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Summary
This thesis addresses the design, deployment and benefits of demand response in a
market environment. Demand response is consumption that can be controlled by
an external stimulus in the power system. Flexible consumption is a useful tool for
absorbing volatile power from renewable sources like wind power and photovoltaics,
and dealing with decentralised activity like electric vehicle charging. Without flexible
consumption or other new technologies like storage, there will be several occasions of
surplus or deficit of generation to meet the demand of the future, sometimes expected
and sometimes not, that will lead to power system failure.

The type of demand response investigated is consumption controlled by indirect
means, like an electricity price. Initially, algorithms responding to real-time elec-
tricity prices are researched and benchmarked according to comfort and cost. After
this simulation, real power system data from the Danish island of Bornholm is intro-
duced and methods to quantify an aggregated load is developed. These methods can
be used for real-time operation and to support investment decisions. More specifi-
cally, they can be used to forecast the response to electricity pricing and to classify
different types of customers. The proposed models are then embedded into new five-
minute electricity markets for system balancing and local congestion management.
New market tools for exploiting and maintaining a degree of control over demand are
developed, and the value of DR using indirect control is determined in terms of social
welfare.

This thesis is written in the context of Danish and European power systems because
the data used - and the data-driven models subsequently created - come from and
were developed for the EcoGrid EU project. The demand forecasting models and elec-
tricity markets proposed in this thesis have been implemented on the Danish island
of Bornholm in the EcoGrid EU project. The real-time balancing market ran from
October 2014 until May 2015, the congestion market operated from January 2015
onwards, and the demand forecast module operated from February 2015 onwards.

EcoGrid EU is a large-scale smart grid demonstration with 1900 residential house-
holds and 100 industrial customers with a peak load above 5MW. Customers are
equipped with smart meters and a range of distributed energy resources with auto-
mated controllers that receive a new electricity price every five minutes and optimize
consumption levels accordingly. DR from these customers is bid into the electric-
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ity market as balancing power and customer measurements are used in real-time to
update the demand forecast.



Resumé
Denne afhandling behandler design, deployering af og fordelene ved demand response
- fleksibelt forbrug - under markedsforhold. Demand response er forbrug, der kan
styres ved stimuli, der virker ind på elsystemet udefra. Det resulterende fleksible
forbrug er et nyttigt redskab til absorbering af volatil elektricitet, der produceres af
vedvarende energikilder såsom vindkraft og solceller samt til at håndtere stigningen
i decentrale aktiviteter såsom opladning af elektriske køretøjer. Uden fleksibelt for-
brug eller andre, nye teknologier som oplagring vil der opstå en kløft mellem udbud
og efterspørgsel i fremtiden, sommetider forventet, sommetider uventet, som vil med-
føre, at elsystemet går ned.

Den form for demand response, der har været genstand for undersøgelse, vedrører
forbrug, der styres indirekte, eksempelvis via elprisen. Indledningsvis undersøges
og benchmarkes styringsdesign ud fra komfort og omkostninger i lyset af realtidsel-
priser. Efter denne simulering introduceres reelle elsystemdata fra Bornholm, og der
udvikles metoder til kvantificering af den samlede belastning. Metoderne kan bruges
til realtidsdrift og til støtte for investeringsbeslutninger. Mere specifikt kan de bruges
til at forudsige reaktionen på fastsættelse af elpriser og til klassificering af forskellige
typer kunder. De foreslåede modeller indbygges så i nye fem-minutters elmarkeder
med henblik på at skabe balance i systemet og undgå flaskehalse. Der udvikles
markedsredskaber til udnyttelse og fastholdelse af en vis styring af efterspørgselen,
og værdien af demand response ved indirekte styring bestemmes i form af sociale
velfærd.

Denne afhandling tager nødvendigvis udgangspunkt i danske og europæiske elsyste-
mer, fordi de anvendte data - og de datastyrede modeller, der efterfølgende er skabt
- kommer fra og blev udviklet til EcoGrid EU-projektet. Modellerne til forudsigelse
af efterspørgsel og de foreslåede elmarkeder i afhandlingen er blevet implementeret
på Bornholm i EcoGrid EU-projektet. Regulærkraftmarkedet kørte fra oktober 2014
indtil maj 2015, flaskehals-markedet kørte fra januar 2015, og efterspørgselsprognose-
modulet kørte fra februar 2015.

EcoGrid EU er et smart-grid demonstrationsprojekt i stor skala med 1900 hushold-
ninger og 100 industrikunder med en belastning, der topper over 5MW. Kunderne får
installeret smart-elmålere og en række distribuerede energiressourcer med automatisk
styring, der modtager en ny elpris hvert femte minut og optimerer forbrugsniveauerne
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tilsvarende. Demand responsen fra disse kunder bydes ind på elmarkedet som bal-
anceeffekt, og der bruges kundemålinger til realtids-opdatering af efterspørgselsprog-
noserne.
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Nomenclature
Frequently used variables and parameters are defined here. The nomenclature of the
thesis differs in parts to that of the individual papers.

Table 1: Device, house and controller modelling nomenclature
n ∈ N Set of time steps 5 min intervals
T i Temperature of light mass in house °C
T a Ambient (outside) temperature °C
T e Building envelope temperature °C
Φe Energy flux into heat pump W/m2

Φh Energy flux from heat pump W/m2

Φs Energy flux from global solar irradiation W/m2

Aw Effective window area m2

Ci Heat capacity of the house interior J/°C
Ce Heat capacity of the building envelope J/°C
Ri−a Ventilation resistance between interior/ambient W
Ri−e Thermal resistance between interior/envelope W
Re−a Thermal resistance between envelope/ambient W
λ Real-time price €/MWh
µλ Median historical price €/MWh
T Temperature set-point €/MWh
Tmin /max Min/max customer comfort level °C
x Binary heat-pump on/off decision {0, 1}
vn/wn Heat pump on/off start {0, 1}
zon/off Minimum on/off time 5 min intervals
mon/off On/off countdown 5 min intervals
T̄ i Mean indoor temperature over all historical values °C

Table 2: Aggregated demand modelling nomenclature
t ∈ T Set of time steps 5 min intervals
λt Electricity price 5 min intervals
zt External variable -
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χt Interaction variable -
θt Parameters for price kWh2/€
θz Parameters for external variables -
θχ Parameters for interactions -
ϵt Model residuals kWh
ct Observed consumption kWh
c′t Model of consumption kWh
η Tuning parameter -
At DR range kWh
Bt DR shape parameter kWh

Table 3: Market nomenclature
t ∈ T Set of time steps 5 min intervals
g ∈ G Set of generators -
l ∈ L Set of loads -
αDA Day-ahead demand price elasticity €/MWh2

∆CDA
t Day-ahead demand response MWh

PDA
g,t Day-ahead generation MWh

λg,t Day-ahead generator bid price €/MWh
Qmax

g,t Maximum generator bid quantity MWh
WDA

t Day-ahead wind power forecast MWh
λDA
t Day-ahead price €/MWh

α Real-time demand price elasticity €/MWh2

∆Ct Real-time demand response MWh
∆Cmin /max Maximum/minimum DR MWh
λRT
t Real-time price €/MWh

CDA
t Day-ahead load MWh

λ
↑/↓
g,t Generator bid price (up/down regulation) €/MWh

Q
↑/↓
g,t Generator bid quantity (up/down regulation) MWh

P
↑/↓
g,t Generator regulation (up/down) MWh

λspill Price wind spillage (curtailment) €/MWh
λshed Price for load shedding €/MWh
W spill

t Wind spillage (curtailment) MWh
Cshed

t Load shedding MWh
Bt Imbalance MWh
C

min /max
l,t Minimum/maximum feeder consumption MW
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CHAPTER 1
Introduction

1.1 Motivation

Energy use has grown astronomically since the beginning of the industrial age. This is
unsurprising, since increased energy consumption leads to increased economic growth
[1, 2]. Living standards have risen greatly, but there is academic consensus that in-
creasing consumption of fossil fuels is unsustainable. The new reality presents a stark
choice: we can change the way we produce and use energy, or do nothing and allow
living standards to fall as climate change makes its impact.

Not until 2014 did renewable energy sources (RES) surpass oil and coal as the fastest
growing primary energy sources in absolute terms [3]. However, fossil fuels still dom-
inate to such an extent that RES, even with the robust projected growth, will still
comprise only 7% of worldwide primary energy sources by 2035 [4]. These predictions
all but guarantee a 2.6◦C temperature rise by 2100 [5].

In spite of these miserable projections, in OECD countries we can see a glimmer of
hope for changing our energy-behaviour. Denmark in particular is a leading light
in renewable energy. Political will, windy shores, and collaborative neighbours give
Denmark every chance of achieving 50% electricity consumption from wind power
in 2020, and 100% of total energy consumption from renewable energy in 2050 [6].
Wind and sun can be difficult to predict, however, and even their expected patterns
will involve periods of over- and under-production. New technologies are needed to
fill in the gaps, and traditional demand at home and in the office can be a part of the
solution.

Controlled flexibility on the demand side, so called demand response (DR), can com-
plement uncertain and discontinuous RES supply: when the wind blows most, de-
mand can consume most, when there is little wind, demand is reduced. Increasing DR
prevalence is not just about counteracting RES in the power system; by strengthening
the consumer’s ability to reject the highest prices, it will create a needed check on the
market power of the energy providers, thereby helping to counteract post-deregulation
market trends such as rising prices and insufficient promotion of renewables. The in-
crease in decentralised activity - production and consumption from electric vehicles
(EVs), heat pumps, and photovoltaics (PV) - requires an unprecedented and unfore-
seen level of flexibility in the power system. In today’s fast changing power system,
the idea of controlling large centralised generators to meet a fixed demand seems
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quaint, and it is almost folly to distinguish between a generation-side and a demand-
side.

Claiming that DR is the best solution to our future electricity woes is, however, short
sighted. Introducing demand charges for residential customers is a compelling solu-
tion to limit the impact of increasing distributed activity [7]. France, Italy and Spain
already charge customers for the capacity of the connected load: in Italy for example,
a household pays a higher distribution charge if its peak consumption is above 3kW.
Such an approach tends to alter household usage patterns and may be well suited to
compelling smart-charging of EVs and self-consumption of PV generation.

Increasing interconnection capacity is claimed to be better than DR for balancing
wind power, ensuring the value of wind when it is windy, and ensuring sufficient
capacity when wind levels are low [8]. Integration with the transport and heating
systems may also be preferable to DR in Denmark’s future power system. Denmark
is lucky to have such options. In a small country with a well developed district heat-
ing infrastructure, cross-sector energy transfer should be easy and relatively cheap to
implement, while interconnection capacity is almost sufficient for Denmark to have
enough external capacity to meet its needs on a zero-wind day. This current capacity
gap is a small fraction of that faced by larger nations like the UK and Spain [9]. Thus
relying on trade with neighbouring countries is clearly not enough if much of Europe
attempts to go for renewable energy. From an international perspective then, we
will need every technology we have developed so far, and many that are still being
researched, to maintain a stable power system at a reasonable cost.

The need for DR is compelling, and so the primary questions involve how to do
it. Which concepts, technologies, customers and markets to use? And when? As
soon as possible, or in 20 or 40 years time? The answers depend upon the ultimate
cost/benefit to the power system and to individual customers.

1.2 Electricity markets

Growing production from RES has coincided with deregulation of power systems and
an increase in demand-side management (DSM) programs - although these three de-
velopments have often progressed for unrelated reasons.

Deregulation in power systems kicked off in the 1980s when Chile privatised its elec-
tric utilities to fund public projects. Governments privatise their power generation,
transmission and distribution in order to increase efficiency (e.g. bill collection) and
service quality (e.g. through competition), or simply to sell assets to raise funds for
other public projects such as healthcare and education. Large industrial and commer-
cial customers, unhappy with high electricity bills, have supported deregulation out
of a hope that new competition would pressure costs downwards [10]. Organisations
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without a commercial interest have also favoured deregulation out of a belief that
energy choice would let them support greener energy sources.

In fact, there is widespread evidence that deregulation has increased electricity bills,
and there remains no evidence that it has promoted green sources of energy. In the
USA, electricity prices in states with deregulated power systems are 10-48% higher
than in states with price regulation [11, 12]. In general, when considering whether
or not the privatisation of public utilities is beneficial for society, there appears only
to be one significant and measurable variable: competition [13]. In any given sector,
competition is key to efficient operation. It’s therefore highly likely that deregulation
failed to bring down costs due to insufficient competition.

In addition to an increase in prices, deregulation has also been blamed for the decline
of DSM from 1993 to 2007. DSM programs, which comprise DR and other activities
like energy efficiency (e.g. building insulation) and voltage regulation, were first en-
acted following the oil embargo and world-wide energy shortages of the 1970s as a way
of increasing efficiency and blunting the impact of future energy blockades. Spending
on DSM and energy efficiency programs peaked at $2.28bn (2015$) in 1993 in the
USA [14], followed by a dark period where spending dropped, only finally reaching
similar levels in 2007, from which spending exploded to $7.12bn in 2013 [15] and may
increase to $16.8bn by 2025 [16].

Utilities operating pre-deregulation had to meet energy needs by producing it them-
selves with existing means and, when that wasn’t enough, by building expensive new
plants or encouraging customers to use less electricity. Wholly public utilities, not
driven by profit, often decided to both build new plants and implement public DSM
programs. Such an approach entailed less risk for (often elected) public bodies and
could also easily be presented as good for society. Post-deregulation, utilities feared
new competitive threats and often reacted with cost-cutting, including the dumping
of costly DSM schemes with payback times of several years [14].

Today’s renewed interest in DSM is not necessarily driven by a desire to lower costs,
but rather by a desire to facilitate consumption from RES. A deregulated, market-
oriented system, whatever its merits and disadvantages, is the framework within
which this goal must be achieved. Figure 1.1 illustrates the challenge and goal of
DSM programs in Denmark today. In a power system with a large share of gener-
ation from RES, supply can exceed demand. RES also has the attribute of being
uncertain, so that the forecasted output may not be realised. DR, an important part
of DSM, can shift load from periods of low generation to high, such as when supply
exceeds demand, and can potentially react to unforeseen generation, such as when
the production forecast was wrong.
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Figure 1.1: Load and wind power generation during the 2014 Christmas week in
Denmark

EU-wide actions like the Third Energy Package and TSO policy [17] support a market-
based trigger for DR. The U.S. Federal Energy Regulatory Commission has also pro-
posed to pay the locational marginal price for all types of DR [18], which is supported
by the Department of Energy’s funding of dynamic pricing [19]. The preference for
market activation is driven by security of supply concerns, which are primarily due
to the large volumes being traded in electricity markets today, the risk posed by
increased decentralised activity, and the desire to improve market efficiency. Once
again, competition is the key to efficient operation of a utility. More specifically, mar-
kets where demand is a price-taker are inefficient, since generators exhibiting market
power have amplified influence, leading to higher prices for consumers than in a mar-
ket where consumers can reject high prices.

This thesis focuses on power pools, where bids from buyers and sellers are matched
quickly and the commodity is delivered in the coming minutes, hours or days. While
forward contracts are also widely used, it is through power pools that the largest
volumes of energy move in deregulated power systems today. Figure 1.2 shows the
existing supply and demand curves from the Nord Pool day-ahead market (blue and
red curves respectively) and demand function estimates for the real-time EcoGrid
EU load. Notably, in 2014 there was no DR in the Danish regulating market, which
would equate to a straight, vertical red line.
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Figure 1.2: Supply and demand curves from the existing day ahead Nord Pool mar-
ket and linear and non-linear approximations of EcoGrid EU demand
curves.

The challenges of making the demand more elastic are not as trivial as this figure
might suggest. The volume of energy shifted is far larger in a real-time market than
in a day-ahead market due to more regular (e.g. 5 minute) activations. The resulting
price discovery and system dynamics are complex.

1.3 Demand response

1.3.1 Resource of interest
While previous DSM programs have been branded variously as disappointing [20] and
successful [14], the changing types of DR make learning from past experiences diffi-
cult. Earlier DR programs were focussed on time-of-use (TOU), volume-capping and
critical peak pricing (CPP) schemes, often reducing peak load and shifting energy sys-
tematically based on regular patterns. Now, power system operators face increased
decentralised activity and large-scale wind power installations. These make power
systems more volatile, less predictable, and topologically different.

In Denmark, these changes are particularly startling. Wind power accounted for 40%
of consumption in 2014, and current plans call for 35% of final energy consumption to
come from RES by 2020. A big target here is household heating, since it represents
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25% of Denmark’s final energy consumption; yet today, 70% of heating comes from
fossil fuel sources [6]. In light of these ambitions and the high present-day cost of
electric heating compared with district heating, Denmark is currently offering tax
reductions worth 15% of the cost of electricity for electric heat customers [21]. In
addition, green laws prohibit new house construction with fossil-fuel based heating,
meaning heat pump installations are expected to double by 2035 [22].

Using heating to solve the problems caused by decentralised activity and RES inte-
gration is a high priority, especially given the refusal of industrial loads to participate
in the Danish regulating market today. Thankfully, electric heating offers a degree
of controllability, since a house can act as a temporary heat storage. Heating can
be turned on and off for short periods using a control signal without upsetting the
comfort of the user. Its power delivery and energy shift capabilities exceed other
residential devices and comes close to EVs [23]. As such, electric heating is the main
focus of this thesis.

Previous DSM schemes are not well suited to controlling electric heating or meeting
the fast changing needs of RES. Instead, DSM schemes involving direct control (sys-
tem operators giving on/off requests to customers through a bilateral contract) and
indirect control (system operators using incentive signals to influence load) have been
identified as more appropriate in today’s power system [24].

1.3.2 Previous research
Several contract types can activate DR and incentivise the customer. Flexible elec-
tricity tariffs have been discussed for over a century; they can be traced all the
way back to 1892 when John Hopkinson, inventor of the three phase power system,
noted similarities between the railway and electricity systems, and posited that rail-
way tickets should cost more in peak hours, since peak-costs are genuinely higher
[25]. Ultimately, however, Hopkinson did not advocate time of use (TOU) contracts
for electricity consumption, but rather a contract based on the peak-capacity and
overall consumption of the customer. In all, five generic contract types for customer
settlement and activation have been identified [26]:

1. Volume-based static contracts (e.g. fixed load capping);
2. Volume-based dynamic contracts (e.g. dynamic load capping and interruptible

contracts);
3. Control-based contracts (e.g. direct control);
4. Price-based static contracts (i.e. TOU); and
5. Price-based dynamic contracts (e.g. real-time pricing).

Each contract has its pros and cons and is suited to different types of markets and
DR goals. Static volume-based contracts are generally reserved for large industrial
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loads, e.g. 200kW or greater [27], where capacity is an issue. Dynamic volume-based
contracts are somewhat more common, as in [28] where critical peak pricing (CPP)
customers receive period text, email or phone notifications of high price periods up to
six hours long, during which customers exceeding certain volumes will incur premium
pricing of up to five times the normal standard. With these contract types, however,
defining a fair limit for customers to stay under can prove difficult, especially since a
truly fair value may vary by customer and be liable to manipulation.

Static price-based contracts, or TOU contracts, are the most common way of varying
electricity prices for end consumers. TOU contracts seek to shift some day-time peak
consumption to the night-time lull, thereby increasing the feasibility of conventional
generation with long minimum on and off times (such as nuclear), while reducing
the need for expensive peaking generators. The consumer receives a fixed tariff for a
longer period of time, typically several months or a year, where prices change two or
three times a day.

A seminal 1957 paper proposed the first mathematical proof for twice-daily discrimi-
natory pricing in order to reduce peak demand [29]. Since then, TOU contracts - also
called TOD (time of day) contracts - have been shown in Connecticut to successfully
shift the morning peak consumption by plus or minus two hours and to reduce the
evening peak consumption significantly [30]. Hourly TOD pricing also reduced over-
all demand by 5% in this experiment, possibly because of increased consumer cost
awareness. A separate study of 1500 German consumers showed that two daily TOD
periods reduced peak consumption by 6-7%, but without any corresponding rise in
off-peak consumption [31]. Clearly the effect of TOU contracts depends heavily on
consumer type. Simply reducing consumption - which in a worst case scenario implies
a reduction in economic output - may not by itself lead to an increase in social welfare.
The benefits of static price-based contracts include easy customer understanding and
easy implementation with mature, affordable metering technology. The resulting de-
creases in peak-consumption lower overall costs for consumers.

But the results from one demonstration of TOU contracts have not always proven re-
peatable elsewhere. Additionally, TOU contracts are not unlocking the full potential
of the DR resource. In Europe, that potential is 60GW DR, with at least 12GW al-
ready activated [32]. A large part of this comes from households with TOU contracts.
Exact figures are hard to come by, although in the UK it is about 20% of households,
and in Italy it is 90%. Europe-wide, the level is probably somewhere in-between.
Despite such a large installation of TOU contracts, total energy utilization hovers at
around only 10% of flexible demand potential [17]. In a power system dominated by
stochastic production, like wind and solar, TOU pricing is less effective in meeting the
needs of the system. While an underlying shift of day-time to night-time consumption
may still be desirable, the biggest problems of integrating renewables into the power
system - variable and uncertain production – simply is not something existing TOU
contracts can accommodate.
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Control-based contracts have reduced demand by 15% for two hours a day in Aus-
tralia, using air-conditioning units and paying customers a flat fee of $100AUS per
year. In Denmark, control-based contracts have also been gaining traction through
commercial partnerships like one between DONG and the now bust Better Place,
through which DONG helped Better Place strategically charge their EV fleet using
direct control, considering local congestion and the market price [33]. The benefit of
direct control is its predictability. The downsides are that it requires extensive con-
trol and communication equipment (thus lending itself to larger loads), and it does
not necessarily make efficient use of the resource if it is only being used rarely. In
addition, direct-control is synonymous with distribution system operators (DSO) like
DONG, who operate natural monopolies, which does not advance regulators’ desire
to increase market efficiency.

Finally, dynamic price-based contracts are a fashionable topic in power system engi-
neering. Before this form of control could ever become a reliable reserve, however,
proponents would need to prove the ability to forecast responses and exploit them in
spite of their stochastic nature. The societal value of dynamic price-based contracts
is potentially easier to quantify though, since customers are rewarded and penalised
for their electricity consumption choices with a real market price that reflects the true
state of the power system.

One of the most prominent research projects demonstrating control-by-price and
control-by-frequency was the GridWise initiative [34, 35], which compared real-time
pricing favourably to TOU contracts. More recently, real-time pricing for small con-
sumers was tried in Chicago, where 590 customers with air-conditioning received an
hourly price [36]. These households reduced their annual electricity bills by 1-2%, or
an average of 50W to 100W during the highest price period each day. In a follow-up
study of the impact of real-time pricing in the PJM area in the Eastern USA, simu-
lations showed increased social welfare of $21 per year for each customer moving to
real-time pricing, thanks to reduced generation capacity costs and lower market clear-
ing prices [37]. This evidence is a useful starting point, but questions of scalability
and stability remain [38].

1.4 Objectives and contributions

This thesis aims to study and develop the tools needed to activate small-scale DR in
a market setting, considering the limitations of the power system, DERs, balancing
constraints and operational procedures in Scandinavia today. More specifically, the
contributions of this work are:

• For the financial benefits for heat pump owners responding to real-time prices,
evaluation of smart control algorithms with explicit modelling of minimum on-
and off-times and comfort and wear and tear analyses. Annual savings as little
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as €2 per customer are identified, which contrasts heavily with previous studies
and assumptions that thermostatically controlled load (TCL) automation is
significantly rewarding;

• For the quantity of DR available, statistical models to estimate flexibility based
on empirical data from residential loads. Models describe DR ramping, time to
peak response, peak response and duration of response;

• For the overall electricity market, simulations with binary variables on the
supply-side and an extensive expression of DR characterised by the statisti-
cal models on the demand-side - a more complete combination that has not
previously been investigated to our knowledge;

• For volatility in the power system, an effective measuring tool that provides a
more intuitive understanding of volatility caused by DR; and

• For demand forecasting and market clearing, applied research permitting deliv-
ery of prices to households in an experimental setup.

1.5 Structure of thesis

The thesis is organised in three self-contained chapters and four attached papers.
Some of the chapters rely on the findings of the attached papers and these will be
identified where necessary.

The closed loop nature of the power system means that research could start either
with individual consumers, aggregation strategies, or with markets that trade energy,
as shown in Figure 1.3. Ultimately, a bottom-up approach was taken here, and the
individual control algorithms for the heating devices that consumers own were in-
vestigated first. As such, Chapter 2 investigates smart controllers that respond to
real-time prices and price forecasts through model-based and hysteresis-based algo-
rithms. Empirical results from the demonstration and presented and used to guide
new simulations. The consumer benefit of a heat pump responding to prices and the
impact of comfort settings is estimated by simulating an average Danish house for
2014.

Chapter 3 investigates how the individual devices presented in Chapter 2 can be
aggregated and system-level flexibility estimated. An intuitive linear model with non-
linear price terms quantifies the DR potential of different groups of houses. These
results are a unique estimate of the flexibility of a large population of houses with
heat pumps, resistive heating, controllable PV, and water boilers. The chapter also
explores the ramifications of customer classification through clustering - an important
tool for aggregators to identify and exploit customer flexibility.

Chapter 4 presents a market concept that aims to schedule supply and demand op-
timally, reducing wind power curtailment and use of conventional generation. This



1.5 Structure of thesis 10

thesis further develops a balancing market, using novel constraints and structural
changes to ensure feasibility and scalability in the existing power system. Financial
benefits to the market are estimated and operational problems are identified. The
troublesome issue of volatility is analysed, and potential solutions are presented. The
market concept is also extended to perform centralised congestion management on
low-voltage feeders.

Two of the main contributions of this thesis, DR forecasting using the model developed
in Chapter 3 and real-time implementation of the EcoGrid EU market developed in
Chapter 4, were used to create prices every five minutes in 2014/2015 on Bornholm.
The market sends real-time prices to 1900 houses every five minutes and uses feedback
from demand to update forecasts. A summary of this field-test, with an analysis of
the controllability of the load, is given in this thesis.

Response to
prices

Forecast of
response to prices

Prices

Individual
models

Market
models

Aggregate
models

Figure 1.3: How different chapters and the models they contain relate to each other



CHAPTER 2
Characterising

price-based DR
Price-based DR programmes may assume that price volatility is incentive enough for
participants to invest in the necessary hardware. This chapter investigates whether
this is the case considering controller design for thermostatically controlled loads
under real-time pricing. Different algorithms are combined with data collected and
constraints learnt from experimental work to simulate the customer benefits of resi-
dential heat pumps participating in an electricity market. Heat pumps are expected to
be the largest and easiest-to-exploit residential DR resources in Denmark.

2.1 Introduction

Thermostatically-controlled loads (TCL) in conjunction with a building can effectively
deliver demand response (DR) because such a load only needs to turn on sporadically
to maintain a minimum level of user comfort. Modelling thermostatic loads, primar-
ily for forecasting and subsequently for control, was initially proposed 35 years ago
[39, 40], spawning numerous research projects analysing different types of TCLs, de-
livering different services, with different modelling approaches and from single and
aggregated perspectives.

Indirect control requires just one-way communication, making it cheap and naturally
suited to a large number of smaller loads, such as residential houses with TCLs. Acti-
vating DR via a price signal (one form of indirect control) was the main scope of this
PhD project. Five minute intervals were first proposed as the threshold for pricing
35 years ago [41]. Below five minutes, non-price signals may be a more effective and
less complex approach. For example, power system frequency deviations in Eastern
Denmark change sign every 2.7 minutes (on average), which is one option for acti-
vation below five minutes. The most advanced heat pumps have minimum on- and
off-times of at least 5 minutes (inverter based compressor) and 15 minutes (fixed
speed compressor), making them less suited to system-frequency activation.

Previous relevant research of smart TCLs are the hysteresis control algorithms that
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base a decision only on historical prices [34], [42], while model predictive control
(MPC) algorithms for heating buildings have been discussed [43], [44], also consider-
ing stochastic approaches [45]. Hysteresis and MPC approaches have been compared
in a five day experiment [46], but how this relates to annual customer savings using
real-time pricing and imperfect weather and price forecasts has not been studied.

Simulations using hourly pricing have suggested annual savings of €25-40, €63-71,
$27.20 and a 7.7% cost reduction respectively [47, 48, 49, 50]. However, constraints
on heat pump usability like minimum on/off-times and customer comfort bounds were
either missing or unrealistic. The economic perspective of residential DR with many
appliances has also been investigated, with speculative investment recovery times of
6 years [51], far lower than investment recovery rates for residential PV.

The EcoGrid EU demonstration used equipment costing over €350 per customer to
enable automated price-responsive control. Other costs include a half to a full day’s
labour to install the equipment and communication, maintenance, smart meter and
server costs. Assuming that real-time price volatility is the only incentive, this chapter
asks whether such investment can be justified for a customer or aggregator. Previous
studies regularly overlook the on/off nature of heat pumps or consider unrealistic
comfort limitations, thereby overstating the flexibility TCLs offer and the cost sav-
ings possible. Our objective was to remedy this issue using the experiences learnt
and observations obtained in the EcoGrid EU experiment to simulate realistic annual
savings for a heat pump customer responding to real-time pricing.

This chapter is structured as follows: Section 2.2 presents summary statistics from the
EcoGrid EU experiment that shape subsequent simulations. Section 2.3 presents the
method for simulating a house with different controller designs that optimise heating
systems economically and comfortably. The cost, wear and tear, and comfort results
under real-time pricing are presented in Section 2.4, also with experimental cost
savings observed from 285 heat pump customers in the demonstration. Section 2.5
concludes.

