Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard; Taboryski, Rafael J.; Hansen, Mikkel Fougt; Wolff, Anders

Published in:
Journal of Micromechanics and Microengineering

Link to article, DOI:
10.1088/0960-1317/26/6/067001

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Micromech. Microeng. 26 067001
(http://iopscience.iop.org/0960-1317/26/6/067001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 192.38.67.115
This content was downloaded on 27/04/2016 at 11:08

Please note that terms and conditions apply.
Technical Note

Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

Carl Esben Poulsen, Kasper Kistrup, Nis Korsgaard Andersen, Rafael Taboryski, Mikkel Fougt Hansen and Anders Wolff

Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby, Denmark

E-mail: anders.wolff@nanotech.dtu.dk

Received 19 November 2015, revised 10 February 2016
Accepted for publication 29 February 2016
Published 20 April 2016

Abstract

We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio \(h \times w = 2000 \mu m \times 550 \mu m \) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar.

Keywords: ultrasonic welding, polymer fusion, microfluidics, bonding, injection moulding

[Online supplementary data available from stacks.iop.org/JMM/26/067001/mmedia]

(Some figures may appear in colour only in the online journal)

1. Introduction

In academia, soft imprint lithography with polydimethylsiloxane (PDMS), sealed using plasma activated bonding, is by far the most-used route for rapid prototyping of microfluidic systems [1]. The high elasticity of PDMS allows for the fabrication of advanced valves and gates, and its good solvent compatibility enables the use of multiphase liquid systems [2]. For commercial production, however, hot embossing or injection moulding (IM) combined with ultrasonic welding (UW) are more common for high throughput fabrication of low-cost disposable devices [3]. Since the physical and chemical properties of thermoplastics differ significantly from those of PDMS, the transfer of the technology from academia to industrial production may prove unfeasible or require the fabrication process to be completely redesigned [3].

Moreover, PDMS has fabrication limitations compared to thermoplastics [4]; for example, its high elasticity and self-adhesion may induce the collapse of high- [5] and low- [6] aspect ratio channels and structures via self-adhesion. Thermoplastics, on the other hand, are generally stiffer and less self-adhering. Recently, we presented ultrasonically welded, injection moulded, large area, low-aspect ratio cyclic olefin copolymer (COC) devices [7, 8], where the fabrication in PDMS of similar devices has traditionally relied on embedded glass slides to achieve sufficient rigidity [9]. Similarly, high-aspect ratio features in PDMS devices can only be realised by the use of sacrificial moulding methods [10], where these features have to be structurally supported by a solid bulk part [11]. Many techniques for the bonding of thermoplastic devices require elevated temperatures and/or high pressures [12–15], which may cause structural
In this paper, we present a new type of micropillar EDs for UW of microfluidic systems. These EDs are formed by introducing cone-like protrusion (CLP) structures [16] as a back-end process into replication moulds using a picosecond laser. They have the substantial advantage over traditional EDs that they can be defined on any surface accessible to a high energy pico-second laser beam (figure 1(b)). Moreover, these EDs can be introduced in designated areas on the tool, and the width of these areas can be chosen independently from the height of the EDs. In this contrast to traditional EDs, where larger widths are accompanied by higher heights. An apex depth of 100 μm was used (width = 115 μm). Two types of ED structures were introduced: (1) Traditional EDs introduced by micro-milling using a 60° helical engraving tool (#7025, DIXI Polytool, Le Locle, Switzerland). An aperture depth of 100 μm was used (width = 115 μm). (2) Microstructured CLP-EDs written using a FUEGO 1064 nm, 50W picosecond laser (Time Bandwidth, 3D-Micromac AG, Chemnitz, Germany) mounted in a microSTRUCT vario (3D-Micromac AG). CLPs were introduced by scanning designated areas with parallel lines (10 μm spacing), which was repeated 20 times at 50% power and 1000 mm s$^{-1}$ with the focus plane 1.3 mm above the surface (green lines in figure 3). The writing time was 200 s cm$^{-2}$. These settings were similar to the work by Brüning et al in 2014 [16], but the tuning of parameters was conducted towards higher roughness. As demonstrated by Wu et al [20], the dimensions of the CLPs may be tailored by the laser parameters. In this study, we aimed for CLPs slightly higher than 10 μm, since smaller EDs generally require specialised levelling systems to achieve satisfactory welding [21].

