
explosives detection which is approximately a factor of 100 more sensitive than
commercially available SERS substrates36,37.

In the strategic research project Xsense funded by the Danish Agency for Science
and Technology we work towards the development and implementation of four
individual miniaturized sensor technologies for detection of military and impro-
vised explosives 8,38. By using the technologies described above (Figure A.1)
it is possible to simultaneously detect explosives in trace concentrations. Our
hypothesis is that sufficient reliability can be ensured by merging several in-
dependent and sensitive measuring principles. The basic scientific goal of the
Xsense project is to focus on the development and refinement of the miniatur-
ized sensors in order to achieve a detection limit towards explosives of 1 ppb
(DNT and TNT being the major test molecules). A summary of the sensors
characteristics and sensing principles are given in Table A.1.

A.2 Results and discussion

To confirm that our sensors work independently we conducted experiments
where the sensors were sequentially exposed to the analytes: ammonium ni-
trate (AN), 2,4-diaminotoluene (DAT), 2,4-dinitrotoluene (DNT), and diesel.
All sensors have previously been individually used for DNT detection – here
we for the first time present combined measurements and data analysis on four
common analytes, including potentially highly disturbing backgroundmolecules.
We chose DNT as the explosive molecule as DNT is a decomposition product of
TNT, the explosive most commonly deployed in landmines in the ground today.
Ammonium nitrate is widely used as a fertilizer and is thus a common back-
ground molecule. Also, ammonium nitrate is a main compound in production of
improvised homemade-fertilizer based bombs. DAT has been chosen since this
molecule is chemically closely related to DNT; DNT carries two nitro-groups
in the structure, DAT carries two amino-groups in the same positions.. Thus,
DAT could cause concern about sensor selectivity and heighten false alarm rate.
Diesel is chosen as an environmental disturbance that would often be present in
a mine field and in post-blast scenarios, e.g. a detonated car bomb. Diesel is
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Table A.1: Comparison of sensor characteristics.

Sensor char-
acteristics

Calorimetric Cantilever Colorimetric SERS

Sensing
principle:

Thermal
analysis of
sample
molecules.

Determination
of mass and
surface stress
change

Chemical
interactions:
donor-acceptor,
non-covalent,
covalent, van der
Waals,
host-guest

Identification of
vibrational
scattering profile
through
Raman-based
spectroscopy

Lower
detection
limit:

ppt18 ppb39 ppm40 ppm41

Measurement
time:

1 minute 2 min for
indication, 10
min for
equilibrium
response

2 min 5-10 min

Robustness: Very robust Sensitive to
abrupt changes
in humidity and
temperature

Sensitive to light
and oxygen.
Robust to
mechanical
stress

Mechanically
fragile

Working
Conditions:

Gas phase Gas and liquid
phase

Gas and liquid
phase

Gas and liquid
phase

Sensor
shelf-life42:

Years Several months Several months Several months

Recycling
time:

Chip cleaning
after ∼1000
measurements

Sensor
regeneration
after positive
detection

Single time use Single time use

Feasibility: Compatible with
silicon-based
mass production

Compatible with
silicon-based
mass production

Compatible with
chemical
micro-array
mass production

Compatible with
silicon-based
mass production

Scalability: Extendable to
some other
target analytes

Applicable to
virtually any
receptor-analyte
assay

Applicable to
almost all classes
of chemical
compounds

Applicable to
detection of
virtually any
Raman-active
compound

also the most widely employed fuel in heavy truck and automotive engines used
by military forces and mine clearance agencies. The signal processing of the
sensors responses was tailored to each sensor as the responses are very different
in nature. Elaborate details on the signal processing can be found in the Sup-
porting Information. In this section we discuss the individual response of each
sensor to the four chemical compounds and show examples of sensor responses.
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Figure A.2: Example calorimetric responses of the four target analytes af-
ter trimming and smoothing. A distinct response is obtained for each analyte
due to the different thermal properties. Additional responses are found in the
Supporting Information.

A.2.1 Calorimetric responses

A sample will at certain temperatures change phases and either sublimate, melt,
evaporate or deflagrate which results in a change in the differential temperature
in a differential thermal analysis. Figure A.2 shows the calorimetric response
from the calorimetric sensor, of ammonium nitrate, DAT, DNT and diesel.

Significant and distinct responses are obtained for ammonium nitrate, DAT and
DNT. A very limited response is observed for diesel. A positive ΔT means that
the sample sensor is cooler than the reference sensor. The initial increase in ΔT
is due to a higher thermal mass of the sensor containing the sample. Sublimation
will start cooling the sample sensor further. The first peak observed for DAT
and ammonium nitrate and the change in slope observed for DNT (at ∼0.5 ms)
is due to melting of the sample. The last peak is due to sample depletion. From
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an analysis of the responses after the last peaks the signal decay is observed
to be fastest for DNT21. This is interpreted as due to deflagration whereas
DAT and ammonium nitrate decay at a rate determined by the characteristic
time constant of the integrated temperature sensor. The different calorimetric
signatures are a result of different analytes having different vapor pressures,
phase change temperatures, phase change enthalpies and thermal mass for the
different phases.

The responses of the calorimetric sensor can be handled using various ap-
proaches, e.g., as described by Olsen43. The peak value of the sensor response
gives an indication of the amount of analyte on the sensor as well as the type.
Studies have shown that for explosives the shape of the sensor response is highly
discriminative43.

A.2.2 Cantilever responses

For analyte detection eight silicon-gold-coated cantilevers were functionalized
using TTF molecules. As a control we used eight blank silicon-gold-coated
cantilevers without immobilized TTF on the surface. The measuring principle
has been described elsewhere44.

The results show how TTF-coated cantilevers shift their resonance frequencies
up to one order of magnitude more when exposed to DNT than when exposed to
the other vapor samples. This behavior indicates a higher selectivity for DNT
with respect to a control. As has been shown before, TTF molecules can inter-
act with electron-deficient molecules30, and have demonstrated high specificity
to nitro-aromatic explosives such as 2,4,6-trinitrotoluene, trinitrobenzene and
picric acid, respectively45

To evaluate signals obtained from the cantilever-based sensor a statistical anal-
ysis was performed. Figure A.3 presents the response of 64 independent can-
tilevers with and without TTF as a cumulative distribution function (CDF). For
small sample sizes (in our case each chip provide up to N=8 measurements), the
CDF will more accurately display the nature of the data compared to a plot
with mean and variance. Using the CDF we can graphically display whether we
expect the detection to fail or succeed.

From Figure A.3 we can see that TTF–coated cantilevers also react to DAT
where a slight positive frequency shift is observed. This positive change is likely
caused by both mass addition and surface properties modifications, generated
from unspecific binding of molecules on both cantilever surfaces46. The blank
cantilevers partially respond when exposed to ammonium nitrate (negative shift)
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Figure A.3: Data analysis obtained from the cantiliver-based sensor on the
presence of the target analytes. Data was collected from 64 independent can-
tilevers (eight chips), exposed to the four selected analytes. The destribution of
responses are presented as a cumulative distribution function (CDF). The value
of CDF is initially 0 (below the bars) and once n cantilevers have been mea-
sured, the CDF function will be n/N, where N is to total amount of measured
cantilevers. Above the bars the CDF has the value 1. Due to sporadic mal-
function of cantilevers, N=6 for DNT-TTF and AN-Control, N=7 for AN-TTF
and DNT-Control, N=8 for remaining bars. The number of event is marked by
color. Additional cantilever responses are found in the Supporting Information.

and diesel (positive shift), while they don’t present significant frequency change
for DAT and DNT. The blank cantilevers’ response is used as reference for
eliminating measurement artifacts on the TTF functionalized sensors.

The negative frequency shift generated by diesel is attributed to sticking of
hydrocarbons on the cantilever surfaces. The TTF layer which covers the spe-
cific cantilevers probably acts as an oleophobic protective coating that prevents
unspecific sticking of diesel on the treated surface.
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A.2.3 Colorimetric responses

In the colorimetric sensor 41 chemo-selected compounds (dyes) which are able
to change color in the presence of different molecules were chosen. The detecting
principle of the colorimetric sensor array and the data analysis using a difference
map (DM) have been described previously15,40.

Results demonstrate that the colorimetric sensor is able to detect vapor ema-
nating by DAT, DNT, ammonium nitrate and diesel. From the data analysis
it seems that almost each chosen dye in the array reacts with the analytes of
interest. Ammonium nitrate was detected by 8 dyes out of 41; where only 3
dyes in the array were particularly specific to ammonium nitrate. Diesel was
detected by 5 dyes; where only 1 dye was particularly specific to diesel. DAT
was detected by 6 dyes where 1 dye was specific to DAT. Finally, DNT was
detected by 9 dyes where 4 of the dyes were particularly specific to DNT.

Using DM analysis it is observe that a combination of chemo-selective dyes
compose a unique fingerprint for each analyte. Also, with DM analysis it is
possible to study the unspecific cross-reactivity for our applied dyes. In total
10 of the dyes show similar color-change response to the analytes. Specific
cross-reactivity is observed during detection of DAT and DNT, where 2 dyes
demonstrated similar color change. For ammonium nitrate and DAT 3 dyes show
cross-reactivity. Cross-reactivity is also observed between ammonium nitrate,
DAT and diesel, as well as between DNT and diesel. However, there is no
cross-reactivity observed between ammonium nitrate and DNT. DM is widely
used in colorimetry. However, the color representations in DM is weak and
furthermore negative color change values are eliminated (a color difference is
basically calculated by taking the absolute value of a pixel value before and
after exposure to an analyte). Also, for most dyes scaling is needed in order to
make color differences visible. As an alternative to DM we suggest to use bar
plots where each bar represents the CDF of the color change for a given dye
color (RGB) when exposed to a given analyte.

Data analysis is here generated after the mathematical analysis of color changes.
Mathematical algorithms were applied in order to analyze positive and negative
values during color changes with statistical methods; the sensory output was put
into a numerical form. As an example, Figure A.4 shows exposure responses
from dye 4, dye 22 and dye 28., Those dyes were identified as significant in
the array. The CDF plotting offers some advantages over the traditional DM
analysis as no scaling is needed and negative values can be plotted directly on
the graph.

From Figure A.4 dye number 4 shows a cross-reactive signal to ammonium
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Figure A.4: Representation of response as cumulative densities function anal-
ysis for chemo-selective compounds of 4, 22 and 28 in the colorimetric sensor
array when target analytes were present. Up to seven repetitions (color bar)
were performed to evaluate color changes of the dyes (left axis). Bars on the
scheme represent color changes after calculation of the median and probability
values of the signal. N=2 for AN, N=7 for DNT, N=4 for Diesel and N=5 for
DNT. Additional responses are found in the Supporting Information.

nitrate, DAT and diesel; however the specific signal is demonstrated for DNT
only. Dyes number 22 and 28 show unique responses to all analytes. In the
presence of DAT the dye number 22 turned from green to pink. However, in the
presence of other analytes the same dye exhibited color change from green to
transparent or light green in different intensity. For dye number 28 a positive
value for color changes was observed for ammonium nitrate. In the presence of
ammonium nitrate the light green color of the dye turned to dark green, while in
the presence of other analytes the dye changed color from light green to yellow.
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Figure A.5: Example responses of Raman signals from SERS substrates when
exposed to target. It is seen that the peaks defining DNT are not found in the
spectra from the other substances thus enabling DNT to be distinguished from
the potential background substances. The horizontal bars mark the frequency
intervals where notable peaks should occur for the given analyte. Additional
details on responses are found in the Supporting Information.

A.2.4 SERS responses

The exposure results of the SERS surface to DAT, DNT, ammonium nitrate
and diesel show a specific spectrum for each compound. Figure A.5 shows the
various spectra with the peak areas of interest highlighted.

For the recorded DNT spectrum the areas of interest are around 650 cm−1 and
1150 cm−1. These peaks are shifted compared to the bulk Raman values of pure
DNT crystals found in literature where the nitro groups give origin to a distinct
peak at around 1350 cm−1 and 1530 cm−1. The origin of the measured peaks
is thus difficult to identify47. Ammonium nitrate has a single distinct peak at
850 cm−1 and 650 cm−1, again this is ∼200 cm−1 lower when comparing with
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bulk measurements in literature, where the nitrate symmetric stretch at 1040
cm−1 and the nitrate in-plane bending mode at 712 cm−1 are the recognizable
peaks48.

When comparing the DNT spectrum with the DAT spectrum a clear distinc-
tion to DNT can be seen as DAT has a large peak at 1300-1400 cm−1 and an
additional peak at 500 cm−1.

The spectrum of diesel shows a comparable flat profile. This is expected as diesel
is usually composed by a complex mixture of saturated and aromatic carbon
compounds of a 8-22 chain length and often diesel includes other additives to
improve the engines combustion performance. The fouling properties of diesel
and large variety of composition can thus coat a sensor surface and potentially
overshadow a signal from DNT49,50.

A.2.5 Classification and combined responses

A careful mathematical analysis was performed to statistically analyze responses
obtained from calorimetric, cantilever, colorimetric and SERS-based sensors. In
this paper we used new methods for extracting features from all sensors and to
categorize and evaluate signals in order to understand the efficiency of sensing
technologies for detecting military and improvised explosives. By using machine
learning classifiers the quality and robustness of these features were determined.

Applied sensors must not only be able to classify explosives, explosive deriva-
tives and volatile organic compounds. They must also be able to measure the
certainty of the classifier. This means there is a need for classifiers that not only
give a decision, but also give a posterior probability about the decision. The
pre-calibration of the system or the application of libraries (classifiers) allows
with high precision to identify a broad range of target compounds.

All the sensors were able to give positive responses to DNT, but in order to
assess the recognition performance of each sensor we have created an artificial
classification system. Prior to the classification system each sensor output is
processed using a custom made signal processing system. As the sensor re-
sponses are of very different nature each sensor has a unique signal processing
system which is described in the supporting information. The classification sys-
tem consists of the 1-Nearest Neighbor classification method51 as this method
is easy to apply when few examples of measurements exist. The method classi-
fies each measurement in turn and treats this measurement as unknown. The
measurement is compared to all the other measurements which are treated as
known and then selecting the measurement that most resembles the unknown
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measurement. The unknown measurement is classified as the same analyte as
the known measurement. The classification results are illustrated as confusion
matrices shown in Figure A.6.

The array of sensors demonstrated a high classification rate for explosives, like
DNT with zero false negatives. The calorimetric sensor (Figure A.6A) made one
misclassification which is an ammonium nitrate sample which was detected as
DAT. The cantilever sensor (Figure A.6B) was very unreliable for ammonium
nitrate, DAT and diesel; DNT was detected with high precision. This was ex-
pected as the cantilever-based sensor only operated with a TTF-coating that
is specifically designed to detect DNT and similar analytes. The colorimetric
sensor is a more specific sensor compared to calorimetric and cantilever sen-
sors. The colorimetric sensor comprises 41 unique chemo-selective compounds,
including 25 TTFs (Figure A.1C). The results (Figure A.6C) show that this
sensor is able to detect all analytes; the sensor was able to detect DNT with
both zero false negatives and zero false positives (all 5 measurements were clas-
sified correctly), also ammonium nitrate and diesel gave zero false negatives.
DAT showed one false positive and control measurements (environment) gave
two false positives responses (one for DAT and one for diesel).

The SERS sensor is a more specific sensor compared to the colorimetric sensor
as our SERS sensor scans 2000 frequencies. SERS makes a perfect classification
(Figure A.6D) although it should be remarked (as described in section 2.4) that
diesel is not actually detected as it consists of a mixture of different length
carbon chains that read out as a broad Raman signature overlapping with that
of many carbon based analytes. The confusion matrix shows that diesel does
not give rise to false alarms. In general, the sensors have a high detection
rate and it is quite possible that the false alarms could be lowered significantly
or even extinguished entirely if more measurements are made as this would
not only give more knowledge of the sensor but also make more sophisticated
classification systems applicable.

To summarize how the sensors complement each other we draft up all detection
rates in Table A.2. The table shows that DNT is detected in all cases for all
four sensors. The higher dimensional sensors (colorimetric and SERS) are the
most specific making very few detection mistakes.

A.3 Conclusions

From our experiments we can conclude that the most versatile sensor seems to be
the colorimetric sensor as this sensor was able to positively detect all the tested
analytes only making one misclassification to DAT. However, the sensor also had
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Figure A.6: Confusion matrix presenting the responses of the sensors on the
presence of ammonium nitrate, DAT, DNT and diesel calculated using 1-NN.
A. Calorimetry – classification rate of 11/12; B. Cantilever – classification rate
of 5/12; C. Colorimetric – classification rate of 17/1752; D. SERS – classifi-
cation rate of 27/27. Herein, rows indicate the true class; columns indicate
the predicted class and the number indicate the counts; e.g. for A. two of the
ammonium nitrate measurements was correctly identified as ammonium nitrate
while one measurement was incorrectly identified as DAT. Each element in the
matrix is colored based on the number of measurements classified according to
the given matrix element relative to the total number of measurements. The
more measurements in the element the darker the element is.
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Table A.2: Detection rates of the four sensors. False positives are not included
in the table although it should be emphasized that there are neither false pos-
itives nor false negatives for DNT. Some scenarios are marked as no detection
(N.D.) as by inspecting the sensor response it was deemed that the sensor was
not able to detect the analyte in question, but only show that the analyte was
not causing false alarms for DNT.

Analyte Calorimetric Cantilever Colorimetric SERS
DAT 3/3 N.D 6/7 5/5
DNT 3/3 3/3 5/5 6/6
Diesel N.D N.D 4/4 N.D
NH4NO3 2/3 N.D 2/2 8/8

two false alarms, one for DAT and one for diesel which indicates that the sensor
at times may be too sensitive. Based on Table A.2 the calorimetric and SERS
sensors have in this experimental setup very similar properties. The advantage
of the calorimetric sensor (Table A.1) is that the sensor can conduct hundreds
of repeated measurements without requiring cleaning or manual operation, and
therefore this sensor is ideal to use as a screener before applying samples to the
other sensors. The cantilever requires cleaning between each measurement while
colorimetric and SERS are single disposable sensors, thus it is desirable to apply
these sensors only if a sample has a suspicious content. These results encourage
the fabrication of a sensor network of the sensors and conduct a larger scale
experiment where sensor fusion is applied.

In this paper we have shown that by establishing a network of four miniatur-
ized independent sensors the reliability in explosives detection can potentially
be improved significantly. Proof of the concept has been confirmed for all four
sensor technologies hence the ongoing effort is thus in optimizing sensitivity and
integrating all the sensors into one device. The inherent design qualities of the
completed device should enable its use by personnel with minimal training thus
making explosives detection capabilities accessible beyond trained dog teams.
The proposed system has potential to be highly suitable for the use in anti-terror
efforts, border control, monitoring of environment and mine clearance. Future
work will include system integration of sensors which would enable the possi-
bility for collecting simultaneous measurements from all sensors. The system
integration would facilitate automatic data collection that will provide sufficient
data to enable the possibility of using a data fusing classification algorithm.
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A.4 Experimental

Analytes that has been exposed to sensors: 2,4-diaminotoluene (DAT), 2,4-
dinitrotoluene (DNT), ammonium nitrate were all from Sigma (St. Louise,
MO, USA). Diesel was used as received from a Shell petrol station.

A.4.1 Sensor preparations

The colorimetric sensor array consists of 41 different chemo-selective compounds
selected from a set of compounds described by Kostesha et al53. SERS sub-
strates were developed as described by Schmidt et al54. The cantilevers fab-
rication and modification was reported by Bosco et al44. Calorimetric chips
were fabricated following the protocol developed by Olsen et al16–19. Tetrathia-
fulvalene–Calix[4]pyrroles are used in the fabrication of the colorimetric sensor
array as well as coating for the cantilevers30.

A.4.2 Experimental setup

All the measurements were conducted using a vapor generator which was built
and tested at Technical University of Denmark, Department of Micro- and Nan-
otechnology. The generator used the principle where a nitrogen gas is passed
through a heated reservoir containing the analyte of interest. An illustration of
the vapor generator system can be seen in Figure A.7. Deposition is done by
placing a sensor close to the exhaust of the system making the analyte condense
on the sensor surface.

It consists of an explosive reservoir, an oven, a mass flow controller and various
fittings. The explosive reservoir is a copper tube containing glass wool. The an-
alytes DAT, DNT and ammonium nitrate was first dissolved and then injected
in the glass wool using a syringe whereas diesel was injected without treatment.
Ethanol was used for DAT and DNT and water for ammonium nitrate. Before
the reservoir was ready for use solvent was first evaporated at low temperature.
The copper tube was inserted into the heating oven and connected to a nitro-
gen flow connector, controlled by a mass flow controller. When the nitrogen
flowed through the heated reservoir it became saturated with the analyte. By
reducing the nozzle diameter to 2 mm the velocity of the hot saturated vapor
was increased. The cantilever, calorimetry and SERS surface sensors were kept
at approximately 1 mm distance from the nozzle opening for 2 minutes, thus a
part of the analyte condensated on the sensor surface. The colorimetric sensor
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Figure A.7: Illustration of the vapor generator used for deposition of analytes
onto the sensors.

was only exposed to the analyte vapors at a greater distance from the nozzle
opening.

Pictures from the colorimetric sensor were scanned through an ordinary flatbed
scanner (Epson V750-M Pro Perfection scanner) immediately after immobiliza-
tion of dyes and after exposure of analytes. Pictures were obtained at 600 dots
per inch in RGB color format. Data analysis obtained from the colorimetric
sensor was analyzed as described in earlier work31,34. Raman measurements
were performed using 780 nm wavelength excitation at a power of 0.5 mW for 2
seconds. The laser spot diameter was 3.1 μm. Raman measurements were made
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on SERS substrates where silver coated nanopillars were in the pre-leaned, post-
leaned and non-leaning configurations54. The nanopillars were brought to lean
by 1 μL water.

A.4.3 Signal Processsing

The calorimetry sensor response is contaminated by white measurement noise.
We smooth the response by using Gaussian Process regression55 as this method
effectively removes the noise and at the same time we do not need to concern
about choosing model parameters. The smoothed responses are directly applied
to the 1-NN classifier.

Our cantilever measurement system collects readout of the entire cantilever sur-
face for each cantilever on the chip, thus one measurement consist of 8 cantilever
surface readouts, where one surface contains multiple readouts. These readouts
are reduced to a single value by taking the mean bending of the entire surface44.
All measurements are manually inspected as cantilevers on occasion malfunc-
tions. In these cases the measurement is regarded as not available. The final
measurement that is applied to the 1-NN classifier is the mean value of the TTF
coated cantilevers subtracted with the mean value of the blank cantilevers.

The colorimetric sensor response is a pair of images; an image of the clean sensor
and an image of the exposed sensor. The colorimetric sensor response undergoes
several steps before the response is applied to the 1-NN classifier56. The final
result is one RGB value from each dye is selected and concatenated into one
vector for each measurement. These vectors are applied to the classifier.

The SERS responses are baseline corrected using a 5th order polynomial cal-
culated using least squares regression. The functional values of the polynomial
is then subtracted from the original response and then normalized. The spec-
trum in the interval [100,1000] is then applied to the 1-NN classifier. To make
the classification we train one 1-NN classifier per reading mode (pre-bending,
post-bending, no bending) and then make the final prediction using majority
voting.
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A.6 Supporting Information for “Miniaturized multisen-
sory approach for the highly sensitive and selective detec-
tion of explosives”

A.6.1 Sensor responses and signal processing

Herein the full data set will be described. The data set is not showed in this text
in completeness; however the full collection of data accompanied with supporting
MATLABTM scripts that was used to produce all figures in this paper as well
as the signal processing modules can be downloaded at http://www.imm.dtu.
dk/pubdb/p.php?6401.

The measurements are done in four consecutive days where each analyte is
tested in one day. The reason for doing it on different days is that the vapor
generator needs thorough cleaning when changing the analyte to avoid possible
cross contaminations. The change takes some time and makes it impossible with
our current experimental setup to measure on different analytes in the same day.

For all the sensors except SERS, DNT, DAT and diesel are all evaporated at
70� with a 2 mm distance to a to a 2 mm nozzle opening for 2 minutes (DAT
was handled differently for the calorimetric sensor, see 1.1 in this supporting
information). Due to the much lower vapor pressure of ammonium nitrate the
temperature was increased to 250� to get comparable amounts of added mass
for a 2 minute evaporation time. SERS chips are evaporated using the same
settings except for evaporation time. Only a 1 minute evaporation time is used
as 2 minute evaporation time causes crystallizations of analyte on the surface.

A.6.1.1. The calorimetric sensor

Figure A.8 shows a clean bridge of the calorimetric sensor. Figure A.9-A.12

Figure A.8: An image of the bridge that is located on the calorimetric sensor
in clean state.

shows the responses (after smoothing) for the calorimetric sensor when exposed

http://www.imm.dtu.dk/pubdb/p.php?6401
http://www.imm.dtu.dk/pubdb/p.php?6401
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to the analytes. The condensation of DAT turned to be troublesome (Fig-
ure A.10). To force the DAT to condensate a droplet of nitrogen was put on
the opposite side of the sensor thus cooling the sensor while depositing DAT.
First the sensor was evaporated for 2 minutes, but this turned out to saturate
the sensor (Figure A.10, top panel), so the evaporation time was reduced to one
minute (middle and bottom panel).

When measuring, both reference and measurement sensor is calibrated in order
to be heated with the same linear heating rate by applying a calibrated voltage
waveform. Calibration ensures constant heating rate, and that reference and
measurement chip signal is kept close together when no sample is present. As
baseline correction, each time a sensor reading is performed, we also measure
10 times with no sample present. The median of these 10 samples is used to
baseline correct the signal.

The baseline corrected signal is contaminated with noise. This noise is removed
using Gaussian Process Regression (GPR). As fitting the hyper parameters when
using GPR is not a convex optimization problem, we use 10 restarts and then
select the model that has the maximum evidence. Readers interested in further
details are referred to the downloadable package.

Figure A.9: The three runs for the calorimetric sensor when exposed to DNT.
The shape is reproducible and distinct from the other responses. The left images
are images of the bridge just before the heating pulse is applied to the sensor.
Clearly the bridge is loaded with DNT molecules. The right hand images are
the corresponding profiles obtained when the heating pulse is applied.
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Figure A.10: The three runs for the calorimetric sensor when exposed to DAT.

