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Summary (English)

Due to its excellent soft tissue contrast and versatility, magnetic resonance imag-
ing (MRI) has become arguably the most important tool for studying the struc-
ture and disorders of the human brain. Although in recent years tremendous
advances have been made in automatic segmentation of brain MRI scans, many
of the developed methods are not readily extendible to clinical applications due
to the variability of clinical MRI data and the presence of pathologies, such as
tumors or lesions. Thus, clinicians are forced to manually analyze the MRI data,
which is a time consuming task and introduces rater-dependent variability that
reduces the accuracy and sensitivity of the results.

The goal of this PhD-project was to enlarge the scope of the automatic tools into
clinical applications. In order to tackle the variability of the data and presence
of pathologies, we base our methods on Bayesian generative modeling, which
combines detailed prior models of the human neuroanatomy and pathologies
with models of the MRI imaging process. This approach allows us to describe
the observed MRI data in a principled manner, and to integrate explicit models
of different disease effects and imaging artifacts into the framework when needed.

This thesis presents an introduction to the theory behind the generative model-
ing approach, and an overview of the main results. The first part concentrates
on segmenting different neuroanatomical structures in MRI scans of healthy
subjects, and the second part describes how this framework can be extended
with models of brain lesions. This results in a set of fast, robust and fully
automatic tools for segmenting MRI brain scans of both healthy subjects and
subjects suffering from brain disorders such as multiple sclerosis. Having access
to quantitative measures of both lesions and the surrounding structures opens
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up avenues for clinicians to study the effect of these type of disorders on the full
brain anatomy. This could potentially help in discovering sensitive biomarkers
for early diagnosis and tracking of disease development.



Summary (Danish)

Grundet dets fremragende kontrast i blødt væv, er magnetic resonance imaging
(MRI) blevet den dominante billedmodalitet til at studere struktur samt patolo-
gi i den menneskelige hjerne. Selvom de seneste år har set betragtelige fremskridt
inden for automatisk segmentering af MRI skanninger af hjernen, er mange af
de udviklede metoder endnu ikke klar til klinisk brug grundet variationen i MRI
data samt tilstedeværelsen af patologier, såsom tumorer og læsioner. Derfor er
klinikerne tvunget til at analysere MRI dataen manuelt, hvilket er en tidskræ-
vende opgave. Samtidigt introducerer dette variabilitet i analysen som afhænger
af klinikeren. Dette påvirker nøjagtighed samt sensitivitet i resultaterne.

Målet med dette PhD projekt var at udvide anvendelsen af de automatiserede
værktøjer til klinisk brug. For at håndtere variabiliteten i data samt tilstedevæ-
relsen af patologi, baserer vi vores metoder på et framework bestående af Bay-
esiansk, generativ modellering. Dette framework kombinerer detaljerede a-priori
modeller af den menneskelige neuro-anatomi samt patologier, med modeller af
MRI billeddannelses-processen. Ved at følge denne tilgang kan den observerede
MRI data beskrives på formaliseret vis, og modeller af forskellige patologiske
effekter samt billedartefakter kan integreres eksplicit i frameworket hvis nød-
vendigt.

Afhandlingen præsenterer en introduktion til teorien bag den anvendte modelle-
ring, samt et overblik over de primære bidrag i projektet. Den første del fokuserer
på segmentering af de forskellige neuro-anatomiske strukturer i MRI skanninger
af raske individer, og den anden del beskriver hvordan dette framework kan ud-
vides med modeller af læsioner. Dette resulterer i en gruppe af hurtige, stabile
og fuldt automatiserede værktøjer til segmentering af MRI scans af den men-
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neskelige hjerne i både raske individer samt patienter der lider af sygdomme
såsom multipel sklerose. Med adgang til kvantitative mål af både læsioner og
omgivende strukturer tillades klinikere at studere effekten af denne type pa-
tologier i den totale neuro-anatomi. Dette kan potentielt hjælpe til at opdage
sensitive biomarkører til tidlig diagnosticering samt overvågning af progression
af patologier.
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Chapter 1

Motivation

Since the first magnetic resonance (MR) scanning of the human head was con-
ducted in 1978 by Clow and Young [Gev06], the use of MR imaging (MRI) for
studying the structure of the human brain has grown exponentially in clinics
and research centers all around the world. The main attraction with MRI is its
in-built ability to show the fine anatomical structures of the brain in exquisite
detail, as well as its excellent soft tissue contrast. Furthermore, the various
different scan sequences developed for MRI help to highlight many different bio-
logical properties of the brain tissue being imaged. This is especially important
in hospitals and clinics, where the main interest is in studying and diagnosing
the disorders of the brain. The complementary information provided by the
different scan-sequences is essential for assessing the full extent of the brain
damage in pathologies such as tumors. This is visualized in figure 1.1, where
each individual scan-sequence shows different compartments of the tumor. Thus
in routine clinical practice, a typical scan session consists of obtaining multiple
MR images with different scan-sequences yielding so-called multi-contrast scans,
i.e., a multitude of three-dimensional images with different contrast-properties.

In recent years, tremendous advances have been made in automatically seg-
menting the type of anatomical brain MR scans that are used in neuroscientific
studies. However, the development of these automated methods has been mainly
aimed at segmenting a specific type of MR contrast that is optimized to discern
cerebral cortex from surrounding structures and as such, they can not typically
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Figure 1.1: A scan of a tumor patient using four different sequences. From
left to right: a FLuid-Attenuated Inversion Recovery (FLAIR) se-
quence which shows the full extent of the tumor (core and edema),
a T1-weighted scan which shows the tumor core darker compared
to edema, a T2-weighted scan which shows the texture of the core
and a Gadolinium-enhanced T1-weighted scan which shows the
necrotic (or fluid-filled) part of the core as dark and the part of
the core where the blood-brain barrier has been broken as bright.

handle the large variability in brain MR imaging data as acquired in the clin-
ical setting. Thus clinicians are forced to visually inspect the two-dimensional
slices of the 3D volume, or manually delineate structures of interest from the
scans. This introduces rater-dependent variability in the analysis which in turn
reduces the accuracy and sensitivity of the results. In order to obtain reliable
and repeatable segmentations of subcortical structures, essential for early diag-
nosis of many neurological and neuropsychiatric disorders, and assess if physical
brain damage, e.g., tumors infarcts or lesions, might contribute to a patient’s
symptoms, there is an urgent need for computational methods that can read-
ily handle the multi-contrast MR images that are acquired in routine clinical
practice.

1.0.1 Goals of the project

In this PhD project the overall goal was to enlarge the scope of quantitative
brain MRI analysis from mere scientific studies of the human brain into real-
world clinical applications benefiting people suffering from devastating brain
diseases. Given the extreme versatility of MRI and the lack of standard acquisi-
tion protocols for imaging the brain in clinical settings, we attempted to develop
tools that can robustly analyze scans with various number of contrasts, as well
as scans of patients with brain pathologies. To achieve this goal, the project
was divided into two separate steps.
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Step 1 The first part of the project was dedicated to developing and validat-
ing an adaptive tool for automated brain parcellation of MRI data of healthy
subjects into 39 different cortical and sub-cortical structures. We first developed
a segmentation framework for single-contrast MR data, and then extended this
framework to multi-contrast scans. Validation was done on multiple data sets
in order to show that the proposed tool can readily handle all kinds of different
data that might be encountered in clinical practice.

Step 2 In the second part of the project we integrated models of pathology
into the healthy brain parcellation framework resulting in a tool that simulta-
neously detects white matter lesions related to multiple sclerosis and segments
the surrounding neuroanatomy. Performance of the method was tested on a
benchmark data set and compared to state-of–the-art lesion detection methods.

1.0.2 Overview of the thesis

The rest of the thesis is divided as follows:

• Chapter 2 offers a brief overview of how the field of automated MR brain
segmentation has developed and what type of methods are currently being
used. We further discuss the main limitations of these methods, and relate
the modeling approach taken in this project to previous work and to the
still existing problems in whole-brain segmentation.

• Chapter 3 introduces the whole-brain segmentation framework which has
been developed in this thesis. We build upon the work presented in [VL09],
which we have extended and brought into practical applications. Once
the modeling framework has been laid down, we overview the results from
papers A and B and discuss the findings.

• Chapter 4 extends the whole-brain segmentation framework by introduc-
ing models for white matter lesions. The chapter starts with a brief
overview into different methods that have been previously suggested for
lesion segmentation, followed by a discussion of some of the shortcomings
of these approaches. Next, we describe how the framework presented in
chapter 3 is extended to joint whole-brain and lesion segmentation, and
finally we overview and discuss the main findings from paper C.

• Chapter 5 provides a conclusion by summarizing the main contributions of
the work that has been conducted during this project. This chapter also
provides a brief overview of the other projects that I have been involved
in, but which were not the main focus of the PhD project.
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• Finally chapter 6 discusses some potential avenues for future work based
on the contributions presented in this thesis.

The general aim of this thesis is to give the reader further insight into the
developed models, and to discuss the main up- and downsides of the proposed
approaches.



Chapter 2

Overview of current
approaches to whole-brain

segmentation

This chapter is meant as a short overview of some of the most popular methods
used in whole-brain segmentation. The methods listed are a small subset of
those available. The idea is to give the reader an understanding of how the field
has developed over the years, and where there is still room for improvement.
The chapter is constructed as follows:

• First, we introduce the segmentation problem, and motivate why auto-
mated methods are needed.

• Next, we overview two different modeling approaches which most seg-
mentation algorithms build upon, and provide concrete examples of both
approaches in the form of segmentation tools that have been used as bench-
mark methods during the course of this project.

• Then, we point to some problems in the current approaches, and some
solutions that have been suggested to alleviate these problems.

• Finally, we relate our segmentation method, which is presented in chapter
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Figure 2.1: Left: a T1-weighted MR scan. Right: a corresponding segmenta-
tion into 39 different neuroanatomical structures done manually
by an expert radiologist.

3, to the state-of-the-art, and discuss why our approach might be benefi-
cial.

2.1 Introduction

So-called whole-brain segmentation is the task of assigning a neuroanatomical
label to each voxel in an MR image. Typically this task is done by a trained
radiologist who manually assigns each voxel in a 3D MR scan to one of (possi-
bly) many neuroanatomical labels. Figure 2.1 shows an example slice from an
MR scan and the corresponding manual labeling done by an expert. In this par-
ticular case the manual labeling protocol included 39 different neuroanatomical
structures a single voxel can be assigned to.

These segmentations of different brain structures are useful, and sometimes
necessary, for a multitude of clinical and research applications. An example sit-
uation where accurate segmentations are required is radiation therapy planning,
where the locations of the radiated area, typically a tumor, and the surround-
ing structures need to be known precisely in order to target the radiation dose
so that healthy brain structures are not affected. Another example is finding
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suitable biomarkers for predicting and tracking the development of different cen-
tral nervous system disorders. This has been successfully done in the case of
Alzheimer’s disease (AD), where biomarkers based on the volumes of different
brain regions have been shown to be sensitive in discriminating between healthy
and AD subjects, and also in predicting if a subject with questionable AD will
later on progress to full onset of AD [FSB+02]. However, acquiring these seg-
mentations manually is a painstaking task, which can take up to a week for a
single 3D MR scan [FSB+02]. The amount of MR scans produced in the clin-
ics and neuroscientific studies1 nowadays, has made development of automated
tools for brain segmentation a necessity.

Due to the complex anatomy of the human brain and the versatility of the
MR imaging modality, devising a general all-purpose segmentation tool suitable
for all kinds of scans is far from trivial. The first problem we are faced with
is that many of the different neuroanatomical structures have very similar in-
tensity properties [FSB+02], and thus can not be segmented based solely on
their appearance in MR scans. The radiologists who manually segment these
images, often have years of experience and detailed knowledge of the human
neuroanatomy, which allows them to accurately delineate the structures. The
second problem is that, as noted in the motivation chapter, in a typical clinical
MR scan session multiple images with different contrast-properties are acquired
which all highlight different properties of the brain. Ideally, the automated tool
should be readily able to analyze all these different scans, implying that such a
tool should be robust to changes in the number and contrast of the input MR
scans. Next we will give a brief overview of some of the current, and previous,
approaches that have been suggested for automating the task of whole-brain
segmentation, and discuss why these might still not be considered a final solu-
tion.

2.2 Whole-brain segmentation: from tissue clas-
sification to multi-atlas labeling

We will divide the segmentation models into two different main categories de-
pending on whether the underlying model is parametric or non-parametric. Al-
though other categorizations are also possible – one could at least think of
dividing the methods to supervised and unsupervised, or generative and dis-
criminative approaches – we feel that the chosen categorization is most suitable
within this particular project. However, common to all approaches is that they

1For example in relation to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study,
thousands of patients have been scanned and that is only one study!
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rely on a training set consisting of MR scans and their manually obtained seg-
mentations (such as is shown in figure 2.1) which are used for learning the
models.

2.2.1 Parametric models

The earliest automated segmentation methods aimed at labeling the three main
tissue classes (white matter, gray matter and cerebro-spinal fluid) in the brain.
These tissue segmentation methods often relied on parametric generative mod-
els, where the available training set is summarized in relevant statistics, which
are then used to inform the segmentation of new target MR scans. These models
were defined to be generative as they allowed for generating synthetic MR data
by sampling from the model. The first approaches were quite simple, typically
assigning each voxel to each tissue class based solely on intensity information.
One simple example of such a method [BHC93] is a Bayesian classifier based on
a Gaussian mixture model (GMM), where the mixture parameters summarize
the relevant information from the training set. Each Gaussian in the mixture
was associated with one of the tissue classes, and the parameters were learned as
the maximum likelihood (ML) estimates from the training data. Once the clas-
sifier was trained, each voxel in a target scan was simply labeled by computing
the probabilities of belonging to each of the Gaussians and assigning the label
with the highest probability to the voxel. This approach represents a supervised
model as the relation between the tissue labels and intensities is learned from
the training data set.

The next key development in tissue segmentation was to use the Bayesian
modeling framework to include information about the spatial layout of tis-
sue classes in the form of a prior distribution, typically called a probabilistic
atlas [VMVS99b, AF97]. Such an atlas was constructed by computing the fre-
quency with which a tissue class was present in each voxel across the training
labelings. The probabilistic atlas represented the prior knowledge of seeing a
specific tissue class in a given voxel before any data is observed. This prior
information was then combined with an unsupervised intensity model, where
the intensity of each tissue class was modeled with a single Gaussian distri-
bution [VMVS99b, AF97]. A target MR scan was then labeled as before, but
using the tissue probability maps to weigh the Gaussian intensity model. An
important point to make here, is that the incorporation of the probabilistic at-
las allowed for learning the Gaussian parameters in a clustering manner from
the target scan. Thus the intensity model is defined to be unsupervised as a
specific relation to the training data intensities is not established. Considering
a clinical application this is a very desirable property as it makes the method
contrast-adaptive [VMVS99b, AF97]. Furthermore, including multi-contrast
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Figure 2.2: A schematic illustration of the segmentation pipeline of the tissue
classification approaches. 1. A probabilistic tissue atlas is con-
structed from training scans. 2. The atlas is aligned with the
target scan. 3. A GMM is fitted to the target scan voxel intensi-
ties based on the spatially varying prior tissue weights. 4. Final
labeling is produced given the prior and GMM distributions.

scans is easily achieved by using multivariate Gaussian distributions. With this
framework, a target image was processed in three steps: first the probabilis-
tic atlas was co-registered to the target image, next the Gaussian parameters
were learned, and finally a labeling was produced. This process is visualized in
figure 2.2.

Most of the parametric models currently used for whole-brain segmentation still
build upon the framework used in tissue segmentation. However, as the distinct
neuroanatomical structures have very similar intensity characteristics [FSB+02],
these methods typically use very detailed prior information of the expected shape
and relative positioning of different brain regions, using surface-based [KSG98,
PFS+03, PSKJ11, CET98] or volumetric [FSB+02, PFG+06] models. The prior
models of anatomy are then combined with supervised intensity models, very
similar to the simple Bayesian classifier described above, which encode the typ-
ical intensity characteristics of the relevant neuroanatomical structures. The
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intensity characteristics of the different structures can be learned from the train-
ing data either for each individual voxel [FSB+02, PFG+06] or for the entire
structure class [KSG98, PFS+03, PSKJ11, CET98].

To give an example of a parametric whole-brain segmentation approach, next we
will briefly describe the segmentation model behind a very popular segmentation
tool called FreeSurfer [FSB+02], which we have used as one of the benchmark
methods during this PhD project.

2.2.1.1 FreeSurfer

FreeSurfer builds on a generative segmentation approach, which uses a proba-
bilistic atlas of the neuroanatomy in combination with a supervised intensity
model based on Gaussian distributions. The probabilistic atlas is learned from
expert labelings in the same manner as the tissue probability maps, only now
instead of three tissue classes the number of possible structure labels is much
higher. To model the structure intensities, each voxel and structure label is as-
sociated with a Gaussian distribution where the mean and variance are learned
from the training data. In particular, at a given voxel the mean for a structure
class is calculated as the mean intensity over the training scans where the class
was present in that voxel. Given the mean, the variance is computed in a simi-
lar manner. To ensure spatial smoothness of the segmentations, FreeSurfer also
uses a Markov random field (MRF) prior which encourages neighboring voxels
to have the same label. Segmentation of a target scan is then obtained by first
aligning the probabilistic atlas to the target scan using a non-linear registra-
tion approach, and then searching for a labeling which best satisfies both the
intensity and the anatomical constraints.

2.2.2 Non-parametric models

In contrast to the parametric segmentation models, the non-parametric methods
do not summarize the training data into a set of parameters but instead use each
of the training data points for segmenting the target image. These methods have
recently become arguably the most popular segmentation paradigm, and are typ-
ically implemented in the form of multi-atlas label fusion2 [RBMMJ04, HHA+06,
ISR+09, AMoBOdS09, SYVL+10, RRMJ04, WSD+13, CMF+11, RHS11, TWC+13,
WWZ+13, AL13, ZGC14]. The main idea is that, given a training set of M MR
scans and expert labelings, each of the training MR scans is first registered to

2Note, however, that early implementations used a single-atlas approach with only a hand-
ful of manually delineated structures [DHT+99]
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Figure 2.3: A schematic illustration of the multi-atlas label fusion approaches.
Each of the three training scans is registered to the target scan
resulting in three candidate segmentations.

the target scan, and then the training labelings are warped into the target scan
space using the learned transformations. This procedure will result in M pos-
sible labelings of the target MR scan, see figure 2.3 for an illustration. Finally
the candidate labelings are fused to obtain the final segmentation. In summary,
the segmentation of a new image consists of two steps: pair-wise registration
and label fusion.

The multi-atlas methods have become very popular for three main reasons: first,
they have been shown to give high segmentation accuracies [LW12], second, there
is a large selection of freely available registration algorithms (see [KAA+09] for
an overview and evaluation of 14 non-linear registration algorithms), and finally
the approach, apart from registration, can be quite easily implemented. Given
that the choice of registration method is somewhat a matter of preference3, the
main difference between the approaches lies in the label fusion step.

The first, and arguably the most simple, approach to fuse the labels into a
single segmentation was majority voting [RBMMJ04, HHA+06], where each
voxel is assigned the most frequent neuroanatomical label across the candidate

3Although many multi-atlas methods use the registration approach described in [AEGG08],
which was one of the best performing methods in the evaluation performed in [KAA+09]
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segmentations. Even though majority voting relies on a very simple fusion
strategy, it has been shown to yield good results [RBMMJ04, HHA+06] and
is still often used. The downside of majority voting is that, if many of the
training subjects are poorly registered to the target scan they still "have a
vote" in the final segmentation. This naturally can have a negative impact
on the resulting final segmentation. Recent developments have been aimed at
alleviating this problem by weighing the candidate labelings based on inten-
sity information between the training and target MR scans after the pair-wise
registrations. The training scans that closely resemble the target scan are as-
signed a higher weight in the voting, thus reducing the effect of poorly reg-
istered training subjects. The weighting can be done globally [AMoBOdS09],
where all voxels in a candidate labeling are assigned the same global weight,
or locally [AMoBOdS09, SYVL+10, ISR+09], where each voxel in a training
labeling gets a different weight. Other strategies, apart from the voxel-wise
and global voting, for fusing the labels have been suggested as well (see for ex-
ample [RRMJ04, CMF+11, RHS11, TWC+13, WWZ+13, AL13, ZGC13]), but
most of them still rely on weighting based on the intensity similarities.

Again to give a concrete example, we briefly describe the theory behind two very
successful multi-atlas approaches, which have been shown to yield very accurate
results and have been used as benchmark methods during this PhD project.

2.2.2.1 BrainFuse

BrainFuse [SYVL+10] uses intensity-weighted label fusion, but formulates the
problem in a generative probabilistic framework. It assumes that each voxel
in the target scan is generated from one of the candidate segmentations. This
results in a membership field over the target image, which indicates which candi-
date labeling generated each voxel in the target scan. Smoothness of this mem-
bership field is enforced with an MRF prior, which basically encourages that
neighboring voxels are generated from the same candidate labeling. Intensity-
based weighting between the target and training scan voxels is done using a
Gaussian distribution, where a fixed variance is assumed for all voxels. Note,
that this model is a generalization of some of the different approaches to label
fusion listed above: if the MRF prior is not enforced and the variance of the
Gaussian distribution is set to infinity, all the candidate labelings are assigned an
equal weight, and the model reduces to majority voting. Similar to FreeSurfer,
a segmentation is then obtained by looking for the labeling that best fulfils the
model constraints given the target data.
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2.2.2.2 PICSL MALF

Most of the multi-atlas methods assign the voting weights to each candidate
labeling independently. This relies on the assumption that the segmentation
errors in the candidate labelings are different, and thus can be reduced by voting.
However, if the segmentation errors are very similar the fused segmentation will
still exhibit the same error. PICSL MALF [WSD+13] tries to account for these
systematic errors by assigning the weights to the different candidate labelings
jointly. The voting problem is formulated in terms of trying to minimize the
total expected error between the unknown true labeling and the fused labeling
in every voxel. To achieve this, the expected pairwise joint label differences
between the training scans and the target scan are approximated using intensity
similarity information. Once the weights have been computed, the target image
is labeled by weighted voting. To further account for registration errors, PICSL
MALF also performs a local search between each training scan and the target
scan to refine the mapping between the images.

2.3 Main limitations in the current approaches

One of the main difficulties in applying the current whole-brain segmentation
approaches, both parametric and non-parametric, in a general clinical setting,
is that they are supervised, i.e., the target scans are assumed to have the same
intensity properties as the training scans. This approach has two fundamental
limitations: first, if the training and target scans come from different scan-
ners or have been obtained with different scan-sequences, the segmentation per-
formance often degrades due to the different contrast properties in the scans.
In [HF07, RCP13] the authors show that this is true even when both the train-
ing and target data consist of T1w scans with similar contrast properties, but
which have been acquired with different scanner platforms. Second, and more
importantly, most of the research on whole-brain segmentation has been tar-
geted for segmenting T1-weighted images, although, as mentioned before, in a
clinical setting multiple images are typically acquired with different contrast,
different resolution and providing complementary information. Concentrating
solely on the T1w contrast hinders the translation of the promising research
results into clinical use which should be considered the ultimate goal.

Some suggestions for extending the supervised segmentation approaches to work
across different MR contrasts have been presented. The most straight-forward
approach would be to expand the training data library to include all the pos-
sible scan-sequences and scanner types one might encounter in clinical applica-
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tions. However, as pointed out in the introduction, this is likely not possible
due to the versatility of MR and the laborious task of manually segmenting the
images. Another approach, called histogram matching or intensity normaliza-
tion [NUZ00, RCP13], is to "match" the intensity profile of the training data
to that of the target data. This approach however only works if the training
and target scans have been acquired with a similar sequence, i.e., both are T1-
weighted scans acquired with different sequences or scanners. Recently, contrast
synthesis [IKZ+13, RCP13] has been suggested as a solution. This approach goes
around the problem by generating a new image from the target scan, where the
intensity profile matches the training data and segments this "synthetic" image
instead. However, this approach still requires a training set consisting of im-
ages scanned with both the target contrast and the contrast that we wish to
synthesize.

One limitation related to the non-parametric approaches, is the high computa-
tional cost of performing the multiple pair-wise non-linear registrations between
each of the training scans and the target scan. Note that the parametric meth-
ods only require a single registration which aligns the probabilistic atlas to the
target scan, and thus are typically faster than the multi-atlas methods. Different
solutions to alleviate the computational cost have been suggested. In [AHH+09],
only the training subjects that are most similar to the target subject before reg-
istration are used. Alternatively this estimation can be done on-the-fly while
computing the registrations [vRIA+10]. Recently in [CMF+11, TGCC14] a
patch-based approach to label fusion was proposed. This approach relaxes the
voxel-to-voxel correspondence criteria so that linear, as opposed to the costly
non-linear, registrations can be used. A slightly different approach to multi-atlas
segmentation is taken in [ZGC14], where the authors train a separate random
atlas forest from each MR scan and labeling in the training data. The candi-
date labelings from each random forest are then fused using majority voting
to produce a final segmentation. This approach yields very fast segmentations,
because it relies on patch-based classification. However, typically the best seg-
mentation results are obtained using non-linear registration tools [LW12].

A more subtle difficulty in applying the non-parametric methods to clinical
practice is how to deal with pathologies. Often in research setups, and especially
when validating the segmentation tools, only healthy subjects are used, although
in the clinics the opposite is true. In the parametric approaches, as we will see
in chapter 4, models of pathologies can be easily included into the framework,
whereas for the non-parametric approaches it is not quite clear how this should
be done. The main problem is the registration step, which becomes very difficult
due to the random location and appearance of pathologies such as lesions and
tumors.
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Extending the scope of tissue classification In the next chapter we present
a segmentation framework, which tries to address the problems described above.
In contrast to the aforementioned supervised approaches to whole-brain segmen-
tation, we build upon the unsupervised approaches which are typically used in
tissue segmentation [VMVS99b, AF97]. As such, this approach readily han-
dles contrast changes and multi-contrast scans, and is also computationally less
demanding compared to the non-parametric approaches.

The method is closely related to the works presented in [AF05] and [BP08].
However, in [AF05] only tissue classification was attempted, whereas in [BP08]
the authors rely on a supervised intensity initialization approach, and segment
only a handful of different structures.



16 Overview of current approaches to whole-brain segmentation



Chapter 3

Whole-brain segmentation
using a generative modeling

framework

This chapter focuses on the first part of the PhD project, which deals with
segmenting the brain into a multitude of cortical and sub-cortical structures.
The chapter is divided as follows:

• The first section introduces the generative parametric segmentation model
developed in this thesis. We describe in detail the main two components of
the model: the probabilistic prior of human neuroanatomy and the model
of MR intensities.

• The second section describes how to do inference, i.e., how a target MR
scan is labeled, using the proposed framework.

• The third section briefly overviews the main experiments and results from
papers A and B.

• The fourth section concludes the chapter with a discussion of the results.



18 Whole-brain segmentation using a generative modeling framework

3.1 Modeling framework

As stated in the previous chapter our segmentation task consists of finding
a labeling l = {l1, . . . , lI} given a (possibly) multi-contrast target MR scan
D = {d1, . . . ,dI} with I voxels. Here the label in each voxel can take on one
of K possible classes, i.e., li ∈ {1, . . . ,K}, and the vector di = (d1i , . . . , d

N
i )T

contains the intensities of each of the available N contrasts in voxel i.

Similar to all the parametric whole-brain segmentation models, our segmen-
tation model consists of two parts: a segmentation prior, p(l) which is a
probability distribution over the possible labelings and encodes the spatial loca-
tion and shape of different neuroanatomical structures. The second part of the
model, is a likelihood function, p(D|l), which translates the different struc-
ture labels into intensities of the target scan. This type of model is defined to
be generative, as it allows us to generate new synthetic MR scans by first sam-
pling a labeling l ∼ p(l) from the prior distribution and then the data from the
likelihood function, which is conditioned on the labeling, D ∼ p(D|l). In order
to estimate the labeling l given target data D, we “invert” the model, i.e., we try
to infer the most probable segmentation given the input data. The graphical
representation of the full generative model is shown in figure 3.1.

Within the defined generative framework, “inverting” the model is achieved by
writing out the posterior probability of a labeling given the target scan using
Bayes’ rule:

p(l|D) =
p(D|l)p(l)
p(D)

. (3.1)

Once we can estimate the posterior probability for all possible labelings, we are
finished with the segmentation task and the sought after labeling is obtained as
the maximum-a-posteriori (MAP) estimate from eq. 3.11. However, in order to
write out the segmentation posterior, we need to detail the actual parametric
form of our prior and the likelihood distributions.

3.1.1 Segmentation prior

As the segmentation prior p(l) we use a generalization of the probabilistic
brain atlases, which have been typically used in MR brain segmentation [AF97,
VMVS99b, VMVS99a, VMVS01, ZFE02, FSB+02, AF05, PGLG05, PFG+06,
DMVS06, ATWF06, PBN+07]. Instead of computing the prior probabilities as
the frequency with which each structure is observed in each voxel in the training

1Although in general finding the MAP estimate might be a difficult task in itself.
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Figure 3.1: Graphical model of the generative segmentation framework. The
parameters α and x relate to the segmentation prior, whereas θ
collects the likelihood function parameters. The target data D is
observed which is denoted by the shading.

labelings, we parametrize our prior distribution as a mesh with V vertices. Each
vertex in the mesh has an associated probability vector of length K, where each
element specifies the probability for each of the K labels of occurring around
the vertex. The resolution of the mesh, i.e., the amount of mesh vertices, is
locally adaptive, being sparse in large uniform regions and dense around the
structure borders allowing for a compact encoding of the human neuroanatomy.
The model was first introduced in [VL09], and in this project we have further
developed it and applied it into practice.

In the following, we will briefly describe the generative model underlying the
prior, and then detail how the parameters of the model are learned given a
set of manual labelings. These derivations follow the ones presented in [VL09,
IAN+15].

3.1.1.1 The segmentation prior – a generative model of label images

In essence, given a set of M manual labelings, we want to find the probability
of seeing a label image l given the manually annotated examples: p(l|{lm}). To
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do this, we first set up a generative model of how label images are formed. For
M label images, the generation process proceeds in three steps:

1. A tetrahedral mesh over the image domain is defined, with node positions
xr, referred to as the reference position, and connectivity κ, which details
the topology of the mesh. Each mesh node v is assigned a probability
vector αv = {α1

v, . . . , α
K
v } which satisfy αkv ≥ 0 and

∑K
k=1 α

k
v = 1. As

we have no preference on the reference position, connectivity or struc-
ture probabilities in the mesh nodes, we assign uniform priors on these
parameters, i.e., p(xr) ∝ 1, p(κ) ∝ 1 and p(α) ∝ 1.

2. Given the reference position and the connectivity, M deformed meshes are
sampled from a deformation prior defined as:

p(xm|xr, κ, β) ∝ exp

(
−β

T∑

t=1

Uκt (x
m,xr)

)
, (3.2)

where xm denotes the node positions of the mth deformed mesh, T is
the number of tetrahedra in the mesh, Uκt (·) is a penalty for deforming
tetrahedron t from its reference position to its actual position, and β is a
scalar that controls the stiffness of the mesh, i.e., how large deformations
are allowed. As a deformation penalty we use the one proposed in [AAF00],
which goes to infinity when the Jacobian determinant of the deformation
approaches zero. This choice prevents the mesh from tearing or folding
onto itself. In this work we have assumed a fixed value for beta, which is
set to 0.1.

3. Given a deformed mesh with node positions xm, the probability for ob-
serving a label k at voxel i is given by:

pi(k|xm,α, κ).

Because the node positions do not necessarily coincide with voxel locations
the label probabilities at the voxels need to be interpolated. For voxel i,
this is achieved by first identifying the tetrahedron that contains the voxel,
and then using barycentric interpolation of the label probabilities at the
vertices of the tetrahedron (for details see [VL09]). Finally, assuming
conditional independence of the labels in the different voxels given the
node positions, probability vectors and mesh connectivity, we have:

p(l1, . . . , lM |x1, . . . ,xM ,α, κ) =

M∏

m=1

p(lm|xm,α, κ), where (3.3)

p(lm|xm,α, κ) =
I∏

i=1

pi(l
m
i |xm,α, κ) (3.4)
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The entire generative process is illustrated in fig. 3.2.

Having defined the model of label images, we can re-write the probability of a
labeling given the training examples as:

p(l|{lm}) =
∫

α,κ,xr

p(l|α, κ,xr)p(α, κ,xr|{lm})dαdκdxr. (3.5)

Here we can further write the first term in the integral as:

p(l|α, κ,xr) =
∫

x

p(l|x,α, κ)p(x|xr, κ, β)dx. (3.6)

Computing the integrals in eq. 3.5 is not possible in practice. However, we can
approximate the integrations using the empirical Bayes approximation, where
we assume that the posterior distribution of the parameters, i.e., the reference
position, connectivity and probability vectors, given the training data is highly
peaked around its mode:

p(α, κ,xr|{lm}) ≈ δ(α− α̂, κ− κ̂,xr − x̂r, ),

where δ(·) denotes Dirac’s delta function and the optimal parameter values are
obtained by maximizing p(α, κ,xr|{lm}). This reduces the expression in eq. 3.5
to:

p(l|{lm}) ≈ p(l|α̂, κ̂, x̂r),
which then allows us to apply eq. 3.6 in practice. Note that the learned optimal
model parameters now summarize the relevant features of the training data,
which is equivalent to the approach all the segmentation approaches based on
parametric models take.

3.1.1.2 Bayesian inference - estimating the reference position, con-
nectivity and probability vectors

Estimating α: Assuming for now that the connectivity κ and the reference
position xr are known, we learn the probability vectors α along with each of
the deformed node positions xm as MAP estimates given the training labelings:

{α̂, {x̂m}} = argmax
α,{xm}

p(α, {xm}|{lm},xr, κ, β)

∝ argmax
α,{xm}

M∏

m=1

[p(lm|xm,α, κ)p(xm|xr, κ, β)] p(α),

where Bayes’ rule was used to obtain the second expression. The MAP estimates
are found by optimizing the expression in an iterative fashion by first keeping
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Figure 3.2: Illustration of the generative process underlying the prior model.
First a mesh with reference position xr and probability vectors α is
defined, next M deformed meshes are sampled from the reference
mesh, and finally label images are obtained by sampling from the
interpolated voxel-wise probabilities.
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the mesh node positions {xm} fixed and updating α using an Expectation-
Maximization (EM) approach, and subsequently fixing α and updating the mesh
node positions using a conjugate-gradient optimizer. Updating the α amounts
to re-estimating the label probabilities at each location, whereas updating {xm}
performs a group-wise, non-rigid registration [IAN+15, VL09]. The exact form
of the update equations can be found in [IAN+15, VL09].

Learning the topology of the reference mesh: As noted in [VL09], one
potential problem with traditional voxel-wise probabilistic atlases, is that they
are prone to over-fitting when a limited number of training data is available.
In such cases, the atlas might assign a zero probability for a structure at a cer-
tain location only because the structure did not occur in that location in the
training data. This problem is commonly handled by smoothing the atlas prob-
abilities [Ash01] using, for example, a Gaussian smoothing kernel. However, in
our mesh-based framework the over-fitting problem can be naturally handled by
optimizing the mesh topology such that a proper amount of blurring is intro-
duced [IAN+15, VL09]. Using a very sparse mesh, i.e., with a small amount of
mesh vertices, leads to smoother probabilities as each vertex will model a larger
spatial area. The optimal topology thus depends on the number of training
labelings, such that smaller training sets yield sparser meshes.

