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Abstract. Analysis of stable oxygen isotope (δ18O) charac-

teristics is a useful tool to investigate water provenance in

glacier river systems. In order to attain knowledge on the di-

versity of δ18O variations in Greenlandic rivers, we examined

two contrasting glacierised catchments disconnected from

the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher

river, a small river draining a local temperate glacier in south-

east Greenland, diurnal oscillations in δ18O occurred with a

3 h time lag to the diurnal oscillations in run-off. The mean

annual δ18O was −14.68± 0.18 ‰ during the peak flow pe-

riod. A hydrograph separation analysis revealed that the ice

melt component constituted 82± 5 % of the total run-off and

dominated the observed variations during peak flow in Au-

gust 2004. The snowmelt component peaked between 10:00

and 13:00 local time, reflecting the long travel time and an

inefficient distributed subglacial drainage network in the up-

per part of the glacier. At the Kuannersuit Glacier river on the

island Qeqertarsuaq in west Greenland, the δ18O characteris-

tics were examined after the major 1995–1998 glacier surge

event. The mean annual δ18O was−19.47± 0.55 ‰. Despite

large spatial variations in the δ18O values of glacier ice on

the newly formed glacier tongue, there were no diurnal os-

cillations in the bulk meltwater emanating from the glacier in

the post-surge years. This is likely a consequence of a tortu-

ous subglacial drainage system consisting of linked cavities,

which formed during the surge event. Overall, a comparison

of the δ18O compositions from glacial river water in Green-

land shows distinct differences between water draining lo-

cal glaciers and ice caps (between −23.0 and −13.7 ‰) and

the GrIS (between −29.9 and −23.2 ‰). This study demon-

strates that water isotope analyses can be used to obtain

important information on water sources and the subglacial

drainage system structure that is highly desired for under-

standing glacier hydrology.

1 Introduction

There is an urgent need for improving our understanding

of the controls on water sources and flow paths in Green-

land. As in other parts of the Arctic, glacierised catchments

in Greenland are highly sensitive to climate change (Milner

et al., 2009; Blaen et al., 2014). In recent decades freshwa-

ter run-off from the Greenland Ice Sheet (GrIS) to adjacent
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seas has increased significantly (Hanna et al., 2005, 2008;

Bamber et al., 2012; Mernild and Liston, 2012), and the to-

tal ice mass loss from the GrIS contributes with 0.33 mm

sea level equivalent yr−1 to global sea level rise (1993–2010;

Vaughan et al., 2013). In addition, ice mass loss from local

glaciers (i.e. glaciers and ice caps peripheral to the GrIS;

Weidick and Morris, 1998) has resulted in a global sea

level rise of 0.09 mm sea level equivalent yr−1 (1993–2010;

Vaughan et al., 2013). The changes in run-off are coupled

to recent warming in Greenland (Hanna et al., 2012, 2013;

Mernild et al., 2014), an increasing trend in precipitation and

changes in precipitation patterns (Bales et al., 2009; Mernild

et al., 2015a), and a decline in albedo (Bøggild et al., 2010;

Tedesco et al., 2011; Box et al., 2012; Yallop et al., 2012;

Mernild et al., 2015b). Also, extreme surface melt events

have occurred in recent years (Tedesco et al., 2008, 2011; van

As et al., 2012), and in July 2012 more than 97 % of the GrIS

experienced surface melting (Nghiem et al., 2012; Keegan et

al., 2014). In this climate change context, detailed catchment-

scale studies on water source and water flow dynamics are

urgently needed to advance our knowledge of the potential

consequences of future hydrological changes in Greenlandic

river catchments.

Analysis of stable oxygen isotopes is a very useful tech-

nique to investigate water provenance in glacial river sys-

tems. Stable oxygen isotopes are natural conservative trac-

ers in low-temperature hydrological systems (e.g. Moser

and Stichler, 1980; Gat and Gonfiantini, 1981; Haldorsen et

al., 1997; Kendall et al., 2014). Consequently, oxygen iso-

topes can be applied to determine the timing and origin of

changes in water sources and flow paths because different

water sources often have isotopically different compositions

due to their exposure to different isotopic fractionation pro-

cesses. Since the 1970s, this technique has been widely used

for hydrograph separation (Dinçer et al., 1970). Most of-

ten a conceptual two-component mixing model is applied,

where an old-water component (e.g. groundwater) is mixed

with a new-water component (e.g. rain or snowmelt), assum-

ing that both components have spatial and temporal homoge-

neous compositions. The general mixing model is given by

the equation

QC =Q1C1+Q2C2+ . . ., (1)

where the discharge Q and the isotopic value C are equal to

the sum of their components. This simplified model has lim-

itations when a specific precipitation event is analysed be-

cause the water isotope composition in precipitation (new

water) may vary considerably during a single event (e.g.