Figure A.11: The three runs for the calorimetric sensor when exposed to
ammonium nitrate.

A.6.1.2. The cantilever sensor

A priori we know that cantilever measurements are prone to high variability
so in order to improve robustness 16 cantilevers are used per measurement, 8
cantilevers with TTF coating and 8 cantilevers with no coating. If the sensor
is able to make a detection there should be a significant difference between
the changes of resonance frequency for TTF coating cantilevers vs. non-coated
cantilevers.
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Figure A.12: The three runs for the calorimetric sensor when exposed to
Diesel. No surface images of the calorimetric sensor are shown as it turned out
that we were not able to condensate Diesel on the sensor.

Analysis of the data shows that the data is in general normally distributed but
there are expectations. For this reason we employ the nonparametric method
Kruskal-Wallis for significance test. Kruskal-Wallis assumes that the distribu-
tions to be tested are identically shaped. Since our data have few samples with
high variance we don’t have enough data to verify this claim hence we should
use the conclusions with caution for p-values close to the significance level which
we choose to 0.05. For all three cases the test show that there are significant
differences when the target analyte is Diesel and DNT with p¡0.01. For DAT
and ammonium nitrate the results are more ambiguous. For experiment 1 there
was found a significant difference for DAT and ammonium nitrate however, for
experiment 2 and 3 no significant differences was found.

In order to apply 1-NN the measurements for each experiment are reduced to
a single number by using the median response of an experience subtracting the
median response for the blank cantilever.

Figure A.13-A.16 contains the complete data gathered from the cantilever sen-
sor. The entries with “n.a.” represent a cantilever that could not be read with
the optical system, i.e., some kind of malfunction with the cantilever in question.

A.6.1.3. The colorimetric sensor

The colorimetric sensor responses is a series of images pairs (before exposure to
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  DAY 1   DAT     
            
  TTF     Blank   

    Before After Shift Before After Shift 
EXP Cantilever exposure exposure   exposure exposure   

  # (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 
  1 4964.6 4957.6 -7 4929.7 4935.8 6.1 
  2 4991.1 5001.3 10.2 4942.3 4943.4 1.1 
  3 5032.6 5042.2 9.6 4944.5 4947.8 3.3 
1 4 5133.4 5153.3 19.9 4947 4943.7 -3.3 
  5 5258.7 5285.9 27.2 4949.1 4951.1 2 
  6 5454.6 5520.8 66.2 4952.7 4951.3 -1.4 
  7 5731 5846.1 115.1 4968 4973.3 5.3 
  8 5543.2 5655.2 112 4976.1 4976 -0.1 
  1 n.a. n.a. n.a. 4988.7 4917.7 -71 
  2 5165.5 4999.1 -166.4 4934.3 4914.4 -19.9 
  3 4886.1 4979.4 93.3 4985.5 4939.2 -46.3 
2 4 4955.6 5023 67.4 4754.4 4922.9 168.5 
  5 5214.4 5139.1 -75.3 4877.58 4936.8 59.22 
  6 5011.7 5280.7 269 4972.8 4957.8 -15 
  7 5234.6 5321.8 87.2 5011 4962.5 -48.5 
  8 5144.56 5182.9 38.34 4971.5 4972.25 0.75 
  1 4934.5 4946 11.5 4829.7 4917.1 87.4 
  2 4897.9 4981.3 83.4 4778.2 4870.3 92.1 
  3 5033.9 5021.9 -12 4922.9 4928.9 6 
3 4 5229.2 5137.2 -92 4717.3 4923 205.7 
  5 5198.2 5283.1 84.9 4881.2 4930.9 49.7 
  6 5298.4 5529.5 231.1 4959.1 4956 -3.1 
  7 5633.1 5728.7 95.6 4958.2 4958.9 0.7 
  8 n.a. n.a. n.a. 5001.1 4877.5 -123.6 

AVERAGES 5179.403 5228.005 48.60182 4923.037 4937.856 14.81958 
            
  Differential averaged shift 33.7822 Hz 
            

Figure A.13: Cantilever measurements for DAT.

analyte, after exposure to analyte and difference maps). Examples are shown
figure s10 but otherwise the raw images can be found in the data set download.
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  DAY 2   DNT     
            
  TTF     Blank   

    Before After Shift Before After Shift 
EXP Cantilever exposure exposure   exposure exposure   

  # (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 
  1 4573.7 4098 -475.7 4697.2 4702.9 5.7 
  2 4581.6 4280.7 -300.9 4711.5 4673.8 -37.7 
  3 n.a. n.a. n.a. 4692.7 4656.8 -35.9 
1 4 n.a. n.a. n.a. 4721.6 4713.9 -7.7 
  5 4552 3850 -702 4716.2 4714.8 -1.4 
  6 4564.9 3891.4 -673.5 4651.6 4689.3 37.7 
  7 4582.1 3991.4 -590.7 4674.7 4717.3 42.6 
  8 4350.1 3923.8 -426.3 n.a n.a. n.a. 
  1 n.a. n.a. n.a. 4903.4 4896.9 -6.5 
  2 3714 3611.7 -102.3 4899.1 4907.9 8.8 
  3 4293.6 4007.8 -285.8 4912.5 4803.8 -108.7 
2 4 4621.1 4226.3 -394.8 4907.3 4903 -4.3 
  5 4763.6 4542.4 -221.2 4915.5 4912.3 -3.2 
  6 4921.2 4799.3 -121.9 4932.8 4901.7 -31.1 
  7 5091 4852.3 -238.7 4947.6 4939.7 -7.9 
  8 4572.7 4269.5 -303.2 n.a. n.a. n.a. 
  1 3733 3597.5 -135.5 4899.1 4835.2 -63.9 
  2 4288.7 4156.3 -132.4 4704.2 4762.4 58.2 
  3 4711.1 4482.4 -228.7 4918.2 4872.5 -45.7 
3 4 4788.6 4619.7 -168.9 4972.3 4977.8 5.5 
  5 4986.1 4792 -194.1 4921.4 4899.8 -21.6 
  6 5109.4 4985 -124.4 4908.9 4915 6.1 
  7 4674.1 4511.2 -162.9 4829.1 4930.4 101.3 
  8 n.a. n.a. n.a. 4912.6 4909.4 -3.2 

AVERAGES 4573.63 4274.435 
-

299.195 4834.068 4828.936 
-

5.13182 
  
  Differential averaged shift -294.06 Hz 
            

Figure A.14: Cantilever measurements for DNT.

Images of the sensor were scanned using an ordinary flatbed scanner immediately
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  DAY 3   

Ammonium 
Nitrate     

            
  TTF     Blank   

    Before After Shift Before After Shift 
EXP Cantilever exposure exposure   exposure exposure   

  # (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 
  1 5684.5 5646.6 -37.9 n.a n.a. n.a. 
  2 5547.1 5574.8 27.7 4802.6 4730.6 -72 
  3 5688.4 5643.5 -44.9 4779.3 4714.2 -65.1 
1 4 5584.3 5599.3 15 4834 4702.7 -131.3 
  5 5702.9 5693.8 -9.1 4785.5 4720.2 -65.3 
  6 5701.8 5680.9 -20.9 4767.6 4746.2 -21.4 
  7 5599.7 5673.1 73.4 4792.1 4715.1 -77 
  8 n.a n.a. n.a. n.a n.a. n.a. 
  1 5994 6017.9 23.9 4986.9 4969.6 -17.3 
  2 6109.4 6104.5 -4.9 4955 4940.4 -14.6 
  3 6144.5 6112 -32.5 4945.7 4923.9 -21.8 
2 4 6168.8 6164.4 -4.4 4936 4902.5 -33.5 
  5 6202.2 6203.2 1 4914.2 4891.5 -22.7 
  6 6201.5 5881.9 -319.6 4912.7 4877.4 -35.3 
  7 6260.4 6139.1 -121.3 4897.1 4846.5 -50.6 
  8 6293.9 6327.2 33.3 4849.1 4335 -514.1 
  1 6105.4 6035.8 -69.6 n.a n.a. n.a. 
  2 6122.3 6099 -23.3 5002.1 4952.5 -49.6 
  3 6198.5 6109.5 -89 5025.6 4994.4 -31.2 
3 4 6215 6101.4 -113.6 5147.8 5092.3 -55.5 
  5 6203.1 6214.5 11.4 5244.9 5232.7 -12.2 
  6 6274.9 6210.8 -64.1 5598.7 5452.3 -146.4 
  7 n.a n.a. n.a. 5841.6 5767.4 -74.2 
  8 n.a n.a. n.a. n.a n.a. n.a. 

AVERAGES 6000.124 5963.486 
-

36.6381 5000.925 4925.37 -75.555 
        

  Differential averaged shift 38.9169 Hz 
            

Figure A.15: Cantilever measurements for ammonium nitrate.

after immobilization of dyes and then again after exposure of target analytes.
The images were encoded in a lossless format using the red-green-blue (RGB)
color scheme with 8 bits per color. The images were used to generate color
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  DAY 4   DIESEL     
            
  TTF     Blank   

    Before After Shift Before After Shift 
EXP Cantilever exposure exposure   exposure exposure   

  # (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) 
  1 5867.6 5864 -3.6 4863.6 4769.9 -93.7 
  2 5947.7 5956 8.3 4868 4847.5 -20.5 
  3 6071 6074.8 3.8 4805.9 4501.2 -304.7 
1 4 6079.4 6062.3 -17.1 4583 4325.1 -257.9 
  5 6156.8 6150.9 -5.9 4808 4652.7 -155.3 
  6 6154.5 6153 -1.5 4868.1 4682.4 -185.7 
  7 6225.5 6213.2 -12.3 4923.9 4768.5 -155.4 
  8 6288.4 6265.8 -22.6 4933.3 4868.9 -64.4 
  1 n.a n.a. n.a. n.a n.a. n.a. 
  2 6118 6115.8 -2.2 4719.1 4408.1 -311 
  3 6149.4 6123.1 -26.3 4706.3 4524 -182.3 
2 4 6239 6221.5 -17.5 4712.5 4544.2 -168.3 
  5 6281.7 6205.9 -75.8 4672.8 4588.8 -84 
  6 6144.9 6138.7 -6.2 4877.6 4689.5 -188.1 
  7 6197.3 6157.8 -39.5 4709.6 4597.2 -112.4 
  8 6087.1 6077.5 -9.6 4801.2 4621.7 -179.5 
  1 n.a n.a. n.a. 4788.6 4598.5 -190.1 
  2 6219.1 6182.5 -36.6 4871.6 4602.7 -268.9 
  3 6084.5 6022.8 -61.7 4821.1 4716.9 -104.2 
3 4 6138.8 6122.9 -15.9 4863.6 4703.2 -160.4 
  5 n.a n.a. n.a. 4796.5 4688.4 -108.1 
  6 6212.3 6189.7 -22.6 4768.1 4695.2 -72.9 
  7 6109.6 6087.4 -22.2 4824.2 4711.6 -112.6 
  8 n.a n.a. n.a. 4799.3 4710.2 -89.1 

AVERAGES 6138.63 6119.28 -19.35 4799.387 4644.191 
-

155.196 
            
  Differential averaged shift 135.846 Hz 
            

Figure A.16: Cantilever measurements for diesel.
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difference images by pixel subtraction (Figure A.17).

To align the two images a cost function that measures the L1 norm error per
pixel is minimized The L1 norm error can be interpreted as the amount of color
per pixel where a fully black pixel is fixed at a value of zero. At perfect image
alignment, all the background pixels will be black and all dye pixels will have
the weakest possible color, hence, blackness per pixel should be maximized.

Once the images are digitalized feature extraction is employed using the mean
pixel value. Chemically we know that a dye should only have one color, as the
dye is homogeneous and exposed to a homogeneous vapor. However, noise is
induced from: the scanner, the drying process of the dye, external light, and
roughness of surface. Some of these effects can be handled easily. The drying of
the dyes often results in a ring near the perimeter (the coffee stain effect) and
this area of the dye is unreliable. To accommodate for this effect, a smaller area
of a dye is used for feature extraction, corresponding to 2/3 of the dye radius.

The full list of chemoselective compounds used to manufacture the colorimetric
sensor arrays are also included, see Table A.3.

A.6.1.4. SERS Sensor Responses

Examples of the SERS signals have been shown in the main paper, and the data
is too large to print in this document. Interested readers are referred to the
downloadable package.
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Figure A.17: Examples of the colorimetric sensor. B is the sensor before
exposure; C is the sensor after exposure; and D is the difference map.
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A.6.2 Confusion matrices and 1-Nearest Neighbor

The confusion matrices on Figure 6 are calculated using 1-Nearest Neighbor
(1-NN). The 1-NN technique which works as follows: a given sensor response
is considered to be a single point in a high dimensional vector space. E.g. for
the colorimetric sensor, the dimensionality of the space becomes the number
of dyes multiplied by three, as each dye is represented using one RGB color,
which again is a three dimensional number. When testing an unknown data
point, the Euclidean distances for all known points are calculated. The analyte
of the closest point is then identified and the unknown point is classified as the
identified analyte.

A.6.2.1. Colorimetric confusion matrix

Since the colorimetric sensor is a chemical sensor that immediately reacts with
the environment, control measurements for the surrounding environment were
included. The control measurements resulted in misclassification on three occa-
sions as can be seen shown on Figure A.18.

Figure A.18: The three runs for the calorimetric sensor when exposed to
Diesel. No surface images of the calorimetric sensor are shown as it turned out
that we were not able to condensate Diesel on the sensor.
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Table A.3: List of the 41 chemoselective compounds tested and applied further in the colorimetric sensor 
array for detection of ammonium nitrate, DAT, DNT, and diesel.

CAS- Formula Mw Structure and Name Availability

1 NA C13H25N3O6S7 760.00
S

S
N

S

S

S

S
Ts

NO2

NO2

R1,R4 : N-Tosyl-[c]pyrrolo
R2,R3 : 2-(4-Nitrophenyl)ethylthio

Synthetic procedure 
described in 1

2 NA C38H30N4O8S12 1055.4
5

N

N

S

SS

S S

S

COOMe

COOMe

S

SS

S S

S

COOMe

COOMeNC

NC

R1 : (4’-{[7-(2-Cyanoethylthio)-2,3-
Dimethoxy-carbonyl-6-
thiomethylene]tetrathiafulvalene}-4-
bipyridine)methylethio
R2,R3 : Methoxycarbonyl 
R4      : 2-Cyanoethylthio

Synthetic procedure 
described in 1

3 NA C28H28N4O6S8 773.07

S

SS

S S

S

S

S

NO2

NO2

H2N

H2N

O

O

R1,R4 : 2-(Carboxamide)ethylthio
R2,R3 : 2-(4-Nitrophenyl)ethylthio

Synthetic procedure 
described in 1

4 26314-39-
6

C14H12O8S8 436.50
S

SMeOOC

MeOOC S

S

COOMe

COOMe

R1,R2,R3,R4 : Methoxycarbonyl

2

5 300766-19
-2

C25H31NO2S7

601.97

S

S
N

S

S

S

S
Ts

R1,R4 : N-Tos yl-[c]pyrrolo
R2,R3 : Pentylthio

3

6 NA C25H35NO2S7 606.01 S

S
N

S

S

S

S
Ts

HH

HH

R1,R4 : N-Tosyl-2,5-Dihydro-[c]pyrrolo

Synthetic procedure 
described in 1
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R2,R3 : Pentylthio

7 NA C19H15NO6S5 516.65

S

S
N

S

S

COOMe

COOMe
Ts

R1,R4 : N-Tosyl-[c]pyrrolo
R2,R3: Methoxycarbonyl

Synthetic procedure 
described in 1

8 NA C25H31N3S6 565.92

S

S
N

S

S

S

S

H2N

HN

R1,R4 : N-(p-amidinophenyl)-[c]pyrrolo
R2,R3 : Pentylthio

Synthetic procedure 
described in 1

9 NA C23H35NO6S6 613.92
S

S
N

S

S

S

S O O O

O O O

R1,R4 : N-Methyl-[c]pyrrolo
R2,R3 :
2-(2-(2-Methoxyethoxy)ethoxy)ethylthio

Synthetic procedure 
described in 1

10 132765-36
-7

C18H16N4S8 544.87 S

SS

S S

S

S

S

CN

CNNC

NC

R1,R2,R3,R4 : 2-Cyanoethylthio

Synthetic procedure 
described in 4

11 NA C14H14Br2S12 566.52
S

S
S

S

S

S

S
Br

Br

R1,R4 : 2,5-Dibromo-[c]thieno
R2,R3 : Propylthio

Synthetic procedure 
described in 5

12 31366-25-
3

C6H4S4 204.36
S

S

S

S Sigma-
Aldrich.Co.LLC.

13 55259-49-
9

C10H12Se4 448.04
Se

Se

Se

Se

R1,R2,R3,R4 : Methyl

Sigma-
Aldrich.Co.LLC.

14 NA C100H148N4O24S24
2559.8
2

HNNH

NH HN

S
S

S
SS

S

S
S

S
SS

S

S
S S

S
S

S

S

S

S

S

S

S

O O

O

O

O

O

O

O

O

OO

O
O

O

O

O

O

O

O

O

O

O
O

O

6
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15 NA C68H84N4S24
1727,0
1

NH HN

HNNH

S
S

S
SS

S

S
S

S
S

S
S

S
S

S
S

PrS

PrS SPr

SPr

SPr

SPrPrS

PrS

7

16 61940-34-
9 C16H20S4 340.59

S

S

S

S

R1, R4: Tetramethylelethio
R2, R3: Tetramethylelethio

Sigma-
Aldrich.Co.LLC.

17 S926035 C38H52O4S4 701.09 Sigma-
Aldrich.Co.LLC.

18 75258-
46-7 C22H20O2S4 444.56

Sigma-
Aldrich.Co.LLC.

19 83362-
96-3 C20H14Cl2S4 453.49 S

S

S

S

Cl Cl

R1, R2 : p-Chlorophenyl
R3, R4 : Methyl

Sigma-
Aldrich.Co.LLC.

20 56851-13-
9 C20H16S4 384.60 S

S

S

S

Z

R1, R2 : Phenyl
R3, R4 : Methyl

Sigma-
Aldrich.Co.LLC.

21 61485-
52-7 C18H10Br2S4 514.35

Sigma-
Aldrich.Co.LLC.

22 40210-84-
2 C6H4S4× C12H4N4 408.54 Sigma-

Aldrich.Co.LLC.

23 100760-
57-4 C20H16S4 384.60

S

S

S

S

E

R1, R3 : Phenyl
R2, R4 : Methyl

Sigma-
Aldrich.Co.LLC.

24 71938-
96-0 C22H16S4 408.62

S

S

S

S

R1, R3 : 4,5-Dihydronaphto
R2, R4 : 4,5-Dihydronaphto

Sigma-
Aldrich.Co.LLC.

25 24648-
13-3 C14H8S4 304.47

S

S

S

S

R1, R3 : Benzo
R2, R4 : Benzo

Sigma-
Aldrich.Co.LLC.

26 72-48-0 C14H8O4 240.21 Alizarin Sigma-
Aldrich.Co.LLC.

27 76-60-8 C21H14Br4O5S 698.01 Bromocresol Green Sigma-
Aldrich.Co.LLC.

28 115-40-2
C21H16Br2O5S

540.22 Bromocresol Purple Sigma-
Aldrich.Co.LLC.

29 34722-90-
2 C27H27Br2NaO5S 646.36 Bromothymol Blue sodium salt Sigma-

Aldrich.Co.LLC.
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30 115-39-9
C19H10Br4O5S

669.96 Bromphenol Blue Sigma-
Aldrich.Co.LLC.

31 125-31-5 C23H22O5S 410.48 Xylenol Blue Sigma-
Aldrich.Co.LLC.

32 4430-20-0
C19H12Cl2O5S

423.27 Chlorphenol Red Sigma-
Aldrich.Co.LLC.

33 1733-12-6
C21H18O5S

382.43 Cresol Red Sigma-
Aldrich.Co.LLC.

34 1552-42-7
C26H29N3O2 415.53 Crystal Violet Lactone Sigma-

Aldrich.Co.LLC.

35 121792-
58-3 C29H19Cl2NO 468.37

2,6-Dichloro-4-(2,4,6-triphenyl-1-
pyridinio)phenolate

Sigma-
Aldrich.Co.LLC.

36 10081-39-
7 C41H29NO 551.68 Reichardt’s dye Sigma-

Aldrich.Co.LLC.

37 143-74-8 C19H14O5S 354.38 Phenol Red Sigma-
Aldrich.Co.LLC.

38 603-45-2 C19H14O3 290.31 Rosolic acid Sigma-
Aldrich.Co.LLC.

39 493-52-7 (CH3)2NC6H4N=
NC6H4CO2H

269.30 Methyl Red Sigma-
Aldrich.Co.LLC.

40 5423-07-4 C16H8N4Na2O11S2 542.36 Nitrazine yellow Sigma-
Aldrich.Co.LLC.

41 2374-05-2 BrC6H2(CH3)2OH 201.06 4-Bromo-2,6-Dimethylphenol Sigma-
Aldrich.Co.LLC.

(1) Jeppesen, J. O.; Kostesha, N. V.; Johnsen, C.; Nielsen, K. A.; Boisen, A.; Jakobsen, M. H. 
Multisensor array useful for detection and/or identification of an analyte (e.g. amines, 
alcohols, ketones and thiols) in the gas phase or in the liquid phase, comprises at least two 
different chemo-selective heteroaryl compounds 2011, 73.

(2) Le Coustumer, G.; Mollier, Y. J. Chem. Soc., Chem. Commun. 1980, 38–39.

(3) Rice, J. E.; Okamoto, Y. J. Org. Chem. 1981, 42, 446–447.

(4) Svenstrup, N.; Rasmussen, K. M.; Hansen, T. K.; Becher, J. Synthesis 1994, 809–812.

(5) Kim, D.-S.; Lynch, V. M.; Nielsen, K. a; Johnsen, C.; Jeppesen, J. O.; Sessler, J. L. 
Analytical and bioanalytical chemistry 2009, 395, 393–400.

(6) Larsen, J.; Lenoir, C. Synthesis 1989, 134.

(7) Nielsen, K. A.; Cho, W. S.; Lyskawa, J.; Levillain, E.; Lynch, V. M.; Sessler, J. L.; Jeppesen, 
J. O. Journal of the American Chemical Society 2006, 128, 2444–2451. 
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Data–driven modeling of nano-nose gas sensor arrays
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Denmark;
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ABSTRACT

We present a data-driven approach to classification of Quartz Crystal Microbal-
ance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects
concentrations of analytes down to ppm levels using plasma polymorized coat-
ings. Each sensor experiment takes approximately one hour hence the number
of available training data is limited. We suggest a data-driven classification
model which work from few examples. The paper compares a number of data-
driven classification and quantification schemes able to detect the gas and the
concentration level. The data-driven approaches are based on state-of-the-art
machine learning methods and the Bayesian learning paradigm.

Keywords: Polymer Coated Quartz Crystal Microbalance Sensor (QCM),
Gaussian Process Regression (GPR), Artificial Neural Network (ANN), Non–
negative Matrix Factorization (NMF), Principal Component Analysis (PCA),
Principal Component Regression (PCR), Classification, Concentration Level Es-
timation.

B.1. INTRODUCTION

The development of gas sensors is a field of great activity. Particularly the
development of electronic noses for use in process control, quality control in
the food and beverage industry, pollution monitoring and airport security1,2.

Further author information: (Send correspondence to T.S.A.)
T.S.A.: E-mail: tsal@imm.dtu.dk, Telephone: (+45) 45 25 39 04
J.L.: E-mail: jl@imm.dtu.dk, Telephone: (+45) 45 25 39 23
C.H.N.: E-mail: chn@chn-analytical.dk
N.B.L: E-mail: niels.b.larsen@nanotech.dtu.dk
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Ideally such an electronic nose should be portable, provide both a qualitative
and quantitative determination of analytes as well as offer stable performance
over extended periods of time. This means that the sensor element(s) must
operate in a reversible manner and show an affinity towards target analytes.

Many different strategies have been pursued to develop selective gas sensors.
One approach is to functionalize the physical sensor device with chemical coat-
ings. Molecularly imprinted polymers (MIPs) seek to mimic biological antibod-
ies. The selectivity of these “plastic antibodies” has been shown to be somewhat
random and not easily controlled3. Several macromolecules have been evaluated
as potential gas sensors. One of the more popular choices are cyclodextrins,
which are cage-like molecules with hydrophobic cavities and hydrophilic edges4.
These molecules offer both chemical and steric selectivity and serve as a plat-
form for a vast group of derivatives that tune the specificity towards certain
compounds or classes of compounds. However, the selective modification of cy-
clodextrins is not a simple process and requires elaborate synthesis and isolation
steps5. Another drawback is the fact that these substances must be dissolved
in a solvent from which a film can be cast by for example spin or spray coating
in order to functionalize a sensor surface.

In this work an alternative methodology known as plasma polymerization is
used for sensor functionalization. This method allows for solvent free deposition
of a wide range of thin polymer films on the surface of most sensors includ-
ing cantilever and quartz crystal microbalance (QCM) based sensors6. Plasma
polymerization also offers excellent control over film thickness since it is di-
rectly proportional to polymerization time as confirmed by Kurosawa et al.7. A
wide selection of monomers with many different functional groups can be used
for plasma polymerization making it a very versatile technique. The choice of
monomer naturally depends on the target analytes to be detected. As described
by Grate and Abraham the choice of coatings can advantageously be based on
the main interaction parameters that are responsible for the sorption of gases
into solids8. According to the linear solvation energy relationship (LSER) model
these parameters are: dispersion interactions, polarizability, dipolarity and hy-
drogen bonding. Ideally one would develop a selection of coatings where each
coating is representing only one of the above interaction parameters. This is
however not easily done in practice, but Grate and Abraham suggest several
good candidates that can be assumed to primarily interact via one parameter
only. The coatings are deposited on a QCM based sensor. The working princi-
ple of QCM sensors resemble tuning forks. The resonance frequency response of
QCM sensors is close to linear with respect to mass change6. Coating the quartz
crystals make them selective towards various analytes making them suitable as
gas sensors. In order to verify the selectivity of the coatings the sensor is tested
using six different analytes. The response data is subject to data analysis meth-
ods. A number of methods have been applied to polymer coated QCM sensors.
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Often QCM sensors selectivity has been analyzed by using principal compo-
nent analysis (PCA)9–11 or hierarchical cluster analysis (HCA)12,13. Recently
the application of artificial neural networks (ANN) evolved as the dominant
method14.

