Environmental 129I level, distribution and source in Qinghai region of China

Zhang, Dongxia; Hou, Xiaolin

Published in:

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
especially for large size environmental samples. This paper gives an overview of analytical protocols developed for plutonium determination in DTU Nutech, and emphasizes challenges and strategies during the methodology development process. Moreover, recent improvement achieved by applying effective sample pre-treatment approaches and sophisticated automation techniques is also presented.

188

ENVIRONMENTAL 129I LEVEL, DISTRIBUTION AND SOURCE IN QINGHAI REGION OF CHINA

Dongxia Zhang1, Xiaolin Hou1,2

1SKLLQG, Shaanxi Key Laboratory of AMS Technology and Application, Xi’an AMS Center, Institute of Earth Environment, CAS, Xi’an 710061, China

2Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, Roskilde 4000, Denmark

Keywords: long-lived radionuclide, AMS, nuclear environmental safety, soil, iodine

In this work, we collected surface soil samples (0–5 cm) in Qinghai region, and determined 127I and 129I in these samples using an effective chemical separation combined with a high sensitivity AMS measurement, in order to investigate 129I level and distribution in Qinghai region, explore its sources in this region. The data is also useful for establishment 129I environmental background in Qinghai region, and investigation on the impact of early human nuclear activities on the environment in the region.

The collected soil samples was dried, ground and sieve through a 200 mesh sieve. About 5 g ground soil samples was taken to a quartz boat, 1.0 kBq 125I tracer was spiked for measurement of chemical yield. The boat with sample as put to a quartz working tube in a tube furnace for separation of iodine using combustion. The temperature of the furnace was gradually increased to 800 °C and kept for 1.5 hours under oxygen gas flow. The off gas from the working tube passed through a bubbler filled with 0.5 M NaOH–0.02 M NaHSO$_3$, liberated iodine from the sample was trapped in the solution in the bubbler. The entire combustion took about 3 hours. 3 ml of trap solution was taken to a plastic tube and measured using a gamma detector for 125I, which was compared with the 125I standard (the same amount of 125I spike solution and diluted to 3 ml using the same trapping solution) for measurement of chemical yield of iodine during combustion. Chemical yield of 97–102% with average of 99% were obtained for soil samples. After measurement of 125I, the solution is combined to remained trap solution. 1.0 ml trapped solution was taken and diluted 10 times using deionized water for measurement of 127I using ICP-MS. To the remained solution, NaHSO$_3$ and 0.5 ml of 127I carrier solution with a concentration of 2.0 mg/ml (prepared from a 127I free iodine provided by Woodward company, USA, with a measured 129I/127I ratio less than 5×10^{-14} were added, and pH was adjusted to 1–2 using HNO$_3$. After mixed, 1 ml of 1.0 mol/L AgNO$_3$ was added for precipitate iodine as AgI, which was separated by centrifuge. After dried, AgI precipitated was ground and mixed with niobium powder in a mass ratio of 1:5, which was then pressed in copper target holder. 129I/127I atomic ratio was measured using 3 MV accelerator mass spectrometry in Xi’an AMS Center. I$^{5+}$ ion was selected for 129I measurement. Procedure blanks were prepared using the same procedure as samples, the measured 129I/127I in the blanks are $(1–2)\times10^{-13}$, which is 2–3 orders of magnitude lower than that in samples.

More than 100 surface soil samples was analyzed, the results show that the concentrations of 127I in Qinghai area are 0.75–16.8 µg/g (dry mass), average 4.72 µg/g, and agree with the literature values (0.5–40 µg/g); 129I concentration are (0.14–32.4)×107atmos/g, with an average of 6.61×107 atmos/g. An abnormally high value of 3.24×108 atmos/g was observed in the northeast of Qinghai, concentration of this might be associated with early nuclear activities in this regional; 129I/127I atomic ratios in all samples range (0.9–102)×10$^{-10}$, with an average of 3.43×10$^{-9}$, which is higher than pre-nuclear level of 10$^{-12}$ by 1–4 orders of magnitude, indicating that the surface environment in Qinghai region was significantly influenced by human activities.

Acknowledgement

This work was financially supported by China Ministry of Science and Technology through two projects (2012IM030200 and 2015FY110800).