Because we assumed uniform priors on the reference position xr and the con-
nectivity κ, we can estimate their optimal values by comparing different mesh
topologies based on the so-called marginal likelihood, which is also known as
evidence:

p({lm}|β,xr, κ) =
∫

α

[∏

m

∫

xm

p(lm|xm,α, κ)p(xm|xr, κ, β)dxm

]
p(α)dα.

Again, the marginalizations over the parameters can not be performed in prac-
tice, but can be approximated in order to estimate the evidence of different
reference mesh configurations (see [VL09] for details). In essence the evidence
gives the probability for the labelings to have been generated from a reference
mesh with vertex positions xr and connectivity κ. This allows us to balance be-
tween model complexity, i.e., number of mesh vertices, and how well the training
labelings are represented by the model.

Given these two optimization objectives, a full optimization of the prior model
parameters then proceeds as follows: first, a reference mesh with high resolution
and regular connectivity is placed over the image with the probability vectors in
each node initialized to 1/K. Next, the MAP estimates for the label probabilities
alphaα and the positions of each deformed mesh {x̂m} are computed, and finally
the mesh topology is optimized. Optimization of the topology is performed



24 Whole-brain segmentation using a generative modeling framework

by randomly visiting each edge in the mesh and comparing the effect on the
evidence of either keeping the edge while optimizing the reference position of the
two nodes at its ends, or collapsing the edge into a single node and optimizing its
reference position [IAN+15]. Further details on the optimization can be found
in [VL09].

Figure 3.3 shows a fully trained mesh in its optimized reference position. Note
the irregular size and number of the tetrahedra in different spatial locations of
the image. The mesh is much finer along structure borders where more detail is
needed, as compared to uniform areas which can be modeled with fewer mesh
nodes, resulting in a compact representation of the human neuroanatomy.

3.1.1.3 Summary of the segmentation prior

Once all the necessary parameters have been learned, we can write out the
segmentation prior as:

p(l|α̂, κ̂, x̂r) =
∫

x

p(l|x, α̂, κ̂)p(x|x̂r, κ̂, β)dx,

where the hatted variables denote learned values. For the rest of the thesis, we
drop the dependency on the learned variables and simply write:

p(l) =

∫

x

p(l|x)p(x)dx. (3.7)

3.1.2 Likelihood

Next, we need to translate the label information encoded by the prior into
intensities. This is achieved by the likelihood function, p(D|l) which gives us an
explicit model relating each label to an intensity distribution. We parametrize
the likelihood function as a mixture of Gaussian distributions, similar to [AF05].
The intensities of each structure, are thus modeled by multiple Gaussians2, as
opposed to the early tissue classification models where a single Gaussian was
associated with each tissue class. The data in voxel i for a structure class k is
generated from:

pi(di|k,θ) =
Gk∑

g=1

wk,gN (di|µk,g,Σk,g), (3.8)

2Typically no more than three Gaussians are needed per structure
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Figure 3.3: An optimal reference mesh learned from 20 training labelings.
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where:

N (d|µ,Σ) =
1√

(2π)N det(Σ)
exp

(
−1

2
(d− µ)TΣ−1(d− µ)

)

Here Gk denotes the number of Gaussian distributions used for modeling the
intensities of class k, θ = {wk,g,µk,g,Σk,g} are the weight, mean and covariance
of mixture component g, and θ denotes the set of all parameters. The weights
are restricted to be larger than zero wk,g ≥ 0 and sum up to one

∑Gk

g wk,g = 1.

Modeling intensity artifacts. MR scans are corrupted by a smoothly vary-
ing intensity artifact typically called the bias field. This artifact is inherent to
the imaging modality and appears as low-frequency multiplicative noise in the
images [LIVL14]. Although the effect is present in all field strengths, it is more
prominent in MR scans obtained using a high field strength scanner (e.g., 7
Tesla) [LIVL14]. Using a likelihood model that does not account for this effect,
such as the GMM in eq. 3.8, results in degradation of segmentation results as
shown in fig. 3.4.

In many segmentation approaches, for example in [FSB+02] and most of the
non-parametric models covered in chapter 2, bias field correction is regarded as
a pre-processing step. However, we will explicitly include it into the likelihood
model similar to [WIG+96, VMVS99b, AF97]. The bias field is assumed to be
a multiplicative and spatially smooth effect on the image intensities [WIG+96].
To facilitate computations, we use log-transformed image intensities and model
the bias field as a linear combination of spatially smooth basis functions that
are added to the local voxel intensities [VMVS99b]. The bias field term in voxel
i is expressed as:

bi = Cφi, (3.9)

where

C =




cT1
...

cTN


 , cn =




cn,1
...

cn,P


 and φi =




φi1
φi2
...
φiP


 .

Here P denotes the number of bias field basis functions, φip is the basis function
p evaluated at voxel i, and cn holds the bias field coefficients for MR contrast
n. In this work we model the bias field using a linear combination of cosine
basis functions. Specifically, these are the P lowest frequency components of
the Discrete Cosine Transform (DCT), where P is the number of basis functions
per scan dimension, amounting to a total of P 3 basis functions over the full
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Figure 3.4: Illustration of the bias field effect: a) saggital slices from an MR
scan of a single subject, b) white matter segmentation obtained
without correcting for the bias effect, c) white matter segmentation
when bias field correction is employed and d) the estimated bias
field. Note the segmentation errors on the upper part of the brain
when the bias effect is not removed. Figure from [VP15]

3D scan. Other parametrizations of the basis functions, such as B-splines or
polynomials, are also possible [SZE98].

Including the bias field model into the GMM in eq. 3.8 results in:

pi(di|k,θ) =
Gk∑

g=1

wk,gN (di − bi|µk,g,Σk,g), (3.10)

where θ now also collects the bias field coefficients C. Given a labeling l and a
set of parameters θ the probability of a multi-contrast MR scan is given by:

p(D|l,θ) =
I∏

i=1

pi(di|li,θ),

where we have assumed conditional independence between the voxels given the
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labels. Finally the full likelihood function is written as:

p(D|l) =
∫

θ
p(D|l,θ)p(θ)dθ. (3.11)

In this work we have assumed a uniform prior on the likelihood function param-
eters, i.e., p(θ) ∝ 1.

3.2 Inference

Having defined the prior and likelihood models, we can now write the segmen-
tation posterior as:

p(l|D) ∝
(∫

θ
p(D|l,θ)p(θ)dθ

)(∫

x

p(l|x)p(x)dx

)
.

However, we are again faced with integrations that are not feasible to do in
practice. To overcome this difficulty, we once more use the empirical Bayes
approximation. Alternatively to the above expression, we can write out the
segmentation posterior as:

p(l|D) =

∫

x

∫

θ
p(l|D,x,θ)p(x,θ|D)dxdθ. (3.12)

As in section 3.1.1.1, we assume that the posterior distribution of the parameters
given the data is heavily peaked around its mode:

p(x,θ|D) ≈ δ(x− x̂,θ − θ̂), (3.13)

where the point estimates are given by:

{x̂, θ̂} = argmax
{x,θ}

p(x,θ|D). (3.14)

Now we can approximate the segmentation posterior as:

p(l|D) =

∫

x

∫

θ
p(l|D,x,θ)p(x,θ|D)dxdθ

≈ p(l|D, x̂, θ̂), (3.15)

which no longer involves intractable integrals. The resulting inference algorithm
thus consists of two distinct steps: first, point estimates of the parameters are
computed by maximizing eq. 3.14, and subsequently the segmentation is ob-
tained by maximizing eq. 3.15.
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Computing the MAP parameter estimates. Using Bayes’ rule on the
posterior distribution of the parameters given the data in eq. 3.14, we obtain:

p(x,θ|D) ∝ p(D|x,θ)p(x)p(θ)

=

(∑

l

p(D|l,θ)p(l|x)
)
p(x)

=

I∏

i=1

(
K∑

k=1

pi(di|k,θ)pi(k|x)
)
p(x),

where the prior on the parameters disappears as it is assumed to be uniform.
Taking the logarithm, we can rewrite the problem as the maximization of the
following objective function:

{x̂, θ̂} = argmax
{x,θ}

L(x,θ)

L(x,θ) =
[

I∑

i=1

log

(
K∑

k=1

pi(di|k,θ)pi(k|x)
)

+ log p(x)

]
. (3.16)

We maximize the objective function using a coordinate-ascent approach, where
the mesh vertex positions x and likelihood parameters θ are iteratively updated,
by alternately optimizing one while keeping the other fixed.

For optimizing the mesh vertex positions x, we employ a standard conjugate-
gradient (CG) optimizer [She94]. The gradient of the mesh node positions is
given in analytical form:

∂L
∂x

= −β
T∑

t=1

∂Uκt (x,x
r)

∂x
+

I∑

i=1

∑
k pi(di|k,θ)

∂pi(k|x)
∂x∑

k pi(di|k,θ)pi(k|x)
. (3.17)

Updating the vertex positions amounts to a registration process which deforms
the probabilistic atlas to the target MR scan, based on the current segmentation
estimate.

For optimizing the likelihood parameters θ with fixed mesh node positions x,
we use a generalized expectation-maximization (GEM) algorithm [DLR77] sim-
ilar to the one proposed in [VMVS99b]. GEM is well-suited for this problem,
as we have a sum over the structure classes which can be considered "missing
data" [Min98] (if the labeling was known there would be no segmentation prob-
lem). In the expectation step (E-step) the algorithm builds a lower bound, i.e.,
a local approximation to the objective function in 3.16, which touches the objec-
tive at the current parameter estimates, and in the maximization step (M-step)
the lower bound is increased with respect to the parameters. Because the lower
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bound touches the objective function, the algorithm is guaranteed to increase
the objective at every iteration [DLR77, VMVS99b, Min98]. The E-step of the
GEM algorithm involves computing the posterior probability for the GMM com-
ponents of each structure class given the current parameter estimates and the
data:

pi(k
g|di,x,θ) = qk,gi =

wk,gN
(
di −Cφi|µk,g,Σk,g

)
pi(k|x)∑K

k′=1 pi(di|k′,θ)pi(k′|x)
, (3.18)

subsequently the parameters are updated given the current soft assignments as:

µk,g ←
∑I
i=1 q

k,g
i (di −Cφi)
∑I
i=1 q

k,g
i

, wk,g ←
∑I
i=1 q

k,g
i∑I

i=1

∑Gk

g′=1 q
k,g′

i

,

Σk,g ←
∑I
i=1 q

k,g
i (di − µk,g −Cφi)(di − µk,g −Cφi)T

∑I
i=1 q

k,g
i

,




c1
...

cN


←




ATS1,1A . . . ATS1,N

...
. . .

...
ATSN,1A . . . ATSN,N




−1

·




AT (S1,1r1,1 + · · ·+ S1,Nr1,N )
...

AT (SN,1rN,1 + · · ·+ SN,NrN,N )


 .

Here

A =




φ11 . . . φ1P
...

. . .
...

φI1 . . . φIP




is a matrix collecting the P basis functions evaluated at each voxel i. The term
Sm,n is a diagonal matrix defined as:

sm,ni,k,g = qk,gi

(
Σ−1k,g

)
m,n

, sm,ni =

K∑

k=1

Gk∑

g=1

sm,ni,k,g, Sm,n = diag (sm,ni ) ,

where each diagonal entry holds the sum over the precision matrix for each
mixture component weighted by the soft assignments for each voxel. Finally
rm,n = (rm,n1 , . . . , rm,nI )

T is a vector denoting the residue image given by the
difference between the original input data and the estimated bias corrected data
as:

rm,ni = dni −
∑K
k=1

∑Gl

g=1 s
m,n
i,k,g

(
µk,g

)
n∑K

k=1

∑Gk

g=1 s
m,n
i,k,g

.
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Computation of the final segmentation Once the optimal point estimates
for the parameters have been found, the approximate segmentation posterior can
be written as:

p(l|D, x̂, θ̂) =
I∏

i=1

pi(li|di, x̂, θ̂).

Now the MAP segmentation can be easily obtained, by assigning the most prob-
able label to every voxel independently as:

l̂i = argmax
k

Gk∑

g=1

pi(k
g|di, x̂, θ̂).

3.2.1 Some notes on inference

The empirical Bayes approximation employed in order to estimate the integra-
tions over the parameters naturally leads to a framework where the registration
and segmentation are done jointly in an iterative manner. This is similar to
the approach presented in [AF05] for tissue classification. As noted in [AF05],
the joint framework, as opposed to sequential segmentation frameworks where
registration and segmentation are considered two separate steps, is typically
more involving to implement but can yield better results as the optimization
task is actually completed. Furthermore, registration and segmentation can be
thought of as two-sides of the same coin: having a perfect registration would
solve, or at least simplify, the segmentation problem, whereas having a perfect
segmentation would make registration much easier. Thus an iterative approach
where one informs the other and vice versa, seems like a more fundamental and
robust framework.

Technically we could use any optimization method in order to maximize the
parameter posterior given the data. However, we have found in practice that
the combination of CG and GEM works very well. For updating the positions
of the mesh vertices, we also experimented with using a Levenberg-Marquardt
optimizer but the CG optimizer gave better segmentation accuracies in our ex-
periments. For optimizing the likelihood parameters, we have only used the
GEM approach because it has two highly desirable properties: first, each it-
eration is guaranteed to increase the value of the objective function, although
no guarantee is given that we will end up in the global maximum, and sec-
ond, it does not require manual tuning of the size of the gradient step which
is a typical problem in many other gradient-ascent optimizers. One thing to
note is that in our case the update equations of the means, covariances and
bias field coefficients are intertwined, i.e., the update step for the means de-
pends on the current estimate for the bias field coefficients and vice versa. Thus
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the lower-bound can not be maximized in one step as is the case for classical
EM [DLR77, VMVS99b, Min98]. However, one could do multiple iterations be-
tween the update steps in order to exactly maximize the lower bound, but as the
GEM-algorithm is guaranteed to increase the value of the objective function it
is computationally more efficient to update the parameters only once and then
recalculate the lower bound which is fast to compute in our case [VP15].

Finally, it is also instructive to note that the exact optimal values of the mesh
vertex positions and the likelihood parameters are of no interest to us. Rather
they are a nuisance that we can not get rid of because the marginalizations
in eq. 3.12, are intractable to do. However, instead of the empirical Bayes
approximation, we could also evaluate the segmentation posterior by sampling
from the parameters. In this case the full segmentation posterior would be
approximated by:

p(l|D) ≈ 1

S

S∑

s=1

p(l|D,x(s),θ(s)),

where x(s) and θ(s) are samples generated from the posterior distribution of
the parameters given the data p(x,θ|D). Having samples from the parameters
would also allow us to put error bars on the segmentations, obtained by av-
eraging over the samples of different structures. While the sampling approach
was shown to give some improvement over the empirical Bayes approximation
in [ISV13a], in this work we have used the analytical approximation which is
computationally less demanding.

The nuisance parameters could also be treated in a variational inference frame-
work as shown in [BCA15], where the intractable posterior distribution of the
variables is approximated with a factorizable form. The resulting inference al-
gorithm is a more general formulation of the EM algorithm which has a lower
computational complexity than sampling approaches. The drawback is that
the approximation to the true posterior will never be exact. Despite this, the
authors show slightly increased segmentation performance compared to MAP
segmentation. The improved results from both the sampling and the varia-
tional approaches indicate that a more Bayesian treatment of the segmentation
problem seems to be beneficial.

3.3 Experiments and results

In this section we briefly present the results from papers A and B. We first
describe the data sets used in the experiments, next we describe the experiments
conducted to validate the proposed approach, and then provide a short overview
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of the results from each experiment. The results are separately discussed in
the final section of this chapter. The exact implementation details and cross-
validation set-ups related to the experiments can be found in paper B and are
not repeated here.

3.3.1 Data

We used five different MR data sets in the experiments: one data set was used
exclusively for training the proposed and benchmark methods, whereas the four
other data sets were used only for testing. This set-up ensures a fair comparison,
and allows us to mimic a real clinical setting where the training and target data
might come from different scanners, using different sequences and field strengths.
In total the four test data sets consist of 203 MR scans, including 88 multi-
contrast scans, which allows for rigorous testing of the proposed segmentation
framework.

Training data. The training data set consists of 39 T1-weighted MR scans
and corresponding manual segmentations, with 28 healthy subjects and 11 sub-
jects suffering from questionable or probable Alzheimer’s disease, and ages rang-
ing from under 30 years old to over 60 years old [SYVL+10]. The manual seg-
mentations were performed by an expert radiologist using a protocol described
in [CJFK89]. The scans were acquired on a 1.5T Siemens Vision scanner using
an MPRAGE sequence with parameters: TR=9.7ms, TE=4ms, TI=20ms, flip
angle = 10◦ and voxel size = 1.0× 1.0× 1.5mm3 (128 sagittal slices). The scan
parameters were empirically optimized to maximize the gray-white matter con-
trast [BHP+04]. An example scan and a corresponding manual segmentation
from this data set are shown in the introduction of chapter 2 (see figure 2.1).

Intra-scanner data. The first test dataset consists of 13 T1-weighted scans
acquired on a 1.5T Siemens Sonata scanner with the same sequence and pa-
rameters as the training data [HF07]. Given the similarity with the training
data (vendor, field strength, pulse sequence), we refer to this dataset as the
“intra-scanner dataset” . The manual segmentations were done by an ex-
pert radiologist using the same protocol as for the training data. An example
scan and a corresponding manual segmentation from this data set are shown in
figure 3.5.
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Cross-scanner data. The second test dataset consists of 14 T1-weighted
scans acquired on a 1.5T GE Signa Scanner using an SPGR sequence with
parameters: TR = 35 ms, TE = 5 ms, flip angle = 45◦ and voxel size =
0.9375 × 0.9375 × 1.5mm3 (124 coronal slices) [HF07]. The manual segmen-
tations were done by an expert radiologist using the same protocol as for the
training data. We refer to this dataset as the “cross-scanner dataset” . An
example scan and a corresponding manual segmentation from this data set are
shown in figure 3.6.

Multi-echo data. The third test dataset consists of multi-echo FLASH scans
from 8 healthy subjects acquired on a 1.5T Siemens Sonata scanner. The ac-
quisition parameters were: TR = 20 ms, TE = 1 min, flip angle = 3◦, 5◦, 20◦
and 30◦, and voxel size = 1.0mm3 isotropic [FSvdK+04, ISV12]. The different
flip angles correspond to different contrast properties, with the smallest angle
having contrast similar to proton density (PD) weighting and the largest one
having a contrast similar to T1-weighting. The manual segmentations were
again obtained using the same protocol as for the training data. We refer to
this dataset as the “multi-echo dataset” . A sample slice from this dataset,
with flip angles 30◦ and 3◦, is shown in figure 3.7.

Test-retest data. The fourth and final test dataset consists of 40 healthy
subjects scanned at two different time points at different facilities, with scan
intervals ranging from 2 days to six months, amounting to a total of 80 T1- and
T2-weighted scans for the whole dataset [HLH+12]. The scans were all acquired
with 3T Siemens Tim Trio scanners using identical multi-echo MPRAGE se-
quences for the T1 and 3D T2-SPACE sequences for the T2, with voxel size =
1.2×1.2×1.2mm3. We refer to this dataset as the “test-retest dataset” . One
of the scans had to be excluded because of motion artifacts. Moreover, some
of the T2-weighted scans have minor artifacts not present in the T1-weighted
scans. These scans were however included in the experiments. Manual segmen-
tations were not available for this dataset; however, these scans are still useful in
test-retest experiments quantifying the differences between the two time points.
Ideally, as all the subjects are healthy, the biological variations should be small
and the segmentations between the two time points should be identical. An
example of the T1- and T2-weighted scans is shown in figure 3.8.

3.3.2 Experiments

We thoroughly tested our segmentation framework in five different experiments.
First, we compared the segmentation accuracy and speed of the proposed ap-
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Figure 3.5: On the left an example slice from the intra-scanner dataset and
on the right a corresponding manual segmentation.

Figure 3.6: On the left an example slice from the cross-scanner dataset and
on the right a corresponding manual segmentation.

Figure 3.7: An example of the T1- (flip angle = 30◦) and PD-weighted (flip
angle = 3◦) scans of the same subject from the multi-echo dataset.

Figure 3.8: An example of the T1- and T2-weighted scans of the same subject
from the test-retest dataset.
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proach to four benchmark methods, then we evaluated the effect of the training
set size on segmentation performance, next we investigated the multi-contrast
segmentation performance of our method and finally we experimented with ex-
tending our framework to support multiple atlases.

Experiment 1. In the first experiment, we compared3 our method against
four state-of-the-art segmentation methods on the intra- and cross-scanner data
sets. The benchmark methods are: BrainFuse [SYVL+10], PICSL MALF
[WSD+13], FreeSurfer [FSB+02] andMajority Voting [RBMMJ04, HHA+06],
which were previously described in chapter 2. As mentioned, FreeSurfer repre-
sents a supervised parametric segmentation method whereas BrainFuse, PICSL
MALF and majority voting are non-parametric methods. The main interest
of this experiment is two-fold: first, as all the methods were trained on the
same data set, it enables us to compare the segmentation performance of our
approach to the best methods in the field on the intra-scanner data. Second,
we are interested in how the performance of the supervised methods is affected
when applied to data coming from a different scanner. Furthermore, the param-
eter settings of each method were tested and tuned on the training data and
each method was applied in exactly the same manner to both the intra- and
cross-scanner data, which allows us to evaluate how robust these methods are
"out-of-the-box" for different data sets.

For computing the pair-wise registrations in the multi-atlas approaches, we used
the diffeomorphic ANTs/SyN framework [AEGG08] for PICSL MALF and ma-
jority voting, whereas diffeomorphic Demons were used for BrainFuse [SYVL+10].
These choices were based on which registration method was used in the original
publications [WSD+13, SYVL+10].

Finally, although the manual labeling approach includes 39 different brain struc-
tures, we use a relevant subset of these structures listed in table 3.1 for vali-
dation. These structures were chosen as they are used for validation in other
studies [FSB+02, SYVL+10], therefore making comparison with different studies
easy.

Experiment 2. In the second experiment, we evaluated the computational
efficiency of the different methods. The running times were measured on a clus-
ter where each node has two quad-core Xeon 5472 3.0GHz CPUs and 32GB of
RAM. We only used one core in the experiments in order to make fair compar-

3Comparison is done using Dice scores defined as: Dice = 2|lA ∩ lM |/(|lA|+ |lM |), where
lA and lM are the automatic and manual segmentations respectively and | · | is the cardinality
of a set.
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Brain structures Acronym
Left/Right hemisphere Cerebral White Matter WM
Left/Right hemisphere Cerebellum White Matter CWM
Left/Right hemisphere Cerebral Cortex CT
Left/Right hemisphere Cerebellum Cortex CCT
Left/Right hemisphere Lateral Ventricle LV
Left/Right hemisphere Hippocampus HP
Left/Right hemisphere Thalamus TH
Left/Right hemisphere Putamen PU
Left/Right hemisphere Pallidum PA
Left/Right hemisphere Caudate CA
Left/Right hemisphere Amygdala AM
Brain Stem BS

Table 3.1: List of structures the segmentation performance is compared on.

isons, even though all the algorithms can potentially be parallelized. However,
we also recorded the execution time of a multi-threaded implementation of our
method, using 8 cores on a computer with 8 dual-cores with 3.4Ghz CPU and
64GB of RAM. This was done in order to enable us to compare the running
time of our algorithm with those reported by other studies in the literature.

Experiment 3. In the third experiment, we studied the effect of the number
of training subjects on the segmentation performance. To achieve accurate seg-
mentations, a representative training set is needed to capture all the structural
variation one might see within the subjects to be segmented [AHH+09]. How-
ever, some algorithms require less training data than others to approach their
asymptotic performance, which represents a saving in manual labeling effort.
We therefore randomly picked 5 sets of 5, 10 and 15 subjects from the training
data, and re-evaluated the segmentation performance of the proposed method,
BrainFuse, PICSL MALF and majority voting on the intra- and cross-scanner
datasets.

Experiment 4. In the fourth experiment, we evaluated the ability of the
proposed algorithm to segment multi-contrast MR scans in both the multi-echo
and the test-retest data sets. Given a training set which only consists of T1-
weighted scans and corresponding manual segmentations, using multi-contrast
information is out of reach for all the methods we compared against in the
first experiment. This is due to either their non-parametric modeling approach
(BrainFuse, PICSL MALF, majority voting) or the supervised intensity model
(FreeSurfer). To quantify the effect of using multi-contrast information, we first
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ran our method using only one of the available scans and then using two scans
with different contrasts. For the multi-echo dataset we first used only the T1-
weighted images (i.e., flip angle 30◦), and then both the T1- and PD-weighted
(flip angle 3◦) images. The resulting segmentations were then compared to the
manual segmentations using Dice scores.

In a similar fashion we first segmented the two time points in the test-retest
dataset using only the T1-weighted images, and then using both T1- and T2-
weighted images. Because manual segmentations were not available for this
dataset, we used absolute symmetrized percent change (ASPC) [RSRF12a] to
quantify the differences in the automatic segmentations between the two time
points. This metric is defined as the absolute value of the difference in volume,
normalized by the mean volume:

ASPC =
2|V2 − V1|
V1 + V2

,

where V1, V2 are the volumes at the two time points. Ideally this number should
be small, as the subjects were all healthy and the time between the scans was
not so long.

Experiment 5. Inspired by the success of the multi-atlas approaches in brain
segmentation [SYVL+10, WSD+13, LW12], we were interested if extending our
framework to support multiple atlases would be beneficial. The derivations of
how the single-atlas framework can be extended to support more than one atlas
can be found in Appendix A. In short, the generative model now assumes that
each voxel i is generated from one of M atlases. Once we know which atlas
generated the voxel, we draw the label li from that atlas. The MR data is then
generated, as before, from the GMM assigned to label li.

To test the effect of using multiple atlases, we chose one of the 15 subject atlases
used in experiment 3, and constructed three atlases of 5 subjects and five atlases
of 3 subjects by randomly dividing the 15 subject set to sets of five and three
respectively. We then compared the segmentation performance of the multi-
atlas set-ups to the single-atlas one on the intra-scanner data set. This was
done using three different initialization schemes:

• First, we "pre-registered" each of the multiple atlases to the target scan in-
dependently following the single-atlas segmentation approach. The learned
mesh node positions {x̂m} were then used as an initialization to the
multi-atlas version of the algorithm, where we only updated the likeli-
hood model parameters keeping the mesh node positions fixed. This is
comparable to the approach most multi-atlas methods take, where the
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Intra-scanner data Cross-scanner data
Method Average Accuracy Average Accuracy
Proposed 0.863 0.807
BrainFuse 0.868 0.744

PICSL MALF 0.896 0.760
FreeSurfer 0.853 0.799

Majority Voting 0.883 0.698

Table 3.2: Mean Dice scores of the different methods over the structures listed
in table 3.1 for the intra-scanner (first column) and cross-scanner
(second column) datasets.

pair-wise registrations are first computed and then followed by a label
fusion step [SYVL+10, WSD+13, HHA+06].

• Next we used the same initialization procedure, but also updated the mesh
node positions allowing for further registration of the atlases.

• Finally, we ran the algorithm with no initial registrations, and optimized
over the full parameter set consisting of the likelihood model parameters
and the mesh node positions of each atlas.

3.3.3 Results: a short summary of the main findings

3.3.3.1 Experiment 1: Intra-scanner and cross-scanner segmentation
performance

The Dice scores between the manual and automated segmentations for each
method on the intra- and cross-scanner data sets are shown in fig. 3.9. Table 3.2
collects the average score over the structures for each method and data set.

The results show that all of the methods perform well on the intra-scanner data
set, which was expected as the properties of this data set are identical to the
training data. The highest average score is achieved by PICSL MALF. However,
on the cross-scanner data set, where the target scan properties are different from
the training data set our approach achieved the highest mean score.
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Figure 3.9: The Dice scores of the different methods for the intra-scanner (top)
and cross-scanner (bottom) data. The proposed method = green,
BrainFuse = blue, PICSL MALF = magenta, FreeSurfer = red
and Majority Voting=black. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles,
and outliers are marked with a ’+’. For left and right hemisphere
structures the scores are averaged over the hemispheres. See ta-
ble 3.1 for the acronyms.
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Average time per subject (h)
Method Reg. Fusion Full Time

BrainFuse 16 1 17
Majority voting 143.9 0.1 144
PICSL MALF 143.9 3.8 147.7
FreeSurfer - - 9.5
Proposed - - 1.4

Table 3.3: Mean computational time for the different methods. For label fu-
sion methods the computation times for registration (Reg.) and
label fusion (Fusion) are listed separately.

3.3.3.2 Experiment 2: Execution time

The approximate mean computation time for a single scan using the different
methods is shown in Table 3.3. The results show that the proposed method is
approximately 7 times faster than FreeSurfer, 12 times faster than BrainFuse
and 100 times faster than PICSL MALF and majority voting.

Here the main finding is that the parametric methods (i.e., FreeSurfer and the
proposed method) are significantly faster than the multi-atlas approaches. As
mentioned in chapter 2, this is due to the multiple pair-wise registrations used
in the non-parametric approaches, whereas in the parametric methods only a
single non-linear registration between the atlas and the target scan is needed.
Note, however, that even the fusion step in PICSL MALF is quite time con-
suming. The reason why our method is faster than FreeSurfer, is that instead
of a standard voxel-based probabilistic atlas, our method employs a mesh-based
atlas which is much sparser.

In the multi-threaded set-up, the proposed method has an execution time of 23.5
minutes per scan on average. The fastest whole-brain method to our knowledge
is presented in [ZGC14], which builds on a random forest classifier, with exe-
cution times in the range of 5 to 13 minutes. However, due to the supervised
approach this method does not handle contrast differences between training and
target scans.

3.3.3.3 Experiment 3: Effect of the number of training subjects

Figure 3.10 shows the performance of each method when trained on different
number of training subjects for the intra- and cross-scanner data sets. The
line is drawn through the average Dice score of each set and the bars show the
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Figure 3.10: Average Dice scores for different number of training subjects for
the intra-scanner (top) and the cross-scanner (bottom) data, as
well as their variance across randomly selected sets of training
subjects. The proposed method in green, BrainFuse in blue,
PICSL MALF in magenta and majority voting in black. The
error bars correspond to the lowest and highest average score for
the random subset of subjects. The dashed line marks the Dice
score obtained when all subjects in the training pool are used.
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variance around the mean score.

The results show that adding more training subjects generally yields more accu-
rate segmentations for all methods. However, the proposed approach reaches its
maximum performance faster than the multi-atlas approaches. Also the vari-
ance of the mean score is small for all training set sizes, indicating that the
performance of the proposed method does not depend much on the specific sub-
jects included in the training set. The performance of the multi-atlas methods
is more dependent on the number of training subjects especially on the cross-
scanner data set, where the pairwise registrations are more challenging due to
the different properties of the training and target data.

3.3.3.4 Experiment 4: Multi-contrast performance

The Dice scores for the multi-echo dataset, when using only T1-weighted scans
and when using both T1- and PD-weighted scans, are shown in Figure 3.11. The
results are very similar whether or not the PD-weighted scan is included, which
indicates that the PD-weighted contrast does not add much useful information
for structural segmentation of healthy brains. Example segmentations of the
multi-echo dataset using uni- and multi-contrast scans are shown in Figure 3.12.

The volume differences between the two time points in the 39 subjects of the
T1/T2 test-retest dataset are shown in Figure 3.13. In general, they are quite
similar and small for both single- (only T1) and multi-contrast (both T1 and
T2) segmentations, with the median ASPC in the 1-2% range. There are some
larger differences – especially in the thalamus and pallidum – when using multi-
contrast data. This appears to be mostly due to imaging artifacts in the T2-
scans, an example of which is shown in Figure 3.14. We note that this data set
also has the lowest resolution of all the datasets we tested the method on, and
thus partial volume segmentation errors are most prominent on this data set.

3.3.3.5 Experiment 5: Extending to multiple atlases

The results for the different initialization set-ups for the multi-atlas approach,
are shown in fig. 3.15. Allowing only likelihood model updates with pre-registered
atlases gives very similar scores compared to the single atlas approach when
three atlases built from five subjects were used. However, for the case of five
atlases each built using three subjects, the scores are significantly worse espe-
cially in sub-cortical structures. Allowing for further registration of the mesh
nodes using the same initialization process yields similar results. The algorithm
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Figure 3.11: Dice scores for the multi-echo dataset. Performance on multi-
contrast input data is shown in purple, and on T1-weighted data
only in black. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, and outliers
are marked with a ’+’.

Figure 3.12: Top row: target scans, T1-weighted on the left and PD-weighted
on the right. Bottom row: automatic segmentation using only
the T1-weighted scan on the left, automatic segmentation using
both scans on the right.
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Figure 3.13: The ASPC scores for the test-retest dataset. Volume differences
between the time points on multi-contrast input data is shown
in purple, and on T1-weighted data only in black. On each box,
the central mark is the median, the edges of the box are the 25th
and 75th percentiles, and outliers are marked with a ’+’. The
outlier marked by an arrow is the one shown in Figure 3.14.

Figure 3.14: An example of an outlier subject marked by the arrow in Fig-
ure 3.13. From left to right: a T1-weighted scan with no visi-
ble artifacts, a T2-weighted scan with a line-like artifact in the
pallidum and thalamus area marked by red arrows, and an auto-
mated segmentation of pallidum and thalamus showing the seg-
mentation error caused by the artifact.
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however only took on average three registration steps, which implies that the
initial warp estimates were close to a local optimum. In the final set-up, when
we did not use any initial registrations, but ran the algorithm from the starting
positions of the meshes, the scores exhibit similar behaviour as in the previous
set-ups.

3.4 Discussion

3.4.1 Experiment 1: Intra-scanner and cross-scanner seg-
mentation performance

The results from the first experiment show the main up- and downsides of the
different segmentation approaches discussed in chapter 2. On the intra-scanner
data, where the properties of the training and target data are exactly matched,
the multi-atlas approaches yield very good results and outperform our unsu-
pervised generative segmentation framework. However, when applied to target
data with different properties these methods can yield very varying results.

The principal error source for the multi-atlas methods is due to misregistrations
between the training and target scans [WSD+13]. This explains the poor perfor-
mance of the multi-atlas approaches on the cross-scanner data set. The registra-
tion framework employed in BrainFuse uses a sum-of-squared-differences (SSD)
similarity measure, which is likely sub-optimal when applied on cross-scanner
data. The registration framework employed for PICSL MALF and Majority
Voting uses a different similarity measure based on the cross-correlation (CC)
metric, which is more robust against intensity variations. However, there are still
some subjects in the cross-scanner data set for which computing the registrations
is very difficult as shown by the outliers in figure 3.9. Note that Majority Voting
achieves very good scores on the intra-scanner data set, but does quite poorly
on the cross-scanner data set. This shows that the performance of the multi-
atlas methods is mainly driven by the accuracy of the registrations. If accurate
registrations are available, there is no need to use elaborate fusion strategies.
However, when this is not the case, weighted voting helps to downplay the effect
of the poorly registered subjects.