2.2 Experimental observations

This section presents statistics from the EcoGrid EU demonstration to form the basis
of follow-up simulations. The EcoGrid EU demonstration has 1900 houses fitted with
smart meters and a range of distributed energy resources (DERs) that react to elec-
tricity prices sent every five minutes. Smart meter data is collected in real-time to
update the demand forecast (described in Chapter 3), which is subsequently traded
in a real-time balancing market (described in Chapter 4). The market then generates
new pricing for customers. DERs include hot water boilers, controllable PV and,
most significantly, a mix of heat pumps and resistive-electric heating devices.
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To simulate a house with TCLs, assumptions must be made about the temperature
bounds that customers find comfortable. We base these assumptions on empirical
data from houses that measure indoor temperature throughout the experiment. Ab-
solute thermostat bounds are not logged, so some preprocessing must be performed;
To remove outliers in temperature that could be caused by external factors like leav-
ing a window open, the extreme 5% percent of values are removed. The top plot
in Figure 2.1 shows the 5th and 95th percentiles through the winter months. The
mean temperature range considering these percentiles is 5◦C. When considering a
slightly narrower range, the 10th to 90th percentiles, a mean temperature range of
4◦C is observed. The mean temperature was 21.1◦C in both cases. The second plot
in Figure 2.1 shows the median temperature range is 3°C, which translates to a heat
pump control objective of 21°C ± 1.5°C.

Plots 3 and 4 in Figure 2.1 show the size of the heated area for homes with heat
pumps and the nominal power (electrical) of the heat pumps in the EcoGrid EU
demonstration. The average house size is 163m2, larger than the average Danish
house of 133m2, while the average heat pump size is 5kW (this is a combined figure
for the houses with multiple heat pumps). These statistics were used for simulation.

2.3 Simulation Method

This section defines a thermal model of a house with a heat pump and presents dif-
ferent control algorithms to steer the heat pump. Air-source heat pumps make up
64% of the heat pumps used by the EcoGrid EU participants. This figure, combined
with the continued growth and publicity surrounding heat pumps, means they were
modelled instead of resistive-electric heating.

Two control approaches are presented: hysteresis and economic model predictive con-
trol (EMPC). Hysteresis controllers take a decision based upon the current electricity
price with respect to historical and forecast prices. Hysteresis controllers are robust
against modelling errors and computationally lightweight, but may lead to unsatisfac-
tory indoor comfort and suboptimal economic performance. EMPC algorithms take
control decisions based upon weather and price forecasts that lead to an optimal com-
fort and economic outcome in a system without uncertainty. The EMPC approach
is, however, computationally heavy and requires far more input data as well as an
accurate model of the area being heated.

2.3.1 Thermal model of a house
The heat flows in and out of a house, also considering the contribution from the heat
pump, were modelled with differential equations. A grey-box approach can be used to
find the parameters for such a model, by combining the properties of a physical model
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Figure 2.1: Percentiles of temperature bounds experienced by customers in the
EcoGrid EU experiment, histogram of temperature ranges showing a
3◦C range is most common, histogram of heated area and histogram of
heat pump nominal power.
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that accurately describes a real system with a black-box model where the underlying
process is not well understood [52]. The set of differential equations that describe the
first order dynamics of how heat transfers throughout the house are

dT i =
1

Ri−eCi

(
T e − T i

)
dn+

1

Ri−aCi

(
T a − T i

)
dn+

1

Ci
Φhdn+

1

Ci
AwΦsdn (2.1)

dT e =
1

Ri−eCe

(
T i − T e

)
dn+

1

Re−aCe
(T a − T e) dn (2.2)

where n is the time, Ri−e, Ri−a and Re−a are the thermal resistances between the
interior and the building envelope, the interior and the ambient, and the building
envelope and ambient respectively. Ci and Ce are the heat capacities of the interior
(light mass) and building envelope (heavy mass) respectively. T e, T i and T a are the
temperatures of the building envelope, interior and ambient respectively. Φh and Φs

are the energy flux from the heat pump and sun respectively. Aw is the effective
window area.

The parameters for this model are based upon experimentally found results in Den-
mark [52, 53] and are shown in Table 2.1. These equations can be represented as an
RC-circuit, as in Figure 2.2. The dotted dividing lines in this figure show different
heat contributions to the house which, going from left to right, are the interior of the
house, the heat pump, solar irradiance, the building envelope (i.e. the walls) and the
outdoors.

Table 2.1: House thermal model parameters

Parameter Unit Value

Ci J
◦C 1467

Ce J
◦C 16300

Aw m2 8
Ri−e W 3489
Re−a W 262
Ri−a W 69

The coefficient of performance (COP) describes the efficiency of a heat pump. Based
upon a range of heat pump specification manuals [54, 55] and assuming a fixed indoor
temperature of 21°C, the COP can be approximated as

Φh = Φe · (0.0606 · T a + 2.612) (2.3)

This relationship means that, at 0◦C, the heat pump produces 2.6 times more (ther-
mal) energy than the (electrical) energy it consumes, thus highlighting the benefit of
a heat pump.
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Figure 2.2: RC-circuit representation of differential equations describing the trans-
fer of heat in a house.

2.3.2 Basic thermostatic control
To compare the benefit of smart control algorithms, a non-smart thermostat can be
defined. This basic thermostat also sets the boundaries for smart control, i.e. it is used
for all subsequent controller designs. The heat pump is turned on at the minimum
temperature comfort limit and turns off at the maximum temperature limit, i.e.

if xn = 1 and xn−1 = 0 then
mon = zon

else if xn = 0 and xn−1 = 1 then
moff = zoff

else mon = mon − 1
moff = moff − 1
end if
if mon ≤ 0 and moff ≤ 0 then

if T i
n < Tmin then
xn = 1

else if T i
n > Tmax then

xn = 0
else Do smart control
end if

end if

Figure 2.3: Basic thermostat algorithm with a further option for smart control stat-
ments.

where x is a binary variable that turns heating on or off. The integer variables mon
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and moff control minimum on- and off-times by counting down from the minimum
on- and off-times, zon and zoff respectively, every time the device is turned on or off.
The smart control statement is called upon for the hysteresis and EMPC cases.

2.3.3 Hysteresis control
A hysteresis controller adjusts the temperature set-point according to the current
price relative to median price over the recent history and near future, optimising
consumption for the next five minutes only. The temperature set-point is governed
by T , such that

Tn = T offset − λn − µλ
n

k
+ T tracking

n (2.4)

where λ − µλ is the relative price, given current price λ and the median of recent
and forecast prices µλ. k governs the sensitivity to prices and is found by testing the
controller on one month of data and ensuring that the full range of temperatures are
activated considering the range of relative prices activated in the test month. T offset

is defined as
T offset =

(
Tmax − Tmin)

2
(2.5)

To ensure that a minimum mean temperature is observed during the experiment, and
allowing comparison to other controllers, a tracking temperature variable, T tracking,
is added to the set-point. It is calculated in short recursive process, i.e.,

T tracking
n = T tracking

n−1 + T offset − T̄ i (2.6)

where T̄ i is the mean of all historical indoor temperatures. Changes in the tracking
variable decrease as time goes on, since T̄ i becomes less influenced by new values
as the set T̄ i averages over increases in size. T is the temperature set-point that is
subsequently used in the algorithm in Figure 2.4.

if Tn > T i
n then

xn = 1
else if Tn < T i

n then
xn = 0

end if

Figure 2.4: Smart control algorithm for hysteresis controllers.

Hysteresis controllers regularly overshoot the upper and lower temperature comfort
bounds, especially in milder ambient temperatures when heating occurs rapidly. This
is because the hysteresis controller has no expectation of how indoor temperature will
develop. In essence, this means that a hysteresis controller without reinforcement
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learning is not viable. Therefore, basic rules in Figure 2.5 are performed at the start
of every time interval to avoid heating over- and undershoots. The algorithm is

if Heating ended and Tn > Tmax then
In future, do not heat above T initial

start
else if Heating ended and Tn < Tmax then

T initial
start = T initial

start − β
else if Heating started and Tn < Tmin then

In future, do heat below T initial
end

else if Heating started and Tn > Tmin then
T initial

end = T initial
end + β

end if

Figure 2.5: Rules for avoiding overshoot for hysteresis controllers.

where T initial
start and T initial

end are the indoor temperatures when the temperature was last
outside of comfort limits when heating started and ended respectively. Every time
heating and cooling ends and comfort limits are not breached, these limits are relaxed
by β, so that the breached temperature values tend towards the absolute comfort lim-
its, i.e. T initial

end → Tmin and T initial
start → Tmax. β was found experimentally as 0.2°C, at

which point the limits relax sufficiently fast so that the full range of temperatures are
activated as the ambient and building envelope temperatures develop to new, previ-
ously unseen states.

2.3.4 Economic Model Predictive Control (EMPC)
Hysteresis controllers are simple and require no information beyond a price. The
downside to such simplicity is that, when more information is available, then poor
decisions may be taken. An EMPC-based controller can, however, use all available
information, like weather forecasts and heating and cooling time expectations, to
schedule the heat pump’s activity in the best way to meet comfort goals at optimal
cost.

Previous EMPC approaches use a relaxed formulation (without integer decision vari-
ables) that disregards the on/off nature of the heat pump to reduce computational
complexity [44]. However, this appears outdated considering the performance of mod-
ern mixed integer solvers. The approach here is therefore to explicitly model binary
variables in a mathematical program with equilibrium constraints (MPEC) rather
than a state space model. Deviations from a desired mean temperature are penalised,
making the problem formulation quadratic. The EMPC optimisation is called upon
in the smart control section of the basic thermostat algorithm in Figure 2.3. The
overall problem reads
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min
Θ
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Tmin − T soft
n < T i

n < Tmax + T soft
n ∀n (2.13)

vn ≥ xn − xn−1 ∀n (2.14)
wn ≥ xn−1 − xn ∀n (2.15)
n′<(n+zon)∑

n′≥n

xn′ ≥ vnz
on ∀n (2.16)

n′<(n+zoff)∑
n′≥n

1− xn′ ≥ wnz
off ∀n (2.17)

where the set of decision variables includes the transfer of heat from the interior to
the ambient, the interior to the building envelope and the building envelope to the
ambient, and the light house and heavy house masses, the start-on and -off variables
and the on/off status variable, i.e., Θ =

{
Qi−a, Qi−e, Qe−a, T i, T e, T soft, v, w, x

}
.

The first term in the objective function minimises cost over the forecast horizon. The
second term penalises deviations from the reference temperature. The third term adds
an additional penalty for exceeding the comfort bounds. The tracking temperature,
T ref
n , is a temperature that ensures that a mean indoor temperature is reached over

a long enough period. Similar to the hysteresis tracking variable, it is defined in a
recursive manner, but unlike the hysteresis tracking, it is only defined every day, i.e.

if New day started and T̄ i < T offset then
T ref = T ref + η↑

else if New day started and T̄ i > T offset then
T ref = T ref − η↓

end if

Figure 2.6: Rules for EMPC temperature tracking.
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where η↑ and η↓ are found experimentally so that the EMPC algorithm produces a
mean temperature that is comparable with the hysteresis mean temperature and the
EMPC does not exhibit any obvious oscillating behaviour due to periodic changes in
temperature tracking. Values of 0.01°C and 0.001°C were found to be appropriate for
η↑ and η↓.

Constraints (2.8), (2.9) and (2.10) describe the transfer of heat from the interior to
the ambient, the interior to the building envelope and the building envelope to the
ambient respectively. Constraint (2.11) describes the evolution of the interior tem-
perature, considering thermal heat from the heat pump and solar irradiance, and
the heat capacity of the interior. Constraint (2.12) describes the building envelope
temperature considering the heat capacity of the envelope. Constraint (2.13) defines
comfort boundaries that should not be breached. These boundaries are made soft by
the slack variable T soft

n , which is multiplied by the arbitrarily high parameter γ in the
objective function. Soft comfort bounds ensure that a feasible solution can always
be found. Constraints (2.14) and (2.15) contain binary variables v and w that track
when heating started and stopped respectively. Constraints (2.16) and (2.17) enforce
minimum on- and off-times respectively.

The problem is a mixed integer quadratically constrained problem (MIQCP) solved
using the CPLEX solver. Solutions considering the binary nature of a heat pump
are typically found in around one second when the dynamics are considered with five
minute intervals and a four hour forecast horizon is used.

2.3.5 Data sources with uncertainty
Controllers were simulated with 2014 price and weather data. Prices have a five-
minute resolution and come from the balancing market framework presented in Chap-
ter 4. Prices are generated by a market that co-optimises DR and conventional gen-
eration to remedy the imbalance caused by wind power. Wind power represents a
larger share than is the case today, with a wind power forecast error double that of
the current Danish national imbalance from wind. These prices therefore capture the
level of volatility that might be expected in the coming decades, should DR partici-
pation increase significantly and wind power become the largest source of generation.
Real-time prices are closely correlated with the 2014 day-ahead prices, i.e. the day-
ahead price is the observed spot price from 2014, plus or minus an offset to activate
balancing power. Figure 2.7 shows an example day of spot and real-time prices. New
real-time price forecasts are created every five minutes but, for clarity, only forecasts
created at midnight, 08:00 and 16:00 are shown in Figure 2.7.

Uncertainty in weather forecasts is also taken into account. EMPC algorithms receive
weather forecasts from the Danish Meteorological Institute (DMI) four times per day
with an hourly resolution, which are subsequently used in the optimisation problem
in Equations (2.7)-(2.17). These forecasts differ from the observations that are used
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Figure 2.7: A single day of electricity prices, showing that real-time prices are far
more volatile that day-ahead prices, and that there can be a significant
error in the price forecasts.

in the thermal model of a house in Equations (2.1) and (2.2).

2.4 Results

Simulations were performed for a range of comfort settings (Tmin and Tmax), which
are the minimum and maximum interior temperature that the user will accept. The
bigger the gap between Tmin and Tmax, the less desirable the comfort is from a user
perspective. Minimum on- and off-times of 20 minutes were used.

A half day of simulations are shown in Figure 2.8. The first plot shows the real-
time price, which ranges from 25 to 55€/MWh. The second plot shows the ambient
temperature, which drops from 3°C to 0°C as the day wears on. The third plot
shows the global solar irradiation, which starts at the noon peak and falls to zero
at 17:00 UTC. The fourth plot shows the heat pump state (on or off). The basic
thermostat activates the heat pump far less than the smart control algorithms, since
its target temperature simply oscillates between the upper and lower comfort bounds.
All thermostats exhibit longer on-periods during colder conditions, due to higher heat
loss to the ambient. The final plot shows the indoor temperature for each controller,
and comfort bounds, which are 19.5°C and 22.5°C in this example. Both hysteresis
and EMPC algorithms turn the heat pump off for part of the high-price period (17:00
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- 19:00). The basic thermostat also, coincidentally, is turned off for much of the
last high-price hour. Both smart controllers successfully prepare for the high pricing
period by activating the heat pump so that the indoor temperature reaches the upper
comfort bound in the low-price period that occurs during the preceding hours.

2.4.1 Cost and comfort results
The main results for comfort and cost are shown in Figure 2.9. The plots show the in-
door temperature standard deviation, the mean indoor temperature and the annual
cost for electricity (excluding taxes and tariffs) for different comfort bounds. The
indoor temperature standard deviation increases for all controllers as the comfort
bounds are widened, especially for the basic thermostat. This highlights that flex-
ibility is only extracted in return for a less stable indoor temperature. The mean
temperature is highest for the 1°C comfort bound, caused by frequent temperature
overshoots and suggesting that a 5kW heat pump may be oversized for a 1°C com-
fort bound and a house with the thermal characteristics simulated. An alternative
explanation is that the first-order dynamics in Equations (2.1) and (2.2), which as-
sume even temperature distributions for the light- and heavy-masses of the houses,
are overly simplistic.

The mean temperature for the hysteresis and EMPC algorithms stays close to the
desired temperature, 21°C, for all other comfort bounds, validating temperature track-
ing functions. The basic thermostat has no temperature tracking, which leads to lower
mean temperatures as the comfort bound increases. Non-linear thermal dynamics dic-
tate this behaviour as the indoor temperature cools slower than it heats when below
the mean temperature, causing many observations at temperatures near the lower
comfort bound. This effect can also be seen in the probability distribution of temper-
atures shown in Figure 2.10.

The basic annual cost for a heat pump with a 2°C comfort range is €293. At this com-
fort level, the hysteresis and EMPC algorithms deliver annual savings of €1 compared
to the basic thermostat. At a 3°C comfort range, which is the median comfort range
assumed to be used by EcoGrid EU customers, both smart algorithms lead to annual
costs of €284, a €9 saving compared with the basic thermostat and a 2°C comfort
range. The annual costs are €274 for the smart algorithms under a 4°C comfort range,
leading to savings of €19 per year. Only with a 7°C comfort range is the EMPC able
to outclass the hysteresis algorithm with savings of €31 versus €27. It should be
noted that these cost savings come about by increased temperature variations. The
temperature standard deviation increases by 14%-61% for the 3-7°C comfort bounds
compared with the 1-2°C comfort bounds.
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Figure 2.8: A half day example of the simulation.
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Figure 2.9: Temperature and cost results for different comfort bounds.

Further evidence of why the financial savings are so low can by found by seeing how
often heat pumps were activated during the cheapest and most expensive periods
of the year. For a 3°C comfort bound and looking at the cheapest and dearest 20
hours, the percentage of time activated are shown in Table 2.2. Here, it can be seen
that activation is only increased by an additional 6.8% compared with a non-smart
controller during high-price periods. Activations are reduced by up to 5.4% during
the lowest price periods. Clearly, comfort bounds, minimum on/off times and price
and weather forecast uncertainty limit the heat pump’s ability to deliver flexibility
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during extreme price periods.

Table 2.2: Percentage of time activated during extreme price periods

Basic thermostat Hysteresis EMPC

Activation in cheapest 20 hours 33.6% 40.4% 40.1%
Activation in dearest 20 hours 21.7% 16.3% 18.7%

Figure 2.10 shows the probability distribution of indoor temperatures for a 4°C com-
fort bound. Temperature tracking for the hysteresis algorithm and deviation penali-
sation for the EMPC algorithm ensure that a desirable distribution is reached for the
smart controllers, spending little time at extreme temperature ranges.
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Figure 2.10: Temperature distribution for a 4°C comfort bound.

2.4.2 On/off cycling rates
Heat pumps have a lifetime of 15-20 years, but several moving parts mean that fre-
quent on/off cycling of a heat pump reduces the lifetime of the device [56]. The impact
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a cost- and comfort-driven control algorithm has on the number of heat pump acti-
vations is therefore of interest. Daily activations are shown in Table 2.3. Activation
rates stay fairly constant for smart algorithms as the comfort bounds are widened, but
drop dramatically for the basic thermostat. Compared to the base case thermostat
with a 1°C comfort bound, the hysteresis and EMPC algorithms increase activations
by 15% and 19% respectively. In the worst case, activations are 20 times higher than
a basic thermostat. While we cannot conclusively state the detrimental impact of
increased activations, it is clear that the smart algorithms developed do not have
desirable characteristics for reducing wear and tear.

Table 2.3: Daily heat pump activations during heating season

1◦C 2◦C 3◦C 4◦C 5◦C 6◦C 7◦C

Basic thermostat 24.1 29.0 5.4 12.7 1.6 2.5 1.2
Hysteresis 27.6 29.1 27.0 27.6 26.2 26.5 26.1
EMPC 28.6 29.4 26.6 27.4 25.4 26.0 25.0

2.4.3 Empirical cost observations
The algorithms implemented in the EcoGrid EU experiment were subject to commer-
cial confidentiality. However, some details are in the public domain, including that
EMPC-based algorithms were used as a starting point [57]. Several iterations were
tested, leading to a final version where controllers had 3°C comfort bounds by default
and minimum on- and off-times of at least 60 and 30 minutes respectively [58]. Such
long minimum on/off times ensured greater customer comfort, as requested by par-
ticipants. It should be noted, however, that the comfort bounds are only virtual in
that the heat pump will ignore such minimum on/off times if its internal minimum
on/off times are already met and comfort bounds are breached.

Table 2.4 details the empirical cost observations, averaged per house and excluding
taxes and tariffs, for each group during the period September-April inclusive (the
heating season when DR is present). The demonstration includes three automated
groups and a control group for comparison. Houses in the control group, also called
the reference group, receive no pricing information, but houses are equipped with
smart meters that report consumption with five minute intervals. The first automated
group is comprised of houses that use heat pumps as their main source of heating
and are fitted with automated controllers that react to real-time prices and price
forecasts. Houses in the second automated group have older resistive-electric heating
with automated controllers. Houses in the third group have resistive-electric heating,
controllable PV and hot water boilers. The first row in Table 2.4 shows the average
monthly cost for each group. The second row is this number normalised by dividing
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it by the average consumption for each house (as used in paper B) and dividing the
mean group consumption by the reference group cost, i.e.

Anorm
i =

Ai

Aµ
i

(2.18)

where Ai and Aµ
i are the real and mean costs for house i respectively. The normalised

mean consumption for group g is then

Anorm
g =

Aµ
g

Aµ
g1

(2.19)

where Aµ
g is the mean consumption of all normalised houses in the group and Aµ

g1 is
the mean consumption of all normalised houses in the reference group.

Table 2.4: Average monthly costs per house during winter months

Group Reference Group 1 Group 2 Group 3

Cost [€] 25.3 36.9 28.4 17.7
Cost norm [%] 100.0 99.3 99.6 98.8

The reference group does not, at first glance, appear to be a representative control
group, since the automated households have significantly different costs. The nor-
malised cost resizes load patterns to give similar average consumption and appears
to allow comparison. It shows that the heat pump group, group 1, has a 0.7% re-
duction in normalised cost. Scaling this up to absolute costs equates to savings of
€1.9 per year per household, a similar figure to the cost savings of a simulated 3°C
comfort bound, but much lower than would be expected when considering the mean
comfort bounds (4-5°C). Assuming that cost normalisation appropriately reveals the
true cost savings of the automated groups, then the discrepancy between simulation
and empirical results has many potential causes, including:

• More stringent minimum on/off times in the final algorithms tested in the ex-
periment;

• Sporadic communication, market and thermometer failures in the experiment;
• Models for individual houses become highly unreliable when subject to human

interactions [59];
• Obtaining model parameters for individual houses is unreliable, leading to ad-

ditional structural uncertainty in the experiment;
• The mean comfort bounds estimated in Section 2.2 are overestimates and out-

liers are more prevalent than estimated here. It is possible that 3°C is the real
mean comfort bound; and
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• Demonstration participants may have other sources of heating, like a wood
stove, that reduces the flexibility of a heat pump.

2.5 Household benefit conclusions

Space heating has been identified as the largest source of DR, in terms of power and
energy, out of all domestic appliances in colder and moderate climates [60, 23]. Simu-
lated and experimental results suggesting annual savings of €2-31 and €2 respectively
are therefore a disappointment. These outcomes are lower than previous studies and
should bring financial estimates for other price-responsive DERs into question.

The business case for automating heat pumps reacting to real-time pricing looks dire
from this perspective. If equipment costs €350 and the savings are €2/year, then
there is no possibility of a reasonable payback time. In this case, real-time pricing
is not incentive enough to warrant investment by aggregators and households. The
business case remains unclear even if a lower level of customer comfort can be ac-
cepted, leading to €20/year savings. Furthermore, the lifetime of the device may be
compromised compared to a thermostat that optimises for reduced wear and tear,
thus lowering the desirability of economic algorithms.

The balancing market pricing used is a guess at future pricing, but it’s entirely possi-
ble that it underestimates future price volatility. With more volatility, the financial
rewards for flexible consumers may be greater, since a consumer who increases and
reduces their consumption during high and low price periods respectively will may
reduce their bill more (compared to a customer who does not) as extreme prices
become more frequent. However, the results of how often heat pumps were able to
respond to the highest and lowest prices show that this is a double-edged sword. If
heat pump customers take the risk of switching to real-time pricing, then they will
also be exposed to extreme prices without being able to respond to them due to their
internal constraints. If extreme prices are the main justification for DR, then CPP
or direct control may be a lower risk form of activation, since if these events happen
infrequently, then heat pumps may be able to respond every time.

From a controller perspective, the performance of hysteresis and EMPC algorithms
are unexpectedly similar. In the case of older, resistive-electric heating, EMPC has
previously been shown to outperform hysteresis controllers [46]. The impact of price
forecast uncertainty and heat pump constraints clearly limit the benefit of EMPC,
suggesting that the complexity of model-based control is unwarranted for residential
loads. The idea that consumption patterns can be changed without affecting the user
experience are also challenged by simulation results. A financial reward can only be
realised with broader comfort bounds, which translates to lower user comfort. More
advanced methods of control like artificial neural networks [61] and reinforcement
learning [62] do not need a full model of the area being heated, and may therefore
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be able to deliver additional financial gains at higher levels of comfort, although such
controllers are also complex and do not solve the issue of increased on/off cycles.

Inverter based heat pumps, which are capable of delivering far more than an on/off
response, are a promising target for future research, since they may offer significantly
greater financial savings at a higher level of comfort. However, for now, these devices
are not present in significant numbers and still have minimum production levels and
minimum on- and off-times that limit their flexibility and complicate controller design.



CHAPTER 3
Aggregated response

evaluation
Control of many small loads requires coordination or aggregation so that the response
can be exploited in a useful way. This chapter presents the fundamental principles of
indirect control with statistical models to forecast the load and to estimate DR volume
and other DR characteristics. A validation method is discussed and evidence for a
non-linear response is investigated. Finally, a clustering algorithm is used to identify
well-performing loads from a larger, anonymous population.

3.1 Introduction

This chapter presents the models for evaluating DR and performing real-time load
and DR forecasting. This work was motivated by a market that delegates responsibil-
ity for forecasting to a third party, to reduce the burden and risk for households who
would not otherwise participate in the market. An operational forecast tool was de-
veloped and statistical analyses were performed to assess the size of the DR resource.
Previous DR evaluation studies rely on baseload profiles of the load [63], which are
well defined for medium- and large-sized commercial and industrial loads, but are
unreliable for smaller residential loads. Historically, DR evaluation has focussed on
peak-load reduction [64] with models that do not adequately describe the load shift
(cross elasticity, frustrated demand) and quickness of delivery that are important for
DR activated by a real-time price (RTP). New models with a more detailed descrip-
tion of the load are therefore needed.

Section 3.2 presents the fundamental theory of indirect control and how it applies
to TCLs like those simulated in Chapter 2. Section 3.3 follows with linear models
that can estimate flexibility and perform forecasting on an aggregated population of
loads, which is the basis of paper A. This section also discusses how additional data
sources can improve the model’s performance. Section 3.4 then investigates how we
can ensure that a linear model is a trustworthy and representative picture of reality.

A linear model has significant drawbacks in an operational environment, since DR
must be bounded to make a control decision. As such, Section 3.5 presents evidence
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for a non-linear response and how linear models can be adapted to include non-linear
features for operational use.

Section 3.6 assesses DR from a bigger perspective, whereby well-performing loads are
identified from a larger, anonymous population. The clustering methodology from
paper B is used here to divide the load into subgroups that perform in a similar
manner. Finally, Section 3.7 discusses forecasting responsibility.

3.2 The basics of indirect control

That a population of loads can be indirectly controlled in any meaningful way relies
on the fact that they exhibit a somewhat homogeneous response to the control signal
and that they have a range of different internal states. Figure 3.1 shows how this
applies to thermostatically controlled loads. Red circles (devices, e.g. heat pumps)
are on, blue circles are off. When the set-point is moved as a response to a price, a
proportional fraction of the devices switch on or off. Constraints like minimum-on
and -off times that are widely overlooked in the literature are represented in Figure 3.1
by the devices x and z respectively. The boundaries in this figure, Tmin and Tmax,
are normalised boundaries, i.e. they do not represent an absolute temperature, but
rather the boundary temperature that each individual device respects. This, com-
bined with different house heat capacities, house dynamics and device size, means
that the individual circles in this figure will move up and down at different speeds,
giving rise to the different internal states required for indirect control to succeed.

With a large enough population and a diverse enough range of internal states, a
continuous and proportional change in demand could be expected from a continuous
change in temperature set-point. It is important to note that, in spite of a large body
of research on indirect control of TCLs, it remains an assumption that a population
of loads will behave in a linear, predictable manner. To our knowledge, there exists
no mathematical proof that this is the case.

3.3 Flexibility estimation and demand forecasting

Flexibility estimation of a population of loads such as the one in Figure 3.1 is a hotly
discussed topic. A review of 15 dynamic pricing experiments in [64] focussed mostly
on common TOU and CPP experiments. It was concluded that CPP programs with
enabling technologies (typically automated control of TCLs) reduce the peak usage
by an average of 36%. The one RTP experiment included in this survey, the famous
Olympic Peninsula carried out by PNNL, showed a 15-17% reduction in peak demand
- worse than TOU/CPP groups. However, the idea that peak load reduction should
be the primary benchmark for the success of a DR program is outdated and inappro-
priate for RTP programs that aim to increase social welfare during all time periods,
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Figure 3.1: A population of thermostatic loads controlled by adjusting the temper-
ature set-point proportionally to the price.

not just during peak hours. New benchmarks need therefore be designed to assess
the wider value of RTP programs, including response time and energy shifted - two
increasingly important indicators when dealing with RES integration.

Response time, energy shifted, peak response and time to peak response can all be
described by the statistical models presented in paper A. The approach starts with
the general linear model, which is

ct = λ̃⊤
t θλ + z̃⊤t θz + χ̃⊤

t θχ + ϵt = x⊤
t θ + ϵt (3.1)

where λ̃t is a vector of forecast, instantaneous and historic electricity prices, z̃t is a
vector of external variables like weather terms and a Fourier series that describe the
independent baseload due to human behaviour, χ̃t is a vector of interactions between
different variables, and ϵt is normally distributed white noise with zero mean and
finite variance. In this chapter, time-series analysis conventions are used; a variable
is an exogenous object and a parameter is the object that must be found.