McDonnell et al., 1990) and changes in contributions from

secondary old-water reservoirs may occur (e.g. Hooper and

Shoemaker, 1986). Nevertheless, water isotope mixing mod-

els still provide valuable information on spatial differences

in hydrological processes on diurnal to annual timescales

(Kendall et al., 2014).

Figure 1. Location map (a) of the study areas at (b) the Mittivakkat

Gletscher river, southeast Greenland (image from Landsat 8 OLI on

3 September 2013), and at (c) the Kuannersuit Glacier river, west

Greenland (image from Landsat 8 OLI on 8 July 2014).

In glacier-fed river systems, the principal water sources

to bulk run-off derive from ice melt, snowmelt, rainfall and

groundwater components. Depending on the objectives of the

study and on the environmental setting, hydrograph separa-

tion of glacial rivers has been based on assumed endmember

isotope mixing between two or three prevailing components

(Behrens et al., 1971, 1978; Fairchild et al., 1999; Mark and

Seltzer, 2003; Theakstone, 2003; Yde and Knudsen, 2004;

Mark and McKenzie, 2007; Yde et al., 2008; Bhatia et al.,

2011; Kong and Pang, 2012; Ohlanders et al., 2013; Blaen et

al., 2014; Dahlke et al., 2014; Hindshaw et al., 2014; Meng

et al., 2014; Penna et al., 2014; Rodriguez et al., 2014; Zhou

et al., 2014). As glacierised catchments vary in size, altitu-

dinal range, hypsometry, degree of glaciation, and thermal

and morphological glacier types, isotope hydrograph separa-

tion often requires that the primary local controls on run-off

generation are identified in order to analyse the variability in

isotope time series. In detailed studies it may even be nec-

essary to divide a main component, such as ice melt, into

several ice facies sub-components (Yde and Knudsen, 2004).

Hydrol. Earth Syst. Sci., 20, 1197–1210, 2016 www.hydrol-earth-syst-sci.net/20/1197/2016/
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However, in highly glacierised catchments the variability in

oxygen isotope composition is generally controlled by sea-

sonal snowmelt and ice melt with episodic inputs of rain-

water, whereas contributions from shallow groundwater flow

may become important in catchments, where glaciers com-

prise a small proportion of the total area (e.g. Blaen et al.,

2014).

In this study, we examine the stable oxygen isotope com-

position in two Greenlandic glacier river systems, namely the

Mittivakkat Gletscher river (13.6 km2), which drains a local

non-surging glacier in southeast Greenland, and the Kuan-

nersuit Glacier river (258 km2), which drains a local glacier

on the island Qeqertarsuaq, west Greenland. The latter expe-

rienced a major glacier surge event in 1995–1998. Our aim is

to gain insights into the variability and controls of the oxygen

isotope composition in contrasting glacierised river catch-

ments located peripheral to the GrIS (i.e. the river systems do

not drain meltwater from the GrIS). Besides a study by An-

dreasen (1984) at the glacier Killersuaq in west Greenland,

this is the first study of oxygen isotope dynamics in rivers

draining glacierised catchments peripheral to the GrIS.