As explained in chapter 2, FreeSurfer uses a supervised intensity-model where
the Gaussian mixture parameters are learned from the training data. Based on
this, one might expect to see a larger dip in the segmentation performance of
FreeSurfer on the cross-scanner data. The relatively good performance is due to
an in-built correction step which is performed for T1 acquisitions. The correction
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Figure 3.15: Dice scores of the label fusion approach: 15 subject atlas in green,
three five subject atlases in red and five three subject atlases in
blue. The top figure shows the scores using only fusion, the mid-
dle one with additional registration and the bottom one without
any initializations. On each box, the central mark is the me-
dian, the edges of the box are the 25th and 75th percentiles, and
outliers are marked with a ’+’.
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applies a multi-linear atlas-image registration and a histogram matching step to
update the class-conditional prior intensity profiles for each structure to better
match the intensity-properties of the structures in the input scan [HF07]. It is
interesting to note that our approach actually outperforms FreeSurfer on both
data sets, even though FreeSurfer explicitly encodes a priori information about
the intensity properties of the different structures, whereas the proposed method
assumes an uniform prior on the intensity parameters. It might be worthwhile
to experiment with including this type of prior information into our framework
in order to see if it has any effect on segmentation accuracy. However, this would
naturally make the method less general, and thus was not attempted during this
project.

All the benchmark methods we compared against require some post- and/or
pre-processing steps to be performed. In the FreeSurfer pipeline the target scan
is first skull-stripped, bias field corrected and intensity normalized before the
segmentation is performed. Most of the multi-atlas methods, such as BrainFuse,
have similar pre-processing steps. Furthermore, PICSL MALF refines the regis-
trations using a local search after the registrations have been computed. These
kind of sequential data processing pipelines can however lead to some difficul-
ties: first, the performance of the applied method can become very dependent
on the exact form of the pre-processing (or post-processing) as each step in the
pipeline relies on the previous ones. As an example, a failure in skull-stripping
will most likely have a negative impact on the resulting segmentations, as there
is no mechanism in the pipeline to correct for the failed initialization. Second,
objective comparison between different segmentation approaches can become
difficult if different pre-processing steps are used. We can not say for sure if a
certain approach does well because of the modeling framework or because the
pre-processing was done well. Finally, the pre-processing steps themselves often
consist of quite elaborate modeling frameworks. For example, the widely used
N3 bias correction algorithm [SZE98] can be interpreted as a generative proba-
bilistic model [LIVL14], whereas the ROBEX skull stripping tool [ILTT11] uses
a combination of generative and discriminative models to segment the brain from
the non-brain structures. Thus, the sequential pipeline often consists of many
separate steps which already perform segmentation in one form or the other. In
this project, we have tried to build a unified model in which all the needed steps
are performed in a joint manner. We emphasize that, due to this approach, the
proposed method does not require any special pre- or post-processing steps but
performs robustly on different types of data sets out-of-the-box.

The main take-home-message from this experiment is that supervised non-
parametric methods can yield highly accurate segmentations when the training
and target data are identical, but when they are applied across scanner platforms
care must be taken in order to get good results. First, the similarity metric used
in the registrations should be robust to intensity differences between the scans.
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Second, heavy pre- and post-processing of the training and target scans is likely
needed but can make the methods very dependent on the success of these steps.
Finally, weighted-voting is necessary to downplay the effect of poorly registered
scans. We note that re-tuning the methods, including pre-processing steps, on
the cross-scanner data would likely be beneficial for the performance, but the
aim of the experiment was to see how well these methods work when applied in a
scenario where perfectly matched training data is not available for all the scans
to be processed. Although the segmentation accuracy of our approach slightly
trailed that of the very best multi-atlas techniques on the intra-scanner task,
the proposed method performs robustly on data coming from different scanner
platforms without any need for re-tuning and pre- or post-processing. There
are many situations, apart from clinical applications which we have discussed
before, where this robustness to intensity changes in the input scans is benefi-
cial: for example in the study of the hippocampus T2-weighted scans are often
used [ISV13b], whereas when studying the developing brain the white matter
myelination process leads to a complete reversal of the MR signal in the course
of the first year after birth [PCE+01]. In such cases, we can not apply the su-
pervised approaches without acquiring extra training data with the same scan
protocol.

3.4.2 Experiment 2: Execution time

As discussed above, accurate registrations are required in order to obtain accu-
rate segmentations using multi-atlas approaches. These registrations are how-
ever costly to compute. The results show, as expected, that the paramet-
ric approaches yield significantly faster computational times compared to the
multi-atlas approaches. The ANTs/SyN registration framework used for PICSL
MALF and majority voting is especially time consuming taking almost 6 days to
compute the 39 pair-wise registrations from the training data to a single target
scan. Compared to the time taken for registration, the fusion step is fairly fast,
although in PICSL MALF this step is also quite computationally demanding
due to the local search that is applied to refine the registrations.

The proposed method is significantly faster than all the other benchmark meth-
ods. As explained before the difference in execution time compared to FreeSurfer,
which also is a parametric method, is mainly due to the sparse encoding of the
mesh prior, and also because our modeling approach obviates the need for any
pre- or post-processing.

The main take-home-message from this experiment is that, the good perfor-
mance of the non-parametric methods comes with a high computational cost.
Although computational power is fairly cheap today, the amount of data to
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Number of subjects Average number of vertices
5 33,606
10 44,614
15 51,258

Table 3.4: Average number of vertices in the proposed atlas mesh for different
numbers of training subjects.

process is also growing fast. The ability to obtain segmentations fast facilitates
experimenting in large studies, and is essential in clinical flow where many pa-
tients are scanned daily. We note that the competing methods can of course
be parallelized, but even on the 8 core computer used for speed-testing the pro-
posed method, the theoretical limit for the execution time of PICSL MALF
would be roughly 19 hours, whereas our approach achieved an execution time
of 24 minutes.

3.4.3 Experiment 3: Effect of the number of training sub-
jects

The results from the third experiment show that larger training sets generally
yield increased performance for all methods. However, the proposed method ap-
proaches its maximum performance faster than the multi-atlas methods. Even
with only five training subjects the segmentation accuracy of the proposed
method is already good, with mean accuracy 98.5% of the maximal perfor-
mance on the intra-scanner dataset and 96% of the maximal performance on
the cross-scanner dataset. The variance around the mean score is also small,
which indicates that the performance of the method is not dependent on which
specific subjects are included in the training set. This robustness towards the
training set size is likely due to the atlas construction process. As explained
in section 3.1.1, the topology of the mesh is optimized given the training label-
ings. Thus, the optimal amount of smoothing is automatically estimated when
learning the atlas parameters. This effect is shown in table 3.4, which lists
the average number of mesh vertices for the atlases constructed from the 5, 10
and 15 subject training sets. The atlases constructed using only 5 subjects are
significantly sparser compared to the 10 and 15 subject groups, thus yielding
probability-wise "smoother" atlases which are not so prone to over-fitting.

For the multi-atlas methods the performance is more dependent on the number
of available training subjects, especially for the cross-scanner dataset. On the
intra-scanner dataset, PICSL MALF achieves a good mean score already with 5
subjects, but the performance increases more slowly compared to the proposed
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method. The variance of the score is also larger, especially for the 5-subject set,
showing that the performance is dependent on the particular subjects included
in the training set. The same behaviour is observed for majority voting and
BrainFuse, but with larger variances over all the subjects sets. On the cross-
scanner dataset the performance of all multi-atlas methods varies significantly
even when trained on 15 subjects, which is due to the registration difficulties
between the training and target scans. In [AHH+09] the authors suggest ways of
making the performance of multi-atlas methods more robust by pre-selecting a
group of training subjects that are most similar to the target scan, which would
be particularly beneficial for majority voting. However, this technique assumes
that there is a large training set of many different subjects, from which we can
do this selection from. As discussed before, obtaining large training sets can be
quite costly due to the tedious manual segmentation process. Thus, being able
to perform well using smaller data sets represents savings in manual labeling
effort.

The main take-home-message from this experiment is that multi-atlas methods
seem to benefit from larger training sets, whereas the proposed approach ap-
pears to have robust and repeatable performance even with small training sets.
This can be advantageous for certain populations, such as infants, where large
amounts of training data is difficult to obtain. Furthermore, robustness to dif-
ferent training subjects is also an advantage, as it allows the whole training set
to be used for learning without the need to discard training subjects that might
be problematic.

3.4.4 Experiment 4: Multi-contrast segmentation perfor-
mance

One main benefit of our generative parametric segmentation approach is that it
readily extends to any number of input contrasts. Although the results indicate
that using multi-contrast information does not increase the segmentation accu-
racy for healthy subjects, this multi-contrast information is necessary when we
aim to detect pathologies [GLFN+13], as the T1-weighted contrast alone can
not be used for locating lesions or tumours.

One problem with including extra contrasts for structural segmentation is that
sometimes they include information that is not helpful. This is highlighted in the
results for the test-retest data set where artifacts only present in the T2-weighted
scans negatively impact the segmentations. As mentioned earlier this data set
also has a fairly low resolution, thus some of the volume differences are likely
due to partial volume effects, which could be helped by modeling them explicitly
as in [VLMVS03]. Furthermore, the two time points were processed completely
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independently and the results would likely be better if a dedicated longitudinal
segmentation model was used [RSRF12b]. Development and experimentation
with such a model is left for future work.

On the multi-echo data set, the results for the uni- and multi-contrast set-ups
are very similar, although it looks like some of the main tissue classes can be
better separated when using multi-contrast data as evidenced by the slightly
higher score for the cerebral cortex. The similarity in the performance is most
likely due to the fact that the PD-weighted scan does not include too much
extra information, especially for separating the sub-cortical structures of the
brain. One more subtle problem in validating the performance in multi-contrast
data sets against manual segmentations is that the expert radiologists typically
base their segmentations only on T1-weighted contrast, which is also the case
for this data set [ISV13b]. Using information from both contrasts in the manual
segmentation process might yield different structure boundaries, but, as can be
seen from figure 3.12, the T1-weighted scan typically offers the best contrast for
outlining the structures.

The main take home message from this experiment is that multi-contrast in-
formation might not be beneficial for the purpose of structural segmentation in
healthy brains but, as we will see in chapter 4, is needed when pathologies are
present.

3.4.5 Experiment 5: Extending to multiple atlases

The results of the multi-atlas experiment show that substituting an atlas built
from 15 training subjects with multiple atlases built from subsets of the training
set does not result in any significant increase in segmentation accuracy. There
are two main reasons for this: first, the probabilistic atlases built from a subset
are much sparser and thus much smoother probability-wise, as discussed in
experiment 3. This is likely not beneficial especially in sub-cortical structures,
which typically exhibit low contrast i.e., borders between the structures are hard
to detect. Here the shape and location information encoded by the prior becomes
much more important as the structures can not be separated based on intensity
information. The results support this explanation, as the sub-cortical scores
are consistently lower, especially when using 5 atlases of three subjects, for the
multi-atlas approach. The second reason is due to optimization difficulties, as
the number of parameters to optimize increases significantly with the number of
atlases. From table 3.4, we see that the 15 subject atlas has on average around
44000 nodes whereas a five subject atlas has around 33000 nodes. Thus for
three five subject atlases we need to optimize the positions of almost 100000
nodes, which is likely very prone to local minima and also makes convergence
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very slow. Furthermore, the node positions of different atlases are intertwined,
as seen from the update equations in Appendix A, which further complicates
the problem. This is evidenced by the results of the final experiment where no
initialization was used, which resulted in a noticeable reduction in segmentation
accuracies in some of the sub-cortical structures when 5 atlases of three subjects
are used.

A somewhat similar approach combining EM and multi-atlas labeling has been
suggested in [LHA+12], where the authors first warp the training images to the
target scan and then create a probabilistic atlas from the warped segmenta-
tions using locally weighted fusion. Based on this atlas a GMM is fitted to the
target image intensities using EM, and further regularization is enforced using
an MRF prior. The pair-wise registrations are computed using the so-called
MAPER [HKL+12] framework, which incorporates tissue probability maps into
the registration process. Thus the whole pipeline consists of many sequential
segmentation and registration steps, which are inherently circular. In the pro-
posed multi-atlas framework the atlases are jointly registered to the target image
and label fusion is naturally included into the likelihood model assuming that
the neuroanatomical label in each voxel is generated from a single atlas. We
hypothesised that this approach would be beneficial, but due to the problems
discussed above this was found not to be true. Furthermore, the multi-atlas ap-
proach has the downside of being computationally quite demanding, and as one
of the main aims of this project was to devise a method with a low computational
cost, it seems that a single atlas approach is the way to go.
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Chapter 4

Generative modeling for
joint whole-brain and lesion

segmentation

In this chapter we extend the whole-brain segmentation model of the previous
chapter to include a model of lesions. The chapter is constructed as follows:

• First, we motivate the problem, and review some of the approaches that
have been used for lesion segmentation.

• Next, we explain how the general modeling framework is extended to in-
clude a model for lesions.

• Then, we introduce our lesion shape model, which is based on convolu-
tional restricted Boltzmann machines, and show how it is incorporated
into the model.

• After the full model is in place, we show how new target MR scans with
lesions can be segmented using the model.

• Finally, we overview the experiments and results from paper C, and con-
clude with a discussion.
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4.1 Introduction

Multiple sclerosis (MS) is the most common inflammatory disorder of the central
nervous system, and the leading cause of non-traumatic neurologic disability
in young adults in the US and Europe [MRV13]. In the US, multiple sclero-
sis is the second most costly chronic health condition after congestive heart
failure [MRV13]. MS results in demyelination of white matter tracts in the
brain and is characterized by the formation of lesions within the white mat-
ter [MK10]. These white matter lesions are frequently associated with motor
disorders, dizziness, depression and a variety of other physical and neurological
symptoms [MK10]. An example multi-contrast MR scan of a patient suffering
from MS disease is shown in fig. 4.1, note the lesions which are highlighted in
the FLAIR contrast.

The severity of MS has been shown to correlate with the mean annual treatment
costs of an individual patient, going from 20000e for a mild type to around
80000e for the most severe type [KBJ06]. Thus, in order to relief the soci-
etal burden, and to increase the quality of life for patients, it is crucial to be
able to diagnose the disease early and track it accurately to assess treatment
efficacy. Currently diagnosis and tracking is done by experts based on a neu-
rological examination and visual inspection of MR scans of the brain. The
visual inspection is often combined with manual lesion segmentations to aid
the disease assessment. This can however be problematic, because the expert
lesion delineations have been shown to have large inter- and intra-expert vari-
ability [GLFN+13, LOC+12] and are very time consuming to obtain. Thus,
robust automatic tools for segmenting the lesions in MR images would greatly
help in disease diagnosis and patient follow-up.

4.1.1 Current and previous approaches to lesion segmen-
tation

Here we overview some of the many approaches that have been suggested for
lesion segmentation. These methods can be, following the definitions in chapter
2, roughly divided to supervised and unsupervised approaches [GLFN+13]. For
a more thorough review with performance comparisons, the reader is referred
to the work in [GLFN+13, LOC+12].
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Figure 4.1: An example multi-contrast MR scan of a patient with lesions.
From left to right: T1-weighted scan, T2-weighted scan and a
FLAIR scan. The lesions are especially well visualized in the
FLAIR scan as bright outliers around the ventricles.

4.1.1.1 Unsupervised approaches

The earlier lesion segmentation methods often built upon the generative models
used in tissue classification. These methods typically either modeled lesions as
a separate structure class, or as outliers to the normal healthy1 tissues. One
of the earliest approaches [KGM+99], extended the tissue classification method
presented in [WIG+96] by including an extra Gaussian distribution to model
the lesions. After the initial segmentation to the three tissue classes and le-
sions, post-processing steps based on morphological operations and size of the
lesion clusters were applied to remove outliers that were mainly due to par-
tial volume effects [KGM+99]. In [DPGL+04] a similar approach is used, but
extra Gaussian distributions are added in order to model the partial volume ef-
fects. Here, the lesions were not initially modeled by any of the Gaussians, but
were extracted after the initial segmentation by first detecting outliers based on
the Mahalanobis distance, and finally fitting a mixture of two Gaussians to this
data which then allowed for separating the true lesions from other outliers. This
method was further extended to include morphological post-processing of the
lesion segmentations in [SLAM08], which was the winning method in the 2008
MICCAI challenge on lesion segmentation [SLC+08]. Because lesions can have
very varied intensity properties even within a patient, the authors in [FGG09]
model each tissue class and lesions with a large number of spatially constrained
Gaussians. Each of the Gaussian distributions then models the intensities of a
local spatial area allowing for a more complex model of intensities. In [FGG09]

1Here healthy refers to non-lesioned tissue, but in reality the surrounding structures are
also affected by the disease.
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a level-set based post-processing is used to refine the lesion borders.

Approaches that do not try to model lesions explicitly typically try to built
outlier-robust models of the tissue classes and then detect lesions as observa-
tions that do not fit the model. The method presented in [VMVS01] builds on an
atlas-based tissue segmentation method presented in [VMVS99b], but uses an
M-estimator approach [VMVS01] in order to make the model robust to outliers.
The lesions are then detected as data points that have a low probability of being
generated from the model based on the Mahalanobis distance. Further regular-
ization is enforced by adding restrictions to the intensities of the expected lesions
and using an MRF-prior to encourage clustered lesion segmentations. Similar
methods are presented in [PG08] and [GLPA+11], where in [PG08] a minimum
covariance determinant is used for robust estimation, whereas in [GLPA+11] the
authors rely on a trimmed likelihood estimator. However, both methods rely on
Mahalanobis distance thresholding to identify the lesions.

4.1.1.2 Supervised approaches

Recently, more and more methods build upon supervised classifier-based ap-
proaches. These methods can be summarized, somewhat simplistically, into two
stages: generating suitable image features for lesion detection and selecting a
suitable classifier to be trained with these features. Once such a classifier has
been trained on a set of MR scans and manual lesion segmentations, lesions
in a target scan can be easily detected by pushing the data through the clas-
sifier. Early approaches typically used only a handful of features for training:
in [AVV08] the authors train a k-nearest-neighbour (KNN) classifier using in-
tensity values and spatial location of voxels as features. The voxels in the target
scan are then classified by assigning each voxel the label of the nearest fea-
ture cluster. A similar approach is presented in [ZFE02], where a three-layer
artificial neural network (ANN) is trained using three intensity features from
T1-, T2- and PD-weighted images along with the a priori tissue probabilities
for each voxel obtained from a probabilistic tissue atlas. Instead of using only
a few features, in [MTTT08, WHH08] the authors create thousands of features,
based on pre-defined filters, computed from patches placed around each voxel.
The features are then used to learn an ensemble of weak AdaBoost classifiers
which are combined using a probabilistic boosting tree. However, as pointed out
in [GCM+11], most of these methods only consider local features such as inten-
sities or tissue probabilities in a voxel, or features derived from small patches
placed around each voxel. Currently the most successful classifier-based meth-
ods use extended spatial neighborhoods to provide rich contextual information
for increased segmentation accuracy. In [GCM+11] this is achieved by training
a random forest (RF) classifier using a combination of local and context-rich
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features. In [KRA+13] the authors use a conditional random field (CRF) frame-
work incorporating multi-level features to detect gadolinium enhanced lesions.
On the first level candidate lesions are detected using an RF classifier based on
local intensity and spatial features. On the second level, higher-order textural
patterns computed in a bounding box around the candidate lesions are used to
refine the segmentations.

4.1.2 Limitations of the existing approaches

In both of the review articles [GLFN+13] and [LOC+12] the authors conclude
that automatic lesion segmentation still remains an open problem. In [GLFN+13]
one of the main issues brought forth is how to handle multi-center data sets. This
relates to the arbitrary intensity levels of the MR scans, discussed also in chap-
ter 2, where scans from different scanners can have different intensity properties
even when the same imaging sequence is used [GLFN+13]. Another problem is
that although MR is the central tool to study MS disease due to its ability to
visualize the lesions, there still exists no standardized clinical MR protocol to
study white matter lesions [FRA+06]. Many different sequences, such as T2-
weighted, PD-weighted or T2-FLAIR, can be used for highlighting the lesions
in the brain. This can be problematic when using a supervised approach, which
assumes that the training and target data have similar intensity-properties. Fur-
thermore, as discussed in relation to experiment 1 in the previous chapter, to
ensure robust performance the supervised approaches typically require a lot of
pre-processing steps such as brain extraction, bias field correction and intensity
normalization, which have a large effect on the quality of the resulting seg-
mentations. The unsupervised approaches are readily sequence-adaptive, and
typically also include explicit models of the bias fields. However, given that the
pre-processing is done carefully, the supervised methods have shown to outper-
form the unsupervised approaches [GCM+11].

Another fundamental problem hampering the application of the current tools
for the study of MS disease, is that most of them only provide segmentations
of lesions. This is especially true for the classifier-based approaches which are
usually trained to segment the target scans into either lesion or background.
However, even if accurate segmentations of lesions are available, the biomarkers
derived from them, such as number of lesions or full lesion volume, have been
shown to correlate poorly with clinical disability per se [JNS+13, GMLB+14].
This is possibly due to an underestimation of the importance of regional brain
atrophy in diseases like MS [JNS+13, GMLB+14, FRA+06]. Finally, while most
unsupervised approaches can segment lesions and tissues, having segmentations
of the different neuroanatomical structures would possibly provide a richer set
of biomarkers. This might facilitate better understanding of the disease mech-
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anisms behind MS [GMLB+14].

In the next section we extend the whole-brain segmentation framework from the
previous chapter to include a model of lesions. As a lesion model we use a con-
volutional restricted Boltzmann machine (cRBM) [Smo86, LGRN09, NRM09],
which provides much richer spatial models compared to the low-order MRFs
that have traditionally been used in the field for spatial regularization of lesion
segmentations.

As pointed out in [GLFN+13] it is necessary to include spatial information on
two different levels in order to obtain accurate lesion segmentations. The impor-
tance of doing this has been further emphasized by the success of the classifiers
using local and context-rich features. The first level is within a local neighbor-
hood, in order to reduce the impact of noise related to the voxel intensities and
to increase the coherence of the segmentations. The second level is anatomical,
in order to specify typical areas for lesion occurrence.

As we will see, the proposed framework takes into account both of these lev-
els due to the incorporation of the detailed mesh-based probabilistic prior and
the high-order neighborhood information encoded by the cRBM. Furthermore,
the model is based on an unsupervised approach thus remaining agnostic to
the number and contrast of input MR scans while obtaining segmentation of
both lesions and the surrounding neuroanatomy. Simultaneous whole-brain and
lesion segmentation has been attempted before [SBO+10], but the method we
propose segments considerably more structures and learns spatial lesion models
automatically from expert lesion segmentations as opposed to relying on a set
of hand-crafted rules to remove false positive detections.

4.2 Generative model for joint whole-brain and
lesion segmentation

In order to extend the generative model from chapter 3, we need to incorporate
lesions into the prior and likelihood models. This is achieved by defining a joint
segmentation prior, p(l, z), over the neuroanatomical labels l and lesions z. In
the same manner, the likelihood model will now become dependent of both l
and z: p(D|l, z). A graphical presentation of the extended generative model is
given in fig. 4.2.

Similar to chapter 3, we then look for segmentations that maximize the posterior
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Figure 4.2: Graphical model of the generative segmentation framework ex-
tended to include lesions z. The variables h are so-called hidden
units, which are further described in the next section. The target
data D is observed which is denoted by the shading.

probability of l and z given the data D:

p(l, z|D) =
p(D|l, z)p(l, z)

p(D)
. (4.1)

In the following we detail the exact form of the extended prior and likelihood
models, but first we start with a description of the cRBM lesion model.

4.2.1 Generative lesion shape model using convolutional
restricted Boltzmann machines

In order to give the reader some insight into our lesion model, we first introduce
the basic restricted Boltzmann machine (RBM) [Smo86] model, which does not
rely on convolutions, before we overview the convolutional variant. For conve-
nience and clarity, the notation is presented for a 1D case, but all models readily
extend to a 3D case.

The RBMs have recently gathered a lot of attention in the field of machine learn-
ing as the building blocks in the so-called deep learning approaches [HOT06,
SH09], which are multi-layer unsupervised generative probabilistic models. Typ-
ically these multi-layer frameworks are used to extract high-level features au-
tomatically from a large collection of training images, obviating the need for
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feature engineering, i.e., choosing suitable features manually. The learned fea-
tures can then be used for image classification tasks given an annotated training
set. However, the basic RBM model has been used effectively to learn distribu-
tions over binary data, such as hand-written digits [Hin02], which makes them
very interesting for our purpose: learning a generative model of binary lesion
maps.

The basic RBM is a parametrized generative probabilistic model, which can be
interpreted as a particular type of Markov random field model with a specific
two-layer structure [Smo86, FI12, Sal15]. The model consists of a binary input or
observation layer, which in our case corresponds to the lesion map, and a binary
hidden unit layer, where each unit effectively acts as a feature detector [FI12].
The features are encoded through weighted connections between the visual and
hidden layers. Figure 4.3 provides a graphical representation of the model.
Given a binary input vector of length I denoted by z = (z1, . . . , zI), where
zi ∈ {0, 1}, the probability of the input is defined as [FI12, Sal15]:

p(z) =
∑

h

p(z,h), (4.2)

where the joint probability over the binary observation and hidden units is given
by a Gibbs distribution:

p(z,h) =
1

Z exp (−ERBM(z,h)) . (4.3)

The energy of the distribution is given by:

ERBM(z,h) = −
∑

i

bizi −
∑

j

cjhj −
∑

j

hj
∑

i

wjizi, (4.4)

here h = (h1, . . . , hJ)
T , hj ∈ {0, 1} denotes a vector of J hidden units, wji

denotes the weighted connection between visual unit zi and hj , cj is a bias term
of hidden unit hj and bi is a bias term of the visual unit zi. The bias terms
encode the tendency for a visual or a hidden unit to be activated. We denote the
full parameter set with λ = {W,b, c}. The normalization term Z is obtained
by marginalizing over the observations and hidden units:

Z =
∑

z

∑

h

exp (−ERBM(z,h)) . (4.5)

This type of model has two attractive properties: first, the introduction of the
hidden units increases the expressive power of the model and allows for modeling
complicated distributions, and second, because there are no connections within
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Figure 4.3: The basic RBM model for an input of size (1×7) and three hidden
units. Each of the observations z is connected to all of the three
hidden units h by a weighted edge.

the observation or hidden unit layers, sampling from the model is straight-
forward. Specifically, the conditional distributions for each hidden unit and
observation are given by [FI12, Sal15]:

p(hj = 1|z) = σ(
∑

i

wjizi + cj) (4.6)

p(zi = 1|h) = σ(
∑

j

wjihj + bi), (4.7)

where σ(x) = (1+exp(−x))−1. Once the model parameters λ have been learned,
inference computations using the model are greatly facilitated by the two-layer
structure where the visual units are conditionally independent of each other
given the hidden units and vice versa.

Learning the RBM parameters. Given a training set of M binary inputs
{zm}Mm=1, we want to adjust the model parameters such that the probability
distribution fits the training data as well as possible [FI12]. This can be achieved
by maximizing the log-likelihood of the model with respect to the parameters.
In particular, the derivative of the log-likelihood for a single training example
m is given by [FI12]:

∂ log p(zm)

∂δλ
= −

∑

h

p(h|zm)
∂ERBM(zm,h)

δλ
+
∑

z,h

p(z,h)
∂ERBM(z,h)

δλ
. (4.8)
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Using the specific structure of the RBM, this can be written, for each parameter,
as [FI12]:

∂ log p(zm)

∂wji
= p(hj = 1|zm)zmi −

∑

z

p(z)p(hj = 1|z)zi (4.9)

∂ log p(zm)

∂bi
= zmi −

∑

z

p(z)zi (4.10)

∂ log p(zm)

∂cj
= p(hj = 1|zm)−

∑

z

p(z)p(hj = 1|z). (4.11)

Calculating these expressions over a batch of training data can then be niftily
written as expectations [Sal15]:

1

M

M∑

m=1

∂ log p(zm)

∂wji
= EPdata(zihj)− EPRBM(zihj) (4.12)

1

M

M∑

m=1

∂ log p(zm)

∂bi
= EPdata(zi)− EPRBM(zi) (4.13)

1

M

M∑

m=1

∂ log p(zm)

∂cj
= EPdata(hj)− EPRBM(hj), (4.14)

where Pdata(z,h) = p(h|z)pdata(z), and pdata(z) =
1
M

∑
m δ(z−zm) denotes the

empirical data distribution [Sal15, FI12]. The latter expectation is computed
with respect to the RBM distribution defined in eq. 4.3.

The main difficulty with computing the gradient is due to the expectation with
respect to the model. Exact computation of the sum over both the visible vari-
ables z and hidden variables h is in practice intractable except for RBMs with
a very small number of hidden and visible units. Due to the structure of the
model, one solution would be to approximate this term by sampling. However,
even if generating the samples is easy, it would take a long time to collect enough
samples in order to get good approximations, which would make practical ex-
perimentation with the model quite laborious. Instead, the training is typically
done using an approximation called Contrastive Divergence (CD) [Hin02]. The
idea is fairly simple: instead of drawing multiple samples from the model start-
ing from a random configuration, we only draw a single sample from the model
where the sampling is initialized with the training data. Thus for a single train-
ing example the gradient in eq. 4.8 is approximated by [FI12]:

CD(zm,λ) = −
∑

h

p(h|zm)
∂ERBM(zm,h)

∂λ
+
∑

h

p(h|z̃)∂ERBM(z̃,h)

∂λ
,

where z̃ is produced from zm by sampling once from the conditional equations
defined in 4.7. The intuition behind the CD approximation is that if the model
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Figure 4.4: Random samples generated from an RBM trained on hand-written
digits.

has learned the training data well, sampling once from the training data should
yield a sample that closely resembles the training data which in turn gives a
small gradient. However if the model does not represent the training data well,
the sample will move away from the training example which can already give us
a good idea of how to tune the parameters in order to better model the training
data. The latter terms of the gradients in eq. 4.14 are thus approximated by
sampling once from the training examples and then computing the expectations.
Once the gradient has been approximated, the parameters are updated by taking
a step in the gradient direction given a user specified step size η. In practical
implementation, stochastic gradient descent is often used where the training
data is divided to random partitions, or batches, which contain only a part of
the full data set, and the gradients are approximated on each batch.

Finally to show an example, figure 4.4 displays samples generated from an RBM
model which has been trained using CD on training data consisting of the famous
MNIST data set2 of hand-written digits. The model seems to have learned quite
well what hand-written digits typically look like.

Convolutional RBMs. The basic RBM model is very good for learning dis-
tributions over small input images, for example the MNIST digits are of size
28× 28. However, extending the basic RBM to model large images is problem-
atic as noted in [LGRN09, NRM09]. This is mainly due to two reasons: first,
the basic model does not scale well to full-sized images due to the number of
parameters to be learned3, and second, it ignores the translation-invariance of
large images where many features can be present in different parts of the im-
age [LGRN09, NRM09]. In our case the inputs are manually annotated lesion
maps cropped to roughly of size 120 × 120 × 120, so the basic RBM model is
not suitable for modeling images this large. To overcome this, we adopt a con-
volutional version of the RBM introduced in [LGRN09, NRM09]. The energy

2Available at: http://yann.lecun.com/exdb/mnist/
3For a 3D volume of size N ×N ×N we would have N3 weights per hidden unit

http://yann.lecun.com/exdb/mnist/
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Figure 4.5: A single convolutional RBM unit. A weight vector is convolved
over the input z and at each step the weights are connected to a
single hidden unit in the group. This unit encodes if a feature was
detected in this part of the input.

of the RBM model is now defined as [LGRN09]:

EcRBM(z,H) = −
∑

i

bizi −
∑

k

ck
∑

j

hkj −
∑

k

hk • (wk ∗ z), (4.15)

where ∗ denotes a convolution and • denotes an element-wise product followed
by a summation. The hidden layer now consists of K groups H = {h1, . . . ,hK},
where each group is a binary vector hk of size Nh. Each group is associated
with a weight vector, or filter, wk which is of size Nw. Thus, if the input is of
size NI , the size of each hidden group is defined to be Nh = NI−Nw+1. In this
model, each hidden group shares a bias term ck which encodes the tendency for
a feature to be present in the image. A graphical representation of the model
for a single convolutional RBM unit, i.e., where K = 1, is shown in fig. 4.5. The
conditional probabilities factorize nicely as before, and for each hidden unit and
observation we have [LGRN09]:

p(hkj = 1|z) = σ((w̃k ∗ z)j + ck) (4.16)

p(zi = 1|H) = σ((
∑

k

wk ∗ hk)i + bi), (4.17)

where w̃ denotes that the weights are flipped [LGRN09].

As a concrete toy example consider a binary input of size (1 × 5) and one
filter w = [2, 2,−5] of size (1 × 3), see fig. 4.6 for a visualization. Here the
filter now encodes a feature, which looks for clustered groups of two pixels.
The filter is convolved over the input producing a response of size (1 × 3).
The group of hidden units h for this filter is a vector of the same size as the
response, where the probability for a hidden unit at position j to be turned on



4.2 Generative model for joint whole-brain and lesion segmentation 67

is p(hj = 1|z). Thus each hidden unit in the group tells if a feature encoded
by the filter was detected in a given part of the image. Note, that the model
presented in [LGRN09] assumes a single bias over the whole image whereas we
use a bias term per voxel. This allows us to include the spatial distribution of
lesions into the model.

Due to the similar structure of the convolutional RBM to the basic RBM, the
model parameters can be learned in exactly the same way for both models.
However, instead of the basic CD approach, in this work we have used the so-
called persistent contrastive divergence algorithm (PCD) [Tie08]. In PCD, the
sampling chain is not re-initialized with a training example when the gradient is
computed as in CD, but a persistent sampling chain is kept running throughout
the whole parameter learning process. At the start of the learning, the chains
are initialized to zero, and a sample from each chain is drawn at each gradient
step without re-setting it. The idea is that if the parameter updates are small
the model does not change that much, and the samples should stay close to
the model distribution [Tie08]. PCD has been shown to learn better models
compared to the basic CD framework [Tie08].

Finally to conclude the section, we show some samples from a convolutional
RBM model trained using manually annotated lesion maps. Figure 4.7 shows
examples of training data along with samples drawn from the learned model.
Another interesting example is shown in fig. 4.8, where we sampled from the
model with an input lesion map where part of the image was set to zero. It
can be seen from the figure, that the model can quite well "imagine" what the
missing part might have been.

4.2.2 Joint segmentation prior for brain anatomy and le-
sions

To incorporate the convolutional RBM lesion model into the healthy brain seg-
mentation framework, we need to define a new segmentation prior that takes
into account both terms. Recall that in chapter 3, the segmentation prior was
written as:

p(l) =

∫

x

p(l|x)p(x)dx.

A simple way to include the lesion model into the framework would be to as-
sume that lesions can appear anywhere in the brain. In essence, this would
mean removing the edge between the healthy labels l and lesions z in the graph-
ical model shown in fig. 4.2. The healthy neuroanatomical labels and lesions
would thus be generated separately from their respective distributions, and the
segmentation prior would simply be: p(l, z) = p(l)p(z). However, we want to
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Figure 4.6: A toy example of a convolutional RBM. A weight vector is con-
volved over the input at each step producing a response. The
hidden units are activated depending on the size of the response.
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Figure 4.7: Samples from a convolutional RBM trained on binary lesion maps.
Top row: training examples. Bottom row: random samples from
the model.

enforce that lesions can only appear within white matter structures. To achieve
this, we define a joint Gibbs distribution over l, z and H, which is conditioned
on the mesh node positions x:

p(l, z,H|x) ∝ exp

(
−ERBM(z,H) +

∑

i

log pi(li|x)−
∑

i

α(li, zi)

)
, (4.18)

where in abuse of notation pi(li|x) refers to the deformable segmentation prior
in section 3.1.1.3, and α(li, zi) is defined as:

α(l, z) =

{
0, if l = wm or z = 0
∞, otherwise

which now enforces the restriction that the lesions can only occur when the
underlying neuroanatomical structure belongs to the white matter tissue class4.
The joint segmentation prior is then obtained as:

p(l, z) =

∫

x

p(l, z|x)p(x)dx, (4.19)

4Referring back to table 3.1 in chapter 3, this would include WM, CWM and BS.
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Figure 4.8: Example of how the learned model can "imagine" lesion shapes.
Top row: full lesion map and a lesion map where the lower part is
set to zero. Bottom row: samples from the model trying to fill in
the missing part.

where:

p(l, z|x) =
∑

H

p(l, z,H|x). (4.20)

4.2.3 Likelihood function

Similarly we need to extend the likelihood model to be conditioned on both the
neuroanatomical structures l and lesions z. In this work, similar to some of the
unsupervised lesion segmentation approaches described in the introduction, we
model the lesions explicitly with their own Gaussian mixture model. However,
as mentioned before, lesions do not have a well-defined intensity profile. For
example some lesions appear hyperintense in T2-weighted and FLAIR images
when compared to normal white matter, but can appear as either iso- or hy-
pointense to normal white matter in T1-weighted images. To account for this
ambiguity in the intensity profile we model lesions with Gaussian distributions
with large variances.
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Recall that the full likelihood function in chapter 3 was written as:

p(D|l) =
∫

θ
p(D|l,θ)p(θ)dθ.