The parameters θλ describe the finite impulse response (FIR) for price. Such a FIR
is analogous to plucking a guitar string. It resonates for a finite amount of time and
the overall amplitude is impacted by how hard the string is plucked. Conceptually,
however, a FIR for price can come to rest at a new steady state, whereas the guitar
will always fall back to its initial state: silence.

The model in Equation (3.1) describes the entire load, not just the response to price,
which is illustrated in Figure 3.2. Here, the load from Fourier terms, weather, day-
ahead and real-time price are cumulatively added in the diagram. The peak DR
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predicted by this model is 680kW on the coldest days from a load with an absolute
peak consumption of 3154kW during the 2014/2015 heating season, suggesting 21.6%
peak flexibility. The maximum energy shift capable is 586kWh/h and the ramping
time to peak DR delivery is 15 minutes, although 99% of peak delivery is delivered
after 10 minutes (i.e. the response plateaus temporarily). The observed load that
this model estimates is also plotted. There is a noticeable gap between the model
and the observations due to the structural deficits in the model and the fundamental
uncertainty in nature, represented by ϵt in Equation (3.1). Despite the noise, price-
response shapes and trends are still present in the observations.

30-Nov-2014

P
ri

ce
[D

K
K

/
M

W
h
]

Time [Hour]

P
ow

er
[k

W
]

Fourier
+Weather
+DAP
+RTP
Observed

00 03 06 09 12 15 18 21 00

00 03 06 09 12 15 18 21 00

1500

2000

2500

3000

3500

150

200

250

300

350

400

450

Figure 3.2: Example output of the general linear model from Equation (3.1).

The gap between the model output and the observations is analogous to forecast error,
which is reduced as the load size increases. The benchmark for performance in the
field of forecasting is the mean percentage absolute error (MAPE), defined as

MAPE =
1

n

n∑
t=1

∣∣∣∣ct − c′t
ct

∣∣∣∣ (3.2)
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where ct is observed load and c′t is the model-estimate for the load. Using this mea-
sure, [65] reported a 15% day-ahead MAPE for a 60kW load, [66] reported a 4%
error for a 2GW load, while a 0.8% MAPE was observed for the Danish national
load (5GW peak) in 2014 [67]. For a model built on a five month EcoGrid EU time-
series (Figure 3.2 is an excerpt of this model), the error was 5.4%. Considering the
peak-load for this time-series was 3.2MW, this error appears to be an appropriate
size, larger than the error for larger loads and smaller than the error for smaller loads.
It is therefore possible that the chance of DR from residential loads not delivering
the response forecasted diminishes as the load increases in size, thanks to the lower
MAPE.

Should DR forecasting continue to be a problem, then using additional state estima-
tions of DERs and the load as an additional external input to the model is a promising
approach. The market operator could incentivise aggregators to make anonymous in-
ternal state estimations available to the forecast responsible party in return for a
reward proportional to the additional benefit these observations provide.

An example of state estimations are indoor temperature measurements which, when
added to Equation 3.1 as an external regressor, reduced the MAPE by an additional
0.3%. This was in spite of a very small fraction of the 1900 houses being represented
and very poor data quality from the available thermometers, as shown in Figure 3.3.
Data quality was impacted by thermometers being wireless and powered by AA bat-
teries, which regularly needed replacing, and difficult human behaviour, like placing
a thermometer in the fridge when a participant wanted a warmer house instead of
changing the thermostat settings. The value of internal state estimations, even if
poor and limited in quality, is therefore high.

3.4 Linear model verification

Having identified a model, it becomes important to prove its trustworthiness, espe-
cially if the outcome of this model is to be used for real power system operation,
as it was in the EcoGrid EU demonstration. In the experiment, the model was im-
plemented in Java and delivered a new forecast every five minutes with a 36 hour
forecast horizon.

A reliable way to validate a statistical model is to apply it to previously unseen data,
but this proved difficult to do in real-time due to the fluctuating meter readings, as
shown in the forecasting results of paper A. Thankfully, there exist other tools that
can be used to determine the trustworthiness of the models used. Cross-validation is
often used to assess a model but, in combination with parameter shrinkage, can also
be used to help with model selection by way of discouraging over-parameterisation
and encouraging a reproducible result when applied to new data (i.e. forecasting).
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Figure 3.3: Indoor thermometer availability and temperature measurements from
the EcoGrid EU population for the 2014/2015 winter.

Leave-one-out cross-validation (LOOCV) is a resampling technique used in paper A,
where the time-series being modelled has a non-consecutive portion, or fold, of data
removed and a model is built with the remaining data. The mean squared error is
then assessed for this fold and the process was repeated for the other portions of data.

To start this process, the model parameters are found by minimizing the penalised
least square error [68], i.e.,

min
θ

T∑
t=1

(
ct − x⊤

t θ
)2

+ η|θ| (3.3)

where η is the tuning parameter that governs how heavily the parameters of the
model, θ, should be reduced.



3.5 Evidence for a non-linear response 36

Figure 3.4 shows the outcome of this process when used to find the tuning parameter
η. Each bar represents the range of mean square errors (MSE) from a 10-fold cross-
validation tested with a unique value of η. The fact that the MSEs are similar for each
fold in the cross-validation routine implies that the model is sound since the variance
does not change much if you build the model on a limited sample of data. The η
with the lowest average mean squared error, given at the dashed line in Figure 3.4,
was then used. The process of finding the model is also the process for reducing the
likelihood for over-parameterisation.
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Figure 3.4: Cross-validation routine with different levels of parameter shrinkage.

There exist several additional methods that can assess the validity of a linear model.
Such methods primarily analyse the residuals of the model and include a sign test,
auto-correlation and partial auto-correlation functions, cumulative periodogram, quantile-
quantile, scale-location and residual-leverage plots [69]. All these indicators suggested
that a linear model was valid. However, Figure 3.5 shows that outliers exist, equidis-
tantly spaced. Further investigation showed that these outliers were found every week
at 6AM on a Monday morning. Discussion with a manufacturer revealed that this
was a hot-water tank cleaning function that was enabled on all devices at exactly
the same time. This five-minute spike was not identified by the models developed,
highlighting a danger of synchronised behaviour of loads that are too similar causing
an unforeseen imbalance and unavailable DR during certain time periods.

3.5 Evidence for a non-linear response

Model validation of the linear model largely supported its choice, yet common sense
suggests that there must be bounds on the response to price. A linear model will
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Figure 3.5: A time-series of the residuals, ϵ, from Equation 3.1.

forecast an infinite amount of DR, given an infinite price. In an operational environ-
ment, bounds on the response are therefore needed. Previous work has identified a
non-linear response to pricing by simulating a population of houses with SDEs with
controllable heating responding to a five-minute price [70] and modelling demand as a
Markov process [71]. Evidence for non-linear behaviour can be shown in EcoGrid EU
data by plotting residuals of a linear model with the price responsive data put back
into the noise. To do so, residuals are combined with the price response according to
the Equation (3.1), i.e.

ϵ∗t = ϵt + λtθλ (3.4)

The residuals ϵ∗t now include the predicted linear DR and, perhaps, non-linear com-
ponents too. In this example, the price λt and linear price response θλ exclude lagged
values. A smoothed interpolation through this cloud of points can subsequently be
created to see the relationship between these residuals and the real-time price. A B-
spline representation [72], f = λ∗θb, is found by minimising the penalized likelihood
of the difference between the spline and the observations, i.e.

min (ϵ∗ − f)
′
W (ϵ∗ − f) + ηθ′bΣθb (3.5)

where λ∗ describes the B-splines, θb are the spline coefficients, W is the weight given
to each node and is determined by the number of observations at that price, Σ is
a matrix of the second order differential of coordinates of the B-splines, and η the
tuning parameter found by performing a LOOCV. This algorithm was applied to the
mean and standard deviation of prices λt grouped for €3 bins of ϵ∗t . The end result
can be seen in Figure 3.6.

For positive prices there is almost immediate saturation and significant non-linear
behaviour. For negative prices, the price response appears reasonably linear, so it is
likely that saturation lies beyond the range of negative prices used. The asymmetri-
cal behaviour reflects the fact that many devices in the demonstration could only be
turned on and not off, which equates to responding to lower prices rather than high
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Figure 3.6: The non-linear relationship between relative real-time price and the load
based on 2014/2015 winter observations. This excludes lagged prices,
so overall DR activated is greater.

prices.

In the demonstration (and before the spline-based analysis was performed) this non-
linear behaviour was assumed to be symmetrical and modelled through a logistic
function. A logistic function has the desirable property of being described by just
two variables (as opposed to three variables for an arctangent function of the same
shape), making it easy to solve using the Levenberg-Marquardt algorithm [73]. A
generalised logistic function was modelled in the form

ϵ∗t =

nλ∑
t′=1

−At′

2
+

At′

1 + e−Bt′λt′
(3.6)

where ϵ∗t contains linear model residuals and linear price response for price lags t′.
The shape parameter for each price lag is Bt′ , while At′ is the range of the logistic
function response. Half of this range gives the amplitude of the response, which in
turn is the maximum DR predicted by this model for each cross-price elasticity. The
maximum DR that can be delivered in theory is therefore

∆cmax =

∑
t′ |At′ |
2

(3.7)

However, due to the computational complexity of solving (3.6) for more than three
price lags, only the price lag with the most price elastic response is solved for (typically
the first, second, or third price lag), which then bounds the entire FIR. For the
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differenced model presented in paper A, all three price lags are bounded. The model
can be expanded to give more detailed bounds when considering price interactions,
such as the important price-temperature interaction modelled in paper C.

3.6 Clustering approach for identifying households delivering
DR

In system operation, it is highly likely that loads need to be clustered, so that well-
performing and problematic loads can be identified based upon similar behaviour.
Paper B presents a clustering process that aims to do just this. It was initially used
to identify houses that were price responsive in the first part of the EcoGrid EU
demonstration. The paper is formulated assuming that we know which houses should
be price responsive and which should not. This knowledge was only possible due to
the efforts of the manufacturers in EcoGrid EU. Both price- and non-price respon-
sive groups in this paper had the same automation equipment fitted and non-price
responsive houses were identified by maintaining close contact with the customers
about where and how their thermometers were being used and analysing individual
communication problems on a day-by-day basis.

In a larger roll-out of DR, such close, personal analysis of individual customers is
unlikely to be feasible. Using cost to identify a response, as in paper B, also has
its difficulties, as identified by the small cost savings observed experimentally (see
Table 2.4). It is therefore desirable to combine the clustering process with the mod-
els developed in paper A to identify price-responsive clusters in a manner that scales
to larger populations and identifies price responsiveness based upon the FIR for price.

To show how such an approach could work, a minimal example that combines the
clustering (paper B) and FIR (paper A) tools is presented here. To start with, 500
houses were selected from the EcoGrid EU population. Figure 3.7 shows the FIR
for the houses selected in each group. Figure 3.8 then shows the dendrogram of how
the houses are clustered, with an arbitrary cut-off giving six clusters. The height on
the y-axis is normalised between zero and one and reflects the distance between the
variance of each cluster. Figure 3.9 shows the time-series of each cluster for the input
data (one week in December 2014). The shaded area represents 95% confidence inter-
vals for these time-series, derived using a non-parametric method whereby individual
house consumption is sampled with replacement (bootstrapping). The confidence in-
tervals are narrow, suggesting that houses in each cluster are quite similar.

Following the clustering process, linear models were created for each cluster and the
FIRs for price were picked out and shown in Figure 3.10. The clustering algorithm
appears to identify houses that deliver the most DR, as seen in Figure 3.10. Despite
having similar peak loads, clusters 2, 3 and 6 show significantly different response
to prices. The DR volume in cluster 3 is over 8 times larger than the DR delivered
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by clusters 2 and 6. The DR delivered by clusters 1 and 2 appears to present dif-
ferent characteristics to clusters 3 and 6, with a far more gentle rebound. Clusters
4 and 5 exhibit no DR and further inspection reveals that these houses are empty
holiday homes, which suggests that the clustering algorithm is influenced by both
DR characteristics as well as participant demographics, which in turn suggests that a
clustering approach can be used for identifying houses in a wide range of applications.

The success of identifying cluster 3 as the best performing one by far means that, if
additional financial incentives were to be paid to customers, e.g. in the form of an
availability payment, then cluster 3 participants could be rewarded additionally for
exhibiting a desirable response.
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Figure 3.7: Finite impulse responses of the reference group and the automated
groups.
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Cluster 4 = 58 houses
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Cluster 5 = 35 houses
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Figure 3.9: Clustering outcome from the 500 houses chosen.
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Figure 3.10: Finite impulse responses of the clustered groups.
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3.7 Consequences for the forecast responsible party

In existing markets, loads must be a minimum size in order to participate, e.g. 10MW
in Denmark. Each load then has a balance responsible party (BRP) who is account-
able for forecasting consumption and remedying imbalances in their portfolio. The
minimum size requirement precludes smaller loads such as individual houses from
participating in the market. Markets can remove this barrier to entry by moving
the responsibility for estimating bid size and price response to a third party, perhaps
the market operator. This allows smaller loads entry to the market and removes the
burden of bidding and the financial risk of not fulfilling the resulting bids, making
DR an attractive and accessible proposition for a wide array of loads.

Forecasting is the key to making indirect control work. Without adequate forecast-
ing accuracy, indirect control DR does not fulfil the goal of maintaining a reliable
power system. The experiences learnt from identifying and validating a forecasting
model suggested that, under certain conditions, the approach of having a third party
taking forecasting responsibility leads to higher risk and lower efficiency than each
load being forecast responsible. The source of risk were the large, unforeseen devia-
tions due to synchronised device behaviour. This would not be an issue if there are
a diverse enough range of device manufacturers, but if there are only a handful, then
one botched firmware upgrade - or even schedule maintenance not communicated to
the forecast responsible body - can wipe out significant flexibility, making DR an
unreliable resource. Even if forecasting methods are more advanced and fully adap-
tive, there will at least be a five-minute period (and likely longer) where DR could
disappear entirely, causing a major imbalance in the power system.

The source of lower efficiency comes from device manufacturers being reluctant to
share useful, anonymous state-estimation data, such as indoor temperature readings,
that would improve forecast accuracy. It may therefore be desirable that companies
responsible for DER behaviour, e.g. aggregators, take a significant or entire part of
the responsibility for forecasting load and DR.

Should the aggregator take forecasting responsibilities, then it could be rewarded by
the market operator based upon forecast accuracy and DR delivered. These payments
can subsequently be passed on to individual well-performing loads, identified using
the clustering and linear models as in Section 3.6. Such an approach can retain the
no-risk option of not penalising loads when they do not perform as forecast (analogous
to delivering on a bid as promised) whilst encouraging good DER-controller design
and strong forecasting algorithms, which in turn can promote competition between
aggregators who win the additional income by competing with the best forecasting
algorithms and for the most responsive and reliable customers.



CHAPTER 4
Electricity market

design
Trading and activating DR in a market is a top priority for many TSOs and policy
legislators. Yet fitting DR into a market structure and yielding a positive outcome
is challenging from economic and technical perspectives. This chapter presents day-
ahead and real-time markets with new constraints to fully describe flexible demand,
followed by implementation-specific additions. The causes of inconsistent pricing for
demand and supply are identified, and the impact on cost and reliability are estimated.

4.1 Introduction

An electricity market exists to ensure that supply equals demand at all times and ev-
erywhere in as economically efficient a manner as possible. This should be achieved
reliably, while adhering to the fundamental market principle that revenue from de-
mand equal revenue to supply [74]. The real world, however, invariably interposes
significant discontinuities and non-linearities that make a balance hard to achieve
optimally [75]. This chapter explores these challenges by integrating the load models
developed in Chapter 3 into basic day-ahead and real-time market structures. The
basic market framework is built up with implementation specific features added af-
terwards, which also form the basis for the market formulation in papers C and D.
Results from the EcoGrid EU experiment are presented and a re-purposed tool for
innovatively quantifying market based volatility is described. Regardless of how DR
is controlled, so long as it is traded in a power pool, new types of DR have character-
istics that market-traded consumption has not had previously, requiring changes to
existing market structures.

Section 4.2 gives preliminary definitions for price and cross-price elasticity that are
used in the remainder of the chapter. Section 4.3 introduces the basic concept of
clearing day-ahead and real-time markets with DR. Section 4.4 demonstrates the im-
pact of generation, demand and network constraints on price discovery. Section 4.5
discusses the unique challenges and design of the experimental market that operated
in real-time on the Danish island of Bornholm in 2014 and 2015. Section 4.6 presents
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empirical and simulated results, with a focus on market objectives such as social wel-
fare, congestion management and volatility. Section 4.7 highlights the future research
necessary for real-time pricing to become a reality.

4.2 Definitions of price and cross-price elasticity

Price elasticity, also called self or own elasticity [76], describes how sensitive a load is
to a change in price [77]. It is traditionally defined as

ε =
dC/C

dλ/λ
(4.1)

where C and λ are consumption and price respectively. This equation describes the
how infinitesimal changes in price cause infinitesimal changes in consumption, which
need not be a linear relationship. ε is dimensionless and is often used to describe how
a 1% change in price relates to a 1% change in quantity.

For the purposes of operating a day-ahead and real-time market, we define price elas-
ticity parameter that is a linear function of observed changes in load, ∆C, according
to the models developed in Chapter 3, i.e.

αDA =
λDA

∆CDA
(4.2)

where λDA is day-ahead price. Real-time price elasticity is defined with respect to
the day-ahead state, i.e.

α =
λRT − λDA

∆C
(4.3)

where λDA and λRT are day-ahead and real-time prices respectively. αDA and α are
the ratios of price to DR with units of €/MW2h.

In most cases, demand price elasticity is negative. The more expensive the commod-
ity, the lower the demand. However, there are occasions when positive elasticity
occurs. Demand for luxury items can go up if the item is perceived as being more
exclusive. From an electricity demand perspective, positive or positive-price elastic-
ity can occur before and after a period of negative elasticity. Known as the rebound
effect, or frustrated demand, this occurs because, at some point, demand must be
satisfied at any cost. When applied to electric heating, after a long enough period of
being exclusively turned on or off, thermostat limits will be reached and the opposite
on/off status will occur, so that the house temperature stays in a comfortable range.

In traditional economics literature, cross elasticity, also called cross-price elasticity,
describes how the demand for one item is affected by the price changes of another
item. In this thesis, cross elasticity is defined as how sensitive demand for an item
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is to changes in price that happen before or after a price was valid. For example,
if a high price is valid in the period 22:00-23:00, consumption will be altered in the
hours before and after it as a direct consequence of the high price. Conceptually, the
impact of cross elasticity can be explained using the relationship

∆Ct =

Tb∑
t′=Ta

λt′

αt′
, Ta ≤ t ≤ Tb (4.4)

In Equation (4.4) there exist DR and price time-series of length T . There also exists
a sliding window around each time-step with the index t′. The sliding window starts
at Ta and goes on to Tb and DR (∆Ct) is a function of all the prices valid from Ta

to Tb. This process describes the energy shifted from each slice of time before and
after now to now (time-step t). I.e., when summed over the whole sliding window,
the entire energy shifted to the current time-step is added together.

4.3 Price discovery in a market environment

Broadly speaking, deregulated power systems give rise to two types of electricity mar-
ket [78]. The first relies on bilateral contracts, which offer certainty to buyer and seller
for the contract’s duration. The other far more common type of market, the power
pool, is presented here. While power pools benefit from potentially lower prices, they
carry the risk of short-term volatility, and some require more information (such as
start-up, shut-down and operating costs) at the time of bidding. Other power pools
internalise these costs into a single, opaque bid constructed by the entity participat-
ing in the market. The two structures use fairly similar tools to determine market
outcomes, and they face similar challenges. In Europe, bids that internalise these
additional costs are the most common and are presented here.

Electricity pools that maximise social welfare yield a mathematical program with
equilibrium constraints (MPEC) [79]. They can be conveniently formulated as lin-
ear programming (LP) and quadratically constrained programming (QCP) problems.
Heuristic approaches like Piecewise Integration (PIES) [76] and the Bid Cut heuristic
[75] also exist for price discovery. However, here we present minimal examples for the
most common “textbook” formulations of day-ahead and balancing market clearing
mechanisms [80].

4.3.1 Day-ahead market
In a day-ahead electricity pool, the market can be formulated as [81]

max
Θ

∑
t

{
λres
t ∆CDA

t +
1

2
αDA∆CDA

t

2 −
∑
g

λg,tP
DA
g,t

}
(4.5)
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subject to ∑
g

PDA
g,t +WDA

t = CF
t +∆CDA

t ∀t (4.6)

PDA
g,t ≤ Qmax

g,t ∀g, t (4.7)

where the set of decision variables includes DR and conventional generation, i.e.
Θ =

{
∆CDA

t , PDA
g,t

}
for all g ∈ G and t ∈ T . In this chapter, operations research

conventions are used; a parameter is an exogenous object and a variable is the object
that must be found.

The objective function, Equation (4.5), aims to increase customer utility and reduce
the cost from generation. By maximising customer utility, the market increases con-
sumption and reduces its price. Figure 4.1 shows the shape of customer utility (with
additional boundaries for DR, which are not included in the constraints above) and
the step-wise supply curve. When price elasticity is assumed to be linear, customer
utility is the area of a trapeze, i.e. a rectangle, which is the height (the intercept or
reservation price, λres

t , which is the highest supply bid price) multiplied by the width
(DR, represented by ∆CDA

t ) plus a right-angled triangle, which is a half times the
width (∆CDA

t ) times the height (the price, represented by αDA∆CDA
t ).

The day-ahead price elasticity constant, αDA, is equal to 1/θλ in Equation (3.1) with
only one price lag in a market that does not consider cross elasticity. The flexible and
inflexible demand is ∆CDA

t and CF
t respectively. The bid price, bid quantity and

Quantity

Pr
ic
e

λDA

PDA/CDA

αDA

Figure 4.1: The basic equilibrium between supply and demand in a day-ahead power
pool.
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day-ahead power scheduled are λg,t, Qmax
g,t and PDA

g,t respectively. In this example,
the day-ahead wind power forecast, WDA

t , is treated as a free, negative load.

The balancing constraint in Equation (4.6) ensures that supply meets demand. The
dual variable of this constraint (alternatively called a shadow price of the primal
problem) sets the day-ahead price [79]. Constraint (4.7) describes the maximum
boundary of each bid, assuming that a bid can be partly activated as in Nord Pool
today.

4.3.2 Real-time market
Markets usually operate in several stages. A real-time market, also called a balancing
or a regulating market, is the last market to clear before real-time operation, with
faster reserves often following non-pool like structures. A minimal example of a real-
time market can be structured as

max
Θ

∑
t

{(
λDA
t ∆Ct +

1

2
α∆Ct

2

)
−
∑
g

(
λ↑
g,tP

↑
g,t − λ↓

g,tP
↓
g,t

)}
(4.8)

subject to∑
g

(
PDA
g,t + P ↑

g,t + P ↓
g,t

)
+WDA

t = CDA
t +∆Ct +Bt ∀t (4.9)

P ↑
g,t ≤ Q↑,max

g,t ∀g, t (4.10)
P ↓
g,t ≤ Q↓,max

g,t ∀g, t (4.11)

where the set of decision variables includes DR, up and down regulation, i.e. Θ ={
∆Ct, P

↑
g,t, P

↓
g,t

}
. The prices λ↑

g,t and λ↓
g,t are the up- and down-regulating bid prices

respectively, while quantities Qmax
g,t describe the maximum bid sizes. The day-ahead

consumption is now a known parameter defined as CDA
t = CF

t + ∆CDA
t , while α

describes the real-time price elasticity.

As in the day-ahead market, the objective function in Equation (4.8) aims to reduce
costs from generation and increase customer utility, but with respect to the day-ahead
market, illustrated in Figure 4.2 (with additional boundaries for DR). The shape that
customer utility takes on is a trapeze, on one side of the day-ahead starting point,
which is a square (λDA

t ∆Ct) plus a right angled triangle ( 12α∆Ct
2).

Deviations from the day-ahead schedule are represented by the imbalance variable B.
If there is no imbalance, then the real-time price is equal to the day-ahead price. The
imbalance variable is included in the balance constraint in Equation (4.9); the dual
variable of this constraint gives the real-time price. Equations (4.10)-(4.11) define the
maximum regulating bid sizes.
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Figure 4.2: A real-time market maximising customer utility (top) and minimising
cost (bottom).

4.4 General market constraints

When solved with quadratic programming solvers, the minimal examples in Sec-
tion 4.3 produce prices that are at the intersection of supply and demand, but the
resulting production cannot be met by any market participant. To ensure realistic
production schedules, additional constraints are needed, as described in the market
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formulation of papers C and D. This section discusses some of the constraints that
impact supply, demand, transmission and distribution in a real-time market.

On the generation side, ramp rates, minimum on-times (or multi-period bids) and
conditions excluding simultaneous up and down regulation are all needed for practi-
cal operation of the power system. On the demand side too, inter-temporal effects
(i.e. cross elasticity) and other bounds are also needed. Without such constraints,
production schedules cannot be followed, leading to significant imbalances that jeop-
ardise stable power system operation. Paper D characterises the mismatch between
market outcome and consumption in terms of social welfare, which was lower than a
market without DR when inter-temporal effects were ignored.

The vast majority of generation and load constraints, including basic constraints like
ramping, mean that the market clearing price is different from the marginal cost
of energy, yet markets are efficient nonetheless [82]. What this usually means in
practice is that the price sent to supply and demand is the marginal cost of energy -
as calculated in a mixed integer quadratically constrained program (MIQCP) - plus
an uplift price that ensures all market participants have their costs covered [83].
The following examples of generation, demand and network constraints illustrate the
ramifications of this.

4.4.1 Generation constraint example: multi-period bids
Constraints that require binary variables (e.g., minimum on-times) can lead to be-
haviour that will strike some market participants as unfair. For example, linear
minimum on-times can be added to the real-time market as follows

t′<t+zon
g∑

t′≥t

xg,t′ ≥ vg,tz
on
g ∀g, t (4.12)

where t′ is an alias of t, i.e. it counts with respect to t, xg,t is a binary decision vari-
able determining the status of generation unit g, vg,t is a binary variable that states
when a bid was activated and zon

g is the minimum on-time or the length of a block bid.

When such a constraint is included (typically, the thermal generating unit’s physical
limitations make it necessary), and when bids can have different minimum on-times
or minimum activation conditions, the phenomenon of paradoxically rejected bids
occurs [75], as illustrated in Figure 4.3. Here, an imbalance, B, occurs on the demand
side due to an increase in inflexible consumption, which is remedied in the real-time
market. Additional generation or a reduction in consumption, or both, causes supply
and demand to reach a new equilibrium. The imbalance is forecast to last 30 minutes,
but the next generator in the merit order curve (highlighted in red) has a minimum
on-time of 60 minutes, and the following generator has a minimum on-time of 30
minutes. The cheaper generator is skipped and a more expensive unit is activated,
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since this is more cost effective over the forecast horizon. This process leaves the
cheaper bidder thinking that the market has treated him unfairly, since the market
price should have activated him. Such a bid - the paradoxically rejected bid - can
occur with any generation constraint (e.g., ramping, minimum bid-sizes).

Quantity

Pr
ic
e

λ3

λ1

Q1

λ2

Q2 Q3

B

Figure 4.3: A paradoxically rejected bid (red) due to generation constraints.

To find a price in a mixed integer linear programming (MILP) or MIQCP environment
with binary variables, the common academic approach is to solve the mixed integer
problem first, then re-solve a linear or quadratic problem with the binary variables
fixed as parameters and take the dual-variable of the balance constraint to yield a price
[84]. The resulting system price, however, does not support the market outcome, as
the marginal cost of energy is either lower than the marginal generator activated, or so
high that it triggers a greater DR than required by the market. This phenomenon has
led to widespread research of uplift payments [85], whereby heuristic algorithms are
used to adjust the market outcomes after the market has cleared [86]. Alternatively,
the problem can be relaxed and the gap between the relaxed and mixed integer
problems can be reduced pending development of a solution with uniform prices
that support the market outcome [87]. In both cases, the market loses a degree of
transparency as to how a price was found. No uplift or reformulation has yet to deal
with a demand that exhibits significant cross and positive elasticity.

4.4.2 Demand constraint example: cross elasticity
The impact of inter-temporal demand constraints on the marginal cost of energy is
rarely included in the literature, especially for real-time markets in a mixed-integer
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framework. Cross elasticity can be added to the minimal example of a real-time mar-
ket by adding a new dimension to the objective function and modifying constraints.
The new dimension is t′ that is the sliding window that exists for every t. The social
welfare considering every part of the sliding window is now optimised for by including
t′ trapezes to be summed over for each time step of customer utility, i.e.

max
Θ

∑
t

{
λDA
t

∑
t′

Ωt,t′ +
1

2

∑
t′

αt,t′Ωt,t′

∑
t′

Ωt,t′ −
∑
g

(
λ↑
g,tP

↑
g,t − λ↓

g,tP
↓
g,t

)}
(4.13)

subject to∑
g

(
PDA
g,t + P ↑

g,t + P ↓
g,t

)
+WDA

t = CDA
t +

∑
t′

Ωt,t′ +Bt ∀t (4.14)

Ωt,t′ = Ωt−1,t′
θt,t′

θt−1,t′
t ̸= t′, θt,t′ ̸= 0 (4.15)

Ωt,t′ = 0 ∀t, t′, αt,t′ = 0 (4.16)

λRT
t =

∑
t′

αt,t′Ωt,t′ + λDA
t ∀t (4.17)

−∆Cramp ≤
∑
t′

(Ωt,t′ − Ωt−1,t′) ≤ ∆Cramp ∀t (4.18)

where the set of decision variables includes DR, up and down regulation, i.e. Θ ={
Ωt,t′ , P

↑
g,t, P

↓
g,t

}
for the sets g ∈ G, t ∈ T and t′ ∈ T . The matrix θt,t′ has the FIR

for price from Equation (3.1) given in every row. The price elasticity ratio, αt,t′ , is
now given as a matrix with the FIR for price and is the element-wise reciprocal of
(θt,t′)

⊤, i.e.