2 Study sites

2.1 Mittivakkat Gletscher river, Ammassalik Island,

southeast Greenland

Mittivakkat Gletscher (65◦41′ N, 37◦50′W) is the largest

glacier complex on Ammassalik Island, southeast Green-

land (Fig. 1). The entire glacier covered an area of 26.2 km2

in 2011 (Mernild et al., 2012) and has an altitudinal range

between 160 and 880 m a.s.l. (Mernild et al., 2013a). Bulk

meltwater from the glacier drains primarily westwards to

the proglacial Mittivakkat Valley and flows into the Sermi-

lik Fjord. The sampling site is located at a hydrometric sta-

tion 1.3 km down-valley from the main subglacial meltwater

portal. The hydrological catchment has an area of 13.6 km2,

of which 9.0 km2 is glacierised (66 %). The maritime cli-

mate is Low Arctic with annual precipitation ranging from

1400 to 1800 mm water equivalent (w.e.) yr−1 (1998–2006)

and a mean annual air temperature (MAAT) at 515 m a.s.l. of

−2.2 ◦C (1993–2011; updated from Mernild et al., 2008a).

There are no observations of contemporary permafrost in the

area, and the proglacial vegetation cover is sparse.

The glacier has undergone continuous recession since the

end of the Little Ice Age (Knudsen et al., 2008; Mernild

et al., 2011). In recent decades the recession has acceler-

ated and the glacier has lost approximately 29 % of its vol-

ume between 1994 and 2012 (Yde et al., 2014), and sur-

face mass balance measurements indicate a mean thinning

rate of 1.01 m w.e. yr−1 between 1995–1996 and 2011–2012

(Mernild et al., 2013a). Similar to other local glaciers in

the Ammassalik region, Mittivakkat Gletscher is severely out

of contemporary climatic equilibrium (Mernild et al., 2012,

Table 1. Summary of δ18O mean and range in bulk water samples

at the Mittivakkat Gletscher river.

Year Campaign period n δ18Omean δ18Omax δ18Omin

2003 11–13 Aug 4 −14.42 −14.30 −14.65

2004 8–22 Aug 103 −14.55 −14.19 −14.91

2005 30 May–12 Jun 29 −14.71 −14.35 −15.16

23–26 Jul 19 −14.10 −13.74 −14.41

11–19 Aug 44 −14.73 −14.13 −16.43

2006 11–16 Aug 11 −14.85 −14.26 −15.42

2007 2–10 Aug 17 −14.69 −14.07 −15.11

2008 29 May–11 Jun∗ 28 −16.92 −15.92 −17.35

10–16 Aug 15 −14.84 −14.47 −15.20

2009 8–16 Aug 17 −14.88 −14.56 −15.13

∗ Collected at a sampling site ca. 500 m closer to the glacier front.

2013b) and serves as a representative location for studying

the impact of climate change on glacierised river catchments

in southeast Greenland (e.g. Mernild et al., 2008b, 2015b;

Bárcena et al., 2010, 2011; Kristiansen et al., 2013; Lutz et

al., 2014).

2.2 Kuannersuit Glacier river, Qeqertarsuaq, west

Greenland

Kuannersuit Glacier (69◦46′ N, 53◦15′W) is located in cen-

tral Qeqertarsuaq (formerly Disko Island), west Greenland

(Fig. 1). It is an outlet glacier descending from the Serm-

ersuaq ice cap and belongs to the Qeqertarsuaq–Nuussuaq

surge cluster (Yde and Knudsen, 2007). In 1995, the glacier

started to surge down the Kuannersuit Valley with a frontal

velocity up to 70 m per day (Larsen et al., 2010). By the

end of 1998 or beginning of 1999, the surging phase termi-

nated and the glacier went into its quiescent phase, which

is presumed to last more than 100 years (Yde and Knud-

sen, 2005a). The 1995–1998 surge of Kuannersuit Glacier

is one of the largest land-terminating surge events ever

recorded; the glacier advanced 10.5 km down-valley, and ap-

proximately 3 km3 of ice was moved to form a new glacier

tongue (Larsen et al., 2010).

The Kuannersuit Glacier river originates from a portal at

the western side of the glacier terminus, and the sampling

site is located 200 m down-stream (Yde et al., 2005a). The

catchment area has an altitude range of 100–1650 m a.s.l. and

covers 258 km2, of which Kuannersuit Glacier constitutes

103 km2 of the total glacierised area of 168 km2 (Yde and

Knudsen, 2005a). The valley floor consists of unvegetated

outwash sediment; dead-ice deposits; and ice-cored, vege-

tated terraces. The proglacial area of the catchment is sit-

uated in the continuous permafrost zone (Yde and Knudsen,

2005b), and the climate is polar continental (Humlum, 1999).