Now, we extend this to:

p(D|l, z) =
∫

θ
p(D|l, z,θ)p(θ)dθ, (4.21)

where
p(D|l, z,θ) =

∏

i

p(di|li, zi,θ). (4.22)

Here we again assume that the intensities in the voxels are independent of each
other given the labels. The GMM is now defined as:

pi(d|l, z,θ) =
Gl∑

g=1

wlgN (d− b|µlg, γzΣlg). (4.23)

Here we have introduced a user-specified factor γ >> 1 as a multiplier to the
covariance matrix. Note here that when no lesion is present (z = 0), the model
reduces to the same likelihood model as was used in chapter 3, but when a lesion
is observed (z = 1) it is modeled with a GMM which shares its parameters with
the healthy (white matter) structures, but has a larger variance.

4.3 Inference

We are again faced with the problem that the segmentation posterior:

p(l, z|D) ∝ p(D|l, z)p(l, z),

can not be easily evaluated due to the marginalizations over the parameters.
Thus, as in chapter 3, we resort to the empirical Bayes approximation. The
posterior of the parameters {θ,x} is written as:

p(θ,x|D) ∝ p(D|θ,x)p(x)p(θ)

=


∑

l,z

p(D, l, z|θ,x)


 p(x)p(θ)

=


∑

l,z

p(D|l, z,θ)p(l, z|x)


 p(x)p(θ).
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However, now the expression does not factorize over the voxels as was the case
before, due to the cRBM model which introduces dependencies between the
voxels. To overcome this difficulty, we temporarily replace the cRBM lesion
prior with a constant spatial prior for the time of the parameter estimation.
Although this might seem odd after we spent a lot of effort devising the lesion
model, at this point we are not looking for accurate lesion segmentations but
are trying to obtain estimates for the parameters in a robust manner. The
temporary lesion prior has the following form:

p(l, z|x) ∝ exp

(
−ETMP(z, l) +

∑

i

log p(li|x)−
∑

i

α(li, zi)

)
, with

ETMP(z, l) = −
∑

i

[li = wm] (zi log(π) + (1− zi) log(1− π)),

where 0 ≤ π ≤ 1 is a user-defined constant spatial prior for the lesions within
white matter. For non-white matter structures the model now reduces to the
likelihood model from chapter 3, whereas for white matter structures the likeli-
hood is now given by:

pi(d|l = wm,θ) =
Gl∑

g=1

wlg
(
(1− π)N (d− b|µlg,Σlg) + πN (d− b|µlg, γΣlg)

)
,

yielding a distribution with heavier tails, as shown in fig. 4.9, which makes the
parameter estimation more robust in the presence of lesions. Now the parameter
estimation proceeds similarly as in chapter 3 by alternating optimization of the
mesh node positions and intensity model parameters. The only modification
is that when updating the weights, means and covariances of the white matter
structures, we need to take into account that each of the mixture components
now consists of two Gaussians with shared parameters. The modified update
equations of the weights, means and covariances for a combination of the two
white matter Gaussians (k = wm) can be written as:

wk,g ←
∑I
i=1(q

k,g,1
i + qk,g,2i )

∑I
i=1

∑Gk

g′=1(q
k,g′,1
i + qk,g

′,2
i )

,

µk,g ←
∑I
i=1(q

k,g,1
i + γ−1qk,g,2i )(di − bi)∑I
i=1(q

k,g,1
i + γ−1qk,g,2i )

,

Σk,g ←
∑I
i=1(q

k,g,1
i + γ−1qk,g,2i )(di − µk,g − bi)(di − µk,g − bi)

T

∑I
i=1(q

k,g,1
i + qk,g,2i )

,
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Figure 4.9: Example of the robust intensity model: the intensity histogram of
the white matter tissue class where the Gaussian modeling healthy
white matter is overlaid in green and the Gaussian modeling le-
sions in red.

where the soft assignment are defined as:

qk,g,1i ← (1− π)wk,gN
(
di − bi|µk,g,Σk,g

)
pi(k|x)∑K

k′=1 pi(di|k′,θ)pi(k′|x)

qk,g,2i ← πwk,gN
(
di − bi|µk,g, γΣk,g

)
pi(k|x)∑K

k′=1 pi(di|k′,θ)pi(k′|x)
.

Here the fixed covariance factor γ now shows up as a multiplier in the updates for
the means and covariances. Note that because both the means and (co)variances
of the two Gaussians are tied, only the factor γ appears in the update equation
for the means. If there was no restriction on the variances but the means were
restricted to be equal, i.e., we would have a scale mixture, the mean update
would depend on the variances as well [CH13].

Once we have obtained the parameter estimates {θ̂, x̂}, we replace the simple
temporary prior with the proper cRBM model. The approximated segmentation
posterior is now written as:

p(l, z|D) ≈ p(l, z|D, θ̂, x̂),
where the intractable integrals are gone. This posterior still does not factorize
over the voxels, and thus assigning the most probable class (including lesions)
in each voxel independently is not possible. However, we can exploit the specific
two-layer structure of the cRBM model to generate samples from the posterior.

The sampling can be done using block-Gibbs sampling in two steps: first, we
sample the hidden units H given the lesions z, and then we sample jointly from
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l and z given the sampled values for the hidden units, the target data and the
optimal parameter values. The first step takes the form (see eq. 4.17)

p(hkj = 1|z) = σ((w̃k ∗ z)j + ck), (4.24)

where the values of the hidden units H can be sampled independent of each
other given the lesions. For the second step we obtain:

p(li, zi|di, θ̂, x̂,H) ∝
{
p(di|li, zi, θ̂)p(li|x̂)p(zi|H), if li = wm or zi = 0
0, otherwise.

(4.25)
where the lower equality stems from the prior which prevents lesions from ap-
pearing outside of white matter structures.

We collect S samples {ls, zs}Ss=1, by alternate sampling from the distributions
defined in eqs. 4.24 and 4.25. Note that the values of the hidden units H are of
no interest to us and are discarded. The sampling is initialized by estimating the
lesion segmentation using the temporary uniform spatial prior and the estimated
parameter values {θ̂, x̂} from the approximate segmentation posterior. Given
S samples, we approximate the maximum-a-posteriori segmentation by using
voxel-wise majority voting across {ls} and {zs} which gives us the final “hard”
segmentation.

4.4 Experiments and results

In this section we will briefly present the experiments and results from paper C.
In order to demonstrate our lesion segmentation approach, we tested it on the
20 publicly available training cases of the MICCAI 2008 challenge on multiple
sclerosis lesion segmentation [SLC+08]. We also compared the proposed method
against two other state-of-the-art lesion detection methods [GCM+11, WRR13],
both of which have been shown to give greatly improved segmentation results
compared to the challenge winner. The first one is a supervised approach based
on a random forest classifier [GCM+11], and the second one is an unsupervised
approach based on patch-based dictionary learning. Next, we will give a brief
overview of both methods.

4.4.1 Benchmark methods

Random forest classifier. The RF classifier combines many independent de-
cision tree classifiers to produce a final segmentation [GCM+11]. The power of
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this approach comes from using an ensemble of simple classifiers, which individ-
ually might not yield accurate classifications, but can perform very well when
combined. In particular, each classification tree is trained with a random subset
of the training data. Furthermore, at each node of a tree only a random sub-
set of all the extracted features is available for optimization [GCM+11]. This
random sampling improves the generalization properties of the RF to unseen
data [GCM+11]. The full set of features consists of a collection of local features,
such as the intensity of a voxel, and context-rich features, such as comparing the
intensity of a voxel to the mean intensity of a patch sampled randomly in a large
neighborhood of the given voxel. Once the RF has been trained, the leaf nodes
of each tree contain a probability of the voxel belonging to lesion or background.
This probability is computed during training as the fraction of training samples
labeled as lesion, or background, that end up in the given leaf node. Lesions
in a target scan are then detected by propagating each voxel through each tree,
collecting the probabilities at the leaf nodes and finally classifying each voxel
based on the averaged probability over all the trees.

Patch-based dictionary learning. The method presented in [WRR13] is
based on sparse patch-based dictionary learning (DL). This approach builds
upon the unsupervised models where lesions are found as outliers compared to
normal brain tissue. Given an input image, first the area of interest, typically
consisting of all brain tissues where non-brain structures have been masked out,
is divided into non-overlapping patches. Next a sparse dictionary is learned from
these patches by searching for an optimal subset of patches which minimize the
reconstruction error between each patch and the subset. This learned subset
of patches then becomes the patch dictionary. Finally, lesions are found by
computing the reconstruction error between each image patch and the optimal
dictionary. The idea is that patches with a large reconstruction error represent
possible lesions. The final reconstruction error map is then thresholded to obtain
a lesion segmentation. Note that this method is unsupervised as the patch
library is learned from the target scan. However, a small amount of labeled
training data is needed to choose the optimal reconstruction error threshold
level.

4.4.2 Data

The dataset includes 10 subjects scanned at the Children’s Hospital Boston
(CHB) and another 10 subjects scanned at the University of North Carolina
(UNC), and consists of T1-weighted, T2-weighted and FLAIR scans with isotropic
resolution of 0.5mm, along with expert segmentations provided by CHB. Expert
segmentations from UNC are currently also available, but during the time of the
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challenge this was not the case, thus we also only use the CHB segmentations
for training to ensure a fair comparison [SLC+08]. The volumes are of size
512 × 512 × 512, so we downsampled them by a factor of two as is often done
for this data set [WRR13, GCM+11].

4.4.3 Implementation

Because we only had 20 manual segmentations available for training the RBM
model, which is quite a small number, we decided to augment the dataset by
applying two rotations of 10 and −10 degrees around the three main axes.
This resulted in 6 extra training scans per subject for a total of 140 manual
segmentations in the augmented dataset. We trained different RBM models
with either K = 20 or K = 40 hidden unit groups and with filter sizes of
(Nw ×Nw ×Nw), where Nw was either 5, 7 or 9. Each model was trained with
5600 gradient steps in the PCD algorithm [Tie08]. The training time for each
model was approximately 3 days using a Matlab implementation on a machine
with a GeForce GTX Titan 6GB GPU.

Based on pilot experiments, we found that using two mixture components for
white matter worked well (i.e., Gwm = 2), provided that one of the Gaussians
is constrained to be a near-uniform distribution that can collect model outliers
other than white matter lesions (in practice we use a Gaussian with a fixed scalar
covariance matrix 106I and weight 0.05). Finally, as the main characteristic of
white matter lesions is that they appear hyper-intense compared to normal white
matter in FLAIR contrast [GLFN+13], we decided to only allow voxels to be
assigned to lesion in the Gibbs sampling process if their intensity is higher than
the estimated white matter mean in FLAIR.

The segmentation algorithm was implemented in Matlab, except for the mesh
deformation part, which was written in C++, and the RBM convolutions, which
were performed on a GPU. In our experiments, estimation of the parameters
{θ̂d, x̂} was performed on a cluster where each node has two quad-core Xeon
5472 3.0GHz CPUs and 32GB of RAM. Only one core was used in the exper-
iments, taking roughly 1.7 hours per subject. Gibbs sampling was again done
on a machine with a GeForce GTX Titan 6GB GPU. We generated S = 150
samples, collected after an initial burn-in of 50 sampling steps, taking approx-
imately 10 minutes per subject. Thus the full segmentation time for a single
target scan is roughly two hours.
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4.4.4 Evaluation set-up

As the evaluation metrics, we used the voxel-wise true positive rate TPR =
TP

TP+FN and the positive predictive value PPV = TP
TP+FP . Here TP, FP and

FN count the true positive, false positive and false negative voxels compared
to the expert segmentation. This allows us to compare our results to the ones
reported in [GCM+11] and [WRR13]. Because we need data both to train
the cRBM model and to tune the parameters of the model, i.e., the number
of hidden groups K, the size of the filters Nw, the width factor of the lesion
Gaussians γ and the temporary spatial prior π, we performed the evaluation in
a cross-validation setting. In particular, we divided the available data set of 20
subjects randomly into five distinct sets, each having 16 training subjects and 4
test subjects. In each of the five groups, only the training subjects were used to
train the lesion shape models and to tune the model parameters, whereas the
4 subjects were only used for testing. Using each 16 subject set, we trained a
cRBM model using the different filter sizes and number of hidden unit groups
specified in the implementation section. For the likelihood parameters we used
the following values: γ = {5, 10, 20, 40, 100} and π = {0.1, 0.2, 0.3, 0.4, 0.5}.
The optimal parameter combination (γ, π,Nw,K) was then found on the 16
subjects by searching for the combination which maximizes the product of the
mean TPR and PPV over the subjects. This parameter combination was then
used for segmenting the 4 test subjects. We decided to use the product of the
TPR and PPV as a measure of fitness as it encourages parameter combinations
that do not over- or under-segment the lesions.

4.4.5 Results

The TPR and PPV scores for the different lesion segmentation methods are
shown in table 4.1. On average the proposed method clearly outperforms the also
unsupervised patch-based dictionary learning approach, and achieves slightly
better average scores than the supervised random forest classifier. Note that all
of the three methods perform better than the MICCAI 2008 challenge winner,
which was based on an unsupervised GMM approach [SLAM08], and achieved
an average TPR of 0.21 and an average PPV of 0.30. In figure 4.10 example
segmentations from three subjects in the data set are shown.
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4.5 Discussion

The results show that our generative lesion approach compares well to cur-
rent state-of-the-art methods in lesion segmentation performance, while being
sequence-adaptive and also segmenting the surrounding neuroanatomy to 39 dif-
ferent cortical and sub-cortical structures. The MICCAI 2008 challenge dataset
only includes manual segmentations of lesions, so validation of the automatic
segmentations of the healthy structures could not be performed. However, visual
inspection of the 20 cases did not show any significant failures in the whole-brain
segmentation component of the method. We note that neither of the bench-
mark methods segments other structures than the lesions. Furthermore, the RF
classifier, being a supervised approach, is specifically trained on the contrast-
properties of this particular dataset, and is thus less generally applicable than
the proposed method and the patch-based dictionary learning approach.

Also worth mentioning is that the scores reported by the unsupervised dictio-
nary learning approach [WRR13] are not entirely comparable to the other two
approaches on the UNC subjects, because in [WRR13] the authors have used
the segmentations from the expert rater from UNC for validating these subjects.
This explains the significantly better scores reported on the UNC01 subject by
the dictionary learning approach. As mentioned before, at the time of the chal-
lenge only segmentations from CHB were available, so we have only used these
for training and validation. However, this brings us to one of the main issues
in validating the automatic methods against ground truth data: even manual
segmentations of the same subject have a large variability. The two ground
truths from CHB and UNC show an overlap of only 0.68 for the MICCAI data
set [GLFN+13]. This variation is due to the somewhat ambiguous definition of
the white matter lesions as "Areas that are hyperintense with respect to normal-
appearing white matter on T2w or FLAIR images that are not due to normal
structures." [GLFN+13]. As no specific intensity-limit has been defined, it is
up to the expert raters to interpret where such a limit should be placed. How-
ever, for validation purposes comparing against the ground truth is somewhat
unavoidable, but it should be kept in mind that the gold standard might not be
perfect in itself.

Even though the proposed framework already performs well, there is still room
for improvement. Next we will discuss some difficulties encountered during the
project related to learning and applying the modeling framework, and discuss
how these problems could be solved.

Difficulties related to the cRBM model. One of the main difficulties
in the modeling framework is related to learning a good cRBM model of the
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lesions. Because the cRBM model has a lot of tunable parameters, it is very
prone to over-fitting especially with the small amount of training data we have.
Although in this work we augmented the dataset by rotating the training data
to produce 112 labelings to train on for each 16 subject training set, a cRBM
model with filter size 7× 7× 7, 20 hidden groups and a visual bias term of size
120 × 120 × 120 still has in total 73 ∗ 20 + 20 + 1203 = 1734880 parameters
to tune. Interestingly the shape model configuration that was chosen in all
cross-validation rounds was the one with filter size Nw = 5 and K = 20 hidden
groups, which is the model with the fewest parameters. As all the different
shape models were trained for the same number of gradient steps, this implies
that the models with more parameters have either over-fitted to the training
data or that the learning did not converge to a good solution. The bias term
of the visual units can be especially problematic, as some of the voxels might
not have a lesion in any of the training samples. The model could thus learn
that this particular voxel should never have a lesion. This is similar to the over-
fitting problem we discussed with relation to the standard probabilistic atlases
in chapter 3. A related problem is that we can not track the development of the
log-likelihood of the model during learning, because the normalization term can
not be computed in practice. Therefore, we can not know when the learning has
converged, or compare the different model configurations. The shape models
thus have to be validated by either looking at the samples they produce or
measuring segmentation performance of the different configurations after the
model parameters have been learned.

These problems can, however, be overcome or at least alleviated. A straight-
forward solution to the over-fitting problem would be to acquire more expert
labelings, but as discussed before this is very time consuming and costly. There-
fore it is unlikely to ever have as large training sets as are used to train some of
the deep learning models5, in a medical image analysis task. However, it should
be possible to obtain a training set on the order of a hundred expert lesion seg-
mentations. This would already be very helpful for training the shape model. A
more immediate solution would be to restrict the number of parameters related
to the visual bias, which includes most of the model parameters. In [LGRN09],
where the cRBM model is introduced, the authors use a shared visible bias over
the full observation layer. This approach might not be optimal for our task as
the voxel-wise bias term helps to encode probable locations for the lesions, but
either enforcing parameter sharing between neighboring voxels or including a
smoothness prior on the visual bias parameters would likely be helpful. In the
case of non-convolutional RBMs a L2-penalty is often added to the gradient of
the filters in order to limit the filter values for becoming too large [Hin12]. The
same approach could be used on the visual bias parameters, so that values of

5The famous ImageNet database aimed at training models for image classification has over
14 million examples.
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the bias would not become too negative (never a lesion) or too positive (always
a lesion). All these approaches result in a lower effective number of parameters
to learn, while still encoding enough information about the spatial distribution
of the lesions. In [EHWW13] the authors show that stacking more hidden layers
on top of each other in the RBM model can also help in avoiding over-fitting.
However, the model proposed in the article does not readily scale to large im-
ages, but it would definitely be worthwhile to experiment with a model with
more than just one hidden layer.

Regarding the training of RBM models, a lot of research has been put into
how the training can be done in a robust manner. This has mainly focused
on improving the approximation of the model expectation term in the gradient
expression. There are two problems related to the CD gradient approximation:
first, because the sampling is initialized with a training example the samples
do not come from the "true" model distribution, and second, if the absolute
values of the parameters become very large, the sampling chain will mix very
slowly and learning is stagnated [FI12]. The PCD learning algorithm, used in
this work, tries to address the bias problem by not initializing the sampling
chain with the learning samples, but might still suffer from low mixing rates of
the chain. Good results have been obtained using a so-called parallel tempering
(PT) learning algorithm [DCB+10], where multiple smoothed replicas of the true
model sampling chain are run in parallel6. Swaps between the chains are done
randomly which increases the mixing of the chains. However, this approach is
computationally, and especially memory-wise, quite demanding due to the many
sampling chains that need to be updated. One interesting thing to try, would be
to estimate the log-likelihood of the model while learning. Although computing
the normalization term is intractable, it can be approximated using annealed
importance sampling (AIS) [Sal08]. Even if the approximation would not be
perfect, it could give us some kind of idea whether the learning has converged
or not.

Difficulties related to the likelihood model. Exact modeling of the lesion
intensities is very difficult due to their varied appearance within the MR scans.
This can be seen in fig. 4.10 middle row, where some lesion in the FLAIR scan
are very bright whereas other are darker. Lesions close to gray matter structures
can easily be assigned to gray matter because both appear brighter than white
matter in the FLAIR scans. Furthermore, the FLAIR scans exhibit hyperin-
tense regions close to the ventricles [NGS+09], which have appearance similar
to lesions and can lead to false positive detections. The proposed framework
can reduce the false positive detections related to gray matter structures due to
the detailed probabilistic atlas, but the hyperintense artifacts can sometimes be

6In similar fashion to simulated annealing.
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very hard to differentiate from lesions.

In [TW15], the authors propose to alleviate the problem related to the overlap-
ping intensity profiles of lesions and healthy tissues by combining subject-specific
intensity models with prior information in the form of a local intensity-atlas
learned from training scans. Although this is shown to be beneficial in the arti-
cle, we would like our model to be fully unsupervised so that it can be readily
used on MR images acquired with different scanners or scan sequences, and thus
this is not a feasible approach. However, some prior information related to the
lesion intensities can be included into the model. As discussed in the implemen-
tation section, the lesions typically appear hyper-intense compared to normal
white matter in FLAIR-sequences. In this work, we exploited this information
when sampling from the model by allowing voxels to be labeled as lesion only
if their intensity was higher than the estimated mean white matter intensity in
FLAIR. This restriction could also be built into the model, using, for example,
truncated or skew-normal distributions [PHW+09]. The skew-normal distribu-
tions have an extra parameter controlling the "skewness" of the distribution,
which pushes the distribution towards either side of the mean value dependent
on the parameter. We have done some initial tests with replacing the Gaussian
lesion likelihood function with a multivariate skew-normal distribution, and it
seems it might be a better model of lesion intensities although further experi-
ments are needed.

Another way to get a more specific model of lesion intensities would be to try
to incorporate the cRBM model into the parameter estimation. The constant
spatial prior which is now used during the parameter estimation does not allow
for pinpointing probable lesion locations inside white matter. Including the more
specific cRBM lesion prior into the parameter estimation phase could allow us
to learn the GMM parameters for lesions separately from the white matter
GMM parameters. This would, furthermore, obviate need for the user-specified
intensity-model parameters γ and π, which would make the model more robust.
As discussed in the inference section, the cRBM model would complicate the
parameter estimation because of the inter-voxel connections. This complication
could be overcome using a mean-field approximation.

Despite these difficulties the modeling framework already shows segmentation
accuracy on par with state-of-the-art methods. We are quite confident that with
the suggested improvements, the segmentation performance of the model can be
further increased while also making the model more robust and independent of
user-specified parameters. We plan to validate the proposed method on larger
data sets of white matter lesions coming from different imaging centers and
scanners in order to thoroughly test the contrast-adaptiveness of the approach.
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Chapter 5

Conclusions and
contributions

During this PhD project we have developed generative models for segmenting
both healthy and pathological brains. We have shown that these types of models
can achieve good segmentation performance in both tasks, while being robust
to changes in intensity-properties of input scans and able to handle the type
of multi-contrast MR data typically used in everyday clinical practice. The
adopted generative approach has also two other attractive properties: first, it is
a very flexible framework which allows us to extend the models to account for
different diseases and abnormalities in the brain. This is achieved by including
new prior distributions that capture the properties of the abnormality we aim
to model as shown in chapter 4. Second, because the model is generative, we
can sample from it which allows us to evaluate how well the model represents
the data. This makes for a very interpretable model, where we can see why
the model might fail in some cases and why it is successful in others. When
using discriminative classifier-based approaches this can be much harder, as the
learned parameters might not be directly meaningful in relation to the data,
especially when complex classifiers with a large number of parameters are used.

The first part of the project was concentrated on developing a generative model
for whole-brain segmentation, which built upon modeling approaches typically
used in tissue segmentation. Although we found that the proposed method’s
segmentation accuracy trailed that of the very best multi-atlas approaches on
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an intra-scanner segmentation task, it was shown to be more robust than the
benchmark methods when the intensity and resolution properties of the input
and training scans do not exactly match. In practice, because manual seg-
mentations are very time consuming to obtain, the latter scenario might be
more realistic as we often face situations where the training and target data
are acquired on different imaging systems. Due to the parametric modeling
approach the method also has a small computational footprint, yielding signif-
icantly faster execution times compared to the benchmark tools. Furthermore,
the proposed approach was shown to be robust against small training set sizes
and able to readily handle multi-contrast data, although for the healthy whole-
brain segmentation task, this was shown to not give any significant improvement
in terms of segmentation accuracy. Given these properties, our segmentation
method would be very useful as an out-of-the-box tool for fast processing of
different kinds of MR data sets. Furthermore, because the training labelings
are summarized as an atlas which can be shipped along with the software, the
potential user does not need to have their own training data in order to do seg-
mentations. When using multi-atlas approaches it can be difficult to get legal
permission to distribute the manual labelings, thus requiring that the user has
access to training data.

The second part of the project was devoted to including models for MS lesions
into the generative framework. The aim was to do simultaneous whole-brain
and lesion segmentation in the same contrast-adaptive manner as for the healthy
brains. To achieve this, we integrated a novel lesion shape model based on a
convolutional restricted Boltzmann machine into the healthy brain segmentation
framework by defining new prior and likelihood distributions that account for
the presence of lesions. The segmentation accuracy of the proposed model was
shown to compare favourably to state-of-the-art methods, while also providing
a segmentation of the surrounding neuroanatomy. Having access to not only the
lesion segmentations, but also to the segmentations of different brain structures,
especially deep gray matter structures such as the thalamus, could be highly
valuable for identifying biomarkers related to the progression of MS disease.

5.0.1 Other contributions

During the project I have had the chance to be a part of many other fruitful
collaborations. Here I list some of the other works that I have contributed to,
but which have not been the main focus of the project.

The method for tumor segmentation presented in paper D is based on a very
similar framework that was used for lesion segmentation in this project. Here
two cRBM models are trained: one to model the full tumor and the other for
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modeling the tumor core. Inference is carried out through sampling from the
full set of parameters and structure labels, and the final segmentation is ob-
tained using majority voting as described in chapter 4. In this work I closely
collaborated with the first author to develop the code to train the cRBM models
and to sample from the resulting model, as well as developing the theoretical as-
pects of the model. Many fruitful discussion about the practical and theoretical
problems related to the framework were held also aiding me in my own work.
The tumor segmentation model was part of the 2015 multimodal brain tumor
segmentation challenge (BRATS) organized in the medical image computing
and computer assisted intervention (MICCAI) conference, where it was ranked
third best among all methods and first among fully automated segmentation
methods. In the future, the plan is to include the mesh-based anatomical prior
into the model to yield a joint whole-brain and tumor segmentation framework.

I also collaborated on another tumor segmentation model, presented in paper
E, which is based on the currently very popular convolutional neural network
(CNN) classifier. Here three 2D CNNs are trained for each orthogonal im-
age plane (axial, sagittal and coronal) and each voxel is then segmented by
performing majority-voting on the outputs of the three CNNs. The full segmen-
tation pipeline has three steps: first, the full tumor region is segmented from
the background using the CNN outputs, next the segmentation is refined us-
ing a cellural-automaton based seed growing method known as grab-cut, finally
the different tumor compartments are segmented using again three orthogonal
CNNs which were trained to separate the different compartments from the rest
of the tumor. The framework was shown to give competitive performance when
applied to the MICCAI tumor challenge data. In this work I mainly helped with
formulating the segmentation pipeline on a general level and also with writing
and proof-reading the paper.

Finally, paper F is a book chapter which gives an overview of the generative
segmentation framework for tissue classification. Here my main contribution was
making the visualizations which show how segmentation performance improves
when the bias field is properly modeled.
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Chapter 6

Future work

In this chapter, we point to possible new avenues for future applications and
research based on the models described in the thesis.

6.1 Whole brain segmentation

An interesting research direction would be to extend the segmentation frame-
work to include an explicit model of longitudinal data. In the experiments in
chapter 3, we used the test-retest data mainly to see if including multi-contrast
data would increase the robustness of the segmentations compared to using
uni-contrast data only. However, each time point was treated independently
although we know that the brain anatomy between the two time points should
be fairly similar as all the subjects were healthy. This information could be
incorporated explicitly into the model. A longitudinal model would allow us to
robustly track the shape and volume changes in different brain structures, which
could be used for monitoring disease development in central nervous system dis-
orders such as Alzheimer’s or Huntington’s disease [RSRF12b]. Longitudinal
modeling also in the case of MS disease would be valuable, as clinicians are
often interested in how the lesions change over time, and not so much about the
actual lesion segmentations. Furthermore, longitudinal tracking of regional at-
rophy patterns of patients with different MS disease subtypes, such as secondary
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progressive MS or relapsing-remitting MS, could give insight into what areas of
the brain are mainly affected by the different disease phenotypes [PRG+05].

6.2 Lesion segmentation

As an immediate next step, we plan to evaluate the lesion segmentation perfor-
mance on more data sets, to evaluate the robustness of the method. After that,
we will validate the healthy structure segmentations provided by the model on
lesioned data. However, in most lesion data sets manual segmentations of the
surrounding neuroanatomy are not available, and direct validation using Dice
scores can not be done. Thus, we aim to reproduce some known disease effects
between MS patients and healthy subjects, such as the atrophy of deep gray
matter structures related to MS. The method should be able to differentiate
healthy and diseased populations based on the reduction in volume of struc-
tures like the thalamus and pallidum. Once the accuracy of the segmentations
has been established, we can start trying to exploit the rich set of morphological
measures for many different applications such as trying to separate patients with
different disease subtypes, or predicting disability scores of individual patients.

Related to disability score prediction, it would likely be beneficial to incorporate
patient-specific information beyond the MR data into the segmentation model.
This could be done by conditioning the cRBM model on the demographic and
clinical data, yielding a model similar to the so-called Bayesian Spatial Gen-
eralized Linear Mixed Models (BSGLMM) presented in [GMLB+14]. Here the
authors try to predict MS disease subtype of different patients based on the
subject-specific manual lesion segmentation and clinical information. In that
work only nearest neighbour spatial regularization was used, so it would be in-
teresting to see if the richer spatial model encoded by the cRBM would give
increased predictive performance. Furthermore, including the clinical informa-
tion into the framework would likely also aid the segmentation accuracy as the
lesion load and spatial layout of the lesions varies with age and disease subtype.
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Abstract. In this paper we propose a method for whole brain parcel-
lation using the type of generative parametric models typically used in
tissue classification. Compared to the non-parametric, multi-atlas seg-
mentation techniques that have become popular in recent years, our
method obtains state-of-the-art segmentation performance in both cor-
tical and subcortical structures, while retaining all the benefits of gen-
erative parametric models, including high computational speed, auto-
matic adaptiveness to changes in image contrast when different scan-
ner platforms and pulse sequences are used, and the ability to handle
multi-contrast (vector-valued intensities) MR data. We have validated
our method by comparing its segmentations to manual delineations both
within and across scanner platforms and pulse sequences, and show pre-
liminary results on multi-contrast test-retest scans, demonstrating the
feasibility of the approach.

1 Introduction

Computational methods for automatically segmenting magnetic resonance (MR)
images of the brain have seen tremendous advances in recent years. So-called
tissue classification methods, which aim at extracting the white matter, gray
matter, and cerebrospinal fluid, are now well established. In their simplest form,
these methods classify voxels independently based on their intensity alone, al-
though state-of-the-art methods often incorporate a probabilistic atlas – a para-
metric representation of prior neuroanatomical knowledge that is learned from
manually annotated training data – as well as explicit models of MR imaging
artifacts [1–3]. Tissue classification techniques have a number of attractive prop-
erties, including their computational speed and their ability to automatically
adapt to changes in image contrast when different scanner platforms and pulse
sequences are used. Furthermore, they can readily handle the multi-contrast
(vector-valued intensities) MR scans that are acquired in clinical imaging, and
can include models of pathology such as white matter lesions and brain tumors.

Despite these strengths, attempts at expanding the scope of tissue classifi-
cation techniques to also segment dozens of subcortical structures have been
less successful [4]. In that area, better results have been obtained with so-called

K. Mori et al. (Eds.): MICCAI 2013, Part I, LNCS 8149, pp. 727–734, 2013.
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multi-atlas techniques – non-parametric methods in which a collection of manu-
ally annotated images are deformed onto the target image using pair-wise regis-
tration, and the resulting atlases are fused to obtain a final segmentation [4, 5].
Although early methods used a simple majority voting rule, recent developments
have concentrated on exploiting local intensity information to guide the atlas fu-
sion process, which is particularly helpful in cortical areas for which accurate
inter-subject registration is challenging [6, 7].

Although multi-atlas techniques have been shown to provide excellent segmen-
tation results, they do come with a number of distinct disadvantages compared
to tissue classification techniques. Specifically, their non-parametric nature en-
tails a significant computational burden because of the large number of pair-wise
registrations that is required for each new segmentation. Furthermore, their ap-
plicability across scanner platforms and pulse sequences is seldom addressed,
and it remains unclear how multi-contrast MR and especially pathology can be
handled with these methods.

In this paper, we revisit tissue classification modeling techniques and
demonstrate that it is possible to obtain cortical and subcortical segmentation
accuracies that are on par with the current state-of-the-art in multi-atlas segmen-
tation, while being dramatically faster. Following a modeling approach similar
to [1, 3] for tissue classification, but with a carefully computed probabilistic atlas
of 41 brain substructures, we show excellent performance both within and across
scanner platforms and pulse sequences. Compared to other methods aiming at
sequence adaptive whole brain segmentation, we do not require specific MR se-
quences for which a physical forward model is available [8], and we segment
many more structures without a priori defined contrast-specific initializations as
in [2].

2 Modeling Framework

We use a Bayesian modeling approach, in which a generative probabilistic image
model is constructed and subsequently “inverted” to obtain automated segmen-
tations. We first describe our generative model, and subsequently explain how
we use it to obtain automated segmentations. Because of space constraints, we
only describe the uni-contrast case here (i.e., a scalar intensity value for each
voxel); the generalization to multi-contrast data is straightforward [3].

2.1 Generative Model

Our model consists of a prior distribution that predicts where anatomical labels
typically occur throughout brain images, and a likelihood distribution that links
the resulting labels to MR intensities. As a segmentation prior we use a recently
proposed tetrahedral mesh-based probabilistic atlas [9], where each mesh node
contains a probability vector containing the probabilities for the K different brain
structures under consideration. The resolution of the mesh is locally adaptive,
being sparse in large uniform regions and dense around the structure borders.
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The positions of the mesh nodes, denoted by θl, can move according to a de-
formation prior p(θl) that prevents the mesh from tearing or folding onto itself.
The prior probability of label li ∈ {1, ..., K} in voxel i is denoted by pi(li|θl),
which is computed by interpolating the probability vectors in the vertices of
the deformed mesh. Assuming conditional independence of the labels between
voxels given the mesh node positions, the prior probability of a segmentation is
then given by p(l|θl) =

∏I
i pi(li|θl), where l = (l1, ..., lI)

T denotes a complete
segmentation of an image with I voxels.