As described earlier the response of QCM sensors is sensitive to mass changes
making them viable for detecting concentration levels of analytes. Various meth-
ods have been used to construct QCM based concentration level estimators such
as partial least squares (PLS)11 and multivariate linear regression15. Artificial
neural networks have been applied as concentration level estimators in a broad
range of applications14,16–18.

In this paper we compare classification using ANN and PCA with a Non–
negative Matrix Factorization (NMF) classification scheme. NMF was intro-
duced by Lee and Seung19 as an alternative to PCA for feature extraction
applied to identifying facial features but have found use in a vast range of areas.
Further we propose a QCM sensor consisting of 8 crystals with different coatings.
The sensor is able to classify the test analytes with high accuracy even though
the available training data is limited. In order to perform concentration level
estimation the analytes are measured at various concentrations. Three different
methods for concentration level estimation are evaluated; Principal component
regression (PCR), ANN and Gaussian process regression (GPR). PCR is a linear
method that performs well with a limited amount of training points although it
handles non–linearity in data poorly. To overcome this problem neural networks
has usually been applied as ANN can model non–linearities. GPR is so far an
untried method for QCM data. GPR is a non–linear method as ANN but GPR
should be able to perform well with a limited amount of data points.

B.2. SENSORS AND MEASUREMENT SYSTEM

A selection of eight monomers were chosen based on the single interaction
parameter. All monomers used, dodecane (DOD), heptadecafluoro-1-decene
(HDFD), maleic anhydride (MAH), methylene dioxobenzene (MDOB), methyl
methacrylate (MMA), styrene (STY) and vinyl pyrrolidone (VP), were of at
least ≥ 99% purity except di(ethylene glycol) vinyl ether (DEGVE), which was
of 98% purity, and all of them were used without further purification. The
monomers were polymerized at a total pressure of 10-13 Pa and at a power of
0.5W

l in a 50 Hz (i.e. low frequency) plasma chamber20. Argon was used as a
carrier gas. Surfaces were activated for 2 min in argon plasma followed by ad-
dition of monomer to initiate polymerization. After polymerization power was
turned off, but the monomer was allowed to flow for another 2 min. This “af-
terglow polymerization” is believed to reduce the amount of free radicals on the
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Figure B.1: Experimental setup used for gas sorption measurements of QCMs
coated with thin polymer films.

polymer surface by reaction with monomer species. For gas sorption measure-
ments 10 MHz, 0.538“ diameter AT-cut quartz crystals with 10Å Ti + 1000Å
Au electrodes driven by 10 MHz QCM lever oscillators (all from International
Crystal Manufacturing Co.) were used. Crystals were coated on one side only by
masking one side with SWT 20+ semiconductor dicing tape (from Nitto Denko).
Crystals were mounted in a home built flow system made from poly(methyl
methacrylate) (PMMA) which was placed on top of an aluminum block held at
a 33◦C(±0.1◦C) throughout the duration of the experiments. The entire flow
system and all oscillators were placed inside a closed box to shield the QCMs
from excessive temperature variations (the temperature in the laboratory varied
up to 5◦C between day and night time). Figure B.1 shows a schematic of the
experimental setup. Analytes used were acetone (≥ 99.8%), anhydrous ethanol
(≥ 99.9%), heptane (≥ 99%), 1-pentanol (≥ 99%), 1,3-Benzodioxole (≥ 99%)
and Milli-Q purified water (Millipore). The analyte vapors were produced by
bubbling nitrogen through gas wash bottles containing analyte. Analyte con-
centrations were defined by adjusting the ratio of nitrogen flowing through and
bypassing the wash bottle respectively. A constant flow rate of 100 sccm was
maintained throughout the entire duration of the experiments using mass flow
controllers (mks Instruments, type 1179A). With an internal volume of the flow
system of about 2.5 cm3 this corresponds to about 39 exchanges per minute.
For this reason the concentration of analyte in the gas phase is assumed to be
constant. The setup allows for sequential measurement of four crystals. Each
crystal was measured every 4 seconds and each measurement was taken as the
median of 10 measurements. Of the 4 crystals being measured one was al-
ways a blank (i.e. uncoated) crystal. The gold surface of the blank crystal
provided information about unspecific adsorption and deviations due to tem-
perature changes. Resonant frequencies were measured using a Fluke PM6681
high resolution frequency counter. The sorption measurements consisted of re-



144

0 200 400 600 800 1000
−120

−100

−80

−60

−40

−20

0

20

Time [min]

Δf
re

q
u
e
n
c
y
 [

H
z
]

Water

BLANK

MAH

MDOB

MMA

Figure B.2: Δfrequency responses for MAH, MDOB, MMA and a blank quartz
crystal for nine measurement cycles. The first three measurement cycles is
water at 9200 parts per million (ppm), the next three cycles the concentration
is at 4600 ppm and the last three cycles has a concentration level at 2300
ppm. The sign reversed peak value during a measurement cycle is recorded
as representative for the cycle.

peated cycles of 100 min pure nitrogen flow followed by 40 min of analyte-spiked
flow. The response was measured at six different concentrations, three times at
each concentration, for each analyte. Figure B.2 shows the response for MAH,
MDOB and MMA using water as analyte. A measurement cycle consist of
filling the chamber with pure nitrogen for 100 minutes allowing the coatings
to get a known steady state response. After the 100 minutes have passed an
analyte at a given concentration level is added to the flow maintained for 40
minutes. The peak response is recorded as representative for the measurement
cycle. Figure B.3 shows the measured (peak sign reversed) frequency responses
for all analytes. The frequency readings show a near linear response with re-
spect to mass for most coatings. Other coatings such as STY for heptane show
a non-linear response. All responses but one are of the same sign. HDFD shows
a negative response towards pentanol. This is because HDFD is a teflon-like
coating onto which condensation of pentanol is less likely to occur compared to
the uncoated reference quartz crystal.

B.3. ALGORITHM TRAINING AND EVALUATION

B.3.1 Data partitioning

As described in section B.2 we have conducted experiments on six different
analytes. Each analyte is measured at 6 different concentration levels and each
experiment is repeated 3 times. Therefore the dataset has 108 data points in
total, 18 data points per analyte. The data is partitioned into a training set
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Figure B.3: The bars are averages of the measured responses. Inspection of the
data shows that only on one occasion does a crystal give a negative Δfrequency
response, namely HDFD for pentanol. Note both the concentration levels and
the y–axis scaling varies between analytes. The concentration levels is in parts
per million (ppm).
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Figure B.4: The figure illustrate three different data partitioning scenarios.
Left has Ntrain = 3, center has Ntrain = 6 and right has Ntrain = 8. Each
square corresponds to one data point. The test set comprise the blank squares
and the training set comprise the colored squares. cai denoted that concentration
level i for analyte a. Here acetone corresponds to a = 1 and water is a = 6.

and a test set. We want to produce learning curves for the different algorithms
so the size of the training set will vary. Our minimum training set size will
be three training points per analyte – the minimum number of points that can
reveal non–linearities in the sensor response. The maximum trained set size is
chosen to be twelve training points per analyte, denoted as Ntrain = 12. This
corresponds to an experimental setup where all concentration levels per analyte
is included twice. We want to increase the training set size in roughly the
same manner as an experimenter would include more and more experiments.
To achieve this we impose constraints on how the data is partitioned. Each
analyte must be represented evenly in training set - thus the training set size
must be a multiple of six. Further each concentration level within each analyte,
should be represented as evenly as possible. Choosing Ntrain = 6 we have each
concentration represented exactly once. Figure B.4 shows examples of data
partitioning for Ntrain = 3, Ntrain = 6 and Ntrain = 8. Each data partitioning
and subsequent model training and evaluation is performed 100 times. This is
done to ensure that we are not comparing the algorithms on a training/test set
that turned out to be an exception rather than the norm.

B.3.2 Model training and evaluation

The proposed methods have several parameters that can have a huge impact of
performance. These parameters are often set using model selection. In order
to select the model that has the lowest generalization error21 model selection
methodology must be applied. We will work with both cross validation21 (CV)
and marginal likelihood22 (ML) depending on the method in question. Model
selection for classification using SVD and NMF will use leave–one–out cross val-
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idation (LOO-CV). Due to computational limitations model selection for ANN
classification will use a 6–fold cross validation scheme (6F-CV) instead of LOO-
CV . The 6F-CV set will contain one data point per analyte. Model selection
for PCR and ANN regression will use LOO-CV. Model selection for GPR will
use ML as described by Rasmussen and Williams22. The performance of the
classifiers are evaluated based on the misclassification rate defined as

Emis =
Nerror

N
(B.1)

where Nerror is the amount of misclassified points and N is the total amount of
points that was classified. Evaluating performance on quantifiers must be done
differently than for the classifiers. The performance criterion used is the mean
relative absolute error as has been used by others14,17. It is defined as

E(RAE) =
1

N

N∑
n=1

∣∣∣∣yn − ŷn
yn

∣∣∣∣ (B.2)

where yn is the true concentration, ŷn is the predicted concentration andN is the
amount of data points estimated. The advantage of this performance criterion
is that errors at both high and low concentrations are penalized equally.

B.3.3 Data analysis framework

We adopt a two–tiered model where classification and concentration level es-
timation (quantification) is handled separately14. Figure B.5 shows how data
and decisions are made throughout the data processing pipeline. Output from
the QCM sensor is applied to a classifier. Based on the decision made by the
classifier a given quantifier is selected. There is one quantifier trained per an-
alyte. The output from the model is a class given as an analyte name and a
concentration level given in ppm.

We will use past implementations in MATLAB� of most of the algorithms.
The neural network algorithms has been developed during the past years at
DTU Informatics and is freely available for download at DTU ISP toolbox23.
The NMF algorithm is implemented by Lin24 and is freely available from Lin’s
website but can be found in the DTU ISP Toolbox as well. The Gaussian process
regression implementation used is published by Rasmussen and Williams25. The
SVD and PCR algorithms are implemented by the authors.
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Figure B.5: The schematic setup of the classification/quantification frame-
work.

B.3.4 Gaussian Process regression

Gaussian process regression is an extension of the linear Bayesian regression
framework. A recent textbook on Gaussian processes in a machine learning
context is written by Rasmussen and Williams22. A Gaussian process is com-
pletely specified by its mean function and covariance function. Using Gaussian
processes for regression requires two choices: a prior and a covariance function.
We choose a zero mean Gaussian prior with unit variance. To make this prior
plausible we subtract the empirical mean from the data and scale the data to
unit variance. The empirical mean and empirical variance is calculated using
the training set alone and as such the test data is not guaranteed to neither zero
mean nor unit variance. We try three different covariance functions all based
on the squared exponential covariance function22

k(xp,xq) = σ2
f exp

(
−1

2
(xp − xq)

�M (xp − xq)

)
+ σ2

nδpq (B.3)

where σ2
f , σ

2
n and M are called the hyper–parameters. Typically σ2

f is called

the signal variance and σ2
n the noise variance. Choosing M iso = �−2I yields

the isotropic squared exponential function where � is called the length–scale.
Choosing Mard = diag(�)−2I yields a covariance function that implements
automatic relevance determination22,26. The two approaches can be combined
by adding the covariance functions together thus creating the third covariance
function. Model selection consists of choosing suitable values for the hyper-
parameters. This is done using the marginal likelihood approach as discussed
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by Rasmussen and Williams22 allowing 1000 function evaluations during the
optimization. The initial values for hyper–parameters are drawn from a zero–
mean Gaussian distribution with unit variance. In order to avoid bad local
minima 10 restarts is tried picking the hyper–parameters that yields the best
marginal likelihood.

B.3.5 Artificial Neural Networks

The neural network classifier is a two–layered feed forward network (one hidden
layer). Neural networks with one hidden layer are general approximators21 so it
is sufficient to use just one hidden layer. The network has eight inputs – one per
polymer, and six outputs – one per analyte. Prior to training the entire data
set whitened (made zero mean and scaled to unit variance). The hidden units
use tangent hyperbolic sigmoidal function as transfer function. The network
is trained using the BFGS optimization algorithm as described by Nielsen27.
The cost function (that is used by the optimizer) is a quadratic cost function
augmented with outliers detection and weight decay. The cost function S(w)
has two hyper–parameters α and β.

S(w) = ED(w, β) + αEW (w) (B.4)

where ED(w, β) is the cross-entropy error function and EW (w) is a regular-
ization term28. Both hyper–parameters are updated after each iteration using
MacKays Bayesian maximum likelihood II (MLII) scheme29,30. The hyper-
parameters are initialized to α = 8 and β = 1 and the network weights are
initialized using a zero mean Gaussian with variance equal to α. The stop-
ping criterion for the network training is either 100 iterations or if the hyper-
parameters are updated with a margin lower that 10−5. Each network train-
ing cycle is repeated 10 times and the network with the lowest training error
ED(w, β) is selected for concentration level estimation. The network training
and cost function is described in details by Sigurdsson et. al.28. The neural
network regressor is almost identical to the neural network classifier. The cost
function does not have outliers detection and the regressor uses just one output
neuron which hold the estimated concentration level.

The tunable parameters subject to cross validation is the number of hidden
units. For the model selection part two to six hidden units were tested. The most
often number of hidden units chosen was three which was chosen in 52.3% of the
runs. The number of hidden units chosen for the regressor turned out to depend
heavily on the analyte and the amount of training points available. Making
a histogram on all runs put together showed an almost uniform histogram.
However if the histogram is calculated for each value of Ntrain the most common
choice for hidden units was 2 (for Ntrain in range 6–9)
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B.3.6 Non–negative Matrix Factorization

Classification using NMF is a linear vector–space method. The data is repre-
sented in a 8–dimensional vector space and training consist of finding a suitable
subspace as representative for each analyte. When classifying an unknown data
point, the date point is projected into each subspace. The subspace that rep-
resents the data point best (calculated as residuals) is chosen as the correct
analyte. This is done as follows; the training points for each analyte is stored
as columns in a data matrix Xanalyte ∈ R

8×Ntrain . NMF factorizes X into two
new matrices

WH ≈ X, W ∈ R
8×b
0+ , H ∈ R

b×Ntrain
0+ , X ∈ R

8×Ntrain
0+ (B.5)

NMF assumes that all values in X is non–negative so all negative values in
the data set are set to zero. Effectively it means pentanol will be classified
without using the contribution from HDFD, see figure B.3. The matrix W is
the basis and the columns of matrix H is the data points represented in the
basis W . After training we have one W matrix per analyte (it is enforced
that all subspaces are of the same size). When classifying data points the NMF
factorization is run with W held fixed. This procedure is carried out for all six
W matrices resulting in six different H matrices. The H matrix that represent
the data point best is chosen as the correct analyte.

The factorization is calculated using the approach by Lin24. Each element of
matrices W and H are initialized to a value drawn from a uniform distribution
in the interval ]0; 1[. The stopping criterion for the algorithm is either 30 itera-
tions or 10−4 as relative error. The amount of basis vectors to use per subspace
b is a model parameter that is allocated by LOO-CV. Allowable subspace size
is in the interval b ∈ {2, . . . ,min(Ntrain − 1, 10)}. The most often value chosen
was b = 2. Note that b must be less that the amount of training points – so if
Ntrain = 3 the subspace size is automatically chosen to b = 2. If we look at the
case where Ntrain = 12 the subspace size was mostly chosen to b = 2 but only
for 20% of the runs.

B.3.7 Principal component regression

Principal component regression is a linear regression method that is related to
regularized least squares regression and partial least squared regression (PLS)21,31.
The parameters to be chosen when using principal component regression is
which principal components to include in the regression. We include prin-
cipal components in the model ordered by their variance choosing the high-
est variance component. To determine the amount of components k to in-
clude in the model we use LOO-CV. The number of allowable components is
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Figure B.6: QCM data visualized using PCA. The size of the squares represent
the concentration. Panel 3 is a zoomed in version of panel 2.

k ∈ {1, . . . ,min(Ntrain, 8)}. For Ntrain = 12 the most commonly chosen value
was k = 6, but only in 22.3% of the runs.

B.3.8 Singular Value Decomposition

Classification using SVD is identical to the NMF classification method except
for the matrix factorization. The matrix factorization is carried out using SVD
instead and basis vectors are included based on their eigenvalues, always choos-
ing the basis vector with the highest eigenvalue. The SVD classification method
used is described in details by Eldén31. As with NMF the model selection pa-
rameter is the subspace size. For model selection the allowable subspace size of
is b ∈ {1, . . . ,min(Ntrain − 1, 7)}. For Ntrain = 12 the most commonly chosen
subspace size was b = 2 which was chosen in 90% of the runs.

B.4. RESULTS

Principal component analysis is used to visualize the entire data set more effec-
tively, see figure B.6. The plots illustrate that the analytes lying on their own
almost linear manifold thus motivating the use of linear methods. The plots
imply (but do not verify) that clustering methods such as K–nearest neigh-
bor21 would not perform well given a small amount of training points. If all
concentrations are not represented by a cluster a substantial amount of data
points would likely be misclassified. Table B.1 lists the classification accuracy
for the tested classification algorithms. The performance of SVD classification
is superior to both ANN and NMF. Using only 3 training points per analyte
we gain remarkable accuracy – only misclassifying 3% of the test points. ANN
is quite poor initially but as the amount of training point increases ANN clas-
sification catches up. NMF performance is similar to SVD although not quite
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Algorithm Ntrain

3 4 5 6 12
ANN 0.611 ± 0.027 0.200 ± 0.024 0.076 ± 0.003 0.023 ± 0.002 0.003 ± 0.001
NMF 0.039 ± 0.004 0.028 ± 0.004 0.025 ± 0.003 0.017 ± 0.003 0.009 ± 0.002
SVD 0.032 ± 0.004 0.012 ± 0.002 0.006 ± 0.001 0.002 ± 0.001 0.001 ± 0.000

Table B.1: Classification error on test sets calculated as the mean over a
100 runs ± the standard deviation of the mean. Note Ntrain is the amount
of training points per analyte – the total amount of training points is Ntrain

multiplied with six.
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Figure B.7: Learning curves for the classification algorithms on a test set.
Note Ntrain refers to the amount of training points per analyte. The total
amount of training points is 6Ntrain.

as good. Figure B.7 shows learning curves for the three algorithms. The SVD
classifier is the preferred method regardless of the amount of training points.
Concentration level estimation results are listed in table B.2. There is no clear
indication of which algorithm should be the preferred choice although it shows
that ANN is consistently the poorest performer. As with classification there are
too few training points to train an adequate neural network solution. The best
regressor for Ntrain = 3 is PCR regardless of analyte except for Benzodioxol
where the GPAI approach is the best. At Ntrain = 4 the GPR method performs
similar to PCR and for Ntrain ≥ 5 GPR is either the superior method or on
par for all choices of analyte. At Ntrain = 12 the GPR method offers superior
accuracy. There is no significant indication of which of the three covariance
functions is the best although the combined covariance function (GPAI) seems
slightly better. Figure B.8 shows learning curves for the concentration level
estimators. The learning curves clearly illustrates the troubles of ANN using a
limited amount of training points. Another interesting observation is that PCR
does not seem to improve significantly once Ntrain reaches 6.
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Analyte Algorithm Ntrain
3 4 5 6 12

Acetone

PCR 0.14 ± 0.009 0.09 ± 0.004 0.07 ± 0.003 0.08 ± 0.003 0.07 ± 0.003
GPI 0.56 ± 0.094 0.12 ± 0.010 0.06 ± 0.004 0.04 ± 0.001 0.04 ± 0.001
GPA 0.52 ± 0.088 0.09 ± 0.020 0.06 ± 0.006 0.04 ± 0.001 0.03 ± 0.002
GPAI 0.30 ± 0.047 0.09 ± 0.008 0.05 ± 0.003 0.04 ± 0.001 0.04 ± 0.002
ANN 1.05 ± 0.060 0.58 ± 0.021 0.56 ± 0.026 0.48 ± 0.015 0.40 ± 0.024

Benzodioxol

PCR 0.22 ± 0.008 0.17 ± 0.008 0.13 ± 0.005 0.12 ± 0.003 0.14 ± 0.011
GPI 0.24 ± 0.024 0.07 ± 0.004 0.05 ± 0.001 0.05 ± 0.001 0.04 ± 0.001
GPA 0.22 ± 0.027 0.12 ± 0.005 0.08 ± 0.003 0.06 ± 0.002 0.04 ± 0.002
GPAI 0.16 ± 0.011 0.12 ± 0.006 0.08 ± 0.004 0.06 ± 0.003 0.04 ± 0.001
ANN 0.87 ± 0.057 0.68 ± 0.043 0.63 ± 0.036 0.46 ± 0.018 0.49 ± 0.034

Ethanol

PCR 0.10 ± 0.005 0.09 ± 0.003 0.07 ± 0.002 0.05 ± 0.002 0.04 ± 0.001
GPI 0.36 ± 0.053 0.10 ± 0.006 0.05 ± 0.002 0.03 ± 0.000 0.03 ± 0.001
GPA 0.61 ± 0.108 0.15 ± 0.021 0.07 ± 0.004 0.05 ± 0.001 0.04 ± 0.001
GPAI 0.29 ± 0.049 0.14 ± 0.019 0.07 ± 0.003 0.05 ± 0.001 0.03 ± 0.001
ANN 0.81 ± 0.047 0.55 ± 0.015 0.56 ± 0.041 0.47 ± 0.021 0.41 ± 0.023

Heptane

PCR 0.31 ± 0.014 0.26 ± 0.009 0.22 ± 0.007 0.17 ± 0.004 0.16 ± 0.008
GPI 1.21 ± 0.161 0.41 ± 0.034 0.28 ± 0.015 0.17 ± 0.004 0.13 ± 0.002
GPA 0.68 ± 0.098 0.23 ± 0.012 0.16 ± 0.006 0.12 ± 0.002 0.13 ± 0.003
GPAI 0.44 ± 0.059 0.26 ± 0.019 0.17 ± 0.008 0.12 ± 0.003 0.12 ± 0.003
ANN NaN ± NaN 0.83 ± 0.043 0.57 ± 0.016 0.56 ± 0.022 0.54 ± 0.032

Pentanol

PCR 0.35 ± 0.007 0.25 ± 0.010 0.13 ± 0.004 0.12 ± 0.002 0.12 ± 0.003
GPI 0.60 ± 0.058 0.24 ± 0.019 0.12 ± 0.004 0.10 ± 0.002 0.06 ± 0.002
GPA 0.38 ± 0.026 0.19 ± 0.008 0.14 ± 0.005 0.12 ± 0.003 0.04 ± 0.005
GPAI 0.37 ± 0.024 0.19 ± 0.008 0.14 ± 0.004 0.12 ± 0.003 0.04 ± 0.004
ANN NaN ± NaN 0.81 ± 0.024 0.73 ± 0.026 0.58 ± 0.002 0.37 ± 0.003

Water

PCR 0.18 ± 0.002 0.17 ± 0.002 0.17 ± 0.003 0.17 ± 0.003 0.17 ± 0.007
GPI 0.44 ± 0.038 0.18 ± 0.012 0.13 ± 0.007 0.10 ± 0.003 0.07 ± 0.003
GPA 0.30 ± 0.037 0.16 ± 0.013 0.12 ± 0.009 0.10 ± 0.005 0.07 ± 0.003
GPAI 0.31 ± 0.037 0.19 ± 0.018 0.12 ± 0.011 0.11 ± 0.010 0.07 ± 0.003
ANN NaN ± NaN 0.89 ± 0.032 0.70 ± 0.021 0.64 ± 0.012 0.50 ± 0.026

Table B.2: Estimation error on test sets calculated as the mean over a 100 runs
± the standard deviation of the mean. The three instances where ANN is listed
as NaN means that there was occurrences where the network failed to train due
to an unlucky choice of training set. GP* refers to Gaussian process regression
using the different covariance functions. GPI is the isotropic covariance function,
GPA is the ARD covariance function and GPAI is the combined covariance
function.

B.5. CONCLUSSION

Eight different polymer coatings have been evaluated for their suitability as gas
sensors by exposing polymer coated QCMs to volatile organic compounds. The
high classification accuracy implies that the coatings do indeed represent the
range of interactions described by the LSER model very well. Each polymer film
seems to contribute with unique data. According to our analysis the coatings
are useful as gas sensing elements and can thus advantageously be used to
functionalize many other types of sensors. Deposition of multiple types of sensor
coatings by plasma polymerization is compatible with practically any sensing
device, and circumvents the use of solvents and subsequent drying processes
during deposition which can often damage fragile device components.

We presented a two–tiered data analysis framework that successfully classified
responses from an eight–dimensional polymer coated QCM sensor. By using
linear methods such as SVD and NMF we get remarkable high accuracy (> 96%)
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Figure B.8: Learning curves for the concentration level estimation.

with only 3 training points per analyte. Having one training point per analyte
per concentration level SVD have an classification accuracy of 99.8%. NMF
does not perform to the level of SVD, but is still better than ANN for a limited
amount of training points. The NMF classification algorithm is fairly simple and
more sophisticated approaches could be developed. One could perform NMF on
the entire data set instead of per analyte and then map the basis vectors to
classes using a probabilistic approach32. The model selection for NMF and
SVD can be improved further as well. If there is more than one choice of b tied
for the best model, b is assigned randomly to a value among the best choices.
One could construct a cost function that takes the residual values into account
and then select the value of b based on the cost function.

For concentration level estimation the Gaussian process regression is better than
the linear method PCR (when Ntrain ≥ 5). Both of these methods are markedly
better than the ANN. The issue with ANN regression being that the system is
underspecified. For the smallest possible neural network with two hidden units,
the number of parameters in the model is 18 (16 weights in the first layer, 2
weights in the second layer), but the network only have up to 12 training points.
One could possibly improve ANN performance by reducing the dimension of the
data before applying the data to the neural network (for example using PCA)
thus reducing the number of input neurons.