θt,t′ =


. . . θλ−1 θλ0 θλ1

θλ−1 θλ0 θλ1 θλ2

θλ0 θλ1 θλ2 θλ3

θλ1
θλ2

θλ3
. . .

 , αt,t′ =


1

θλ1

1
θλ0

1
θλ−1

...
1

θλ2

1
θλ1

1
θλ0

1
θλ−1

1
θλ3

1
θλ2

1
θλ1

1
θλ0... 1

θλ3

1
θλ2

1
θλ1


Ωt,t′ is square matrix decision variable that describes the load considering all cross
elastic effects, so that when the sum over the sliding window is taken, it gives the
instantaneous DR, ∆C. Matrix multiplication is done element-wise in the objective
function and, since operations research problems are not well suited to dot product
notation, the sums over t′ are decoupled where needed.

Constraints (4.15) and (4.16) describe how the load responds for all prices. More
specifically, Equation (4.15) ties the response of each time-step to the earlier one,
considering the price elasticity ratio, i.e. the sequence of change in consumption must
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be respected once a change has been initiated. This is needed because, although the
objective function defines a desirable change in customer utility, it does not ensure
an outcome that DR can follow. Equation (4.16) ensures that the resulting FIR is
zero when price elasticity is zero. Equation (4.17) defines the real-time price needed
to activate the DR scheduled in the optimization problem. Constraint (4.18) enforces
DR ramp rates.

To show the consequence of cross elasticity on market outcomes, two different types
or response are defined and shown in Figure 4.4. The first is a step response that
exhibits no cross elasticity. It is defined by taking the average response to real-time
price over the first hour. The second response is a FIR that comes from a model
(see Equation (3.1)) of the aggregate population over the 2013/2014 winter season in
the EcoGrid EU demonstration. This response was chosen rather than a newer one
from 2014/2015 because the early EcoGrid EU load exhibited a significant rebound
effect, leading to positive-price elasticity. DR with positive-price elasticity was chosen
because market players do not exhibit such a response today, yet new sources of DR
will exhibit it. In the following examples, an open loop system is considered and the
dynamics and costs due to subsequent imbalances from feedback are ignored.
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Figure 4.4: Price response used in the cross elasticity demand constraint example.

The outcomes in Figure 4.4 are observed when the step response is considered and
imbalances from incorrectly modelled DR (i.e. feedback) are ignored. The top plot of
Figure 4.5 represents the system imbalance from wind power and inflexible demand.
The second plot shows the DR and up and down regulation scheduled. The third
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plot shows the price of the most expensive up- and down-regulating bids activated
at that point in time, as well as the price needed for demand to deliver as scheduled
according to Equation (4.17) and the marginal cost for energy, which is the dual-
variable of the balance constraint. When the marginal cost of energy is used as the
price that supply and demand receives, then market outcomes are supported by the
price (i.e. all market participants receive a price that meets their bid).

When the FIR with full cross elasticity is included, the market schedule and pricing
outcomes are as shown in Figure 4.6. In this figure, the top plot shows the scheduled
bids and DR and the second figure shows the prices needed to support each market
outcome for up and down regulation, DR, and the marginal cost of energy. The
third figure shows the prices for supply and demand, normalised as λ̂t = λt − λDA

t .
Normalisation shows that the real-time prices needed to support market outcomes are
on opposite sides of the day-ahead price during certain periods, leading to missing
revenue if demand causes the imbalance.

Figure 4.6 shows that supply and demand regularly deliver a differing response to
achieve a balanced system. Table 4.1 shows the impact of cross elasticity on supplier
and consumer surplus [74] if the marginal cost of energy is sent to supply and demand.
In the cross elastic case, suppliers appear to gain additional profit, while consumer
utility is reduced dramatically. In markets where consumers are not compelled to
deliver as scheduled (such as EcoGrid EU), such a surplus would not become a reality.
Instead, an imbalance on the demand side would occur. The final row of Table 4.1
shows the additional revenue gained by the market operator if prices that support
market outcomes were sent instead of the marginal cost of energy and if demand
caused the imbalance. Prices to support market outcomes are the most expensive
up-regulating bid, the cheapest down-regulating bid and the price to meet the DR
expectation scheduled for each five-minute period. The reason for studying demand
causing the imbalance is because if an external actor causes the imbalance, the average
cost of energy is charged. But if it is demand (the only “internal” actor who can cause
an imbalance), the different prices for supply and demand lead to a revenue imbalance.
In the example analysed, significant missing revenue occurs when demand causes the
imbalance.

Table 4.1: Impact of cross elasticity on revenue

Step response FIR

Supplier surplus [€] 964.5 1329.1
Consumer surplus [€] 1421.7 841.0
Excess revenue if demand causes imbalance [€] 0 -314.0

As an example of why this occurs, consider the time interval 3:55 - 4:00 in Figure 4.6.
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Figure 4.5: System imbalance, regulation scheduled and bid and system prices in a
market that does not consider cross elasticity.

At this time, 4.7MW of up regulation and 0.8MW of increased consumption (down
regulating DR) are scheduled. Prices that support market outcomes are 22.7 and
14.2€/MWh respectively, while the marginal price is 22.7€/MWh. If demand causes
the imbalance, sending prices that support market outcomes leads to missing rev-
enue, since paying supply costs 4.7*22.7 = €106.7, but revenue from demand is only
14.2*0.8 = €11.4. If the marginal price is sent, a new imbalance on the demand-side
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arises, because sending a 22.7€/MWh price will activate an undesirable quantity of
DR (the desirable quantity is activated at 14.2€/MWh).

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Po
we

r
[M

W
]

Flexible consumption
Up regulation
Down regulation

0:00 1:00 2:00

Pr
ic
e
[€
/M

W
h]

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

−10

−5

0

5

10

−10

0

10

20

30

−15

−10

−5

0

5

10

15

Time [Hours]

N
or
m
al
ise

d
pr
ic
e
[€
/M

W
h]

3:00 4:00 5:00 6:00
Price for demand
Most expensive up regulating bid activated
Cheapest down regulating bid activated
Balance constraint dual variable

Figure 4.6: Regulation scheduled, bid and system prices and normalised prices
needed to support the market outcome in a market that considers cross
elasticity.
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To put the revenue imbalance into perspective, generation constraints in Paper D
causes -€223 of excess revenue if demand causes the imbalance. We therefore surmise
that cross elasticity has a similar detrimental impact on cash flows or system balance
as generation constraints do. Furthermore, not including cross elasticity leads to the
Cobweb effect and lower social welfare, as shown in Paper D.

4.4.3 Network constraint example: low voltage feeder limits
Some electricity markets, most notably in parts of the USA, use locational marginal
pricing (LMP) to send different prices to different parts of a transmission network
to accommodate that network’s physical limitations [78]. LMP, or nodal pricing, is
only used in a minority of electricity markets, while the majority split this cost (or
“socialise” it) among all market participants [78] in the name of fairness.

Network constraints and optimal power flow calculations are beyond the scope of
this thesis, with the exception of low-voltage feeder limits, which were motivated
by the EcoGrid EU experiment. The experimental setup to test low-voltage feeder
constraints is described in paper C. The motivation for this study is congestion in
the distribution network due to increased distributed activity such as EV charging
and PV production. Such congestion threatens to reduce the lifetime of cables and
transformers due to thermal limitations, or to cause voltage problems leading to poor
power quality.

In order to support congestion management, the demand is first split into a set of
loads, l ∈ L. The real-time market formulation is modified with new constraints as
follows

max
Θ

∑
t

{∑
l

(
λDA
t ∆Cl,t +

1

2
αl∆Cl,t

2

)
−
∑
g

(
λ↑
g,tP

↑
g,t − λ↓

g,tP
↓
g,t

)}
(4.19)

subject to∑
g

(
PDA
g,t + P ↑

g,t + P ↓
g,t

)
+WDA

t =
∑
l

(
CDA

l,t +∆Cl,t

)
+Bt ∀t (4.20)

P ↑
g,t ≤ Q↑,max

g,t ∀g, t (4.21)
P ↓
g,t ≤ Q↓,max

g,t ∀g, t (4.22)∑
t

∆cl,t +
∑
i

∆cl,i = 0 ∀l (4.23)

cmin
l,t ≤ cl,t ≤ cmax

l,t ∀l, t (4.24)

where the set of decision variables includes DR, up and down regulation, i.e. Θ ={
Ωt,t′ , P

↑
g,t, P

↓
g,t

}
for the sets g ∈ G, t ∈ T and l ∈ L.
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The objective function and balancing constraints now have demand decomposed into
multiple loads, but if every load is identical and constraints 4.23 and 4.24 are not
included, this market gives the same outcome as the earlier market formulation.

Equation (4.23) sums over all DR scheduled over the forecast horizon, ∆cl,t, and all
DR historically scheduled, ∆cl,i, for each load. This constraint has two purposes. The
first is to increase the likelihood of a controllable response by avoiding TCL saturation
(such saturation occurs when a continuous increase in consumption is requested for
several hours, which the houses cannot deliver because they get too hot, resulting in a
period longer than the FIR for price can accurately describe). The second purpose is
to ensure that all loads receive the same average price (when all loads have the same
price elasticity). Although it is extremely unlikely for all loads to be homogeneous,
prices will be more equitable with this constraint than without it. Equation (4.24)
sets the maximum and minimum feeder limits respectively beyond which congestion
occurs.

Congestion management requiring separate prices for different loads inherently causes
divergent pricing. The attempt to make pricing average out for different loads over
a long enough time frame also causes supply and demand pricing to diverge. This
happens because the gap between customer utility and generator cost (the two main
terms in the objective function) widens as customer utility becomes restricted by
Equations (4.23) and (4.24).

4.5 Specifics of the EcoGrid EU market

4.5.1 Design objectives
In the previous section, a general market that can facilitate DR was presented. In
this section, the implemented market and its unique design objectives are discussed.

The market was initially designed to operate in parallel with the existing Danish
regulating market and incorporate generators with a five-minute minimum on-time
[88]. However, the DR potential is at least 100MW when Chapter 3 results are
applied to all residential heat pumps in Denmark. This means that tertiary reserves
traded in the regulating market are the only ancillary service with enough liquidity
to assimilate distributed generation and DR, as shown in Table 4.2. Faster moving
reserves are limited in size by the physical constraints of thermal generating units.

The implemented market was therefore designed to match the generator constraints
in the existing Danish regulating market but reduce barriers to entry for smaller,
distributed actors on the supply and demand-sides. New market players are those
providing DR and the 2.3GW of distributed generation in Denmark that currently
receive regulated prices via a feed-in tariff [90].



4.5 Specifics of the EcoGrid EU market 60

Table 4.2: Ancillary service availability in Denmark [89]

DK1 (west) DK2 (east)

Primary 27 23
Secondary 100 200
Tertiary 250 675*

*about half of this generation has very slow activation times

Today, the regulating market in Scandinavia is operated manually without an opti-
mization problem scheduling bids. A bid is activated 15 minutes before every half
hour or hour (depending on the system operator) and simultaneous up- and down-
regulation is avoided. Bids under 10MW must be activated in full, while bids over
10MW can be activated in part. Constraints to emulate this behaviour were added
to standard market clearing formulation shown in Section 4.4.

In the existing regulating market, pricing is calculated ex-post, i.e. the cost of elec-
tricity is decided the hour after activation. Two-price settlement for supply and
imbalance-actor is used, with the most expensive up-regulating and cheapest down-
regulating activated bids setting the price for the whole hour (either or both can be
the day ahead price in case of no imbalance). In the EcoGrid EU market, such pric-
ing is replaced with two-price settlement every five minutes, with separate prices for
supply and demand (to improve DR controllability in the absence of appropriate up-
lift payments). To lower EcoGrid EU partners’ computational and communicational
burdens, the market was only cleared once per hour. How often the market clears
is, however, merely a small formulation detail - it can be, and was, easily changed to
compare market outcomes.

The market was formulated as a MIQCP problem, programmed in OPL and solved
using CPLEX, with separate prices for supply and demand that support all market
outcomes, as shown in Figure 4.6. The market ran on the Danish island of Born-
holm in 2014 and 2015, sending five-minute pricing to EcoGrid EU’s 1900 residential
participants. Full documentation for this application can be found in report I, while
paper C describes the implemented market formulation.

4.5.2 The missing money problem
A fundamental flaw with the EcoGrid EU market is that, even without demand,
supply or network constraints, supply and demand revenue do not match. This is
because the framework uses the real-time price for settlement, when actually the
settlement price must be a function of the day-ahead and real-time prices, i.e.

λS
t =

CDA
t λDA

t +∆CλRT
t

CDA
t +∆C

(4.25)
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where λS
t is the theoretical settlement price that ensures consistent revenue from sup-

ply to demand. By sending λRT
t as the settlement price, the market assumes that this

is also the settlement price for the energy purchased in the day-ahead market, lead-
ing to missing money issues. For example, if 200MWh is purchased in the day-ahead
market at 30€/MWh and 20MWh is activated in the real-time market at 20€/MWh,
sending the real-time price to demand as the settlement price leads to €2000 missing
revenue.

EcoGrid EU reports [88, 91, 92] have proposed separate metering for devices deliv-
ering DR, but such an approach may be too costly and was not implemented in the
demonstration.

To determine λS
t in the EcoGrid EU market and its price elasticity parameter αS

t , the
relationship in Equation (4.25) is built upon. First, consider the equation

λS
t = αS

t ∆C + λDA
t (4.26)

Substitution into Equation (4.25) gives

αS
t ∆CRT + λDA

t =
CDA

t λDA
t +∆CλRT

t

CDA
t +∆C

(4.27)

Substituting for λRT
t and solving for αS

t gives

αS
t =

α∆Ct

CDA
t +∆Ct

(4.28)

where λRT
t is the market equilibrium price (assuming uniform prices can be found)

used for settlement of market players with dual metering or dual accounting (i.e. gen-
erators and larger market actors) and α is the price elasticity ratio that reflects the
real-time price for dual accounting customers. This relationship is rather intuitive; as
more real-time DR is activated with respect to the day-ahead bid, so the settlement
price tends towards a purely real-time price. However, adjusting the objective func-
tion (Equation (4.8)) so that the real-time price generated accurately reflects the true
customer utility (based upon αS) leads to a non-linear program with discontinuous
derivatives. Although non-linear solvers can solve such a formulation, the market still
does not have consistent revenue from supply to demand because of the non-linear cus-
tomer utility is no longer comparable to linear generator utility, leading to DR-only
activations for small to medium imbalances as αS

t → 0 for moderate activations of DR.

Due to the asymmetry in regulating pricing, it is unlikely that a cash reserve could be
a part of daily operation. For demonstration purposes, it was assumed that customers
receive dual-price settlement, although in reality, participants’ quarterly bills were not
related to the broadcast price they responded to.
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4.6 Empirical results and discussion

4.6.1 General outcome
From a larger perspective, the EcoGrid EU demonstration had many successes. The
first success was achieving a peak flexibility of 21.6%, as calculated in Section 3.3,
which appears to be higher than the 17% flexibility achieved in the PNNL GridWise
experiment [64] - although it’s not clear how the latter figure is calculated. This
is doubly impressive considering that the EcoGrid EU peak flexibility figure comes
from a population where only half the houses are price responsive. From a control-
lability perspective, the demonstration had moderate success. Paper A shows how
controllable the load was and how much DR was activated. Briefly, when the largest
increase in consumption was requested by the market, an increase was observed 100%
of the time. When the largest decrease in consumption was requested, a decrease was
observed 80% of the time. Controllability is impacted by the level of noise in the
system and, as such, will presumably improve as the population grows.

Estimating the cost benefit of DR in a balancing market is best done by simulation,
since empirical evidence of cost reductions would require an identical population not
providing DR. Paper D shows potential social welfare increases of up to 70% for a
population of houses that are fully responsive. This does not mean a reduction in cost
of 70%, since customer utility is increased, but there does appear to be significant
value in DR. Social welfare benefits were also calculated with congestion constraints
in Paper C. In this paper, we simulated that congestion management reduced social
welfare by €3 per day per low voltage feeder, where the low voltage feeder has a
peak load of 100kW. The feeder limit in these simulations was set at 5% below the
unconstrained peak load.

Calculations of social welfare in papers C and D are based upon several assumptions
that may not hold true in a larger roll-out of DR. The calculations assume that all
houses would be responsive, that the supply curve would remain the same in the
presence of DR, and that primary frequency reserve costs will equal the highest and
lowest costs of up and down regulation activated each hour, as in Denmark today.
None of these assumptions may hold true in a future power system. Finally, it should
be noted that volumes in a balancing market are a small fraction of volumes in a
day-ahead market, which means that the overall benefit to customers is significantly
smaller.

4.6.2 Empirical results from the congestion management test
The main demonstration results of congestion management obtained after Paper C
was submitted were largely disappointing. In the demonstration, the population
was split into two loads: 1872 houses receiving standard real-time pricing, and 28
houses receiving pricing adjusted for congestion. A model based upon Equation (3.1)
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Figure 4.7: An example day of the congestion management experiment. The feeder
limit was breached every day during the experiment.

was then built to compare observations with the expected response if the second
load had received non-congestion pricing. When congestion pricing was higher than
standard pricing, consumption was lower than a model of the load with non-congestion
pricing only 51% of the time. In addition, over the two months of the congestion
management experiment, consumption did not stay under the feeder limit on any
single day. Figure 4.7 shows an example day from that two-month period. The top
plot shows the prices sent to the main group and the group receiving congestion
management pricing. The bottom plot shows the feeder limit (which changes once
per day at 6:00 UTC), the observed load, and the models of the load assuming they
received non-congestion pricing (model A) or congestion pricing (model B).
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Possible causes for this poor performance might be

1. Poor small-sample modelling and forecasts. The tools developed may not have
been adequate to control such a small (28 house) sample;

2. A 30 minute delay in measurements, during which time a congestion may have
developed before the market could take a control decision; and

3. Smart meter jump, where the aggregated consumption for the virtual feeder
changes as different meters contribute to aggregated consumption at different
times. This is further explained in paper A.

4.6.3 System reliability
The ability of a market to truly maintain control of DR in a reliable manner and
operated at lower cost than a market without DR remains unproven. Interest in se-
cure operation of the power system has increased in Denmark since the 2003 blackout
caused initially by the shut-down of a 1.2GW nuclear power plant [93]. Transient
analysis of supply and transmission has been the primary focus of security investiga-
tions, yet the risk posed by new distributed activities is also gaining TSO interest
[17]. A recent example was the threat of PV collapse in Germany, where 2011 grid
codes led to 400,000 PV installations being retrofitted so that 9GW of PV production
wouldn’t cut out at a system frequency of 50.2Hz [94]. Any distributed devices acting
in unison may lead to a significant loss of load and the method of activation, perhaps
a real-time market, must be carefully designed to avoid such a scenario.

In paper D, simulations showed that markets that do not optimise for cross elasticity
have higher costs when DR is added, due to the Cobweb effect. The Cobweb effect is
the divergent oscillation of supply and demand, thwarting efforts to find a stable equi-
librium [38, 95, 96, 97] and leading to unnecessary generator and DR activations that
reduce social welfare. Simulations show that the Cobweb effect can lead to DR being
fully activated in a cyclical manner. When scaled to all heat pumps in Denmark,
this could mean a 100MW activation followed by a -100MW response 15 minutes
later. Although such a 200MW drop isn’t technically a loss of power, swings back
and fourth could have undesirable consequences for system stability. This example is
also small compared with the 1.2GW loss that preceded the last Danish blackout, but
we assume that the DR potential is significantly larger when including other devices
not studied in this thesis.

Previous methods to measure volatile swings in power generation and consumption are
the Incremental Mean Volatility (IMV) and Incremental Aggregate Volatility (IAV)
metrics, developed in [38]. IMV measures slow-decaying deviations from the moving
average, while IAV measures fast-decaying deviations. To calculate these metrics, we
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must first define the p-norm of a time-series which, for p ≥ 1 is

∥x̄∥p =

(
I∑

i=1

|xi|p
)1/p

(4.29)

A signal of interest, h, is then identified, which could be supply and demand power
or prices time-series. The IMV of the signal of interest is defined as

V̄ (h) = lim
T→∞

1

T

T∑
t=0

∥h (t+ 1)− h (t)∥ (4.30)

while the IAV of the signal of interest is

V (h) =
∞∑
t=0

∥h (t+ 1)− h (t)∥ (4.31)

These measures of volatility are abstract and the result can only be used to describe
the phenomenon. As such, we developed a different way to measure power system
volatility in Paper D: the rainflow-counting algorithm. The rainflow counter was his-
torically designed to measure loading of materials [98]. Its result is intuitive, with
units, that can then be used for further study. When measuring energy, the volatil-
ity outcome is cumulative energy, when measuring a price, the volatility outcome
is a cumulative price which, when combined with energy, gives the total revenue of
market transactions. For this reason, the result is easily applied to other studies, for
example a real time digital simulator (RTDS) of the power system to see at what
point volatility leads to stability problems.

Figure 4.8 shows a comparison of IMV, IAV and the range of the rainflow counter for
simulations of the Danish power system with a market clearing that does not consider
cross elasticity. The signals of interest are demand requested (demand which the mar-
ket schedules), demand delivered (considering a non-linear and cross elastic response
that is not modelled in the market), prices that support the demand scheduled, gen-
eration supplied and the marginal cost of generation (which is the price needed to
support the generating bids activated). Volatility increases in all cases as DR pene-
tration increases, with the exception of demand pricing, which increases dramatically
and then falls away. This is because just a small level of DR inherently introduces
new price variability. Low DR penetration subsequently requires a large price change
to activate the same amount of DR as a power system with greater DR penetration.

As measured by the rainflow counter, volatility increases over 10 times for demand
requested, 8 times for demand delivered, over 100 times for demand pricing, 3.5 times
for generation delivered and 1.7 times for generation pricing, compared to a power
system without DR (but where demand receives the regulating price without respond-
ing to it).
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Figure 4.8: Rainflow counter compared with existing measures for volatility, which
are incremental mean volatility (IMV) and incremental aggregate
volatility (IAV).
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The rainflow counter gives very similar results to the previously established measures
of volatility, which suggests that this tool is a valid approach. If anything, it appears
to give a more consistent, smooth result as DR penetration increases, while the IMV
and IAV suggest more sporadic changes in volatility. Future work could assess the ro-
bustness of each measure by performing a LOOCV on the different signals of interest.

In the EcoGrid EU experiment, consumption volatility was 66% greater than sim-
ulated, suggesting that the Cobweb effect may even exceed our estimates in a real,
dynamic system. However, additional factors hinder a direct comparison between the
experiment and simulations: these include smart meter reliability, sporadic breaks in
the experiment, additional market delays, and increased price elasticity over time as
control algorithms improved. The experiment also consisted of a smaller population
with greater uncertainty than simulated. Thus the Cobweb effect may diminish as
uncertainty diminishes, as happens whenever a larger population of loads is forecast.

4.7 Market conclusions

The potential benefit of DR on the operational costs of the power system are enor-
mous. Studies have consistently shown that DR can bring down the cost of electricity,
especially during critical periods. Knowledge of how to activate DR in a pure-market
setting is, however, still lacking. MPECs are difficult to solve when non-linear for-
mulation is present, such as the conditions for single-price settlement in a two stage
market, and fully describing a load that has a non-linear, autoregressive response to
price. A recent example of this [97] showed that non-linear DR similar to the models
developed in Chapter 3 integrated into an electricity market could not converge on a
uniform market clearing price when just 10% of the load was price responsive.

As markets become subject to more discrete decisions, the requirements for uplift pay-
ments increase [85]. Results from this chapter show this to also be true for modelling
of demand cross elasticity in the market. Even if uplift payments leading to revenue
neutral market structures can be developed, also considering non-linear, cross elas-
tic DR, then volatility may still present new challenges. By its very nature, flexible
consumption is more volatile than inflexible consumption. Consider the two demand
curves in Figure 4.9. Here, the high elasticity curve is cheaper to activate, since a
larger quantity can be activated for a smaller price change than the low elasticity
curve at the intersection with supply. But [38] proved that a higher ratio of demand
elasticity to supply elasticity leads to undesirable volatility. This phenomenon im-
plicitly suggests that it is purely coincidental whether or not a market has the right
elasticities to facilitate DR.

The issues of volatility, cross elasticity and a poorly modelled response to price (i.e.
approximating a curve as a linear) do not just impact markets where demand responds
directly to the market price like EcoGrid EU. These issues can affect any real-time
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market that trades demand-side flexibility, most specifically new sources of flexibility
with significant cross elasticity. However, if an aggregator performs coordination us-
ing direct or indirect means (i.e. an additional control layer sits between DR and the
market bid), then undesirable characteristics can be reduced by the aggregator. Grid
codes can then be developed to enforce certain characteristics, such as the shape of
the bid curve and the amount of cross- and positive-price elasticity, which in turn
will affect the way aggregators perform control.
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CHAPTER 5
Conclusion

5.1 Discussion of key results and contributions

This PhD project developed and implemented tools for devices responding to a price
signal, aggregating a distributed response, and integrating DR into an electricity pool.
Results from the experiment on the Danish island of Bornholm were not always suc-
cessful, but shortcomings were identified and a clearer path to market integration of
DR may now be possible. Above all else, we managed to activate a significant level
of flexibility from residential loads totalling over 20% of the load, and likely higher
when control subjects and non-automated customers are removed.

Determining DR characteristics like volume was only made possible when parameter
penalisation was applied to regression models, shaping model selection by reducing
numerous parameters to zero. Without this, the number of external factors influenc-
ing the load and the unusually high resolution of data caused over-parameterisation.
Load forecasting typically deals with hourly values and fewer external factors influ-
encing the load. Five-minute observations with three concurrent prices (day-ahead
forecast, real-time forecast and real-time settlement) lead to over-parameterised mod-
els and a meaningless result in the absence of parameter penalisation. Going forward,
such methods will become an invaluable part of every load forecasting toolbox.

At a customer level, simulations and experimental observations revealed poor annual
savings for automated heat pumps. Typical cost reductions of €2/year diverge from
previous estimates of up to €71/year due to the inclusion of realistic constraints like
minimum on- and off-times and price and weather uncertainty. However, a positive
outcome of heat pump simulations was that basic hysteresis controllers are able to
deliver similar comfort and economic performance as EMPC algorithms. EMPC is
vulnerable to uncertainty, present in weather and pricing data in our simulations, and
requires an accurate model of the area being heated, which is difficult to obtain. Since
hysteresis algorithms can match EMPC, and probably surpass them when model un-
certainty is considered, this simplifies the design of price-responsive algorithms.

From a market perspective, large increases in social welfare were estimated, once
new inter-temporal demand constraints were developed for the real-time market. Pa-
per D’s estimate of a 60% increase in social welfare, equal to €3.5/day, is seemingly
high. This estimate is for a balancing market for a winter month and assumes every
house has some form of automated electric heating. Real, year-round estimates will



5.1 Discussion of key results and contributions 70

be lower when considering all other power system costs, such as day-ahead market
energy purchases, and considering a lower level of DR penetration. Nonetheless, the
impact on system costs is extremely promising.

The market benefit appears to contradict the financial savings individual customers
can achieve. How can households only reduce costs by 0.7% from automating their
heat pumps, yet the power system see a 60% increase in social welfare? This is mainly
because the heat pump study considers customers responding to pricing generated by
a market that already has new pricing-patterns as a result of DR (i.e. lower average
pricing). The market study, on the other hand, compares social welfare of a market
whose marginal prices have changed as a result of DR to a market whose pricing
hasn’t changed (i.e. higher average pricing). This means that the heat pump study
assumes that customers are price takers, while the market study assumes customer
behaviour contributes to setting the price.

The cost/benefit paradox is also affected by the free rider phenomenon. Free riders
have been identified in previous DR programmes as those who benefit from DR in-
centives without having to change their behaviour [99]. Applied to the cost/benefit
paradox, the flexibility of some customers makes electricity cheaper for all customers,
also those who aren’t flexible. This is because the marginal cost of generation de-
creases as DR penetration increases. Applied to Denmark, if 100,000 households
responded to the regulating price, then the operational costs of the power system will
actually be lower for all 2.6 million Danish households. If the benefit of reducing
consumption by 100W a dozen times a day is €20/year and only 1 in 20 loads reduce
their consumption, then the €20 is spread across all 20 loads. The loads reducing
their consumption get some additional benefit, but this pales in comparison to the
system-wide reduction in costs.

The congestion management experiment controlled with a centralised market was not
successful, with meter delays being the main suspect for failure. This work developed
new constraints for fairer locational pricing, since the basic principles of fairness are
challenged by price discrimination for residential loads. Electricity distribution is a
natural monopoly - you do not have multiple cables coming into your home - and so
receiving high pricing that your neighbour does not because you are on a different
feeder is incompatible with the principle of equal access to utilities for all. A fairer and
potentially more effective option to reduce low-voltage congestion already exists in
many countries: demand charges based upon peak consumption [7]. Demand charges
may be an effective way to compel new distributed activity to reduce congestion, and
are fair if every customer is bound by the same tariff.

TSOs hope that DSM can mitigate the threat to security of supply from new dis-
tributed activity [17], yet we showed that market-based DR can have undesirable
consequences for stability. In a balancing market, increased volatility from DR is
unavoidable, but detrimental effects are avoidable if demand is properly modelled
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within market constraints. This thesis developed a new way to measure volatility in
the power system, using a rainflow-counting algorithm to measure the amplitude and
frequency of supply and demand oscillations. The end result is intuitive and may
have many other applications in power system studies.