For the likelihood distribution, we associate a mixture of Gaussian distribu-
tions with each neuroanatomical label to model the relationship between seg-
mentation labels and image intensities [1]. To account for the smoothly varying
intensity inhomogeneities that typically corrupt MR scans, we model such bias
fields as a linear combination of spatially smooth basis functions [3]. Letting
d = (d1, ..., dI)

T denote a vector containing the image intensities in all voxels,
and θd a vector collecting all bias field and Gaussian mixture parameters, the
likelihood distribution then takes the form p(d|l, θd) =

∏I
i=1 pi(di|li, θd), where

pi(d|l, θd) =

Gl∑

g=1

N
(
d−

P∑

p=1

cpφ
i
p

∣∣∣μlg, σ
2
lg

)
wlg

and N
(
d
∣∣μ, σ2

)
= 1√

2πσ2
exp

(
− (d−μ)2

2σ2

)
. Here Gl is the number of Gaussian

distributions associated with label l; and μlg, σ2
lg, and wlg are the mean, vari-

ance, and weight of component g in the mixture model of label l. Furthermore,
P denotes the number of bias field basis functions, φi

p is the basis function p
evaluated at voxel i, and cp its coefficient. To complete the model, we assume a
flat prior on θd: p(θd) ∝ 1.

2.2 Inference

Using the model described above, the most probable segmentation for a given MR
scan is obtained as l̂ = argmaxl p(l|d) = arg maxl

∫
p(l|d, θ)p(θ|d)dθ, where θ =

(θd, θl)
T collects all the model parameters. This requires an integration over all

possible parameter values, each weighed according to its posterior p(θ|d). Since
this integration is intractable we approximate it by estimating the parameters
with maximum weight θ̂ = argmaxθ p(θ|d), and using the contribution of those
parameters only:

l̂ = argmax
l

p(l|d) ≈ arg max
l

p(l|d, θ̂) = arg max
{l1,...lI}

I∏

i=1

pi(li|di, θ̂). (1)

The optimization of eq. (1) is tractable because it involves maximizing
pi(li|di, θ̂) ∝ pi(di|li, θ̂d)pi(li|θ̂l) in each voxel independently.

To find the optimal parameters we maximize

p(θ|d) ∝ p(d|θ)p(θ) ∝
(

I∏

i=1

K∑

l=1

pi(di|l, θd)pi(l|θl)

)
p(θl) (2)
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by iteratively keeping the mesh positions θl fixed at their current values and
updating the remaining parameters θd, and vice versa, until convergence. For
the mesh node position optimization we use a a standard conjugate gradient
optimizer, and for the remaining parameters a dedicated generalized expectation-
maximization (GEM) algorithm similar to [3]. In particular, the GEM optimiza-
tion involves iteratively computing the following “soft” assignments in all voxels
i ∈ {1, . . . , I}:

qlg
i =

wlgN
(
di −

∑P
p=1 cpφ

i
p

∣∣μlg, σ
2
lg

)
pi(l|θl)

∑K
k=1 pi(di|k, θd)pi(k|θl)

, ∀l ∈ {1, . . . , K}, ∀g ∈ {1, . . . , Gl}

based on the current parameter estimates, and subsequently updating the pa-
rameters accordingly:

μlg ←
∑I

i=1 qlg
i

(
di −

∑P
p=1 cpφ

i
p

)

∑I
i=1 qlg

i

, σ2
lg ←

∑I
i=1 qlg

i

(
di − μlg −

∑P
p=1 cpφ

i
p

)2

∑I
i=1 qlg

i

,

wlg ←
∑I

i=1 qlg
i∑Gl

g=1

∑I
i=1 qlg

i

, (c1, . . . , cP )T ←
(
AT SA

)−1
AT Sr,

where

A =

⎛
⎜⎝

φ1
1 . . . φ1

P
...

. . .
...

φI
1 . . . φI

P

⎞
⎟⎠ , S = diag(si), si =

K∑

l=1

Gl∑

g=1

qlg
i

σ2
lg

,

r = (r1, .., rI)
T , ri = di − d̃i, d̃i =

∑K
l=1

∑Gl

g=1 slg
i μlg

∑K
l=1

∑Gl

g=1 slg
i

.

3 Implementation

We used a training dataset of 39 T1-weighted scans and corresponding expert
delineations of 41 brain structures to build our mesh-based atlas and to run pilot
experiments to tune the settings of our algorithm. The scans were acquired on a
1.5T Siemens Vision scanner using a magnetisation prepared, rapid acquisition
gradient-echo (MPRAGE) sequence (voxel size 1.0 × 1.0 × 1.0 mm3). The 39
subjects are a mix of young, middle-aged, and old healthy subjects, as well as
patients with either questionable or probable Alzheimer’s disease [6].

We used 15 randomly picked subjects out of the available 39 to build our prob-
abilistic atlas. The remaining subjects were used to find suitable settings for our
algorithm. After experimenting, we decided to restrict sub-structures with simi-
lar intensity properties to having the same GMM parameters, e.g., left and right
hemisphere white matter are modeled as having the same intensity properties.
Further, we experimentally set a suitable value for the number of Gaussians for
each label (variable Gl): three for gray matter structures, cerebro-spinal fluid,
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and non-brain tissues; and two for white matter structures, thalamus, putamen,
and pallidum.

To initialize the algorithm, we co-register our atlas to the target image using
an affine transformation. For this purpose we use the method described in [10],
which uses atlas probabilities, rather than an intensity template, to drive the
registration process. As is common in the literature, the MR intensities are log-
transformed because of the additive bias field model that is employed [3].

4 Experiments

To validate the proposed algorithm, we performed experiments on two datasets
of T1-weighted images that were manually labeled using the same protocol as
the training data, each acquired on a different scanner platform and with a
different pulse sequence. We also show preliminary results on a third dataset
that consists of test-retest scans of multi-contrast (T1- and T2-weighted) images
without manual annotations. We emphasize that we ran our method on all three
datasets using the exact same settings.

Although our method segments 41 structures in total, some of the structures
are not typically validated (e.g., left/right choroid plexus, left/right vessels),
thus we here report quantitative results for a subset of 23 structures: cerebral
white matter (WM), cerebellum white matter (CWM), cerebral cortex (CT),
cerebellum cortex (CCT), lateral ventricle (LV), hippocampus (HP), thalamus
(TH), caudate (CA), putamen (PU), pallidum (PA) and amygdala (AM), for
both the left and the right side, along with brainstem (BS). In order to gauge
the performance of our method with respect to the current state-of-the-art in
the field, we also report results for the well-known FreeSurfer package [11] and
two multi-atlas segmentation methods: BrainFuse [6], which uses a Gaussian
kernel to perform local intensity-based atlas weighing, and Majority Voting [5],
which weighs each atlas equally. We note that all three competing methods
used the same training data described in section 3, ensuring a fair comparison:
FreeSurfer to build its label and intensity models; and the multi-atlas methods to
perform the pair-wise atlas propagations and to tune optimal parameter settings.
All three competing methods apply the same preprocessing stages to skull-strip
the images, remove bias field artifacts, and perform intensity normalization as
described in [11]. The proposed method works directly on the input data itself
without preprocessing. For our implementation of Majority Voting, we used the
pair-wise registrations computed by BrainFuse.

Figure 1(a) shows the Dice scores (averaged across left and right) between the
automated and manual segmentations for the four methods on our first dataset,
which consists of T1-weighted images of 13 subjects acquired with the same
Siemens scanner and MPRAGE pulse sequence as the training data. Note that
FreeSurfer, BrainFuse, and Majority Voting are specifically trained for this type
of data, whereas the proposed method is not. It can be seen that each method
gives quite accurate and comparable segmentations, except for majority voting,
which clearly trails the other methods. The mean Dice score across these struc-
tures is 0.859 for the suggested method, 0.864 for BrainFuse, 0.853 for FreeSurfer,
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and 0.793 for Majority Voting. Table 1 shows the execution times for the meth-
ods. The experiments were run on a cluster where each node has two quad-core
Xeon 5472 3.0GHz CPUs and 32GB of RAM. Only one core was used for the
experiments. The multi-atlas methods require computationally heavy pair-wise
registrations and thus have the longest run times, followed by FreeSurfer which
is somewhat faster. The suggested method is clearly the fastest of the four, being
approximately 26 times faster than BrainFuse or Majority Voting and 15 times
faster than FreeSurfer. We note that our method is implemented using Matlab
with the atlas deformation parts wrapped in C++, and in no way optimized for
speed. To conclude our experiments on this dataset, table 2 shows how the num-
ber of training subjects in the atlas affects the mean segmentation accuracy of
the proposed method, indicating that the method benefits from the availability
of more training data.

Figure 1(b) shows the Dice scores on our second dataset, which consists of 14
T1-weighted MR scans that were acquired with a 1.5T GE Signa scanner using a
spoiled gradient recalled (SPGR) sequence (voxel size 0.9375×0.9375×1.5 mm3).
The overall segmentation accuracy of each method is decreased compared to the
Siemens data, which is likely due to poorer image contrast as a result of the dif-
ferent pulse sequence and a slightly lower image resolution. Both FreeSurfer and
our method are able to sustain an overall accuracy of 0.798, while the accuracies
of BrainFuse and Majority Voting decrease to 0.746 and 0.70 respectively. The
relatively good performance of FreeSurfer, which is trained specifically on the
Siemens image contrast, can be explained by its in-built renormalization pro-
cedure for T1 acquisitions, which applies a multi-linear atlas-image registration
and a histogram matching step to update the class-conditional densities for each
structure [12]. The multi-atlas methods, in contrast, directly incorporate the
Siemens contrast in the segmentation process, and would likely benefit from a
retuning of their parameters for this specific application. Note that the proposed
method requires no renormalization or retuning to perform well.

As a preliminary demonstration of the multi-contrast segmentation abilities of
our method, figure 1(c) shows a measurement of volume differences between both
uni-contrast (T1) and multi-contrast (T1 + T2) repeat scans of five individuals.
For each subject, a multi-contrast scan was acquired with an identical Siemens
3T Tim Trio scanner at two different facilities, with a interval between the two
scan sessions of maximum 3 months. The scans consist of a very fast (under 5
min total acquisition time) T1-weighted and bandwidth-matched T2-weighted
image (multi-echo MPRAGE sequence for T1 and 3D T2-SPACE sequence for
T2, voxel size 1.2 × 1.2 × 1.2 mm3). The volume difference in a structure was
computed as the absolute difference between the volumes estimated at the two
time points, normalized by the average of the volumes, both when only the
T1-weighted image was used, and when T1 and T2 were used. The figure shows
that our method seems to work as well on multi-contrast as on uni-contrast data,
opening possibilities for simultaneous brain lesion segmentation in the future. An
example segmentation of one of the multi-contrast scans is shown in figure 2.
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Fig. 1. (a) Dice
scores of the first
dataset (Siemens).
FreeSurfer is red,
BrainFuse blue, Ma-
jority Voting black,
and the suggested
method green. (b)
Dice scores of the
second data set
(GE). (c) Normalized
volume differences:
multi-contrast data
is cyan, and T1-only
black. On each box,
the central mark is
the median, the edges
of the box are the
25th and 75th per-
centiles, and outliers
are marked with a
’+’.

Table 1. Computational times for
the four different methods

Method Comp. time(h)

BrainFuse ∼ 17

Majority voting ∼ 16

FreeSurfer ∼ 9.5

Suggested method ∼ 0.6

Table 2. Average Dice score across
all structures for the first (Siemens)
dataset vs. number of training subjects

Number of subjects Mean Dice score

5 0.820

9 0.843

15 0.859

Fig. 2. An example of a multi-
contrast segmentation gener-
ated by the proposed method
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5 Discussion

In this paper we proposed a method for whole brain parcellation using the type
of generative parametric models typically used in tissue classification techniques.
Comparisons with current state-of-the-art methods demonstrated excellent per-
formance both within and across scanner platforms and pulse sequences, as well
as a large computational advantage. Future work will concentrate on a more
thorough validation of the method’s multi-contrast segmentation performance.
We also plan to use other validation metrics beyond the mere spatial overlap
used in this paper, such as volumetric and boundary distance measures.
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Abstract

Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate automated segmenta-
tion of anatomical structures. A desirable feature for such segmentation methods – especially when they are publicly
released – is to be robust against changes in acquisition platform and imaging protocol. In this paper we validate the
performance of a segmentation algorithm designed to meet these requirements, building upon generative parametric
models previously used in tissue classification. The method is tested on four different datasets acquired with different
scanners and pulse sequences, demonstrating comparable accuracy to state-of-the-art methods on T1-weighted scans
while being one to two orders of magnitude faster. The proposed algorithm is shown to be robust against small training
datasets, and readily handles images with different MRI contrast as well as multi-contrast data. The software used
in this article is publicly available and can be downloaded from the Neuroimaging Informatics Tools and Resources
Clearinghouse (http://www.nitrc.org)1.

Keywords: MRI, Segmentation, Atlases, Parametric modeling, Unsupervised modeling

1. Introduction

So-called whole-brain segmentation techniques aim
to automatically label a multitude of cortical and sub-
cortical regions from brain MRI scans. Recent years
have seen tremendous advances in this field, enabling,
for the first time, fine-grained comparisons of regional
brain morphometry between large groups of subjects.
Current state-of-the-art whole-brain segmentation algo-
rithms are typically based on supervised models of im-
age appearance in T1-weighted scans, in which the rela-
tionship between intensities and neuroanatomical labels
is learned from a set of manually annotated training im-
ages.

This approach suffers from two fundamental limita-
tions. First, segmentation performance often degrades
when the algorithms are applied to T1-weighted data
acquired on different scanner platforms or using dif-
ferent imaging sequences, due to subtle changes in the

∗Corresponding author, email: oupu@dtu.dk
1We will upload the software to NITRC when this work is pub-

lished.

obtained image contrast (Han and Fischl, 2007; Roy
et al., 2013). And second, the exclusive focus on only
T1-weighted images hinders the ultimate translation of
whole-brain segmentation techniques into clinical prac-
tice, where they hold great potential to support personal-
ized treatment of patients suffering from brain disease.
This is because clinical imaging uses additional MRI
contrast mechanisms to show clinically relevant infor-
mation, including T2-weighted or fluid attenuated in-
version recovery (FLAIR) images that are much more
sensitive to certain pathologies than T1-weighted scans
(e.g., white matter lesions or brain tumors). Although
incorporating models of lesions into whole-brain seg-
mentation techniques is an open problem in itself, a first
necessary step towards bringing these techniques into
clinical practice is to make them capable of handling
the multi-contrast images that are acquired in standard
clinical routine.

In this article, we present and validate the perfor-
mance of a fast, sequence-independent whole-brain seg-
mentation algorithm. The method, which is based on a
mesh-based computational atlas combined with a Gaus-
sian appearance model, yields segmentation accuracies

Preprint submitted to NeuroImage July 28, 2015



comparable to the state-of-the-art; automatically adapts
to different MRI contrasts (even if multimodal); requires
only a small amount of training data; and achieves com-
putational times comparable to those of the fastest algo-
rithms in the field (Zikic et al., 2014; Ta et al., 2014).

1.1. Current state-of-the-art in whole-brain segmenta-
tion

Early methods for the segmentation of brain struc-
tures often relied on parametric models, in which the
available training data were summarized in relevant
statistics that were subsequently used to inform the seg-
mentation of previously unseen subjects. Because many
distinct brain structures have similar intensity charac-
teristics in MRI, these methods were typically built
around detailed probabilistic models of the expected
shape and relative positioning of different brain regions,
using surface-based (Kelemen et al., 1998; Pizer et al.,
2003; Patenaude et al., 2011; Cootes et al., 1998) or vol-
umetric (Fischl et al., 2002; Pohl et al., 2006b) models.
These anatomical models were then combined with su-
pervised models of appearance to encode the typical in-
tensity characteristics of the relevant structures in the
training data, often using Gaussian models for either
the intensity of individual voxels (Fischl et al., 2002;
Pohl et al., 2006b) or for entire regional intensity pro-
files (Kelemen et al., 1998; Pizer et al., 2003; Patenaude
et al., 2011; Cootes et al., 1998). The segmentation
problem was then formulated in a Bayesian setting, in
which segmentations were sought that satisfy both the
shape and appearance constraints.

More recently, non-parametric methods have gained
increasing attention in the field of whole-brain seg-
mentation, mostly in the form of multi-atlas label fu-
sion (Rohfling et al., 2004a; Heckemann et al., 2006;
Isgum et al., 2009; Artaechevarria et al., 2009; Sabuncu
et al., 2010; Rohfling et al., 2004b; Wang et al., 2013;
Coupé et al., 2011; Rousseau et al., 2011; Tong et al.,
2013; Wu et al., 2013; Asman and Landman, 2013; Zi-
kic et al., 2014). In these methods, each of the manually
annotated training scans is first deformed onto the tar-
get image using an image registration algorithm. Then,
the resulting deformation fields are used to warp the
manual annotations, which are subsequently fused into
a final consensus segmentation. Although early meth-
ods used a simple majority voting rule (Rohfling et al.,
2004a; Heckemann et al., 2006), recent developments
have concentrated on exploiting local intensity informa-
tion to guide the atlas fusion process. This is particu-
larly helpful in cortical areas, for which accurate inter-
subject registration is challenging (Sabuncu et al., 2010;
Ledig et al., 2012b). Label fusion methods have been

shown to yield very accurate whole-brain segmenta-
tions (Landman and Warfield, 2012), but their accuracy
comes at the expense of a high computational cost as
a result of the multiple non-linear registrations that are
required. Efforts to alleviate this issue include a local
search using entire image patches, such that much faster
linear registrations can be used (Coupé et al., 2011; Ta
et al., 2014), as well as using rich contextual features so
that only a single non-linear warp is needed (Zikic et al.,
2014).

1.2. Existing methods that handle changes in MRI con-
trast

Since both the parametric and non-parametric meth-
ods reviewed above are supervised, they explicitly en-
code the specific image contrast properties of the dataset
used for training. This poses limitations on their abil-
ity to segment images that were acquired with different
scanners or imaging sequences than the training scans.

A generic way of making supervised whole-brain
segmentation methods work across imaging platforms is
histogram matching (also known as intensity normaliza-
tion), in which the intensity profiles of new images are
altered so as to resemble those of the images used for
training (Nyúl et al., 2000; Roy et al., 2013). However,
histogram matching can only be used when the train-
ing and target data have been acquired with the same
type of MRI sequence (e.g., T1-weighted), and it does
not completely cancel the negative effects that intensity
mismatches have on segmentation accuracy (Roy et al.,
2013).

Another approach is to have the training dataset in-
clude images that are representative of all the scanners
and protocols that are expected to be encountered in
practice. However, this approach quickly becomes im-
practical due to the large number of possible combina-
tions of MRI hardware and acquisition parameters. The
situation is exacerbated for clinical data, due to the lack
of standardized protocols to acquire multi-contrast MRI
data across clinical imaging centers.

In contrast synthesis (Roy et al., 2013), the original
scan is not directly segmented, but rather used to gener-
ate a new scan with the desired intensity profile, which
is then segmented instead. The premise of this tech-
nique is that a database of scans acquired with both the
source and target contrast is available, so that the rela-
tionship between the two can be learned (Iglesias et al.,
2013a; Roy et al., 2013). This approach makes it unnec-
essary to manually annotate additional training data for
each new set-up that is considered – a considerable ad-
vantage given that a manual whole-brain segmentation
often takes several days per scan (Fischl et al., 2002).
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However, it still requires that additional example sub-
jects are scanned with both the source and target scanner
and protocol, which is not always practical.

Finally, a more fundamental way to address the prob-
lem is to perform whole-brain segmentation in the space
of intrinsic MRI tissue parameters (Fischl et al., 2004b).
However, this requires the usage of specific MRI se-
quences for which a physical forward model is avail-
able, which are not widely implemented on MRI scan-
ning platforms, and particularly not on clinical systems.

1.3. Contribution: a fast, sequence-adaptive whole-
brain segmentation algorithm

In contrast to the aforementioned approaches to
whole-brain segmentation, which rely on supervised
models of the specific intensity profiles seen in the train-
ing data, in this paper we advocate an unsupervised ap-
proach that automatically learns appropriate intensity
models from the images being analyzed. At the core of
the method is an intensity clustering algorithm (a Gaus-
sian mixture model) that derives its independence of
specific image contrast properties by simply grouping
together voxels with similar intensities. This approach
is well-established for the purpose of tissue classifica-
tion (aimed at extracting the white matter, gray mat-
ter and cerebrospinal fluid) where it is typically aug-
mented with models of MRI imaging artifacts (Wells
et al., 1996; Van Leemput et al., 1999a; Ashburner and
Friston, 2005) and spatial models such as probabilis-
tic atlases (Ashburner and Friston, 1997; Van Leemput
et al., 1999a; Ashburner and Friston, 2005) or Markov
random fields (Van Leemput et al., 1999b; Zhang et al.,
2001). In this paper, we build on these techniques, using
a mesh-based probabilistic atlas that provides whole-
brain segmentation accuracy at the level of the state-of-
the-art, both within and across scanner platforms and
pulse sequences. Unlike many other techniques, the
method does not need any pre-processing such as skull
stripping, bias field correction or intensity normaliza-
tion. Furthermore, because the method is parametric,
only a single non-linear registration (of the atlas to the
target image) is required, yielding a very fast overall
computational footprint.

Related work. Since the method we propose combines
Gaussian mixture modeling with MRI bias field correc-
tion and probabilistic atlas deformation, it is closely re-
lated to the unified segmentation framework described
in (Ashburner and Friston, 2005); however only ba-
sic tissue classification on T1-weighted images was at-
tempted in that work. A related method based on
fuzzy c-means clustering and a topological atlas was

described in (Bazin and Pham, 2008), but that only seg-
mented a handful of structures, and relied on the avail-
ability of pre-defined centroid initializations for each
type of MRI sequence the method is expected to en-
counter.

An early attempt at whole-brain segmentation using
a deformable probabilistic atlas combined with unsu-
pervised intensity clustering was described in (Babalola
et al., 2009); however, the atlas registration was per-
formed independently of the segmentation process, us-
ing relatively coarse deformations, and the resulting
segmentation performance was found to trail that of la-
bel fusion methods. Subsequent methods showing bet-
ter performance (Ledig et al., 2012a, 2015; Makropou-
los et al., 2014; Iglesias et al., 2013b) used the non-
parametric paradigm instead, where a probabilistic atlas
is computed in the space of the target scan, i.e., after
warping each of the training scans onto the target image
using pairwise registration. Such approaches are com-
putationally much more expensive than the parametric
method we advocate here.

An early version of this work, along with a prelimi-
nary validation, was presented in (Puonti et al., 2013).
The current article adds a more detailed explanation of
our modeling approach, quantitative comparisons with
additional state-of-the-art label fusion algorithms, and a
more extensive validation – particularly regarding test-
retest reliability, segmentation of multi-contrast data,
and the sensitivity of the method to the size of the train-
ing dataset.

2. Modeling framework

Let D = (d1, . . . ,dI) denote a matrix collecting the in-
tensities in a multi-contrast brain MRI scan with I vox-
els, where the vector di = (d1

i , . . . , d
N
i )T contains the in-

tensities in voxel i for each of the available N contrasts.
Furthermore, let l = (l1, . . . , lI) be the corresponding
segmentation, where li ∈ {1, . . . ,K} denotes the one of
K possible segmentation labels assigned to voxel i.

In order to estimate l from D, i.e., to compute auto-
mated segmentations, we use a generative modeling ap-
proach: a forward probabilistic model of MRI images is
defined, and subsequently “inverted” to obtain the seg-
mentation. The model consists of two parts: a prior and
a likelihood. The prior is a probability distribution over
segmentations p(l) that encodes prior knowledge on hu-
man neuroanatomy. The likelihood is a probability dis-
tribution over image intensities that is conditioned on
the segmentation p(D|l), which models the imaging pro-
cess through which a certain segmentation yields the ob-
served MRI scan. This type of model is generative be-
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cause it provides a mechanism to generate data through
the forward model: in our case, we could generate a
random brain MRI scan by first sampling the prior to
obtain a segmentation, and then sampling the likelihood
conditioned on the resulting segmentation.

Within this framework, the posterior distribution of
image segmentations given an input brain MRI scans is
given by Bayes’ rule:

p (l|D) ∝ p (D|l) p (l) . (1)

Maximizing Eq. 1 with respect to l then yields the max-
imum a posteriori (MAP) estimate of the segmentation.

In the rest of this Section, we will describe in depth
the prior (Section 2.1) and likelihood (Section 2.2); we
will propose an inference algorithm to approximately
maximize Eq. 1 (Section 2.3); and finally we will de-
scribe the details of the implementation of this algo-
rithm (Section 2.4).

2.1. Prior

For the prior p(l) we use a generalization of the
probabilistic brain atlases often used in brain MRI seg-
mentation (Ashburner and Friston, 1997; Van Leem-
put et al., 1999b,a, 2001; Zijdenbos et al., 2002; Fis-
chl et al., 2002; Ashburner and Friston, 2005; Prastawa
et al., 2005; Pohl et al., 2006b; D’Agostino et al., 2006;
Awate et al., 2006; Pohl et al., 2007). This model, de-
tailed in (Van Leemput, 2009), is based on a deformable
tetrahedral mesh, the properties of which are learned
automatically from a set of manual example segmen-
tations made on MRI scans of training subjects. Each
of the vertices of the mesh has an associated set of label
probabilities specifying how frequently each of the K
labels occurs at the vertex. The resolution of the mesh
is locally adaptive, being sparse in large uniform regions
and dense around the structure borders. This automati-
cally introduces a locally varying amount of spatial blur-
ring in the resulting atlas, aiming to avoid over-fitting of
the model to the available training samples (Van Leem-
put, 2009). During training, the topology of the mesh
and the position of its vertices in atlas space (henceforth
“reference position”) is computed along with the label
probabilities in a non-linear, group-wise registration of
the labeled training data. An example of the resulting
probabilistic brain atlas, computed from manual parcel-
lations in 20 subjects, is displayed in its reference posi-
tion in Figure 1; note the irregularity in the shapes and
sizes of the tetrahedra.

The positions of the mesh nodes x can change accord-

ing to their prior distribution p(x):

p(x) ∝ exp

−β
T∑

t=1

φt(x, xre f )

 (2)

where T and xre f denote the number of tetrahedra
and the reference position of the mesh, respectively;
φt(x, xre f ) is a penalty for deforming tetrahedron t from
its reference to its actual position; and β > 0 is a scalar
that controls the global stiffness of the mesh. We use
the penalty term proposed in (Ashburner et al., 2000),
which goes to infinity when the Jacobian determinant
of the deformation approaches zero. This choice pre-
vents the mesh from tearing or folding onto itself, thus
preserving its topology.

Given a deformed mesh with node positions x, the
probability pi(k|x) of observing label k at a voxel i is
obtained by barycentric interpolation of the label prob-
abilities at the vertices of the tetrahedron containing the
voxel. Moreover, we assume conditional independence
of the labels of the different voxels given the mesh node
positions, such that

p(l|x) =

I∏

i=1

pi(li|x). (3)

The expression for the prior distribution over segmenta-
tions is finally:

p(l) =

∫

x
p(l|x)p(x)dx. (4)

2.2. Likelihood
The likelihood p(D|l) models the relationship be-

tween segmentation labels and image intensities. For
this purpose, we associate a mixture of Gaussian distri-
butions with each label (Ashburner and Friston, 2005),
and assume that the bias field imaging artifact typically
seen in MRI can be modeled as a multiplicative and spa-
tially smooth effect (Wells et al., 1996). For computa-
tional reasons, we use log-transformed image intensities
in D, and model the bias field as a linear combination of
spatially smooth basis functions that is added to the lo-
cal voxel intensities (Van Leemput et al., 1999a).

Specifically, letting θ denote all bias field and Gaus-
sian mixture parameters, with uniform prior p(θ) ∝ 1,
the likelihood is defined by

p(D|l) =

∫

θ
p(D|l, θ)p(θ)dθ, (5)

where

p(D|l, θ) =

I∏

i=1

pi(di|li, θ), (6)

4



Figure 1: Left: T1-weighted scan from the training data. Center: corresponding manual segmentation. Right: atlas mesh built from 20 randomly selected subjects from
the training data.

Table 1: Equations for the forward probabilistic model of MRI brain scans

x ∼ p(x) (Eq. 2)
l ∼ p(l|x) (Eq. 3)
θ ∼ p(θ) ∝ 1
D ∼ p(D|l, θ) (Eq. 6)

pi(d|k, θ) =

Gk∑

g=1

wk,gN
(
d − Cφi|µk,g,Σk,g

)
,

and

N (d|µ,Σ) =
1√

(2π)N |Σ|
exp

(
−1

2
(d − µ)T Σ−1 (d − µ)

)
.

Here, Gk is the number of Gaussian distributions in the
mixture associated with label k; and µk,g, Σk,g, and wk,g

are the mean, covariance matrix, and weight of com-
ponent g ∈ {1, . . . ,Gk} in the mixture model of label k
(satisfying wk,g ≥ 0 and

∑
g wk,g = 1). Furthermore,

C =



cT
1
...

cT
N


, cn =



cn,1
...

cn,P


and φi =



φi
1
φi

2
...
φi

P


,

where P denotes the number of bias field basis func-
tions, φi

p is the basis function p evaluated at voxel i, and
cn holds the bias field coefficients for MRI contrast n.

The entire forward model is summarized in Table 1.

2.3. Inference
Using the model described above, the MAP segmen-

tation for a given MRI scan is obtained by maximizing

Eq. 1 with respect to l:

l̂ = arg max
l

p(l|D) = arg max
l

p(D|l)p(l), (7)

which is intractable due to the integrals over the parame-
ters x and θ that appear in the expressions for p(l) (Eq. 4)
and p(D|l) (Eq. 5), respectively. This difficulty can be
side-stepped if the posterior distribution of the model
parameters in light of the data is heavily peaked around
its mode:

p(x, θ|D) ' δ(x − x̂, θ − θ̂),

where δ(·) is Dirac’s delta and the point estimates {x̂, θ̂}
are given by:

{x̂, θ̂} = argmax
{x,θ}

p(x, θ|D). (8)

In that scenario, we can approximate:

p(l|D) =

∫

x

∫

θ
p(l|D, x, θ)p(x, θ|D)dxdθ

' p(l|D, x̂, θ̂), (9)

which no longer involves intractable integrals. The re-
sulting inference algorithm then involves two distinct
phases, detailed below: first, computing the point esti-
mates by maximizing Eq. 8; and subsequently comput-
ing the segmentation by maximizing Eq. 9 with respect
to l.
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Computation of point estimates. Applying Bayes’ rule
to Eq. 8, we obtain:

p(x, θ|D) ∝ p(D|x, θ)p(x)p(θ)

∝

∑

l

p(D|l, θ)p(l|x)

 p(x)

=

I∏

i=1


K∑

k=1

pi(di|k, θ)pi(k|x)

 p(x).

Taking the logarithm, we can rewrite the problem as the
maximization of the following objective function:

{x̂, θ̂} = argmax
{x,θ}


I∑

i=1

log


K∑

k=1

pi(di|k, θ)pi(k|x)

 + log p(x)

 .

(10)
We solve this problem with a coordinate ascent scheme,
in which the mesh node positions x and likelihood pa-
rameters θ are iteratively updated, by alternately opti-
mizing one while keeping the other fixed.

To optimize the mesh node positions x with
fixed θ, we use a standard conjugate gradient op-
timizer (Shewchuk, 1994). To optimize the likeli-
hood parameters θ with fixed x, we use a generalized
expectation-maximization (GEM) algorithm (Dempster
et al., 1977) similar to the one proposed in (Van Leem-
put et al., 1999a). In particular, the GEM optimization
involves iteratively computing the following soft assign-
ments of each voxel to each of the Gaussian distribu-
tions, based on the current parameter estimates:

qk,g
i =

wk,gN
(
di − Cφi|µk,g,Σk,g

)
pi(k|x)

∑K
k′=1 pi(di|k′, θ)pi(k′|x)

, (11)

and subsequently updating the parameters accordingly:

µk,g ←
∑I

i=1 qk,g
i (di − Cφi)

∑I
i=1 qk,g

i

, wk,g ←
∑I

i=1 qk,g
i∑I

i=1
∑Gk

g′=1 qk,g′
i

,

Σk,g ←
∑I

i=1 qk,g
i (di − µk,g − Cφi)(di − µk,g − Cφi)T

∑I
i=1 qk,g

i

,



c1
...

cN


←



AT S1,1A . . . AT S1,N
...

. . .
...

AT SN,1A . . . AT SN,N



−1

·



AT (
S1,1r1,1 + · · · + S1,Nr1,N

)
...

AT (
SN,1rN,1 + · · · + SN,NrN,N

)


,

where

A =



φ1
1 . . . φ1

P
...

. . .
...

φI
1 . . . φI

P


, Sm,n = diag

(
sm,n

i

)

and rm,n =
(
rm,n

1 , . . . , rm,n
I

)T
, with

sm,n
i =

K∑

k=1

Gk∑

g=1

sm,n
i,k,g, sm,n

i,k,g = qk,g
i

(
Σ−1

k,g

)
m,n

rm,n
i = dn

i −
∑K

l=1
∑Gl

g=1 sm,n
i,k,g

(
µk,g

)
n∑K

l=1
∑Gk

g=1 sm,n
i,k,g

.

It can be shown that this process is guaranteed to in-
crease the objective function of Eq. (10) with respect
to θ in each GEM iteration (Dempster et al., 1977; Van
Leemput et al., 1999a).

Computation of the final segmentation. Given the point
estimates of the model parameters, the conditional pos-
terior distribution of the segmentation l factorizes over
voxels:

p(l|D, x̂, θ̂) =

I∏

i=1

pi(li|di, x̂, θ̂), pi(k|di, x̂, θ̂) =

Gk∑

g=1

qk,g
i .

The optimal segmentation for each voxel is therefore
given by:

l̂i = argmax
k

Gk∑

g=1

qk,g
i .

2.4. Implementation
In practice, we have found that modeling substruc-

tures with similar intensity properties (e.g., all white
matter structures) with the same Gaussian mixture
model improves the robustness of the algorithm while
giving faster execution times. Letting s denote a set of
structures that share the same mixture model, this is ac-
complished by altering the GEM update equations for
the Gaussian mixture parameters as follows:

µk,g ←
∑I

i=1 qs,g
i (di − Cφi)

∑I
i=1 qs,g

i

∀k ∈ s,

wk,g ←
∑I

i=1 qs,g
i∑I

i=1
∑Gs

g′=1 qs,g′
i

∀k ∈ s,

Σk,g ←
∑I

i=1 qs,g
i (di − µs,g − Cφi)(di − µs,g − Cφi)T

∑I
i=1 qs,g

i

∀k ∈ s,

where
qs,g

i =
∑

k∈s

qk,g
i .
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The details of which structures share the same mixture
models will be given in Section 3.3.

To initialize the algorithm, we first affinely align the
atlas to the target image using the registration method
described in (D’Agostino et al., 2004), which uses at-
las probabilities – rather than an intensity template – to
drive the registration process. After the initial registra-
tion we mask out non-brain tissues by excluding voxels
that have a prior probability lower than 0.01 of belong-
ing to any of the brain structures.

The image intensities are then log-transformed to ac-
commodate the additive bias field that is employed (cf.
Section 2.2). For the bias field modeling, we use the
lowest frequency components of the 3D discrete cosine
transform (DCT) as basis functions (for the number of
components see Section 3.3).