The best case scenario for GPR is a mean relative error of 3%. However the
GPR method does have difficulties when having just three training points per
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analyte. This can be explained by the zero mean Gaussian prior and the way
data partitioning is performed. For training sets where the lowest and/or high-
est concentrations levels are omitted the GPR will perform poorly. In general
the GPR will return to zero when estimating points outside the training inter-
val. The performance outside the training interval could probably be improved
by adding a growing term to the prior or using a thin–plate spline kernel as
covariance function33.
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ABSTRACT

Within the framework of the strategic research project Xsense at the Technical
University of Denmark, we are developing a colorimetric sensor array which can
be useful for detection of explosives like DNT, TNT, HMX, RDX and TATP and
identification of volatile organic compounds in the presence of water vapor in
air. In order to analyze colorimetric sensors with statistical methods, the sensory
output must be put into numerical form suitable for analysis. We present new
ways of extracting features from a colorimetric sensor and determine the quality
and robustness of these features using machine learning classifiers. Sensors, and
in particular explosive sensors, must not only be able to classify explosives,
they must also be able to measure the certainty of the classifier regarding the
decision it has made. This means there is a need for classifiers that not only
give a decision, but also give a posterior probability about the decision. We
will compare K–nearest neighbor, artificial neural networks and sparse logistic

We acknowledge the support from the Danish Agency for Science and Technology’s, Pro-
gram Commission on Nanoscience Biotechnology and IT (NABIIT). Case number: 2106-07-
0031 - Miniaturized sensors for explosives detection in air.
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regression for colorimetric sensor data analysis. Using the sparse solutions we
perform feature selection and feature ranking and compare to Gram–Schmidt
orthogonalization.

Index Terms— artificial neural networks (ANN), chemo–selective com-
pounds, classification, colorimetric sensor array, DNT, explosives detection,
feature ranking, Gram–Schmidt orthogonalization, K–nearest neighbor (KNN),
sparse logistic regression (SLR), TNT

C.1 Introduction

Over the past decade, explosives have been a preferred tool for terrorists, yet
there is no satisfactory mobile and portable solution to detect explosives. To
detect a variety of military and industrial explosives easily, new technologies
must be developed. There are several application areas for explosives sensors,
such as anti-terrorism (screening luggage and mail packages, checking suspects
and mass transit systems), demining and environmental monitoring of hazardous
compounds.

Sensors must not only easily detect a variety of hidden explosives but they must
also be able to detect illegal chemicals and products of the explosives industry. A
further requirement is that the sensing device should be portable, rapid, highly
sensitive, specific (minimize false alarms), and inexpensive [1].

Over the past years a number of detecting methods have been developed and
successfully applied in explosives detectors. These include, but are not limited
to, gas chromatography, Raman spectrometry, mass spectrometry, ion mobility
spectrometry and colorimetric sensors. Suslick et al. described the application
of the colorimetric sensor array for detecting volatile organic compounds in the
gas phase [2, 3] as well as for identifying different organic compounds in the
liquid phase [4, 5]. In our project we develop a colorimetric sensor array that
can be useful in detecting and identifying explosives like TNT, DNT, HMX,
RDX and TATP [6, 7]. The colorimetric sensor is a fascinating technique for
detecting different chemical compounds belonging to various classes, like amines,
cyanides, alcohols, arenes, ketones, aldehydes and acids in the parts-per-million
(ppm) and parts-per-billion (ppb) ranges [3, 8, 9]. In our research we use a
completely different class of chemo–selective compound which has already shown
excellent results for detecting TNT. This type of colorimetric sensor could be
successfully applied in homeland security and defense [10, 11].

A colorimetric sensor array consists of a number of chemo–selective compounds
of various colors that will undergo a color change when subjected to an environ-
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ment or a target substance, hereafter denoted an analyte. These chemo–selective
compounds, which are typically called dyes are digitalized using a flatbed scan-
ner. One dye consists of several hundred pixels, but a dye is considered to have
only one color which is typically found by calculating the mean pixel value.
We investigate how feature extraction using the mean pixel value compares to
alternatives.

Having acquired the sensor response digitally enables the application of signal
processing and statistic methods such as principal component analysis (PCA)
and hierarchical cluster analysis (HCA) [12–14]. In the domains where colori-
metric sensors have been investigated, HCA shows high accuracy and low false
alarm rate. The closely related K-Nearest Neighbor (KNN) classifier [15] with
K = 1 set to one has evolved as the de–facto method.

Our requirements for a classifier go beyond what KNN offers. As we are detect-
ing hazardous compounds, we require the classifier to offer posterior probabilities
and not only decisions. Further we seek to qualify which compounds in the col-
orimetric sensor are important, and which are less important. This knowledge
enables the ability to either reduce the size of the sensor or replace less sensitive
and unimportant compounds with more selective and responsive compounds.
Various feature selection strategies can be employed to select the dyes but so
far none have been applied to colorimetric sensor arrays. Our preference would
be to use a sparse classifier thus making the feature selection an inherent part
of the classification. Our main goal is not to find the classifier that has the
best classification rate but to identify a classifier with these attributes and at
the same time delivers comparable or better performance compared to KNN.
We will consider two classifiers: sparse logistic regression (SLR) [16] which is a
linear classifier that is extended to model posterior probabilities and implement
sparsity, and artificial neural networks (ANN) [17] which is a proven non–linear
classifier. Our primary motivation to include a non–linear classifier is to inves-
tigate if non–linear models are better suited for colorimetric sensor arrays.

C.2 Colorimetric sensors

We have operated with three different sensors: sensor A comprised 15 dyes [6];
sensor B equal to sensor A with one added dye [7]; sensor C which is a further
extension adding 15 dyes to sensor B (unpublished results). Fig. C.1A shows
sensor B when exposed to the explosive analyte RDX. The sensors have been
exposed to analytes belonging to the various chemical families (Table C.1). For
a more elaborate description of sensor fabrication, dyes and target analytes we
refer to our earlier published work [6, 7].
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Figure C.1: An example of a colorimetric sensor exposed to the explosive
analyte RDX. A: sensor before exposure. B: enhanced difference image.

Chemical family A B C
Acids 32 45

Alcohols 26 27
Aldehydes 6
Amines 42
Arenes 10 13
Drugs 6

Environment 12 8 28
Explosives 20 8 56

Inorganic Explosives 14
Ketones 7 13
Thiols 14

Total measurements: 129 22 253

Table C.1: The different chemical families and how many measurements were
applied to the sensors, i.e. sensor B has been measured 22 times in total, where
6 of the measurements were drugs. Each family comprises several compounds.

C.2.1 Data acquisition

Images of the sensor were scanned using an ordinary flatbed scanner immediately
after immobilization of dyes and then again after exposure of target analytes.
The images were encoded in a lossless format using the red-green-blue (RGB)
color scheme with 8 bits per color. The images were used to generate color
difference images by pixel subtraction (Fig. C.1). To align the two images a
cost function that measures the L1 norm error per pixel is minimized:

min
t,θ

‖Ibefore − g(Iafter, t, θ)‖1/Npixels (C.1)
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where I is an image matrix, t is an (x, y) translation, θ is a rotation and g(·)
is the function that implements the transformation: first rotating the images
using nearest neighbor interpolation, then translating (x, y)–pixels according to
t. The parameters (t, θ) are initialized to zero.

The L1 norm error can be interpreted as the amount of color per pixel where a
fully black pixel is fixed at a value of zero. At perfect image alignment, all the
background pixels will be black and all dye pixels will have the weakest possible
color, hence, blackness per pixel should be maximized. Dye localization and
generation of colorimetric difference maps are described in detail in [18].

C.2.2 Data extraction

Once the images are digitalized feature extraction is employed typically using
the mean pixel value. In order for the mean to be a robust measure of color
change, the pixels of a dye have to be normally distributed (or at least have
a symmetric distribution with one mode) and relatively free from outliers. As
can be seen in Fig. C.2 this is may not always be the case. Chemically we
know that a dye should only have one color, as the dye is homogeneous and
exposed to a homogeneous vapor. However, noise is induced from: the scanner,
the drying process of the dye, external light, and roughness of surface. Some
of these effects can be handled easily. The drying of the dyes often results
in a ring near the perimeter (the coffee stain effect) and this area of the dye
is unreliable. To accommodate for this effect, a smaller area of a dye is used
for feature extraction, corresponding to 2/3 of the dye radius. To handle the
other noise effects that cause pixel outliers, the median or mode can be used
as both statistics are more robust to outliers. Just as the case with the mean,
the median requires a symmetric distribution with one mode. On the other
hand the mode does not require the distribution to be symmetric and could
potentially be more robust. However, these three statistics have the weakness
that they consider the RGB colors as independent since an RGB color value is
a 3 dimension vector. The multinomial mode does not have this weakness and
will find the most occurring color in the dye hence we expect the multinomial
mode to be the best representation. The entire data acquisition and extraction
pipeline is described in detail in [18].

C.2.3 Data visualization

Data from colorimetric sensors can be visualized using principal component
analysis (PCA) with a certain degree of success. However, once the sensor has
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Figure C.2: An example of colorimetric sensor B exposed to the explosive
analyte RDX. A: the sensor before exposure. B: the enhanced difference image.
C: histogram of the green value and the value of the statistics.

been applied to many different classes, this kind of data visualization is of limited
value. Fig. C.3 shows how PCA can be used to plot data for the sensor B case.
However for sensors A and C the data collected is too high dimensional for a PCA
plot to show the entire structure of the data [6]. Fig. C.4 shows how the variance
in the data is distributed among the different dimensions. While the figure
implies that sensor C is a higher dimensional sensor, the plot does not merit
conclusions about the true dimensionality of the sensor. The dyes are highly
correlated, especially the red-green-blue dimensions within each dye, but even
more so there may be a lot of uncorrelated noise. PCA requires one dimension
per uncorrelated signal channel and if the noise channels are sufficiently strong
more dimensions will be needed to represent the data accurately. Observe that
for three dimensions the sensors are almost equal, even though sensor C has
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Figure C.3: PCA plot from sensor B. The PCA plot implies that the sensor
should be able to separate well although there is an explosive outlier.
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Figure C.4: The colorimetric sensor is a high dimensional sensor. For sensor
A (blue) it requires 9 dimensions to represent 95% of the variance, whereas for
sensor C (red) it requires 15 dimensions.

twice as many dyes as sensor A.

C.3 Methods

Each classification method is evaluated using 10–fold double cross validation
(CV) partitioning used is a stratified approach. The partitioning of the outer
fold that is used to estimate the test error remains fixed, while the partitions
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that are used for model selection are regenerated in each run.

C.3.1 K–nearest neighbor

Despite its simplicity the K–nearest neighbor is an effective classification tech-
nique [15] which works as follows: when testing an unknown data point, the
Euclidean distances for all known points are calculated. The classes of the
closest K points are then identified and the unknown point is classified using
majority voting of these known points. In the event of a tie, the algorithm uses
the nearest neighbor among the tied classes to break the tie selecting the closest
point as the class. All possible values of K are probed during model selection.

C.3.2 Sparse multinomial logistic regression

The multinomial logistic regression model offers a posterior probability of a class
given a measurement. The model is written as

p(Ck|x) = exp(wT
kx)∑

j exp(w
T
j x)

(C.2)

where p(Ck|x) is the probability of class Ck given a data point x. To promote a
sparse solution and to handle over-fit, we use L1 regularization. This is achieved
by adding the term λ‖w‖1 to the cost function where λ is the model selection
parameter. The cost function is minimized using the Projection L1 method de-
scribed by Schmidt et al. [16]. To further promote sparse solutions, the weights
are initialized to zero. The optimal λ is searched for in the interval [0; 10].

C.3.3 Artificial neural networks

The artificial neural network classifier used is a two–layered feed-forward with
the hidden units using tangent hyperbolic sigmoidal function as the transfer
function. A quadratic cost function augmented with outlier detection and weight
decay is used. S(w) has two hyper–parameters; the regularization parameter α
and outlier probability β:

S(w) = ED(w, β) + αEW (w) (C.3)

where ED(w, β) is the cross-entropy error function and EW (w) is a regulariza-
tion term. The hyper-parameter α is initialized to the number of inputs, i.e.,
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Method Median Mode MMode Mean Comb.
A-1NN 5.40 5.83 5.27 5.33 5.40
A-KNN 5.77 6.20 5.40 5.15 5.52
A-SLR 5.71 5.52 6.08 5.71 5.71
A-ANN 5.52 5.40 5.52 5.71 5.64
B-1NN 1.77 1.77 2.18 1.91 1.77
B-KNN 1.64 1.50 1.91 1.64 1.64
B-SLR 1.36 1.36 1.91 1.36 1.36
B-ANN 1.36 1.09 1.50 1.36 1.36
C-1NN 6.05 6.12 6.15 6.05 6.05
C-KNN 5.91 6.05 5.94 6.12 6.05
C-SLR 6.79 6.69 6.65 6.72 6.79
C-ANN 6.40 6.37 6.19 6.47 NaN
Total 1 2 6 3 1

Table C.2: Summary of how well the features and classifiers perform compared
to random guessing, with the best performers highlighted.

the more inputs, the stronger regularization needed. The hyper-parameter β is
initialized to zero as a priori there are no known outliers. The network weights
are initialized using a zero mean Gaussian with variance equal to 1/α. Each
network training cycle is repeated ten times and the network with the lowest
training error ED(w, β) is selected for classification. The outputs are converted
to probabilities using the soft–max function. The network training and cost
function are described in detail by Sigurdsson et al. [17].

C.4 Results and discussion

Since the sensors have a different amount of classes, we find it better to assess
the quality of the classifiers by using the classification rate relative to random
guessing as the classification rate alone can be misleading. For example a clas-
sification rate of 0.33% for sensor B would only be as good as random guessing
while for sensor A and C it would be better than random guessing. The ratio
is calculated as (Ncorrect ·NC)/N , where NC is the number of points correctly
classified, N is the total number of points and NC is the number of classes.

Table C.2 shows the best statistic is the multivariate mode which is the best
performer in six out of twelve cases. However, all the other features are also
represented at least once as the top performer, so the results indicate that in
order to build the most accurate classifier one must extract all of the proposed
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Figure C.5: Confusion matrix for C-SLR-Median where rows indicate the
true class, columns indicate the predicted class and the number indicate the
counts [19]. The sensor has a high classification rate for explosives with zero
false negatives (all 56 measurements are classified correctly) but three false
positives.

features from the colorimetric sensor and then let the feature selection be part
of the model selection process.

The considered classification methods all perform similarly. As expected the
simplest method, 1NN, is the best performer on the smallest dataset B. For
sensor A, the KNN method is the best performer and on C the SLR is the best
performer.

Sensor C is the richest sensor, with respect to data points, dyes and classes,
and we will now discuss the results from this sensor in more detail. The best
performing classifier for sensor C is SLR using median as feature extraction
statistic. Fig. C.5 shows the confusion matrix for this situation and clearly
shows that the sensor is very good for detecting especially acids and explosives,
although some chemicals, such as arenes, pose a greater challenge. Having
established that SLR is the classifier with the highest accuracy, we will now
investigate how well SLR detects informative dyes by scrutinizing the sparse
solutions.

A colorimetric sensor array is likely to have redundant features, as some dyes will
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Figure C.6: Dyes ranked according to their mean rank for sensor C. The dye
significance is listed from left to right where the more significant dye is the left.

react similarly, and it is not clear for the experimenter which dyes should be used
in the next iteration of the sensor. We want to explore how well SLR identifies
important dyes compared to the simple forward selection method based on the
Gram–Schmidt orthogonalization [20].

For the feature selection process we convert the classification problem into a
binary problem; explosives versus non-explosives (inorganic explosives will be
part of the non-explosives group, as these explosives are not part of our detection
focus). For each of the four feature extraction statistics, we will train ten models
using the same data partitioning that was used in the multinomial classification
case, hence forty models are trained in total. The sparsity parameter λ will
start from zero and be incremented slowly, removing one feature at a time from
the model. Each dye consist of three values (the RGB values) so in order to
remove a dye all three features belonging to a dye have to be eliminated from
the model. A dye is considered as completely removed once the weights for all
the values are below a threshold which we set to 10−3. Fig. C.6 shows how the
dyes for sensor C rank according to their mean ranking. The top ten ranked
dyes using the median as the feature extraction statistic are used to detect
explosives. Fig. C.7 shows how well suited the dyes are for classification. Using
three dyes the classification error is below 0.01% and after this adding more
dyes only decreases the error marginally. Comparing the dyes identified by SLR
to GS, the SLR dyes are clearly more suited, however if whitening is used GS
show similar performance as SLR.
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Figure C.7: Classification error with respect to number of dyes used, based on
sensor C–Median. The classification error decreases to a certain point as dyes
are added. SLR-LR is logistic regression classifier applied on the dyes identified
by SLR. SLR-1NN used 1NN as classifier instead. SLR-Rank indicates the mean
feature rank of dye i as shown on Fig. C.6. Similarly GS-X uses the features
found by the GS based feature selection method.

C.5 Conclusion

We have tried five different feature sets of four different classifiers on three dif-
ferent colorimetric sensor arrays. The logistic regression method demonstrated
equal classification ability compared to KNN and due to the added perks in
terms of sparsity and probabilistic decisions, SLR is preferable to KNN. The
results do not merit the use of a non–linear method such ANN. This is likely
because there is not enough training data and since the experimental process
of colorimetric sensors is time consuming, methods that work with fewer points
are more appealing.

The classification results allow us to make a recommendation about which statis-
tic to use for feature extraction. The de–facto approach is to use the mean but
as the results show, this statistic only gives the best results on three instances,
and never when combined with SLR. When using SLR the multivariate mode
proved to be the best statistic. For sensor A and B the multivariate mode scores
highest although for sensor C the median scored 2% higher than the multivariate
mode.

SLR showed remarkable ability to identify a subset of dyes that could accurately
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identify explosives from non–explosives. SLR did not reliably estimate the same
features as important, but using the average rankings proved to be an adequate
solution. Using the top 5 identified compounds we were are able to train a
classifier that identified explosives without any false negatives (Fig. C.7).

Other popular classification methods such as linear discriminant analysis (LDA)
and support vector machines (SVM) was not considered since they do not both
model posterior probabilities and implement sparsity although one could con-
sider using sparse relevance vector machines. Further, the dyes contribute with
three features each (the RGB values) so one could also consider using group
lasso instead of traditional regularization. This will be subject for future study.
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ABSTRACT

We present a colorimetric sensor array which is able to de-
tect explosives such as DNT, TNT, HMX, RDX and TATP
and identifying volatile organic compounds in the presence of
water vapor in air. To analyze colorimetric sensors with sta-
tistical methods, a suitable representation of sensory readings
is required. We present a new approach of extracting features
from a colorimetric sensor array based on a color distribu-
tion representation. For each sensor in the array, we construct
a K–nearest neighbor classifier based on the Hellinger dis-
tances between color distribution of a test compound and the
color distribution of all the training compounds. The perfor-
mance of this set of classifiers are benchmarked against a set
of K–nearest neighbor classifiers that is based on traditional
feature representation (e.g., mean or global mode). The sug-
gested approach of using the entire distribution outperforms
the traditional approaches which use a single feature.

Index Terms— Hellinger distance, chemo–selective
compounds, explosives detection, feature extraction, K–
nearest neighbor classification
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1. INTRODUCTION

Over the past decade, explosives have been a preferred tool
for terrorists, yet there is no satisfactory mobile and portable
solution to detect explosives. To detect a variety of military
and industrial explosives easily, new technologies must be de-
veloped. There are several application areas for explosives
sensors, such as anti-terrorism (screening luggage and mail
packages, checking suspects and mass transit systems), demi-
ning and environmental monitoring of hazardous compounds.

Sensors must not only easily detect a variety of hidden ex-
plosives, they must also be able to detect illegal chemicals and
products of the explosives industry. Further requirements are
that the sensing device should be portable, rapid, highly sen-
sitive, specific (minimize false alarms), and inexpensive [1].

Over the past years a number of detection methods have
been developed and successfully applied in explosives detec-
tors. These include, but are not limited to, gas chromatog-
raphy, Raman spectrometry, mass spectrometry, ion mobil-
ity spectrometry and colorimetric sensors. Suslick et al. de-
scribed the application of the colorimetric sensor array for
detecting volatile organic compounds in the gas phase [2, 3]
as well as for identifying different organic compounds in the
liquid phase [4, 5]. In our project we develop a colorimetric
sensor array that can be useful in detecting and identifying
explosives such as TNT, DNT, HMX, RDX and TATP [6, 7].
The colorimetric sensor is a fascinating technique for distin-
guishing different chemical compounds belonging to various
classes, like amines, cyanides, alcohols, arenes, ketones, alde-
hydes and acids in the parts-per-million (ppm) and parts-per-
billion (ppb) ranges [3, 8, 9]. In our research we use a com-
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pletely different class of chemo–selective compound, which
has already shown excellent results for detecting TNT. This
type of colorimetric sensor could be successfully applied in
national security and defense [10, 11].

A colorimetric sensor array consists of a number of
chemo–selective compounds of various colors that will un-
dergo a color change when subjected to an environment or a
target substance, hereafter denoted an analyte. These chemo–
selective compounds, which are typically called dyes are
digitalized. Currently we use a flatbed scanner. One dye
consists of several hundred pixels, but classically a dye is
considered to have only one color, which is commonly found
by calculating the mean or global mode pixel value [12]. We
hypothesize that the complete distribution of color pixel value
may contain additional information that can improve classi-
fication accuracy relative the information associated with a
single pixel value such as the mean.

In this paper, we present a new method for representation
and analyzing of the output of a colorimetric sensor array us-
ing the complete color distribution. To classify a given ana-
lyte, we propose a K-NN approach which uses the Hellinger
distance between color distributions as a metric. By compar-
ing this with a K-NN that use of a single feature such as the
mean or global mode we are able to demonstrate significant
improvement in accuracy.

2. COLORIMETRIC SENSORS

The colorimetric sensor array consists of a number of chemo–
selective compounds immobilized onto silica gel resulting in
circular spots (Fig. 1A). Each individual spot was approxi-
mately 3 mm in diameter with the total size of the sensor array
of approximately 2.5 cm × 4.0 cm.

The dataset used in this paper has been discussed in detail
in earlier work [12] but is summarized here for completeness.
The sensor array has been exposed to analytes belonging to
the various chemical families – 9 families in total, making it
a multi-class dataset. The chemical families are: acids (45),
alcohols (27), amines (42), arenes (14), environment (28), ex-
plosives (56), inorganic explosives (14), ketones (13) and thi-
ols (14). The number in the parenthesis denotes the number
of examples measured for the class in question, bringing to
total number of examples to 253.

Data acquisition

Once the images of the sensor arrays have been digitalized,
feature extraction is employed, typically using the mean pixel
value. In order for the mean to be a robust measure of color
change, the pixels of a dye have to be normally distributed
(or at least have a symmetric distribution with one mode) and
relatively free from outliers. As can be seen in Fig. 1 this may
not always be the case. From a chemical point of view we

Fig. 1. An example of a specific dye of colorimetric sensor
array exposed to the explosive analyte RDX. A: the sensor
before exposure. B: the enhanced difference image.

know that a dye should only have one color, as the dye is ho-
mogeneous and exposed to a homogeneous vapor. However,
noise is induced from: the scanner, the enhanced temperature
for explosive detection, external light, and roughness of the
surface. Some of these effects can be handled easily. The
high temperature often results in a ring near the perimeter
of the dyes (the coffee stain effect) and this area of the dyes
is unreliable. In order to accommodate this effect, a smaller
area of a dye is used for feature extraction, corresponding to
2/3 of the dye radius. To handle the other noise effects that
cause pixel outliers, we have in earlier work suggested that
the global mode is the most robust single value statistic com-
pared to the mean, mode or median [12]. The global mode
finds the most frequent pixel value occurring in a dye and as
such is guaranteed to calculate a pixel value that exist in the
given dye.

Histogram features

In addition to the mean and global mode features used to
characterize the color change response, we consider in this
context the bag-of-words representation for multiple instance
examples. The i’th example (dye) is represented by X i =
{xi1, . . . , xini}, where xij is the j’th three–dimensional dif-
ference RGB pixel value between control and exposed, and
ni is the number of pixels considered for the representation
of the i’th example. For several classifiers a notion of dis-
tance between examples is a key component. To construct a
distance between two examples in the bag-of-words represen-
tation, we propose to represent each multi-instance example
with a distribution and use the Hellinger distance as a metric
between two examples. The motivation behind this approach
is that differences between distributions, which are not di-
rectly measurable through the mean (or other moments), can
still be detected. This approach was demonstrated to be ef-
fective in several application areas, e.g., disease classification
using flow cytometry [13] and document classification [14].

Assuming an underlying probability density function f i
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such that xij ∼ fi for j = 1, 2, . . . , ni, one can associate Xi

with the following kernel density estimate

fi(x) =
1

ni

ni∑
j=1

K(x− xij)

where K(x) = 1/(2πσ2)d/2 exp(−||x||2/2σ2), d = 3 in
our case. Recall that given two PDFs fi and fk, the squared
Hellinger distance between the two distributions is given by

dH(fi, fk)
2 =

∫ (√
fi(x) −

√
fk(x)

)2
dx

i.e., the Euclidean distance between the square-root of the
PDFs. Note that the squared Hellinger distance can be com-
puted using the following equivalent formula: dH(fi, fk)

2 =
2 − 2

∫ √
fi(x)fk(x)dx. For computational simplicity, we

consider the following equivalent alternative:

dH(fi, fk)
2 = 2− 2(Efi [

√
T (x)(1− T (x))]

+ Efk [
√
T (x)(1− T (x))])

where T (x) = fi(x)
fi(x)+fk(x)

and Eh[·] =
∫ ·h(x)dx. A

sample-based version of this expression can be computed by
replacing the expectations with their sample averages and the
distributions with their kernel estimates,

Efi [
√
T (x)(1 − T (x))] ≈ 1

ni

ni∑
j=1

√
T (xij)(1 − T (xij))

Naturally, the distance calculation can be directly applied to a
K-NN classifier. This approach can be considered an alterna-
tive to a set distance between two collections instances.