5.2 Future work

The low reward for residential customers automating their DERs makes investment
unattractive. The appeal of DR schemes could be increased with additional incen-
tives, such as availability payments that support equipment installation and reward
customers for the full benefit they provide. Availability payments could be based on
the volume of DR delivered by each customer, identified by clustering and statistical
models. More volatile real-time pricing might also be more attractive, which can be
achieved by making taxes and tariffs proportional to the price (while still allowing
tax authorities, the TSO and DSOs to obtain the same revenue). Future research
should therefore build a better business case for automating households. The benefit
of being a first mover should also be investigated, since there may or may not be a
benefit to doing so, depending on the level of high pricing and the ability of loads to
respond sufficiently to extreme pricing.

In view of more frequent activations of heat pumps under real-time pricing, algorithms
for automating TCLs must also evolve further to consider this, since customers may
not want to sacrifice the lifetime of their devices in return for relatively little compen-
sation.

Real-time pricing has a lot of hype behind it, but it is currently no cheaper than
other forms of DR. All equipment installed in the EcoGrid EU demonstration had
two-way rather than low-cost, one-way communication. The complexities of forecast-
ing and the benefits of using internal state estimates to improve forecasting accuracy,
i.e. data collected via two-way communication systems, leads to the conclusion that
the stated benefits of real-time pricing simply don’t exist at this point. Risk and re-
ward are coupled for DR, since without being a reliable resource, DR has little value.
For this reason, more reliable forms of activation, such as direct control or CPP, may
be naturally better suited to DR providing ancillary services in the power system,
while not actually being more expensive than indirect control. Irregular price spikes
are often cited as the motivation for future DR developments [100], which indirect
control is poorly suited to and which further justifies future research into coordinated
control by direct means or CPP.

Uncertainty is a significant problem in all aspects of indirect control, from the ac-
tivation of devices, to the identification of a response, to the scheduling of DR in
a market. At controller level, stochastic approaches already exist [45]. Identifying
the level of uncertainty associated with the DR that a statistical model predicts is
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more problematic. LOOCV is a potential solution for estimating the true level of un-
certainty of a statistical model [101], but is currently too computationally intensive
when dealing with five-minute time-series. For now, we are left with a poor estimate
based on standard errors, which future research should urgently address.

Once uncertainty has been quantified, effectively managing it in a market framework
is a big challenge. Stochastic optimisation was extensively pursued when running
market clearing simulations, but the cost benefit of stochastic optimisation is small
relative to correctly modelling demand constraints. From an implementation perspec-
tive, the computational burden of stochastic optimisation was the most problematic.
Each additional scenario can double the number of decision variables that an optimisa-
tion problem must solve for, making it impossible to clear the market in a reasonable
time scale when hundreds of generators with hundreds of thousands of discrete vari-
ables exist, as in real world power systems.

Forecast responsibility also beleaguers stochastic optimisation. It remains unknown
who should be responsible for scenario generation and, if it is a renewable power pro-
ducer who does so, how their scenarios should be evaluated, since bidders can game
the market by revealing false information [102]. Future research should therefore fo-
cus on usable tools that can manage the uncertain nature of DR.

For identifying and forecasting DR, more advance statistical models could be de-
veloped. Modelling the price response as a stationary FIR has many limitations,
including that the length of the response and time to the FIR maximum is always the
same, regardless of how big a price change happens. Understanding how DR evolves
with external factors like weather and time-of-day is also important, since this may
implicitly reduce the uncertainty present. There appears to be evidence of an asym-
metrical response from residential DR and new tools to identify this are important
for reliable power system operation.

It is possible that many types of DR, activated by direct or indirect means, will
at some point be traded in an electricity market. For this reason, uplift payment
mechanisms that can find a solution in markets with cross elasticity will be needed.
Without uplift payments, revenue from demand to supply will not match, leading
to market failure. Volatility is also likely to increase whenever DR is traded in the
market. Levels of volatility that are acceptable and do not lead to power system
voltage and frequency instability should therefore by defined. This could be done by
simulating increasingly volatile consumption patterns in a real time digital simulator
(RTDS).

Finally, if market-based pricing is to be sent directly to consumers, then new market
structures should be found that reveal a settlement price that satisfies the energy
purchased in all markets from day-ahead to real-time. A two-step market currently
requires loads to be capable of two-price settlement, which is impractical for an indi-
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vidual residential load. Until there is a significant simplification and cost reduction
of the systems required for consumers, the suggestion of separate metering for DERs
[103] is also unrealistic, since the costs of doing so would undo the low-cost appeal of
indirect control. Bi-level optimisation structures that consider day-ahead and balanc-
ing outcomes [104] are a promising research direction that may lead to a single price
and also schedule DR in a more efficient manner.

5.3 Opportunities for DR growth

A general lesson learnt from the experimental work was that it is extremely time
consuming to retrofit houses with new equipment and teach users how to use it. To
avoid this, one option would be to install DR control and communication equipment
in all new homes with heat pumps. This would accompany the Danish law on green
heating sources (predominantly heat pumps) in all new builds. Such an approach
would allow small-scale DR to grow organically over time and is likely a cheaper op-
tion to retrofitting existing houses.

From an activation perspective, the quickest way to integrate DR is for aggregators
to participate in existing electricity markets. Coordinated activation of heat pumps
to meet bids in Scandinavian day-ahead and regulating markets has previously been
shown [105] and may be an effective way of activating DR. Such an approach would
require an aggregator, also acting as a balance responsible party, to bid on behalf of
a larger population of loads. Grid codes could encourage aggregators to use control
strategies that result in little or no positive-price and cross-price elasticity, potentially
mitigating the need for electricity market changes. The financial rewards would be
too low to make small-scale DR attractive, but aggregators could be paid an addi-
tional availability payments based on the accuracy of their bid forecast (this directly
impacts reliability of the power system) and the amount of energy delivered. To sup-
port availability payments, loads could be clustered and the best performing flexible
loads identified. Additional availability funding could come from a tariff on non-price
responsive loads, since such loads would benefit from lower power system costs and
would not experience a higher price than if there was no DR.

Long term, the way we use energy could change out of all recognition. Telephony is
one of the few public utilities that was revolutionised by deregulation, competition
and new technology. Electricity has the potential to undergo the same transformation.
Ubiquitous installation of smart meters is the first step towards a closer interaction
with electricity suppliers and network operators. EVs, PVs, home batteries, heat
pumps and the like are also forcing the issue. Home automation is getting so cheap
and so pervasive - from light bulbs to fridges - that exploiting residential devices for
their flexibility should be cheap. The only thing missing is a centralised, regulated
marketplace, like the Affordable Care Act in the USA, which allows health insurance
to be compared and bought through a single website. In a similar vein, customers
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could switch suppliers on a regular basis through a single portal, getting deals that
suit their energy use best, or allowing them to take a moral standpoint on where their
energy comes from, considering geopolitical and environmental concerns. Political and
social initiatives to promote changing energy behaviour are therefore as important as
technological developments.
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Abstract—Understanding electricity consumers participating
in new demand response schemes is important for investment
decisions, and the and design and operation of electricity markets.
Important metrics include peak response, time to peak response,
energy delivered, ramping, and how the response changes with
respect to external conditions. Such characteristics dictate the
services DR is capable of offering, like primary frequency
reserves, peak load shaving, and system balancing. In this paper,
we develop methods to characterise price-responsive demand
from the EcoGrid EU demonstration in a way that was bid into
a real-time market. EcoGrid EU is a smart grid experiment with
1900 residential customers who are equipped with smart meters
and automated devices reacting to five-minute electricity pricing.
Customers are grouped by the manufacturer that provided the
smart control equipment and analysed over several months.
A number of advanced statistical models are used to show
significant flexibility in the load, peaking at 27% for the best
performing groups.

Index Terms—Demand response (DR), real-time pricing, de-
mand forecasting, smart grid.

I. INTRODUCTION

INTEREST in Demand Response (DR) has grown in recent

years as system operators look for new tools to meet the

needs of a rapidly changing power system. Changes include

increased production from renewables, tighter market cou-

pling, and a surge in decentralised production and consumption

from photovoltaics (PV) and electric vehicles. The changing

needs of the power system can broadly benefit from DR in

two ways: through emergency use, where a reliable reduction

in demand is needed during infrequent critical periods, and

through economic use, where demand exhibits continuous

flexibility to bring down average costs in the power system.

There are many ways of changing consumption patterns, but

dynamic tariffs in particular are gaining interest due to their

potential to respond quickly to fluctuating production from

renewable energy sources (RES) [1]. Indirect control is one

such dynamic tariff that uses an incentive signal, e.g. a real-

time price, to influence the load. Indirect control does not

require an exact response from any one customer, but with a

large number of loads that exhibit somewhat similar behaviour,
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a statistically likely response can be forecast [2]. The value

of indirect control therefore depends heavily on being able to

accurately foresee its response to the incentive signal, which

has previously been proven complicated [3].

The challenge of determining how much DR there is in a

load has previously been done using baseline profiling [4]–

[7]. Baseline profiling requires a prediction of the load under

non-DR conditions which is then subtracted from the observed

consumption under a DR event. A key drawback of existing

methods is the need for data from non-DR days, data for

which will not always exist, or may be unreliable since new

equipment and interaction with customers can make non-

DR data unrepresentative. Existing baseline methods are also

unsuitable for evaluating fast moving DR that is conditional on

a wide range of historical prices and price forecasts. Existing

methods typically look a load curtailment, while we consider

both increases and decreases in consumption due to decreases

and increases in real-time pricing. Finally, existing methods

may be susceptible to overfitting, often relying on just one or

two dozen observations per parameter.

Demand forecasting literature is a well developed area that

is useful in predicting the price-elasticity of a load, e.g. see

[8], [9], but many modern approaches involve black box

schemes like artificial neural networks (ANN), that obscure

our understanding of the dynamics. Therefore, to get a full

understanding of the controllable resources requires disaggre-

gating the load into its constituent parts. Flexibility can then be

interpreted in a useful way, so that it can be exploited for use in

different services, or bid into a market. There are no existing

methods that are appropriate for evaluating and integrating

residential DR into a balancing market, in particular when data

for non-DR days is unavailable, which was the task we had

to achieve in the large scale smart grid experiment, EcoGrid

EU.

We cultivate modelling approaches that determine how

much DR a load is capable of delivering in terms of power

and energy, and under what external conditions, e.g. ambient

temperature. More specifically, DR is characterised in terms

of peak response, time to peak response, energy delivered

and ramping. Our primary motivation was to compare the

performance of groups of houses with different hardware and

software that receive real-time pricing. The tools developed

were used to give feedback to hardware and software manufac-

turers so that their algorithms could be improved. Our second

objective was to apply these attributes in the constraints of a

balancing market so that the load could be controlled. With
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a balancing market scheduling DR, we sought to validate our

method by comparing the observed response to the scheduled

DR. Aside from the approach, an additional contribution is

the application that results in state-of-the-art estimates of

residential flexibility used in a five minute balancing market.

The paper is structured as follows: section II investigates

existing approaches for evaluating the success of DR, as well

as previous work that was relevant when developing our own

methodology. Section III introduces the experimental setup

and the data gathered from the demonstration. Section IV

describes the models developed to analyse the DR activated

during the demonstration. Section V presents DR analysis for

different groups and results from real-time forecasting in the

demonstration. Section VI discusses uncertainty, future work

and concludes.

II. DEMAND MODELLING

There are several lines or research that are relevant when

assessing a DR program, including previous experimental

studies, load forecasting research, and energy disaggregation

research. Previous experimental analyses have looked at differ-

ent types of DR, like critical-peak pricing (CPP) and time-of-

use (TOU) pricing, and often consider human demographics

and behaviour as an impact on DR. Forecasting literature has

a wide-spread use in operation of power systems and offers a

deeper insight into the statistical tools available, with a greater

focus on weather conditions, calendar effects and economic

variables. Energy disaggregation research is an up and coming

area driven by new sources of data, like high resolution smart

meter data from thousands or millions of customers.

A. Previous DR studies

The study of residential loads responding to prices goes all

the way back to the 1970s and many fundamental aspects,

like accounting for the time of day and ambient temperature

in a statistical model, remain in use today. Studies have

also included home type, size, income and smart thermostat

ownership as model inputs [10], [11], but residential DR

studies have not been able to give concrete numbers in terms

of power and energy the load is capable of delivering.

For medium and large commercial and industrial loads,

baseline methods are widely used to determine financial set-

tlement for participating customers. The baseline is simply

the prediction of consumption under the assumption that no

DR was present. The baseline is then subtracted from the

observed consumption to determine the amount of load shed

the customer was able to deliver during a critical period.

Baseline models are created by regressing on historical data

before DR events. This has been done with hourly interval

data [4] and 15 minute interval data [6]. In the latter case, it

was observed that including parameters for load shed directly

into the model did not give a reliable result, possibly because

the model was too primitive or due to over parameterisation.

Another approach is to average consumption for just 5-10 days

before a DR event [5], yet such few observations may mean

that this approach lacks robustness.

B. Forecasting approaches

Short-term load forecasting presents a number of useful

tools that can be used to predict how load changes with respect

to price. Classical approaches to solving hour-ahead and day-

ahead load forecasting problem include time-series methods

like auto-regressive integrated moving average (ARIMA) mod-

els and exponential smoothing, also including geographical

factors [12] and seasonal variations [13].

Recent advances in forecasting methods include spline-

based methods [9], which avoid over-parametrisation by rely-

ing on a handful of splines to describe the baseload, although

authors in [9] noted that some fidelity was lost during peak

load periods. This work was applied to a price responsive load

in New York, with parameters for price and, in theory, these

parameters should allow a full evaluation of the DR volume,

although this was not explored in practice.

Other modern advances in forecasting include multivariate

state-space models [14], which feature time-varying regression

coefficients that may be useful for analysing DR. Semi-

parametric methods to predict the contribution of load from

some non-linear variables [15] may also be useful for DR vol-

ume evaluation, although [15] did not apply the methodology

to a price-responsive load.

Machine learning approaches like artificial neural networks

(ANN) are also popular for forecasting, with positive results

reported in [16]. The benefit from ANN includes being able to

capture unspecified non-linear relationships between external

variables like weather. It is likely that such an approach

becomes increasingly valuable as demand becomes more non-

linear and volatile with new external incentives like price and

the growth of distributed energy resources (DERs). ANNs

have, however, been criticised for leading to over-parametrised

models [17] and do not necessarily outperform linear regres-

sion models [18]. From a DR evaluation perspective, ANN’s

black box form makes picking out price influences complex,

especially when bidding a price response into an electricity

market.

C. Energy disaggregation

Energy disaggregation has gained interest as automatic

metering infrastructure becomes ubiquitous in many countries.

Energy disaggregation tools can be used to see beyond the

meter and uncover which devices are turned on despite only

seeing a noisy, aggregated snapshot of the load. The stated

goal of disaggregation is to better understand the load and

make well-targeted energy efficiency plans.

Of particular relevance to our study is the success in [19]

of detecting air-conditioning use from 1-minute interval smart

meter data. However, such a disaggregation technique is not

well proven with external influences, such as price, or with

variable speed devices. Methods that rely on a dictionary of

devices describing the real and reactive power each consumes

have previously been developed [20]. Grey-box, markovian

stochastic, bayesian and logistic adoption models are also

promising ways of identifying human behaviour and price-

responsive devices in metering data [21].
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TABLE I
SUMMARY OF ECOGRID EU CUSTOMER GROUPS

Reference group Manual group IBM HP IBM EH TNO HP Siemens EH

253 households
with smart meters

455 housesholds
with smart meters

195 households
with smart meters

and automation
equipment

322 housesholds
with smart meters

and automation
equipment

84 households with
smart meters and

automation
equipment

398 households
with smart meters

and automation
equipment

No pricing
information

Receive real-time
pricing, but must
alter consumption

manually

Heat pumps react
autonomously to

prices

Resistive electric
heating reacts

autonomously to
prices

Heat pumps react
autonomously to

prices

Resistive electric
heating, water

boilers and
controllable PV

react to aggregator
control

279 / 621kW
average / peak load

287 / 750kW
average / peak load

317 / 710kW
average / peak load

394 / 854kW
average / peak load

123 / 293kW
average / peak load

300 / 810kW
average / peak load

III. DATA AND EXPERIMENTAL SETUP

Data for this work comes from EcoGrid EU, which is an

indirect control experiment on the Danish island of Bornholm.

The experiment uses a market framework to schedule regu-

lating power from conventional generation and DR to meet

the real-time balancing needs of the system, needs which

are growing due to increased wind power production. DR is

activated with a five minute price signal sent to 1900 houses.

Houses are equipped with smart meters that collect data every

5 minutes, which in turn is used as an input to forecast demand

in real-time. A mathematical introduction to price generation

in the EcoGrid EU market can be found in [22].

Demonstration houses are fitted with a wide range of small-

scale DERs like PV, heat pumps (HPs), resistive electric

heating (EH) and hot water boilers. Heating is the main source

of flexibility and is expected to grow due to electrification

of heating systems. Flexibility of such installations comes

from houses retaining heat and heating devices therefore only

needing to be turned on sporadically to meet customer comfort

requirements.

Table I shows the group composition that is the basis of

our analysis. The IBM HP, IBM EH and TNO HP groups all

use the same smart thermostat hardware, while the Siemens

EH group uses different smart thermostat hardware. Different

control algorithms were used in each group.

The reference group was designed be a control group for

all other groups, yet the demographics of each test group were

so different that the reference group’s baseline profile was not

representative in any case. An example of this is shown in Fig.

1, where the prices sent to customers is shown on the top plot,

and the consumption of the reference group and Siemens EH

group are on the bottom plot. Fourier time-series on the bottom

plot are baseline behaviour due to the group demographics.

The methodology section describes how to extract this baseline

profile. Several customer surveys showed that HP owners have

significantly higher incomes, much larger houses, are more

likely to own their homes, and are younger than customers who

use EH, which explains some of the demographic differences

between groups. Unrepresentative reference groups are a key

driver for the development of a comprehensive modelling

approach.

Smart meter data was filtered to remove houses with fewer

than 80% of measurements, leaving 1707 out of 1900 houses.

It is never the case that all smart meters report consumption

in each time period, so consumption was normalised to the

full population of each group. Periods where fewer than 85%

of houses reported their consumption were left out, leaving

40,000 observations for each group. The analysis period covers

September 22nd 2014 to February 8th 2015, with ambient

temperatures spanning -10.6◦C to 18.0◦C.
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Fig. 1. Single day example of the reference group and a group of automated
houses showing profiles that are too different for direct comparison.
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IV. METHODOLOGY

To evaluate the DR potential of each group, we started with

a standard general linear model with additive terms. Linear

models have been previously noted to be competitive with

newer methods, like probabilistic linear regression and ANN

[18]. Unlike some newer methods, parameters of a linear

model offer a clear and simple description of how different

variables contribute to the load. We also expanded the model

with non-linear terms for prices, which bound the response,

since linear parameters otherwise predict an infinite response

to prices, given infinite prices.

A key challenge with linear models is collinearity, which

means that different external variables, for example solar

irradiance and ambient temperature, explain the same outcome.

This is particularly troublesome for the day-ahead prices,

which came directly from the Nord Pool spot market and

were not controlled by the experimental market. Day-ahead

pricing is correlated with the inflexible part of the load, while

the flexible part of the load reacts to the subsequent pricing.

Separating active DR from a correlation that would be there

anyway, i.e. cause and effect, is therefore difficult. Yet it is

necessary to determine the price sensitivity when bidding into

a day-ahead market, i.e. [23]. Likewise, determining the price

sensitivity to real-time prices is also needed to bid into the

balancing market, i.e. [22].

A second model that relies upon differenced variables was

applied and found to be less susceptible to collinearity. Our

experience taught us that the differenced model had a lower

short-term forecast error, which made it well suited to trying

to control the load every five minutes in the experiment. It

also appears to capture the fast moving price-dynamics more

accurately.

Despite the benefits of the second model, the standard model

is still needed because it gives a different result. The standard

model gives the absolute value for DR and is more accurate

for long-term forecasting. The differenced model tells us the

maximum change in DR in any five minute interval, which is

needed when scheduling DR in an operational environment,

like the EcoGrid EU experiment.

A. Cross validation

To ensure that our models are not overfitted, and to test the

data for consistency with respect to time, a cross-validation

approach was used. Specifically, a ten-fold cross-validation

was employed. The data was randomly divided into 10 approx-

imately equally sized subsets or folds. For each fold (validation

fold), the remaining other 9 folds were used to first train the

model. The model was then applied to the observations in the

validation fold, resulting in a mean squared error (MSE) for the

validation fold. This procedure is repeated for the other 9 folds

respectively, resulting in 10 estimates of the test error (MSE)

in total. These estimates are averaged, resulting in the CV

estimate MSECV. To assess model performance with respect

to time, this cross-validation estimate is compared to the MSE

obtained by fitting the model to the full data. The relative

difference of the full-data MSE and the MSE estimated by CV

is then used as a measure of model consistency with respect to

TABLE II
10-FOLD CROSS-VALIDATION BY GROUP

MSE MSECV

Reference 111.72 110.66

Manual 122.24 119.68

IBM HP 226.06 228.88

IBM EH 205.17 204.05

TNO HP 263.95 265.50

Siemens EH 65.50 65.87

time. Table II shows the CV outcome for the standard model.

The almost identical results for 10-fold MSE and full-sample

MSE means that the model is consistent over time and less

likely to be overfitted.

B. Standard general linear model

Initially, demand is conceptionally split into a component

dependent on external variables and a component that is

dependent on external variables and prices using the notation

from [24], i.e.

ct = f (z̃t) + g
(

λ̃t, z̃t

)

(1)

with

λ̃t =

[

λD
t+uD

λ

, . . . , λD
t−nD

λ

λR
t+uR

λ

, . . . , λR
t−nR

λ

]

z̃t =
[

zt+uz
, . . . , zt−nz

]

where nD
λ , nR

λ and nz are a finite number of lagged values

of day-ahead price, λD , real-time price, λR, and external

variables, z. There are also uD
λ , uR

λ and uz forecast values,

which capture the scheduling dynamics of DERs. All variables

are first centered by subtracting their mean value, while price

forecasts are converted to relative prices each time a new price

forecast is made. The day-ahead price λD,raw is normalised to

a value between 0 and 1, so that

λD
t =

λD,raw
t − λ̃D,min

t

λ̃D,max

t − λ̃D,min

t

(2)

Real-time prices and real-time forecasts are also converted

to relative prices, but with respect to the absolute day-ahead

price, i.e.

λR
t = λR,raw

t − λD,raw
t (3)

External variables, z, include weather data such as wind

speed, solar irradiance, temperature, Φ, and a base load term,

y. A non-linear transformation is applied to temperature,

whereby it is modelled as a third-order polynomial, as has

previously been proven successful in [25], such that

Φ̃t = Φt +Φ2
t +Φ3

t (4)

Exponentially weighted smoothing is also performed on

weather variables, so that

zt =

uz
∑

i=nz

αi−1zt−i

uz
∑

i=nz

αi−1

(5)
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The steps to find the number of lags, i, and the smoothing

factor, α, are found experimentally (as described in [18]),

where the lowest error is the determining factor.

The base load, y, is a Fourier series that describes demand

due to the time of day, day of the week, and day of the month

[26], such that, for a given time t,

yt =

K
∑

k=1

ak sin

(

2πkt

T

)

+ bk cos

(

2πkt

T

)

(6)

where T must be suitably large to cover different seasonal

variations (for example 288 when capturing trends of different

hours of the day using five minute data) and K is increased

until enough high-resolution detail is captured.

Additional terms are added to capture the interaction be-

tween the base load and temperature, yΦ, and the price and

temperature, λΦ, included in the array of variables χ̃. The full

model for demand can be expressed in general linear model

form, i.e.

ct = λ̃⊤

t θλ + z̃⊤t θzǫt + χ̃⊤

t θχ = x
⊤

t θ + ǫt (7)

where ǫ is Gaussian noise with zero mean and finite variance.

Relying on a conventional least squares regression with five

minute data and several lags for external variables can lead

to a model with hundreds of parameters and suspicions of

overfitting, even in light of the 40,000 observations that the

model is fitted to. As a result, we found the only way to

solve the model and get reasonable parameter estimates was

to minimizing the residual sum of squares while shrinking

parameters using the Lasso penalisation [27]. The objective of

this is

min

T
∑

t=1

(

ct − x
⊤

t θ
)2

+ η|θ| (8)

where η is the tuning parameter and is found using a 10-fold

cross-validation routine, minimising MSECV. Given a model

with 200 input parameters, the Lasso penalisation gave just 50-

70 non-zero parameters for each group using both the standard

and the differenced model.

C. Differenced model

The difference model relates how consumption changes with

respect to how the variables change through time, i.e. gradients

of external variables like price and temperature affect the

gradient of consumption. Conceptionally, the split becomes

ċt = f
(

˜̇zt
)

+ g
(

˜̇
λt, ˜̇zt

)

(9)

where ċt, żt and λ̇t are the change in consumption, external

variables and prices at time t respectively. The interaction

terms between temperature and price should be interpreted

as how fast the change in consumption occurs due to how

fast the price and temperature are changing. As a result, to

better understand ambient temperature effects, the parameters

of the general linear model are found in equation (8) for three

different ambient temperature bins of equal population, which

means that the parameters are found with 13,000 observations

each time.

D. Non-linear terms for price

In an operational environment, specifically the market

within which DR in EcoGrid EU is controlled, bounds for

the price-response must be given for each five minute period.

Without bounds, it is impossible to maintain control over the

DR in the demonstration. The relationship between price and

demand has previously been observed to be non-linear [24]

and this can be modelled by redefining the price terms in a

generalised logistic function that is centred around zero. To

find non-linear price terms, the residuals are combined with

the price response according to the Equation (7), i.e.

ǫ∗t = ǫt + λtθλ (10)

The residuals ǫ∗ now include the predicted linear DR and

non-linear components too. The objective to find the logistic

function parameters is given by

min

T
∑

t=1

(

ǫ∗t −

(

N
∑

n=1

−
An

2
+

An

1 + e−εn
˜̇
λn

))

(11)

where the N most important lags are chosen. An/2 is the

maximum amplitude of the response due to price lag n,

while εn describes the price-elasticity. Parameters are found

by minimising the sum of square errors using the Levenberg-

Marquardt algorithm [28], with the linear parameters for price

used as starting estimates for εn. Fig. 2 illustrates the impact

of non-linear terms for price, where the top plot shows the

boundary of DR, and the bottom plot shows the accumulated

impact on the finite impulse response (FIR), that is the change

in load due to price, through time, when given the data ob-

tained in the EcoGrid EU demonstration. If non-bounded price

terms are used, then the linear prediction (dashed red line in

top plot) will tend to infinity if the prices tend to infinity. The

non-linear model enforces bounds on this response, beyond

which consumption cannot change further in the presence of

extreme prices.
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Fig. 2. A comparison of a linear parameter for price and a novel non-
linear model for price. The response of the non-linear model (bottom plot) is
bounded for very high electricity prices.



6

Non-linear terms reduce DR for each group by 2 to 16%

compared with linear terms for DR, given the maximum prices

seen, while the mean average percentage error (MAPE) is

only fractionally reduced (0.05%). In a differenced model, the

initial change to price gives the biggest DR load contribution,

since it impacts all subsequent price lags. In the standard

model, the biggest change to price is assumed to be largest

parameter for price, which happens 10-30 minutes after a price

change.

E. Deriving useful DR measures

The statistical models developed can now be used to bid

DR into day-ahead and real-time markets assuming standard

quadratic programming structures, as is in use today [29]. For

the EcoGrid EU demonstration, this meant bidding the price

sensitivity of the entire population into a real-time balancing

market, which are the parameters associated with λR.

To evaluate DR, more specifically to determine peak re-

sponse, energy delivered and ramping, the statistical models

with non-linear terms for price where filled with observations

and meteorological data and calculated as follows. For the

peak real-time DR delivered

Maximum DR = max
|An|

2
(12)

For the initial ramping, we consider only the price lag for

the instantaneous price, i.e.,

Initial ramping =
|A1|

2
(13)

For the energy delivered in one hour, we integrate over the

first 12 values of the FIR, while the time to peak response is

simply the time, n, for which An is largest.

V. RESULTS

The power and energy that can be delivered by each group is

presented here, using the two modelling approaches developed.

We also present the outcome of forecasting the load using

the differenced model. Fig. 3 shows the outcome of the non-

difference model, with Fourier terms, weather, day-ahead and

real-time price effects cumulatively added “on top” of each

other.

A. Group FIR visualisation

The FIRs related to price parameters from the differenced

model are shown for the different automated groups in Fig. 4

for three different temperature bins. In this figure, at time zero,

the relative real-time price changes from 0 to the maximum

price change observed in the experiment. The load responds

immediately, reaching a peak, then rebounding, then arriving

at a new steady state after approximately 50 minutes. Before

the price change, real-time price forecasts cause consumption

to increase, causing load to shift. This figure could also be

given as a mirror image, showing load increase for a reduction

in price. The Siemens EH group exhibited the largest and

fastest response to prices, while the IBM groups exhibited a

slower response to the price increase. We observed no change

Time [Hour]

P
o
w
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[k

W
]

Fourier

+Weather

+Day-ahead price

+Real-time price
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Fig. 3. Load contributions according to the general linear model. Each
contribution to the load is added to the previous one.

in consumption for TNO HP houses. For the warmest periods,

which averaged 11.3◦C, the Siemens EH group exhibited

significant DR, while IBM EH houses also exhibited a small

but noticeable change in consumption. There was no DR from

the other groups during warm conditions.

B. DR evaluation

Table III shows the peak DR according to the standard

general linear model, also normalised with respect to the peak

consumption of each group. In absolute terms, the Siemens

EH group exhibits the biggest DR, while when normalised for

the peak consumption, the IBM HP group appears to give the

biggest response, totalling 27% of peak load. The reference

group shows no DR, as expected, while the manual group

shows a very small amount of DR. No DR was detected for

TNO HP houses.
In Table IV, the consumption due to day-ahead pricing is

shown for the standard and differenced models. A negative

sign indicates that consumption and price are positively corre-

lated. The differenced model shows less positive correlation

across all groups, indicating that there is less collinearity

between base load and price, i.e. the base load terms are better

capturing demand rather than the day-ahead price. The benefit

of the differenced model is especially noticeable for Siemens

EH houses, which appears to exhibit the largest response to

day-ahead pricing, followed by IBM HP houses.