To confirm the commercial relevance of the technology, we also demonstrated the writing of CLPs in high performance tool steel Orvar2343 (MetalCentret, Glostrup, Denmark). Al2017 was preferred for mould making in this low-volume academic setting study due to its ease for machining.

The injection moulding was carried out on a Victory 80/45 Tech hydraulic injection moulding machine (Engel, Schwertberg, Austria) using COC grade 5013L-10 (TOPAS Advanced Polymers GmbH, Frankfurt-Höchst, Germany) with injection and mould temperatures of 270 °C and 120 °C, respectively. Injection pressure was 1766 bar and the process cycle time was 45 s per part.

Fabricated chips were bonded to a 500 μm thick foil of COC grade 5013S-04 (TOPAS Advanced Polymers GmbH) by UW. This was performed at ambient temperature using a Telsonic-USP4700 ultrasonic welder (Telsonic, Erlangen, Germany), depositing 25 J with 75% vibrational amplitude, a trigger force of 400 N and 0.5 bar vertical welding pressure. With the fitted 2 × booster and flat sonotrode (78 × 115 mm2), the vibrational amplitude normal to the sample surface was approximately 44 μm. See figure 2 for schematics of the ultrasonic welding process utilised. A video of the UW process described is found in the supplementary information (stacks.iop.org/JMM/26/067001/mmedia).
2.2. Bonding strength

The bonding strength was assessed using the razor-blade test based on fracture propagation developed by Masmara et al [22] and employed by Matteucci et al [13] to assess the strength of thermal bonding in similar chips. To perform the test, two flat mould inserts with a milled 5.15 × 42.5 × 0.25 mm³ cavity were fabricated by micro-milling. In this cavity, the first insert further featured a 40.5 mm long conventional ED made by conventional milling and the second insert featured a laser micromachined ED with CLPs on an area of 40.5 × 0.2 mm². The resulting injection moulded parts thus featured 0.25 mm high plateaus with the respective EDs on top. The parts were bonded to a COC foil as described above. Details of the razor-blade testing as well as the results on all chips are given in the supplementary material (stacks.iop.org/JMM/26/067001/mmedia).

2.3. High-aspect ratio microfluidic system

UW of free-standing structures was demonstrated on an intertwining microfluidic system consisting of two 400 μm wide channels. These channels are separated by 2000 μm high, 550 μm wide, free-standing walls with a 200 μm-wide band of micropillar EDs on top (Figure 3). Note that these EDs cannot be fabricated by conventional methods due to the small size of the structures and the large aspect ratio. The microfluidic system spanned a 36.3 × 25.8 mm² rectangle. Note that the 200 μm wide ED structure in expanding regions was separated into two bundles of ten lines, keeping a constant wall-to-edge distance of 180 μm (Figure 3(c)).

Channel deformation was characterised along four cross sections using confocal microscopy, with a Zeiss LSM 700 with voxel sizes of X × Y × Z = 0.313 × 0.313 × 5.387 μm³. The location of the cross sections and the bonded chip are shown in figures 3(a) and (b), respectively.

3. Results and discussion

3.1. CLP and ED structures

Figures 4(a) and (b) show scanning electron microscopy (SEM) images of the CLPs written in the al2017 mould. It is of note that although the laser scanning is conducted in bundles of parallel lines, the formed CLPs are stochastically formed within the laser ablated area. This may be ascribed to the fact that the microphase explosions causing the CLPs are caused by a combination of metal impurities (alloy) picking up the energy, the pulsing nature of the laser beam and non-uniformity of the laser fluence distribution [20]. The CLPs have a typical height and spacing of 10 μm and 10 μm, respectively. On average, the CLP area protrudes 47 μm from the plane of the part wall (Figure 5(g)). Note that the CLPs are locally convex depressions in the mould which therefore facilitate easy demoulding during replication. Figure 4(c) shows a SEM image of a COC cast of the mould. The replicated structures are observed to have rounded tops due to imperfect filling during replication. We found that operating at conditions yielding higher fidelity replication resulted in more difficult demoulding, due to stronger adhesion between the mould and its replica. This rounding did not affect the performance of the EDs and attempts to achieve more pointed structures and better replication in the z-direction were therefore not pursued. Figure 4(d) shows tool steel Orvar2343 ablated to produce CLPs similar to those demonstrated in al2017.