Moreover, this approach allows for a feature vector con-
struction. Consider a new example X associated with PDF
f . The feature vector for this example can be constructed as
φ(X) = [dH(f, f1), dH(f, f2), . . . , dH(f, fN )]T where N is
the number of training examples. Note that this feature vec-
tor has a fixed size, independent of the number of instances
(pixels) in its bag-of-words representations. This representa-
tion can be applied to a variety of classifiers. For example,
in SVM [15] the classifier can be of the form sgn〈w, φ(X)〉.
In many cases, the SVM solution results in a sparse vector
w for which the non-zero entries correspond to support vec-
tors. In our setup, the Hellinger distance to key multi-instance
examples will determine the output of the classifier.

3. METHODS AND RESULTS

Despite its simplicity, K-NN is an effective classification
technique [15] which works as follows. When testing an
unknown data point, the Euclidean distances for all known
points are calculated. The classes of the closest K points
are then identified and the unknown point is classified using
majority voting of these known points.

Dye rank
Class Method 1st 2nd 3rd
Acids Mean 1.2 2.4 4.3
Acids GMode 2.4 2.4 3.6
Acids Hellinger 1.6 2.4 2.8

Alcohols Mean 7.5 8.3 8.3

Alcohols GMode 8.3 8.7 8.7
Alcohols Hellinger 7.9 8.3 8.7
Amines Mean 7.1 7.1 7.1
Amines GMode 7.1 7.1 7.5
Amines Hellinger 6.3 6.7 6.7

Explosives Mean 2.8 3.2 4.3
Explosives GMode 3.2 4.7 5.9
Explosives Hellinger 1.2 2.0 2.8

Thiol Mean 0.8 5.1 5.1
Thiol GMode 0.8 3.6 4.7
Thiol Hellinger 0.4 3.2 4.0

Table 1. The error rate of the 3 best performing dyes for each
feature extraction method. The numbers are reported as %
leave–one–out classification error.

We apply a K-NN classifier to each dye for each fea-
ture extraction technique in a 1 vs all setting. From earlier
work [12] it was shown that the sensor is proficient in de-
tecting acids, alcohols, amines, explosives and thiols so these
are the classes for which we train classifiers. In order to
carry out both model selection and estimation of the gener-
alization error, double-cross validation using leave–one–out
is performed. Our scheme result in a total of 155 classifiers
per feature extraction method (31 dyes × 5 classes).

To establish if the Hellinger method produces greater or
smaller classification error rate relative to the mean and global
mode we examine wins, ties, and losses. To determine ties
we use significance testing following McNemar significance
test [16] using α = 0.01 due to the amount of hypotheses we
test. For Hellinger vs mean we find that Hellinger has eight
wins, 146 ties and one loss. For Hellinger vs global mode we
find Hellinger better nine times and global mode two times
and 144 ties. Of out the twenty significant results we have
a positive false discovery rate (pFDR) of 0.10, that is, we
expect that two of the significant results where erroneously
declared significant [17]. Table 1 shows how the feature ex-
traction methods compare against each other when we choose
the three best dyes for each combination of chemical/feature.

We also apply K-NN classifiers in a multi-class setting
resulting in a total of 31 classifiers per feature extraction
method, one classifier per dye. Fig. 2 shows the classification
error for each of the method ordered by classification error
using the Hellinger method. Performing the same hypothesis
test idiom as before, we find that the Hellinger method was
significantly better in 14 cases out of 62 (better than the mean
and global mode in seven cases respectively, not always for
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Fig. 2. Classification error for the feature extraction methods
when k-NN is used to quantify the errors.

the same dyes) and worse in zero cases. The pFDR is 0.02 in
the multi-class setting.

4. CONCLUSION

Despite the variability in the color reading of a given com-
pound using one sensor, traditional methods consider repre-
senting the entire reading using a single value. To account for
this variability, we proposed a complete distribution represen-
tation. To classify using the distribution representation, we
adopted the Hellinger distance-based K-NN algorithm. To
evaluate the potential benefit of using the complete distribu-
tion as opposed to the mean only for example, we compared
single feature vector representation with the full distribution
representation. We showed that the distribution representa-
tion with a Hellinger K-NN approach is either equal or better
than the single vector representation with a Euclidean K-NN
approach. The evidence for Hellinger being the better method
is especially strong in the multi-class setting where it was sig-
nificantly better in 23% of the cases.
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ABSTRACT

We present a colorimetric sensor array which is able to detect explosives such as
DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds
in the presence of water vapor in air. To analyze colorimetric sensors with sta-
tistical methods, a suitable representation of sensory readings is required. We
present a new approach of extracting features from a colorimetric sensor array
based on a color distribution representation. For each sensor in the array, we
construct a K–nearest neighbor classifier based on the Hellinger distances be-
tween color distribution of a test compound and the color distribution of all the
training compounds. The performance of this set of classifiers are benchmarked
against a set of K–nearest neighbor classifiers that is based on traditional fea-
ture representation (e.g., mean or global mode). The suggested approach of
using the entire distribution outperforms the traditional approaches which use
a single feature.
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Index Terms— Hellinger distance, chemo–selective compounds, explosives
detection, feature extraction, K–nearest neighbor classification

D.1 INTRODUCTION

Over the past decade, explosives have been a preferred tool for terrorists, yet
there is no satisfactory mobile and portable solution to detect explosives. To
detect a variety of military and industrial explosives easily, new technologies
must be developed. There are several application areas for explosives sensors,
such as anti-terrorism (screening luggage and mail packages, checking suspects
and mass transit systems), demining and environmental monitoring of hazardous
compounds.

Sensors must not only easily detect a variety of hidden explosives, they must
also be able to detect illegal chemicals and products of the explosives industry.
Further requirements are that the sensing device should be portable, rapid,
highly sensitive, specific (minimize false alarms), and inexpensive [1].

Over the past years a number of detection methods have been developed and
successfully applied in explosives detectors. These include, but are not limited
to, gas chromatography, Raman spectrometry, mass spectrometry, ion mobility
spectrometry and colorimetric sensors. Suslick et al. described the application
of the colorimetric sensor array for detecting volatile organic compounds in the
gas phase [2, 3] as well as for identifying different organic compounds in the
liquid phase [4, 5]. In our project we develop a colorimetric sensor array that
can be useful in detecting and identifying explosives such as TNT, DNT, HMX,
RDX and TATP [6, 7]. The colorimetric sensor is a fascinating technique for
distinguishing different chemical compounds belonging to various classes, like
amines, cyanides, alcohols, arenes, ketones, aldehydes and acids in the parts-
per-million (ppm) and parts-per-billion (ppb) ranges [3, 8, 9]. In our research
we use a completely different class of chemo–selective compound, which has
already shown excellent results for detecting TNT. This type of colorimetric
sensor could be successfully applied in national security and defense [10, 11].

A colorimetric sensor array consists of a number of chemo–selective compounds
of various colors that will undergo a color change when subjected to an environ-
ment or a target substance, hereafter denoted an analyte. These chemo–selective
compounds, which are typically called dyes are digitalized. Currently we use a
flatbed scanner. One dye consists of several hundred pixels, but classically a dye
is considered to have only one color, which is commonly found by calculating
the mean or global mode pixel value [12]. We hypothesize that the complete
distribution of color pixel value may contain additional information that can
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Figure D.1: An example of a specific dye of colorimetric sensor array exposed
to the explosive analyte RDX. A: the sensor before exposure. B: the enhanced
difference image.

improve classification accuracy relative the information associated with a single
pixel value such as the mean.

In this paper, we present a new method for representation and analyzing of the
output of a colorimetric sensor array using the complete color distribution. To
classify a given analyte, we propose a K-NN approach which uses the Hellinger
distance between color distributions as a metric. By comparing this with a K-
NN that use of a single feature such as the mean or global mode we are able to
demonstrate significant improvement in accuracy.

D.2 COLORIMETRIC SENSORS

The colorimetric sensor array consists of a number of chemo–selective com-
pounds immobilized onto silica gel resulting in circular spots (Fig. D.1A). Each
individual spot was approximately 3 mm in diameter with the total size of the
sensor array of approximately 2.5 cm × 4.0 cm.

The dataset used in this paper has been discussed in detail in earlier work [12]
but is summarized here for completeness. The sensor array has been exposed to
analytes belonging to the various chemical families – 9 families in total, making
it a multi-class dataset. The chemical families are: acids (45), alcohols (27),
amines (42), arenes (14), environment (28), explosives (56), inorganic explosives
(14), ketones (13) and thiols (14). The number in the parenthesis denotes the
number of examples measured for the class in question, bringing to total number
of examples to 253.
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Data acquisition

Once the images of the sensor arrays have been digitalized, feature extraction
is employed, typically using the mean pixel value. In order for the mean to
be a robust measure of color change, the pixels of a dye have to be normally
distributed (or at least have a symmetric distribution with one mode) and rel-
atively free from outliers. As can be seen in Fig. D.1 this may not always be
the case. From a chemical point of view we know that a dye should only have
one color, as the dye is homogeneous and exposed to a homogeneous vapor.
However, noise is induced from: the scanner, the enhanced temperature for ex-
plosive detection, external light, and roughness of the surface. Some of these
effects can be handled easily. The high temperature often results in a ring near
the perimeter of the dyes (the coffee stain effect) and this area of the dyes is
unreliable. In order to accommodate this effect, a smaller area of a dye is used
for feature extraction, corresponding to 2/3 of the dye radius. To handle the
other noise effects that cause pixel outliers, we have in earlier work suggested
that the global mode is the most robust single value statistic compared to the
mean, mode or median [12]. The global mode finds the most frequent pixel
value occurring in a dye and as such is guaranteed to calculate a pixel value
that exist in the given dye.

Histogram features

In addition to the mean and global mode features used to characterize the color
change response, we consider in this context the bag-of-words representation
for multiple instance examples. The i’th example (dye) is represented by Xi =
{xi1, . . . , xini}, where xij is the j’th three–dimensional difference RGB pixel
value between control and exposed, and ni is the number of pixels considered for
the representation of the i’th example. For several classifiers a notion of distance
between examples is a key component. To construct a distance between two
examples in the bag-of-words representation, we propose to represent each multi-
instance example with a distribution and use the Hellinger distance as a metric
between two examples. The motivation behind this approach is that differences
between distributions, which are not directly measurable through the mean (or
other moments), can still be detected. This approach was demonstrated to
be effective in several application areas, e.g., disease classification using flow
cytometry [13] and document classification [14].

Assuming an underlying probability density function fi such that xij ∼ fi for



184

j = 1, 2, . . . , ni, one can associate Xi with the following kernel density estimate

fi(x) =
1

ni

ni∑
j=1

K(x− xij)

where K(x) = 1/(2πσ2)d/2 exp(−||x||2/2σ2), d = 3 in our case. Recall that
given two PDFs fi and fk, the squared Hellinger distance between the two
distributions is given by

dH(fi, fk)
2 =

∫ (√
fi(x)−

√
fk(x)

)2
dx

i.e., the Euclidean distance between the square-root of the PDFs. Note that
the squared Hellinger distance can be computed using the following equivalent
formula: dH(fi, fk)

2 = 2 − 2
∫ √

fi(x)fk(x)dx. For computational simplicity,
we consider the following equivalent alternative:

dH(fi, fk)
2 = 2− 2(Efi [

√
T (x)(1 − T (x))] + Efk [

√
T (x)(1− T (x))])

where T (x) = fi(x)
fi(x)+fk(x)

and Eh[·] =
∫ ·h(x)dx. A sample-based version of this

expression can be computed by replacing the expectations with their sample
averages and the distributions with their kernel estimates,

Efi [
√
T (x)(1− T (x))] ≈ 1

ni

ni∑
j=1

√
T (xij)(1− T (xij))

Naturally, the distance calculation can be directly applied to a K-NN classifier.
This approach can be considered an alternative to a set distance between two
collections instances.

Moreover, this approach allows for a feature vector construction. Consider a
new example X associated with PDF f . The feature vector for this example
can be constructed as φ(X) = [dH(f, f1), dH(f, f2), . . . , dH(f, fN )]T where N
is the number of training examples. Note that this feature vector has a fixed
size, independent of the number of instances (pixels) in its bag-of-words repre-
sentations. This representation can be applied to a variety of classifiers. For
example, in SVM [15] the classifier can be of the form sgn〈w, φ(X)〉. In many
cases, the SVM solution results in a sparse vector w for which the non-zero
entries correspond to support vectors. In our setup, the Hellinger distance to
key multi-instance examples will determine the output of the classifier.

D.3 METHODS AND RESULTS

Despite its simplicity, K-NN is an effective classification technique [15] which
works as follows. When testing an unknown data point, the Euclidean distances
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Dye rank
Class Method 1st 2nd 3rd
Acids Mean 1.2 2.4 4.3
Acids GMode 2.4 2.4 3.6
Acids Hellinger 1.6 2.4 2.8
Alcohols Mean 7.5 8.3 8.3
Alcohols GMode 8.3 8.7 8.7
Alcohols Hellinger 7.9 8.3 8.7
Amines Mean 7.1 7.1 7.1
Amines GMode 7.1 7.1 7.5
Amines Hellinger 6.3 6.7 6.7
Explosives Mean 2.8 3.2 4.3
Explosives GMode 3.2 4.7 5.9
Explosives Hellinger 1.2 2.0 2.8
Thiol Mean 0.8 5.1 5.1
Thiol GMode 0.8 3.6 4.7
Thiol Hellinger 0.4 3.2 4.0

Table D.1: The error rate of the 3 best performing dyes for each feature
extraction method. The numbers are reported as % leave–one–out classification
error.

for all known points are calculated. The classes of the closest K points are then
identified and the unknown point is classified using majority voting of these
known points.

We apply aK-NN classifier to each dye for each feature extraction technique in a
1 vs all setting. From earlier work [12] it was shown that the sensor is proficient
in detecting acids, alcohols, amines, explosives and thiols so these are the classes
for which we train classifiers. In order to carry out both model selection and
estimation of the generalization error, double-cross validation using leave–one–
out is performed. Our scheme result in a total of 155 classifiers per feature
extraction method (31 dyes × 5 classes).

To establish if the Hellinger method produces greater or smaller classification
error rate relative to the mean and global mode we examine wins, ties, and losses.
To determine ties we use significance testing following McNemar significance
test [16] using α = 0.01 due to the amount of hypotheses we test.

For Hellinger vs mean we find that Hellinger has eight wins, 146 ties and one
loss. For Hellinger vs global mode we find Hellinger better nine times and global
mode two times and 144 ties. Of out the twenty significant results we have a
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Figure D.2: Classification error for the feature extraction methods when k-NN
is used to quantify the errors.

positive false discovery rate (pFDR) of 0.10, that is, we expect that two of the
significant results where erroneously declared significant [17]. Table D.1 shows
how the feature extraction methods compare against each other when we choose
the three best dyes for each combination of chemical/feature.

We also apply K-NN classifiers in a multi-class setting resulting in a total of
31 classifiers per feature extraction method, one classifier per dye. Fig. D.2
shows the classification error for each of the method ordered by classification
error using the Hellinger method. Performing the same hypothesis test idiom
as before, we find that the Hellinger method was significantly better in 14 cases
out of 62 (better than the mean and global mode in seven cases respectively,
not always for the same dyes) and worse in zero cases. The pFDR is 0.02 in the
multi-class setting.

D.4 CONCLUSION

Despite the variability in the color reading of a given compound using one sen-
sor, traditional methods consider representing the entire reading using a single
value. To account for this variability, we proposed a complete distribution rep-
resentation. To classify using the distribution representation, we adopted the
Hellinger distance-based K-NN algorithm. To evaluate the potential benefit
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of using the complete distribution as opposed to the mean only for example,
we compared single feature vector representation with the full distribution rep-
resentation. We showed that the distribution representation with a Hellinger
K-NN approach is either equal or better than the single vector representation
with a Euclidean K-NN approach. The evidence for Hellinger being the better
method is especially strong in the multi-class setting where it was significantly
better in 23% of the cases.
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ABSTRACT

Development of sensors and systems for detection of chemical compounds is an
important challenge with applications in areas such as anti-terrorism, demining,
and environmental monitoring. A newly developed colorimetric sensor array is
able to detect explosives and volatile organic compounds; however, each sen-
sor reading consists of hundreds of pixel values, and methods for combining
these readings from multiple sensors must be developed to make a classification
system. In this work we examine two distance based classification methods, K-
Nearest Neighbor (KNN) and Gaussian process (GP) classification, which both
rely on a suitable distance metric. We evaluate a range of different distance
measures and propose a method for sensor fusion in the GP classifier. Our re-
sults indicate that the best choice of distance measure depends on the sensor
and the chemical of interest.

We acknowledge the support from the Danish Agency for Science and Technology’s, Pro-
gram Commission on Nanoscience Biotechnology and IT (NABIIT). Case number: 2106-07-
0031 - Miniaturized sensors for explosives detection in air. Further we acknowledge assistant
professor Raviv Raich, Oregon State University, for lending his code for distance calculation
based on Hellinger distances using Parzen windows [1, 2].
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Index Terms— Hausdorff distance, Hellinger distance, chemo–selective
compounds, feature extraction,K–nearest neighbor classification, Gaussian Pro-
cess Classification

E.1. INTRODUCTION

The development of rapid, reliable, and portable solutions for detection of chem-
ical compounds is an important challenge with many possible applications in-
cluding screening luggage and packages for explosives, detecting land mines,
and monitoring the environment for hazardous compounds. In recent years a
number of methods has been developed based on different technologies such
as gas chromatography, Raman spectrometry, mass spectrometry, ion mobility
spectrometry and colorimetric sensors.

Colorimetric sensors can be used to detect a wide range of organic compounds
in gas as well liquid phase [3–8]. In previous work a novel colorimetric sensor
array developed by Kostesha et al. has been described [9, 10]. The sensor
array proved useful for identifying a wide range of explosives as well as other
compounds such as amines, cyanides, alcohols, arenes, ketones, aldehydes and
acids. A colorimetric sensor contains a chemo-selective compound: A so-called
dye which changes color when exposed to a target chemical compound denoted
as analyte. The sensor is read by capturing a digital image of the dye before
and after exposure to an analyte. Typically, the mean color change is used
for detection; however, in earlier work it has been shown that accuracy can be
improved by considering the complete distribution of color change for different
image pixels [11]. An example of a colorimetric sensor is shown on Fig. E.1.
In this example the mean value is a particular bad choice as the mean color
value is scarcely present in the sensor as shown on Fig. E.1C. Furthermore, the
sensor array comprises several colorimetric sensors, and detection could likely
be improved further by combining information from multiple sensors.

In this paper, we present new methods for analyzing the output of a colorimetric
sensor array using the complete distribution of color changes. We hypothesize
that using the entire distribution of a sensor one will get an equal or better
classification accuracy compared to a single feature representation such as the
mean value. To classify a given analyte, we compare the de-facto method K-
Nearest Neighbor (KNN) with a Gaussian process (GP) classifier. Both of these
approaches rely on a measure of similarity between sensor readings—the KNN
through a suitable distance measure and the GP through a covariance function.
We motivate and compare several measures of similarity, demonstrating that
a proper choice of similarity measure can significantly improve classification
accuracy using a single dye. Finally, we propose a multi kernel method using
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GP for fusing information from several sensors leading to superior performance
compared to using a single sensor.

E.2. MATERIALS AND METHODS

In this section we describe the colorimetric sensor data and the proposed clas-
sification approach.

E.2.1. Notation

N = 253 Number of observations
L = 3 Number of channels (RGB)
M = 31 Number of dyes/sensors
Npix = [49; 1009] Pixels per dye/sensor
xl,n 1×Npix vector of pixel values
Xn = [x�

1,nx
�
2,nx

�
3,n]

� 3×Npix matrix with RGB pixel values
X = {xn‖n = 1 : N} a set of inputs
Y = {yn;xn|n = 1 : N} a set of labels for the given inputs

E.2.2. Colorimetric sensor data

The colorimetric sensor array consists of a number of chemo–selective com-
pounds immobilized onto silica gel resulting in circular spots (Fig. E.1A). Each
individual sensor was approximately 3 mm in diameter with the total size of the
sensor array of approximately 2.5 cm × 4.0 cm.

The dataset used in this paper has been discussed in detail in earlier work [12]
but is summarized here for completeness. The sensor array has been exposed to
analytes belonging to various chemical families; acids (45), alcohols (27), amines
(42), explosives (56) and other (83). The number in the parenthesis denotes the
number of examples measured for the class in question. The group denoted
other is not one chemical family but comprises various molecules that is used
as reference measurements.

E.2.2.1. Data acquisition

The sensors were scanned using an ordinary flatbed scanner immediately after
immobilization of dyes and then again after exposure of target analytes. The
images are then pixel aligned, the dye locations are identified and finally pixel
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Figure E.1: An example of a specific dye of colorimetric sensor array exposed
to the explosive analyte HMX. A: the sensor before exposure. B: the enhanced
difference image. C: histogram of difference of the blue channel.

extraction is performed [12, 13]. The pixels are extracted by fitting a circular
disc to the entire dye. Due to the chemistry of the sensor array often a distinct
ring near the perimeter of the dyes appears (the coffee stain effect) and this
area of the dyes is deemed unreliable. In order to accommodate for this effect
a smaller area of a dye is used for feature extraction, corresponding to 2/3 of
radius of the fitted circular disc [13]. Based on the pixel values features can be
calculated, e.g. using the mean value, or distances between measurements.
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E.2.3. Classification Methods

E.2.3.1. K-Nearest Neighbor

The KNN is a simple yet effective classification technique [14] which works
as follows. When testing a data point belonging to an unknown class, the
distances to all points with known class labels are calculated. The classes of the
closest K points are then identified and the unknown point is classified using
majority voting. In order to carry out both model selection and estimation of the
generalization error, double-cross validation using leave-one-out is performed.
The inner loop is used to determine the value of K and the outer loop is used
to estimate the generalization error.

E.2.3.2. Gaussian Process Classification

We now turn to a different but equally powerful classification framework based
on a non-parametric Bayesian approach. The core of any probabilistic classifi-
cation methods is a likelihood function modeling the likelihood of observing a
specific outcome. Here we consider the cumulative Gaussian (known as a probit
model) defined as

p (yn|f (Xn)) =

yn·f(Xn)∫
−∞

N (t|0, 1) dt = Φ(yn · f (Xn)) (E.1)

parameterized by a given a functional value, f(Xn). Hence, the model or free
parameter is the functional value, f(Xn), and by taking a Bayesian approach,
we can directly consider the posterior over the function defined by the finite set
of random variables, f = [f(X1), f(X2), ..., f(XN )]

�
, i.e.,

p (f |Y,X ) =
p (Y|f ) p (f |X )∫
p (Y|f ) p (f |X ) df

=
p (Y|f) p (f |X )

p (Y|X )
(E.2)

The natural prior for, f(·), is a Gaussian Process (GP) and we denote a function
drawn from a GP as f (X) ∼ GP (0, k(·, ·)θc

)
with a zero mean function, and

k(·, ·)θc
referring to the covariance function with hyper-parameters θc, defining

the covariance between the random variables f . The GP can thus be considered
a distribution over functions, i.e., p (f |X , θc).

Given the probit likelihood model, the posterior over f needs to be approximated
and we resort to Expectation Propagation (EP) which provides a Gaussian
approximation to the posterior [15]. The hyper parameters are approximated
by point-estimates found by considering the marginal likelihood/evidence which
can be optimized in regards to the hyper parameters by gradient methods. This
possibility is a clear advantage over non-Bayesian methods.
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The prediction for a new input X∗ is obtained by first computing the predic-
tive distribution, p(f∗|Y,X ,X∗), which is Gaussian due to the EP approxima-
tion. The probability of a given outcome y∗ is computed by P (y|Y,X ,X∗) =∫
p (y|f∗) p(f∗|Y,X ,X∗)df∗.

E.2.4. Distances and Covariance Functions

The two classification methods outlined above both require some notion of simi-
larity either in the form of a distance function/metric or in the form of a covari-
ance function. In the following we present and motivate a number of distance
measures that can be used for measuring similarities between dyes.

E.2.4.1. Mean and “inner mean”

The traditional approach when using colorimetric sensors is to calculate the
mean value of the response by averaging the color change over all pixels.

Since we have observed that pixel values in the outer edge of the dyes are
less reliable, we propose to estimate an optimal radius instead of a fixed radius
(typically r=2/3) and compute the mean in the central region within this radius.
Assuming that each dye should have a unique color change and such that any
variation is due to noise, a reasonable assumption is to choose the radius that
estimates the mean most accurately. This is done by choosing

r̂ = arg min
r

1√
Npix(r)

σ(r), (E.3)

where Npix(r) and σ(r) denote the number of pixels and the standard deviation
of pixel values within the central region with radius r. We denote this method
“Inner Mean”.

E.2.4.2. Hellinger Distance

As an alternative to computing the average color change, we can consider the
distribution of color change over the dye. The Hellinger distance measures
similarity between two probability measures fi(x) and fj(x) and is given by

dHe(fi, fj)
2 =

∫ (√
fi(x)−

√
fj(x)

)2

dx (E.4)

Using the Hellinger distance require us to choose how to represent the probability
measures. We consider a nonparametric and a parametric approach: The first is
a Parzen window Kernel density estimator which have been discussed in earlier
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work [11]:

fi(x) =
1

ni

ni∑
k=1

K(x− xik) (E.5)

whereK(x) = 1/(2πσ2)d/2 exp(−||x||2/2σ2) and the kernel width is set to σ = 1.
The second approach is a multivariate normal distribution using a full covariance
matrix

fi(x) =
1

(2π)d/2|Σi|d/2
exp

(
−1

2
(μi − x)

�
Σi

−1 (μi − x)

)
(E.6)

where μi is the mean and Σi the covariance matrix which is estimated by
maximum likelihood.