There are no meteorological observations from the area, but

at the coastal town of Qeqertarsuaq (formerly Godhavn),

located 50 km to the southwest, the MAAT was −2.7 and

−1.7 ◦C in 2011 and 2012, respectively (Cappelen, 2013).

www.hydrol-earth-syst-sci.net/20/1197/2016/ Hydrol. Earth Syst. Sci., 20, 1197–1210, 2016
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Table 2. Summary of δ18O mean and range in bulk water samples

at the Kuannersuit Glacier river.

Year Campaign n δ18Omean δ18Omax δ18Omin

period

2000 24–27 Jul 21 −19.80 −19.47 −19.97

2001 14–31 Jul 109 −19.25 −17.82 −19.55

2002 14–15 Jul 21 −19.01 −18.75 −19.39

2003 18–26 Jul 27 −20.43 −19.03 −21.88

2005 19–24 Jul 2 −19.42 −19.32 −19.51

3 Methods

3.1 Sampling protocol and isotope analyses

In total, 287 oxygen isotope samples were collected from the

Mittivakkat Gletscher river during the years 2003–2009 (Ta-

ble 1). Most of the sampling campaigns were conducted in

August at the end of the peak flow period (i.e. the summer pe-

riod with relatively high run-off). The most intensively sam-

pled period was from 8 to 22 August 2004, where sampling

was conducted with a 4 h frequency supplemented by short

periods of higher frequency sampling. In the years 2005 and

2008, meltwater was also collected during the early melt sea-

son (i.e. the period before the subglacial drainage system is

well established) to evaluate the seasonal variability in the

δ18O signal. An additional 40 river samples were collected

for multi-sampling tests.

During five field seasons in July 2000, 2001, 2002, 2003

and 2005, a total of 180 oxygen isotope samples were col-

lected from the Kuannersuit Glacier river (Table 2), and an-

other 44 river samples were collected for multi-sampling

tests. In addition, 13 ice samples were obtained along a longi-

tudinal transect at the centreline of the newly formed glacier

tongue with 500 m sampling increments in July 2001, and 23

ice samples were collected along a transverse transect with

50 m sampling increments in July 2003. The transverse tran-

sect crossed the longitudinal transect at a distance of 3250 m

from the glacier front. Seven samples of rainwater were col-

lected in a Hellmann rain gauge located in the vicinity of the

glacier terminus in July 2002.

All water samples were collected manually in 20 mL vials.

Ice samples were collected in 250 mL polypropylene bottles

or plastic bags before being slowly melted and decanted to

20 mL vials. The vials were stored in cold (∼ 5 ◦C) and dark

conditions to avoid fractionation related to biological activ-

ity.

The relative deviations (δ) of water isotope compositions

(18O/16O) were expressed in per mil (‰) relative to Vienna

Standard Mean Ocean Water (0 ‰; Coplen, 1996). The stable

oxygen isotope analyses were performed at the Niels Bohr

Institute, University of Copenhagen, Denmark, using mass

spectrometry with an instrumental precision of ±0.1 ‰ in

the oxygen isotope ratio (δ18O) value.

Figure 2. δ18O time series of meltwater draining Mittivakkat

Gletscher in (a) 2005 and (b) 2008.

The oxygen isotope data from this study are available in

the Supplement (Tables S1–S6).

3.2 Multi-sample tests

In the Mittivakkat Gletscher river, we conducted three multi-

sample tests at 14:00 local time on 9, 15 and 21 August

2004 to determine the combined uncertainty related to sam-

pling and analytical error. During the multi-sample tests sam-

ples were collected simultaneously (within 3 min). The tests

show standard deviations of 0.08 (n= 25), 0.06 (n= 5) and

0.04 ‰ (n= 10), respectively, which are lower than the in-

strumental precision (±0.1 ‰).

In the Kuannersuit Glacier river, multi-sample tests were

conducted in 2001, 2002 and 2003, showing a standard

deviation of ±0.16 (n= 5), ±0.13 (n= 17) and ±0.44 ‰

(n= 22), respectively. The multi-sample test in 2003 showed

a standard deviation significantly larger than the instrumental

precision (±0.1 ‰). This deviation cannot be explained by

the presence of a few high δ18O values. The most plausible

explanation is that the glacier run-off was not well mixed in

2003, possibly because different parts of the drainage system

merged close to the glacier portal.

