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Objective We aim to develop a simulation model of the complex glucose-insulin-glucagon dynamics
based on physiology and data. Furthermore, we compare pharmacokinetic (PK) and pharmacodynamic
(PD) characteristics of marketed reconstituted glucagon with a stable liquid glucagon analogue invented
by Zealand Pharma A/S.
Research Design and Methods We expanded a physiological model of endogenous glucose production
with multiplicative effects of insulin and glucagon and combined it with the Hovorka glucoregulatory
model. We used a Bayesian framework to perform multidimensional MAP estimation of model param-
eters given priors reported in the literature. We used profile likelihood analysis to investigate parameter
identifiability and reduce the number of model variables. We estimated model parameters in pre-clinical
data from one cross-over study with a total of 20 experiments in five dogs. The dogs received two subcu-
taneous (SC) bolus injections of low and high doses of glucagon and ZP-GA-1 (20 and 120 nmol/kg).
Results We report posterior probability distributions and correlations for all identifiable model parame-
ters. Based on visual inspection and residual analysis, the PD model described data satisfactorily for both
glucagon and the analogue. Parameter estimates of the PD model were not significantly different between
the two compounds.
Conclusions The new PK/PD model enables simulations of the glucose-insulin-glucagon dynamics after
a SC bolus of glucagon or glucagon analogue. The novel glucagon analogue by Zealand Pharma A/S
shows PK and PD characteristics similar to marketed glucagon.

Keywords: Pharmacokinetics, PK, Pharmacodynamics, PD, modeling, modelling, glucagon, glucagon
analogue, glucose, insulin, glucoregulatory, ODE, SDE, MAP, simulation, profile likelihood
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1 Introduction

Conventionally, diabetes type 1 is treated with multiple daily injections of insulin or continuous infusion
of insulin using a pump. The stress of calculating the needed amount of insulin based on food intake,
exercise and insulin sensitivity has led to research in creating an artificial pancreas (AP). A basic AP is
a closed-loop (CL) system consisting of an insulin pump, a continuous glucose monitor (CGM) and a
control algorithm to adjust insulin dosage through the pump based on CGM sensor readings.
Until recently, researchers and developers of the AP have mainly focused on a single hormone ap-
proach [1]. However, research in the field of dual hormone AP systems is growing substantially and
clinical studies are being conducted by research groups in Boston [2–4], Montreal [5–8], Portland [9,10],
and Amsterdam [11–14]. In multiple studies of single hormone open-loop (OL) versus single hormone
CL and/or dual hormone CL systems these groups have demonstrated that time in range increases when
using a CL system compared to an OL system. Moreover, comparative studies show significant reduction
of time spent in hypoglycaemia and number of hypoglycaemic events using a dual hormone CL system
versus a single hormone CL system [6, 7, 9].

The unstable nature of native glucagon in liquid formulation challenges the development of a dual hor-
mone AP. The hormone is currently marketed in dry form and needs reconstitution daily [16, 17]. Im-
mediately after reconstitution glucagon starts degrading and forming fibrils. The fibrillation can cause
the pump tubing to occlude and the degradation reduces the efficacy of the compound. Currently, only
reconstituted glucagon is available for dual hormone AP studies which frequently experience glucagon
pump occlusions [3, 13, 14].
At least two pharmaceutical companies are developing glucagon stable in liquid solution suitable for
pump use. Xeris Pharmaceuticals Inc. is developing native glucagon stabilized in dimethyl sulfoxide
(DMSO) [18], whereas Zealand Pharma A/S is developing a glucagon analogue in aqueous solution [19].
With this ongoing development of liquid stable glucagon suitable for pump use, the realization of a dual
hormone AP is becoming practically possible.

In silico experiments are useful during the development of a control algorithm for a dual hormone AP

Figure 1: Endogenous glucose production due to glucagon and insulin. Left) The relationship between
liver glucagon concentration and glucose production. Solid circles represent data from dogs, and open cir-
cles represent data from humans. Right) The relationship between liver insulin concentration and glucose
production in dogs by gluconeogenesis and glycogenolysis. Data were acquired during basal arterial and
portal glucagon concentrations, basal arterial insulin concentrations and mostly during euglycemia. Both
graphs are from Cherrington [15].
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Figure 2: The effect of increased glucagon on glycogenolysis and gluconeogenesis in the dog. Somato-
statin (SRIF) was given along with basal (B) replacement amounts of insulin and glucagon intraportally.
At time zero the glucagon infusion rate was increased. The data is from Wada et al. [27].

before applying the algorithm in a clinical trial. Simulations in silico can also provide new insights
in physiological system. A model describing the dynamics between glucose and insulin is validated
by tracer data [20], and widely used in the literature for simulations of the endocrine regulatory sys-
tem [21–23]. Recent proposed extensions include the effect of glucagon on endogenous glucose produc-
tion (EGP) [24–26]. It is important to understand the glucose dynamics of the body to evaluate if these
glucagon-glucose models are capturing the complexity of the reality.

The quantitative dynamics of insulin and glucagon on EGP are complex and not completely under-
stood [15]. Two processes contribute to EGP: gluconeogenesis (GN) and glycogenolysis (GG). GN is the
formation of glucose from non-carbohydrate substrates like glucogenic amino acids, glycerol, pyruvate
and lactate. GG is the breakdown of stored glycogen in the liver to glucose. Studies show that glucagon
and insulin have very little effect on GN as opposed to GG [15, 29, 30], see Figures 1 and 2. Thus the
hormones influence mainly the EGP by regulating GG; glucagon stimulates it whereas insulin inhibits
it. Increasing the glucagon concentration stimulates GG until a certain point where-after the response
saturates. Saturation of response is typical for receptor mediated processes due to the limited number of
receptors in a physiological system [31]. As opposed to glucagon, insulin inhibits GG and completely
suppresses the breakdown of glycogen at insulin concentrations exceeding approximately 45 mIU/L [15].
A recent study by El Youssef et al. showed that at high insulin concentrations (46.0±12.5 mIU/L) the
EGP is greatly reduced independent of the glucagon dose [28], see Figure 3. Moreover, the rates of EGP
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Figure 3: Endogenous glucose production with increasing glucagon doses (25, 75, 125, 175 µg) at high,
medium and low insulin infusion rates (0.016±0.006 IU/kg/h, 0.032±0.003 IU/kg/h, 0.05±0.0 IU/kg/h)
giving plasma insulin concentrations of 17.6±13.0 mIU/L, 29.1±8.9 mIU/L, and 46.0±12.5 mIU/L, re-
spectively. The graph is from El Youssef et al. [28].

at high insulin concentrations match the rates of GN. The results are in agreement with previous studies
showing that insulin suppresses GG but does not affect GN. These results suggest that the effect of insulin
prevails over glucagon at high insulin concentrations. Some studies indicate that not only does the abso-
lute glucagon concentration affect EGP but also the glucagon rate of change [15, 27].

The glucose kinetics model by Herrero et al. is based on the minimal model and describes the glu-
cose changes with additive effects of insulin and of glucagon [25, 32]. The EGP model by Dalla Man
et al. also describes the effects of insulin and of glucagon additively [24]. The glucose kinetics model
of Hovorka includes the interaction of insulin and EGP, but does not describe the effect of glucagon on
EGP [20]. The only model including the interaction and effect of both glucagon and insulin on EGP is
proposed by Emami et al. [26]. This model approximates the EGP response to either glucagon or insulin
with linear effects and includes the effect of glucagon rate of change on the EGP. The linear assumption of
the EGP response to glucagon is fair as long as the glucagon concentration does not exceed approximately
400 pg/mL. Based on deviance information criterion the novel model outperformed several other models
including the one proposed by Herrero et al. The model by Emami et al. assumes that the glycogen stores
are never depleted. This is a valid assumption at normal conditions since a recent study showed that small
repeated glucagon doses over a short time span did not significantly alter the glycogen stores even after
an overnight fast [22].

This technical report presents a novel model of the glucose-insulin-glucagon dynamics by combining
the validated insulin-glucose model and the physiological EGP model for the purpose of simulation. The
insulin-glucose model by Hovorka et al. forms the basis of the dynamical system [20]. The model by
Emami et al. extends the EGP part of the Hovorka model to include glucagon [26]. The EGP model
is modified further to ensure saturation of the EGP at high glucagon concentrations in accordance with
literature and physiological receptor activation concepts.

Furthermore, this report aims to thoroughly illustrate and explain the mathematical methods applied dur-
ing the model fitting procedure of the pharmacodynamics model. The final model is fitted to individual
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datasets using a multidimensional Bayesian framework. Parameter identifiability is investigated using
profile likelihood analysis. Model validity is confirmed by estimating the noise contribution of the sys-
tem using the grey-box modelling approach with stochastic differential equations (SDEs) [33]. After
validation, final parameter estimation is conducted using the white-box modelling approach with ordi-
nary differential equations (ODEs) making the model suitable for simulations. We use a programming
environment in R created for continuous time stochastic modelling (CTSM) for the entire model fitting
procedure [34].