E.2.4.3. The Hausdorff Distance

The Hausdorff distance measures distance between two point sets, and it is small
if all points in each set are close to some point in the other set. This could be
useful for comparing dye color changes that are not uniform over the dye. First
define the distance between two points xi and xj as the Euclidean distance
d(xi,xj) = ‖xi − xj‖2. The distance between a point xi and a set Xj is then
d(xi,Xj) = min

xj∈Xj

d(xi,xj). The Hausdorff distance is defined as

dHa(Xi,Xj) = max

{
max
xi∈Xi

d(xi,Xj), max
xj∈Xj

d(xj ,Xi)

}
(E.7)

As an alternative approach one can use the modified Hausdorff distance which
is more robust in the presence of noise and outliers

dMH(Xi,Xj) =

max

⎧⎨⎩ 1

NXi

∑
xi∈Xi

d(xi,Xj),
1

NXj

∑
xj∈Xj

d(xj ,Xi)

⎫⎬⎭ (E.8)

It should be noted that this distance is not a metric as the triangle inequality
is not fulfilled [16].

E.2.4.4. From Distances to Covariance Functions

Given a distance metric d(X i,Xj) we use the distance substitution approach [17]

based on a squared exponential kernel, k (Xi,Xj) = exp
(
− 1

σl
d(X i,Xj)

)
.

We note that a valid covariance function may be constructed directly for the
Hellinger distance by considering the inner product given by the integral which
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is known as the Probability Product Kernel [18]; however, to make a fair com-
parisons we treat the Hellinger distance like the other distance measures. Note
also, that since the modified Hellinger distance is not a metric, the distance
substitution kernel is not positive definite [17].

The use of kernels provides a convenient way of integrating information from dif-
ferent sensors by combining different kernels in a weighted sum. Thus, different
dyes can be combined by constructing the following kernel

k (Xi,Xj) = σ2I+
M∑

m=1

αmk
(
Xm

i ,Xm
j

)
(E.9)

where each kernel function is the distance substitution kernel with one of the
respective metrics.

To fuse the difference dyes we employ a forward selection method using the
following steps. 1) For a given dye, perform a grid search of hyper parameters
σ2, αm and σl. 2) Find the hyper parameters by optimizing the evidence in GP
using the optimal point found in the grid as initial guess. 3) Perform leave-one-
out cross validation to get classification error. 4) Choose the dye that yields the
lowest classification error.

E.2.5. Evaluation

We apply nearest neighbor classifiers to each dye for each feature extraction
technique in a one vs all setting. From earlier work [12] it was shown that
the sensor is proficient in detecting among others acids, alcohols, amines and
explosives so these are the classes we evaluate. The generalization error is
estimated using LOOCV [19]. This scheme result in a total of 124 classifiers of
each type per feature extraction method (31 dyes × 4 classes).

To judge the differences in classification performance we use the McNemar sig-
nificance test [20]. The McNemar is a paired test which uses the the number
of cases where two classifiers disagree about a decision. From this test we cal-
culate p–values for each comparison and use the multiple hypothesis framework
proposed by Storey [21]. Based on the p–values we can calculate the expected
positive false discoveries (E[pFD]) for our significant differences, that is, the
expected quantity of wrongly significant results amount all found significant
results.
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Figure E.2: Classification error for the different measures of similarity for GP
and KNN. The top panels show the best performing dyes for explosives and
alcohols using KNN. The middle panels show the best performing dyes using
GP. The bottom panels shows the result of fusing the dyes together using GP.
Bottom left is explosives and bottom right is alcohols.
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Chemical M P IM MH G E[pFD] n

Acids 1 2 2 6 0 0.89 11
Alcohols 0 0 0 0 3 0.15 3
Amines 1 0 1 0 0 1.02 2
Explosives 0 3 0 7 1 0.98 11

Table E.1: Number of instances the best performing method is significantly
better than another method. The methods are Mean, Parzen, Inner Mean, Mod.
Hausdorff and Gaussian. E[pFD] is the expected positive false discoveries and
n is the number of significant results.

E.3. RESULTS AND DISCUSSION

Initially we employ KNN and rank the dyes according to their best performance.
Fig. E.2 top panels show the dye ranking for KNN. The modified Hausdorff is
the best performer for dyes 19 and 30 where it is significantly better than the
single feature methods. Further the distribution methods are generally better
or on par compared to the single feature methods.

Table E.1 shows a summery of the McNemar significance tests. The overall
best distance is the modified Hausdorff method although it is noteworthy that
this method is not best even once for alcohols whereas is is best for numerous
occasions for acids and explosives. Looking into the dyes reveal that the top dyes
for acids largely overlap with the top dyes for explosives whereas for alcohols
one of the top dyes is dye number 5. For this dye the Inner Mean is significantly
better than any of the other methods. It should be noted that the majority
of the differences is between one of the distribution methods and the single
feature method, i.e. of the 52 significant results, only on 3 instances was the
Parzen window worst and only 4 times where the Mod. Hausdorff method worst.
Considering we have a total of 6 false discoveries we can only conclude that the
distribution methods are significantly better than the single feature methods.
To explore the effect of the methods deeper we fuse the dyes using GP.

Initially we want to establish the performance of GP in the same setting as KNN.
Fig. E.2 show the classification performance for GP when classifying explosives.
Again the modified Hausdorff is the top performer for the first two dyes, which
is again dye 19 and 30. However for dye 28 and 24 the modified Hausdorff
coupled with GP yields an error of 21% and 30% respectively. This might very
well be an effect of the fact that the modified Hausdorff is not a valid metric
and as such the corresponding kernel might not be psd [16, 17]. But as the case
of KNN, the figure does not show a clear indication of which method is superior
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although it seems that modified Hausdorff is able to capture more information
about dye 19 and 30 than the the methods.

When fusing the dyes one by one using forward selection we find no significant
results between the methods (Fig. E.2). To get a significant result the perfor-
mance must at least differ 2.4 percent points but already with one dye we are
below that margin.

E.4. CONCLUSIONS

We have proposed three new methods for representation of sensory data in
colorimetric sensor arrays, namely the Inner Mean, Hellinger distance using
a Gaussian distribution and the Modified Hausdorff. Each method have it’s
merits. The Inner Mean seem to be particularly proficient for dye number 5
and 22 whereas the modified Hausdorff is especially strong for dye number 19
and 30. This suggests that none of the methods are capable of representing
all the dye measurements optimally, although the methods that use the entire
histogram are more often superior.

The modified Hausdorff method is the overall best performing method. It is
particularly strong for classifying explosives, and since the distance calculation
is based on sets of pixels and is parameter-free it can potentially work a lot
better for high dimensional data where the Hellinger distance method might be
inappropriate.

Finally, we have demonstrated that fusing the sensors can improve the classifica-
tion error. GP classification effectively identifies which dyes should be included
and generally including more dyes reduces the LOOCV error rate. In the fusing
scheme the modified Hausdorff method also works well and is the overall best
performer. Future work could be to combine all distance methods and learn the
combination using Multiple Kernel Learning or evidence optimization instead
of minimizing the classification error.
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Abstract

Through the combination of chemically selective compounds with colour changing properties we developed a

colorimetric sensor array for the detection of explosives like DNT, HMX, RDX and TATP. The colorimetric sensing 

technology was based on an array of chemo-selective compounds belonging to different chemical families immobilized 

on a solid support. Upon exposure to an analyte in suspicion the colorimetric array changes colour. Almost each chosen 

compound reacted chemo-selectively with the analyte of interest. Colour changes indicated the presence of unknown 

explosives and volatile organic compounds. The colorimetric sensor was sensitive to DNT in the concentration from

1 ppm and higher. Such sensing technology can be used to screen for relevant explosives in a complex background as 

well as to distinguish mixtures of volatile organic compounds distributed in gas phase. 

Keywords: colorimetric sensor array, DNT, HMX, RDX, TATP, chemo-selective compounds, tetrathiafulvalene, RGB,
principal component analysis, the K–nearest neighbor analysis.
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Introduction

The production and utilization of explosives and explosive-related compounds have a great concern on public security 

and environment. New technology must be developed to detect easily a variety of explosives, illegal chemicals and 

drugs, drug precursors carried by suspects as well as hidden in mails, luggage and conveyance. Colorimetric sensing 

technique is a promising analytical method which can be used for detection and identification of explosives with high 

probability. This method is an easy-to-use on-site method similar to the well-known pH paper stick which shows a 

prominent response based on colour changes in the presence of explosives. The colorimetric sensor array (31 dyes) is 

based on the application of four successive dye classes: Tetrathiafulvalene derivatives (TTF), Lewis acid/base dyes (i.e.

metal ion containing dyes), Brønsted acidic or basic dyes (i.e. pH indicators), and dyes with large permanent dipoles 

(i.e. zwitterionic solvatochromic dyes).
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Suslick et al. demonstrated the capability of the colorimetric sensor array to sense different analytes, even a mixture of 

analytes by applying three classes of chemo-selective compounds: 1). Lewis acid or base dyes, 2). Brønsted acidic or 

basic dyes and 3). Dyes with large permanent dipoles. The colorimetric response is  based on specific interactions 

between molecules e.g. dipolar and multipolar interactions, acid-based interaction, van der Waals interaction and 

physical adsorption.1,2 The colorimetric array was able to change the colour upon exposure to an analyte of interest.

Digital imaging of the colorimetric array before and after exposure to analytes, like for example amine molecules, gave 

the possibility to create a colour difference map which was presented as a unique fingerprint for each molecule of 

interest.3 The colorimetric sensing technology has already been successfully applied for the visualization of the 

presence of relevant molecules in a complex background4,5 as well as for the distinction of volatile organic compound

mixtures distributed in a liquid phase.6

The colorimetric sensor has shown promising results in the detection of molecules at low concentration rates, e.g. in 

detection of formaldehyde with detection limit of 20 ppm,7 mercury in aqueous environments demonstrating a detection 

limit of 2 ppm,8 in selective detection of closely related amines with a detection limit of 600 ppb,3 even in detection of 

an explosive, like triacetone triperoxide – TATP.9 The sensor has been exposed to the liquids testing an ethanol rate and 

organic compounds in the beer10 and a CO2 content in soft drink samples.11

For the first time a new colorimetric sensor array containing 31 chemo-selective compounds was applied and examined 

in the prospect of detecting explosive molecules e.g. 2,4-dinitrotoluene (DNT); 1,3,5-trinitroperhydro-1,3,5-triazine 

(RDX); 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX); 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxacyclononane 

(TATP). The colorimetric sensor array presented in this paper was designed by using derivatives of tetrathiafulvalene

(TTF) molecules (1-15 dye) with their ability to change colour combined with additional three classes of chemo-

selective compounds described above (16-31 dye).1

In general, the TTF molecular unit presented in Figure 1A was the core unit for synthesis of 13 TTF molecules. TTF 

molecules containing various incorporated electron withdrawing and accepting groups represented in Figure 1B; TTF 

molecules were synthesized at the University of Southern Denmark (More information on synthesis presented in 

Supplementary Material). The conductive properties of TTF molecules12 first are based on oxidation-reduction 

behaviour of the TTF molecular unit where the neutral non- -system turns to aromatic 6-

converting from the radical-cation (TTF•+) to dication (TTF2+) and vise-versa (Fig. 1A).13,14 Also, the conductivity can 

be enhanced by modifying the TTF unit with electron withdrawing and accepting groups (Fig. 1B). Conductive 

properties and chemical stability of TTF have enabled TTF molecules to play a fundamental role in material science, 

macrocyclic and supramolecular chemistry; during the past two decades and being a key candidates for the construction 

of sensors,15,16 switches,17 for synthesis of conducting and semiconducting polymers and materials.18 Tetrathiafulvalene

and TTF derivatives are known as molecules which provide non-covalent interactions between molecules, where 

- -dipole etc. which also occurred and provide the formation 

of supramolecular complexes between molecules. 19 The formation of supramolecular complexes in TTF chemistry is a 

common effect; a TTF molecular originates as a host molecular, binding another molecular which occurred to be a guest 

molecular, thereby producing the supramolecular complex. A host is usually larger than a guest molecular containing 

groups to perform hydrogen bonding, whereas a guest molecular fitting a binding site, providing groups to complete the 

interaction. Supramolecular host-guest complexes exhibit good stability in both solutions and solid phases. The chemo-

selective properties of TTF molecules have attracted considerable attention due to the electron donor-acceptor 
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properties, their capability of recognizing specific analytes and potential selective colour change after exposure to a

specific analyte.16 TetraTTF-calix[4]pyrrole is one of the promising molecules for the detection of explosives. A

tetraTTF-calix[4]pyrrole-based sensor has been tested already in the identification of 3,5-dinitrobenzoate,20

trinitrobenzene, picric acid,21 towards anions such as Cl¯, Br¯ , F¯.15 TTF molecules can be used in detection of other 

chemical compounds belonging to various classes: amines, alcohols, arenes, ketones, aldehydes, and acids.22 In this 

research the application of tetrathiafulvalene and TTF derivatives was expanded for sensing and identification of the

most widely used military high-energetic explosives.

The main effort in efficient detection of explosives is based on the development of a method which will be successful in 

the detection of molecules in low concentrations in gas or vapour phase. Explosives in both solid and liquid form 

release some vapour denoted as a vapour pressure which depends exponentially on a temperature range. By knowing 

the heat of sublimation it is possible to perform a rough theoretical calculation of the vapour pressure of explosives 

based on the Antoine equation as a simplified from of the Clausius-Clapeyron equation.23,24 Due to the low vapour 

pressure of explosives under the ambient conditions the detection of such materials as DNT or RDX usually fails. 

However, the temperature rise effects on the vapour pressure parameters thereby enhance the concentration of 

explosives from particles per billion (ppb) to particles per million (ppm), respectively and therefore increase a chance 

for explosives tracking. Terrorists and distributors of illegal materials always work towards the development of new 

compositions and substances with low vapour pressures which are not easy to detect.

New methods have been developed for sensing vapours emanating from explosives; these technologies are mainly

based on the application of electrochemical approaches,25 calorimetric 26–28 and optical9 methods and etc. In this paper 

we present a simple chemical sensor, like an artificial nose, based on the application of a colorimetric sensor array for 

detecting explosives like DNT, RDX, HMX and TATP. The chemo-selective compounds in the array have been chosen 

due to their potential selectively change colour after exposure of the specific explosives.

To increase the colorimetric sensor probability we applied different statistical methods. To evaluate the colorimetric 

sensor features four independent classifiers were applied in this work: 1). 1–Nearest-neighbor (1-NN); 2). k– Nearest-

neighbor (k–NN); 3). Sparse logistic regression (SLR) and 4). Artificial neural networks (ANN). We have found that 

the best statistic depends on both the experimental setup and the classifier employed. The goal of this work was to 

identify the optimal mathematical approach which can be applied in detection of explosives. By using multiple 

classifiers we were able to improve the detection accuracy of the sensor of 62.8%.

Materials and Methods

Reagents:

Analytes that have been exposed to the sensor: 1-methyl-2,4-dinitrobenzene (DNT), dimethyl sulfoxide (DMSO), 1,4-

dichlorobenzene (DB) and 1-nitro-2-octyloxybenzene (NPOE) were acquired from Sigma-Aldrich (St. Louise, MO, 

USA); 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), 3,3,6,6,9,9-

hexamethyl-1,2,4,5,7,8-hexaoxacyclononane (TATP) were supplied from the Danish Emergency Management Agency 

(Beredskabstyrelsen).

For the colorimetric sensor array 31 dyes were applied. TTF compounds – dyes 1 to 15 in the array were synthesized at

the department of Physics, Chemistry and Pharmacy, University of Southern Denmark. The information on TTF 
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compounds presented in the Supplementary Material part. Other dyes: Alizarin (16), bromocresol green (17), 

bromocresol purple (18), bromothymol blue sodium salt (19), bromphenol blue (20), xylenol blue (21), chlorphenol red 

(22), cresol red (23), crystal violet lactone (24), 2,6-dichloro-4-(2,4,6-triphenyl-1-pyridinio)-phenolate (25), Reichardt’s 

dye (26), phenol red (27), rosolic acid (28), methyl red (29), nitrazine yellow (30), 4-brom-2,6-dimethylphenol (31) 

were provided from Sigma-Aldrich (St. Louise, MO, USA). Stock solutions of chemo-selective compounds (1% in 

NPOE, DMSO and DB) were freshly prepared and stored in a lightproof flask before use. 

Colorimetric sensor array:

A colorimetric sensor array was designed by using 31 selected dyes. Dyes were immobilized onto silica gel Kieselgel 

60F254 plates (Merck KGaA, Germany) in the working volume of 1 µL per spot. Since explosives have very low vapor 

pressure at room temperature and consequently low concentration, tested analytes were heated up. Explosives were 

detected at 25º C and the elevated temperature of 35°C, 50°C, 70°C and 100°. Samples of explosives in tightly closed 

vessels were heated up at defined temperature during 3 hours and removed from a heating system before the 

measurements. 

Pictures of the colorimetric sensor array before and after the exposure of an analyte were scanned through an ordinary 

flatbed scanner (Epson V750-M Pro Perfection scanner). Pictures were obtained immediately after immobilization of 

dyes and after exposure of analytes. The colorimetric sensor was dipped into a vessel containing an analyte and 

remained there during 2 minutes. Images from the Epson scanner were obtained at 600 dots per inch in RGB color and 

saved in tiff format. Pictures were analyzed using the MatLab software.

Data extraction:

In order to extract the color code from each dye the position of each dye on the image was located. The exact procedure 

that was used is described in. Each dye was represented using the red, green, and blue color scheme. In this model every

color is provided as red, green, and blue color (RGB); RGB values are given in the 0-255 integer range. The minimum 

intensity of the color gives black (0;0;0) and maximum white color (255;255;255). After the dye was located and 

converted to RGB values, we calculated the median value of each. We used the median instead of the mean in order to 

be more robust to noise and outliers.

A traditional difference map was obtained from the values of red, green or blue colors after exposure minus the value of 

red, green or blue color before the exposure. Since the RGB color scheme does not allow negative values the absolute 

difference was taken. In the detection of DNT part we used the real value obtained from the colorimetric sensor. In the 

detection of other explosives part in order to enhance the visibility of the colors difference maps the RGB values were 

first scaled with a factor 5 and then shifted by 10. The instances where the difference map (before scaling) resulted in a 

color value lower than 3 the pixel was rounded down to a color value of 0. 

However, the elimination of negative values and the need for scaling in order to make the differences visible imply that 

color the difference map does not produce unique representations and further that sign-information is list. As an 

alternative we suggest to use bar plots where each bar represents the cumulative density function (CDF) of difference 

values.

Statistical visualization
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Data obtained with the colorimetric sensor array has been evaluated by using the principal component analysis (PCA) 

method. PCA is a simple, non-parametric method which is often used to visualize high dimensional data. The original 

data obtained from the colorimetric sensor is of 93 dimensions (31 dyes, 3 colors per dye) which is not visualized in an 

informative figure unless data processing has been done22,29. PCA will transform the data matrix and identify the linear 

projections which have maximum variability often denoted principal components. Each successive linear projection is 

orthogonal to all previous projections. Assuming that the sensor has a high signal to noise ratio the first principal 

components will visually analyte dispersion nicely.  

Data evaluation: 

To assess the ability of the colorimetric sensor array to classify explosives we build a multi-nominal classifier which is 

called K-nearest-neighbor30,31. The K–nearest neighbor has been as an effective classification technique provided that 

measurements made on identical analytes make up clusters in the data space. The method works as follows; Data is 

separated into two sets, a training set and a test set. The test set corresponds of just a single measurement; however each 

measurement in the data set will become a test set exactly once. Thus N data sets are created. This procedure in called 

leave-one-out crosses validation (LOO-CV). When identifying the analyte in the test set the Euclidian distance between 

the point (one measurement corresponds to one point in 93 dimensional space) in the test set and every point in the 

training set is calculated. The K closest points and the corresponding analyte are then identified. The unknown 

measurement is now classified using majority voting among the identified analytes. In case of a tie the algorithm uses 

the nearest neighbor among the tied classes to break the tie selecting the closest point as the analyte. Possible values of 

K is set to [1;20]. To choose the value of K the training set is evaluated using LOO-CV and the value that maximizes 

classification accuracy is chosen. In case of more than one optimal K the smallest value is favored.

Results:

Detection of DNT

The colorimetric sensor array first was exposed to vapour emanating from the explosive 2,4-dinitrotoluene (DNT).

Samples of DNT were heated up to 100° C to achieve the saturated condition. The response of the colorimetric sensor 

before and after exposure of DNT is presented in Figure 2. Experiments here were performed when CSCs were in the 

random order applied on the solid support.

The idea of the randomization of CSC in the array was based on the understanding of cross-reactivity effects if such 

exists between chemo-selective compounds after the immobilization. The cross-reactivity effect was analyzed before 

and after exposure of DNT.

From the obtained results we could conclude that chemo-selective compounds do not react with each other after the 

immobilization on the solid support, the randomization of CSC didn’t effect on the colorimetric sensor response. The 

stability of CSC on the solid support were also evaluated; we couldn’t observed dyes colour changes after the 

application on the solid support. Only, bromocresol purple (18) initiated the color changes from green to brown before 

the assay due to the reaction with molecules present in air. We recommend applying bromocresol purple in the end of 

the array to avoid the spontaneous reaction with molecules present in the air. In our previous work we have investigated 

the “the coffee stain effect” of dyes applied on the solid support32.
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Results on the detection of DNT were evaluated after 16 independent measurements which were performed during 8 

days. The Figure 2 presents one of 16 experiments where the random immobilization of chemo-selective compounds on 

a solid support was applied. The position of CSCs was assessed and adjusted according to the positions of dyes 

presented in the Material and Methods part and Tab. 1S in the Supplementary Material.

After the exposure of DNT the chemo-selective compounds changed colour. Almost each chosen dye reacted chemo-

selectively with the analyte of the interest. (Fig.2B, C). Chemo-selective compounds under the number of 8, 10, 12, 13,

14, 15 – TTF family and 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29 and 30 shown the response on presence of DNT. 

Chemo-selective compounds under the number of 2, 3, 4, 7, 8, 9, 13 – TTF family and 16, 17, 18, 19, 20, 21, 22, 23, 24, 

25, 26, 27, 28, 29 and 30 shown the response on the elevated temperature - 100° C. An unspecific response on both 

DNT and 100° C has been shown by 19 dyes out of 31 dyes applied in the assay. Probability of the experiment is

presented in the Supplementary Material part. It has been describe earlier in22 that the elevated temperature was 

effected on the sensor response.

Data presented in this experiment was not enhanced by a mathematical method which allows increasing the visibility of 

the colours difference maps after the modification of RGB values, the unmodified signal was presented on Figure 2.

Chemo-selective compounds under the number of 8, 10, 12, 14, 15, 19 and 24 demonstrated the specific response on the 

presence of DNT. By using difference map analysis was possible to distinguish the color difference after the RGB 

extraction (Fig. 2C). Moreover by a naked eye it was possible to observe the different between the analyte and the 

control: compound 3 became dark yellow in presence of DNT and at 100° C turned to yellow (Fig. 2B); compound 9 

became light-yellow in presence of DNT and at 100° C turned to light brown, compound 10 became grey in presence of 

DNT, the same color appeared for the compound 12 in presence of DNT, compounds 14 and 15 turned brown in 

presence of DNT, compound 19 became yellow in presence of DNT and at 100° C turned to grey-yellow, compound 24

became light yellow in the presence of DNT and turned to blue at 100° C. Moreover, compound 25 became more 

brownish and compound 26 became dark grey at 100° C (Fig. 2A, B).   

The different map analysis is a very common method in colorimetry for RGB values extraction2. A difference map is 

able to compose a unique fingerprint for each analyte and this can be a possibility to make a sensor response visible,

therefore simplifies the interpretation of results if fast answer is needed. In our research we developed the sensor for 

detecting analytes with low vapor pressure like explosives and we can conclude that the different map analysis is 

relatively weak method for this purpose. Furthermore, sometime negative color change values were obtained during 

data analysis especially if a color of CSC became less intensive or disappeared from the solid support after the analyte 

exposure; during the different map analysis such values are usually eliminated, basically the calculation is taking the 

absolute value of a pixel value before and after exposure to an analyte.

Our goal was to evaluate the response of the colorimetric sensor from the statistical point of view. We employed the 

principal component analysis (PCA) and cumulative density function (CDF) analysis. The applied algorithm for data 

estimation was described in the supplementary material and in22. To evaluate the difference between DNT and 100° C

statistically 16 independent measurements were preformed. Experiments were conducted during 8 days, 2 accomplished 

measurements were completed per day, and 2 measurements were failed due to the data lost. Figure 3 shows the PCA 

plot for DNT and 100° C for 1st to the 2th principal components (PC). According to the PCA plot the overlap in the 

response between DNT and 100° C is insignificant (Fig.3A). We could observe that 100 °C and DNT grouped into 
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clusters. The PCA plot supports the difference map analysis where we could observe specific responses on DNT 

and100° C. 

Another alternative to difference map we suggest to use bar plots where each bar represents cumulative density function 

(CDF) of the color change for a given dye color (RGB) when exposed to a given analyte. The CDF plot presenting the 

sensor response on the presence of DNT displayed in Figure 3B. The analysis was performed after the mathematical 

evaluation of color changes similar to the difference map. Mathematical algorithms were applied in order to analyze

both positive and negative values simultaneously during color changes with statistical methods; the sensory output was 

put into a numerical form. Bars on the graph represent colour changes in the numerical form similar to RGB after 

calculation of the median and probability values of the signal. Different colours of bars illustrate the statistics; 14 

measurements were evaluated. Compete mathematical algorithms of data extraction from the colorimetric sensor is 

presented in the Supplementary Material part. The cumulative densities function analysis represents the response of 4

chemo-selective compounds which were defined as significant in detection of DNT and were different from a control:

compound 12 in the blue and green spectra, compound 14 in the green spectra, compound 15 in the green spectra and 

compound 24 in the blue spectra. 

Sensor kinetics

In this work we were trying to investigate the sensor response when different concentration of DNT were applied and 

understand the sensor sensitivity in relation to color changes. It is well know that DNT has low vapor pressure at room 

temperature; at 25° C corresponds to 0.34 ppm23.

DNT samples were heated up to 25° C, 35° C, 50° C and 70° C to achieve DNT concentration of 0.33; 1.09; 6.05 and 

47.4 ppm, respectively. The vapor pressure was calculated from the Antoine equation reported as the relation between 

vapor pressure of a pure compound and temperature. Our results correspond to the literature data23.