Figures 5(a) and (b) show SEM images of the CLP-EDs in the al2017 mould for fabrication of the high-aspect ratio microfluidic system. The images clearly show the feasibility of writing CLP-ED structures at the bottom of the trenches in the mould. Note that the separation and joining of bundles of laser lines do not alter the pattern and formation of CLPs. Thus, CLP-EDs can be formed in any pattern or geometry. Corresponding SEM images of the injection moulded COC part (figures 5(c) and (d)) clearly show that micropillar structures are well reproduced laterally on the top of the high-aspect ratio wall.

Figures 5(e) and (f) show optical micrographs of a section of the wall of a moulded part pre and post UW. Due to the structure of the CLPs, the final micropillar CLP-EDs of the polymer chip are opaque (figure 5(e)). However, like
conventional butt joint EDs [8], the joints are transparent post welding (figure 5(f)). It is worth noting that no signs of trapped or compressed air are observed in the corner section, where the CLP-EDs are split (figure 5(e)). Little or no gap is observed post UW in figure 5(f). This indicates that the micropillar structure does not trap air during UW, which would otherwise lead to hazy and weakened bonds. SEM images in figures 5(g) and (h) show an unbonded and bonded chip, respectively, cleaved to show a cross section of the top of the walls. Good polymer control was achieved, evident by the position of the polymer comprising the CLP-EDs pre and post welding, as little or no flash formed (polymer spilling into the channel).

3.2 Bonding strength

Bonding strengths in terms of the surface energy, γ, calculated from razor-blade tests are listed in table 1. Bonding strengths

![Figure 3](image)

Figure 3. (a) Schematic drawing of high aspect ratio ratio chip. Blue: outer channel, red: inner channel, and gray: walls. Cross-sections 1–4 for confocal imaging are indicated. (b) Image of bonded chip filled with dye solutions for highlighting channels. Note that the sealing lid only contacts the walls. (c) Chip with laser patterning lines added (green). Note that the 20 lines are separated into two bundles at the corners, to keep a constant edge distance (180 μm).

![Figure 4](image)

Figure 4. (a) and (b) SEM images of CLPs in al2017 moulds (30° and 0° tilt, respectively) and (c) replicated COC (30° tilt). (d) Industrial mould making steel Orvar2343 modified using the presented technology (0° tilt).
for other materials and bonding methods commonly used in microfluidics are also listed. These were calculated from channel dimensions and channel burst pressures. The bonding strength measurements and calculations are given in the tables S1 and S2 in the supplementary information.

Table 1 clearly shows that the bonding strength for thermoplastics is largest for structures bonded using UW. No significant difference is observed between conventional EDs and CLP-EDs. UW likely provides the strongest bonding because the substrate is not chemically altered (e.g., bond breakage by UV radiation or plasma activation for thermal bonding), and the bonding strength is thus limited by the bulk strength of the substrate. In high-pressure applications, it is important to note that the upper limit pressure (burst pressure) of a device is determined by two additional factors: the geometry and Young's modulus [27]. A softer material will flex more and result in larger forces in junctions (cracks) [27]. This explains why most PDMS devices burst at pressures lower than 6 bar [25, 26], even when covalent bonding methods are used [25].

3.3. High-aspect ratio microfluidic system

The performance of CLP-ED structures were tested in the described high-aspect ratio microfluidic system. First, we verified that the microfluidic channels were leak-tight (see figure 3(b)). Further, pressure testing with gas applied to the outer channel while leaving the inner channel at ambient pressure showed that the devices (three were tested) could sustain pressure of up to at least 9.5 bar (the maximum pressure available in our laboratory).