Previously, PK data of this report were used for model fitting by a different technique and presented
as a poster at the 8th International Conference on Advanced Technologies & Treatments for Diabetes
(ATTD) in February 2015 [19]. PD results of this report were presented as a poster at the 9th ATTD in
February 2016 [35].

7
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Table 1: Data summary.

Study Drug Dose, nmol/kg Dogs Nominal Sample Times, minutes post dose

1
Glucagon

20

5 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 110, 140, 180
120

ZP-GA-1
20

120

2 Data

Zealand Pharma A/S is developing a new glucagon analogue with increased stability in liquid solution for
treatment and better control of hypoglycemia in diabetes patients. The novel compound, ZP-GA-1, was
tested against marketed glucagon (GlucaGen R©, Novo Nordisk A/S) in pre-clinic. Both compounds are
peptides and act as glucagon receptor agonists.

2.1 Data collection

Data originates from a pre-clinical study in dogs designed by Zealand Pharma A/S and conducted at Co-
vance Laboratories Ltd (Covance site, Harrogate UK). The Institutional Animal Care and Use Committee
approved the study and all procedures carried out on the dogs were in accordance with the Animals (Sci-
entific Procedures) Act 1986. The study is summarized in Table 1 and described in Section 2.1.1.
Data was originally collected for the purpose of showing a PD effect of the glucagon analogue in vivo and
to compare it with the PD effect of marketed glucagon.

2.1.1 Study 1

Five healthy Beagle dogs (bodyweight 13.6 ± 1.3 kg; mean ± SD) were included in this randomized
cross-over study and named dog 1-5. At four dosing occasions each dog received a subcutaneous (SC)
bolus injection of 20 or 120 nmol/kg glucagon or ZP-GA-1. Blood samples were collected at 0, 5, 10,
15, 20, 30, 40, 50, 60, 75, 110, 140, and 180 minutes after dose administration. Sample concentrations
of glucagon and of ZP-GA-1 were analyzed using an in-house developed LC-MS/MS method. Plasma
concentration of insulin was analyzed using a commercially available immunoassay from Meso Scale
Discovery (MSD) (catalog no. K152BZC). Although the MSD assay was designed for mouse/rat plasma,
an in-house validation showed that it was also valid for analysis of insulin in dog plasma. Plasma concen-
tration of glucose was analyzed using Roche glucose method (UV test) [36]. Figure 4 presents an example
of raw data from one dog in study 1.

2.2 Bioavailability

The bioavailability is obtained from the ratio between the dose-normalized area under the curve (AUC)
after SC administration compared to IV. The AUC’s were calculated using non-compartmental analysis
(reported at Zealand Pharma A/S). The bioavailability varies between the drugs. Thus, for each drug the
bioavailability is used in the input to the PK model, see summary in Table 2.

2.3 Unit conversion

In the study, glucagon and analogue concentrations were measured in nmol/L, insulin concentration was
measured in pg/mL and glucose concentration was measured in mmol/L. Model parameters concerning
glucagon and of insulin are often reported so that concentrations thereof should be in pg/mL and mIU/L,

8
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Figure 4: Raw data from dog 2 in study 1. Plasma concentrations after low or high doses of glucagon and
ZP-GA-1 are red crosses or blue dots, respectively.

Table 2: Bioavailability and molar mass of glucagon and glucagon analogue in study 1.

Study Drug Bioavailability Molar mass, g/mol

1
Glucagon 37.5% 3482.75
ZP-GA-1 50% 3339.7

respectively [20,21,25]. The units of the PK and the PD data were converted to these generally used units
before modelling.

2.3.1 Glucagon

To convert the plasma concentration of the administered compound from nmol/L to pg/mL, PK data is
multiplied by the molar mass of the compound since the following yields units of pg/mL.

[nmol]

[L]

[L]

103 [mL]

103 [pmol]

[nmol]

MolarMass [pg]

[pmol]
(1)

The molar masses of glucagon and the analogue are listed in table 2.

2.3.2 Insulin

To convert the insulin concentration from pg/mL to mIU/L, insulin PD data is multiplied by 0.023 since
the following yields units of (mIU/L).

[pg]

[mL]

103 [mL]

[L]

0.023 [IU]

[µg]

103 [mIU]

[IU]

[µg]

106 [pg]
(2)

The assay used for analysis uses the WHO standard of 0.023 (IU/µg).
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Table 3: List of removed outliers in the datasets substituted with linear interpolation of neighbouring
observations. *Outlier not substituted by interpolation but removed.

Study Dog Drug Dose, nmol/kg Analyte Time, min
1 1M Glucagon 20 Glucagon *6
1 1M ZP-GA-1 20 Glucose 6
1 1M ZP-GA-1 20 Glucose 16
1 2M ZP-GA-1 20 Glucose 30
1 3M Glucagon 20 Glucose 15
1 3M Glucagon 20 Glucose 40

2.4 Basal concentrations

After an overnight fast in healthy human adults, the glucagon concentration is around 91 pg/mL (range
40-400 pg/mL) and the fasting insulin concentration is approximately 10-15 mIU/L [37]. Based on the
two present studies, the basal insulin concentration in dogs are considerably lower with an average around
3 mIU/L and range 1.6-5.7 mIU/L, thus less than one third of the human basal insulin concentration. As
there is a negative relationship between basal insulin concentration and insulin sensitivity in humans [38],
this lower basal insulin concentration in dogs indicate a higher insulin sensitivity.
Basal glucagon concentration in dogs is around 41-54 pg/mL [27]. The lower level of quantification
(LLOQ) for glucagon measured in study 1 was 0.2 nmol/L corresponding to nearly 700 pg/mL. All mea-
surements at time zero were below LLOQ. The basal concentration of glucagon can thus not be determined
in this study.

2.5 Data cleaning

No formal tests of the significance of an outlier were used but rather visual inspection. Table 3 lists all
data points that the modeller considered to be outliers. The glucagon outlier appeared to have too high
concentration after just 6 minutes, whereas the removed glucose observations showed sudden drops in
glucose concentration that did not seem physiological. Figure 4 shows an example of such a data point
with a drop at 30 minutes after the low dose of glucagon analogue ZP-GA-1. Figures 16-20 in Appendix
A present raw data from all datasets including outliers.

10
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3 Models

3.1 PK model

The glucagon pharmacokinetics (PK) are investigated using a simple model as formulated by Haidar et
al. [39,40], defined in (3)-(5) and visualized in Figure 5. The PK model is a one-compartment model of the
disturbance in plasma concentration from baseline after extravascular drug administration with first order
absorption kinetics from the SC tissue to the plasma. The model has two states; the first corresponding
to the SC tissue and the the second corresponding to the central compartment (plasma and instantaneous
equilibrating tissues). The model includes two rate constants; one describing absorption from the SC
tissue to the central compartment and another describing elimination from the central compartment. To
minimize confusion, the parameter naming is kept as closely to the formulation by Haidar et al. as
possible.

dq1(t)

dt
= u(t)− k1q1(t) q1(0) = 0 (3)

dq2(t)

dt
= k1q1(t)− k2q2(t) q2(0) = 0 (4)

C(t) =
k2q2(t)

wCl
· 103 + Cb (5)

Model input: u(t) = δ(t) ·Dose · bioavailability
Model observation: C(tn)
Model output: C(t)
Fixed parameter(s): w, (Cb)
Model parameters: k1, k2, Cl, Cb

C(tn) is the measured glucagon concentration in plasma (nmol/L) at discrete timepoints, n = 1, ..., N .
C(t) is the simulated glucagon concentration in plasma at continuous time. Cb is the basal glucagon con-
centration in plasma (nmol/L). In case of administration of the glucagon analogue, Cb is fixed to zero as
no basal level exists in the body.
w is the measured bodyweight (kg). Cl is the clearance rate normalized by weight (mL/kg/min). k1 is the
absorption rate constant and k2 is the elimination rate constant (min−1).
The concentration of glucagon in the central compartment is obtained by multiplying the content with an
expression similar to per volume of distribution in (5). In classical PK it is trivial that clearance is equal to
the product of the elimination rate constant and volume of distribution [31]. Since clearance is normalized
by weight the denominator is multiplied by the bodyweight.
The bioavailability does not influence the fit of the model to data, but is necessary to get physiological
parameter estimates of clearance. The Dose (nmol) is multiplied by the Dirac delta function to model the
bolus injection at time zero.

A surrogate marker for the onset of action, tmax, is obtained analytically from the absorption and elimi-
nation rate constants.

tmax =
log(k1/k2)

k1 − k2
(6)

In (6) log is the natural logarithm.