All experiments were performed at room temperature, however to obtained different concentration of the explosive, 

DNT samples were heated up during 3 hours at the elevated temperature as described above. The colorimetric sensor 

was immersed into a vessel where the relevant concentration of DNT was achieved and remained there for 2 min; the 

“naked eye” response was observed as a color change of CSC already at the concentration of DNT of 6.05ppm, sample 

was heated up to 50° C.

To evaluate the sensor response four measurements on each concentration of DNT were performed. Data analysis has

shown that compounds with number 8, 12 and 13 were able to detect DTN when samples were heated up from 25° C to 

70° C (Fig. 4A), thereby the sensor response increased with the increscent of DNT concentrations.  However, 

compound 13 has shown stable color response on different concentrations of DNT. Compounds have shown the color 

shift in the blue and green spectra, similar spectra for DNT as described above when DNT samples were heated up to 

100° C. 

It is evident that the color intensity of the sensor increased with concentration and slop of the colorimetric curve rose up

(Fig. 4B); the response of the colorimetric sensor became more prominent because the concentration of DNT increased.

Figure 4B shows a concentration-response curve obtained from the colorimetric sensor when DNT samples were 

heated up to certain temperature.

Detection of other explosives
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Simultaneously, with the detection of DNT we have applied the colorimetric sensor for detection of other explosives:

HMX, RDX and TATP. HMX and RDX are chemically related explosives belonging to the nitramines; HMX has four 

carbon and four nitrogen atoms placed in the variable order in the eight-membered ring where one nitro-group attached 

to each nitrogen atom; RDX has similar structure to HMX with the difference in one carbon and nitrogen and one nitro-

group group, respectively. TATP is a peroxide based explosive, which can be obtained by a reaction between acetone 

and hydrogen peroxide forming the cyclic trimer of acetone peroxide. DNT, HMX, RDX and TATP are belonging to 

different chemical classes. 

The detection of explosives was performed under the same conditions as has been described in the detection of DNT 

section. Experiments were carried out under the saturated condition of analyte vapours; analytes were heated up to 100° 

C.  The resulting colorimetric sensor was applied for 2 minutes for analysis of vapour emanating by HMX, RDX and 

TATP. Digital imaging of the colorimetric array before and after exposure to analytes was used for creating of

difference map for each explosive of interest (Fig.6). In this experiment in order to enhance the visibility of the colours 

difference maps the RGB values were first scaled with a factor 5 and then shifted by 10. The instances where the 

difference map (before scaling) resulted in a colour value lower than 3 the pixel was rounded down to a colour value of 

0. The analysis has shown that almost each chosen dye reacted chemo-selectively with the analyte of interest. A change 

in a colour signature indicates the presence of explosive molecules. By using the digital imaging analysis we could 

observe that obtained responses on all four analytes were unspecific, but different from a control. Only, compound 12 -

TTF and compound 24 - Crystal violet lactone have shown the specific response on the present of DNT (Fig. 6). 

To analyse acquired data statistically signal processing methods were applied such as CDF, PCA and confusion matrix 

(CM) analysis (Supplementary Material). Measurements have been taken during eight days performing sixteen

measurements in total (N=8; n=2), two measurement were failed due to the data lost. 

The colour distributions in the numeric form are presented in Figure 7 as a CDF plot after the data processing. CSCs

under the number of 12 (TTF), Bromothymol blue sodium salt (19) and Crystal violet lactone (24) demonstrated the 

signal to DNT, HMX, RDX, TATP and Control-100º C. Compound 19 and 24 demonstrated the specific signal to 100º 

C. Compounds 12 and 24 demonstrated the specific signal to DNT. The response to HMX, RDX and TATP was 

unspecific.

Since the sensor application in the future will be adapted to the detection of explosives under the complex environment, 

like detection of dangerous materials in airports, marine ports and train stations. Additional analytes which are not 

related to explosive materials, but could be present in the air were tested by the colorimetric sensor. Our goal was to 

evaluate the colorimetric sensor on the presence of other molecules and estimate false positive and negative alarms. In 

this paper we didn’t describe in details the sensor response non-explosive materials; the previous results were published 

in22.  Non-explosive materials were described in the Supplementary Material part and here we combine tested analytes 

in one group and describe it as Other. 

To establish the difference in detection of explosives in relation to other analytes the PCA analysis was applied (Fig.8).

In the domains where colorimetric sensors have been investigated, PCA showed high precision and low false alarm rate. 

The closely related K-Nearest Neighbor (KNN) classifier which uses the Hellinger distance between colour

distributions as a metric was able to demonstrate significant improvement in accuracy.  Figure 8 shows the PCA plot for 

the 2nd to the 4th principal components (PC) for explosive and control - DNT, HMX, RDX, TATP and 100° C as selected 

analytes and Other as selected non-explosive analytes. PCA has shown the overlap in the response for DNT, HMX, 
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RDX and TATP. However, the overlap between explosives and 100° C was insignificant (Fig. 8). Similar results were 

achieved between explosives and non-explosive analytes – Other.  Using principal components 2 and 4 we could 

observed that 100 °C and explosives grouped tightly into two separate clusters. PCA has shown similar response (no 

difference) on the detection of DNT, HMX, RDX and TATP. DNT, HMX, RDX and TATP grouped into one cluster.

Non-explosive analytes were separate from explosives and control. Obtained results demonstrated that the colorimetric 

sensor can separate explosives and non-explosive materials.

Discussion

The colorimetric sensor technology relied on an array of 31 chemically selective compounds. In the array compounds 

from number 1 to 15 correspond to tetrathiafulvalene or TTF-like compounds with the common formula of (H2C2S2C)2.

TTF compounds are unique class of molecules with hydrocarbon fulvalene - (C5H4)2 in their structure where 4 CH 

groups replaced with sulfur atoms (Fig. 1). TTF compounds applied in this work were synthesized in SDU.

Commercially available compounds from number 16 to 31 in the array were Lewis acid/base dyes (i.e. metal ion 

containing dyes), Brønsted acidic or basic dyes (i.e. pH indicators), and dyes with large permanent dipoles (i.e. 

zwitterionic solvatochromic dyes). Suslick et al. has already designed and patented several colorimetric sensor arrays

based on the application of some compounds from numbers 16 to 31 in our array1,2. Application of four classes of 

compounds together in the colorimetric array and evaluation of their colorimetric behaviour from the statistical point of 

view is described for the first time in this paper. 

The chemo-selective compounds described in this publication have capability selectively recognize specific analytes; 

this recognition is a function of intermolecular interactions, basically weak, non-covalent interactions, donor-acceptor 

and host-guest interactions. In host-guest interactions, the interaction specific for TTF-like compounds, we consider that 

a host molecular binding another molecule, a guest, and composes a supramolecular complex. In the supramolecular 

complex a large host molecular is usually a hydrogen bond donor and a small guest molecular is hydrogen bond 

acceptor. The binding of the explosives by TTF-like compounds, is primarily facilitated by the formation of hydrogen 

bonds between pyrrole and amino groups of TTF-like compounds and nitro-groups of DNT. The non-covalent binding

can occur between TTF-like compounds and neutral target molecules like DNT, TNT or toluene forming stable 

measurable response, like colorimetric or electrochemical.

The TTF-unit alone (Fig. 1A) (compound 12 in Tab. 1S) also has the donor-accepting properties; the reversible 

oxidation is shown in Fig.1A. By the oxidation of the TTF-unit, the system is transformed from the neutral non-

- -system in the radical-cation (TTF•+) and dication (TTF2+). The binding of 

analytes allows the transfer of electrons from the electron rich TTF-unit that creates a reflection on the oxidation 

potential.  The investigation of the electrochemical properties of tetraTTF-calix[4]pyrrole (compound 14 in Tab. 1S)

revealed two oxidation peaks at -0.04V to 0.53V. For several times TTF-like compounds were applied as a redox-

responsive sensor for detection of chlorine, heavy metal ions33.

TetraTTF-calix[4]pyrrole (compounds 14 and 15 in Tab. 1S)  is one of the promising molecules that has good binding 

affinity towards anions. Apart from this tetraTTF-calix[4]pyrrole can form the reversible cone conformation suitable for 

detection of chloride ions20,34 and 1,3-alternate conformation suitable for detection of different electron-deficient 

compounds, like chloride salt of tetraalkylammonium16. The colorimetric response was observed upon addition of nitro-

aromatic explosives, e.g. deficient guests, trinitrobenzene and picric acid to tetraTTF-calix[4]pyrrole, the colour of a 
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solution turned from yellow to green21. The optically active tetraTTF-calix[4]pyrrole-based sensor has already been 

applied for the detection of 1,3,5-trinitrobenzene, tetrafluoro- p-benzoquinone, tetrachloro-p-benzoquinone, p-

benzoquinone, and 1,3,5-trinitrophenole35.

In this work the focus on tetraTTF-calix[4]pyrroles (number 14 and 15 in Tab. 1S) was due to their ability to form 

strong complex with pyrrole units forming the cone conformation of the molecular. Binding with the pyrrole group is 

the essential part in the detection of explosives, moreover the 1,3-alternate conformation is also suitable for this purpose 

while the interaction with electron-deficient guests. In order to increase sensing properties of TTF-like compounds,

different functional groups (Fig. 1B) either electron withdrawing group (EWG) e.g. NO2- (compound: 1, 3); COOMe-

(compound: 2, 4, 7); CN- (compound: 2, 10); CH3C6H4SO2- (compound: 1, 5, 6, 7, 9); Br- (compound: 11) or electron 

donating group (EDG) e.g. NH2- (compound: 3, 8); NH- (compound: 8, 14, 15) can be incorporated to the TTF-unit.

The specific colorimetric response was observed when the charge transfer from the electron rich TTF unit (compound: 

12), tetraselenofulvalene (TSeF) (compound: 13), the selenium analogue of TTF and TTF-modified with EDGs e.g. 

compounds 8, 14 and 15 were binding of electron-deficient compounds, like DNT containing 2 electron deficient nitro-

groups.

The presence of DNT in the gas phase was also detected by other applied CSCs, from 16 to 31 in Table 1S e.g. 

Bromothymol blue sodium salt (number 19) and Crystal violet lactone (number 24). Where, the most significant and 

applicable compound in detection of DNT and other explosives was crystal violet lactone (number 24) (Fig 3A and 7).

In the colorimetric array the original – transparent colour of the dye turned into yellow in the presence of DNT and 

remained transparent in the presence of HMX, RDX and TATP. At elevated temperature this dye turned to the blue 

colour. 

According to the analyzed data, CSCs were not only being able to detect specific analytes, also they were able to 

change the colour pattern specifically at the high temperature. This effect has been described in previous publications 

we were able to observe the colour change of CSCs when the temperature was elevated22. CSCs under the number of 3, 

9, 17, 24, 25 and 26 changed their colour at 100° C. The thermo-stability phenomenon of CSCs was investigated in this 

research; however the dipper analysis of this effect can be applied for the development of the thermo-sensor that can be 

used together with the chemo-selective sensor.

The sensor response was investigated under the presence of DNT at different concentrations. We could observe the dose 

response effect where the colour difference related to the concentration of the analyte.

The colorimetric sensor array demonstrated a high classification rate to explosives, especially to DNT. The colorimetric 

sensor can be tested and evaluated as a thermo-sensor due to the specific colour changes at 100° C.  From the obtained 

results the presence of DNT could be determinate by the colorimetric sensor with high precision, with zero false 

negatives (See also confusion matrix in the Supplementary Material part). However, the colorimetric sensor was very 

unreliable for HMX, RDX and TATP; molecules were detected with a low precision rate: HMX was detected by sensor 

4 times out of 14 measurements; RDX was detected 8 times out of 14 measurements; TATP only 3 times out of 14 

measurements was classified correctly(See also confusion matrix in the Supplementary Material part).

HMX and RDX have very similar chemical structure. When RDX is manufactured in the large-scale over than 6% of 

HMX is available in the explosive mixture, and also various impurities and intermediate products are present. Also, 

RDX and HMX on the market are present as a mixture with other explosives like TNT, PETN and other. 
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It was observed that TATP is difficult to detect by using colorimetric molecules with donor-acceptor properties9. This is 

probably, why the colorimetric sensor was not able to detect the difference between RDX, HMX and TATP

The resulting colorimetric sensor was used for the analysis vapour of acetone, acetic acid, ethanol, formic acid, 

hydrochloric acid, methanol, propanol, and toluene22. To evaluate and expand the potential of the colorimetric sensor 

advanced signal processing and statistic methods such as principal component analysis and hierarchical cluster analysis 

will be applied to enhanced the sensor accuracy and reduce false alarm rate. 

Conclusions: 

The colorimetric sensor is a unique proprietary colour change-based sensor technology developed at DTU Nanotech and 

SDU with enormous potential to form the basis of a practical technological platform for the detection of traces of 

explosives like DNT, HMX, RDX and TATP. Using colorimetric sensors it is possible to observe colour changes due to 

particular molecules of interest that are indicative of explosives; be they amines, alcohols, phenols, ketones, aldehydes, 

or acids in the ppm and ppb range. 

We are working towards the detection possibilities by the selection of new colorimetric molecules that undergo colour 

changes in the presence of explosives and illegal molecules, as well as improving immobilisation methods for anchoring 

dye molecules on the solid support. 

This colorimetric sensor array is a rapid detection method. During of this work we could decrease the sensing time, it is 

possible to achieve accurate results within 2 minutes.  The colorimetric sensing technology can be used as a platform 

for the rapid detection and analysis of potential illegal substances through detection of their vapour with high specificity 

and sensitivity. Prior and this research showed a low limit in detection, improvement in sensitivity, specificity,

enhanced simplicity, advanced data processing  and validation may be obtainable with the multi-colorimetric sensor as 

compared to currently used technologies.

Another advantage of this technique is that colorimetric sensor array is an inexpensive approach, and can potentially be 

produced as single use disposable units. 
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Figures:

Fig.1. Simplified schematics of reversible two electron reduction-oxidation mechanism (A.) and schematic structure of 

the diversity of TTF molecules applied for the colorimetric sensor (B.). Common radicals:  1. R- Cyanoethylthio; 2. R-

Pentylthio; 3. R-(4-Nitrophenyl)ethylthio; 4. R-Methoxycarbonyl; 5. 2,5-Dibromo-[c]thieno; 6. R-

2-(2-(2-Methoxyethoxy)ethoxy)ethylthio; 7. R-2-(Carboxamide)ethylthio; 8. R- ????; 9. R-[c]pyrrolo; 10. R-N-Tos yl-

[c]pyrrolo; 11. R- N-Tosyl-2,5-Dihydro-[c]pyrrolo. Molecules with different radicals in TTF structure were synthesized 

in SDU. Complete structure and synthesis of the molecules described in the Supplementary Material and [Patent ,Ref].

Fig. 2. Representation of the colorimetric sensor array before and after the exposure of DNT. Results were obtained in 

the presence of DNT in the gas phase at 100° C. The control experiment - 100° C. The images of the difference map 

was generated after the mathematical calculations of the colour changes; and presented as the difference map obtained 

from the absolute values of RGB values of each dye spot before and after the exposure of the target.
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Fig 3.The PCA results (A.) and CDF plot (B.) of the colorimetric sensor array obtained from the response results of 
DNT (N=7; n=2). The DNT signal was compared with the signal obtained at the elevated temperature 100° C. A. The 
PCA plot demonstrates the position of DNT and 100° C replicates demonstrating the significant variables in relation to 
principal components (PC) to axis 1 and 2. B. The cumulative densities function analysis represents the response of 
chemo-selective compounds of 12, 12, 14, 15, and 24; molecules were defined as significant in detection of DNT. Up to 
14 independent measurements (coloured right side of the plot B.) were performed to evaluate colour changes of in the 
array (the left side of the plot B. demonstrates the delimitation of RGB values). Bars on the scheme represent colour
changes after calculation of the median and probability values of the signal. 
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Fig 4. Representation of the sensor response at different concentrations of DNT obtained at temperatures – 25, 35, 50 
and 70° C (N=1; n=4). A. The cumulative densities function analysis represents the response of chemo-selective 
compounds on DNT at different temperatures; 8, 12, 13 molecules were defined as significant in detection of DNT.
Four independent measurements (coloured right side of the plot A.) were performed to evaluate colour changes of in the 
array (the left side of the plot A. demonstrates the delimitation of RGB values). Bars on the scheme represent colour 
changes after calculation of the median and probability values of the signal. 

(B.) Calculation of the sensor correlations elevated temperatures – 25, 35, 50, 70 and 100° C (actual temperature) and 
predicted temperature (o-y) in relation to different concentration of DNT molecules.

Fig. 5 Mathematical representation of the signal-noise ratio of the colorimetric sensor during DNT detection.
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Figure 6. A difference map of the colorimetric sensor array obtained in the presence of DNT, HMX, RDX and TATP in 
the gas phase; saturated analyte vapour at 100° C - Control. The images of the difference map were generated after the 
mathematical calculations of the absolute values of RGB values.

Fig. 7. The cumulative densities function analysis for DNT, RDX, HMX and TATP (N=7; n=2). The signals obtained 
from detection of explosives were compared with the signal obtained at the elevated temperature 100° C - Control.  
CSCs in the array – 12 (TTF), Bromothymol Blue sodium salt (19) and Chlorphenol Red (24) were defined as 
significant in detection of DNT and control. Coloured right side of the plot – number of performed detections (N=8;
n=2). The left side of the plot demonstrates the result of RGB values. Bars on the scheme represent colour changes after 
calculation of the median and probability values of the signal. 

Figure 8. The PCA plot of the colorimetric sensor array obtained from the response results of DNT, HMX, RDX and 
TATP versus Other (Fig. 7) (N=7; n=2). The signals obtained from detection of explosives were compared with the 
signal obtained at the elevated temperature 100° C.  The PCA plot demonstrates the position of DNT and 100° C 
replicates demonstrating the significant variables which were obtained after the mathematical analysis in relation to 
principal components (PC) to axis 2 and 4. The colorimetric sensor was demonstrated the independent response on the 
identification of explosives versus Other (environment). 
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Our research is based on the selection of chemo-selective compounds (dyes) that undergo color 
changes in the presence of explosives and volatile organic compounds (VOCs). The list tested 
VOCs presented below (Table s2). The colorimetric sensor presented in this paper contains of 31 
chemically selective dyes immobilized on a silica gel membrane (Table s1).

Table s1. List of chemo-selective compound tested and applied further in the colorimetric sensor 
array for detection of explosives and volatile organic compounds.

CAS- Formula Mw Structure and Name Availability

1 NA C13H25N3O6S7 760.00
S

S
N

S

S

S

S
Ts

NO2

NO2

R1,R4 : N-Tosyl-[c]pyrrolo
R2,R3 : 2-(4-Nitrophenyl)ethylthio

Synthetic procedure 
described in 1

2 NA C38H30N4O8S12 1055.4
5

N

N

S

SS

S S

S

COOMe

COOMe

S

SS

S S

S

COOMe

COOMeNC

NC

R1 : (4’-{[7-(2-Cyanoethylthio)-2,3-
Dimethoxy-carbonyl-6-
thiomethylene]tetrathiafulvalene}-4-

Synthetic procedure 
described in 1
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bipyridine)methylethio
R2,R3 : Methoxycarbonyl 
R4      : 2-Cyanoethylthio

3 NA C28H28N4O6S8 773.07

S

SS

S S

S

S

S

NO2

NO2

H2N

H2N

O

O

R1,R4 : 2-(Carboxamide)ethylthio
R2,R3 : 2-(4-Nitrophenyl)ethylthio

Synthetic procedure 
described in 1

4 26314-39-
6

C14H12O8S8 436.50
S

SMeOOC

MeOOC S

S

COOMe

COOMe

R1,R2,R3,R4 : Methoxycarbonyl

2

5 300766-19
-2

C25H31NO2S7

601.97

S

S
N

S

S

S

S
Ts

R1,R4 : N-Tos yl-[c]pyrrolo
R2,R3 : Pentylthio

3

6 NA C25H35NO2S7 606.01
S

S
N

S

S

S

S
Ts

HH

HH

R1,R4 : N-Tosyl-2,5-Dihydro-[c]pyrrolo
R2,R3 : Pentylthio

Synthetic procedure 
described in 1

7 NA C19H15NO6S5 516.65

S

S
N

S

S

COOMe

COOMe
Ts

R1,R4 : N-Tosyl-[c]pyrrolo
R2,R3: Methoxycarbonyl

Synthetic procedure 
described in 1

8 NA C25H31N3S6 565.92

S

S
N

S

S

S

S

H2N

HN

R1,R4 : N-(p-amidinophenyl)-[c]pyrrolo
R2,R3 : Pentylthio

Synthetic procedure 
described in 1

9 NA C23H35NO6S6 613.92
S

S
N

S

S

S

S O O O

O O O

R1,R4 : N-Methyl-[c]pyrrolo
R2,R3 :
2-(2-(2-Methoxyethoxy)ethoxy)ethylthio

Synthetic procedure 
described in 1

10 132765-36
-7

C18H16N4S8 544.87
S

SS

S S

S

S

S

CN

CNNC

NC

R1,R2,R3,R4 : 2-Cyanoethylthio

Synthetic procedure 
described in 4
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11 NA C14H14Br2S12 566.52
S

S
S

S

S

S

S
Br

Br

R1,R4 : 2,5-Dibromo-[c]thieno
R2,R3 : Propylthio

Synthetic procedure 
described in 5

12 31366-25-
3

C6H4S4 204.36
S

S

S

S Sigma-
Aldrich.Co.LLC.

13 55259-49-
9

C10H12Se4 448.04
Se

Se

Se

Se

R1,R2,R3,R4 : Methyl

Sigma-
Aldrich.Co.LLC.

14 NA C100H148N4O24S24
2559.8
2

HNNH

NH HN

S
S

S
SS

S

S
S

S
SS

S

S
S S

S
S

S

S

S

S

S

S

S

O O

O

O

O

O

O

O

O

OO

O
O

O

O

O

O

O

O

O

O

O
O

O

6

15 NA C68H84N4S24
1727,0
1

NH HN

HNNH

S
S

S
SS

S

S
S

S
S

S
S

S
S

S
S

PrS

PrS SPr

SPr

SPr

SPrPrS

PrS

7

16 72-48-0 C14H8O4 240.21 Alizarin Sigma-
Aldrich.Co.LLC.

17 76-60-8 C21H14Br4O5S 698.01 Bromocresol Green Sigma-
Aldrich.Co.LLC.

18 115-40-2
C21H16Br2O5S

540.22 Bromocresol Purple Sigma-
Aldrich.Co.LLC.

19 34722-90-
2 C27H27Br2NaO5S 646.36 Bromothymol Blue sodium salt Sigma-

Aldrich.Co.LLC.

20 115-39-9
C19H10Br4O5S

669.96 Bromphenol Blue Sigma-
Aldrich.Co.LLC.

21 125-31-5 C23H22O5S 410.48 Xylenol Blue Sigma-
Aldrich.Co.LLC.
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22 4430-20-0
C19H12Cl2O5S

423.27 Chlorphenol Red Sigma-
Aldrich.Co.LLC.

23 1733-12-6
C21H18O5S

382.43 Cresol Red Sigma-
Aldrich.Co.LLC.

24 1552-42-7
C26H29N3O2 415.53 Crystal Violet Lactone Sigma-

Aldrich.Co.LLC.

25 121792-
58-3 C29H19Cl2NO 468.37

2,6-Dichloro-4-(2,4,6-triphenyl-1-
pyridinio)phenolate

Sigma-
Aldrich.Co.LLC.

26 10081-39-
7 C41H29NO 551.68 Reichardt’s dye Sigma-

Aldrich.Co.LLC.

27 143-74-8 C19H14O5S 354.38 Phenol Red Sigma-
Aldrich.Co.LLC.

28 603-45-2 C19H14O3 290.31 Rosolic acid Sigma-
Aldrich.Co.LLC.

29 493-52-7 (CH3)2NC6H4N=
NC6H4CO2H

269.30 Methyl Red Sigma-
Aldrich.Co.LLC.

30 5423-07-4 C16H8N4Na2O11S2 542.36 Nitrazine yellow Sigma-
Aldrich.Co.LLC.

31 2374-05-2 BrC6H2(CH3)2OH 201.06 4-Bromo-2,6-Dimethylphenol Sigma-
Aldrich.Co.LLC.

Experimental design

Notation for experimental design section

Number of blocks; = 15.
Number of sensors; = 31. One dye / chemo-selective compound 
corresponds to one sensor.

L Number of sensor responses; L= 3.
Number of analytes; = 18.
Number of measurements; = missing arrays = 253.

To conduct experiments correctly, we employ the randomized complete blocked design approach
(RCBD). In this design the measurements are grouped into blocks, and within each block each 
analyte is exposed to the sensor array exactly once. The purpose of the design is to enable more 
precise estimation of effects since the variation from block to block can be removed; hence the 
RCBD is often referred to as a noise reducing design. Moreover, the order of the chemo-selective 
compounds (CSC) on the silica gel was randomized between 15 blocks. This is due to the fact that 
some of chemo-selective compounds used in this array were very reactive, the order those 
compounds on the silica gel support was randomized. We analyzed the sensor sensitivity to the 
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environment first since some CSCs were exposed to the environment before the sensor array was 
exposed to the target analyte. This behavior of CSCs was predictable due to a strong reactive 
environment of a chemical laboratory. However, the response of CSCs on the environment was 
neglected; pictures of the colorimetric sensor have been taken immediately after the immobilization 
of dyes and directly after the exposure of analytes and this response were evaluated.

The application of CSCs on the silica gel support was around of 20 minutes (6 applications were 
performed per 1 assay) thus the maximum time a compound was exposed to the surrounding 
environment was around 20 minutes.

The total experimental design is listed in Table s2. The experiment lasted for 8 days, with two days 
break between day 4 and 5. Every day one block was executed in the morning and another block in 
the afternoon; although on the 8th day only the morning block was executed. The room temperature 
(RT) was measured each day and was always in the range 21-25° C.

During performed measurements it was observed that CSCs could change colors due to their 
stability; a new batch of CSCs was prepared every 3rd day.  

The design contained in total of = 15, where each analyte was measured exactly once excluding 
mishaps. During the experiments some random mishaps occurred resulting in sensor array loss. The 
lost sensor arrays are listed in Table s3. Alternatively, we could have chosen to disregard 
incomplete blocks as whole, but we choose to use the entire collected data.