Table V states the load shifting characteristics of each group,

based upon the price-related parameters in the differenced

model. The first column shows the average DR volume shifted

TABLE III
MAXIMUM REAL-TIME DR

Group DR Normalised DR

Reference 0kW 0

Manual 4.0kW 0.005

IBM HP 190.1kW 0.268

IBM EH 114.4kW 0.134

TNO HP 0kW 0

Siemens EH 198.0kW 0.244
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Fig. 4. The response to price for different groups, given the largest price
change observed.

per hour throughout the test period. The second column

normalises this value by the average energy consumed by each

group. The final column states the maximum load shift in a

single hour, when given the maximum price change observed.

This is the area under the FIR curves show in Fig. 4. The

average volume for Siemens EH houses, the best performing

group, appears to be twice that of IBM HP houses, but it is

only 19% higher in terms of maximum volume. This can be

attributed to the faster ramping abilities of the Siemens EH

TABLE IV
MAXIMUM DAY-AHEAD DR

Group DR DR (differenced model)

Reference -29.1kW -25.6kW

Manual -28.9kW -24.0kW

IBM HP 7.3kW 10.6kW

IBM EH -39.9kW -30.4kW

TNO HP -8.3kW -4.5kW

Siemens EH 0kW 35.7kW

TABLE V
REAL-TIME DR VOLUME

Group Volume Volume normalised Volume max

Reference 0.4kWh/h 0.010 -9.8kWh

Manual 0.3kWh/h 0.006 -1.2kWh

IBM HP 4.9kWh/h 0.115 93.0kWh

IBM EH 3.9kWh/h 0.078 73.5kWh

TNO HP 0.1kWh/h 0.008 1.2kWh

Siemens EH 9.5kWh/h 0.206 110.3kWh

group, which means its DR is exploited more by the market,

since quick, small changes are activated more in a market

framework.

C. Forecasting application

The differenced model with additional auto-regressive com-

ponents was used to forecast aggregate consumption of all

houses in real-time in the EcoGrid EU demonstration, using

real-time meteorological forecasts from the Danish Meteoro-

logical Institute (DMI). The MAPE for one step ahead was

1.6%, compared with persistence of 2% and hindcasting of

1.1% and 1.4% for models with and without price terms.

Hindcasting with the standard linear model without auto-

regressive terms gave a MAPE of 5.5%. Fig. 5 shows how

the MAPE evolves with forecast horizon. We witnessed large

errors for longer forecast horizons due to smart meter ag-

gregation variability. For one five minute period, 250 smart

meters might report in, with their load normalised to 1900

houses (the full population). In the next five minute period,

1700 houses might report in, which also causes the earlier

observations to change. Smart meters contain a Sim card

and report consumption over standard mobile phone networks.

Varying delays are caused by cost and bandwidth limitations

and patchy signals for some houses. The average jump in

meter data for any five minute time period is 7% and, in the

worst periods, this reaches 25% of the load; the results given

above are for where the recent historical meter readings for the

normalised aggregate population did not change by more than

0.5%. With such volatility, the auto-regressive contribution

to the load forecast was extremely misleading, causing large

errors for longer forecast horizons. In a full-scale roll-out, grid

measurements such as system frequency could be used instead

of smart meter data in our models. If smart meters were still

TABLE VI
RAMPING AND TIME TO PEAK RESPONSE

Group Initial ramping Time to peak response

Reference -4.4kW N/A

Manual 0kW N/A

IBM HP 19.1kW 30 mins

IBM EH 46.2kW 15 mins

TNO HP 0kW N/A

Siemens EH 63.4kW 10 mins
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to be relied upon, then the most representative smart meters

should be identified, made robust and be relied upon.

In spite of poor long-horizon forecasting performance due

to smart meter collection variability, the five minute ahead

forecast was good enough to see a real-time response. Fig.

6 shows the change in DR requested by the market, binned

into 20kW groups, which is subsequently converted to a

price based on the demand models created here and sent

to customers. The change in load observed shows the raw

consumption data that includes all other sources of uncertainty,

like baseload, weather and human behaviour. Despite these

sources of noise, there appears to be a clear trend where

demand is following the price. For the largest requests in a

reduction in consumption, a reduction in consumption occured

80% of the time, while for the largest requests for an increase

in consumption, an increase in consumption occurred 100%

of the time.

D. Result uncertainty

Uncertainty is clearly present in our results and best ob-

served in Table V, where the reference group appears to

exhibit small amounts of DR, despite not receiving the real-

time price. This is due to spurious correlation, but it is an

order of magnitude smaller than the automated groups.

There are many sources of error in a residential DR system,

the most significant of which is likely structural, i.e. models

do not capture the full dynamics and all interactions in the

load. Experimental errors include that the model is unaware

when smart control equipment is off for maintenance or due

to communication errors, which raises the possibility that

the maximum DR potential is underestimated here. Weather

observation and forecast errors are also present, since weather

data comes from a single point that will not be representative

of the entire population.

Previous DR error analyses have relied on standard errors

[4]. Methods to derive standard errors from a Lasso regression

have also been developed [30], yet the scientific community
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based upon the forecasting model. Each boxplot shows the median as a red
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and leading journals are rejecting such significance tests since

they are often interpreted incorrectly. In [3], standard errors

for DR evaluation were identified as underestimating the

uncertainty for a number of reasons. In our case, these in-

clude correlation between Fourier terms, temperature, and day-

ahead pricing. Regression residuals are also autocorrelated,

especially since we do not include auto-regressive or moving-

average terms in our models (these terms are only meaningful

in a forecasting environment). Regression residuals for base-

line models have also been identified as being heteroscedastic;

i.e. the error is dependent on external variables like the time.

Leave one out cross validation (LOOCV) is a good solution

for estimating the true level of uncertainty in a baseline

framework with observations averaged over several hours [6].

It is, however, far too computationally intensive when dealing

with the five minute interval data and the 40,000 observations

that we rely upon. We are therefore left without an appropriate

toolbox to assess uncertainty, and this should be a major focus

of future work in this field.

VI. CONCLUSION

We have determined that our load is capable of delivering

significant DR, where up to 27% of the peak load is flexible

for the best performing groups. The software algorithm for

the TNO HP group, which did not exhibit any DR, was

subsequently changed following our findings and a response to

price was observed in a later time period. This highlights how

such statistical models could be used in the future; Revenue

from following dynamic pricing may not be enough to justify

the high investment cost needed to fit houses with automa-

tion equipment, which raises the possibility of availability

payments being made to support initial DR installations. The

statistical models developed here could therefore be used to

determine financial settlement based on peak response and

average energy provided. We did not see noticeable DR from

the manual customers, but this could be due to the design

of the experiment: customers were guaranteed an electricity
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bill no higher than if they were not in the demonstration. A

large scale roll-out of dynamic pricing would have no such

guarantee and would penalise as well as incentivise customers,

which would likely result in increased DR from customers

with no automation equipment.

Future work should look to advanced machine learning

models, since our models likely ignore significant non-

linearities in the load. This is especially relevant for analysing

the DR potential of IBM HP, IBM EH and TNO HP groups,

since the hardware used in these groups can only turn off

heating devices, not on. In a large enough population, with a

diverse range of internal states, this may not mean a significant

asymmetrical response for thermostatic loads, but it warrants

investigation nonetheless.
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Evaluating price-based demand response in practice
— with application to the EcoGrid EU Experiment

Guillaume Le Ray, Emil M. Larsen, Pierre Pinson, Senior Member, IEEE

Abstract—Increased emphasis is placed today on various types
of demand response, motivated by the integration of renewable
energy generation and efficiency improvements in electricity
markets. Some advocated for the development of price-based
approaches, where the conditional dynamic elasticity of final
users is exploited in the power system, e.g. for system balancing.
However, very few real-world experiments have been carried out
and price-based demand response has consistently been found
difficult to assess and quantify. It is our aim here to describe
an approach to do so, as motivated by the large-scale EcoGrid
EU experiment. In this project, 1900 houses were equipped with
smart meters and other automation devices in order to adapt

consumption to real-time electricity prices every five minutes,
while monitoring it with the same resolution. Our approach
first relies on the clustering of residential load observations that
behave similarly within a given experiment. Then, a clinical
testing approach, based on a test and a control group, is adapted
to assess whether price-responsive loads were actually responsive
or not. Interestingly, in the deployment phase of the project, the
results show that houses could be deemed price-responsive on
some test days, while results were inconclusive on some others.

Index Terms—Demand response, clustering, time-series analy-
sis, smart grid, electric load modelling

I. INTRODUCTION

TARGETS TO increase the proportion of renewable en-

ergy production to 27% by 2030 across all 28 EU mem-

ber states [1] present significant technical challenges, since

existing markets, services and technologies are unlikely to be

robust enough to cope with the expansion of variable power

generation, also with limited predictability. Among the various

options to support large-scale renewables penetration like wind

and solar power, Demand Response (DR) has emerged as a

popular approach, with its natural advantages and caveats [2].

Recent developments in that direction follow the concepts

of (i) direct control, where a higher-level operator would

somehow operate these electric loads, and (ii) control by price,

where advantage is taken of the elasticity and cross-elasticity

of electric power consumers. There obviously are obstacles

in rolling out DR, including the non-flexibility of demand [3]

and the low participation due to information asymmetries [4].

Control by price has additional difficulties over direct control

due to the complexity in predicting response to price varia-

tions [5], although forecasting models and control schemes

that make effective use of them have been researched [6].
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Techniques that can readily identify whether a population (or

a sub-population) of electric loads is price-responsive remain

lacking, while this may be crucial in practice. This issue is of

particular relevance during the deployment phase of demand

response equipment and programs. Indeed a logical subsequent

step after deploying necessary hardware and software is to

control that the different elements communicate as expected,

react to the right information, or simply to verify that the

overall concept functions.

With that context in mind, we introduce a proposal test-

control method to assess whether or not electric loads are

price-responsive or not. The principle of comparing control

and test groups has been extensively used in the medical

industry to evaluate the efficiency of a treatment for over

200 years [7], and more recently in the electricity field,

industrials working on load research practices have been using

this approach to develop Customer Base Line (CBL) and

evaluate candidate customers under DR [8]. This method has

the advantage of having both the candidate customers and

CBL to be exposed to the same weather conditions. Such an

approach aims at assessing through hypothesis testing whether

loads are responsive or not, which is a basic question to answer

before to aim for a quantification and characterization of that

response.

Prior to undergoing this test-control analysis, electrical loads

are clustered based on similar behavior within a given exper-

iment (i.e., a test day with a given price profile). This allows

to identify electric loads that do not respond as expected,

while sorting subgroups of responsive households. The value

of the clustering step of our methodology also lies in the

dimension reduction of the problem since, instead of trying

to assess whether each and every household in a large-scale

demand response experiment (with 1000 households or more)

is responsive or not, a fully data-driven clustering step narrows

down the analysis by focusing on a low number of subgroups

of households with similar dynamic characteristics. This may

also be seen as having the side benefit of pinpointing electric

loads that could be useful in providing specific grid services

such as balancing and congestion management, in view of the

characteristics of their response.

Existing literature related to clustering applications (also

referred to as segmentation) focuses on profiling, to group

the consumers with similar energy consumption patterns [9],

[10], or on modelling, to obtain more homogeneous data

to improve forecasting accuracy [11], [12]. However, similar

approaches using clustering to exclude electric loads that

are not responding to the price have not been found in the

literature, despite interest from industry in knowing whether a
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smart controller is responsive or not [8].

The development of this methodology was originally mo-

tivated by, and then applied to, the EcoGrid EU demand

response experiment, in which 1900 houses and 100 industrial

loads receive new electricity prices every five minutes [13].

On the Danish island of Bornholm where the experiment

takes place, the majority of the participants have resistive

electric heating and heat pumps installed. Their controllability,

combined with the heat capacity of the buildings, yields

virtual electric power storage. Houses are equipped with

smart meters reporting consumption in real-time, as well as

a range of automated controllers that make provision of DR

convenient by enabling controllability of a wide range of

small-scale Distributed Energy Resources (DERs) in a cost-

efficient manner. The automated controllers are proprietary

and were developed by different companies. In this study,

they are therefore considered as black boxes. However, it is

know that these rely on state-of-the-art control techniques

used for DR, like hysteresis control and economic model

predictive control, allowing to schedule consumption optimally

considering weather and price forecasts, as well as customer

preferences in terms of comfort.

The prices seen by these electric loads originate from the

EcoGrid EU market. It was primarily designed to support

balancing when larger shares of renewables are present in the

power system, yielding additional and more variable balanc-

ing needs. In EcoGrid EU, knowledge of the power system

state is updated every five minutes. This higher temporal

resolution, compared to the hourly time units broadly used

in deregulated power systems today, naturally allow to better

adapt to dynamic balancing needs. Another key aspect of the

market is that it is bidless for demand, hence reducing risk

and increasing convenience for small customers who would

not otherwise participate. A full introduction to the market

behind price generation in the EcoGrid EU experiment is

given in [14]. The first phase of the EcoGrid EU project was

completed in early 2014, where price-responsive controllers

from two different manufacturers were installed in 1200

houses. The price-responsiness of participants was analysed

and eventually validated using the clustering and test-control

methods presented here.

The paper is structured as following. Section II presents

the empirical framework of the experiment, with particular

emphasis on the data and various test-cases to be analyzed. Our

methodology is described in Section III, by first introducing

the clustering approach for identifying fully non-responsive

households and subgroups of responsive electric loads, fol-

lowed by the test-control method to assess whether these re-

ponsiveness can be seen as genuine price-responsiveness. The

results for the roll-out phase of the EcoGrid EU experiment

are used as an illustration in Section IV. The paper ends with

conclusions and perspectives for future work in Section V.

II. EMPIRICAL FRAMEWORK

The datasets consist of electricity consumption for each

candidate household with a resolution of 5 minutes. Real-time

price series have the same temporal resolution, allowing for the

joint analysis of the dynamics of both price and consumption

series. Only consumption related to space heating varies as a

function of prices based on the controllers deployed for heat

pumps and resistive electric heating.

Throughout the initial phase of the demonstration, house-

holds were recruited and then made price-responsive gradually.

Some households had their automation disabled deliberately,

while others had their automation disabled due to technical

problems. These households were used to form the CBL. Due

to the random nature of technical problems, the composition

of the test and CBL groups varied from one test-case to the

next. Test and CBL groups also varied according to the number

of households using one of two control-equipment types and

according to different heating types (heat pump or resistive

electric heating). As the size of the CBL and participant groups

differ throughout the overall experiment, this influences the

resulting data analysis and especially the estimated confidence

intervals and hypothesis tests performed.

In order to test the controllers, test cases were designed to

stress and assess their price-responsiveness with extreme price

variations. As the energy consumption should be a function of

the price, a significant change in the electricity consumption

is expected when such extreme price variations occur [15].

More precisely, a variation in price is to be seen as an incentive

for modification of electricity consumption: upwards when the

price goes down, and downwards when the price goes up.

Table I gives a summary of the price variations applied during

each test case.

TABLE I: Price variations during the test-cases [15].

Test period Extreme values (C/MWh) Baseline (C/MWh)

25/10/2013 -53.7 / 148.0 47.2

07/11/2013 -53.7 / 148.0 47.2
21/11/2013 -61.3 / 140.3 39.4
27/11/2013 37.4 / 41.4 39.4

06/12/2013 -134.5 / 134.5 0
10/12/2013 -134.5 / 134.5 0
11/12/2013 -134.5 / 134.5 0
12/12/2013 -134.5 / 134.5 0

20/01/2014 -134.5 / 134.5 0
21/01/2014 -134.5 / 134.5 0
22/01/2014 -134.5 / 134.5 0
23/01/2014 -134.5 / 134.5 0

08/03/2014 -61.3 / 140.3 39.4
11/03/2014 37.4 / 41.4 39.4
09/04/2014 -61.3 / 140.3 39.4
13/04/2014 -61.3 / 140.3 39.4

III. METHODOLOGY FOR ASSESSING PRICE-RESPONSIVE

BEHAVIOR

A. A Non-supervised Classification for Dimension Reduction

and to Identify Sub-populations

A natural way to reduce dimension and to extract infor-

mation from a large and noisy dataset is to group it into

more homogeneous clusters. Each of these clusters exhibit

more homogeneous characteristics of its individuals than the

overall dataset does [16]. Consequently, clustering can be used

to exclude groups which could be considered as outliers [8]. In
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addition, it emphasizes characteristic patterns in consumption,

which may implicitly include the consumption variations due

to changes in price.

As it is most likely the case for any real-world experiment,

it was observed within the EcoGrid EU demonstration that

uncertainty existed in the actual price-responsiveness of heat

appliance controllers during DR experiments. This may be due

to customers being able to interact with controllers - turning

them off or changing comfort settings. Other issues, e.g., bad

choice of location for temperature sensors used by controllers,

can also result in households not being responsive (or just a

little) at certain times. A number of other punctual technical

problems can affect the responsiveness of these heat appliance

controllers. Therefore, employing clustering for identifying

and isolating these outliers can focus our analysis on the DR

of well-functioning installations. On a more practical level it

generates a list of targets to trouble shoot for the technicians.

Clustering approaches have been extensively described in

the literature. The interested reader is for instance referred

to [17] for an overview of clustering algorithms and [16] for

applications in electric load analysis. Out of this wealth of

algorithms, the most suitable one to be used depends upon the

data setup and our a priori knowledge of the expected output

(e.g., the number of clusters to be obtained) [18]. Hierarchical

clustering permits to effectively choose the number of clusters,

a posteriori, according to the so-called dendrogram, which is

a clustering tree where the level of details (and the number

of clusters) is increasing as its branches are further divided.

An example dendogram used to cluster an original population

of 35 households in one of the EcoGrid EU experiment is

shown in Fig. 1. Hierarchical clustering is a non-supervised

classification method where individuals are grouped according

to their relative distances in a similarity space determined

by a set of variables [19]. Hierarchical clustering can be

performed in an agglomerative or divisive manner. The former

approach starts with each household as a cluster and ends

up with one cluster (bottom-up approach), while the latter

one sees the whole population as one cluster to start with

and eventually ending with each household as a cluster (top-

down approach). Their outputs are similar, but Hierarchical

Agglomerative Clustering (HAC) is known to be faster to

compute.
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Fig. 1: Dendogram for the clustering of an original population

of 35 households in one of the EcoGrid EU experiment. The

red line indicates the cut to be made to obtain 3 clusters.
Here our households may naturally have different average

consumption levels depending on the house types, number of

inhabitants and human behavior. Consequently, some form of

alignment is needed to make them all comparable in order

to measure some kind of distances between them. However

the variance σ2

i of the time-series from each household i

should not be affected, as the variability in amplitude of the

adjustment in consumption during DR events is of high impor-

tance. For each and every test case in the experiment, electric

power consumption series were centered on their average

consumption, by subtracting the mean consumption on a per-

household basis, over the entire test case. Considering the orig-

inal power consumption series x
′
i = {x′

i,1, . . . , x
′
i,t, . . . , x

′
i,T }

for household i (i = 1, . . . , I), with t the time index, this reads

xi,t = x′
i,t −

1

T

T∑

t=1

x′
i,t, i = 1, . . . , I, t = 1, . . . , T (1)

xi = {xi,1, . . . , xi,t, . . . , xi,T } is the resulting centered power

consumption series for household i, with I the number of

households at time t. The series xi has the same dynamics

and amplitude as x
′
i, though centered on 0, thus allowing

to better compare the higher-order dynamics of the various

households [20], [21].
In our experimental framework, the hypothesis is that if a

household is active and receives a price variation during a DR

event, the consumption should be affected. The variation in

consumption is not expected the same for all houses because

of their prior status (e.g. temperature, controller setup), nev-

ertheless it should be possible to cluster similar patterns of

consumptions’ variation as they are expected to react. In that

context, the chosen distance for the clustering approach ought

to account for covariances between the consumption series. In

our experimental framework, the space we have to explore has

the dimension of the number of measurements performed in

time. With a temporal resolution of 5 minutes and a test case

duration typically of 24 hours, this translates to fairly large

dimensions. However, it is expected that power consumption

observations are serially correlated, i.e., not independent from

one time instant to others. In other words, the effective

dimension of the space within which the consumption patterns

are observed is clearly less than the number of time steps

T . The chosen distance for the clustering approach ought

to reflect that aspect. The Mahalanobis distance [22], which

fulfills this requirement, is then adopted. For two series xi and

xj , it is defined as

d(xi,xj) = (xi − xj)
⊤
S−1

ij (xi − xj) (2)

where Sij is the covariance matrix between the two time-

series. However, the covariance matrix Sij may happen to be

singular when the number of households (I) is smaller or

about the same as the number of data points (T ) in the time-

series [23]. This problem arises often while working with time-

series as the number of data points can be extensive compared

to the number of households. To prevent such issues with

singularity, Sij is replaced in (2) by a shrunk covariance matrix

S∗
ij . Shrinkage is an efficient way to obtain a non-singular

closest estimate of the original covariance matrix Sij . It is

calculated as

S∗
ij = λTij + (1− λ)Sij (3)
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where Tij , commonly referred to as the target, is a diagonal

matrix formed with the element on the main diagonal of

the original covariance matrix Sij [23]. λ is the shrinkage

coefficient. S∗
ij is a trade-off between a highly-structured

matrix (Tij) and a non-organized one (Sij), while λ allows

controlling the balance between the two [24]. We set

λ =

{
λ∗, if λ∗ 6 1
1, otherwise

(4)

with

λ∗ =

∑
m 6=n σ̂(cmn)∑
m 6=n c

2
mn

(5)

where cmn are the components of the (sample) covariance

matrix Sij and σ̂(cmn) their estimated variance [25].

HAC is a fairly general framework, given a metric suitable

for the data at hand (e.g., the Mahalanobis one used here). Sim-

ilarly, one may flexibly choose the way to regroup individuals

within clusters. The most common one is the Ward’s method,

also known as minimum-variance method. It aims to minimize

the increase of the within-cluster sum of squared distances, E,

at each iteration of the agglomerative process [17],

E =

K∑

k=1

∑

xi∈Ck

d(xi,gk)
2 (6)

where K is the number of clusters, xi ∈ Ck the households in

cluster Ck and gk the center of gravity of cluster Ck, defined

as

gk =
1

nk

∑

xi∈Ck

xi (7)

where nk is the number of households in Ck.

Following [26], the total variance of a set of households,

after clustering, can be expressed as the sum of the within-

cluster variance plus the between-cluster’s center variance.

Consequently, since the Ward’s method aims at minimizing

the increase of within-cluster variance at each iteration, it also

maximizes the variance between cluster centers. The resulting

clusters can then be seen the most homogeneous possible

subgroups from the full population. The HAC algorithm is

illustrated in Fig. 2, starting with each household being its

own cluster. It then iterates until all households are merged

into a single cluster. The result of the HAC is conveniently

represented in a dendrogram such as that in Fig. 1. The

dendogram is a basis to decide on how many clusters should

be chosen. The decision of where to cut the tree depends on

the structure of the tree and the goal of clustering. If the goal

is to have a clear and precise information on each clusters, a

higher number of cluster will be favored. Conversely, if the

goal is to isolate outliers, a lower number of clusters will be

favored. It is then difficult to implement an automated routine

to select the number of clusters.

After computing the HAC, the information contained in the

different clusters should be summarized. When it comes to

time-series, the clusters’ averaged time-series is a suitable way

to represent the specificities of each cluster. One of our test

cases, with 5 averaged cluster time-series identified from the

Start

Each points

is a cluster

Calculate the
proximity matrix

Merge the 2
closest clusters

One

cluster

left?

Cut the dendrogram

to generate the

final clusters

End

no

yes

Fig. 2: The Hierarchical Agglomerative Clustering (HAC)

algorithm.

dendogram, is shown in Fig. 3 together with the averaged time-

series of the CBL, as well as the corresponding price signal.

Such representation allows clusters with reactive adjustment to

the price variations (if compared to CBL) to be sorted apart

from those that do not adjust during the DR event or show

erratic patterns (e.g., due to technical problems). These are

consequently not considered in the subsequent analysis. In the

example of Fig. 3, the households from the clusters 2 and 5 are

to be excluded from the test group, since cluster 2 follows the

CBL while cluster 5 has no daily variations which most likely

means that the households are empty. As these outliers are

removed, the data quality of the treatment group is improved

and eases the subsequent qualitative and quantitative analysis.

When mentioning test groups in the remainder of the paper,

we refer to those subgroups selected after the clustering was

performed.

B. A Clinical Trial Test Approach

Clinical trials were historically developed in the pharma-

ceutical industry. Owing to the variety of potential responses

of biological organisms as individuals, it became common to

perform tests on populations instead, thereby smoothing the

potential negative effect of individual features on an overall

assessment. In the present case, we can employ a similar clin-

ical trial test approach since our data comes from a reference

(CBL) and a test group, while our interest lies in the difference



5

0 50 100 150 200 250

−
1.

0
−
0.

5
0.

0
0.

5
1.

0
Cluster 1 = 24

time [x5mins]

ce
nt

er
ed

 c
on

su
m

pt
io

n

−
10

0
−
50

0
50

10
0

0 50 100 150 200 250

−
1.

0
−
0.

5
0.

0
0.

5
1.

0

Cluster 2 = 25

time [x5mins]

ce
nt

er
ed

 c
on

su
m

pt
io

n

−
10

0
−
50

0
50

10
0

0 50 100 150 200 250

−
1.

0
−
0.

5
0.

0
0.

5
1.

0

Cluster 3 = 23

time [x5mins]

ce
nt

er
ed

 c
on

su
m

pt
io

n

−
10

0
−
50

0
50

10
0

0 50 100 150 200 250

−
1.

0
−
0.

5
0.

0
0.

5
1.

0

Cluster 4 = 23

time [x5mins]

ce
nt

er
ed

 c
on

su
m

pt
io

n

−
10

0
−
50

0
50

10
0

0 50 100 150 200 250

−
1.

0
−
0.

5
0.

0
0.

5
1.

0

Cluster 5 = 5

time [x5mins]

ce
nt

er
ed

 c
on

su
m

pt
io

n

−
10

0
−
50

0
50

10
0

Fig. 3: The averaged time-series is calculated for each cluster

in the test group and displayed as a colored dashed line. The

black dashed line is the averaged time-series of the CBL and

the green line is the price.

in consumption between these two groups. Moreover, the

inherent uncertainty on the responsiveness (response to a

treatment) resulting from the absence of homogeneity in the

test group as well as in the reference group (e.g., behavior

of the user, thermal confort setup, energetic profile of the

buildings), supports the idea that a clinical trial approach

is relevant here. The question we aim to answer can be

formulated as Do price variations induce significant changes

in power consumption patterns?

The results of the clustering on households recruited in the

DR program from the different groups exposed in Table II, can

be analyzed in two different ways. On the one hand, one can

visually assess whether the average response of the selected

clusters from each group is responsive by direct comparison

with the CBL during the DR event. The purpose of visual

inspection is to show that DR works for some clusters, and not

for others, to a non-scientific audience who is not familiar with

more objective statistical methods. However such an analysis

cannot conclude on the significance of the response observed,

while relying on expert knowledge at evaluating variation in

patterns. On the other hand, this can be tested more rigorously

in an hypothesis testing framework (see Section III-C). The

purpose of hypothesis testing is to satisfy a scientific audience

who requires a degree of objectivity when the results (e.g.,

lower unit electricity costs for the consumer) are presented.

Fig. 4 is an example of a case used for visual evaluation

of a given test case. By observing the dynamics of the mean

consumption series of the test group compared to the CBL, one

may conclude on the responsiveness of that test group based on

confidence intervals. Experience with such consumption data

shows that it does not follow a Gaussian distribution. Hence, a

nonparametric approach (Non-Studentized pivotal method) is

used to obtain confidence intervals. More specifically, we em-

ploy a common resampling technique known as bootstrap [20]

to generate them. From all the 5000 resampled average time-

series, 95% confidence intervals defined by 2.5% and 97.5%

quantiles of the distributions of bootstrap samples are obtained.

From visual inspection of Fig. 4, one may infer that the

behavior of the test group is different from that of the

CBL when the confidence intervals are not overlapping (for

example, from 7:05 to 8:05). In other situations, when the

confidence intervals overlap or when the average time-series

lies within the confidence intervals of another one, one cannot

conclude. A more detailed analysis of Fig. 4 shows that the

test group exhibits higher consumption during the low price

period and lower consumption in the high price period with

respect to the CBL. The lower consumption in the period 23:05

to 5:05 is induced by the smart controllers in the experiment

shifting load to the lower price period that starts at 07:05.

Smart controllers receive a day-ahead price forecast (as well

as an hour-ahead price forecast every half hour) allowing them

to schedule consumption in an optimal manner. The value of

the relative real-time price with respect to recent and limited

forecasted prices therefore contributes to visual estimation of

whether a test group is price response or not. For example, in

Fig. 4, the relative price is high in the period 23:05 to 5:05, so

it is expected that a price-responsive cluster would have lower

consumption than the CBL during this period.

C. Hypothesis Testing to Assess Price-responsiveness

A standard way to assess results in a clinical trial test is to

employ hypothesis testing. The hypothesis obviously depends

on the question, e.g., is the test group’s consumption different

than that of the CBL during a DR event? in this question it

can be even be specified lower or higher instead of ‘different’.