11
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3.2 PD model

3.2.1 Version 1.0 - Integrating Emami in Hovorka

The pharmacodynamics (PD) of glucagon and insulin on glucose are described by combining two pub-
lished models. The glucose-insulin part of the model was published by Hovorka et al. [20] and listed in
equations (7)-(12). A few changes to this model include removal of glucose input, removal of the labelled
glucose kinetics, and parameter substitution of insulin sensitivities instead of ratios between activation
and deactivation rate constants. To minimize confusion, the parameter naming is kept as closely to the
original publication as possible. The model is initially in steady state, but could be initialized in any state.

dQ1(t)

dt
= −F01 − STx1(t)Q1(t) + k12Q2(t) +GG(t) Q1(0) = Q10 (7)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) Q2(0) = Q1(0)

x1(0)

x2(0) + k12
(8)

G(t) =
Q1(t)

V
(9)

dx1(t)

dt
= ka1[I(t)− x1(t)] x1(0) = Ib (10)

dx2(t)

dt
= ka2[I(t)− x2(t)] x2(0) = Ib (11)

dx3(t)

dt
= ka3[I(t)− x3(t)] x3(0) = Ib (12)

(13)

The model is extended to include a GG model as proposed by Emami et al. [26], defined in equations
(14)-(15). The combined PD model is visualized in figure 5.

GG(t) = (1− SEx3(t)) · (SgdEgd(t) + SgC(t))

where 1− SEx3(t) ≥ 0 and SgdEgd(t) + SgC(t) ≥ 0 (14)
dEgd(t)

dt
= −kgd

(
Egd(t)−

dC(t)

dt

)
(15)

Since CTSM-R does not accept if statements to supplement the state equations, the conditional statements
are implemented as 1

2 + 1
2 · tanh(100 ·”conditionalstatement”) multiplied by the conditional statement.

Thus, when the statement is positive the expression equals one, and when the statement is negative the
expression is zero.
The PD model not only includes a term for the absolute concentration of glucagon, but also a term de-
scribing the glucagon rate of change in (15). The analytical solution to the glucagon rate of change is
derived from (4)-(5) yielding units of nmol/L/min.

dC(t)

dt
=

k2

wCl
· 103 · (k1q1(t)− k2q2(t)) (16)

Model inputs: C(t), dC(t)
dt , I(t)

Model observation: G(tn)
Model output: G(t)
Fixed parameters: V, Ib
Model parameters: F01, k12, ST , SD, SE , ka1, ka2, ka3, Sg, Sgd, kgd

12
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Figure 5: Schematic presentation of the full model including the PK part at the left and the PD part at the
right. The open arrow symbolizes SC input of glucagon. Solid arrows indicate mass transfer to/from a
compartment. Dashed arrows indicate effect without mass transfer. Solid lines ending with a dot indicate
how an output is derived from the content of a compartment. Plasma compartments of glucagon, insulin
and glucose are colored. A red dashed square surrounds the part of the model published by Hovorka et
al. [20].

C(t) and dC(t)
dt are the simulated concentration (pg/mL) and rate of change (pg/mL/min) of glucagon

in plasma at all times, respectively. I(tn) is the measured insulin concentration in plasma (mIU/L) at
discrete timepoints, n = 1, ..., N . To match the time resolution of the glucagon input, the insulin obser-
vations are linearly interpolated to give the model input I(t).
G(tn) is the measured glucose concentration in plasma (mmol/L) at discrete timepoints, n = 1, ..., N .
G(t) is the simulated glucose concentration in plasma at all times.
Ib is the basal insulin concentration for each dog averaged over a maximum of four occasions (mIU/L). V
is the glucose volume of distribution and is fixed to 160 mL/kg based on literature [20].
F01 is the net total non-insulin-dependent glucose out-flux from the plasma compartment

(
µmol

kg·min

)
. GN is

included in F01 and assumed constant and independent of insulin and glucagon as this process is affected
very little by the two hormones. k12 is the transfer rate constant from the non-accessible glucose com-
partment to the accessible plasma compartment (min−1). ST is the insulin sensitivity on glucose transport
(min−1 per mIU/L). SD is the insulin sensitivity on glucose disposal (min−1 per mIU/L). SE is the insulin
sensitivity on EGP (1/(mIU/L)). ka1, ka2 and ka3 are insulin deactivation rate constants (min−1).
Sg is the glucagon sensitivity on GG

(
µmol

kg·minper pg/mL
)

. Egd is a fictive rate of change compartment
contributing to rate of change of GG due to glucagon rate of change (pg/mL/min). Sgd is the glucagon

rate of change sensitivity on GG
(
µmol

kg per pg/mL
)

. kgd is the delay of glucagon rate of change on EGP

(min−1).
The full PK-PD model is presented in figure 5.

13



Wendt et al. DTU Compute Technical Report-2016-2 3 MODELS

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

C, pg/mL

E
G

P,
 m

um
ol

/k
g/

m
in

Emami
Emami with saturation

Figure 6: Comparison of GG model by Emami et al. [26] and modified model capturing the physiological
saturation effect of glucagon on GG. The saturation part is proposed roughly to the data presented by
Cherrington [15], compare with Figure 1. The graphed models assume basal insulin concentration and
constant glucagon concentration. The curves do not start in (0,0) as GN is included.

3.2.2 Version 1.1 - Saturation of EGP

As reviewed in Section 1, GG saturates for some concentration of glucagon at basal insulin concentration,
see Figure 1. The model stated in (14) is a linear approximation of the GG response to constant glucagon
concentration and only covers the linear range of the dose response curve. No saturated data was available
during the model development and therefore this dynamic was not captured in the model. However, the
available data from Zealand Pharma A/S takes on very high concentrations of plasma glucagon and thus
we assume that the GG response to glucagon is saturated for some parts of the studies if not the entire
study duration. The GG model in (14) is modified to saturate GG at 65 µmol

kg·min at basal insulin level. The
saturation is approximated by a simple tangent hyperbolic function and figure 6 confirms that the linear
part of the curve resembles the original linear formulation at basal insulin concentration. The GG model
with saturation is

GG(t) = (1− SEx3(t)) · 65

0.69
tanh

(
2.5

1400
·
SgdEgd(t) + SgC(t)

Sg

)
where (1− SEx3(t)) ≥ 0 and (SgdEgd(t) + SgC(t)) ≥ 0 (17)

3.2.3 Version 1.2 - Basal insulin

Dogs have lower basal insulin concentrations than humans (∼3 mIU/L versus ∼10 mIU/L), as described
in section 2.4. Therefore, we can not assume that (1 − SEx3(t)) equals 0.69 at basal as in humans
(calculated as EGPb/EGP0 from Hovorka et al. [20]). The model is thus changed to

GG(t) =
(1− SEx3(t))

(1− SEIb)
· 65 · tanh

(
2.5

1400
·
SgdEgd(t) + SgC(t)

Sg

)
where (1− SEx3(t)) ≥ 0 and (SgdEgd(t) + SgC(t)) ≥ 0 (18)
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Figure 7: Relationship between plasma glucagon concentration and EGP. GN is constant and the GG is
fitted with a sigmoid Emax model. The graph assumes basal insulin concentration. The solid data points
originate from [27,41,42] and the open dots are approximated from [15] since the original data could not
be retrieved. Note that EGP is not zero at zero glucagon due to the glucagon independent GN.

The change ensures that GG saturates at 65 µmol
kg·min at basal insulin concentration. Moreover, this addition

ensures that at higher insulin levels than basal, the saturation value of GG is lower than 65 µmol
kg·min . Simi-

larly, at lower insulin levels than basal the saturation value of GG is higher than 65 µmol
kg·min . Qualitatively

speaking, insulin ”modulates” the maximum GG response to glucagon.

3.2.4 Version 2.0 - Sigmoid Emax model

As discussed by Emami et al., the glucagon rate of change was added to the model to be able to capture
the weakened response to a constant plasma glucagon concentration [26], also see Figure 2. Since we do
not have data to describe this phenomenon and do not have a physiological explanation for how rate of
change affects the GG response, we simplify the GG model to only depend on the absolute concentration
of glucagon. We justify this with reference to Emami et al. who found that the GG model using both ab-
solute glucagon concentration and glucagon rate of change was only slightly better than a similar model
using only the absolute glucagon concentration [26].
To make the model parameters more physiological interpretable, we substitute the empirical tangent hy-
perbolic saturation model with the sigmoid Emax model which is used to describe receptor mediated
kinetics [43]. The sigmoid Emax model is essentially a first order process at low concentrations, and a
zero order process at high concentrations [31]. The model by Emami et al. in (14) describes the first
order process and is approximated from data where first order kinetics apply [26]. The effect of plasma
glucagon on the GG response is reformulated to comply with literature data [15,27,41,42], and the mean
prior parameter values of this model are identified by optimization. The data used to fit the parameters
and the optimal solution is presented in Figure 7. The new GG model and the fitted parameters are listed

15
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Figure 8: Qualitative visualization of the consequences of the multiplicative GG model showing how the
total EGP response to glucagon changes at low, basal, high and very high insulin concentrations.

in (19).