3.3 Run-off measurements

Stage–discharge relationships were used to determine run-

off at each study site. The accuracy of individual run-off

measurements is within ±7 % (e.g. Herschy, 1999). For

details on run-off measurements we refer to Hasholt and

Hydrol. Earth Syst. Sci., 20, 1197–1210, 2016 www.hydrol-earth-syst-sci.net/20/1197/2016/
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Figure 3. Time series of δ18O, discharge, air temperature and elec-

tric conductivity in meltwater draining Mittivakkat Gletscher during

the period 8–21 August 2004.

Mernild (2006) for the Mittivakkat Gletscher river and Yde et

al. (2005a) for the Kuannersuit Glacier river. In short, at the

Mittivakkat Gletscher river the run-off measurements were

conducted at a hydrometric monitoring station located af-

ter the braided river system had changed into a single river

channel about 500 m from the river outlet. The station was in-

stalled in August 2004 and recorded water stage every 10 min

during the peak flow period. At the Kuannersuit Glacier

river the run-off measurements were obtained at a hydro-

metric monitoring station installed in July 2001 at a location

where the river merges to a single channel. Water stage was

recorded every hour during the peak flow period. The station

was destroyed during the spring river break-up in 2002.

4 Results

4.1 δ18O characteristics

At the Mittivakkat Gletscher river, the early melt season is

characterised by an increasing trend in δ18O. In 2005 the

δ18O values in the early melt season were coincident with

the δ18O values during the peak flow period (Fig. 2a; Ta-

ble 1). This indicates that the onset of ice melt commenced

before the early melt season sampling campaign. In contrast,

the 2008 onset of ice melt was delayed, and snowmelt totally

dominated the bulk composition of the river water except on

30 May 2008, when a rainfall event (19 mm in the nearby

town of Tasiilaq, located 10 km to the southeast of the Mit-

tivakkat Gletscher river catchment; Cappelen, 2013) caused

a positive peak in δ18O of ∼ 1 ‰ (Fig. 2b). This difference

Figure 4. Time series of δ18O (red curve) and discharge (black

curve) in the Kuannersuit Glacier river during the period 14–31 July

2001.

between the early ablation seasons in 2005 and 2008 is con-

sistent with the meteorological record from Tasiilaq, which

shows that the region received a large amount of precipitation

in May 2008 (140 mm) compared to a dry May 2005 (17 mm;

Cappelen, 2013). Episodic effects on δ18O by precipitation

seem common throughout the ablation season. For instance,

another short-term change occurred on 14–15 August 2005

(Fig. 2a), when a negative peak in δ18O of ∼ 2 ‰ coincided

with a snowfall event (14 mm in Tasiilaq; Cappelen, 2013)

and subsequent elevated contribution from snowmelt.

During the peak flow periods, the mean annual δ18O

was −14.68± 0.18 ‰ (Table 1). We use the 2004 time se-

ries to assess oxygen isotope dynamics in the Mittivakkat

Gletscher river during the peak flow period when the sub-

glacial drainage system is assumed to be well established,

transporting the majority of meltwater in a channelised net-

work (Mernild, 2006). In Fig. 3, the 2004 δ18O time series

is shown together with run-off (at the hydrometric station),

air temperature (at a nunatak at 515 m a.s.l.) and electrical

conductivity (at the hydrometric station; corrected to 25 ◦C).

There was no precipitation during the entire sampling period,

except for some drizzle on 8 August prior to the collection

of the first sample. The time series shows characteristic di-

urnal variations in δ18O composition, e.g. on 9–10 and 16–

18 August 2004. However, the diurnal pattern was severely

disturbed at around 03:00 on 11 August 2004. The hydro-

graph shows that during the falling limb the diurnal trend in

run-off was interrupted, coinciding with an air temperature

increase and a change in δ18O from decreasing to slightly in-

creasing values. The run-off stayed almost constant until a

rapid 39 % increase in run-off occurred at 13:00 on 12 Au-

gust 2004, accompanied by an increase in δ18O and decrease

in electrical conductivity. Thereafter, run-off remained at an

elevated level for more than 2 days before returning to a di-

urnal oscillation of run-off. Hydrograph separation of water

sources is a helpful tool to elucidate the details of this event

(see Sect. 4.3).