Based on this hypothesis, a test is formulated and applied

to the data. The method used to analyze the hypothesis test

should be chosen according to the assumptions on the sample

values’ distribution. The aim of the EcoGrid EU DR program

is to displace electric power consumption from periods with

higher prices to periods with lower prices. Whether this goal is

achieved or not can then be determined based on the economic

value to the households, i.e., in relation to cost per unit of
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Fig. 4: The average time-series from the CBL and a cluster from the test group with their respective 95% confidence intervals

generated from the bootstrap. The green line is the price.

electricity consumed. Consequently here, hypothesis testing

may allow us to objectively state whether a test group is

price responsive or not. We use a framework similar to that of

conventional clinical trial tests, with a type I error threshold

α of 0.05.

A hypothesis test can be formulated, since the average cost

of a kWh of electricity consumed during a test-case by the

test group should be lower than the cost for the CBL during

the same period. The average unit cost C̄i, for a test case with

T time steps, is calculated as

C̄i =

∑T

t=1
CtiPt∑T

t=1
Cti

(8)

where Cti is the consumption of electricity from household i

at time t and Pt the price at time t. A simple observation of

the average unit cost distributions tells us that the variances of

the 2 samples are different and that they may have heavy tails.

Therefore, standard parametric tests are excluded. The Mann-

Whitney test (also known as the Wilcoxon rank sum test) is a

convenient solution, since the number of households in each

of the subgroups is large. A one-sided Mann-Whitney test is

performed on the ranks. The hypotheses are the following,

H0 : µtest > µCBL

H1 : µtest < µCBL
(9)

where µ corresponds to the sum of ranks, H1 is the one-sided

tailed alternative hypothesis and H0 is the null hypothesis. The

null hypothesis means that the activity of the price-responsive

controllers is not significantly modifying the average unit

cost, so that it could be considered lower than the control

group average unit cost. If the H0 is rejected, the alternative

hypothesis is confirmed statistically.

The one-sided tailed alternative hypothesis is more restric-

tive than the two-sided tailed standard hypothesis test, as it

specifies that the samples should not only be different, but

that the test sample’s mean should be lower than the control

sample’s mean. The Mann-Whitney test defines the statistic U

with the following formula

U = min
(
n1n2 +

n1(n1 − 1)

2
−R1,

n1n2 +
n2(n2 − 1)

2
−R2

)
(10)

where n1, n2 are the size of the 2 samples and R1, R2 are

the sum of the ranks for these two samples respectively. U

follows a normal distribution and we can calculate the p-value

as

P (U > U1−α|µtest > µCBL) (11)

The P-value can be seen as the probability of obtaining a test

statistic result at least as extreme or as close to the one that was

actually observed, assuming that the null hypothesis is true.

The test is considered significant when the p-value is lower

than the type I error threshold α, which is the chance that we

mistakenly reject the null hypothesis (that the samples’ means

are different). All the details related to statistical aspects can

be found in [27].

IV. RESULTS

A. Clustering Results

The cluster analysis aims to identify the price-responsive

participants in the test group (possibly in the form of var-

ious subgroups) and to separate them from obviously non-

responsive households. Emphasis is placed here on how many

households are kept in the analysis from the original subgroups

after computation of the HAC, as it influences the subsequent

analysis.

The clusters are visually selected by comparing the averaged

consumption time-series of each cluster to the averaged CBL

consumption time-series during event with price variations

(Fig. 3). If the averaged consumption time-series of a cluster

seems to be flat (no activity, e.g., as for cluster 5 in Fig. 3),

following the same pattern as the averaged CBL time-series
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TABLE II: Number of households in various test cases:

number in the test group (number deemed price-responsive

after clustering) / number in the CBL.

Date
Manufacturer 1
Electric Heating

Manufacturer 1
Heat Pump

Manufacturer 2
Electric Heating

25/10/2013 68 (48) / 288 36 (24) / 197 88 (55) / 82
07/11/2013 65 (58) / 289 36 (33) / 197 88 (61) / 92
21/11/2013 67 (61) / 292 36 (36) / 200 87 (75) / 94
27/11/2013 66 (55) / 292 36 (34) / 201 89 (78) / 91

06/12/2013 — — 115 (74) / 99
10/12/2013 — — 103 (84) / 91
11/12/2013 — — 100 (70) / 86
12/12/2013 — — 106 (69) / 89

20/01/2014 — — 230 (194) / 105
21/01/2014 — — 223 (121) / 100
22/01/2014 — — 230 (110) / 104
23/01/2014 — — 229 (107) / 105

08/03/2014 30 (30) / 324 20 (17) / 236 237 (125) / 75
11/03/2014 38 (38) / 317 24 (18) / 229 232 (171) / 76

09/04/2014 101 (99) / 249 58 (43) / 188 249 (197) / 109
13/04/2014 38 (38) / 311 24 (22) / 222 269 (188) / 114

(e.g., as for cluster 2 in Fig. 3) or showing unexpected pattern,

it will be excluded from the dataset used in the evaluation of

the price responsiveness. When all the clusters are non price-

responsive, only the aberrant ones will be removed.
Table II gives a summary of the clustering selection; the

range of the selection from the original data goes from 52%

to 100%. In other words, a maximum of a half (48%) of the

smart controllers were in the test group, but did not visually

appear to be price-responsive. The graphical representation of

clusters is also useful for identifying different types of price-

responsive behavior. For example, in Fig. 3, cluster 1 gathers

the controllers which have been stimulated by the first price

variation, while cluster 3 gathers the ones which have been

stimulated by the second price variation and cluster 4 gathers

the ones which have reacted to both stimuli. It also illustrate

the differences of behavior between the manufacturers as

the price-response strategies and constraints are implemented

differently. Such information was not known beforehand, and

brought more insight on how a population of controllers

behave at the occasion of large price variations. However, this

paper do not focus on this aspect, but it worth mentioning it

as it is a good way to illustrate it.

B. Results of the Clinical Trial Test Approach

The chosen clusters are used to generate graphical

overviews of each group during the different test-cases

(Fig. 4). Table III summarizes the visual evaluation of the

graphs displaying the averaged time-series associated with the

95% confidence intervals of the treatment and CBL groups for

each manufacturer, equipment type and for different test-days.

Results here should be interpreted as, for each experiment,

whether it was possible to find one or more clusters that could

be seen as price responsive, or not.
In the roll-out phase of the EcoGrid EU demonstration, con-

trollers and other infrastructures were continually developed

and improved, which explains the improvement of the DR as

the heating period went on.

C. Results of the Hypothesis Testing

The main goal of the EcoGrid EU project is to push elec-

tricity consumption during periods of high prices to periods

of low electricity prices. This means an economic evaluation

can be done, by comparing the average unit cost of selected

test groups to the CBL. In this case, hypothesis testing could

be applied to each and every identified clusters, or only to

those where visual assessment indicated that price response

may be present. As for the visual assessment before, the test

is applied to all clusters that were not discarded through the

clustering analysis, for instance since deemed as outliers or

clearly non-responsive.

TABLE III: The color of the cell return the results of the visual

evaluation; gray is responsive, light gray is non-responsive.

The figure is the p-value from the Mann-Whitney test. Signif-

icant test at α = 5% are shown in bold and italic.

Date
Manufacturer 1
Electric Heating

Manufacturer 1
Heat Pump

Manufacturer 2
Electric Heating

25/10/2013 0.98 0.44 0.20

07/11/2013 0.39 0.0013 0.88
21/11/2013 0.95 0.20 0.09
27/11/2013 0.34 0.34 0.81

06/12/2013 — — 0.13
10/12/2013 — — 0.00022

11/12/2013 — — 0.0015

12/12/2013 — — 0.12
20/01/2014 — — 0.99
21/01/2014 — — 0.22
22/01/2014 — — 0.21
23/01/2014 — — 0.63

08/03/2014 0.54 0.59 0.0068

11/03/2014 0.86 0.80 0.28

09/04/2014 0.0034 0.0096 0.21
13/04/2014 0.96 0.12 0.0014

The Table III shows the Mann-Whitney test’s results for

the different test periods. A standard type I error threshold

is chosen (α = 5%). The significant tests are shown in bold

and italic. The comparison between the results from visual

evaluation and the hypothesis testing in Table III exposes the

difference between price-responsiveness which can be visually

noticed but not statistically validated using the measure of unit

cost, and the price-responsiveness that does have a significant

economical impact on the average unit cost. The results

show that towards the end of the roll-out of the EcoGrid

EU project, it was possible to visually and rigorously find

differences between CBL and test groups (manufacturer 1

electric heating, manufacturer 1 heat pump and manufacturer 2

electric heating), indicating a price-responsive behavior over-

all. Further steps in such an evaluation work would consist in

quantifying and characterizing this price-responsiveness, while

also assessing if this corresponds to the maximum response

that could be provided by these groups of households.

V. CONCLUSIONS

The method presented in this paper shows how a systematic

evaluation of DR can be done even with datasets that contain

outliers, noise, and other undesirable effects. The clustering
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can easily be generalized to other time series classification,

although scalability to data with more observations remains an

area for inquiry. We have successfully applied it to 2 weeks

data with a resolution of 5 minutes, but further work should

investigate clustering of time-series with more observations.

Clustering based on the coefficients of an auto-regressive

model of each subject may be viable.

The methodology established provides a springboard to fur-

ther understand the different types of DR present in residential

loads. User interaction with DER controllers is expected to

have a large impact on the DR available, and the HAC used

to separate useful households from those which do not appear

extremely effective in this circumstance.

From a widespread power system perspective, being able to

identify which customer segments exhibit a price response is

important for grid operators looking to identify and invest in

customers to participate in new DR schemes. Such clustering

may also be a useful technique to decide additional financial

reward for customers who perform best, in the form of a

capacity payment, perhaps funded by the same public service

obligations (PSOs) that support renewable generation.

Comparing treatment subgroups to the CBL graphically

is also useful for presenting the differences in consumption

to a broad audience in an intuitive manner. However, visual

interpretation is not a statistically valid way of confirming a

response. Therefore, the 2 sample Mann-Whitney test compar-

ing the averaged unit cost of price-responsive and non price-

responsive subgroups supplements the graphical approach

well, as it allows us to validate or reject hypothesis for each

test-case. This analysis answers one of the key points of

the demonstration: cost can be reduced for some consumers.

Obviously, a necessary further step is to characterize and

quantify the responsiveness of this electric load. This has

been the focus of our further research over a 8 month live

experiment in the EcoGrid EU project, which kicked off after

the first assessment results presented here allowed to verify

the demand response potential in our electric load population.
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Abstract—Congestion management can delay grid reinforce-
ments needed due to the growth of distributed technologies like
photovoltaics and electric vehicles. This paper presents a method
of congestion management for low voltage feeders using indirect
control from the smart grid demonstration EcoGrid EU, where
five minute electricity pricing is sent to demand. A method for
forecasting demand and generating prices in a market framework
is presented, and a novel mechanism to ensure prices are fair
to customers who can and cannot participate is developed. The
proposed market is currently being used to send prices to 1900
houses, with a virtual feeder of 28 houses receiving congestion
pricing. Simulations are used to calculate the cost from using
this congestion management method, while demonstration results
indicate that congestion can be managed successfully.

Index Terms—Demand response, real-time pricing, congestion
management, demand forecasting, smart grid.

NOMENCLATURE

t ∈ T Index for time

g ∈ G Index for conventional generation

l ∈ L Index for demand

s ∈ S Index for scenario

qt,s Probability of scenario

cl,t,s Demand

cDl,t Day-ahead demand forecast

cshedl,t,s Load shedding

λD
t Day-ahead price for demand

λR
t,l Real-time price for demand

λshed Price for load shedding

λspil Price for wind spillage

αt,s Price-elasticity parameter

Bt,s System imbalance

pDg,t Conventional generation scheduled day-ahead

wD
t Wind power day-ahead forecast

w
spill
t,s Wind power spillage

λ
↑
g,t, λ

↓
g,t Price for up/down regulation

p
↑
g,t,s, p

↓
g,t,s Up/down regulation delivered

P
↑
g,t, P

↓
g,t Up/down regulation bid into market

rg,t Generator ramp rate

xg,t,s, zg,t,s Up/down regulation on/off

γt Generation behavior

I. INTRODUCTION

Electric vehicles (EVs), photovoltaics (PVs) and other new

distributed energy resources (DERs) will significantly increase

the strain on low voltage feeders and potentially raise the peak

load, causing over-loading and a need for greater capacity.

Demand response (DR) is widely accepted as the key to

reducing congestion at a distribution level and postponing

costly investment in new infrastructure such as transformers

and cables. Such DR can be activated by indirect control,

e.g. an electricity price, or direct control, e.g. an on-off

signal through a bilateral contract. There are benefits to both

[1], with the former requiring less stringent communication

requirements and the latter offering a more reliable response.

Congestion has been thoroughly investigated at medium

and high voltage levels [2], [3], while the focus of smart

charging EVs has been at low voltage levels [4]. Mechanisms

for managing congestion include using distributed controllers

in transformer stations that send a control signal onwards

to demand [5]. Controlling household devices, such as heat-

pumps, with direct [6] and indirect [7] control methods have

also been proposed for solving local congestion. Control-by-

price techniques have also been developed in [8] and [9],

however a limitation of these works is that the price-response

is unbounded.

In this paper, we perform congestion management with DR

using a centralised market developed and tested in the EcoGrid

EU project. EcoGrid EU is smart grid demonstration on the

Danish island of Bornholm, where 1900 residential houses

with a peak load of 5MW receive electricity prices every five

minutes. 28 of these houses constitute our virtual feeder, which

means they are not physically connected to the same cable, but

their load is aggregated virtually. Houses are equipped with

smart meters and a range of DERs with automated controllers

that optimize consumption levels according to price forecasts

and customer comfort. DR from these households is used to

reduce congestion on a local level, and imbalances on a system

level. The demonstration setup is shown in Fig. 1.

The EcoGrid EU market sees demand as a black box since

the price-responsive controllers used in the demonstration



Fig. 1. Demonstration setup, with loads receiving different pricing based upon
their feeder limitations, and feedback used to update the demand forecast

have proprietary designs from different manufacturers, which

control a wide array of DERs. A data-driven forecasting

method with novel bounded price-elasticity terms has been

developed. This paper also investigates the question of how

to reward customers fairly for providing DR, should policy

makers legislate feeder-level congestion management. Paying

a customer for shifting their consumption away from peak

hours is potentially unfair when a customer on a different

feeder is not offered that option. And if a majority of customers

participate, then those who cannot may effectively pay a higher

price than those who can participate at the feeder level. From

the Distribution System Operator (DSO) perspective, knowing

the value of congestion management in a market setting is also

an area for inquiry when deciding if reinforcements should be

chosen over DR programs.
In summary, our contribution lies in using a realistic model

of demand with a method that is being validated in real-life,

quantitative figures for the cost of congestion management

via indirect control, and a market-based approach that makes

efficient use of DR and is fair to customers who can and cannot

participate in congestion management. The paper is structured

with section two introducing the demand and market models

used for simulation and in the experiment. Section three shows

initial demonstration results taken from a virtual feeder and

simulated costs with and without congestion management.

Section four concludes.

II. METHODOLOGY

A. Model of the Demand

Demand is broken down into non-interacting parts com-

prised of autoregressive components that are a function of

recent demand, a component that is dependent on the price,

and a component that is only dependent on external variables

using the notation from [8], [9]. An initial abstract split of the

price and non-price responsive parts is considered

ct = f (c̃t−1, z̃t) + g
(

λ̃t, z̃t

)

(1)

with

c̃t−1 = [ct−1, . . . , ct−nc
]⊺

λ̃t = [λt+uλ
, . . . , λt−nλ

]
⊺

z̃t = [zt+uz
, . . . , zt−nz

]
⊺

where nc, nλ and nz are a finite number of lagged values of

demand, c, price, λ , and external variables, z. For the price

and external variables there are uλ and uz forecast values,

which are used to capture the scheduling dynamics of DERs.

Price forecasts are converted to relative prices each time a

new price forecast is made. When considering only the known

future values, 1..uz in the vector λ̃t, the relative day-ahead

price is first adjusted for the mean, λ̄t, and then normalised

to a value between 0 and 1

λ̃Dr

t = λ̃D
t − λ̄t (2)

λ̃Dn

t =
λ̃Dr

t − λ̃Dr

t,min

λ̃Dr

t,max − λ̃Dr

t,min

(3)

Real-time prices are also converted to relative prices, but with

respect to the absolute day-ahead price, i.e. λ̃r
t = λ̃t − λ̃D

t .

External variables, z, include weather data wind speed, solar

irradiance, ambient temperature, Φ, as well as a base load term,

yt. The base load is a Fourier series that describes demand due

to the time of day, day of the week, and day of the month [10].

The base load is given by

yt = a0 +
J
∑

j=1

aj sin

(

2πkt

j

)

+ bj cos

(

2πkt

j

)

(4)

j must be suitably large to cover different seasonal variations

(for example 288 when capturing trends of different hours of

the day using five minute data) and k is increased until enough

high-resolution detail is captured.

Additional terms are added to capture the interaction be-

tween the base load and temperature, yt · Φt, and the price

and temperature, λ̃t ·Φt, included in the array of variables χ̃t.

This can be expressed in a general linear model form

ct = c̃
⊺

t−1θc + λ̃
⊺

t θλ + z̃
⊺

t θz + χ̃
⊺

t θχ + ǫt = x
⊺

t θ + ǫt (5)

where ǫt is Gaussian noise with zero mean and finite variance

and all prices are relative.

Variables c, λ, z and χ were populated with measurements

from 2014 and the parameters θ of the general linear model

were found by minimizing the residual sum of squares while

shrinking parameters using the Lasso penalisation [11], the

objective of which is

min

T
∑

t=1

(

ct −

N
∑

n=1

θnxn,t

)2

+ η

N
∑

n=1

|θn| (6)



η is the tuning parameter and is found using a 10-fold

cross-validation routine, minimising the mean square error

over all folds. The relationship between price and consumption

has previously been observed to be non-linear [8], and this

characteristic is taken advantage of to find some sensible

boundaries for the price-response. A non-linear model con-

taining a generalised logistic function that is centred around

zero is defined

cλt =

Nλ
∑

n=1

−
An

2
+

An

1 + e−τnλn

−
BnΦt

2
+

BnΦt

1 + e−ρnΦtλn

(7)

cλt contains only price information with other linear com-

ponents removed. Parameters in this model are found by

minimising the sum of square errors using the Levenberg-

Marquardt algorithm [12] with the linear parameters for price

used as starting estimates for τ and ρ. The upper and lower

bounds of the price response are

∆c
max /min
t = ±

Nλ
∑

n

(

|An|+ |BnΦt|

2

)

(8)

To find the expected price-elasticity of the demand, the

logistic function (7) is differentiated with respect to price for

each price lag. The reciprocal of this result is taken and the

mean of over all price lags is taken, i.e.

αt =
1

Nλ

Nλ
∑

n

(

4

AnBn + CnDnΦt

)

(9)

Price elasticity and its bounds are found for different times

of the day, as control algorithms have been observed to

behave very differently - especially at night. The final demand

model has been used to forecast consumption in real-time in

the EcoGrid demonstration, with an online five-minute ahead

mean absolute percentage error (MAPE) of 2% and a day-

ahead MAPE of 7% for 1900 houses.

B. Market Structure

The EcoGrid EU demonstration uses a hardware in-the-

loop process to generate prices. Generator bids are based

on historical Nord Pool bid data, while demand and wind

power injection data come from real-time forecasts from the

Bornholm electricity network. The imbalance signal is derived

from the day-ahead forecast error. Load is scaled to 50MW to

represent the entire island of Bornholm. The day-ahead market

is assumed to operate in a similar, deterministic manner, as

today.

The objective of the market is to maximise social welfare

(customer utility minus the cost of generation) while determin-

ing an optimal amount of balancing power from generation and

DR. The output commits bids for conventional generation until

the market is performed again, and creates real-time prices

for demand. The imbalance caused by wind power production

and demand must be remedied and maximum and minimum

feeder limits must be respected. Whenever a DSO would like

to reduce a load in their network, feeder limits are specified. In

this study, a baseline market without congestion management

is operated in parallel, and the difference in social welfare

is the cost the DSO pays for reducing congestion with DR.

Electricity network dynamics are ignored in this paper, as they

are in the Nord Pool market, although the unit commitment

models can be expanded to consider losses as in [13].

max
∑

t

∑

s

qt,s

{

∑

l

λD
t ∆cl,t,s +

1

2
αt,s∆cl,t,s

2 (10)

−
∑

g

βg,t,s − λspilw
spil
t,s −

∑

l

λshedcshedl,t,s

}

s.t.

βg,t,s = λ
↑
g,tp

↑
g,t,s − λ

↓
g,tp

↓
g,t,s ∀g, t, s (11)

pg,t,s =
∑

g

pDg,t + p
↑
g,t,s − p

↓
g,t,s ∀g, t, s (12)

cl,t,s = cDl,t − cshedl,t,s +∆cl,t,s ∀t, s (13)

wt,s = wD
t − w

spill
t,s ∀t, s (14)

∑

l

cl,t,s = pg,t,s + wt,s −Bt,s ∀t, s (15)

∆p
↑
g,t,s = p

↑
g,t,s − p

↑
g,t−1,s ∀g, t, s (16)

∆p
↓
g,t,s = p

↓
g,t,s − p

↓
g,t−1,s ∀g, t, s (17)

∆p
↑
g,t,s = ∆p

↑
g,t−1,s ∀g, t, s, γt = 0 (18)

∆p
↓
g,t,s = ∆p

↓
g,t−1,s ∀g, t, s, γt = 0 (19)

∆p
↑
g,t,s = 0 ∀g, t, s, γt = 2 (20)

∆p
↓
g,t,s = 0 ∀g, t, s, γt = 2 (21)

p
↑
g,t,s ≤ xg,t,sp

↑
g,t,s ∀g, t, s (22)

p
↓
g,t,s ≤ zg,t,sp

↓
g,t,s ∀g, t, s (23)

p
↑
g,t,s ≥ xg,t,sχgp

↑
g,t,s ∀g, t, s, γt = 2 (24)

p
↓
g,t,s ≥ zg,t,sχgp

↓
g,t,s ∀g, t, s, γt = 2 (25)

xg,t,s = 0 ∀t, s, P ↑
g,t = 0 (26)

zg,t,s = 0 ∀t, s, P ↓
g,t = 0 (27)

p
↑
g,t,s ≤ dt,sp

↑
g,t,s ∀g, t, s (28)

p
↓
g,t,s ≤ κt,sp

↓
g,t,s ∀g, t, s (29)

dt,s + κt,s ≤ 1 ∀g, t, s, γt = 2 (30)

∆cl,t,s ≤ ∆cmax
l,t ∀t, s (31)

∆cl,t,s ≥ ∆cmin
l,t ∀t, s (32)

∑

t

∆cl,t,s +
∑

i

∆cl,i = 0 ∀l, s (33)

cmin
l,t ≤ cl,t,s ≤ cmax

l,t ∀t, s (34)

For each decision variable in constraints (11) - (34) there

exists a non-anticipativity constraint that ensures its outcome

is identical across all scenarios in the first few time periods for

which prices are fixed, for example t = 1 . . . 6 if the market

is run every half an hour. In later time periods, scenarios for



price-elasticity, α, follow a Gaussian distribution. Imbalance

scenarios, B, are generated using a non-parametric method

(bootstrapping), where historical outcomes are sampled with

replacement. Reduction of scenario trees is then done using

the Fast Forward method [14].

The regulating cost from conventional generation is defined

in (11). The total power produced by each unit is stated in

(12). The total demand and production from wind are defined

in (13) and (14). Equation (15) is the balance constraint, also

considering the imbalance from wind and inflexible demand,

Bt,s. In the absence of any further constraints, and considering

zero flexibility, the dual variable of (15) is the price sent to

generation and demand. With these constraints and considering

that the problem is quadratically constrained, the real-time

price is

λl,t,s = αt,s∆cl,t + λD
l,t (35)

Constraints (16) and (17) define generator ramp rates. Con-

straints (18) and (19) keep ramping constant when generation

behavior dictates. Constraints (20) and (21) keep generation

at a plateau when generation behaviour dictates. When used

with the generator behavior of the Scandinavian regulating

market, γt, constraints (16)-(21) result in a minimum on-

time of 45 minutes and the ramping characteristics seen in

Fig. 2. Constraints (22) and (23) limit maximum regulation.

Constraints (24) and (25) limit minimum generation. In the

Scandinavian regulating market, bids under 10MW must be

activated in full, while bids above 10MW can be activated in

part; the proportion of each bid to be activated is described

by the parameter χg. Constraints (26) and (27) ensure that a

generator is off when it bids zero into the market. Constraints

(28) and (29) determine whether any up or down generation is

active, and (30) prevents simultaneous up and down regulation.

Constraints (31) and (32) enforce the price-elasticity limits.

The fairness constraint is defined in (33), which ensures all

loads have the same load shifting scheduled, considering all

historical DR scheduled, ∆cl,i, and future DR, ∆cl,t. This
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Fig. 2. Example of two generators acting within behaviour constraints

constraint is only fair if loads are homogeneous, as they are

in the EcoGrid EU project, and aims to send near-identical

average prices to different loads every day. Constraints (34)

specify the maximum and minimum feeder limits, which

usually occur in the winter and summer respectively. EcoGrid

EU participants exhibit the vast majority of their flexibility

in the winter and, as such, this case study only considers

the maximum feeder limit, which is set to the 5% below the

unconstrained maximum daily peak load.

EcoGrid EU market clearing code in the GAMS language

and without proprietary datasets is available in [15]. The main

EcoGrid EU market is a mixed integer quadratically con-

strained program (MIQCP) solved using the CPLEX solver.

III. RESULTS

A. Demonstration outcome

Preliminary demonstration results show that the system is

broadly capable of keeping consumption under the feeder

limit, as shown in Fig. 3. However, short-lived spikes in

consumption do occur, which the forecasting tool is unable to

predict, although overloading for a few minutes is unlikely to

be problematic. This problem is exacerbated by the 20 minute

delay in smart meter data being collected. In a full-scale roll-

out, real time measurements (<5 minutes) would be needed

at the congestion point in order to better avoid congestion.

Additional problems with this test are that the load appears

to exhibit some oscillating behaviour. Poor forecasting of the

virtual feeder and not explicitly accounting for cross elasticity

in the market are thought to be the main causes.

B. Simulated benefits

Simulations were done for one month to determine the scal-

ability of the system and the costs associated with widespread

congestion management. Fig. 4 shows an example day for

a feeder with and without congestion management. Market
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Fig. 3. Demonstration results from 28th March 2015 on the island of
Bornholm for 28 houses performing congestion management
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Fig. 4. Real-time price and load, where feeder A experiences peak load
shaving and feeder B is unconstrained

simulations show that average prices were successfully kept

the same for different loads - with and without congestion

management - to the nearest Euro Cent.
Fig. 5 shows the relationship between the number of con-

gested loads and social welfare. The relationship is initially

linear, but as many loads become congested, costs increase

greatly, since additional generation must be activated to com-

pensate. The initial linear relationship in this figure reveals

that the average cost to the regulating market is about e 3

per day per feeder, which is a cost that could then be passed

onto DSOs willing to participate. If the EcoGrid EU demand

reduces the need for faster moving reserves, for example

primary frequency reserves, then the cost to DSOs may be

higher, since this makes DR more valuable to other services.

IV. CONCLUSION

We have developed a centralised electricity market that is

designed to replace the existing regulating market in Denmark

and that determines a fair market price for all players affected

by congestion management: transmission system operators

(TSOs), DSOs and consumers. The trade-off between using

DR for congestion management and system balancing is

explicitly taken account of in the market model. The results

are highly dependent on existing bidding strategies (e.g. the

Nord Pool generation bid curve) and many assumptions may

change if and when DR becomes a significant reality.
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The Cobweb Effect in Balancing Markets with
Demand Response

Emil M. Larsen, Pierre Pinson, Jianhui Wang, Yi Ding and Jacob Østergaard

Abstract—Integration of renewable energy sources like wind
into the power system is a high priority in many countries, but
it becomes increasingly difficult as renewables reach a significant
share of generation. Demand response (DR) can potentially
mitigate some of these difficulties. However, activating DR in
existing electricity markets has been observed to be unstable,
resulting in oscillations in supply and demand. This so-called
Cobweb effect is presented here using a Scandinavian real-time
market structure that is adapted in a novel way to consider cross-
time elastic terms. A demand profile based on real measurements
from the EcoGrid EU demonstration is used, where five-minute
electricity pricing is sent to 1900 houses. Volatility is measured for
1900 houses in the experiment and through further simulation,
which demonstrates increased volatility leads to lower social
welfare. A key outcome of this research shows that increases
in social welfare due to DR appear to be limited by the cost of
volatility in existing market structures.

Index Terms—Demand response (DR), Cobweb effect, real-
time pricing, volatility, smart grid.

NOMENCLATURE

t ∈ T Index for time

g ∈ G Index for conventional generation

s ∈ S Index for scenario

qt,s Scenario probability

ct,s Real-time demand

α Price-elasticity ratio

cDt Day-ahead demand forecast

cλt,t′,s Demand response with t′ cross elasticities

cshedt,s Load shedding

λD
t Day-ahead price

λR
t Real-time price

λshed Price for load shedding

λspill Price for wind spillage

Bt,s System imbalance

pDg,t Conventional generation scheduled day-ahead

wD
t Wind power day-ahead forecast

w
spill
t,s Wind power spillage

λ
↑
g,t, λ

↓
g,t Price for up/down regulation

p
↑
g,t,s, p

↓
g,t,s Up/down regulation delivered

P
↑
g,t, P

↓
g,t Up/down regulation bid into market

ng,t,s,mg,t,sUp/down regulation on/off
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I. INTRODUCTION

DEMAND response (DR) is being strongly pursued be-

cause it increases the value of renewable energy sources

(RES) when they are available, provides some additional

capacity when renewables are not available, and balances the

system when renewables do not behave as predicted [1]. In

Denmark, the shift to RES meant that wind power met 43%

of national electricity consumption in 2015, and is well on

its way to hitting goals of 50% electricity consumption from

wind power in 2020, and 100% of all energy consumption

from renewable energy in 2050 [2].