GG(t) =
(1− SEx3(t))

(1− SEIb)
·
(

(Emax − E0)
C(t)γ

ECγ50 + C(t)γ

)
where (1− SEx3(t)) ≥ 0 (19)

Emax = 72.1
µmol

kg ·min
, E0 = 8

µmol

kg ·min
, EC50 = 337.8

pg

mL
, γ = 1.25

The model describing the saturation of EGP due to glucagon consists of four parameters - two describing
the minimum and maximum effect, E0 and Emax, and two describing the curvature, EC50 and γ. E0

is describing GN. EC50 is the concentration at the half maximum effect. The parameter γ reflects the
number of molecules binding to one receptor and determines the steepness of the curve. We hypothesize
that E0 and Emax will be identical whether using marketed glucagon or the analogue. However, the
parameters describing the curvature, i.e. the potency, might differ. Figure 8 visualizes the GG model with
the multiplicative effect of glucagon and insulin qualitatively.
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3.2.5 Final PD model

The equations describing the glucose-insulin-glucagon PD model are listed in (20)-(26) and the model
visualized in Figure 9.

dQ1(t)

dt
= −F01 − STx1(t)Q1(t) + k12Q2(t) +GG(t) Q1(0) = Q10 (20)

dQ2(t)

dt
= STx1(t)Q1(t)− [k12 + SDx2(t)]Q2(t) Q2(0) = Q1(0)

x1(0)

x2(0) + k12
(21)

GG(t) =
(1− SEx3(t))

(1− SEIb)
·
(

(Emax − E0)
C(t)γ

ECγ50 + C(t)γ

)
where (1− SEx3(t)) ≥ 0 (22)

G(t) =
Q1(t)

V
(23)

dx1(t)

dt
= ka1[I(t)− x1(t)] x1(0) = Ib (24)

dx2(t)

dt
= ka2[I(t)− x2(t)] x2(0) = Ib (25)

dx3(t)

dt
= ka3[I(t)− x3(t)] x3(0) = Ib (26)

Model inputs: C(t), I(t)
Model observation: G(tn)
Model output: G(t)
Fixed parameters: V, Ib
Model parameters: F01, k12, ST , SD, SE , ka1, ka2, ka3, E0, Emax, EC50, γ

The parameters and their units are described in previous sections 3.2.1-3.2.4.
We assume that F01 is constant at all times since we are not measuring any glucose concentrations below
4.5 mmol/L in the datasets to be fitted. However, for simulation purposes it is important to include the
extended formulation of F01 taking the current glucose concentration into account [23].
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Figure 9: Schematic presentation of the final full model including the PK part at the left and the PD part at
the right. The open arrow symbolizes SC input of glucagon. Solid arrows indicate mass transfer to/from a
compartment. Dashed arrows indicate effect without mass transfer. Solid lines ending with a dot indicate
how an output is derived from the content of a compartment. Plasma compartments of glucaogn, insulin,
and glucose are colored. A red dashed square surrounds the part of the model published by Hovorka et
al. [20].
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4 Methods

4.1 Mathematical concepts

4.1.1 Maximum likelihood

The likelihood measures how likely a set of parameters are given data and a model. The likelihood is
equal to the probability density considered as a function of the parameter set, θ, and a time series, YN , of
N observations.

L(θ, YN ) = p(YN |θ) (27)

Different parameters of the model will give different values of the likelihood function. Finding the param-
eter set that maximizes the likelihood function for given data and a model gives the maximum likelihood
(ML).

4.1.2 Profile likelihood

For a parameter, θi, and a time series, YN , of N observations, we can calculate the profile likelihood,
which is defined as

Lp(θi, YN ) = max
θ\θi

L(θ, YN ) (28)

For a fixed value of θi the likelihood function is maximized across all other parameters of the parameter
set θ which yields the profile likelihood of parameter θi [44, 45]. The profile likelihood of a parameter
can be used to evaluate whether the parameter in the model is identifiable. Identifiability of parameters
are determined by model structure (structural identifiability) and the input dynamics (practical identifia-
bility) [44].
Structural identifiability is related to the transfer function from the input to the output. However, in large
complex systems where the transfer function is non-trivial to derive, profile likelihood analysis provides
a method for investigating the parameter identifiability.
Practical identifiability is related to the dynamics of the input. Thus, a model can only identify parameters
describing dynamics present in data used for model fitting. Also in this case, profile likelihood analysis is
a powerful tool.

A parameter is identifiable only if the maximum of the profile likelihood is well defined [44]. Whether the
maximum of the profile likelihood of θi is well defined is evaluated using a 100(1-α)% confidence interval
bound by when the natural logarithm of a likelihood ratio test exceeds a chi-squared distribution [45].

log

(
Lp(θi, YN )

L(θ̂, YN )

)
= log(Lp(θi, YN ))− log(L(θ̂, YN )) > −1

2
χ2

1−α (29)

In words, the profile likelihood is log-transformed yielding the profile log-likelihood. The maximum value
of the profile log-likelihood is subtracted from the profile log-likelihood so that the maximum function
value is zero. The limit of the confidence interval is determined by the 100(1-α) percentile of the chi-
squared distribution with one degree of freedom. As an example, a 95% confidence interval of a model
parameter is bound by the log-likelihood ratio exceeding approximately −1.92. A profile likelihood
confidence interval could be asymmetric, whereas e.g. the Wald statistic applies a quadratic and thus
symmetric approximation of the confidence interval [45].
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4.1.3 Bayesian inference

Bayesian estimates refer to parameters of a model being treated as random variables belonging to some
distribution. To fit a parameter in a Bayesian framework a prior distribution of the parameter is needed.
The parameters of the prior distribution are called hyper-parameters i.e. if a prior follows a normal distri-
bution, two hyper-parameters define it: mean and standard deviation (SD). The estimated parameter will
then be a summary of the posterior probability density function conditioned on the data.
The posterior distribution of a parameter, θ, given the data, YN , is identified using Bayes’ theorem:

p(θ, YN ) =
p(YN |θ)p(θ)
p(YN )

(30)

where p(θ) is the prior distribution of θ, p(YN ) is the marginal distribution and p(YN |θ) is the likelihood
of YN given θ as defined in (27).
Finding the set of parameters given data, a model and prior distributions of parameters yielding the maxi-
mum of the posterior distribution is called maximum a posteriori (MAP).

4.1.4 Maximum a posteriori estimation

MAP estimation is an optimization approach seeking the parameter estimate that maximizes the posterior
distribution [46]. Maximizing (30) then reduces to optimizing:

p(θ, YN ) ∝ p(YN |θ)p(θ) (31)

MAP estimation reduces to maximizing the likelihood function when the prior is a uniform distribution
(i.e. p(θ) is constant), see (27) and (31). This indicates that ML is a special case of MAP. Also, the weaker
a prior is (i.e. having a large standard deviation), the less difference there is between MAP estimation and
ML. In general, one distinguishes between informative (highly peaked) and non-informative (not peaked)
priors.

Introducing the following notation where σθ is a matrix with the prior standard deviations in the diag-
onal and Rθ is the prior correlation matrix:

µθ = E{θ} (32)

Σθ = σθRθσθ = V {θ} (33)

εθ = θ − µθ (34)

Assuming that the priors all follow a Gaussian distribution, the posterior distribution can be rewritten as:

p(θ|YN ) ∝

 N∏
k=1

exp
(
−1

2ε
T
kR
−1
k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l
 p(y0|θ)

exp
(
−1

2ε
T
θ Σ−1

θ εθ
)√

det(Σθ)
(√

2π
)p (35)

Conditioning the posterior probability on y0 and taking the negative logarithm gives:

− log(p(θ|YN , y0)) ∝
1

2

N∑
k=1

(
log(det(Rk|k−1)) + εTkR

−1
k|k−1εk

)
+

1

2

((
N∑
k=1

l

)
+ p

)
log(2π)

+
1

2
log(det(Σθ)) +

1

2
εTθ Σ−1

θ εθ (36)
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The MAP solution is found by solving the nonlinear optimization problem:

θ̂ = arg min
θ∈Θ
{− log(p(θ|YN , y0))} (37)

This nonlinear optimization can be solved numerically through gradient-methods. Another method for
finding the MAP solution is by using Markov Chain Monte Carlo (MCMC) simulations. MCMC is a
brute force method that samples from the posterior distribution to create a rough shape of the posterior
distribution and thereby estimates the MAP solution as implemented in WinBUGS [21, 26]. It is compu-
tationally time consuming because it can require thousands of samples before reaching convergence. On
the contrary, gradient methods converge faster but suffer great difficulties if the objective function is noisy
with local gradients not leading to a smaller value of the objective function.

4.1.5 Stochastic differential equations

Modelling a completely known physical system can be done using deterministic ordinary differential
equations (ODEs) defined as

dX

dt
= f(X(t), t) (38)

yk = X(tk) + ek (39)

where X(t) is the state of the system, f() is the model, yk is the discrete observations, and ek is the
measured errors, i.e. observation noise, assumed to be independent and identically distributed (i.i.d.)
following a Gaussian distribution [47]. However, in biology one does not always know the true underlying
system. In such cases, the discrepancies between the deterministic model and data from the physical
system is composed of noise from two sources: measurement errors and systemic model errors. The
magnitude of the systemic noise can be identified using stochastic differential equations (SDEs) defined
as

dxt = f(xt, ut, t, θ)dt+ σ(xt, ut, t, θ)dwt (40)

yk = h(xk, uk, tk, θ) + ek (41)

The only difference between the ODE formulation in (38)-(39) and the SDE formulation in (40)-(41) is
the diffusion term σ(xt, ut, t, θ)dwt corresponding to the system noise. Thus, solving an SDE with a very
small value of σ is approximating solving an ODE. The term f(xt, ut, t, θ)dt is called the drift and is the
main process driving the system whereas the diffusion term is the system noise. Together, the drift and
the diffusion describes the physical state of the system.