In the Kuannersuit Glacier river, the sample-weighted

mean annual δ18O was −19.47± 0.55 ‰ during the peak

www.hydrol-earth-syst-sci.net/20/1197/2016/ Hydrol. Earth Syst. Sci., 20, 1197–1210, 2016



1202 J. C. Yde et al.: Stable oxygen isotope variability

Figure 5. Diurnal δ18O variations in the Kuannersuit Glacier river

on studied days in July in the post-surge years 2000–2003. Multi-

sample tests conducted in 2001, 2002 and 2003 showed standard

deviations of ±0.16, ±0.13 and ±0.44 ‰, respectively.

flow period (a sample-weighted value is applied because the

number of samples per year deviated between 2 and 109).

In Fig. 4, the variations in δ18O are presented together with

run-off for the period 14–31 July 2001. The 2001 run-off

measurements showed diurnal oscillations with minimums

around 10:00–12:00 and maximums at 19:00–20:00, corre-

lating well with reversed oscillations in solutes (Yde et al.,

2005a) and poorly with suspended sediment concentrations

(Knudsen et al., 2007). However, the variability of δ18O did

not correlate with run-off or any of these variables. While

some of the episodic damming and meltwater release events

appear as peaks on the run-off time series, the peaks in the

δ18O time series coincided with rainfall events (e.g. on the

nights of 21 and 29 July 2001). Besides these episodic peaks,

a lack of diurnal fluctuations in δ18O characterised the δ18O

time series.

Figure 5 shows the diurnal δ18O variations during 4 days

in July without rainfall in the years 2000–2003. There were

no diurnal oscillations in 2000, 2001 and 2002. In 2003, the

fluctuations were much larger than in the preceding years,

but the highest δ18O (−19.03 ‰) was measured at 21:00, and

low δ18O prevailed during the night (∼−21.0 ‰). This diur-

nal variability was also reflected in the standard deviations

of the measurements taken over the 24 h periods, which in-

creased from ±0.07 in 2000 to ±0.11, ±0.23 and ±0.70 ‰

in 2001, 2002 and 2003, respectively. The corresponding di-

urnal amplitudes for 2000–2003 were 0.28, 0.42, 0.64 and

2.85 ‰, respectively. Although these measurements from a

single day each year are insufficient to represent the condi-

tions for the entire peak flow period, they may indicate post-

surge changes in the structure of subglacial hydrological sys-

tem which are worth addressing in detail in future studies of

the hydrological system of surging glaciers.

4.2 δ18O endmember components

On Mittivakkat Gletscher, three snow pits (0.1 m sam-

pling increments) were excavated at different altitudes

in May 1999, showing a mean δ18O composition of

−16.5± 0.6 ‰ (hereafter the uncertainty of δ18O is given

by the standard deviation) in winter snow (Dissing, 2000).

The range of individual samples in each snow pit var-

ied between −14.5 and −19.5 ‰ (269 m a.s.l.; mean δ18O

=−16.24± 1.35; n= 36), −13.8 and −21.2 ‰ (502 m a.s.l.;

mean δ18O = −17.11± 2.13; n= 21), and −11.9 and

−21.6 ‰ (675 m a.s.l.; mean δ18O=−16.18± 2.70; n= 26;

Dissing, 2000). Also, two ice-surface δ18O records of 2.84

and 1.05 km in length (10 m sampling increments) were ob-

tained from the glacier terminus towards the equilibrium line

(Boye, 1999). The glacier ice δ18O ranged between −15.0

and −13.3 ‰ with a mean δ18O of −14.1 ‰ (Boye, 1999),

and the theoretical altitudinal effect (Dansgaard, 1964) of

higher δ18O towards the equilibrium line altitude (ELA) was

not observed. The reasons for an absence of a δ18O lapse rate

are most likely the limited size and altitudinal range (160–

880 m a.s.l.) of Mittivakkat Gletscher, but ice dynamics, ice

age and meteorological conditions such as frequent inver-

sion (Mernild and Liston, 2010) may also have an impact.