The subsequent optimization is done at two resolu-
tion levels. In the first level, the atlas probabilities are
smoothed using a Gaussian kernel with a standard devi-
ation of 2.0 mm in order to fit large scale mesh deforma-
tions. No smoothing is used in the second level, which
refines the registration on a smaller scale.

The stopping criteria for the different components of
the algorithm are as follows: the likelihood parameters
θ are updated until the relative change in the objective
function (Eq. 10) falls under 10−5; the mesh node posi-
tions are updated until the maximum deformation across
vertices falls under 10−3 mm; and the GEM and conju-
gate gradient optimizers are iteratively interleaved until
the decrease in the cost function falls under 10−6.

The algorithm is implemented in Matlab except for
the computationally demanding optimization of the
mesh node positions, which is implemented in C++,
and involves computing the mesh node deformation
prior p(x) (Eq. 2), the interpolated prior probabilities
p(l|x) (Eq. 3) and the gradient of the objective function
(Eq. 10) with respect to the mesh node positions.

3. Experiments

In this section, we first describe the brain MRI
datasets used in this study (Section 3.1). Then, we out-
line four methods that our algorithm is benchmarked
against (Section 3.2) . Next, we detail how the free pa-
rameters of each method are set (Section 3.3). Finally,
we describe the setups for four different experiments in
which the different methods are tested (Section 3.4).

3.1. MRI data

In the experiments, we use five different sets of scans:
one exclusively for training the segmentation methods,

and the other four for testing the performance on unseen
data. For training, we use a dataset of 39 T1-weighted
MRI scans and corresponding expert segmentations ob-
tained using a protocol described in (Caviness Jr et al.,
1989). The data consists of 28 healthy subjects and
11 subjects with questionable or probable Alzheimer’s
disease with ages ranging from under 30 years old to
over 60 years old (Sabuncu et al., 2010). The scans
were acquired on a 1.5T Siemens Vision scanner using
an MPRAGE sequence with parameters: TR=9.7ms,
TE=4ms, TI=20ms, flip angle = 10◦ and voxel size =

1.0 × 1.0 × 1.5mm3 (128 sagittal slices), where the scan
parameters were empirically optimized for gray-white
matter contrast (Buckner et al., 2004). This is the same
dataset used for training in the publicly available soft-
ware package FreeSurfer (Fischl et al., 2002). An ex-
ample scan and a corresponding manual segmentation
are shown in Figure 1.

For testing, we use 219 scans from four different
datasets acquired on scanners from different manu-
facturers, with different field strengths and pulse se-
quences. The first test dataset consists of 13 T1-
weighted scans acquired on a 1.5T Siemens Sonata
scanner with the same sequence and parameters as the
training data (Han and Fischl, 2007). Given the similar-
ity with the training data (vendor, field strength, pulse
sequence), we will refer to this dataset as the “intra-
scanner dataset”. The manual segmentations were ob-
tained using the same protocol as for the training data.
An example scan and a corresponding manual segmen-
tation are shown in Figure 2.

The second test dataset consists of 14 T1-weighted
scans acquired on a 1.5T GE Signa Scanner using an
SPGR sequence with parameters: TR = 35 ms, TE
= 5 ms, flip angle = 45◦ and voxel size = 0.9375 ×
0.9375 × 1.5mm3 (124 coronal slices) (Han and Fischl,
2007). The manual segmentations were obtained using
the same protocol as for the training data. This dataset
will be referred to as the “cross-scanner dataset”. An
example scan and a corresponding manual segmentation
are shown in Figure 3.

The third test dataset consists of multi-echo FLASH
scans from 8 healthy subjects acquired on a 1.5T
Siemens Sonata scanner. The acquisition parameters
were: TR = 20 ms, TE = min, flip angle = 3◦, 5◦,
20◦ and 30◦, and voxel size = 1.0mm3 isotropic (Fis-
chl et al., 2004b; Iglesias et al., 2012). The different
flip angles correspond to different contrast properties,
with the smallest angle having contrast similar to pro-
ton density (PD) weighting and the largest one having
a contrast similar to T1-weighting. The manual seg-
mentations were made using the same protocol as for
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the training data. These data will be referred to as the
“multi-echo dataset”. A sample slice from this dataset,
with flip angles 30◦ and 3◦, is shown in Figure 4.

The fourth and final test dataset consists of 40 healthy
subjects scanned at two different time points at differ-
ent facilities, with scan intervals ranging from 2 days
to six months, amounting to a total of 80 T1- and T2-
weighted scans for the whole dataset (Holmes et al.,
2012). The scans were all acquired with 3T Siemens
Tim Trio scanners using identical multi-echo MPRAGE
sequences for the T1 and 3D T2-SPACE sequences for
the T2, with voxel size = 1.2 × 1.2 × 1.2mm3. Note
that the acquisition protocol was highly optimized for
speed, with a total acquisition time for both scans of un-
der 5 minutes. This dataset will be referred to as the
“test-retest dataset”. One of the scans had to be ex-
cluded because of motion artifacts. Moreover, some of
the T2-weighted scans have minor artifacts not present
in the T1-weighted scans. These scans were however in-
cluded in the experiments. Manual segmentations were
not available for this dataset; however, these scans are
still useful in test-retest experiments quantifying the dif-
ferences between the two time points. Ideally, as all
the subjects are healthy, the biological variations should
be small and the segmentations between the two time
points should be identical. An example of the T1- and
T2-weighted scans is shown in Figure 5.

3.2. Benchmark methods
In order to gauge the performance of the proposed al-

gorithm with respect to the state-of-the-art in brain MRI
segmentation, we compare its performance against four
representative methods:

• BrainFuse2 (Sabuncu et al., 2010) is a multi-atlas
segmentation method, which uses an intensity-
based label fusion approach to merge a set of prop-
agated training labelings into a final segmentation
of a target scan. More specifically, it assumes a
generative model in which a latent, discrete mem-
bership field (whose smoothness is enforced by a
Markov random field prior) indexes from which at-
las the information was taken at each voxel. That
information is corrupted with a probabilistic model
(logOdds (Pohl et al., 2006a) for the labels, Gaus-
sian noise for the intensities) to yield the test scan.
Segmentation is carried out through Bayesian in-
ference, using an iterative algorithm that alterna-
tively: (1) uses local intensity and label pooling in

2http://people.csail.mit.edu/msabuncu/sw/bfl/
index.html

Figure 2: On the left an example slice from the intra-scanner dataset and on the
right a corresponding manual segmentation.

Figure 3: On the left an example slice from the cross-scanner dataset and on the
right a corresponding manual segmentation.

Figure 4: An example of the T1- (flip angle = 30◦) and PD-weighted (flip angle
= 3◦) scans of the same subject from the multi-echo dataset.

Figure 5: An example of the T1- and T2-weighted scans of the same subject
from the test-retest dataset.
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the neighborhood of each voxel to compute a prob-
abilistic estimate of the membership field; and (2)
updates the segmentation by using the estimated
field to weight the contribution of the atlases at
each voxel. In the available implementation, the
Markov random field smoothness prior is not in-
cluded – however it does not yield a significant in-
crease in segmentation accuracy (Sabuncu et al.,
2010). For computing the registrations between
the training and target subjects, BrainFuse em-
ploys asymmetric bidirectional registrations based
on an efficient Demons-style algorithm that uses a
one parameter sub-group of diffeomorphisms com-
bined with a sum-of-squared-differences similarity
measure (Sabuncu et al., 2010). The free parame-
ters of the registration method are set to the values
reported in (Sabuncu et al., 2010), where the au-
thors cross-validated the parameter values on the
same training dataset that we use in this study.

• PICSL MALF3 (Wang et al., 2013) assumes that
the segmentation errors of the propagated training
labelings can be correlated, as opposed to Brain-
Fuse, in which independence of the errors of the
different labelings is assumed. PICSL MALF for-
mulates a weighted voting problem in terms of try-
ing to minimize the expectation of the labeling er-
ror, i.e., the error between the fused labels and the
true segmentation in every voxel. To achieve this, it
approximates the expected pairwise joint label dif-
ferences between the training scans and the target
scan using intensity similarity information. More-
over, PICSL MALF also performs a local search
to try to find the voxel that is most similar to the
corresponding target image voxel patch-wise. This
can be interpreted as additional refinement of the
pre-computed pairwise registrations. For comput-
ing the initial pair-wise registrations between the
training and target subjects PICSL MALF uses
ANTs/SyN4 (Avants et al., 2008), which is a dif-
feomorphic registration algorithm. The registra-
tion parameters are set to the values which were
used in the implementation of PICSL MALF that
won the MICCAI 2012 Grand Challenge on Multi-
Atlas Labeling (Landman and Warfield, 2012).

• FreeSurfer5 (Fischl et al., 2002) is based on a sta-
tistical atlas of neuroanatomy, along with an inten-

3http://www.nitrc.org/projects/picsl_malf/
4http://stnava.github.io/ANTs/
5http://surfer.nmr.mgh.harvard.edu/

sity atlas in which a Gaussian distribution is as-
sociated with each voxel and class. The parame-
ters of these Gaussians are estimated from training
data. The model is completed by a Markov ran-
dom field model which ensures the spatial smooth-
ness of the segmentation, which is computed as the
MAP estimate in a Bayesian framework. We note
that FreeSurfer was trained on the same training
data that we are using in this study, which makes
direct comparison with our approach and the multi-
atlas methods feasible.

• Majority Voting (Rohlfing et al., 2004; Hecke-
mann et al., 2006) is a simple multi-atlas segmen-
tation method, where the propagated training la-
belings are fused into a final segmentation by pick-
ing, in each voxel, the most frequent label across
the propagated labelings. We include this method
as a reference against which we can compare the
performance of the more sophisticated label fusion
approaches. For our implementation of majority
voting, we use the same pair-wise registrations as
for PICSL MALF.

These methods cover a wide spectrum of modern
brain MRI segmentation algorithms. Majority voting,
BrainFuse and PICSL MALF represent multi-atlas seg-
mentation, which is arguably the most popular seg-
mentation paradigm at the moment. Moreover, they
are non-parametric methods, whereas our method and
FreeSurfer represent parametric approaches. All four
benchmark methods use supervision to model image
intensities (i.e., intensity knowledge derived from the
training scans is used to segment new scans), whereas
the proposed method does not, allowing it to adapt to
different MRI contrasts.

3.3. Cross-validation experiments on training data for
parameter tuning

The free parameters of the different methods are de-
termined using the training dataset as follows:

Proposed Algorithm. We use 20 randomly picked sub-
jects out of the available 39 to build our probabilistic at-
las. Only 20 subject are chosen, because the atlas build-
ing process is very computationally expensive (several
weeks to build an atlas with 20 subjects) and the results
show that the segmentation performance does not in-
crease any further when more subjects are added (see
Section 4.3). The remaining 19 subjects are used to
find suitable values for the free parameters in our al-
gorithm: the global stiffness of the mesh β, the number
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Table 2: Details of the parameter sharing between structure classes. The groups
of structures that share their Gaussian mixture parameters are shown in the first
column, and the corresponding amount of Gaussians in the mixture in the second
column.

Structures with shared parameters Number Of Gaussians

Non-brain tissues 3

L/R Cerebral White Matter (WM)
L/R Cerebellum White Matter (CWM)
Brain Stem (BS) 2
L/R Ventral Diencephalon
Optic Chiasm

L/R Cerebral Cortex (CT)
L/R Cerebellum Cortex (CCT)
L/R Caudate (CA) 3
L/R Hippocampus (HP)
L/R Amygdala (AM)
L/R Accumbens Area

L/R Lateral Ventricle (LV)
L/R Inferior Lateral Ventricle
3rd Ventricle
Cerebro-Spinal Fluid (CSF) 3
5th Ventricle
4th Ventricle
Vessel
L/R Choroid Plexus

L/R Thalamus (TH) 2

L/R Putamen (PU) 2

L/R Pallidum (PA) 2

of bias field basis functions P, the groups of structures s
that share the same GMM parameters, and the number
of mixture components associated with each structure
group.

The parameters are tuned based on a visual inspection
of the automatic segmentations. The chosen values for
the mesh stiffness and number of bias field basis func-
tions are: β = 0.1 and P = 5 per dimension, amounting
to a total of P = 53 = 125 basis functions in 3D. The
choice of which sets of structures share the Gaussian
mixture parameters, as well as the number of Gaussians
for each mixture, is summarized in Table 2.

BrainFuse. We use the optimal parameters listed in the
original publication (Sabuncu et al., 2010); this choice
is appropriate because the authors cross-validate the pa-

rameter values on the same training dataset as used in
this study.

PICSL MALF. For this method we need to determine
the optimal values for the patch radius over which the
intensity similarity is calculated, a constant controlling
the inverse distance function which maps the intensity
difference to the joint error, and the size of the local
search window (Wang et al., 2013). For this purpose,
we randomly select 10 subjects as test data and use the
remaining 29 subjects as training data, and perform a
cross-validation grid search using similarity patch radii
of rp = [1, 2, 3], local search radii of rs = [0, 1, 2, 3] and
inverse mapping constants of β = [0.5, 1, 1.5, 3, 6]. As
a measure of goodness we use the mean Dice overlap
score6 (which is the main performance metric used in
the experiments below) over the structures listed in Sec-
tion 3.4 below. The resulting optimal values are: rp = 1,
rs = 2 and β = 3.

FreeSurfer. We use the standard processing pipeline
with default parameters. No cross-validation needs to
be performed as FreeSurfer is trained on the same train-
ing dataset we use in this study.

Majority Voting. Given the pre-computed registrations,
majority voting has no parameters to tune.

3.4. Experimental setup

We perform a comprehensive evaluation consisting of
four sets of experiments:

I. In a first experiment, we use models trained on
the training dataset to segment the scans from the
intra-scanner and the cross-scanner datasets, com-
paring each method’s segmentations with the cor-
responding manual annotations. This experiment
enables us not only to compare the performance of
the different methods, but also to assess how much
their performance degrades when the image inten-
sity properties of the training and test datasets are
not matched.

II. In a second experiment, we evaluate the computa-
tional efficiency of the various methods. We com-
pute the running time of the different algorithms
on a cluster where each node has two quad-core
Xeon 5472 3.0GHz CPUs and 32GB of RAM; we
only use one core in the experiments in order to

6Dice = 2|lA ∩ lM |/(|lA | + |lM |), where lA and lM are the automatic
and manual segmentations respectively and | · | is the cardinality of a
set.
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make fair comparisons, even though all the algo-
rithms can potentially be parallelized. We also
record the execution time of a multi-threaded im-
plementation of our method, using 8 cores on a
computer with 8 dual-cores with 3.4Ghz CPU and
64GB of RAM. This setup represents a realistic
scenario that enables us to compare the running
time of our algorithm with those reported by other
studies in the literature.

III. In a third experiment, we study the effect of the
number of training subjects on the segmentation
performance. To achieve accurate segmentations,
a representative training set is needed to capture
all the structural variation one might see within
the subjects to be segmented (Aljabar et al., 2009).
However, some algorithms require less training
data than others to approach their asymptotic per-
formance, which represents a saving in manual la-
beling effort. We therefore randomly pick 5 sets
of 5, 10 and 15 subjects from the training data,
and re-evaluate the segmentation performance of
the proposed method, BrainFuse, PICSL MALF
and majority voting on the intra- and cross-scanner
datasets.

IV. In a final experiment, we evaluate the ability of
the proposed algorithm to segment multi-contrast
MR scans in both the multi-echo and the test-retest
dataset. Given a training set consisting only of T1-
weighted scans, using multi-contrast information
is out of reach for all the different methods we
compare against in this article, either due to their
non-parametric nature (Wang et al., 2013; Sabuncu
et al., 2010; Heckemann et al., 2006) or intensity-
dependent priors (Fischl et al., 2002). To quantify
the effect of using multi-contrast information, we
first run the proposed method using only one of
the available scans and then using two scans with
different contrasts. For the multi-echo dataset we
first use only the T1-weighted images (i.e., flip an-
gle 30◦), and then both the T1- and PD-weighted
(flip angle 3◦) images. The automated segmen-
tations are compared to the expert segmentations
using Dice scores. For the test-retest dataset, in
a similar fashion, we first segment the two time
points using only the T1-weighted images and then
using both T1- and T2-weighted images. Be-
cause no manual segmentations are available for
this dataset, we use absolute symmetrized percent
change (ASPC) (Reuter et al., 2012) to quantify
the differences in the automatic segmentations be-
tween the two time points. This metric is defined
as the absolute value of the difference in volume,

normalized by the mean volume:

ASPC =
2|V2 − V1|
V1 + V2

,

where V1,V2 are the volumes at the two time
points. Ideally this number should be small, as the
subjects are all healthy and the time between the
scans is not so long.

We report the Dice scores and the ASPC on a repre-
sentative subset of 23 relevant structures which is also
used in other studies (e.g., (Fischl et al., 2002; Sabuncu
et al., 2010)): left and right cerebral white matter (WM),
cerebellum white matter (CWM), cerebral cortex (CT),
cerebellum cortex (CCT), lateral ventricle (LV), hip-
pocampus (HP), thalamus (TH), putamen (PU), pal-
lidum (PA), caudate (CA), amygdala (AM) and brain
stem (BS). We will refer to these structures as the “re-
gions of interest” (ROIs); note that for clarity of presen-
tation we report the average Dice score of the left and
right hemisphere for all structures except for the brain
stem.

4. Results and discussion

4.1. Intra-scanner and cross-scanner segmentation
performance

The Dice scores between the manual and automated
segmentations of the ROIs, obtained using the different
methods, are shown for the intra-scanner dataset in Fig-
ure 6 (top). Table 3 (first column) summarizes the scores
in average over the ROIs. All of the methods perform
well on the intra-scanner dataset, which was expected,
as the contrast-properties of the training data are identi-
cal to those of this dataset. The multi-atlas segmentation
methods achieve the highest mean scores, with PICSL
MALF being the best method for this dataset. Majority
voting also obtains a very high mean score despite its
simple fusion strategy. This is likely due to the accu-
rate ANTs/SyN registration framework, which has been
shown to perform very well on intra-scanner data (Klein
et al., 2009). We note that each of the benchmark meth-
ods is specifically trained for this type of data, whereas
the proposed method is not.

For the cross-scanner data, where the contrast-
properties of the target data are different from the train-
ing data, the ROI Dice scores are shown in Figure 6
(bottom) and the mean scores over the ROIs in Table 3
(second column). The overall segmentation accuracy of
all methods decreases, which is likely due to the lower
intrinsic image contrast as a result of the different pulse
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Figure 6: The Dice scores of the different methods for the intra-scanner (top) and cross-scanner (bottom) data. The proposed method = green, BrainFuse = blue, PICSL
MALF = magenta, FreeSurfer = red and Majority Voting=black. On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles,
and outliers are marked with a ’+’. See Section 3.4 for the acronyms.

Intra-scanner data Cross-scanner data
Method Average Accuracy Average Accuracy

Proposed 0.863 0.807
BrainFuse 0.868 0.744

PICSL MALF 0.896 0.760
FreeSurfer 0.853 0.799

Majority Voting 0.883 0.698

Table 3: Mean Dice scores of the different methods over the ROIs for the intra-scanner (first column) and cross-scanner (second column) datasets.
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Average time per subject (h)
Method Reg. Fusion Full Time

BrainFuse 16 1 17
Majority voting 143.9 0.1 144
PICSL MALF 143.9 3.8 147.7

FreeSurfer - - 9.5
Proposed - - 1.4

Table 4: Mean computational time for the different methods. For label fusion
methods the computation times for registration (Reg.) and label fusion (Fusion)
are listed separately.

sequence as noted in (Han and Fischl, 2007). In this
dataset, the proposed method achieves the highest mean
score, demonstrating its robustness against changes in
contrast. The label fusion methods, which rely on the
image intensities of the training data in the registration
and fusion steps, are clearly affected by the changes in
the MRI contrast. The pair-wise registrations are espe-
cially more challenging for this dataset, due to the dif-
ferent intensity and resolution properties, which leads
to misregistrations that are the principal error source in
multi-atlas segmentation (Wang et al., 2013). Note that
now majority voting performs the worst, as a result of
the simple label fusion approach which can not down-
play the effect of poorly registered subjects.

The relatively good performance of FreeSurfer,
which also relies on the intensity information in the
training scans, can be explained by its in-built renor-
malization procedure for T1 acquisitions, which applies
a multi-linear atlas-image registration and a histogram
matching step to update the class-conditional densities
for each structure (Han and Fischl, 2007).

4.2. Running time

The approximate mean computation time for a single
scan using the different methods is shown in Table 4.
The proposed method is approximately 7 times faster
than FreeSurfer, 12 times faster than BrainFuse and 100
times faster than PICSL MALF and majority voting.

In general, the parametric methods (i.e., FreeSurfer
and the proposed method) are significantly faster than
the label fusion approaches. This is because only a
single non-linear registration is needed, as opposed to
the multiple pair-wise registrations used in the non-
parametric methods. Moreover, in PICSL MALF the
local search is especially time consuming with large
search windows. Compared with FreeSurfer, which is
also parametric, our method is faster due to the sparse
encoding of the mesh prior. Encoding this sparsity is
computationally expensive, but needs to be done only

Number of subjects Average number of vertices
5 33,606

10 44,614
15 51,258

Table 5: Average number of vertices in the proposed atlas mesh for different
numbers of training subjects.

once (in an offline fashion). Furthermore, in the pro-
posed approach, no special post or pre-processing of the
target scans is needed.

In its multi-threaded setup, the proposed method has
an execution time of 23.5 minutes per scan on aver-
age. The fastest whole-brain segmentation method to
our knowledge is presented in (Zikic et al., 2014) with
execution times in the range of 5 to 13 minutes; however
this method is not designed to handle image contrast dif-
ferences.

4.3. Effect of the number of training subjects

Figure 7 shows the mean Dice scores over the ROIs,
as well as their variance, across randomly selected sets
of training subjects, plotted against the number of train-
ing subjects – for the intra-scanner and cross-scanner
datasets. The results show that adding more training
subjects generally yields more accurate segmentations
for all methods, but that the proposed method reaches its
maximum performance faster than the multi-atlas meth-
ods. Even with only five training subjects the segmen-
tation accuracy of the proposed method is already good,
with mean accuracy 98.5% of the maximal performance
on the intra-scanner dataset and 96% of the maximal
performance on the cross-scanner dataset. This is es-
pecially useful for populations where expert segmenta-
tions are expensive or difficult to obtain, such as infants.
The variance of the mean score is also small on both
datasets compared to the multi-atlas methods, indicat-
ing that the performance of the proposed method does
not depend much on the specific subjects included in
the training set. This is likely due to the atlas construc-
tion process that explicitly avoids over-fitting to train-
ing data (Van Leemput, 2009), yielding sparser tetrahe-
dral meshes (and therefore blurrier probabilistic atlases)
when less training subjects are available. This effect is
illustrated in Table 5, where the average number of mesh
vertices for the 5, 10 and 15 training subject groups are
reported.

For the multi-atlas methods the performance is more
dependent on the number of available training sub-
jects, especially for the cross-scanner dataset. On the
intra-scanner dataset, PICSL MALF achieves a good
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Figure 7: Average Dice scores for different number of training subjects for the
intra-scanner (top) and the cross-scanner (bottom) data, as well as their vari-
ance across randomly selected sets of training subjects. The proposed method
in green, BrainFuse in blue, PICSL MALF in magenta and majority voting in
black. The error bars correspond to the lowest and highest average score for the
random subset of subjects. The dashed line marks the Dice score obtained when
all subjects in the training pool are used.

mean score already with 5 subjects, but the perfor-
mance increases more slowly compared with the pro-
posed method. The variance of the score is also larger,
especially for the 5-subject set, showing that the perfor-
mance is dependent on the particular subjects included
in the training set. Majority voting and BrainFuse ex-
hibit similar behaviour, but with larger variances over
all the subjects sets. On the cross-scanner dataset the
performance of all multi-atlas methods varies signifi-
cantly even when trained on 15 subjects. This has been
noted before in (Aljabar et al., 2009), where the authors
suggest ways of pre-selecting a group of training sub-
jects that are most similar to the target scan to increase
performance of multi-atlas methods – particularly when
majority voting is used and the contribution of poorly

registered atlases cannot be downplayed by the label fu-
sion algorithm.

4.4. Multi-contrast performance

The Dice scores for the multi-echo dataset, when us-
ing only T1-weighted scans and when using both T1-
and PD-weighted scans, are shown in Figure 8. The re-
sults are very similar whether or not the PD-weighted
scan is included, indicating that the PD-weighted con-
trast does not add much useful information to the T1-
weighted scan when healthy brains are segmented. Ex-
ample segmentations of the multi-echo dataset using
uni- and multi-contrast scans are shown in Figure 9.

The volume differences between the two time points
in the 39 subjects of the T1/T2 test-retest dataset are
shown in Figure 10. In general, they are quite similar
and small for both single- (only T1) and multi-contrast
(both T1 and T2) segmentations, with the median ASPC
in the 1-2% range. There are some larger differences –
especially in the thalamus and pallidum – when using
multi-contrast data. This appears to be mostly due to
imaging artifacts in the T2-scans, an example of which
is shown in Figure 11. We note that this dataset has
the lowest resolution of all the datasets we tested the
method on, and therefore is affected the most by partial
volume segmentation errors.

5. Conclusions

In this paper we have presented a whole-brain seg-
mentation method that builds upon the parametric mod-
els commonly used in tissue classification. We have
demonstrated that these type of models are capable
of achieving state-of-the-art segmentation performance,
while being very fast, adaptive to changes in tissue con-
trast, and able to handle multi-contrast data. We em-
phasize that the exact same algorithm was used for all
datasets in this paper, without any parameter retuning or
configuration changes, demonstrating the robustness of
the approach.

Although in our experiments the method’s segmen-
tation accuracy trailed that of the very best multi-atlas
techniques available today (PICSL MALF, cf. (Klein
et al., 2009; Landman and Warfield, 2012)) in scenar-
ios where the image intensities of the training and test
datasets are perfectly matched, we found that the oppo-
site is true when this is not the case. We believe the lat-
ter is a more realistic scenario in practice, since manual
whole-brain segmentation is so time-consuming (e.g.,
taking hundreds of days for the training data used in this
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Figure 8: Dice scores for the multi-echo dataset. Performance on multi-contrast
input data is shown in purple, and on T1-weighted data only in black. On each box,
the central mark is the median, the edges of the box are the 25th and 75th percentiles,
and outliers are marked with a ’+’.

Figure 9: Top row: target scans, T1-weighted on the left and PD-weighted on
the right. Bottom row: automatic segmentation using only the T1-weighted
scan on the left, automatic segmentation using both scans on the right.
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Figure 10: The ASPC scores for the test-retest dataset. Volume differences
between the time points on multi-contrast input data is shown in purple, and
on T1-weighted data only in black. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, and outliers
are marked with a ’+’. The outlier marked by an arrow is the one shown in
Figure 11.

Figure 11: An example of an outlier subject marked by the arrow in Figure 10. From left
to right: a T1-weighted scan with no visible artifacts, a T2-weighted scan with a line-
like artifact in the pallidum and thalamus area marked by red arrows, and an automated
segmentation of pallidum and thalamus showing the segmentation error caused by the
artifact.
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paper) that the available training data will seldom be ac-
quired on the exact same imaging system as the images
being segmented.

The proposed method has been evaluated on a set
structures in which the cerebral cortex was considered a
single structure, without attempting to further parcellate
it into neuroanatomical subregions. However, we note
that the volumetric white matter segmentations gener-
ated by the method can be used to build and label corti-
cal surface models using FreeSurfer (Dale et al., 1999;
Fischl et al., 2004a). Exploring this direction remains
as future work.

In the current paper, we only analyzed images of
healthy subjects, and our experiments on multi-contrast
images showed no benefit in terms of segmentation
accuracy compared to when only T1-weighted scans
are used. However, the ability to seamlessly han-
dle multi-contrast data becomes essential when ana-
lyzing diseased populations, since many brain lesions
are much better visualized in T2-weighted and FLAIR
scans than in T1-weighted contrast. In future work we
will therefore include models of pathologies in the pro-
posed framework, enabling simultaneous whole-brain
segmentation and pathology detection.
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Abstract. In this paper we propose a new generative model for simul-
taneous brain parcellation and white matter lesion segmentation from
multi-contrast magnetic resonance images. The method combines an ex-
isting whole-brain segmentation technique with a novel spatial lesion
model based on a convolutional restricted Boltzmann machine. Unlike
current state-of-the-art lesion detection techniques based on discrimina-
tive modeling, the proposed method is not tuned to one specific scan-
ner or imaging protocol, and simultaneously segments dozens of neu-
roanatomical structures. Experiments on a public benchmark dataset in
multiple sclerosis indicate that the method’s lesion segmentation accu-
racy compares well to that of the current state-of-the-art in the field,
while additionally providing robust whole-brain segmentations.

1 Introduction

Conditions that affect the integrity of the white matter, including small ves-
sel disease and multiple sclerosis, form a significant health concern. Lesions in
the white matter are frequently associated with memory impairment, headaches,
depression, muscle weakness, and many other conditions. Because magnetic reso-
nance (MR) imaging can visualize lesion formation with much greater sensitivity
than clinical observation, the ability to reliably and efficiently detect white mat-
ter lesions from MR scans is of great value to diagnose disease, track progression,
and evaluate treatment. Quantifying the independent contribution of white mat-
ter lesions to clinical disability is important for enhancing our understanding of
disease mechanisms, and for facilitating efficient testing in clinical trials.

Because of considerable intra- and inter-rater variabilities in manual anno-
tations, and because of the sheer amount of imaging data acquired in clinical
trials, there is a strong need for computational tools that can analyze brain
images with white matter lesions in a fully automated fashion. Although many
partial solutions have been proposed (e.g., [1]), a generally applicable tool that
works robustly across disease states and imaging centers remains an open prob-
lem. Many of the best performing methods for lesion segmentation currently use



extended spatial neighborhoods to provide rich contextual information, using a
discriminative approach in which the specific intensity characteristics of training
images are explicitly used to encode the relationship between image appearance
and segmentation labels (e.g., [2–4]). However, because of the dependency of
MR intensity contrast on the scanner platform and pulse sequence, and because
there exists no standardized clinical MR protocol to study white matter dam-
age, such discriminative methods do not generalize well to cases where the target
and training data come from different scanners or centers. Furthermore, these
methods do not provide segmentations of the non-lesioned parts of the brain into
various cortical and subcortical structures, although regional atrophy patterns
convey vital clinical information in diseases such as multiple sclerosis [5].

In this paper, we propose a novel method for jointly segmenting white mat-
ter lesions and a large number of cortical and subcortical structures from multi-
contrast MR data. The method combines a previously validated method for
whole-brain segmentation of healthy brain scans [6] with a novel spatial model for
lesion shape and occurrence that is conditioned on surrounding neuroanatomy.
In particular we propose to use a restricted Boltzmann machine (RBM) [7] to
provide much richer spatial models than the low-order Markov random fields
(MRFs) that have traditionally been used in the field for spatial regularization
of lesion segmentations [8]. By using a generative rather than a discriminative
formulation, the method is able to completely separate models of anatomy (which
are learned from manual segmentations of training data) from intensity models
(which are estimated on the fly for each individual scan being segmented). Be-
cause the intensities of training data are never used, the model can be applied
to images with new contrast properties without needing new training data.

We test our approach on publicly available data from the MICCAI 2008 MS
lesion segmentation challenge [9], demonstrating the feasibility of the method.
Compared to related work for simultaneous whole-brain and lesion segmen-
tation [10], the proposed method segments considerably more structures, and
learns spatial lesion models automatically from training data rather than rely-
ing on a set of hand-crafted rules to remove false positive detections.

2 Modeling Framework

We build upon a previously published generative modeling approach [6], in which
a forward probabilistic image model is “inverted” to obtain automated segmenta-
tions. In the following we first briefly summarize the existing whole-brain segmen-
tation method we build upon; then introduce the proposed RBM lesion model;
describe how we integrate it within the model for whole-brain segmentation; and
specify how we use the resulting model to obtain automated segmentations.

2.1 Existing whole-brain segmentation method

Let D = (d1, . . . ,dI) denote a matrix collecting the (log-transformed) intensi-
ties in a multi-contrast brain MR scan with I voxels, where the vector di =



(d1
i , . . . , d

N
i )T contains the intensities in voxel i for each of the available N con-

trasts. Furthermore, let l = (l1, . . . , lI)T be the corresponding segmentation,
where li ∈ {1, . . . ,K} denotes the one of K possible segmentation labels as-
signed to voxel i. A generative model then consists of a prior segmentation
probability p(l) that encodes prior knowledge about human neuroanatomy, and
a segmentation-conditional probability p(D|l) that measures how probable the
observed MR intensities are for different segmentations. In [6] the segmentation
prior is parametrized by a sparse tetrahedral mesh with node positions θl. As-
suming conditional independence of the labels between voxels given θl, the prior
is given by:

p(l) =

∫

θl

p(l|θl)p(θl)dθl, where

p(l|θl) =
I∏

i=1

pi(li|θl)

and p(θl) is a topology-preserving deformation prior. The prior model is learned
from manual annotations in 39 subjects as described in [6].

For the segmentation-conditional distribution p(D|l), a Gaussian mixture
model (GMM) is associated with each neuroanatomical label to model the rela-
tionship between segmentation labels and image intensities. The smoothly vary-
ing intensity inhomogeneities (“bias fields”) that typically corrupt MR scans are
modeled as a linear combination of spatially smooth basis functions that are
added to the local voxel intensities. Letting θd denote all bias field and GMM
parameters with prior p(θd) ∝ 1, the resulting segmentation-conditional distri-
bution is given by:

p(D|l) =

∫

θd

p(D|l,θd)p(θd)dθd, where

p(D|l,θd) =
I∏

i=1

pi(di|li,θd) and

pi(d|l,θd) =

Gl∑

g=1

wlgN
(
d−CTφi

∣∣µlg,Σlg

)
.

Here N (·) denotes a normal distribution; Gl is the number of Gaussian distri-
butions associated with label l; and µlg, Σlg, and wlg are the mean, covariance,
and weight of component g in the corresponding mixture model. Furthermore,
φi evaluates the bias field basis functions at the ith voxel, and C = (c1, . . . , cN )
where cn denotes the parameters of the bias field model for the nth MR contrast.

With this model segmentation proceeds by estimating l̂ = arg maxl p(l|D),
using the approximation p(l|D) ' p(l|D, θ̂d, θ̂l) where {θ̂d, θ̂l} are the param-
eter values that maximize p(θd,θl|D). These values are estimated using coor-
dinate ascent, where the atlas deformation parameters θl are optimized with
a conjugate gradient (CG) algorithm, and the remaining parameters θd with a



generalized expectation-maximization (GEM) algorithm [6]. The optimization
is done iteratively in an alternating fashion keeping the deformation parame-
ters fixed while optimizing the intensity model parameters and vice versa until
convergence. The GMM parameters are initialized based on the structure prob-
abilities given by the segmentation prior model after affine registration to the
target scan. We emphasize that the intensity model parameters are learned given
the target scan and thus automatically adapt to its intensity properties. In [6]
the intensity-adaptiveness was demonstrated on several datasets acquired with
different sequences, scanners and field strengths.

2.2 Spatial lesion prior using a convolutional RBM

In order to model the spatial configuration of white matter lesions, we employ
a restricted Boltzmann machine (RBM) [7], a specific type of MRF in which
long-range voxel interactions are encoded through local connections to hidden
units, which effectively function as feature detectors. Letting z = (z1, . . . , zI)T

denote a binary lesion map, where zi ∈ {0, 1} indicates if the voxel is part of a
lesion, a RBM prior on z is defined by

p(z) =
∑

h

p(z,h), with

p(z,h) ∝ exp
[
− ERBM(z,h)

]
,

where h = (h1, . . . , hJ)T , hj ∈ {0, 1} denotes a vector of J binary hidden units,
and the RBM “energy” is defined as:

ERBM(z,h) = −bT z− cTh− hTWz.