4.2 Application in CTSM-R

A team at the Technical University of Denmark (DTU) wrote a package for R allowing to do continuous
time stochastic modelling (CTSM) [34,46]. The package was used to obtain the results in this report. This
subsection focuses on how the mathematical concepts in the previous subsection are applied in CTSM-R.

4.2.1 Model structure

CTSM-R accepts Itô SDEs in the state space form as presented in (40)-(41). However, CTSM-R does not
allow the system noise to depend directly on the state of the system [47], and thus (40) changes to

dxt = f(xt, ut, t, θ)dt+ σ(ut, t, θ)dwt (42)

21



Wendt et al. DTU Compute Technical Report-2016-2 4 METHODS

Letting the system noise depend on the state can be mitigated in CTSM-R using a transformation of
variables called the Lamperti transform [47, 48].
Although the nonlinear equations describing the model in (20)-(26) are presented as ODEs, they are
implemented in CTSM-R as SDEs. The ODE presentation is chosen for simplicity.

4.2.2 Initial values

The CTSM-R environment is sensitive to the initial values of the states and thus good initial values are
needed to converge to a solution within a reasonable number of iterations. When fitting the PD model,
the initial value of the observed state was automatically identified in most datasets as the plasma glucose
concentration at time 0. If the initial plasma glucose was not available in one dataset, the initial concen-
tration in the same dog at the other dosing occasions were averaged and used as the initial value of the
dataset missing an initial observation. Using the measured or averaged initial glucose concentration the
model parameters did not converge to a solution in al datasets. In those cases the initial value was adjusted
manually until convergence was reached.

4.2.3 Prior information

In the following all hyper-parameters are fixed, thus all prior probability distributions of parameters are
fixed. The values of the hyper-parameters are determined from literature [15,20] and listed in Table 4. All
parameters are assumed positive. All parameters of the Hovorka part of the model are assumed to follow
a log-normal distribution, except F01 which is normally distributed [21]. We also assume that E0, Emax,
EC50, and γ follow normal distributions.
The insulin sensitivities in [20] were overestimated compared to the results of [21]. As pointed out in
Section 2.4, dogs appear to be more sensitive to insulin than humans and thus the estimates listed in [20]
are kept as prior information. However, the standard deviation in the logarithmic domain is doubled to
allow a different distribution than in humans. The standard deviations of the parameters describing the
effect of glucagon on GG are unknown and thus arbitrarily defined as 25% of the mean value estimated
from literature [15].

Overall, the prior correlation matrix has the structure presented in Table 5. The correlations of the param-
eters describing the glucagon part of the model are unknown and thus defined as zero. The values of the
prior correlation matrix are calculated from individual parameter fits [20] and presented in Table 6. Fixing
one or more of the parameters in the PD model leads to removal of the corresponding parameter rows and
columns from the correlation matrix.
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Table 4: Prior distributions of PD model parameters listed with source as (mean, SD) in the fitted do-
main and 95% confidence interval in non-transformed domain calculated as exp(mean ± 2 · SD) if log-
transformed and as mean± 2 · SD if non-transformed, respectively.

Parameter Source Transformation Prior distribution 95% confidence interval
k12 [20] log (-2.82, 0.46) [0.02-0.1]
ka1 [20] log (-5.69, 1.12) [0.0004-0.03]
ka2 [20] log (-2.89, 0.70) [0.01-0.2]
ka3 [20] log (-3.74, 0.77) [0.005-0.1]
ST [20] log (-5.48, 1.46) [0.0002-0.08]
SD [20] log (-7.58, 2.34) [5·10−6-0.05]
SE [20] log (-3.19, 1.74) [0.001-1.3]
F01 [20] - (9.68, 2.14) [5.4-14]
E0 Section 3.2.4 - (8, 2) [4-12]
Emax Section 3.2.4 - (72.1, 18) [36-108]
EC50 Section 3.2.4 - (337.8, 85) [168-508]
γ Section 3.2.4 - (1.25, 0.3) [0.65-1.85]

Table 5: Overall structure of the full prior correlation matrix.

k12 ka1 ka2 ka3 ST SD SE F01 E0 Emax EC50 γ

k12 1 ρk12,ka1 . . . . . . ρk12,F01 0 · · · · · · 0
ka1 ρka1,k12

. . . . . .
...

...
ka2

. . .
...

ka3
...

. . . . . .
...

...
ST

. . .
...

SD
...

. . . . . .
...

...
SE

. . . ρSE ,F01

F01 ρF01,k12 . . . . . . ρF01,SE
1 0 ...

E0 0 · · · · · · · · · 0 1 . . .

Emax
...

. . . . . . . . .
...

EC50
...

. . . . . . 0
γ 0 · · · · · · · · · · · · · · · 0 1
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Table 6: Values of the full prior correlation matrix.

k12 ka1 ka2 ka3 ST SD SE F01 E0 Emax EC50 γ

k12 1 0.73 -0.83 -0.14 0.27 0.46 0.22 0.07 0 0 0 0
ka1 1 -0.97 -0.15 -0.23 -0.16 0.03 0.24 0 0 0 0
ka2 1 0.08 0.20 0.05 0.08 -0.22 0 0 0 0
ka3 1 -0.06 -0.16 -0.28 0.45 0 0 0 0
ST 1 0.61 0.77 0.24 0 0 0 0
SD 1 0.54 -0.51 0 0 0 0
SE 1 0.02 0 0 0 0
F01 1 0 0 0 0
E0 1 0 0 0
Emax 1 0 0
EC50 1 0
γ 1
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Figure 10: Theoretical examples of three types of profile likelihood plots; from left to right: highly
peaked (identifiable), flat (structural non-identifiable), and asymmetric (practical non-identifiable). The
95% confidence limit (CL) is blue. The x-axis shows the 95% lower limit (LL) and upper limit (UL) of
the parameter value.

4.2.4 Parameter identifiability

We have performed profile likelihood analysis of each model parameter using graphical presentation to
investigate which model parameters are identifiable, see Figure 10 for examples of profile log-likelihood
plots. A profile log-likelihood with values only exceeding the 95% confidence limit for the entire phys-
iological range of a parameter indicates that the parameter is not structural identifiable, i.e. if the profile
likelihood is flat, the parameter value does not influence the maximum achievable likelihood in fitting the
dataset and might as well be fixed. To improve the parameter estimates of the remaining parameters, the
unidentifiable parameters were fixed at their prior mean values. On the contrary, if a profile likelihood is
highly peaked, the parameter is identifiable and should not be fixed. When a profile likelihood is asym-
metric with either no upper or lower limit as seen in Figure 10 at the right, the parameter value is not
practically identifiable and could also be fixed if the prior mean value is included in the 95% confidence
interval. However, having a prior distribution it is not necessary to fix a parameter with an asymmetric
profile log-likelihood but could increase the certainty of the remaining parameters.
As the calculation of a profile likelihood is very time consuming due to optimization of the remaining
parameters for each fixed parameter value, the profile log-likelihood plots are initially very coarse with
only few points. Profiles are refined as unidentifiable parameters are fixed and calculations are speeding
up. Ideally, one should continue the cycle of fixing unidentifiable parameters until all remaining param-
eters are identifiable. In this study, we have only carried out five cycles of profile likelihood analysis.
More parameters could possibly be fixed without changing the likelihood of the model fit significantly.
Fitting a model containing unidentifiable parameters using MAP estimation is not wrong, but it comes at
the expense of larger confidence intervals of the remaining parameters. The fitted values of parameters
having flat or asymmetric profile likelihoods i.e. unidentifiable parameters will mainly be determined by
the prior parameter distributions and less determined by data.
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4.2.5 Model fitting and validation

Each PK dataset was fitted separately by ML using ODEs by fixing the system noise terms at small values.
Since the PK model will be used for simulations we seek the ODE solution instead of the SDE solution.
The basal concentration of glucagon was sought estimated. However, the basal level for the analogue was
defined as zero and thus not estimated.

Each PD dataset was fitted separately by MAP with the priors listed in Table 4 and the correlation matrix
displayed in Table 6. The parameters of each dataset were identified separately based on prior information
rather than a population model. All parameters of the Hovorka model except F01 were fitted in the log-
arithmic domain as they are assumed to follow a log-normal distribution [21]. Moreover, all parameters
were assumed to be positive. When dealing with small values like the transfer rate constants and sensitiv-
ities, log-transformation of the parameters ensure that they are always positive.