Table s2. The list of analytes tested by the colorimetric sensor array.

Tested analyte

Acid Alcohol Amine Arene Environ

ment

Explosive Inorganic 

Explosive

Ketone Thiol

Acetic 
acid

Ethanol Ethylendiami
ne

Toluene 100° C DNT KNO3 Acetone Merca
ptoeth
anol

Formic 
acid

Methan
ol

Propylamine RT HMX

Hydrochl
oric acid

Triethanolam
ine

RDX

TATP

 

Table s3. List of excluded sensor arrays.

Day 1 block1 Day 1 block 2 Day 8 block 1

Acetone Acetone RT
DNT Ethylendiamine 100° C
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Ethanol Ethanol KNO3
HMX Mercaptoethanol

Methanol Propylamine
RDX Triethanolamine
TATP Toluene

 
 
The careful experimental design allowed us to control nuisance factors that could influence the 
experiment performance and conclusions. Two factors were investigated, the first factor was a 
block effect (which coincides with the day effect) and the second factor we were taking in account 
was a spotting effect (which corresponds with dyes distribution on the solid support).

The spotting effect characterizes the different variability of the spotting procedure; factors such as
the origin of the solid support, mechanical damage of the solid support, pH, solvents and humidity 
can effect on the spotting procedure. Moreover, the immobilization of compounds on the silica gel 
is likely to induce noise as this is manual labor.

Digital imaging of the dye’s array before and after exposure to the analyte (Tab. s2) creates a color 
difference map which composes a unique fingerprint for each analyte. 

Silica gel slides carrying colorimetric arrays were scanned before exposing dyes to an analyte, if 
the color of a dye before exposure affected the sensor response then that was estimated as a 
nuisance effect. That factor was undesired and can be minimized by refining and perfecting the 
sensor manufacturing procedure, thus the effect was not relevant for determining of the sensor 
performance.

Traditionally, the model that is implicitly assumed when working with colorimetric sensor arrays is

= + (1)

where, is the color difference sensor response. The index refers to different treatments,
= {1,2, … , }. A treatment consists of exposing the array to an analyte in 2 minutes using a fixed 

temperature of 100°C for organic explosives and room temperature for other analytes. The index 
refers to repeated measurements, = {1,2, … , }. The index and are the sensor response index, 
i.e. we operate with = 31 dyes with = 3 channels for each dye (RGB); = {1,2, … , },

= {1,2,3}. Thus we have = 93 systems that must be analysed as each sensor array yields a 
total of 93 readouts per measurement. The noise term is assumed to be independent and 
normally distributed. The significant term in the equation is the treatment term which is the 
mean sensor response ( , ) of the th treatment. The colorimetric sensor was measured against 
controls (100°C and RT), so to verify statistically the sensor measurement is significant to the 
target analyte and we have the null hypothesis ( and ):

: =  
: 

(2)
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where, refers to the mean of the control treatment. Since our experimental design was a 
blocked noise reducing design we can augment the Equation 1 and test for a block effect in the 
Equation 3:

= + + (3)

where is the effect of the th block. As the experiment was designed according to the scheme 
where each repetition was in a distinct block, can be replaced as the block index instead of the 
repetition index ( instead of ). For each of our system there will be block effect 
variables. All of these variables must be zero; otherwise there is an effect from the blocking. Thus 
the null hypothesis that can be applied is

: = = = = 0 
: 0     for at least one 

(4)

We can choose to augment the equation further by considering if the difference color contains all 
possible information, i.e. the color of a dye before exposure to analyte might influence on a 
response in general. This corresponds to conducting analysis of covariance (ancova) originally
proposed by Fisher8. Formally, the color before exposure to analyte is a possible covariate (or 
concomitant variable) of the sensor response:

= + + + (5)

where is a linear regression coefficient. If is different than zero, then the color response 
before exposure has influence on sensor response ( , ) for treatment . The null hypothesis when
testing for significant covariates is

: = 0 

: 0
(6)

The model specified in eq. (5) is considered the complete model and is applied to the data. Using 
that model, adjusted responses that averages out the effects from blocks and covariates have been 
calculated. This is done by using the estimated means and then adding the residuals. The 
adjusted values were used to create the PCA and CDF plots as well as calculate confusion matrices 
in the main paper.

Hypothesis testing

Since we are performing multiple hypothesis tests we applied a low significance acceptance level
of = 0.01 during the analysis.

The hypotheses are tested using two different tests. The treatment effects specified in eq. (2) are 
most likely not normally distributed with constant variance. In order to make the results as 
convincing as possible we choose a test that only put mild assumptions on the distribution of the 
treatment effects. Hence we test using the Mann–Whitney–Wilcoxon (MWW) test9,10. The MWW
test is a nonparametric test with the only assumptions that treated data is ordinal and independently
(randomly) collected. The null hypothesis of the MWW test is that two variables (in this case, the 
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treatment versus the control) are stochastically equal. The alternative hypothesis is that one of the 
variables is stochastically greater than the other.

To perform the hypothesis tests specified in eq. (4) and (6), we use the traditional student1 -test11.
The -test tests if the mean of a normally distributed variable is significantly different than zero. 
For testing the block effects it is reasonable assumptions, since each block is containing (almost) 
identical treatments. Hence, the variation for the blocks should be only due to measurement noise 
and a block offset. The same can be said for the regression coefficients . Here, it is the same 
treatment that is always applied, since the regression coefficients are estimated for each treatment.
Further, given the amount of samples the -test should be approximately correct.

To summarize the outcomes of the hypothesis tests requires more work. The -value from a 
hypothesis test is the probability of rejecting a true . Hence, when performing many hypothesis 
tests it is likely that some of these are wrongfully found significant. E.g. from an average point of 
few, given 20 tests with =0.05 one of them is wrong even though all of them is found significant.

Table s4 summarizes the gathered variables when multiple hypothesis tests are performed.

Table s4. Possible outcomes of multiple hypothesis tests. and are results from the significance 
tests, is the number of times was not rejected and is the number of times was rejected. 

is the number of times was true and also found true by the test. is the number of times the 
test found true even though it was false. Likewise is the number of times was true but was 
found false by the test. So + is the total amount of false findings and + is the total amount 
of true findings.

Not Significant Significant
Null true
Alternative true
Totals

The issue here is that we are only able to observe and as these are totals from the significant 
test. The other variables , , , are unobserved variables and unknown. To handle this issue the 
framework of controlling the false discovery rate is applied12. In this framework the ratio of falsely 
significant results is estimated:

FDR = [ / ] (7)

The FDR is used to inform about the strength of the findings, e.g. if FDR = 0.5 it means that half of 
the significant results are expected to be wrongfully found significant. The FDR controlled such 
that FDR < 0.01, that is at most 1% of the significant results are wrongfully found significant.

For each dye/coefficient we report the number of significant results and the highest significant -
value. Table(s5-s9 in other document).

1 Student was an alias used by William Sealy Gosset.
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To further summarize the results we can estimate the -value, which is the expected FDR given 
that significant results was found, often written as positive false discovery rate13

= [ | > 0] (8)

The -value is estimated according to the framework proposed by Storey14 with the accompanying 
software QVALUE. The approach allows for weak block dependences in -values which is likely 
the case for colorimetric sensor arrays.

Kinetics plot

To evaluate how able the sensor is to estimate the temperature / analyte density an experiment is 
conduction. Four repetitions was made each temperature was measured each day.

A linear regression is performed selecting dye 8,12,13,18,29 (REF: MLSP2012 paper) as these are 
dyes that are particular proficient at detecting explosives. Since we are an ill-posed problem we 
employ forward selection using Bayesian Information Criterion to select which dyes should be 
used as regressors. The model is build using LOO-CV. (This needs updating, discuss at meeting at 
the 5th)

Supporting Information

All hypothesis testing, linear regression and PCA was made using MATLAB R2012b ModelLinear 
class. The -nearest neighbor classification was made using custom MATLAB script. All code and 
data can be downloaded at http://www.imm.dtu.dk/pubdb/p.php?6504

Confusion matrix here 

As additional evidence that the model specified in eq. (5) is reducing the noise of the experiment, a 
-nn classifier was applied to the data, i.e. we are comparing the results if we are using the model 

specified in eq. (1) versus the model in eq. (5). A significant improvement is observed and it must 
be said that if the model in eq. (5) is used when analyzing data from colorimetric array, a 
significant increase in accuracy may be obtained.
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Figure s1: The confusion matrix when using the model in eq. (1)
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Figure s2: The confusion matrix when using the model in eq. (5).
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Table 5: Summary of the hypothesis test H0 : aikl 1= 0 for TTF dyes when organic and inorganic 

explosives were measured. R is the number of rejected H0 for a given dye. The listed p-value is

the highest value of the significant results.

Dye 100° C DNT HMX KNO3 RDX TATP

1 R = 3
p < 0.001

R = 2
p = 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

2 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

3 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

4 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

5 R = 3
p < 0.001

R = 3
p < 0.001

R = 2
p = 0.002 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

6 R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

R = 1
p = 0.001

R = 2
p < 0.001

R = 2
p < 0.001

7 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

8 R = 2
p < 0.001

R = 3
p < 0.001

R = 3
p = 0.001

R = 1
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

9 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

10 R = 2
p < 0.001

R = 2
p = 0.003

R = 3
p = 0.001 R = 0 R = 3

p = 0.002
R = 2

p < 0.001

11 R = 2
p < 0.001

R = 3
p = 0.005

R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p = 0.005

12 R = 3
p < 0.001

R = 3
p < 0.001

R = 2
p = 0.001 R = 0 R = 1

p < 0.001
R = 3

p < 0.001

13 R = 3
p < 0.001

R = 3
p = 0.006

R = 3
p = 0.002

R = 2
p = 0.003

R = 2
p = 0.003

R = 3
p = 0.002

14 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

15 R = 3
p = 0.002

R = 3
p < 0.001

R = 3
p = 0.002 R = 0 R = 3

p < 0.001
R = 3

p < 0.001
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Table 6: Summary of the hypothesis test H0 : aikl 1= 0 for non-TTF dyes when organic and 

inorganic explosives were measured. R is the number of
rejected H0 for a given dye. The listed p-value is the highest value of the significant results.

Dye 100° C DNT HMX KNO3 RDX TATP

16 R = 0 R = 3
p = 0.003

R = 2
p = 0.004 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

17 R = 1
p < 0.001

R = 2
p = 0.002

R = 2
p < 0.001 R = 0 R = 2

p < 0.001
R = 2

p = 0.001

18 R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001 R = 0 R = 2

p < 0.001
R = 2

p < 0.001

19 R = 2
p < 0.001

R = 2
p < 0.001

R = 3
p = 0.004 R = 0 R = 3

p = 0.004
R = 2

p < 0.001

20 R = 1
p < 0.001

R = 1
p < 0.001

R = 2
p = 0.001 R = 0 R = 2

p = 0.004
R = 2

p = 0.005

21 R = 0 R = 0 R = 2
p = 0.007 R = 0 R = 0 R = 0

22 R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001 R = 0 R = 2

p < 0.001
R = 2

p < 0.001

23 R = 0 R = 0 R = 1
p < 0.001 R = 0 R = 1

p = 0.001
R = 1

p < 0.001

24 R = 1
p < 0.001

R = 1
p < 0.001

R = 1
p < 0.001

R = 1
p = 0.002

R = 1
p < 0.001

R = 1
p < 0.001

25 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001

26 R = 2
p = 0.006 R = 0 R = 0 R = 0 R = 0 R = 0

27 R = 0 R = 1
p = 0.003 R = 0 R = 0 R = 0 R = 1

p < 0.001

28 R = 2
p = 0.003

R = 3
p < 0.001

R = 2
p = 0.001 R = 0 R = 3

p = 0.002
R = 3

p = 0.001

29 R = 3
p < 0.001

R = 2
p = 0.002

R = 1
p < 0.001

R = 1
p < 0.001

R = 2
p = 0.005

R = 2
p = 0.006

30 R = 1
p = 0.001 R = 0 R = 1

p < 0.001 R = 0 R = 3
p = 0.006 R = 0

31 R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p < 0.001
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Table 7: Treatment effect different from control H0 : i jk = c jk , TTF dyes. R is the number of 
rejected H0 for a given dye. The listed p-value is the highest value of the significant results

Dye DNT HMX KNO3 RDX TATP

1 R = 1
p = 0.002 R = 0 R = 3

p < 0.001
R = 3

p = 0.009 R = 0

2 R = 2
p = 0.003 R = 0 R = 3

p < 0.001 R = 0 R = 0

3 R = 2
p < 0.001 R = 0 R = 3

p = 0.004 R = 0 R = 0

4 R = 1
p = 0.002

R = 2
p = 0.006

R = 2
p < 0.001

R = 1
p = 0.002

R = 2
p < 0.001

5 R = 0 R = 0 R = 2
p = 0.001

R = 3
p = 0.004

R = 1
p = 0.001

6 R = 3
p < 0.001 R = 0 R = 3

p = 0.002 R = 0 R = 0

7 R = 0 R = 2
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 2
p = 0.003

8 R = 2
p < 0.001

R = 2
p < 0.001 R = 0 R = 2

p < 0.001
R = 2

p < 0.001

9 R = 3
p = 0.005

R = 3
p < 0.001

R = 3
p = 0.005 R = 0 R = 0

10 R = 2
p < 0.001

R = 3
p = 0.002

R = 3
p < 0.001 R = 0 R = 0

11 R = 3
p = 0.006 R = 0 R = 2

p < 0.001
R = 1

p = 0.001 R = 0

12 R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 1

p < 0.001 R = 0

13 R = 2
p < 0.001

R = 1
p < 0.001

R = 1
p < 0.001

R = 2
p = 0.005

R = 3
p = 0.003

14 R = 2
p < 0.001

R = 3
p = 0.002

R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

15 R = 3
p < 0.001 R = 0 R = 3

p < 0.001
R = 3

p = 0.009
R = 1

p = 0.002
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Table 8. Treatment effect different from control H0 : i jk = c jk , Non-TTF dyes. R is the
number of rejected H0 for a given dye. The listed p-value is the highest value of the significant
results

Dye DNT HMX KNO3 RDX TATP

16 R = 3
p = 0.002 R = 0 R = 3

p = 0.007
R = 1

p = 0.002
R = 1

p < 0.001

17 R = 2
p < 0.001

R = 2
p < 0.001

R = 3
p = 0.001

R = 1
p < 0.001

R = 2
p < 0.001

18 R = 1
p < 0.001

R = 1
p < 0.001

R = 3
p < 0.001

R = 1
p < 0.001

R = 1
p < 0.001

19 R = 3
p < 0.001

R = 3
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

20 R = 2
p = 0.001

R = 2
p < 0.001

R = 3
p = 0.004

R = 1
p < 0.001

R = 2
p < 0.001

21 R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

22 R = 3
p = 0.006

R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p = 0.001

R = 3
p < 0.001

23 R = 3
p < 0.001

R = 3
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

24 R = 3
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

25 R = 1
p < 0.001

R = 1
p < 0.001

R = 1
p < 0.001

R = 3
p = 0.003

R = 3
p = 0.007

26 R = 3
p < 0.001

R = 3
p = 0.002

R = 3
p < 0.001

R = 3
p < 0.001

R = 3
p < 0.001

27 R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

28 R = 2
p < 0.001

R = 3
p < 0.001

R = 3
p = 0.001

R = 2
p < 0.001

R = 2
p < 0.001

29 R = 0 R = 2
p < 0.001

R = 3
p = 0.001

R = 2
p < 0.001

R = 2
p < 0.001

30 R = 2
p < 0.001

R = 2
p < 0.001

R = 3
p < 0.001

R = 2
p < 0.001

R = 2
p < 0.001

31 R = 0 R = 0 R = 3
p < 0.001

R = 3
p = 0.004 R = 0

R = 65
q = 0.000

R = 51
q = 0.004

R = 79
q = 0.000

R = 58
q = 0.004

R = 53
q = 0.002



Advanced detection of explosives using colorimetric sensor array 239

Dye Block

11 R
p

12 R
p

13 R
p

14 R
p

15 R 0

16 R
p

17 R
p

18 R
p

19 R 0

20 R
p

Dye Block

21 R
p

22 R
p

23 R
p

24 R 0

25 R
p

26 R
p

27 R 0

28 R
p

29 R
p

30 R
p

Dye Block

31 R 0

Table 9: Summary of the hypothesis test H0 : ikl =0, i = {1,2, . . . ,B} . R is the number of rejected
H0 for a given dye. The listed p-value is the highest value of the significant results.

Dye Block

1 R = 2
p = 0.004

2 R = 3
p < 0.001

3 R = 3
p < 0.001

4 R = 3
p < 0.001

5 R = 0

6 R = 1
p < 0.001

7 R = 3
p < 0.001

8 R = 2
p < 0.001

9 R = 3
p < 0.001

10 R = 3
p < 0.001
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Appendix G

Analytes

In this appendix the compounds that has been handled during this ph.d. is
described in detail. There is also a table that shows which chemical family the
various compounds belong to.

Compound Possible application
Acetic acid A raw material in production of acetic anhydride,

acetates, dyes (salts of acetic acid (Fe, Al, Cr, etc.).
Acetic acid is used as a solvent in production of varnish,
latex coagulant, acetylating agent in the organic
synthesis. In medicine for production of aspirin. In the
manufacture of condiments, pickles, canned foods in the
form of vinegar - 3-15% aqueous solution and vinegar -
80% aqueous solution food acetic acid.

Acetone Commonly used solvent of many organic chemicals:
nitrocellulose and cellulose acetate (synthetic fiber). Due
to the relatively low toxicity it is used in chemical and
pharmaceutical industry for the synthesis of acetic
anhydride, diacetone alcohol, methyl methacrylate,
diphenylolpropane, isophorone and many other
compounds.



242 Analytes

Compound Possible application
Ammonium
Nitrate

Nitrogen fertilizer. It is also used in the production of
explosives (e.g. ammonites – amatol), in the reprocessing
of irradiated nuclear fuel.

Benzodioxol A precursor for perfumes, insecticide and
pharmaceuticals. In production of safrole and ecstacy.

Diesel Diesel fuel

2,4-Dinitrotoluene manufacture of explosives, dyes, in organic synthesis, as a
plasticizer. Precursor in the production of trinitrotoluene
(TNT)

Ethanol A solvent of many organic chemicals: diethylether,
chloroform, acetaldehyde, acetic acid, ethylacetate,
ethylamine, ethylacrylate, ethylsilicates, etc. Ethanol is
component of antifreeze, jet fuel, can be used as a biofuel.
Used in electronics, as household chemical, in production
of explosives.

Ethylendiamine Used as a plasticizers for phenol-formaldehyde resins,
polyurethane fibers, used to stabilize the lubricants and
rubber latex in the production of polyurethanes and
thermoplastic adhesives, in production of fungicides and
additives to motor oils, in pharmaceutical industry.

Formic acid Used in dyeing of textiles and paper, leather processing,
and as a preservative in silage of green mass, fruit juices,
as well as for disinfection of barrels of beer and wine. In
production of pesticides, solvents (e.g.
dimethylformamide - DMF), salts and esters. Used as a
solvent - nitrates and cellulose acetate; as a perfume -
soap, used in he production of vitamins B1, A, E.

Heptane Added to motor fuels to increase high-octane
components, n-heptane is used as a solvent.

HMX Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine - is a
military class explosives. HMX is the highest-energy solid
explosive.
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Compound Possible application
Hydrochloric acid Used in production in organic synthesis – production of

vinyl chloride and rubber; production of chlorides (Mn,
Fe, Zn), sodium glutamate, as a catalyst (e.g. alkylation
of benzene).

Isosafrole Synthesis of illegal drugs.

Mercaptoethanol Research: electrophoresis, biological antioxidant.

Methanol In production of formaldehyde, methyl methacrylate,
methylamines, dimethyl, methylformate, acetic acid,
methyl alcohol, acetic anhydride, vinyl acetate, ethanol,
acetaldehyde, ethylene glycol. As an additive to gasoline
(methyl alcohol has a high octane number) and as a part
of biofuel. In pharmaceutical industry.

Pentanol

Potassium nitrate Used as a basic fertilizer containing 44% K2O and 13%
Nitrogen); production of explosives

Propanol Used as a solvent for waxes, polyamide containing inks,
synthetic resins, polyacrylonitrile, co-solvent of PVC
adhesives, gelling and plasticizing agent. It is also used
for the synthesis of propionic acid, propionaldehyde,
propylamine, detergents, pesticides, drugs.

Propylamine Used as cellulose modifiers, corrosion inhibitors and
stabilizers. In pharmaceutical industry, in production of
lubricates, dyes, resins, for the treatment of textile and
leather products, crude oil emulsion breakers, etc. As
cleaning, flotation agents, emulsion floor wax,
antioxidants and rubber accelerators.

RDX Hexahydro-1,3,5-trinitro-1,3,5-triazine - cyclonite or
hexogen is currently the most important military high
explosive.

TATP Triacetone triperoxide is peroxide based type explosive.

Toluene Used in production of TNT.
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Compound Possible application
Triethanolamine Used in the cement industry as a binder between

synthetic and natural ingredients of cement, in the
production of corrosion inhibitors, synthetic fibers. Used
as an absorbent of ”acid” gases (H2S, CO2, SO2, etc.)
during purification of process gases at oil refineries, gas
production and chemical industries. In pharmaceutical
industry and cosmetics as a emulsifying, dispersing,
stabilizing foams agent, detergents, shampoos, detergents.

TNT Trinitrotoluene, used the manufacturing of dyes,
explosives; used as a solvent in production of polymers,
printing inks, in rubber and pharmaceutical industry.

Water Purified water, commonly used solvent.
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Categorization of analytes

Chemical family Analyte Abbreviation

Acid
Acetic acid AA
Formic acid FA

Hydrogen chloride HCl

Alcohol

Ethanol EtOH
Methanol MeOH
Pentanol PeOH
Propanol PrOH

Aldehyde
Nonanal NA
Octonal OA

Amine
Ethylendiamine EDA
Propylamine PA

Triethanolamine TEA

Arene
Diaminotoluene DAT

Toluene Tol

Drug

Benzodioxole BDO
Isosafrole IA

Lysergic acid diethylamide LSD
Phenylacetone PhA

Explosive

Dinitrotoluene DNT
Octogen HMX

Cyclotrimethylenetrinitramine RDX
Triacetone Triperoxide TATP

Trinitrotoluene TNT

Ketone Acetone Ac

Other
Diesel Diesel

Heptane Hep

Salt

Potassium chloride KCl
Potassium nitrate KNO3

Ammonium chloride NH4Cl
Ammonium nitrate AN
Sodium chloride NaCL

Thiol Mercaptoethanol ME
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Isabelle Guyon and André Elisseeff. An introduction to variable and feature se-
lection. The Journal of Machine Learning Research, 3:1157–1182,March 2003.
ISSN 1532-4435. URL http://jmlr.csail.mit.edu/papers/v3/guyon03a.

html.

Tommy S. Alstrøm, Raviv Raich, Natalie V. Kostesha, and Jan Larsen. Fea-
ture extraction using distribution representation for colorimetric sensor arrays
used as explosives detectors. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 2125–2128, 2012. doi: 10.

1109/ICASSP.2012.6288331.

http://dx.doi.org/10.1109/NNSP.2002.1030096
http://dx.doi.org/10.1109/NNSP.2002.1030096
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
http://jmlr.csail.mit.edu/papers/v3/guyon03a.html
http://jmlr.csail.mit.edu/papers/v3/guyon03a.html
http://dx.doi.org/10.1109/ICASSP.2012.6288331
http://dx.doi.org/10.1109/ICASSP.2012.6288331

	Summary (English)
	Summary (Danish)
	Preface
	List of Publications made during the PhD
	Acknowledgements
	Nomenclature 
	Contents
	1 Introduction
	1.1 Chemical sensing
	1.2 Antiterrorism
	1.3 Demining
	1.4 Explosive detection using a multisensor approach
	1.5 Sensor evaluation framework
	1.6 Outline

	2 Learning Theory in the context of sensors
	2.1 A brief history of machine learning
	2.2 Unsupervised learning
	2.2.1 Principal component analysis
	2.2.2 Non-negative matrix factorization

	2.3 Supervised learning
	2.3.1 Model evaluation
	2.3.2 Model selection
	2.3.3 Performance measures

	2.4 Regression
	2.4.1 Linear regression
	2.4.2 Principal component regression
	2.4.3 Artificial neural network regression
	2.4.4 Gaussian process regression

	2.5 Classification
	2.5.1 k-nearest-neighbor
	2.5.2 Vector-space classification
	2.5.3 Sparse logistic regression
	2.5.4 Gaussian process classification
	2.5.5 Artificial neural network classification


	3 Quartz crystal microbalance sensors
	3.1 Detection of Ecstasy
	3.1.1 Data partitioning
	3.1.2 Model evaluation
	3.1.3 Analyte classification
	3.1.4 Concentration estimation

	3.2 Related work
	3.3 Summary

	4 Colorimetric sensors
	4.1 Preproccesing of images
	4.1.1 Dye localization
	4.1.2 Aligning images
	4.1.3 Feature extraction

	4.2 Datasets
	4.3 Visualization of colorimetric data
	4.4 Detection using single value statistics on difference colors
	4.4.1 Comparing the statistics
	4.4.2 Detection of explosives
	4.4.3 Detection of drugs

	4.5 Improving detection accuracy by calibrating colors
	4.5.1 Evaluation using k-nearest-neighbor

	4.6 Using histogram and manifold methods
	4.6.1 Hellinger Distance
	4.6.2 The Hausdorff Distance
	4.6.3 Evaluation using k-nearest-neighbor
	4.6.4 Evaluation using Gaussian process classification

	4.7 Related work
	4.8 Summary

	5 Multisensor approach for dection of explosives
	6 Conclusion and future work
	A Miniaturized multisensory approach for the highly sensitive and selective detection of explosives
	B Data-driven modeling of nano-nose gas sensor arrays
	C Data representation and feature selection for colorimetric sensor arrays used as explosives detectors
	D Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors
	E Hausdorff and Hellinger for Colorimetric Sensor Array Classification
	F Advanced detection of explosives using colorimetric sensor array
	G Analytes
	Bibliography