Figure 6 shows confocal scans of the free-standing wall structures of the device along the cross sections 1–4 (see...
The images are overlaid with the corresponding CAD file used for the mould fabrication. From the confocal scans, we find that the channel height of the welded structure matches that of the design (2000 μm) with a tolerance of ±4.2 μm. This value is smaller than the confocal image voxel height of 5.387 μm and we conclude that any height difference is below our detection limit.

4. Conclusion

We presented a new type of ED for ultrasonic welding (UW) of microfluidic systems based on micropillar EDs. These are based on replication of CLPs in aluminium, formed using a picosecond laser, and can be added to any mould surface accessible to a high power pico-second laser. We have demonstrated the technology by injection moulding microfluidic devices featuring high-aspect ratio structures and shown that UW of the devices is possible with no detectable channel deformation. This would be impossible using conventional bonding methods that involve high pressures and temperatures. We have characterised the performance of the CLP-EDs and found that bonding strength is similar to conventional EDs, with no particle formation. The bonded devices could withstand 9.5 bar of pneumatic pressure without fracturing.

Most importantly, the technology has been demonstrated to work with high endurance tool steel used for making high performance injection moulding tools, which is a necessity for commercial applications. In addition, with a modification rate of 200 s cm$^{-2}$ and full 3D capabilities, the technology is fast and allows for the addition of CLP-EDs in existing moulds regardless of their origin, be it electric discharge machining, micro-milling or cleanroom fabrication (electroforming).

Acknowledgments

This work is funded by DTU Nanotech and the Danish Council for Strategic Research through the Strategic Research Centre PolyNano (Grant no. 10-092322/DSF).

Table 1. Bonding strength results expressed in terms of surface energy, γ.

<table>
<thead>
<tr>
<th>Bonding method</th>
<th>Material</th>
<th>γ (J m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW, conventional EDs (this study)</td>
<td>COC Topas 5013 L-10</td>
<td>100 ± 30b</td>
</tr>
<tr>
<td>UW, CLP-EDs (this study)</td>
<td>COC Topas 5013 L-10</td>
<td>122 ± 23b</td>
</tr>
<tr>
<td>UV activated thermal bonding [13]</td>
<td>COC Topas 5013 L-10</td>
<td>61</td>
</tr>
<tr>
<td>UV/ozone thermal bonding [14]</td>
<td>COC Zeonor 1020 R</td>
<td>8.1</td>
</tr>
<tr>
<td>Solvent bonding, cyclohexane [23]</td>
<td>COC Topas 8007</td>
<td>6.2a</td>
</tr>
<tr>
<td>Plasma + thermal bonding [15]</td>
<td>COP ZEONEX</td>
<td>8</td>
</tr>
<tr>
<td>Solvent bonding, 75% acetone [24]</td>
<td>PMMA</td>
<td>13.6</td>
</tr>
<tr>
<td>Oxygen plasma [25, 26]</td>
<td>PDMS</td>
<td>44.4 ± 2a</td>
</tr>
<tr>
<td>Uncured PDMS as adhesive [25]</td>
<td>PDMS</td>
<td>227a</td>
</tr>
</tbody>
</table>

a These surface energies from the literature are calculated from the channel dimensions, Young’s modulus, and bursting pressure. See supplementary information for calculations.

b A two-sample (unpaired) T-test showed no significant difference in the bonding strength between conventional EDs and CLP-EDs: $t(10) = -1.84$, $p = 0.084$.

Figure 6. 2D cross-sections 1–4 of bonded chips. The cross sections are denoted by labels and colour identical to figure 3. These 2D images are generated from the confocal image stacks by averaging 100 cross-sections along the x-axis (top figures) or y-axis (bottom figure). This corresponds to averaging over a length of 31.3 μm. The data is overlaid on the chip CAD file (grey). Dashed box: close-up of the data.
References

[18] Andresen K Ø et al 2010 Injection molded chips with integrated conducting polymer electrodes for electroproporation of cells J. Micromech. Microeng. 20 055010