During the profile likelihood analysis the PD model was fitted as ODEs. After several model parameters
were fixed we fitted the model using SDEs. However, since equations (21) and (24)-(26) were validated by
tracer data in a previous publication [20], we fixed the diffusion terms of these states to small values and
considered the equations as ODEs. The only modified and thus non-validated state was equation (20) and
thus we estimated the diffusion term thereof. As described in Kristensen et al. [33], to validate the model
structure, the model was first fitted using SDEs and if the diffusion term was insignificant, i.e. having a
large p-value, the model was fitted again using ODEs to obtain the final parameter estimates for simulation
purposes. However, if the diffusion term was not insignificant the model structure was incorrect [33]. The
necessity of each of the varying model parameters was confirmed by significant p-values less than 0.05.

Furthermore, the model validity was investigated by residual analysis. Residuals should ideally be i.i.d.
which was examined by plotting the residuals as a function of time and by plotting the autocorrelation
function (ACF). The residuals plot can reveal if there is a drift or change in variance of the residuals
over time i.e. if they are identically distributed. The ACF can reveal if there is a pattern in the residuals
showing correlation between residuals at different lags i.e. if they are independent [49]. Moreover, very
large values of the ACF exceeding the confidence limit imply that the model is not describing the data well.

Simulations of the mean prediction and standard deviations are carried out using extended Kalman fil-
ter without updating the states [34]. Predicting future values in a system with very little system noise and
thus no updating corresponds to deterministic simulation.
It is however possible to perform stochastic simulations in CTSM-R by adding system noise to simulate
real life experimental data [34]. Each realization of the stochastic process will be slightly different from
another although determined by the size of the noise terms. We can interpret the actual data used for
model fitting as one realization of the underlying stochastic process.

5 Results

Despite CTSM-R uses a robust estimation method [46], extreme outliers can largely impact the fit when
the number of observations is small. Fitting of the PK data to the simple model was mostly robust to
outliers. However, one PK datapoint as listed in Table 3 was so extreme that removing it greatly changed
and improved the fit.
The PD model was more sensitive to outliers in both the input data and in the observations due to the large
number of model parameters compared to number of observations. Six glucose observations appeared to
be outliers as listed in Table 3. Due to the number of model parameters, the glucose observations had to

26



Wendt et al. DTU Compute Technical Report-2016-2 5 RESULTS

Table 7: Fitted or fixed PK model parameters (mean, SD). ∗Non significant. 4Fixed.

Parameter Unit Glucagon ZP-GA-1
k1 min−1 (0.134, 0.077) (0.125, 0.072)
k2 min−1 (0.0159, 0.0048) (0.0116, 0.0031)
Cl mL/kg/min (56.9, 13.2) (88.5, 18.8)
Cb pg/mL 0∗ 04

Table 8: PK endpoints extracted from PK model fits (mean, SD).

PK endpoint Unit Dose level Glucagon ZP-GA-1

Tmax min
low (23.9, 11.4) (25.3, 9.4)
high (19.3, 5.4) (22.4, 6.6)

Cmax/Dose nmol/L per nmol/kg
low (0.059, 0.018) (0.043, 0.010)
high (0.097, 0.017) (0.059, 0.010)

be replaced by linear interpolation to maintain an identifiable model.

5.1 PK

5.1.1 Parameter estimates

Table 7 lists the average and standard deviation of the PK model parameters for each drug over the popu-
lations. As mentioned in section 2.4, it was not possible to measure low glucagon concentrations in any
datasets. Due to this lack of data at low concentrations, it was not possible to estimate basal glucagon
concentration in plasma.
The PK model fit is used as an input to the following PD model fitting and could also be used for simula-
tion purposes.

5.1.2 PK Model fits

After fitting the PK model to data, relevant endpoints were extracted from the fits and presented in Table 8.
Paired t-tests of the surrogate marker for onset of action, Tmax, showed no difference between ZP-GA-1
and glucagon (p-value = 0.3).
Cmax is significantly different for ZP-GA-1 compared to glucagon (p-value = 0.006).
Figure 11 displays examples of PK model fits with 95% confidence limits of the simulation both with
regular and logarithmic base-10 y-axes (log10). Figures 21-25 in Appendix B shows all PK fits.

5.2 PD

A few model building cycles have been carried out. The following sections only show results of the last
and final model. However, the sections will refer qualitatively to observations made during the model
building cycle to justify the decisions made by the model builder.

5.2.1 Reducing variables

Having a large model with twelve parameters and observation noise, some parameters had to be fixed to
increase the certainty of other model parameters. To investigate which model parameters were unidentifi-

27



Wendt et al. DTU Compute Technical Report-2016-2 5 RESULTS

●
● ● ● ●

● ● ● ● ● ●

Time, min

G
lu

ca
go

n,
 n

m
ol

/L

0 20 40 60 80 100 120 140 160 180

0
5

10
15

20

●

●

●

●

●

●
● ●

●

●

●

●
●

● ●
● ● ●

● ● ● ● ● ●

Time, min

Z
P

−G
A

−1
, n

m
ol

/L

0 20 40 60 80 100 120 140 160 180

0
5

10
15

20

●

● ●

●

●
●

●
● ●

●

●
●

0 20 40 60 80 100 120 140 160 180

0
5

10
15

20

●

● ●
● ●

●
● ●

●

●

●

Time, min

G
lu

ca
go

n,
 n

m
ol

/L

0 20 40 60 80 100 120 140 160 180

0.
01

0.
1

1
10

10
0

●

●

●
● ●

● ● ●
●

●
●

●

●

● ●
● ● ●

● ●
● ●

●
●

Time, min
Z

P
−G

A
−1

, n
m

ol
/L

0 20 40 60 80 100 120 140 160 180

0.
01

0.
1

1
10

10
0

●

● ●
●

● ● ●
● ●

●

●
●

Figure 11: PK responses to low and high doses of glucagon and ZP-GA-1 in dog 3. Left graphs are with
regular y-axes and right graphs are with logarithmic base-10 y-axes (log10).

able, we plotted profile likelihoods of all parameters for each dataset. Figure 12a shows an example from
the first cycle of profile likelihood analysis in one dataset. After the first cycle one parameter with a flat
profile likelihood was fixed, and another cycle of profile likelihood analysis was carried out. These cycles
continued until a total of four parameters were fixed at their prior mean values: ka2, E0, EC50, and γ.
However, γ was fixed at 1 since this reduced the model complexity and makes biologic sense. Figure 12b
shows an example from the last cycle of profile likelihood analysis in the same dataset as above.
The reduction of variables is justified by reasoning regarding model structure and input dynamics. E0

corresponding to GN can not be identified due to the model structure i.e. subtraction from Emax. The
two parameters determining the curvature of the GG response to glucagon, EC50 and γ, can not be deter-
mined due to input dynamics. As previously mentioned, most dogs had very high plasma concentrations
of glucagon or analogue during the entire study time and we therefore expect the GG response to be sat-
urated at all times. Not having data with low glucagon concentrations makes it impossible to determine
these parameters describing the response at low glucagon concentrations.
Unidentifiability of ka2 is likely due to the model structure since the parameter describes the insulin trans-
fer that affects the glucose disposal of the non-accessible compartment. Determining the influence of
insulin on glucose disposal requires tracer data which is not available.
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(a) Initial profile likelihoods when no parameters are fixed.
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(b) Fourth iteration of profile likelihood analysis when four parameters are fixed.

Figure 12: Profile likelihoods of all twelve model parameters in dog 3 after high dose of glucagon. Red
points illustrate fixed parameter values. Red curves illustrate prior parameter distributions. Horizontal
blue lines are 95% confidence limits of parameter values.
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Table 9: Ratio of datasets with significant p-values less than 0.05 corresponding to 95% confidence level
when estimated in SE setting versus OE setting. P-values of fixed parameters do not exist but the param-
eters are included in the table for completeness.

Glucagon ZP-GA-1
Parameter SE OE SE OE
k12 10/10 10/10 10/10 10/10
ka1 10/10 10/10 10/10 10/10
ka2 -
ka3 10/10 10/10 10/10 10/10
ST 10/10 10/10 10/10 10/10
SD 10/10 10/10 10/10 10/10
SE 10/10 10/10 10/10 10/10
F01 10/10 10/10 10/10 10/10
E0 -
Emax 7/10 10/10 9/10 10/10
EC50 -
γ -
σ1 0/10 - 0/10 -

As an example, the increase in certainty of parameter value when reducing the number of variables is
graphically evident for ka1 in Figure 12. At the initial cycle the 95% confidence interval of the logarithm
of the parameter is approximately [-7 to -3], but reduces to [-5 to -3.5] when four parameters are fixed.
Same tendency can be observed for other model parameters.

5.2.2 Model validity

After reduction of variables using profile likelihood analysis we investigate using SDEs if the model de-
scribes the physiological system adequately i.e. if the model has insignificant system noise. As previously
argued, we only examine the noise of equation (20). Table 9 lists the proportion of datasets with signifi-
cant p-values for each PD model parameter with and without the coefficient of the diffusion term, σ1, for
both of the compounds. Using SDEs we observe that the model parameters are significant at a 5% confi-
dence level in the majority of datasets and that the diffusion coefficient is insignificant in all datasets. σ1

is then fixed at a small value and the PD model parameters re-estimated using ODEs. After fixing σ1, all
model parameters are significant in all datasets. We can not reject that the model describes the underlying
physiological system.