The parameters of this model include the vectors b and c (which bias individual
visible and hidden units to take on certain values), as well as the weight matrix
W (which models the interaction between the hidden and visible units). The
attractiveness of this specific MRF model arises from the presence of the hidden
units, which increase the expressive power of the model, as well as the property
that the values of z are independent of one another given h and vice versa, which
greatly facilitates inference computations. Specifically, for each hidden unit hj
and lesion zi the conditional distributions are written as [11]:

p(hj = 1|z) = σ
(
cj +

(
Wz

)
j

)

p(zi = 1|h) = σ
(
bi +

(
hTW

)
i

)
,

where σ(x) = (1 + exp(−x))−1.
In order to scale this framework to model full-sized images, we use a con-

volutional approach that imposes a repeated, sparse spatial structure on the
parameters [11]. For the sake of clarity of presentation, in the following we
describe the case for one-dimensional images, although the technique general-
izes readily into three dimensions. In the convolutional RBM a set of P filters



{fp}Pp=1, f
p = (fp1 , . . . , f

p
Q)T is defined, each of size Q� I. The parameter matrix

W is then restricted to be of the form

W =




W1

...
WP


 , where Wp =




fp1 . . . f
p
Q 0 . . . 0

0 fp1 . . . fpQ . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 fp1 . . . fpQ


 ,

so that each filter detects the same specific feature in different parts of the
image, and inference can be done efficiently using convolution. Similarly, in the
parameter vector c each filter output shares the same bias across the image [11].
In our implementation we do not put such a restriction on the visible biases b,
as this allows modeling spatially varying prior probabilities of lesion occurrence.

We automatically learn appropriate values for the parameters {W,b, c} from
manually annotated training data, i.e., binary lesion maps for a number of dif-
ferent subjects. For this purpose, we use the persistent contrastive divergence
(PCD) learning algorithm, which performs stochastic gradient ascent on the
log-likelihood of the training data using approximate gradients computed with
Markov chain Monte Carlo (MCMC) sampling [12].

2.3 Joint model

We incorporate the RBM lesion model into the whole-brain segmentation frame-
work by assuming that a lesion can only occur in a voxel when its underlying
neuroanatomical label is white matter (l = wm), effectively changing its status
from healthy white matter (z = 0) into white matter lesion (z = 1). Towards
this end, we define a joint segmentation prior on both l and z:

p(l, z) =

∫

θl

p(l, z|θl)p(θl)dθl, where

p(l, z|θl) =
∑

h

p(l, z,h|θl) and

p(l, z,h|θl) ∝ exp

[
− ERBM(z,h) +

I∑

i=1

log pi(li|θl)−
I∑

i=1

φ(li, zi)

]
,

where in abuse of notation pi(li|θl) refers to the deformable atlas of the whole-
brain segmentation model, and φ(l, z) evaluates to zero when l = wm or z = 0,
and infinity otherwise. The role of φ(l, z) is to restrict lesions to appear only
inside white matter – without it the model would devolve into simply p(l, z) =
p(l)p(z). In similar vein, we define an intensity model which is conditional on



both l and z:

p(D|l, z) =

∫

θd

p(D|l, z,θd)p(θd)dθd, where

p(D|l, z,θd) =

I∏

i=1

p(di|li, zi,θd) and

pi(d|l, z,θd) =

Gl∑

g=1

wlgN
(
d−CTφi|µlg, γ

zΣlg

)
.

This model preserves the original segmentation-conditional GMMs for voxels
without lesions (z = 0), but widens the variances of the Gaussian components
by a user-specified factor γ > 1 otherwise. Such wide distributions aim to capture
the fact that lesions often do not have a clearly defined intensity profile in MR,
e.g., ranging from iso-intense to white matter to intensities similar to CSF in
T1-weighted contrasts.

2.4 Inference

Segmentation with the proposed model can be accomplished by first estimating
the parameters {θ̂d, θ̂l} that maximize p(θd,θl|D), and subsequently analyzing
p(l, z|D, θ̂d, θ̂l), as in the original segmentation method. However, optimization
of the model parameters is now complicated by the fact that the RBM model
introduces non-local dependencies between the voxels through the weighted con-
nections between the lesions and the hidden units. To side-step this difficulty,
during the parameter estimation phase – in which we have no interest in accu-
rately segmenting the white matter lesions – we temporarily replace the RBM
energy ERBM(z,h) with a simple energy of the form:

Etmp(z, l) = −
I∑

i=1

[li = wm]
(
zi log(1− w) + (1− zi) logw

)
,

where 0 ≤ w ≤ 1 is a user-specified parameter which essentially defines a uniform
spatial prior probability for lesions to occur within white matter. This effectively
removes the hidden units from the model, and reduces the form of p(θd,θl|D)
to the one of the original segmentation method, so that the same optimization
strategy can be used. Compared to the original method, the only difference is
that each Gaussian distribution N

(
· |µlg,Σlg

)
associated with the white matter

label l = wm is replaced with a mixture of the form:

(1− w)N
(
· |µlg,Σlg

)
+ wN

(
· |µlg, γΣlg

)
, (1)

yielding a distribution with the same mean but heavier tails, making parameter
estimation more robust to intensity outliers such as white matter lesions. The
adaptation in the GEM algorithm to enforce the parameter sharing between the
two mixture components in Eq.(1) is straightforward.



Once the optimal parameter estimates are found, we replace the temporary
energy with the original RBM energy and infer the corresponding whole-brain
and lesion segmentation by MCMC sampling from p(l, z|D, θ̂d, θ̂l), exploiting
the specific structure of the RBM model. In particular, we generate S triplets
{ls, zs,hs}Ss=1 by sampling from the distribution p(l, z,h|D, θ̂d, θ̂l) using block-
Gibbs sampling. This is straightforward to implement because each of the con-
ditional distributions factorizes over the voxels (for l and z) or the hidden units
(for h). The sampling is performed in two alternating steps: first, we sample the
values for the hidden units given the lesions:

hs ∼
J∏

j=1

p(hj = 1|zs−1).

Next, given the sampled hidden unit values hs, we jointly sample the labels l
and z from:

{ls, zs} ∼ p(l, z|D,hs, θ̂d, θ̂l).

This is a multinomial distribution with K + 1 labels, where the label in each
voxel is sampled from:

p(li, zi|D, θ̂, x̂,h) ∝




p(di|li, zi = 0, θ̂)p(li|x̂)p(zi = 0|h)

p(di|li = wm, zi = 1, θ̂)p(li = wm|x̂)p(zi = 1|h)
0, li 6= wm and zi = 1

and p(zi = 0|h) = 1 − p(zi = 1|h). The initial lesion segmentation, i.e., z0, is
obtained as a maximum-a-posteriori estimate using the temporary energy Etmp.

Once we have acquired S triplets, the samples of the hidden units {hs} are
discarded as they are of no interest to us. The “hard” segmentations of l and z
are obtained by voxel-wise majority voting across {ls} and {zs}.

3 Experiments and Results

3.1 Data

We demonstrate the proposed method on the 20 publicly available training cases
of the MICCAI 2008 challenge on multiple sclerosis lesion segmentation [9]. This
dataset includes 10 subjects scanned at Children’s Hospital Boston (CHB) and
another 10 scanned at the University of North Carolina (UNC). For each sub-
ject the scan set consists of a T1-weighted, a T2-weighted and a FLAIR scan
with isotropic resolution of 0.5mm, along with expert segmentations provided
by CHB3. As a pre-processing step the data was downsampled by a factor of
two to a resolution of 1mm isotropic as is customary for this dataset [13, 2, 4].
No further pre- or post-processing, such as intensity normalization or bias field
correction, was applied.

3 Manual segmentations from UNC are now also available, but at the time of the
challenge this was not the case [9] so we decided to use only the segmentations
provided by CHB.



3.2 Implementation

We closely follow the implementation details of the whole-brain segmentation
method described in [6]. Because of the small number of manual segmentations
available for training the RBM model, we applied two rotations of 10 and −10
degrees around the three main axes, producing 6 extra training scans per subject.
We trained different RBM models with either P = 20 or P = 40 filters, with
sizes of (Q × Q × Q), where Q was either 5, 7 or 9. Each model was trained
with 5600 gradient steps of size 0.1 in the PCD algorithm [12]. Based on pilot
experiments, we found that using two mixture components for white matter
worked well (i.e., Gwm = 2), provided that one of the Gaussians is constrained to
be a near-uniform distribution that can collect model outliers other than white
matter lesions (in practice we use a Gaussian with a fixed scalar covariance
matrix 106I and weight 0.05). Finally, as the main characteristic of white matter
lesions is that they appear hyper-intense compared to normal white matter in
FLAIR contrast [14], we decided to only allow voxels to be assigned to lesion in
the Gibbs sampling process if their intensity is higher than the estimated white
matter mean in FLAIR.

We implemented the algorithm in Matlab, except for the mesh deformation
part, which was written in C++, and the RBM convolutions, which were per-
formed on a GPU. In our experiments, estimation of the parameters {θ̂d, θ̂l} was
performed on a cluster where each node has two quad-core Xeon 5472 3.0GHz
CPUs and 32GB of RAM. Only one core was used in the experiments, taking
roughly 1.7 hours per subject. Gibbs sampling was done on a machine with a
GeForce GTX Titan 6GB GPU. We generated S = 150 samples, collected after
an initial burn-in of 50 sampling steps, taking approximately 10 minutes per
subject. Thus the full segmentation time for a single target scan is roughly two
hours.

3.3 Evaluation set-up

In order to compare our results against previous methods on the same data, we
use the true positive rate TPR = TP

TP+FN and the positive predictive value PPV =
TP

TP+FP as performance metrics. Here TP, FP and FN count the true positive,
false positive and false negative voxels compared to the expert segmentation.
Because our method contains four user-specified parameters γ, w, Q and P ,
which can have a large influence on the obtained results, and because the RBM
requires training data to learn its parameters, we perform our evaluation in a
cross-validation setting. In particular, we split the available data randomly into
five distinct sets, each having 16 training and 4 test subjects. For segmenting
each set of 4 test subjects, the remaining 16 are used to train the RBM and to
find the best combination (γ,w,Q, P ), defined as the combination maximizing
the product of the mean TPR and PPV over the 16 subjects. Using the product
as a measure of fitness promotes parameter combinations which provide both
sensitive and specific lesion segmentations.
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3.4 Results

Figure 1 shows two examples of the joint whole-brain and lesion segmentations
obtained using the proposed method, along with the manual segmentations.
Although our method can segment 41 different neuroanatomical structures in
total [6], the MICCAI challenge data only includes manual segmentations of
lesions, so validation of the automatic segmentations of these structures could
not be performed. However, visual inspection of the 20 cases did not reveal any
significant failures in the whole-brain segmentation component of the method.

In table 1 we compare our lesion segmentation performance with that of two
state-of-the-art lesion segmentation tools: a random forest (RF) classifier [2],
which is a discriminative model, and a dictionary-learning approach (DL) [13],
which is unsupervised and therefore contrast-adaptive (as is the proposed method).
Compared to the winning method [15] of the MICCAI 2008 lesion segmentation
challenge, which obtained a mean TPR of 0.21 and a mean PPV of 0.30, all the
methods show greatly improved segmentation results. On average the proposed
method achieves better results than both the DL and RF approaches, although
the improvement over the RF approach is very slight. We note that neither of
the two benchmark methods segments other structures than lesions, and that
the RF classifier is specifically trained on the contrast properties of this spe-
cific data set, and is therefore less generally applicable than the proposed and
DL methods. Note that the results of the DL method are not entirely compara-
ble, as the authors used a different set of manual annotations for validating the
UNC subjects. This explains the quite large difference in performance of the DL
method compared to the two others for subjects UNC01 and UNC06.

In a very recently published work [4], the authors present a lesion segmen-
tation framework based on deep convolutional encoder networks. This model is
somewhat similar to the proposed method in the sense that both use convolu-
tional architectures for learning suitable features for lesion detection automat-
ically. The authors also report results on the MICCAI 2008 dataset, obtaining
an average TPR of 0.40 and an average PPV of 0.41 which ties the performance
of the proposed method. However, their approach is, similar to the RF, based
on a discriminative classifier and only segments lesions.

4 Discussion

In this paper we have proposed a method for joint white matter lesion detection
and whole-brain segmentation using a novel spatial lesion model. Due to the
generative modeling approach, the method is not tied to one specific scanner
platform or imaging protocol, and shows good performance when compared to
the current state-of-the-art in lesion segmentation. The presented results are
significantly limited by the amount of training data, which was very small given
the number of parameters and potential expressive power of the RBM model.
Future work will involve further experimentation with different RBM training
algorithms and sampling strategies, and an extensive performance validation on



DL [13] RF [2] Proposed DL [13] RF [2] Proposed

Patient TPR PPV TPR PPV TPR PPV Patient TPR PPV TPR PPV TPR PPV

CHB01 0.60 0.58 0.49 0.64 0.75 0.57 UNC01 0.33 0.29 0.02 0.01 0.02 0.01
CHB02 0.27 0.45 0.44 0.63 0.57 0.48 UNC02 0.54 0.51 0.48 0.36 0.75 0.29
CHB03 0.24 0.56 0.22 0.57 0.30 0.69 UNC03 0.64 0.27 0.24 0.35 0.28 0.19
CHB04 0.27 0.66 0.31 0.78 0.59 0.49 UNC04 0.40 0.51 0.54 0.38 0.62 0.40
CHB05 0.29 0.33 0.40 0.52 0.45 0.39 UNC05 0.25 0.10 0.56 0.19 0.50 0.18
CHB06 0.10 0.36 0.32 0.52 0.19 0.50 UNC06 0.13 0.55 0.15 0.08 0.17 0.10
CHB07 0.14 0.48 0.40 0.54 0.34 0.65 UNC07 0.44 0.23 0.76 0.16 0.60 0.26
CHB08 0.21 0.73 0.46 0.65 0.37 0.70 UNC08 0.43 0.13 0.52 0.32 0.27 0.21
CHB09 0.05 0.22 0.23 0.28 0.04 0.55 UNC09 0.69 0.06 0.67 0.36 0.67 0.21
CHB10 0.15 0.12 0.23 0.39 0.19 0.69 UNC10 0.43 0.23 0.53 0.34 0.47 0.48

DL [13] RF [2] Proposed
Mean TPR=0.33 PPV=0.37 TPR=0.40 PPV=0.40 TPR=0.41 PPV=0.40

Table 1. Quantitative comparison with two state-of-the-art methods.

larger data sets of white matter lesions. We further plan to also validate the
healthy structure segmentations obtained using the model.
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Abstract. We present a fully automated generative method for brain
tumor segmentation in multi-modal magnetic resonance images. We base
the method on the type of generative model often used for healthy brain
tissues, where tissues are modeled by Gaussian mixture models combined
with a spatial tissue prior. We extend the basic model with a tumor prior,
which uses convolutional restricted Boltzmann machines to model tumor
shape. Experiments on the 2015 and 2013 BRATS data sets indicate that
the method’s performance is comparable to the current state of the art in
the field, while being readily extendable to any number of input contrasts
and not tied to any specific imaging protocol.

1 Introduction

Brain tumor segmentation from magnetic resonance (MR) images is of high
value in radiosurgery and radiotherapy planning. Automatic tumor segmenta-
tion is challenging since tumor location, shape and appearance vary greatly
across patients. Moreover, brain tumor images often exhibit significant intensity
inhomogeneity as well as large intensity variations between subjects, particularly
when they are acquired with different scanners or at different imaging facilities.

Most current state-of-the-art methods exploit the specific intensity contrast
information of annotated training images, which hinders their applicability to
images acquired with different imaging protocols. In this paper we propose an
automated generative method that achieves segmentation accuracy comparable
to the state of the art while being contrast-adaptive and readily extendable to
any number of input contrasts. To achieve this, we incorporate a prior on tumor
shape into an atlas-based probabilistic model for healthy tissue segmentation.
The prior models tumor shape by convolutional restricted Boltzmann machines
(RBMs) that are trained on expert segmentations, without the use of the inten-
sity information corresponding to these segmentations.

2 Generative modeling framework

Let D = (d1, ...,dI) denote the multi-contrast MR data, where I is the number
of voxels and di contains the intensities at voxel i. We aim to segment each voxel
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i into either a healthy tissue label li ∈ {1, ...,K} or tumor tissue zi ∈ {0, 1} and
within tumor tissue into either edema or core yi ∈ {0, 1}. For this purpose we
build a generative model that describes the image formation and then use this
model to derive a fully automated segmentation algorithm. To avoid cluttered
equations we define the model in 1D; it is easily extended to the 3D images we
actually use. We use the posterior of all variables given the data:

p(l, z,y,H,G,θ|D) ∝ p(D|l, z,y,θ) · p(l) · p(θ) · p(z,y,H,G). (1)

The model consists of a likelihood function p(D|l, z,y,θ), which links labels to
MR intensities, and priors p(l), p(θ) and p(z,y,H,G), where H and G denotes
the hidden units of the RBMs (see further below). We define the likelihood as

p(D|l, z,y,θ) =
∏

i





p(di|li,θl) if zi = 0 and yi = 0, (healthy tissue)

p(di|θe) if zi = 1 and yi = 0, (edema)

p(di|θc) if zi = 1 and yi = 1, (core)

, (2)

where θ contains the unknown model parameters θl, θe, θc and bias field param-
eters C and φ; and p(di|l,θl) =

∑
lg γlgN (di − CTφi|µlg,Σlg) is a Gaussian

mixture model (GMM). Subscript g denotes a Gaussian component within label
l and N (·) denotes a normal distribution; and γlg, µlg and Σlg are the weight,
mean and covariance of the corresponding Gaussian. The probabilities p(di|θe)
and p(di|θc) are also GMMs. Furthermore, bias fields corrupting the MR scans
are modeled as linear combinations of spatially smooth basis function added to
the scans [4]. φi contains basis functions at voxel i and C = (c1, ..., cn), where
cn denotes the parameters of the bias field model for MR contrast n.

We use a probabilistic affine atlas computed from segmented healthy sub-
jects as the healthy tissue prior [5], defined as p(l) =

∏
i πli. The atlas includes

probability maps of GM, WM, CSF and background (BG). Moreover, we add a
prior p(θ) on the distribution parameters [6], which ensures that the Gaussians
modeling tumor tissue are neither too narrow or too wide and that their mean
values in FLAIR are higher than that of µGM .

Tumor prior: We model tumor shape by convolutional RBMs, which are graph-
ical models over visible and hidden units that allow for efficient sampling over
large images without a predefined size [1]. The energy term of an RBM is de-
fined as E(z,H) = −∑k hk • (wk ∗ z)−∑k bk

∑
j h

k
j − c

∑
i zi, where • denotes

element-wise product followed by summation and ∗ denotes convolution. Each
hidden group hk is connected to the visible units in z with a convolutional filter
wk. To lower the amount of parameters to be estimated, we let each element in
wk model two neighboring elements in z, e.g. a filter of size 7 will span over 14
voxels in z. Furthermore, each hidden group has a bias bk and z a bias c.

We separately train one RBM for the complete tumor label z and one RBM
for the tumor core label y, where we estimate the filters and bias terms from
training data. This is done by stochastic gradient ascent with contrastive diver-
gence approximation of the log-likelihood gradients with one Gibbs sample step
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[2]. We use the enhanced gradient to obtain more distinct filters [3]. After the
training phase we combine the two RBMs to form the tumor shape prior:

p(z,y,H,G) ∝ e−E(z,H)−E(y,G)−f(y,z). (3)

For each voxel, f(yi, zi) =∞ if yi = 1 and zi = 0, and otherwise 0. This restricts
tumor core tissue to only exist within the complete tumor.

Inference: We initially estimate θ by a generalized Expectation-Maximization
algorithm (GEM), where the tumor shape prior’s energy is replaced with a sim-
ple energy of the form: −∑i[li 6= BG](zi logw+(1−zi) log(1−w)). This reduces
the model to the same as in [4] with the addition of p(θ). We set w to the ex-
pected fraction of tumor tissue within brain tissue, estimated from training data.
After the initial parameter estimation, we fix the bias field parameters and in-
fer the remaining variables by block-Gibbs Markov chain Monte Carlo sampling
(MCMC). This is straightforward to implement as each of the conditional dis-
tributions p(l, z,y|D,H,G,θ), p(H|z), p(G|y) and p(θ|D, l, z,y) factorizes over
its components. The MCMC is initialized with a maximum a posteriori (MAP)
segmentation after GEM. After a burn-in period, we collect samples of l, z and
y and perform a voxel-wise majority voting across the collected samples.

3 Experiments

We used the training data of the BRATS 2013 challenge (30 subjects) as our
training data set and tested the proposed method on the two test sets of 2013
(Leaderboard: 25 subjects, Challenge: 10 subjects) [7] and the training data of
the 2015 BRATS challenge (274 subjects, some are re-scans). The data include
four MR-sequences: FLAIR, T1, T2 and contrast-enhanced T1, and ground truth
segmentations. All data have previously been skull-stripped.

Implementation: We used 40 filters of size (7× 7× 7) for each RBM, trained
with 9600 gradient steps of size 0.1, which took around 3 days each. To extend
the training data, the tumor segmentations were flipped in 8 directions.

We registered the healthy tissue atlas by an affine transformation and log-
transformed the MR intensities, to account for the additive bias field model [4].
We represented the core label y with one Gaussian during GEM, corresponding
to enhanced core, and two during MCMC, one for enhanced core and one for
remaining core. Before MCMC, the remaining core Gaussian was initialized by
randomly setting yi = 1 to a fraction of the voxels with zi = 1 and yi = 0 in the
MAP segmentation. The fraction was chosen so that the total fraction of core
within the complete tumor equaled the average fraction in the training data set.
All other labels were represented by one Gaussian each, except CSF and BG
that were represented with two Gaussians each.

Due to the large size variation of tumors, we found it beneficial to alter the
bias term c connected to z to better represent the tumor to be segmented. Before

MCMC, we added log
(

pzs(1−pzt)
pzt(1−pzs)

)
to c, where pzs denotes the fraction of tumor
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within the GEM-segmented brain and pzt denotes the average tumor size in the
training data set, used to train the RBM. We altered the bias term connected to
y in the same way, with the difference that we instead used the average fraction
of core within complete tumor in the training data set.

The full segmentation algorithm took approximately 30 minutes per subject.
We generated 15 samples after a burn-in of 200. All computations were done on
a i7-5930K CPU and a GeForce GTX Titan Black GPU in MATLAB 2014b.

Results: At the time of writing, our method is ranked in the top-5 of all sub-
mitted results to the BRATS 2013 evaluation platform [8]. It performed well on
complete tumor (rank 2 on both data sets) and core (rank 2 and 3), but not as
well on enhanced core (rank 9). The lower performance on enhanced core is not
surprising, as we base the segmentation on one Gaussian without any prior to
separate it from the rest of the core. Average Dice scores and robust Hausdorff
distances (95% quantile) on all data sets are shown in table 1. The results on
the 2015 training data set are lower, as it includes more difficult subjects with
substantial artifacts, more progressed tumors and resections.

Dice [%] Hausdorff [mm]

Data sets Comp., HG/LG Core, HG/LG Enh., HG/LG Comp. Core Enh.

2015 Training 77 ± 19 76/78 64 ± 29 69/44 52 ± 33 58/31 18 17 15
2013 Challenge 87 ± 3 87/– 82 ± 15 82/– 70 ± 15 70/– – – –
2013 Leaderb. 83 ± 17 87/59 71 ± 27 78/32 54 ± 51 64/0 – – –

Table 1. Average Dice and Hausdorff scores. Hausdorff for enhanced core excludes 12
subjects due to missing label in either the ground truth or estimated segmentation.
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Abstract. Accurate tumor segmentation plays an important role in
radiosurgery planning and the assessment of radiotherapy treatment
efficacy. In this paper we propose a method combining an ensemble
of 2D convolutional neural networks for doing a volumetric segmenta-
tion of magnetic resonance images. The segmentation is done in three
steps; first the full tumor region, is segmented from the background by
a voxel-wise merging of the decisions of three networks learned from
three orthogonal planes, next the segmentation is refined using a cellu-
lar automaton-based seed growing method known as growcut. Finally,
within-tumor sub-regions are segmented using an additional ensemble of
networks trained for the task. We demonstrate the method on the MIC-
CAI Brain Tumor Segmentation Challenge dataset of 2014, and show
improved segmentation accuracy compared to an axially trained 2D net-
work and an ensemble segmentation without growcut. We further obtain
competitive Dice scores compared with the most recent tumor segmen-
tation challenge.

Keywords: Tumor segmentation · Convolutional neural network ·
Ensemble classification · Cellular automaton

1 Introduction

Segmentation of brain tumors plays a role in radiosurgery, radiotherapy plan-
ning, and for monitoring tumor growth. Segmentation is challenging since tumor
location and appearance vary greatly between patients.

Many successful method for doing voxel-based segmentation are based on
the random forest (RF) classification scheme which predicts segmentation labels
from user engineered image features. Tustison et al. [15] proposed a two-stage
RF approach, with features derived from a Gaussian mixture model followed
by a Markov random field segmentation smoothing. The RF was also used by
Reza et al. [12] who designed features using textons and multifractional Brow-
nian motion. Menze et al. [10] proposed a generative probabilistic atlas-based
model which adapts to the intensity distribution of different subjects and later
combined it with the RF classifier [9]. An example of a successfull method that
does not use a RF classifier is the patch-based approach [2]. Here voxels are

c© Springer International Publishing Switzerland 2015
R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 201–211, 2015.
DOI: 10.1007/978-3-319-19665-7 17
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segmented by comparing image patches to a dictionary consisting of training
patches where the corresponding expert labels are used for segmentation.

In recent years and due to advancements in computational power, deep neu-
ral networks have been revived. In the most recent Brain Tumor Segmentation
Challenge 2014 (BraTS2014), this was reflected by a number of contributions
using deep neural networks. The work by Davy et al. [3] presented a 2D con-
volutional network trained from an axial perspective. Two others presented 3D
networks [16], [18], and while their implementations differed, the results indi-
cated a benefit of using 3D information. An important property of a network
is that it learns image features relevant for the specific segmentation problem.
This alleviate researchers from having to engineer such features.

We revisit the idea of Davy et al. [3] but instead of using one 2D network to
do voxel-based segmentations, we learn an ensemble of networks, one for each of
the axial, sagittal and coronal planes and fuse their segmentations into a more
accurate 3D informed segmentation. Unlike previous works using convolutional
networks we do not segment the tumor and its sub-regions using a single multi-
label classifier. Instead, we split the problem into two sequential segmentation
problems. The first segmentation separates tumor from healthy tissue and refine
the segmentation using a growcut algorithm [17]. The second segmentation per-
forms the within-tumor sub-region segmentation using the tumor mask of the
first segmentation to select voxels of interest.

The method (Fig. 1) is demonstrated on the BraTS2014 dataset. We were
able to achieve improved ground truth segmentation accuracy compared to a 2D
axially trained network [3] and Dice scores [4] just below the top methods of the
challenge leaderboard (https://www.virtualskeleton.ch/BRATS/Start2014).

2 Data

Two datasets were downloaded from the BraTS2014 website (November, 2014).
The first dataset (data1) consisted of 106 high grade glioma (HGG) and 25

low grade glioma (LGG) subjects (no longitudinal repetitions), all with ground
truth segmentations of the tumors. It was randomly split into a training set
of 76 HGG/15 LGG subjects, and the rest (30 HGG/10 LGG) were used as
test data. For each subject, we used a set of multimodal magnetic resonance
imaging (MRI) volumes, consisting of two T2-weighted images (Fluid-attenuated
inversion recovery (FLAIR) and (T2)) and a T1-weighted image with gadolinium
contrast (T1c). The MRIs were skull stripped, rigidly oriented according to MNI
space and re-sliced to 1 mm3 as described in [6]. The ground truth segmentation
consisted of five labels (background=0, necrosis=1, edema=2, non-enhancing=3,
enhancing=4).

The second dataset (data2) consisted of 187 multi-modal MRI volumes from
88 different subjects with 99 longitudinal repetitions. Since only the BraTS2014
challenge organizers know the ground truth segmentations, it allowed for a
blinded segmentation evaluation via the challenge website.
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3 Method

The proposed method, outlined in Fig. 1, consists of four steps. First, the MRI
volumes are bias corrected for scanner field inhomogeneity and standardized to
similar cross subject intensities. Second, an ensemble of convolutional networks
segments the tumor from healthy tissue. The third step (growcut) post processes
the segmentation to improve the segmentation. The fourth step does the within-
tumor segmentation using an additional ensemble of networks. The four steps of
the method are detailed successively in section 3.1-3.4.

Fig. 1. Shows a schematic, outlining the pipeline of our method. The multi-modal MRI
data is pushed through four successive stages of 1) bias correction, 2) whole tumor
segmentation (tumor vs. none tumor), 3) localized post-processing of the segmentation
and 4) a within-tumor segmentation stage.

3.1 Bias Correction and Standardization

MRI generally exhibits large intensity variations even within the same tissue type
of a subject, largely due to field inhomogeneity of the scanner. To minimize this
bias, the N4 method [14] was applied to each MRI.The N4 method works under
the assumption that the bias field can be modeled by a smooth multiplicative
model which is fitted iteratively to maximize the high frequency content of the
MRI intensity distribution. To further standardize across different scanners, the
maximum peak of each MRI intensity histogram was found, and the intensities
scaled according to I = Ic · (Ib/Ip), where Ic is the N4 bias corrected image
volume, Ip is the maximum peak intensity of Ic and Ib is a reference value which
we fixed to Ib = 200. To achieve equal importance of the multi-modal MRI, their
intensities were further standardised using a normal transformation applied to
each of the different modalities.

3.2 Convolutional Network Ensemble: Whole Tumor

To segment tumor tissue, three convolutional neural networks were trained using
a multi-modal image patch of dimension 46 × 46. Each 2D network learned to
classify the same center voxel but viewed from an axial, sagittal and coronal
perspective. Combining this ensemble of 2D networks enabled the segmentation
method to become 3D aware.
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The 2D networks are described by the architecture in Fig. 2. It shows a
network consisting of 6 layers. Each perform an algebraic operation on the input
data x and passes the result as input to the next layer. The process is repeated
until reaching layer 6 which predicts the most probable classification label.

Fig. 2. Depicts a 2D deep neural network architecture consisting of six layers. The first
three are convolutional layers, followed by two fully connected layers and a softmax
layer where the arrows indicate the connections between layers. The squares illustrate
the 2D nature of the input (x) and the intermediate representations (h) of the convolu-
tional layers, where x = [x1...xn] is a 3D matrix of n input patches and h = [h1...hm],
is the concatenation of m 2D filter response. The circles of the fully connected layers
indicate its 1D nature with n being the number of neurons (=the circles), such that
x = [x1...xn]T and h = [h1...hn]T are the 1D vector representations of the input and
the neuronal activations.

Convolutional layers: The convolutional layers apply filtering and downsam-
pling operations to image patches. The first layer uses a filter bank of size
40 × 3 × 7 × 7 which it applies to the 3 × 46 × 46 image patch. This produces a
feature map h of size 40 × 40× 40, where the first dimension indexes the feature
maps, while the second and third dimensions indexes (row, column) coordinates.
More specifically the jth map is calculated by hj = bj +

∑n
i=1(wij ∗ xi), where i
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indexes the input channel and a trainable filter wij , the ∗ operator denotes 2D
convolution and n = 3 is the number of input channels. Subsequently a 2×2 max
pooling strategy is used to downsample h to size 40 × 20 × 20 and the rectified
linear unit function, σ(h) = max(0, h) is applied. The remaining convolutional
layers (two and three) perform the same type of operations but using filter banks
of size 50×40×5×5 and 60×50×5×5 for the respective layers. The application
of these filters and downsampling steps result in a number of the intermediate
feature maps with the dimensionalities listed in the top part of Fig. 2.

Fully connected layers: Layer 4, 5 and 6 are fully connected layers meaning
each neuron is exposed to the full input x of the previoues layer. Each of the
800 neurons in layer 4, evaluates the product hj = wT

j x + bj and applies the
non-linear activation function σ(hj). Thereby transforming the 240 dimensional
vector x into an 800 dimensional vector σ(h) which is passed to layer 5. Layer
5 works similar to layer 4, but now generating a 500 dimensional feature vector
σ(h) which is propagated to layer 6. Layer 6 evaluates the softmax function

p(Y = y|x,w, b) =
ewyx+by

∑
j ewjx+bj

, (1)

generating posterior probabilities for a number of classification labels, y = {0, 1}.
Here wj refer to a vector of linear parameters for the jth class, bj is a bias weight
and x is the 500 dimensional response vector from the previous layer.

Network Training Each of the 2D networks were trained by minimizing the
following cost function

C(W,B) =
1

nd
·

nd∑

i=1

− ln(p(Y = yi|xi,W,B)) + λ ·
nw∑

j=1

W 2
j . (2)

The first term of eq. (2) is the mean negative log-likelihood of the softmax
probability and we have used capitalized (W,B) to indicate that it is a function
of (w, b) parameters from different types of layers. Further, the training patches
are denoted xi, yi, corresponding to the patch intensities and ground truth label
of the ith training example. The second term of eq. (2) is a regularization term
that adds robustness to the optimization problem by limiting the solution space
to models with smaller parameter weights. It does so by penalizing the 2-norm of
the parameters and through experimentation we found λ = 0.0001 to be suitable.

The cost function was minimized using a stochastic gradient descent (SGD)
which relied on the back propagation algorithm to estimate gradients. The SGD
performed iterative updates based on gradients estimated from mini-batches
with a batch size of 200 where an update occurred after each mini-batch. Each
gradient update was further augmented by a moment based learning rule [13]
which updated the parameters as a weighted combination of the current gra-
dients and the gradients of previous iteration update. We used a momentum
coefficient of 0.9. Layer 4 and 5 were trained using the dropout learning [5]
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(dropout rate=0.5) which activates half the neurons for each training example.
As a consequences the activations of these layers(σ(h)) were divided by 2 when
a network was applied to an unseen test image patch.

A GPU implementation for training the three 2D networks was achived using
Theano [1].

Network Ensemble Merging Having learned the parameters of the three
networks, their complementary decision information were merged. This was done
using the posterior probablities of the last layer (layer 6). If the networks agreed
on the same label we were highly confident in this classification and assigned the
label of voxel x with probability p(Y |x) = 1. Otherwise a majority vote decided
the class label and the probability was set to reflect this uncertainty by averaging
the class probabilities of the three networks, p(Y |x) = (1/3)

∑3
i=1 pi(Y |x,w, b).

The resulting label segmentations and their probabilities were then used as input
for the growcut algorithm.

3.3 Cellular Automaton: Growcut

The growcut algorithm was initially proposed as a continuous state cellular
automata method for automated segmentation based on user labeled seed vox-
els [17]. From these labels and a local intensity transition rule the algorithm
decides whether voxels should be re-labelled.