There are many dynamic and static electricity price tariffs

that can be used to activate DR, but two methods in par-

ticular have gained traction in recent years due to their fast

activation characteristics that complement the uncertainty in

RES generation. These are direct control, where utilities turn

devices on and off remotely, and indirect control, where an

incentive signal, e.g., an electricity price, is used to influence

the load to change its consumption. Direct control is typically

targeted at medium and large commercial and industrial loads

and has the challenges of requiring reliable communication

equipment, while indirect control is aimed at a large number

of small-scale loads and has challenges of predictability [3].

Key benefits of indirect control include lower equipment costs

and, when a price-based mechanism is used, there can be a

clear value attributed to the resource. When traded in a power

pool, DR has the additional benefit of improving liquidity and

lowering the cost of supply, since it reduces the market power

of price-maker generators. However, indirect control by means

of true market-based pricing sent to supply and demand has

long been associated with unstable behavior, as first identified

in [4], where it was named the Cobweb effect due to the spider

web-like back-and-forth oscillations that occur when a stable

market equilibrium cannot be achieved.

The Cobweb effect has traditionally been studied in markets

where demand for a commodity, for example apples, was

higher or lower than supply had expected. The following

season, apple growers then change their production level, but

the market becomes over- or under-supplied and an overshoot

causes demand to behave in a seemingly opposite fashion

to what had been experienced the previous season. If every

market participant has a perfect forecast of supply and demand,

then the Cobweb effect should not happen, but uncertainty is

usually present in markets. This is true in a modern power

system and especially true for DR [5]. Electricity market clear-

ing algorithms must also make assumptions about demand,

including linearising non-linear behavior, in order to find a
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feasible and timely solution in an optimization framework.

This can result in power and prices being more volatile than

is optimal, as seen in Fig. 1. Here, an imbalance that exists

only at the first time step where supply and demand intersect,

causes the market clearing price to oscillate outwards as the

initial decision leads to a greater imbalance, via feedback, in

subsequent steps.

In this paper, we investigate the Cobweb effect, which

is discussed in more detail in section II, using the market

structure and data collected from the EcoGrid EU project [6],

which is DR demonstration on the Danish island of Bornholm.

The EcoGrid EU experiment has 1900 residential households

with a peak load of 5MW. Houses are equipped with smart me-

ters and a range of distributed energy resources (DERs) with

automated controllers that receive a new electricity price every

five minutes and optimize consumption levels accordingly. DR

from these customers is scheduled optimally with conventional

generation in a market structure to meet the imbalance caused

by wind power.

The contribution of this work lies in developing a real-

time market that considers cross-time elasticity. We identify

the different causes of volatility and investigate the impact

the Cobweb effect has on social welfare, and how market re-

commitment frequency changes volatility and social welfare.

We believe the latter to be important as system operators move

to shorter settlement periods.

The paper is structured with section II presenting existing

knowledge of the Cobweb effect. Section III defines price- and

cross-time elasticity and illustrates the corresponding demand

model. Section IV presents the market structure. Section V

presents results for social welfare and volatility from simula-

tions and the real experiment. The final section concludes.

II. THE COBWEB EFFECT

Since initially investigated in 1938, the Cobweb effect

was expanded to markets with non-linear supply and demand

curves in [7], where it was also shown that the Cobweb effect

happens with monotonic demand and supply curves, as is

the case in electricity markets. In [8], the impact of demand

expectation using auto-regressive methods on the Cobweb

effect was identified. Traditional economics literature has been

more focused on identifying the problem and improving the

expectation of demand, including considering larger forecast

horizons, leading to more stable market outcomes [9]. So-

lutions other than a better demand forecast have not been

explored. Recent economics research on the Cobweb effect

has moved to analyzing games between different players, the

result of which is an equilibrium with the lowest forecast error

on both the supply and demand side [10].

In the field of power system research, market-based volatil-

ity due to real-time pricing was first identified in [11], where

it was noted that there is an upper limit on the market clearing

time and the delay of the price signal beyond which the

system becomes unstable. Here it was shown that delaying

communication of the price sent to customers increased system

stability greatly, while increasing the gate-closure time led

to fragile system behavior. Cobweb-like volatility has been
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Fig. 1. The Cobweb effect in the EcoGrid EU market, where the settlement
trajectory starts at the intersection of the initial supply (Nord Pool bid data)
and demand (EcoGrid EU demand model) curves shown.

particularly problematic when using models from the New

York ISO power system [12], however, the authors there used a

mirror image of supply to represent demand in the absence of

reliable information about its actual shape. In addition, authors

there also assumed demand would only be non-linear with

respect to time, but not conditional on past and future prices.

Recently, [13] identified the boundaries for volatility when

closed-loop real-time pricing structures are used without an

appropriate feedback law. No remedy was offered for the

closed-loop instabilities simulated in this research, but it was

noted that price volatility increases as the price-elasticity of

consumers increases with respect to the price-elasticity of

suppliers, indicating that volatility will vary from case to case.

Real data was not used in [13], highlighted by a demand profile

with eight peaks per day, rather than the archetypal one or two

daily peaks. Consequently, there remains a lack of evidence

about how much volatility will truly be observed in a power

system with DR and real-time pricing, hence our curiosity as

to whether the Cobweb effect is observable or significant in a

realistic market setup.

III. PRICE AND CROSS-TIME ELASTICITY RATIOS

In this section, a definition of price and cross-time elasticity

is given and the demand model is illustrated.

Price elasticity, also called self or own elasticity [14],

describes how sensitive a load is to a change in price [15].

It is traditionally dimensionless and is often used to describe

how consumption responds to a 1% change in price. For

the purposes of operating a real-time market, however, we

define price elasticity in absolute terms as a linear function of

observed changes in load, ∆C, i.e.

αDA
t =

λDA
t

∆CDA
t

(1)
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where λDA
t is day-ahead price. Real-time price elasticity is

defined with respect to the day-ahead state, i.e.

αt =
λRT
t − λDA

t

∆Ct

(2)

where λRT
t is the real-time price. αDA

t and αt are the ratios

of price to change in consumption with units of e /MW2h.

In addition to regular price elasticity, there also exists cross-

time elasticity. This is the influence of past and future prices on

the current demand, often occurring due to some overriding

comfort boundaries that must be adhered to. When applied

to electric heating, cross-time elasticity occurs because the

heating device cannot stay on or off forever. It will have to

stay within a comfortable temperature range and cross-time

elasticities can describe how long the device can be perturbed

for.

Conceptually, the impact of cross-time elasticity can be

explained using the relationship

∆Ct =

Tb
∑

t′=Ta

λt′

αt,t′
, Ta ≤ t ≤ Tb (3)

where λt′ can be a day-ahead price or the difference between

the real-time and day-ahead prices, as in equation (2). To

clarify the definition given in (3), first consider that we have

a time-series of length T . We then place a sliding window

around each time-step with the index t′. The sliding window

starts at Ta and goes on to Tb and DR (∆Ct) is a function of

all the prices valid from Ta to Tb. This process describes the

energy shifted from each slice of time, past and future, to the

present time-step, t. In other words, the sum over the whole

sliding window describes the energy shifted to the current

time-step.

Fig. 2 encapsulates price and cross-time elasticity for the

EcoGrid EU load, when given a step increase in price, in the

form of a finite impulse response (FIR). The change at t0
represents the self elasticity, while any differences between

this consumption and previous and future changes represent

cross-time elasticity. A full description of this model is de-

scribed in [16], which also describes a congestion management

experiment using the EcoGrid EU market framework. The

model was based on consumption during the coldest six

months of the year. DR peaks 15 minutes after the price change

and subsequently fades away.

The elasticity matrix is derived from the FIR by laying it

out in a matrix with the structure

θt,t′ =













θ1 θ0 θ−1

...

θ2 θ1 θ0 θ−1

θ3 θ2 θ1 θ0
... θ3 θ2 θ1













(4)

Each column has the FIR according to external conditions

such as ambient temperature, with the diagonal containing new

time steps [17]. The element-wise reciprocal of θt,t′ gives the

elasticity matrix, αt,t′ .
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Fig. 2. Finite impulse response (FIR) of the EcoGrid EU demand in early
2014, peaking at 36kW when given a 10e /MWh price decrease at t0.

IV. MARKET STRUCTURE

This section presents the market structure used experi-

mentally and simulated for different cases. The EcoGrid EU

demonstration has two hardware in-the-loop market steps, as

shown in Fig. 3, which were used to generate five minute elec-

tricity pricing for 1900 houses in 2014 and 2015. Generator

bids are based on historical Nord Pool bid data, as shown

in Fig. 1, while inflexible demand and wind power injection

comes from commercial real-time observations. The imbalance

signal is derived from the day-ahead wind power forecast error,

scaled by the Danish nominal capacity, which is around 5%.

The timeline for market operation is shown in Fig. 4. The

day-ahead market price is given at 13:00 the day before op-

eration. Real-time prices are then revealed one minute before

each five minute settlement period they are valid for. In the

experiment, an hour-ahead price forecast was sent to demand

half past every hour. This forecast comes naturally from the

market clearing, so long as the market clearing has a long

enough forecast horizon. The forecast helps DERs schedule

their consumption optimally, but the forecast itself is optional.

Generator schedule 

and intra-day bids

EcoGrid EU 

market

Real-time prices

Balancing 

needs

Actual 

demand

Forecast wind 
power and load

Feedback

Day-ahead 

market

Fig. 3. Hardware-in-the-loop market structure of the EcoGrid EU demonstra-
tion.
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13:00 08:00 09:00 09:05
Hour ahead

RT price RT priceSpot price forecast

Fig. 4. Timing of EcoGrid EU real-time market.

Without the forecast, the elasticity matrix will become more

reactive, with fewer terms before the diagonal values [17].

The first step is a day-ahead market that minimizes the

cost of conventional generation, considering the day-ahead

wind power production forecast, the known Nord Pool spot

price, and the demand forecast including price-response to spot

prices. If there is no imbalance, then the spot price is sent

to consumers and demand. However, the day-ahead market

is not the main area of focus, because it does not generate

the day-ahead price and demand is a fixed input. This step is

only needed to find reasonable and feasible starting points for

generators participating in the real-time market. The overall

problem reads

min
Θ

∑

g,t

λg,tp
D
g,t +

∑

t

λshedcshedt −
∑

t

λspillw
spill
t (5a)

subject to
∑

g

pDg,t + wD
t − w

spill
t = cDt − cshedt ∀t (5b)

pDg,t ≥ Pmin
g ; pDg,t ≤ Pmax

g ∀g, t (5c)

pDg,t − pDg,t−1 ≤ rg,t; pDg,t−1 − pDg,t ≤ rg,t ∀g, t (5d)

where the set of decision variables, Θ = pDg,t, c
shed
t , w

spill
t , are

generation, load shedding and wind spillage. These variables

are balanced with day-ahead wind power and load forecasts in

(5b). Wind power injection is a parameter that is treated as a

negative load (minus wind spillage). Minimum and maximum

generation is constrained in (5c), while up and down ramp

rates are bound by the ramp rate parameter rg,t in (5d).

The second market step is the EcoGrid EU market, where

social welfare is maximized with respect to the day-ahead

market outcome. The market schedules an optimal amount

of manual reserves and flexible demand, and is formulated

as a stochastic optimization problem that commits bids for

conventional generation and creates real-time prices (RTP) for

demand until the market is cleared again. Unscheduled and

scheduled generation from the first market step is used as

the up and down regulation bids respectively in the real-time

market, i.e. p
↑
g,t,s = Pmax

g − pDg,t and p
↓
g,t,s = pDg,t − Pmin

g .

This yields

max
Θ

∑

t

∑

s

qt,s

{

λDA
t

∑

t′

cλt,t′,s +
1

2

∑

t′

αt,t′,sc
λ
t,t′,s

∑

t′

cλt,t′,s

(6a)

−
∑

g

βg,t,s − λspillw
spill
t,s − λshedcshedt,s

}

subject to

cλt,t′,s = cλt−1,t′,s

θt,t′,s

θt−1,t′,s

t 6= t′, θt,t′ 6= 0 (6b)

cλt,t′,s = 0 ∀t, t′, s, αt,t′,s = 0 (6c)
∑

t′

cλt,t′,s = 0 ∀s, t > 2h (6d)

c
λ,min
t′ ≤ cλt,t′,s ≤ c

λ,max
t′ ∀t, t′, s (6e)

ct,s = cDt − cshedt,s +
∑

t′

cλt,t′,s ∀t, s (6f)

wt = wD
t − w

spill
t,s ∀t, s (6g)

βg,t,s = λ
↑
g,tp

↑
g,t,s − λ

↓
g,tp

↓
g,t,s ∀g, t, s (6h)

pg,t,s =
∑

g

pDg,t,s + p
↑
g,t,s − p

↓
g,t,s ∀g, t, s (6i)

ct,s = pg,t,s + wt,s −Bt,s − et ∀t, s (6j)

λR
t,s =

∑

t′

αt,t′,sc
λ
t,t′,s + λD

t ∀t, s (6k)

∆p
↑
g,t,s = p

↑
g,t,s − p

↑
g,t−1,s ∀g, t, s (6l)

∆p
↓
g,t,s = p

↓
g,t,s − p

↓
g,t−1,s ∀g, t, s (6m)

∆p
↑
g,t,s = ∆p

↑
g,t−1,s ∀g, t, s, γt = 0 (6n)

∆p
↓
g,t,s = ∆p

↓
g,t−1,s ∀g, t, s, γt = 0 (6o)

∆p
↑
g,t,s = 0; ∆p

↓
g,t,s = 0 ∀g, t, s, γt = 2 (6p)

p
↑
g,t,s ≤ ng,t,sp

↑
g,t,s ∀g, t, s (6q)

p
↓
g,t,s ≤ mg,t,sp

↓
g,t,s ∀g, t, s (6r)

p
↑
g,t,s ≥ ng,t,sχgp

↑
g,t,s ∀g, t, s, γt = 2 (6s)

p
↓
g,t,s ≥ mg,t,sχgp

↓
g,t,s ∀g, t, s, γt = 2 (6t)

ng,t,s = 0; mg,t,s = 0 ∀t, s, P ↑
g,t = 0 (6u)

p
↑
g,t,s ≤ dt,sp

↑
g,t,s; p

↓
g,t,s ≤ lt,sp

↓
g,t,s ∀g, t, s (6v)

dt,s + lt,s ≤ 1 ∀g, t, s, γt = 2 (6w)

where the set of decision variables, Θ = {cλt,t′,s, βg,t,s,

w
spill
t,s , cshedt,s , λR

t,s, ct,s, p
↑
g,t,s, p

↓
g,t,s, ng,t,s,mg,t,s, dt,s, lt,s},

contains DR due to self and cross-time elasticities, generator

cost, wind spillage, load shedding, real-time price, aggregated

demand, up regulation, down regulation, on/off status of up

regulation bid, on/off status of down regulating bid, on/off

status of global up regulation, and on/off status of global

down regulation for all g ∈ G, t ∈ T , t′ ∈ T and s ∈ S

respectively.

The objective function (6a) maximises social welfare, where

the first term is customer utility and the last terms are cost of

generation and slack variables.

When cross-time elasticity is ignored, then only the diagonal

term in αt,t′ is non-zero, and is fixed to the average price

and cross-time elasticity until the market is cleared again,

i.e. if the market is run hourly, then the first 12 values of

price elasticity are used to determine price elasticity. Clearing

an electricity market considering cross-time elasticity is not

needed in today’s deregulated power systems because the

loads that participate in existing DR schemes have a cross-

time elasticity that is longer than the re-commitment time of
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the system they participate in. For example, a factory that

reduces its consumption for an hour to meet the terms of a DR

contract will not compensate for this reduction in the following

hour, since it will cause an imbalance and be penalised as a

result. Instead, its cross-time elasticity depends on long term

planning ranging from days to years, far slower than day-

ahead and real-time markets recommit bids today. This is

highlighted in [18], where the average rebound effect of an

office building, a furniture store and a bakery was 15.5%.

Small-scale DR, which indirect control leans towards, usually

has time-constant of just a few minutes, which means the

response does not last very long, and with a rebound effect of

42% as seen in Fig. 2. This time-constant is a similar order

of magnitude to the re-commitment frequency in real-time

markets today, which suggests that cross-time elasticities must

be fully incorporated into the market to obtain an economically

efficient and controllable outcome.

Methods for clearing day-ahead markets considering cross-

time elasticities have previously been proposed in [14]. How-

ever, existing algorithms do not converge on a solution if

the demand’s self elasticity is smaller than its cross-time

elasticity. This solution may work well in an hourly market,

where the demand characteristics are likely to lead to a

solution, but in a balancing market, the cross-time terms will

often be larger than the self elastic terms. In addition, the

previously proposed market structure requires the elasticity

matrix to be symmetrical. In reality, demand does not prepare

for an event in exactly the same way as it behaves after

the event has happened. I.e. load shifting is not symmetrical

and therefore not controllable when the wrong (symmetrical)

elasticity matrix is used. Previous market structures with cross-

time elasticities do not consider generation constraints, which

necessitate additional constraints on the supply side to reach

a controllable outcome. Constraints (6b)-(6d) are the most

important in this respect. Constraint (6b) ties DR together in

an auto regressive fashion, so that a full model of the FIR

for price is included in the market formulation. Equation (6c)

ensures that the resulting FIR is zero when price-elasticity is

zero. Constraint (6d) sets DR to zero for twice the FIR length,

h, so that market outcomes do not create infeasible starting

points for subsequent re-commitments.

Constraint (6e) determines the flexible demand limits for

each price lag. The total demand and production from wind are

defined in (6f) and (6g). The regulating cost from conventional

generation is defined in (6h). The total power produced by

conventional generation is stated in (6i). Constraint (6j) is

the balance constraint, also considering the imbalance from

wind and inflexible demand, Bt, and the error term et,

which describes undesirable feedback that is caused when DR

does not behave as scheduled. It is the dual variable of this

constraint that gives the real-time price, λR
t,s, which can also

be found in constraint (6k).

Constraints (6l) - (6w) dictate generator behaviour like

minimum on-times and ramping characteristics that are in-

line with the Scandinavian balancing market today. Constraints

(6l) and (6m) define generator ramp rates. Constraints (6n)

and (6o) keep ramping constant for 15 minutes. Constraints

(6p) ensure that a generator is at a fixed set-point for at

least 15 minutes. When used with the generator behavior of

γt = {1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0...}, (6l)-(6p) result in a min-

imum on-time of 45 minutes. Constraints (6q) and (6r) limit

maximum regulation. Constraints (6s) and (6t) are minimum

generation constraints. In the Scandinavian regulating market,

bids under 10MW must be activated in full, while bids above

10MW can be activated in part; the proportion of each bid

to be activated is described by the parameter χg . Constraints

(6u) ensure that a generator is off when it does not bid into the

market. Constraints (6v) determine whether any up or down

generation is active, according to binary variables dt,s and

lt,s respectively, and (6w) prevents simultaneous up and down

regulation.
For each scenario-based decision variable there exists a non-

anticipativity constraint that ensures its outcome is identical

across all scenarios in the first few time periods for which

prices are fixed, for example t = 1 . . . 6 if the market is cleared

every half hour. Scenarios for imbalance, B, are generated

using a non-parametric method. Bootstrapping is employed,

where historical outcomes are sampled with replacement.

Scenarios for price elasticity are normally distributed and

scenario reduction is done using the Fast Forward method [19].
Any imbalance after the market cleared is penalised by a

primary frequency reserve (PFR) energy cost, which is set

to the highest and lowest electricity price observed in each

hour ex-post (after delivery), as in Scandinavia today. All

other prices in Nord Pool and EcoGrid EU are defined ex-

ante (before delivery).
When only self-elasticity is considered, the market is for-

mulated as a mixed integer quadratically constrained program

(MIQCP) which is readily solved with CPLEX. When consid-

ering all cross-time elasticities that results in an asymmetrical

elasticity matrix, the formulation becomes a mixed integer

non-linear program (MINLP). Such problems are typically

solved by decomposition into NLP and MIP subproblems. We

do so by first relaxing the problem (i.e., no binary variables)

and solving with CONOPT. Subsequently, DR (cλt,t′,s) is fixed,

which removes all non-linearities, and bid commitment is

finalised in the MIP subproblem using CPLEX. This approach

led to solutions consistently being found in under 60 seconds.

V. RESULTS

A. Quantifying Volatility

To measure volatility, we use a rainflow counting algorithm

[20], which is traditionally used in material fatigue and battery

ageing analysis. The rainflow counting algorithm is a simple

but powerful tool and the result is intuitive; Whenever there

is a change of sign in the signal of interest, a turning point is

defined. The distance between turning points is measured and

binned for similar distances to give the number of oscillations

observed per day. In Fig. 5, trough half cycles are counted

and the distance for each cycle is measured for a time-series

of DR. The total number of full cycles (troughs plus peaks) in

this example are 16, with an average amplitude of 80.6MW.

B. The cause of the Cobweb effect

The main cause for the Cobweb effect is uncertainty, but

this can be further specified as structural uncertainty, that is
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Fig. 5. Rainflow counter, where the broken blue lines are half-cycles used
count the number and amplitude of oscillations.

the linearisation of demand characteristics to fit into a market

structure, and aleatoric uncertainty, which is the intrinsic

randomness in natural processes. Structural uncertainty in our

system comes from the non-linear demand curve, assumed to

be linear in the market, and ignoring cross-time elastic effects.

To understand which source of uncertainty causes the great-

est volatility, we performed simulations for Denmark for one

month for a range of different cases. The first case is one

with no DR. The second case is an open loop system, where

feedback is ignored by the market and left for faster moving

reserves like PFR to remedy. An open loop cannot be operated

in reality, because it requires no uncertainty in the source of an

imbalance, but it is a useful benchmark since most academic

electricity market studies are open loop. The next case is a

closed loop system, where the market is run without cross-

time elasticities, as in Scandinavia today, and feedback from

an unexpected response creates a new imbalance in subsequent

market re-commitments. In the fourth and fifth cases (Closed

NL and CE), feedback from non-linear and cross-time elastic

behaviour (based on demand models in [16]) is remedied

by the market, one at a time, while the other is left as an

open loop imbalance. This allows us to identify which is the

bigger cause of the Cobweb effect. The sixth case (Closed

M) simulates a full closed loop but with a modified market,

where the full cross-time elastic effects are optimised for in

the market. Finally, demonstration results are included. The

demonstration cannot be directly compared to simulated cases

because it uses a local imbalance signal derived from an island,

and is a pseudo-closed loop where delayed meter data causes

imbalance-feedback with a 15 minute delay.

Fig. 6 shows a simulation day with outcomes of market

clearing price, demand and regulating power activated respec-

tively. In a closed-loop system, oscillating behaviour is seen in

both regulating power and demand. In an open loop system,

similar volatility as the closed loop system can be seen in

the first few hours of the system price. Increased volatility is

therefore not a problem in itself from a market perspective -

DR increases volatility of the demand even when expectation

of demand is perfect, and this is to be cherished if DR is to

help balance volatile renewable energy production. However,

increased activation of regulating power is a clear indicator of

the Cobweb effect in action.

Table I summarises the number of cycles counted by the

rainflow counting algorithm for different cases. There is an

increase in demand cycles across all cases with DR, which

occurs naturally as the demand becomes dynamic. There is a

reduction in supply cycles for all DR cases, which should be

interpreted as fewer regulating bids being committed, which

in turn means that DR has achieved its goal of reducing

reliance on conventional power generation. The closed loop

experiences the most volatile pricing, with the most price

cycles.

Table II shows the cycle amplitude summed per day. For

supply and demand, this describes the total amount of balanc-

ing power activated, and for prices, this represents the sum

of price changes. Higher demand cycle amplitudes in all DR

cases suggests load shifting is occurring. Price amplitudes are

lowest in the open loop and the Closed NL case, suggesting

they behave in a similar manner and that feedback from a non-

linear demand curve is insignificant for volatility. In the basic

closed loop setup and the Closed CE case, price amplitude is

quadruple the open loop case. Price amplitudes paint a similar

picture, with the greatest volatility in the cases with feedback

from cross-time elasticity, and less volatility in the non-linear

feedback case. The modified case should be directly compared
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TABLE I
AVERAGE CYCLES PER DAY

Price Demand Supply

[Cycles] [Cycles] [Cycles]

No DR 0 62.9 20.4

Open 56.8 58.6 15.9

Closed 38.9 39.6 18.1

Closed NL 56.1 56.1 15.9

Closed CE 39.4 36.7 16.9

Closed M 88.6 75.0 17.1

Demonstration 73.3 65.9 24.5

to the closed loop case, where it exhibits half the supply

volatility and a reduction of 46% in supply price. Despite this,

it exhibits higher supply amplitudes (but at a lower price) than

the zero-DR case, suggesting the Cobweb effect is still present

here, but the market is able to exploit lower generation costs

in spite of volatility.

C. Demand response penetration

To see if the Cobweb effect increases cost, cases were sim-

ulated for different levels of DR penetration. DR penetration

was scaled from 0% to 100%, as shown in Fig. 7. The upper

limit assumes that all of Denmark behaves like an EcoGrid

EU load and represents a DR peak response about twice that

of DR in the Nord Pool day-ahead market today, albeit with

significantly more activations due to a lower price-elasticity

characteristic (i.e. DR is cheaper to activate). DR penetration

beyond 30% results in a reduction in social welfare in the

closed-loop system, as the cost of volatility outweighs the

benefit of DR. The case where feedback stems from cross-

time elastic effects (Closed CE) results in equally low social

welfare, while the case where only non-linear effects are

feedback has a very similar result to the open loop case. As

with the rainflow counting results, this confirms that cross-

time elasticity is a bigger cause of the Cobweb effect than

our approximation of a non-linear demand curve. Finally, the

modified market, which is a full closed loop, successfully

increases social welfare for all levels of DR penetration. At low

levels of DR penetration, social welfare gains are very small

compared to the other cases because the modified market treats

DR far more rigidly with fewer activations when it knows that

a rebound will occur after 90 minutes. Lower DR activations

means that costly conventional generator bids are activated

instead, when leaving residual imbalances to faster moving

reserves might have been more cost efficient.
Fig. 7 shows that DR has the potential to significantly

increase social welfare in a real-time market, equivalent to

e 3.5 per flexible house per day, but only when cross-time

elasticity is explicitly optimized for in the market. However,

this result should be moderated by the fact that revenue here is

significantly smaller than in the day-ahead market. In addition,

this result is only applicable to the winter months when DR

from heating in Denmark is expected to be active, so the year-

round gain will be lower. The results are also highly dependent

on assumptions about the supply curve, which may change as

DR schemes grow.

TABLE II
AVERAGE SUM OF CYCLE AMPLITUDES PER DAY

Price Demand Supply

[e /MWh] [GWh] [GWh]

No DR 0 1.9 1.4

Open 482.8 4.3 1.1

Closed 2013.8 16.1 4.7

Closed NL 507.7 4.7 1.2

Closed CE 2122.0 15.6 4.2

Closed M 1690.3 5.2 2.3

Demonstration 475.2 3.8 3.6

D. Market re-commitment frequency

System dynamics change as system operators move to

shorter settlement periods, shorter gate-closure times, and

more regular unit re-commitments to reduce the impact of

RES uncertainty. We investigated re-commitment frequency by

increasing how often the market was cleared from 15 minutes

to 150 minutes in 15 minute intervals. The settlement period

remains five minutes throughout (i.e. prices and set-points

are valid for five minutes at a time), but new decisions are

only taken every time the market is cleared. The theoretical

benefit of using a higher re-commitment frequency is that

newer forecasts with less uncertainty can be used, leading

to lower costs and therefore higher social welfare. Fig. 8

shows the outcome of changing unit commitment frequency on

generation volatility and social welfare. The cross-time elastic

market exhibits similar behaviour for all timings, while the

closed loop market actually exhibits lower volatility and higher

social welfare for longer re-commitment intervals, which is the

opposite to what would traditionally be expected. Volatility

here translates to more generator bids being activated for

more frequent re-commitments. The local peak in volatility

at 45 minutes suggests also that the market clearing frequency
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Fig. 7. Social welfare as a function of DR penetration. There is a reduction
in social welfare as DR reaches significant proportions in closed-loop cases
that do not account for a cross-time elastic response.
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is resonating with the minimum-on time for generation, and

highlights additional market design challenges.

VI. CONCLUSION

We have provided evidence that the Cobweb effect impacts

balancing markets, provoking costly oscillations on the supply

side. Simulations, broadly in line with empirical results from

the EcoGrid EU’s experiment with 1900 households, show that

the Cobweb effect causes three times more generator bids to

be activated than in a market with no DR, leading to higher

costs and lower social welfare. We observed that a non-linear

demand curve does cause the Cobweb effect, but not enough to

reduce social welfare. Aleatoric uncertainty appears to have no

discernible impact on the Cobweb effect, contrary to previous

studies. This means that the natural uncertainty from stochastic

generation such as wind and solar power do not provoke the

Cobweb effect. However, ignoring cross-time elasticities in a

market does lead to significant volatility and reduced social

welfare. To mitigate this, we have directly incorporated cross-

time elasticity into the market clearing algorithm. Such a

solution may appear obvious, yet new, DR-focussed market

designs that ignore cross-time elasticity continue to appear in

the literature [21]. Reducing re-commitment frequency appears

to be another option for reducing the Cobweb effect.

The question remains how well existing markets can control

fast-moving, non-linear DR. Our market and demand models

are unlikely to capture all sources of volatility, and our mea-

sure for social welfare does not count all the costs that stem

from it. Voltage and frequency instability could result from

a seemingly small amount of volatility, and future research

should determine how much volatility is acceptable.

Future research should also investigate uplift payments

[22] for markets considering cross-time elasticities, since no

method has currently been shown to ensure prices that support

all market outcomes.
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