5.2.3 Residual Analysis

After the final estimation of PD model parameters using ODEs we analyse the standardized residuals to
verify the quality of the model in describing data. Figure 13 shows an example of the standardized residu-
als plot and ACF showing i.i.d. residuals thus no trends in residuals and no significant correlation between
residuals.

However, dealing with data having very few observations makes it challenging to be strict to the rules
of i.i.d. residuals. Especially the residuals plot is difficult to interpret in most cases due to few obser-
vations. The ACF also has some limitations in that data was not equidistantly sampled. Most ACF are
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Figure 13: Example of standardized residuals plot and ACF of residuals of model fit to dataset from dog
3 after high dose of glucagon.

within the confidence limits.
Based on the residual analysis the model describes the dynamics in the data well.

5.2.4 PD Model fits

In Section 5.2.1 we reduced the number of PD model parameters by removing unidentifiable parameters.
In Section 5.2.2 we described how the model structure is sufficient to capture the dynamics of the physical
system. In Section 5.2.3 we confirmed that the fit did not give rise to trends in the residuals. Finally, we
can verify that the model is satisfactory based on visual inspection of the PD model fit together with data.
Figure 14 presents examples of PD model fits together with model inputs after administration of glucagon
at low and high dose levels in one dog. In the two examples, the model is fitting data well with narrow
confidence limits around the simulation. Within 100 minutes we observe a peak in glucose concentration
and a return to baseline. At the end of the sampling period the glucose concentrations show a tendency to
rise slowly.
Figure 15 presents examples of PD model fits together with model inputs after administration of ZP-GA-1
at low and high dose levels in one dog. The trends in data and the PD model fits are similar to the ones
after administration of glucagon described above.
Figures 26-30 in Appendix C present all PD model fits.
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(b) Dog 3, 120 nmol/kg.

Figure 14: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose after administration of glucagon.
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(b) Dog 3, 120 nmol/kg.

Figure 15: Plasma concentrations of PD model inputs ZP-GA-1 and insulin together with PD model fit of
glucose after administration of ZP-GA-1.
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Table 10: Posterior distributions of PD model parameters for the population in fitted domain reported as
(mean, SD). Parameters not in parenthesis are fixed.

Parameter Glucagon ZP-GA-1
log(k12) (-2.87, 0.27) (-3.02, 0.23)
log(ka1) (-5.19, 0.86) (-5.90, 0.83)
log(ka2) -2.89 -2.89
log(ka3) (-4.88, 0.73) (-4.70, 0.98)
log(ST ) (-5.65, 0.86) (-5.35, 0.50)
log(SD) (-9.11, 0.93) (-8.72, 1.15)
log(SE) (-2.71, 0.57) (-2.95, 0.43)
F01 (9.8, 1.5) (9.6, 2.0)
E0 8 8
Emax (50.1, 13.7) (53.8, 16.5)
EC50 337.8 337.8
γ 1 1

5.2.5 Parameter estimates

We assume that the variations in parameters within dogs are negligible compared to the variations between
dogs. As prior information we used Gaussian distributions and using the individually fitted parameters we
can calculate similar posterior distributions of PD model parameters.
Table 10 lists the posterior distributions of each parameter separated by drug and study for the popula-
tion of dogs. During the PK analysis we noticed that the onset of action and maximum concentration of
glucagon were different between the studies. We therefore separate the parameters of the two studies in
this analysis, too. During estimation, most parameters are log-transformed.
For ease of comparison to values reported in literature [20], the averages of the log-transformed param-
eters are transformed back and listed together with ranges in Table 11. Fixed parameters are listed for
completeness in both tables.
Table 12 shows the posterior correlation matrix of both PK and PD model parameters.
The following Section describes observations related to these posterior distributions and correlations.

33



Wendt et al. DTU Compute Technical Report-2016-2 5 RESULTS

Table 11: Average of PD model parameters in normal domain together with range. Fixed parameters are
listed for completeness.

Parameter Glucagon ZP-GA-1
k12 0.057 (0.038-0.085) 0.049 (0.033-0.081)
ka1 0.0056 (0.0019-0.0279) 0.0027 (0.0009-0.0192)
ka2 0.055 0.055
ka3 0.0076 (0.0038-0.0508) 0.0091 (0.0038-0.0657)
ST · 10−4 35 (13-117) 48 (27-110)
SD · 10−4 1.1 (0.2-3.8) 1.6 (0.6-35.8)
SE · 10−4 666 (178-1323) 523 (281-892)
F01 9.8 (8.0-13.1) 9.6 (5.3-12.3)
E0 8 8
Emax 50.1 (26.6-73.2) 53.8 (24.1-71.8)
EC50 337.8 337.8
γ 1 1

Table 12: Posterior correlation matrix of PK and PD model parameters and body weight.

k1 k2 Cl w log(k12)log(ka1)log(ka3)log(ST )log(SD)log(SE) F01 Emax
k1 1 0.26 0.33 -0.54 -0.08 -0.25 0.49 0.52 -0.01 -0.13 0.50 -0.55
k2 1 -0.27 -0.24 0.34 0.17 0.12 0.16 -0.03 -0.11 0.27 0.04
Cl 1 -0.51 -0.37 -0.55 0.44 0.60 0.11 -0.22 0.35 -0.10
w 1 0.10 0.32 -0.46 -0.63 0.02 0.19 -0.55 0.25
log(k12) 1 0.78 -0.13 -0.21 0.02 0.01 0.11 0.09
log(ka1) 1 -0.45 -0.68 -0.44 0.31 -0.07 0.18
log(ka3) 1 0.60 0.00 -0.80 0.78 -0.59
log(ST ) 1 0.36 -0.32 0.53 -0.19
log(SD) 1 0.00 -0.45 0.04
log(SE) 1 -0.57 0.40
F01 1 -0.40
Emax 1
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Table 13: P-values of two-tailed paired t-tests comparing PD model parameter estimates of glucagon
versus analogue within study.

Parameter Glucagon vs. ZP-GA-1
k12 0.29
ka1 0.09
ka2 -
ka3 0.42
ST 0.19
SD 0.42
SE 0.14
F01 0.81
E0 -
Emax 0.51
EC50 -
γ -

5.2.6 Native glucagon versus glucagon analogue

The reason for doing cross-over studies of glucagon and the glucagon analogue is to be able to compare
the dynamics of the compounds without too many confounding factors like biological variations. Table
13 presents p-values of paired t-tests between glucagon and the glucagon analogue. No model parameters
are significantly different on a 5% confidence level.

6 Discussion

In this report, we present a novel model describing how insulin and glucagon contribute to the EGP in
dogs. The model is based on physiological knowledge and parameter estimates are based on data from
pre-clinical studies in five dogs. The PD model description is contentious compared to most existing
models in several ways: claiming that GG is completely suppressed when insulin concentration exceeds a
threshold as in Hovorka et al. [20], claiming that GG saturates when glucagon concentration is high, and
claiming a multiplicative effect of insulin and glucagon as in Emami et al. [26]. Moreover, we have used
the model to compare PD characteristics of marketed glucagon and a novel glucagon analogue invented
by Zealand Pharma A/S.

According to our PD model there exists a certain threshold of insulin concentration at which the GG
is completely suppressed. From equation (22) the threshold can easily be identified using the insulin sen-
sitivity on GG as S−1

E . Using the average parameter estimate listed in Table 11 we find a threshold of less
than 20 mIU/L. This threshold is considerably lower than the threshold identified by Cherrington as 45
mIU/L [15]. Also, El Youssef et al. found that insulin concentrations exceeding 40 mIU/L only results in
EGP of roughly 20 mg/kg during 60 minutes [28]. This EGP production of ∼0.33 mg/kg/min is similar
magnitude as GN of ∼0.5 mg/kg/min observed by Cherrington [15]. Thus, the results by El Youssef et al.
at insulin concentrations exceeding 40 mIU/L could be explained by insulin’s suppression of GG.
The human prior of SE suggested an insulin threshold of 19 mIU/L [20], whereas a later publication sug-
gested an average insulin threshold of 85 mIU/L based on the value of SE [21]. However, both of these
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estimates of SE were based on human data. As discussed in Section 2.4 dogs have lower basal insulin
levels than humans and are therefore more sensitive to insulin than humans. It is thus reasonable that the
threshold at which the GG is completely suppressed is lower in dogs than in humans.
The graphs of raw data in Appendix A reveal that the dog’s insulin concentrations exceed even the human
threshold of GG suppression during at large parts of the study time. In some datasets we notice a slight
increase in blood glucose concentrations during the last part of the study which could be explained by
GG no longer being suppressed by insulin and a plasma glucagon concentration that is still much higher
than basal levels. However, we only observe this slight increase in plasma glucose in some datasets. This
could be explained by the delay in insulin action on plasma glucose described by the small rate constant
with a half-life of approximately 90 minutes which corresponds to the remaining of the sampling period
after plasma insulin concentrations have returned to baseline.