We used the algorithmic formulation of [17] which we extended to 3D. The
algorithm models each voxel as a cell with a state set S(Θ, l, C) consisting of a
strength value Θ ∈ [0, 1], a label l and an intensity feature vector C. It is an
iterative algorithm and for each iteration the strength and labels of the previous
iteration remain fixed. During an iteration each image cell r is attacked by its
neighboring cells s ∈ N(r) where N(r) denote the 3 × 3 × 3 neighborhood of a
volume and only if g(Cr, Cs) · Θs > Θr, will Θr, and lr be updated before the
next iteration. The local transition rule is given by

g(C1, C2) = 1 − ||C1 − C2||2
k

(3)

Where we have normalized the intensities of C to be in the range [0, 1] such that
for k =

√
3, the value of g(C1, C2) ∈ [0, 1]. Since g(C1, C2) can never exceed 1,

any cells with strength Θ = 1 will remain constant throughout the algorithm.
To use the growcut on the ensemble segmentations, the feature vector C was

set to the multi-modal MRI intensities and the values of l, Θ were initialized
with the labels and probability maps of the convolutional network ensemble.
This initialization served as a strong prior for growcut segmentation, assuming
that the segmentation was already near optimal.

Once growcut converged to a stable segmentation (100 iterations), a heuristic
rule was used to identify the tumor. It was based on a connected components
analysis to remove any spatially coherent clusters of voxels which were less than
80% of the biggest cluster.
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3.4 Convolutional Network Ensemble: Within-Tumor

This ensemble of convolutional networks was used to segment the within-
tumor sub-regions. The architecture of each network is similar to the previously
described, but considers a smaller image patch and has only two convolutional
layers, two fully connected dropout layers and softmax probability layer. The
input patch size is 3× 34× 34 and the first convolutional layer uses a filter bank
of size 50×3×7×7 while the second one uses a filter bank of size 60×50×5×5.
The justification of choosing a smaller patch size is that the within-tumor seg-
mentation uses information on a smaller scale compared to the whole tumor
segmentation. As with the previously described networks, the fully connected
layers use 800 and 500 neurons respectively while the softmax layer, predicts
one of four possible classification labels. The SGD optimization was again used
to train the networks but for these specific networks we used λ = 0.00005.

Network Ensemble Merging The voxel-based decisions of the ensemble of
axial, sagittal and coronal networks were either set to the label they all agree on,
or according to the most probable average probability of the softmax probability.

4 Results

4.1 Test and Phenotype Performance

Testing our method on the 40 left out subjects (data1), resulted in the segmen-
tation performances of Table 1. This table shows ground truth scores for three
methods; A 2D convolutional network applied to the axial plane similar to [3], a
method using only the ensemble part of our method (ensem) and our full method
which is ensem in combination with growcut (ensem+grow). The scores of the
table are given for pathologically relevant tumor regions. These are the whole
tumor (labels: necrosis, edema, non-enhancing, enhancing), the enhanced tumor
region and the tumor core (labels: necrosis, non-enhancing, enhancing). We see
that using an ensemble improved the segmentation relative to a 2D network and
achieved further improvement by including growcut post-processing. As a visual
comparison example, two tumor segmentations based on our method and their

Table 1. Average segmentation performance scores of three convolutional neural net-
work methods evaluated on 40 subjects of data1. The scores (Dice, positive predictive
and sensitivity) were calculated for the different tumor regions.

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

axial 0.744 0.642 0.629 0.732 0.624 0.642 0.811 0.746 0.707

ensem 0.786 0.686 0.676 0.786 0.707 0.693 0.825 0.743 0.717

ensem+grow 0.810 0.697 0.681 0.833 0.718 0.701 0.825 0.750 0.720



208 M. Lyksborg et al.

Fig. 3. This visual comparison shows both the proposed segmentation method and
corresponding ground truth for two subjects. The Dice scores of subject 1 were 0.825
(whole), 0.795 (core) and 0.842 (enhanced) and for subject 2 they were, 0.892 (whole),
0.840 (core) and 0.854 (enhanced).

ground truth, are shown in Fig. 3. By dividing the test subjects based on tumor
types (HGG/LGG), we evaluated their impact on method performance. This
comparison (Fig. 4), reveals higher Dice scores with less variance for the HGGs,
indicating a methodological bias towards the tumor type.

4.2 Blinded Challenge Performance

Testing our method on the blinded challenge dataset previously denoted data2
and performing an on-line evaluation of the segmentations, resulted in the aver-
age performance scores of Table 2. It lists the scores for the first time point of the
99 subjects (cross sectional) and the full challenge data (full data) where similar
performances are achieved. It also includes the top 3 scores of the BraTS2014
challenge where our method is ranked amongst.
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Fig. 4. Ground truth Dice scores performance for two different types of tumors (HGG
and LGG). Red line indicate mean Dice score, blue boxes show the 25 and 75 percentiles
of the scores while extreme observations are show with red dots.

Table 2. Shows the average segmentation performance scores of our method in grey
(cross sectional and full data), for the BraTS2014 challenge data (data2). Also listed
are the top three of the challenge (15/12-2014), ranked according to their whole tumor
Dice scores. These are Urbag [16], Kleej [7], Dvorp [8].

Method Dice scores Positive predictive Sensitivity

Whole Core Enh. Whole Core Enh. Whole Core Enh.

Cross sectional 0.801 0.637 0.586 0.803 0.682 0.554 0.857 0.715 0.745

Full data 0.799 0.631 0.625 0.783 0.629 0.580 0.861 0.736 0.776

Urbag 0.87 0.76 0.72 0.91 0.80 0.69 0.85 0.76 0.81

Kleej 0.87 0.76 0.73 0.90 0.73 0.66 0.85 0.83 0.87

Dvorp 0.60 0.30 0.29 0.86 0.58 0.56 0.53 0.27 0.28

5 Discussion

We have presented a method, combining an ensemble of 2D convolutional net-
works with the growcut method for making a 3D informed segmentation. It
showed improved accuracy compared to a 2D network and an ensemble seg-
mentation without growcut thereby validating the usefulness of the proposed
method. The investigation of tumor type showed better performance for HGG,
likely due to the imbalanced training data distribution (76 HGG/15 LGG). It
could also indicate the presence of a measurable pathologic difference. If so, the
training of a segmentation method for each type could lead to improved segmen-
tations for both types. This would require knowing the tumor type in advance,
information that was not readily available for the blinded challenge data. Our
challenge results showed a nice performance although sub-par to the top two
methods of the challenge but was superior to the remaining 11. It is noted that
our methods performance is in the Dice score range that manual annotators
can achieve according the results of [11]. They reported the Dice accuracy of
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annotators to be in the range of (0.74-0.85). This is comparable to the pro-
posed method. A simple strategy for improving our work would be to extend
the ensemble to use 3D network (computationally costly) or to investigate the
inclusion of networks trained from more than orthogonal planes. In addition, the
usage of using longitudinal information could also play a role towards improving
segmentations.
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Abbreviations
EM Expectation-maximization

MAP Maximum a posteriori

ML Maximum likelihood

Computational methods for automatically segmenting mag-

netic resonance (MR) images of the brain have seen tremen-

dous advances in recent years. So-called tissue classification

techniques, aimed at extracting the three main brain tissue

classes (white matter, gray matter, and cerebrospinal fluid),

are now well established. In their simplest form, these methods

classify voxels independently based on their intensity alone,

although much more sophisticated models are typically used

in practice (Anbeek, Vincken, van Bochove, van Osch, & van der

Grond, 2005; Ashburner& Friston, 1997, 2005; Awate, Tasdizen,

Foster, & Whitaker, 2006; Greenspan, Ruf, & Goldberger, 2006;

Marroquin, Vemuri, Botello, Calderon, & Fernandez-Bouzas,

2002; Pham & Prince, 1999; Rajapakse, Giedd, & Rapoport,

1997; Van Leemput, Maes, Vandermeulen, & Suetens,

1999a,1999b; Warfield, Kaus, Jolesz, & Kikinis, 2000; Wells,

Grimson, Kikinis, & Jolesz, 1996; Zeng, Staib, Schultz, &

Duncan, 1999; Zhang, Brady, & Smith, 2001).

This article aims to give an overview of often-used com-

putational techniques for brain tissue classification. Although

other methods exist, we will concentrate on Bayesian model-

ing approaches, in which generative image models are con-

structed and subsequently ‘inverted’ to obtain automated

segmentations. This general framework encompasses a large

number of segmentation methods, including those imple-

mented in widely used software packages such as SPM, FSL,

and FreeSurfer, as well as techniques for automatically seg-

menting many more brain structures than merely the three

main brain tissue types only (Ashburner & Friston, 2005;

Fischl et al., 2002; Fischl, Salat et al., 2004; Fischl, van der

Kouwe et al., 2004; Guillemaud & Brady, 1997; Held et al.,

1997; Lorenzo-Valdes, Sanchez-Ortiz, Mohiaddin, & Rueckert,

2004; Marroquin et al., 2002; Menze et al., 2010; Pohl,

Fisher, Grimson, Kikinis, & Wells, 2006; Pohl et al., 2007;

Prastawa, Bullitt, Ho, & Gerig, 2004; Sabuncu, Yeo, Van

Leemput, Fischl, & Golland, 2010; Van Leemput, Maes, Van-

dermeulen, Colchester, & Suetens, 2001; Van Leemput et al.,

1999b; Wells et al., 1996; Xue et al., 2007; Zhang et al.,

2001).

We first introduce the general modeling framework and the

specific case of the Gaussian mixture model. We then discuss

maximum likelihood (ML) parameter estimation and the

expectation–maximization (EM) algorithm and conclude the

article with further model extensions such as MR bias field

models and probabilistic atlases.

Generative Modeling Framework

Brain MR segmentation methods are often based on so-called

generative models, that is, probabilistic models that describe

how images can be generated synthetically. Such models gen-

erally consist of two parts:

• A segmentation prior that makes predictions about where

neuroanatomical structures typically occur throughout the

image. Let l¼ (l1, . . ., lI)
T be a (vectorized) label image with a

total of I voxels, with li2{1, . . .,K} denoting the one of K

possible labels assigned to voxel i, indicating which of the K

anatomical structures the voxel belongs to. For the purpose

of tissue classification, there are typically K¼3 labels,

namely, white matter, gray matter, and cerebrospinal

fluid. The segmentation prior then consists of a probability

distribution p(l|ul) that typically depends on a set of param-

eters ul.

• A likelihood function that predicts how any given label

image, where each voxel is assigned a unique anatomical

label, translates into an image where each voxel has an

intensity. This is essentially a (often very simplistic) model

of how an MR scanner generates images from known anat-

omy: given a label image l, a corresponding intensity image

d¼(d1, . . .,dI)
T is obtained by random sampling from some

probability distribution p(d| l,ud) with parameters ud,

where di denotes the MR intensity in voxel i.

In summary, the generative model is fully specified by two

distributions p(l|ul) and p(d|l,ud), which often depend on

parameters u¼(ul
T,ud

T)T that are either assumed to be known

in advance or, more frequently, need to be estimated from the

image data itself. The exact form of the used distributions

depends on the segmentation problem at hand. In general,

the more realistic the models, the better the segmentations

that can be obtained with them.

Once the exact generative model has been chosen and

appropriate values û for its parameters are known, properties

of the underlying segmentation of an image can be inferred by

inspecting the posterior probability distribution p ljd, û
� �

.

Using Bayes’ rule, this distribution is given by

p ljd, û
� �

¼
p djl, ûd
� �

p ljûl
� �

p djû
� � [1]
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with p djû
� �

¼Plp djl, ûd
� �

p ljûl
� �

. For instance, one might

look for the segmentation l̂ that has the maximum a posteriori

(MAP) probability

l̂¼ arg max
l

p ljd, û
� �

[2]

or estimate the volume of the anatomical structure correspond-

ing to label k by assessing its expected valueX
l

Vk lð Þp ljd, û
� �

[3]

where Vk(l) counts the number of voxels that have label k in l.

Gaussian Mixture Model

A very simple generative model that is nevertheless quite useful

in practice is the so-called Gaussian mixture model. In this

model, the segmentation prior is of the form

p ljulð Þ¼
Y
i

p lijulð Þ [4]

p ljulð Þ¼
Y
i

pli [5]

where the parameters ul¼(p1, . . .,pK)
T consist of a set of prob-

abilities pk satisfying pk�0,8k and
P

kpk¼1. In other words,

this model assumes that the labels are assigned to the voxels

independently from one another, that is, the probability that a

certain label occurs in a particular voxel is unaffected by the

labels assigned to other voxels (eqn [4]) and each label occurs,

on average, with a relative frequency of pk (eqn [5]).

For the likelihood function, it is assumed that the intensity

in each voxel only depends on the label in that voxel and not

on that in other voxels

p djl,udð Þ¼
Y
i

p dijli,udð Þ [6]

and that the intensity distribution associated with each label k

is Gaussian with mean mk and variance sk
2:

p dijli,udð Þ¼N dijmli ,s2li
� �

[7]

where

N djm,s2� �¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p exp � d�mð Þ2

2s2

" #
[8]

and ud¼(m1, . . .,mK,s1
2, . . .sK

2)T.

It is instructive to write down the probability with which

this model generates a given image d :

p dj uð Þ¼
X
l

p dj l,udð Þp lj ulð Þ

¼
X
l

Y
i

N dijmli ,s2li
� �Y

i

pli

" #
¼
Y
i

p dijuð Þ [9]

with

p djuð Þ¼
X
k

N djmk,s2k
� �

pk [10]

Equation [10] explains why this model is called the Gauss-

ian mixture model: the intensity distribution in any voxel,

independent of its spatial location, is given by the same linear

superposition of Gaussians. Since no spatial information is

encoded in the model, it can directly be visualized as a way

to approximate the histogram, as shown in Figure 1.

Because of the assumption of statistical independence

between voxels, the segmentation posterior (eqn [1]) reduces

to a simple form that is factorized (i.e., appears as a product)

over the voxels:

Figure 1 In the Gaussian mixture model, the histogram is described as a linear superposition of Gaussian distributions: (a) MR scan of the head, after
removing all non-brain tissue and other pre-processing steps; and (b) corresponding histogram and its representation as a sum of Gaussians.
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p ljd, û
� �

¼
p djl, ûd
� �

p ljûl
� �

p djû
� � ¼

Q
iN dijm̂li , ŝ2li
� �Q

ip̂liQ
i

P
kN dijm̂k, ŝ2k
� �

p̂k

¼
Y
i

p lijdi, û
� �

[11]

where

p lijdi, û
� �

¼
N dijm̂li , ŝ2li
� �

p̂liP
kN dijm̂k, ŝ2k
� �

p̂k
[12]

Therefore, the segmentation posterior is fully specified by

each voxel’s k posterior probabilities of belonging to each

structure; such segmentation posteriors can be visualized as

images where high and low intensities correspond to high

and low probabilities, respectively. The segmentation corre-

sponding to the image and Gaussian mixture model of

Figure 1 is visualized in Figure 2 this way. It is worth noting

that the sum of all the structures’ posterior probabilities adds to

one in each voxel:
P

kp kjdi, û
� �

¼ 1, 8i.
Because of the factorized form of the segmentation poste-

rior, the MAP segmentation (eqn [2]) is simply given by

l̂¼ arg max
l

p ljd, û
� �

¼ arg max
l1, ..., lI

p lijdi, û
� �

[13]

that is, each voxel is assigned exclusively to the label with the

highest posterior probability. Similarly, the expected volume of

the anatomical structure corresponding to label k is given by

(eqn [3]) X
l

Vk lð Þp ljd, û
� �

¼
X
i

p kjdi, û
� �

[14]

that is, a ‘soft’ count of voxels belonging to the structure, where

voxels contribute according to their posterior probability of

belonging to that structure.

Parameter Optimization Using the EM Algorithm

So far, we have assumed that appropriate values û of the model

parameters are known in advance. One possible strategy to

estimate these parameters is to manually click on some repre-

sentative points in the image to be segmented – or in similar

images obtained from other subjects – and then collect statis-

tics on the intensity of the selected voxels. In general, however,

such a strategy is cumbersome for such a versatile imaging

modality as MR, where intensities do not directly correspond

to physical properties of the tissue being scanned. By merely

altering the imaging protocol, upgrading the scanner, or col-

lecting images from different scanner models or manufac-

turers, the values of û become inappropriate and need to be

constructed again using manual interaction.

This difficulty can be avoided by estimating appropriate

values for the model parameters automatically from each indi-

vidual scan. This can be accomplished by estimating the

parameters that maximize the so-called likelihood function

p(d|u), which expresses how probable the observed image d

is for different settings of the parameter vector u:

û¼ arg max
u

p djuð Þ½ � ¼ arg max
u

log p djuð Þ½ � [15]

The last step is true because the logarithm is a monotonically

increasing function of its argument; it is used here because it

simplifies the subsequent mathematical analysis and also avoids

numerical underflow problems in practical computer implemen-

tations. The parameter vector û resulting from eqn [15] is com-

monly called themaximum likelihood (ML) parameter estimate.

Maximizing the (log) likelihood function in image segmen-

tation problems is a nontrivial optimization problem for which

iterative numerical algorithms are needed. Although a variety of

standard optimization methods could potentially be used, for

the Gaussian mixture model, a dedicated and highly effective

optimizer is available in the form of the so-called expectation–

maximization algorithm (EM). The EM algorithm belongs to a

family of optimization methods that work by repeatedly con-

structing a lower bound to the objective function, maximizing

that lower bound, and repeating the process until convergence

(Hunter & Lange, 2004). This process is illustrated in Figure 3.

For a given starting estimate of the model parameters ~u, a

function of the model parameters Q uj~u� �
is constructed that

equals the log likelihood function at ~u

Figure 2 Visualization of the segmentation posterior corresponding to the data and model of figure 1. High and low intensities correspond to
high and low probabilities, respectively.
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Q ~uj~u� �¼ log p dj~u� �
[16]

but that otherwise never exceeds it

Q uj~u� �� log p djuð Þ, 8u [17]

The parameter vector maximizing Q uj~u� �
is then computed

and used as the new parameter estimate ~u, after which the

whole process is repeated. Critically, because of eqns [16]

and [17], updating the estimate ~u to the parameter vector that

maximizes the lower bound automatically guarantees that the

log likelihood function increases, by at least the same amount

as the lower bound has increased. The consecutive estimates ~u

obtained this way are therefore increasingly better estimates of

the ML parameters – one is guaranteed to never move in the

wrong direction in parameter space. This is a highly desirable

property for a numerical optimization algorithm.

While it is of course always possible to construct a lower

bound to an objective function, nothing is gained if optimizing

the lower bound is not significantly easier and/or faster to

perform than optimizing the objective function directly. How-

ever, in the case of the Gaussian mixture model, it is possible to

construct a lower bound for which the parameter vector max-

imizing it is given directly by analytic expressions. Therefore,

the resulting algorithm effectively breaks up a difficult maxi-

mization problem (of the log likelihood function) into many

smaller ones (of the lower bound) that are trivial to solve.

The trick exploited by the EM algorithm to construct its

lower bound is based on the property of the logarithm that it

is a concave function, that is, every chord connecting two

points on its curve lies on or below that curve. Mathematically,

this means that

log wx1þ 1�wð Þx2½ � �w log x1þ 1�wð Þ log x2 [18]

for any two points x1 and x2 and 0�w�1. It is trivial to show

that this also generalizes to more than two variables (the so-

called Jensen’s inequality):

log
X
k

wkxk

 !
�
X
k

wk log xk [19]

where wk�0 and
P

kwk¼1, for any set of points {xk}. This can

now be used to construct a lower bound to the likelihood

log p(d|q )

(a) 

(c) 

(e) (f) 

(d) 

(b) 
(Current
estimate)

(Current
estimate)

(Current
estimate)

(Current
estimate)

(Current
estimate)

(Current
estimate)

log p(d|q )

log p(d|q )

log p(d|q )

log p(d|q )

log p(d|q )

q

q

q

q

q

q

q~ q̂ q~ q̂

q~ q̂ q~ q̂

q~ q̂ q~ q̂

Figure 3 In the EM algorithm the maximum likelihood parameters are sought by repeatedly constructing a lower bound to the log likelihood function,
in such a way that the lower bound touches the log likelihood function exactly at the current parameter estimate (a). Subsequently the parameter
estimate is updated to the parameter vector that maximizes the lower bound (b). A new lower bound is then constructed at this new location (c) and
maximized again (d), and so forth ((e) and (f)), until convergence. In these plots, the log likelihood function is represented by a full line, and the
successive lower bounds with a broken line.
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function of the Gaussian mixture model as follows. Recalling

that p djuð Þ¼Qi

P
kN dijmk,s2k
� �

pk
� �

(eqns [9] and [10]), we

have that

log p djuð Þ¼ log
Y
i

X
k

N dijmk,s2k
� �

pk

" # !
[20]

¼
X
i

log
X
k

N dijmk,s2k
� �

pk

" #
[21]

¼
X
i

log
X
k

N dijmk,s2k
� �

pk
wi
k

	 

wi
k

" #
[22]

�
X
i

X
k

wi
k log

N dijmk,s2k
� �

pk
wi
k

	 
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q uj~uð Þ

[23]

for any set of weights {wk
i} that satisfy wk

i �0 and
P

kwk
i ¼1

(the last step relies on eqn [19]). We now have a lower bound

function Q uj~u� �
that satisfies eqn [17], but not eqn [16], so we

are not done yet. Instead of randomly assigning any valid K

weights wk
i to each voxel i (one weight for each label k), we can

satisfy eqn [16] by choosing the weights so that

wi
k¼

N dij~mk,~s2k
� �

~pkP
k0 N dij~mk0 ,~s2k0

� �
~pk0

[24]

By filling these weights into the definition of our lower

bound (eqn [23]), it is easy to check that eqn [16] is indeed

fulfilled with this choice.

Setting the new model parameter estimate ~u to the param-

eter vector that maximizes the lower bound requires finding

the location where

@Q uj~u� �
@u

¼ 0,

which yields the following parameter update equations:

~mk 
P

iw
i
kdiP

iw
i
k

~s2k 
P

iw
i
k di� ~mkð Þ2P

iw
i
k

~pk 
P

iw
i
k

N

[25]

It is worth spending some time thinking about these

equations. The EM algorithm searches for the ML parameters

of the Gaussian mixture model simply by repeatedly applying

the update rules of eqn [25], where the weights wk
i are defined

in eqn [24]. These weights depend themselves on the current

estimate of the model parameters, which explains why the

algorithm involves iterating. By comparing eqn [24] to eqn

[12], we see that the weights represent nothing but the pos-

terior probability of the segmentation, given the current

model parameter estimate. Thus, the EM algorithm repeatedly

computes the type of probabilistic segmentation shown in

Figure 2 based on its current parameter estimate and then

updates the parameter estimate accordingly. The update rules

of eqn [25] are intuitive: The mean and variance of the

Gaussian distribution associated with the kth label are simply

set to the weighted mean and variance of the intensities of

those voxels currently attributed to that label; similarly the

prior for each class is set to the fraction of voxels currently

attributed to that class.

Figure 4 shows a few iterations of the EM algorithm search-

ing for the ML parameters of the brain MR data shown in

Figure 1(a).

Modeling MR Bias Fields

Although the Gaussian mixture model is a very useful tool for

tissue classification, it can often not be applied directly to MR

images. This is because MR suffers from an imaging artifact that

makes some image areas darker and other areas brighter than

they should be. This spatially smooth variation of intensities is

Figure 4 Iterative improvement of the Gaussian mixture model parameters for the MR image of figure 1(a), using the EM algorithm: initialization (a)
and parameter estimate after one (b), 10 (c) and 30 (d) iterations.
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often referred to as MR ‘intensity inhomogeneity’ or ‘bias field’

and is caused by imaging equipment limitations and electro-

dynamic interactions with the object being scanned. The bias

field artifact is dependent on the anatomy being imaged and its

position in the scanner and is much more pronounced in the

newest generation of scanners.

Since the Gaussian mixture model does not account for

smoothly varying overall intensity levels within one and the

same anatomical structure, it is very susceptible to segmenta-

tion errors when applied to typical MR data. However, this

problem can be avoided by explicitly taking a model for the

bias field artifact into account in the generative model. In

particular, we can model the artifact as a linear combination

of M spatially smooth basis functions:

XM
m¼1

cmfi
m [26]

where fm
i is shorthand for fm(xi), the value of the mth basis

function evaluated at voxel i, which has spatial location xi.

Suitable basis functions can be cosine functions, uniform

B-spline basis functions, or something similar. We can then

extend the Gaussian mixture model by still assigning each

voxel an intensity drawn from a Gaussian distribution asso-

ciated with its label, but further adding the bias model to the

resulting intensity image to obtain the final bias field cor-

rupted image d (because of the physics of MR, the bias field is

better modeled as a multiplicative rather than an additive

artifact. This can be taken into account by working with

logarithmically transformed intensities in the models, instead

of using directly the original MR intensities). With this model,

we have

p dj l,udð Þ¼
Y
i

N di�
X
m

cmf
i
m jmli ,s2li

 !
[27]

with parameters ud¼(m1, . . .,mK,s1
2, . . .,sK

2,c1, . . ., cM)
T, which

consist not only of the parameters associated with the Gaussian

distributions but also additionally of the M coefficients of the

bias field basis functions, cm.

As was the case with the original Gaussian mixture model,

model parameter estimation can be performed conveniently by

iteratively constructing a lower bound to the log likelihood

function. Following the exact same procedure as in the previ-

ous section, it can be shown (Van Leemput et al., 1999a; Wells

et al., 1996) that constructing the lower bound involves com-

puting the following weights (note the dependency on the bias

field parameters in this case):

wi
k¼

N di�
P

m~cmf
i
m j~mk,~s2k

� �
~pkP

k0 N di�
P

m~cmf
i
m j~mk0 ,~s2k0

� �
~pk0

[28]

Subsequently maximizing the lower bound is more com-

plicated than in the Gaussian mixture model, however,

because setting the derivative with respect to the parameter

vector u to zero no longer yields analytic expressions for the

parameter update rules. If we keep the bias field parameters

fixed at their current values ~cm, and only maximize the lower

bound with respect to the Gaussian mixture model parame-

ters, we obtain

~mk 
P

iw
i
k di�

P
m~cmf

i
m

� �P
iw

i
k

~s2k 
P

iw
i
k di�

P
m~cmf

i
m� ~mk

� �2P
iw

i
k

~pk 
P

iw
i
k

N

[29]

Similarly, keeping the Gaussian mixture model parameters

fixed at their current values, the bias field parameters maximiz-

ing the lower bound are given by

~c FTSF
� ��1

FTSr [30]

where

F¼
f1
1 f1

2 . . . f1
M

f2
1 f2

2 . . . f2
M

⋮ ⋮ � ⋮
fN
1 fN

2 . . . fN
M

0
BB@

1
CCA [31]

and

sik¼
wi
k

~s2k
, si¼

X
k

sik, S¼ diag sið Þ, ~di¼
X

k
sik~mkX
k
sik

,

r¼
d1� ~d1

⋮
dN� ~dN

0
@

1
A [32]

Since eqns [29] and [30] depend on one another, one could

in principle try to maximize the lower bound by cycling

through these two equations, one at a time, until some con-

vergence criterion is met. However, the desirable property of

the EM algorithm to never decrease the value of the likelihood

function with each new iteration still holds even when the

lower bound is not maximized but merely improved. There-

fore, a more efficient strategy is to construct the lower bound

by computing the weights wk
i (eqn [28]) and then updating the

Gaussian mixture model parameters (eqn [29]) and subse-

quently the bias field parameters (eqn [30]) only once to

merely improve it. After that, a new lower bound is constructed

by recomputing the weights, which is again improved by

updating the model parameters, etc., until convergence. Such

an optimization strategy of only partially optimizing the EM

lower bound is known as so-called generalized EM.

The interpretation of the update equations is again very

intuitive (Van Leemput et al., 1999a; Wells et al., 1996), but

outside the scope of this article. Suffice it to say that by extend-

ing the Gaussian mixture model with an explicit model for the

bias field artifact this way, it is possible to obtain high-quality

segmentations of MR scans without errors caused by intensity

inhomogeneities, as illustrated in Figure 5.

Further Model Extensions

Although we have only described tissue classification tech-

niques for unicontrast data so far (i.e., a single scalar intensity

value for each voxel), the generative models can easily be

extended to also handle multicontrast MR scans. In that sce-

nario, the univariate Gaussian distributions are simply replaced

with their multivariate equivalents. Furthermore, rather than

using a single Gaussian to represent the intensity distribution of
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any given label, amixture of two or three Gaussians can provide

more realistic intensity distribution models and yield more

accurate segmentation results (Ashburner & Friston, 2005;

Puonti, Iglesias, & Van Leemput, 2013).

Another class of extensions to the generative models cov-

ered in this article concentrates on the employed spatial model,

that is, the segmentation prior p(l|ul). As a result of the rather

simplistic modeling assumptions of the prior used so far (eqn

[5]), a voxel’s posterior probability of belonging to each of the

K structures is computed using only the local intensity of the

voxel itself (eqn [12]). Although this works quite well in some

applications, there is often an intensity overlap between the to-

be-segmented structures, causing segmentation errors in such a

purely intensity-driven strategy.

One possible improvement to p(l|ul) is the so-called

Markov random field prior, which in typical usage encourages

the different labels to occur in spatial clusters, rather than

being scattered randomly throughout the image area (Held

et al., 1997; Marroquin et al., 2002; Van Leemput et al.,

1999b; Zhang et al., 2001). Although these priors have some

attractive computational properties, they do not encode any

information about the shape, organization, and spatial rela-

tionships of real neuroanatomical structures.

More powerful models can be obtained through so-called

probabilistic atlases – either as stand-alone models or in

combination with Markov random field priors – which encode

prior anatomical knowledge of where to expect each of the

tissue types in a typical human brain. Such atlases are con-

structed by spatially coregistering a large number of manually

annotated brain scans and counting the frequencies of occur-

rence of the different tissue types. The resulting atlas is then

brought into spatial correspondence with an image to be seg-

mented, either as a preprocessing step (Van Leemput et al.,

1999a) or as part of the model parameter estimation process

within the generative modeling framework (Ashburner &

Friston, 2005; Fischl, Salat et al., 2004; Pohl et al., 2006; Puonti

et al., 2013). Either way, the frequencies are reformatted to

obtain spatially varying prior probabilities pk
i for every class k

in every voxel i, as shown in Figure 6. These prior probabilities

pk
i are then used in place of the generic pk in every equation of

the segmentation models of this article, yielding voxel classifi-

cations that no longer depend solely on the voxels’ local inten-

sity alone but also on their spatial location. Furthermore, the

priors pk
i unambiguously associate segmentation classes to pre-

defined anatomical structures and can be used to automatically

initialize the iterative update equations of the EM optimizers,

even in multicontrast data where initialization is otherwise

difficult. Finally, the spatial priors are also typically used to

discard voxels that are of no interest, such as the muscle, skin,

or fat in brain MR scans. As a result, the use of the spatial priors

Figure 5 Explicit modeling and estimating the bias field artifact in MR scans often improves segmentation results considerably. Shown are a few
sagittal slices from a brain MR scan (a); the posterior probability for white matter using the standard Gaussian mixture model (b); the same when a bias
field model is explicitly taken into account (c); and the automatically estimated bias field model (d). Note the marked improvement in segmentation
accuracy in the upper parts of the brain.
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pk
i contributes greatly to the overall robustness and practical

value of the tissue classification models discussed in this

article.

See also: INTRODUCTION TO METHODS AND MODELING:
Intensity Nonuniformity Correction.
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Appendix A

Extension to multiple
atlases

Provided we have access to multiple atlases built with the approach described
in section 3.1.1, we can extend the modeling framework to support more than
just a single probabilistic atlas. We assume that for each voxel i, the atlas index
m is drawn from M possible atlases m ∈ {1, . . . ,M} with equal probability,
i.e., p(m) = 1/M . Once the atlas index is known, we draw the neuroanatomical
label of the voxel from the appropriate atlas, i.e., pi,m (li|xm). As before, the
likelihood model links each structure label to a mixture of Gaussians as in
section 3.1.2.

The parameter optimization using the empirical Bayes approximation changes
now slightly as we need to account for the multiple atlases. Specifically, the
parameter posterior given the data is now written as:

p({xm},θ|D) ∝ p(D|θ, {xm})p({xm})p(θ)

=


∑

l,m

p(D, l,m|θ, {xm})


 p({xm})

∝
(

I∏

i=1

M∑

m=1

K∑

k=1

pi(di|k,θ)pi,m(k|xm)

)
M∏

m=1

p(xm),
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where we have assumed a flat prior on the likelihoood parameters θ, and con-
ditional independence between voxels given the atlas index and the label. Fur-
thermore the deformation priors p(xm) are assumed to be independent of each
other.

The optimization problem now takes the form:

{{x̂m}, θ̂} = argmax
{xm},θ

L({xm},θ)

L({xm},θ) =
[

I∑

i=1

log

(
M∑

m=1

K∑

k=1

pi(di|k,θ)pi,m(k|xm)

)
+

M∑

m=1

log p(xm)

]
.

(A.1)

Finding the ML parameter estimates proceeds in a similar fashion as in the single
atlas case, by first keeping the mesh node positions {xm} fixed and updating
the likelihood model parameters θ, and subsequently fixing the likelihood model
parameters and optimizing the positions of the mesh nodes. The gradient with
respect to the node positions for atlas m is now given by:

∂L
∂xm

= −β
T∑

t=1

∂Uκm
t (xm,x

r
m)

∂xm
+

I∑

i=1

∑
k pi(di|k,θ)

∂pi,m(k|xm)
∂xm∑

m,k pi(di|k,θ)pi,m(k|xm)
, (A.2)

where κm and xrm now refer to the connectivity and reference position of mesh
m.

The GEM algorithm update equation are modified as follows, the expectation
step becomes:

pi(k
g,m|di, {xm},θ) = qk,gi,m =

wk,gN
(
di −Cφi|µk,g,Σk,g

)
pi,m(k|xm)

∑M
m′=1

∑K
k′=1 pi(di|k′,θ)pi,m(k′|xm′)

,
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and for the maximization step we obtain:

µk,g ←
∑I
i=1

∑M
m=1 q

k,g
i,m(di −Cφi)

∑I
i=1

∑M
m=1 q

k,g
i,m

, wk,g ←
∑I
i=1

∑M
m=1 q

k,g
i,m∑Gk

g′=1

∑I
i=1

∑M
m=1 q

k′,g
i,m

Σk,g ←
∑I
i=1

∑M
m=1 q

k,g
i,m(di − µk,g −Cφi)T (di − µk,g −Cφi)

∑I
i=1

∑M
m=1 q

k,g
i,m




c1
...

cN


←




ATS1,1A . . . ATS1,N

...
. . .

...
ATSN,1A . . . ATSN,N




−1

· (A.3)




AT (S1,1r1,1 + · · ·+ S1,Nr1,N )
...

AT (SN,1rN,1 + · · ·+ SN,NrN,N )


 ,

where as before the matrix A holds the basis functions estimated at each voxel.
The diagonal matrix Sh,j for the input channel pair (h, j) is now written as:

sh,ji,m,k,g = qk,gi,m

(
Σ−1k,g

)
h,j
, sh,ji =

K∑

k=1

Gk∑

g=1

M∑

m=1

sh,ji,m,k,g, Sh,j = diag
(
sh,ji

)
,

and the residue image rh,j =
(
rh,j1 , . . . , rh,jI

)T
is defined as:

rh,ji = dni −
∑K
k=1

∑Gk

g=1

∑M
m=1 s

h,j
i,m,k,g

(
µk,g

)
j∑K

k=1

∑Gk

g=1

∑M
m=1 s

h,j
i,m,k,g

.

Given the point estimates for the parameters the approximate MAP segmenta-
tion is obtained by finding the label which maximizes the approximate posterior
for every voxel independently as:

l̂i = argmax
k

Gk∑

g=1

M∑

m=1

pi(k
g,m|di, {xm},θ) (A.4)
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