The δ18O of summer rain has not been determined in this

region, but at the coastal village of Ittoqqortoormiit, located

∼ 840 km to the north of Mittivakkat Gletscher, observations

show monthly mean δ18O in rainwater of −12.8, −9.1 and

−8.8 ‰ in June, July and August, respectively (data avail-

able from the International Atomic Energy Agency database

WISER). Based on these observations it is evident that end-

member snowmelt has a relatively low δ18O compared to

endmember ice melt and that these two water source com-

ponents can be separated. Contributions from rainwater will

likely result in episodic increase in the δ18O of bulk meltwa-

ter.

In the Kuannersuit Glacier river system, the glaciological

setting differed from the Mittivakkat Gletscher river system.

During the surge event of Kuannersuit Glacier, the glacier

front advanced from ∼ 500 down to 100 m a.s.l., while a

significant part of the glacier surface in the accumulation

area was lowered by more than 100 m to altitudes below

the ELA (∼ 1100–1300 m a.s.l.). A helicopter survey in July

2002 revealed that the post-surge accumulation area ratio

was less than 20 % (Yde et al., 2005a). Hence, we assume

that the primary post-surge water source during the peak

flow period is ice melt, particularly from ablation of the

new glacier tongue. The mean δ18O value of glacier ice col-

lected along the longitudinal and transverse transects was

−20.5± 1.0 ‰ (n= 36). This is consistent with δ18O values

of glacier ice located near the glacier front, showing mean

δ18O of−19.4± 0.9 ‰ (n= 20) in a section with debris lay-

ers formed by thrusting and −19.8± 1.1 ‰ (n= 37) in a

section without debris layers (Larsen et al., 2010). In con-

trast to the setting at the Mittivakkat Gletscher river, it was

likely that another ice melt component in bulk run-off from

Kuannersuit Glacier comprised water from several ice facies

sub-component sources with various δ18O values and spatial

variability. During the surge event, a thick debris-rich basal
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Figure 6. Hydrograph showing the separation of the discharge in

the Mittivakkat Gletscher river (black curve) into an ice melt com-

ponent (red curve) and a snowmelt component (blue curve) dur-

ing the period 8–21 August 2004. The error of the ice melt and

snowmelt components depends on the constant endmember esti-

mates and the cubic spline interpolation. The arrow indicates the

onset of the abrupt change in discharge.

ice sequence was formed beneath the glacier and exposed

along the glacier margins and at the glacier terminus (Yde

et al., 2005b; Roberts et al., 2009; Larsen et al., 2010). The

basal ice consisted of various genetic ice facies, where differ-

ent isotopic fractionation processes during the basal ice for-

mation resulted in variations in the δ18O composition. The

δ18O in massive stratified ice was −16.6± 1.9 ‰ (n= 10);

in laminated stratified ice it was −19.6± 0.7 ‰ (n= 9); and

in dispersed ice it was −18.8± 0.6 ‰ (n= 41; Larsen et al.,

2010). Also, during the termination of the surge event in

winter 1998–1999, proglacial naled was stacked into ∼ 3 m

thick sections of thrust-block naled at the glacier front, as the

glacier advanced into the naled (Yde and Knudsen, 2005b;

Yde et al., 2005b; Roberts et al., 2009). Naled is an extru-

sive ice assemblage formed in front of the glacier by rapid

freezing of winter run-off and/or proglacial upwelling water

mixed with snow. A profile in a thrust-block naled section

showed a δ18O of −20.1± 0.5 ‰ (n= 60; excluding an out-

lier polluted by rainwater; Yde and Knudsen, 2005b). With

regard to the endmember compositions of snowmelt and rain-

water at the Kuannersuit Glacier river, it was not possible to

access snow on the upper part of the glacier, so no δ18O val-

ues on snowmelt were measured. Rainwater was collected

during rainfall events in July 2002, showing a wide range in

δ18O between −18.78 and −6.57 ‰ and a median δ18O of

−10.32± 4.49 ‰ (n= 7; Table S6).

4.3 Hydrograph separation

The conditions for conducting hydrograph separation during

the peak flow period were different for the two study catch-

ments. At the Mittivakkat Gletscher river it was possible to

distinguish between the δ18O values of endmember ice melt

and snowmelt components, and there were diurnal oscilla-

tions in δ18O. In contrast, the available data from the Kuan-

nersuit Glacier river did not allow hydrograph separation in

the years following the surge event. Here, there were no di-

urnal oscillations in δ18O, and the composition and impor-

tance of the snowmelt component were unknown. Hence, we

will continue by using the 2004 time series to construct a

two-component hydrograph separation (Eq. 1) during a pe-

riod without precipitation for the Mittivakkat Gletscher river.