The diabetes community is speculating whether glucagon works when insulin inhibits GG. El Youssef
et al. found in diabetes patients that increasing glucagon doses of 25-175 µg increases EGP at insulin
concentrations less than 30 mIU/L [28], but increasing doses up to 175 µg have no effect on EGP at in-
sulin concentrations exceeding 40 mIU/L as explained previously. Blauw et al. investigated the glucose
response in patients with diabetes to various doses of glucagon from 0.1-1 mg at different blood glucose
levels and concluded that blood glucose level was irrelevant to the glucose response to glucagon [50].
Unfortunately, the study does not report insulin concentrations. Ranjan et al. investigated the glucose
response in diabetes patients to glucagon doses of 100-300 µg at insulin concentrations of 8-20 mIU/L
and found no significant increase in glucose response after a glucagon dose of 300 µg compared to 200
µg [51]. A study by Graf et al. in healthy showed no further effect size of glucagon doses larger than
250 µg [52]. The studies by Ranjan et al. and Graf et al. suggest a saturation effect of glucagon in both
healthy and patients with diabetes.
The glucagon doses used in the pre-clinical dog study ranged 20-120 nmol/kg (0.07-0.4 mg/kg) cor-
responding to human equivalent doses of 0.04-0.2 mg/kg using allometric scaling. Thus, the previous
studies suggesting a saturation effect of glucagon doses exceeding 0.2 mg supports our observations that
the glucose responses of the dogs were saturated at all dose levels.
According to Cherrington the GG response to glucagon is almost saturated for glucagon concentrations
exceeding approximately 1000 pg/mL [15]. From the graphs of raw data in Figures 16-20 we observe that
plasma glucagon concentrations are higher than 1000 pg/mL most of the study duration. We only have
very limited data when glucagon concentrations are low. During the reduction of variables we recognized
this fact since we were not able to identify the parameters describing GG response to glucagon at low con-
centrations, but only at saturated concentrations. We still believe that the sigmoid Emax model presented
here is valid in describing the effect of glucagon on GG because it builds on knowledge from literature in
particular Cherrington [15]. Moreover, we believe that this novel model is more physiologically correct
than previous models based on the minimal model or a linear approximation since these models do not
describe the saturation effect of glucagon on GG [24–26]. Future studies should be designed so that the
plasma glucagon concentration does not yield saturated EGP response for the entire study duration.

The multiplicative effect of insulin and glucagon on GG was proposed by Emami et al. [26]. The idea was
derived from Hovorka et al. who states that with increasing insulin concentration the total EGP decreases
linearly [20]. The model by Emami et al. multiplies the effect of insulin as described by Hovorka et al.
with an expression stating that GG increases linearly when glucagon increases.
In this report, we have extended the model by Emami et al. to include saturation of glucagon. As the glu-
cose response to glucagon was saturated during the entire study time for most datasets, the sophisticated
sigmoid Emax model practically reduces to a constant value and thus the expression for GG originally
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proposed by Hovorka et al.

Despite the saturated GG response due to glucagon, the model assumes that the glucogen stores in the
liver are never depleted. As the study was conducted over short time, this is a fair assumption. Moreover,
the glucose response from breakdown of glycogen is suppressed by insulin most of the study time. Recent
data shows that small frequent glucagon boluses do not deplete the glucogen stores [22]. The study by
Castle et al. has a few limitations in that it was carried out over short time and all participant were well-fed
and had good control of their diabetes. It is however especially the poorly controlled patients that would
need the glucagon bolus regularly. The effects of repeated daily and long term use of glucagon remain
unknown. Studies investigating the long term effects are needed to verify that the glucose response to
glucagon does not change over time.

The used datasets posed other challenges than not covering low glucagon concentrations. The study
was not optimal for the purpose of fitting models describing the glucose-insulin-glucagon dynamics nor
designed for identifying how insulin and glucagon affect EGP. The datasets were sparsely sampled which
made it necessary to fix some parameters in order to increase the certainty of the estimates of the re-
maining parameters. We used profile likelihood analysis to justify fixation of four PD model parameters.
Residual analysis of time series with only 14 observations is challenging and should not be considered as
strict as an analysis using ten times the number of observations. Not all residuals plot and ACFs showed
i.i.d. but visual inspection of model fits confirmed that the model described data well for the purpose of
simulation.
We chose not to do cross-validation of the model, as this would be a waste of our limited amount of data.
Also, with inter and intra biological variation, we would not expect to get good PD model fits testing
parameters estimated in one dataset in another. Only in cases with constant conditions can such cross
validation methods lead to meaningful and fair results.

In this report we focused on fitting data from individual trials using prior information in order to ob-
tain a model suitable for simulation of the glucose-insulin-glucagon dynamics. The posterior parameter
distributions and correlation matrix form a population from which a parameter set can be sampled for
simulation of a subject. The estimated model parameters depend on the prior parameter distributions to
some extend. However, comparing the prior parameter distributions in Table 4 with the posterior param-
eter distributions in Table 10, we observe that most posterior distributions are much narrower than the
initial prior distributions of parameters, i.e. the parameter distributions are more informative.
The parameter estimation could be re-done by performing population modelling thus determining, not
only the individual model parameters, but the hyper-parameters, i.e. population parameters, too. We also
expect this simulation model to be valid in describing human glucose-insulin-glucagon dynamics although
possibly with different population parameter distributions and parameter correlations.

We used a simple PK model together with the novel PD model to compare glucagon with a novel glucagon
analogue referred to as ZP-GA-1 invented by Zealand Pharma A/S. Comparing PK between compounds,
we did not find any significant differences for ZP-GA-1 compared to glucagon. However, we did find a
significantly higher peak concentration of the analogue compared to glucagon. This is in agreement with
the higher bioavailability of the analogue compared to glucagon, see Table 2 in Section 2.2. Comparing
PD model parameters between glucagon and the analogue we did not find any significant differences at a
95% confidence level. Therefore, we can not reject that the analogue has similar PD effect on the glucose
response and has similar PK characteristics to marketed glucagon.
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In conclusion, we developed a novel model of the complex glucose-insulin-glucagon dynamics based
on physiology and data. We demonstrated that the model describes the glucoregulatory system well and
enables simulations of glucose dynamics knowing insulin and glucagon plasma concentrations.
Comparisons of marketed glucagon with the novel glucagon analogue did not show any differences in PK
or PD characteristics.
This report presents parameter estimates for simulations of the glucose-insulin-glucagon dynamics in dogs
but could be extended to simulations of the human dynamics after obtaining parameter estimates based on
similar studies in humans.
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Figure 16: Raw PK and PD data with outliers measured in dog 1. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 17: Raw PK and PD data with outliers measured in dog 2. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 18: Raw PK and PD data with outliers measured in dog 3. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 19: Raw PK and PD data with outliers measured in dog 4. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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Figure 20: Raw PK and PD data with outliers measured in dog 5. Data from low or high doses of glucagon
and ZP-GA-1 are red crosses or blue dots, respectively.
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B PK Model fits
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Figure 21: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 1. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 22: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 2. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 23: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 3. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 24: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 4. Left
graphs are with regular axes and right graphs are with log10 axes.
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Figure 25: PK model fit after low and high doses of glucagon (green) and ZP-GA-1 (blue) in dog 5. Left
graphs are with regular axes and right graphs are with log10 axes.
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C PD model fits
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(a) 20 nmol/kg of glucagon.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 26: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 1. Administered doses and drugs are written in each subfigure.

50



Wendt et al. DTU Compute Technical Report-2016-2 C PD MODEL FITS

Time, min

G
lu

ca
go

n,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

●

● ●

●
●

●
●

●

●

●

●

●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

●

●

●

●

●

●

●

●

●
●

●

(a) 20 nmol/kg of glucagon.
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(c) 20 nmol/kg of ZP-GA-1.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 27: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 2. Administered doses and drugs are written in each subfigure.
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(a) 20 nmol/kg of glucagon.
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(b) 120 nmol/kg of glucagon.

Time, min

A
na

lo
gu

e,
 p

g/
m

L

0 30 60 90 120 150 1801e
+0

2
1e

+0
3

1e
+0

4

● ●

● ● ●

●
●

● ●

●

●

Time, min

In
su

lin
, m

IU
/L

0 30 60 90 120 150 180

0
50

10
0

●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●
●

●

●
● ● ●

●
●

Time, min

G
lu

co
se

, m
m

ol
/L

0 30 60 90 120 150 180

5
10

15

●

●

●

●

●
●

●

●
● ● ●

●
●

(c) 20 nmol/kg of ZP-GA-1.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 28: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 3. Administered doses and drugs are written in each subfigure.
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(a) 20 nmol/kg of glucagon.
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(b) 120 nmol/kg of glucagon.
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(c) 20 nmol/kg of ZP-GA-1.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 29: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 4. Administered doses and drugs are written in each subfigure.
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(a) 20 nmol/kg of glucagon.
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(b) 120 nmol/kg of glucagon.
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(c) 20 nmol/kg of ZP-GA-1.
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(d) 120 nmol/kg of ZP-GA-1.

Figure 30: Plasma concentrations of PD model inputs glucagon and insulin together with PD model fit of
glucose in dog 5. Administered doses and drugs are written in each subfigure.
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