First, we apply time-series cubic spline interpolation to es-

timate δ18O at 1 h time-step increments, matching the tem-

poral resolution of the run-off observations. This approach

allows a better assessment of the diurnal δ18O signal. For in-

stance, a best-fit analysis shows that overall the δ18O signal

lags 3 h behind run-off (r2
= 0.66; linear correlation without

lag shows r2
= 0.58), indicating the combined effect of the

two primary components, snowmelt and ice melt, on the δ18O

variations. The diurnal amplitude in δ18O ranged between

0.11 (11 August 2004) and 0.49 ‰ (16 August 2004). How-

ever, there was no statistical relation between diurnal δ18O

amplitude and daily air temperature amplitude (r2
= 0.28),

indicating that other forcings than variability in surface melt-

ing may have a more dominant effect on the responding vari-

ability in δ18O.

Based on the assumption that snowmelt and ice melt

reflect their endmember δ18O compositions (−16.5 and

−14.1 ‰, respectively), a hydrograph showing contributions

from snowmelt and ice melt is constructed for the 2004 sam-

pling period (Fig. 6). The ice melt component constituted

82± 5 % (where ± indicates the standard deviation of the

hourly estimates) of the total run-off and dominated the ob-

served variations in total run-off (r2
= 0.99). This is expected

late in the peak flow period, when the subglacial drainage

mainly occurs in a channelised network in the lower part of

the glacier (Mernild, 2006). The slightly decreasing trend in

the daily snowmelt component was likely a consequence of

the diminishing snow cover on the upper part of the glacier.

The snowmelt component peaked around 10:00–13:00 each

day, reflecting the long distance from the melting snowpack

to the proglacial sampling site and the possible existence of

an inefficient distributed subglacial drainage network in the

upper part of the glacier.

The most likely reason for an abrupt change in glacial run-

off, such as the one observed during the early morning of 11

August 2004 followed by the sudden release of water 34 h

later, is a roof collapse causing ice-block damming of a ma-

jor subglacial channel. The hydrograph separation (Fig. 6)

shows that the proportion between ice melt and snowmelt re-

mained almost constant after the event commenced, indicat-

ing that the bulk water derived from a well-mixed part of the

drainage system, which was unaffected by the large diurnal

variation in ice melt generation. This suggests that the func-

tioning drainage network transported meltwater from the up-

per part of the glacier with limited connection to the drainage

network in the lower part. Meanwhile, ice melt was stored

in a dammed section of the subglacial network located in

the lower part of the glacier and suddenly released when the
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dam broke at 13:00 on 12 August (Fig. 6). In the following

hours ice melt comprised up to 94 % of the total run-off. On

13 August the snowmelt component peaked at noon but then

dropped markedly, and in the evening it only constituted 4 %

of the total run-off. On 14 August there were still some mi-

nor disturbances in the lower drainage network, but from 15

August the drainage system had stabilised and the character-

istic diurnal glacionival oscillations had taken over (Figs. 3

and 6).

4.4 Uncertainties in δ18O hydrograph separation

models

The accuracy of endmember hydrograph separation models

is limited by the uncertainties of the estimated values of each

endmember component, the uncertainty of the cubic spline

interpolation at each data point and the uncertainty of δ18O

in the river. While the uncertainty of δ18O in the river is likely

to be relatively small, the uncertainties of each endmember

component must be kept in mind (e.g. Cable et al., 2011;

Arendt et al., 2015). The assumption of discrete values of

each endmember component is unlikely to reflect the spatial

and temporal changes in bulk δ18O of snowmelt, ice melt

and rainwater. For instance, Raben and Theakstone (1998)

found a seasonal increase in mean δ18O in snow pits on Aus-

tre Okstindbreen, Norway, and episodic events such as pas-

sages of storms (e.g. McDonnell et al., 1990; Theakstone,

2008) or melting of fresh snow in the late ablation season

may cause temporal changes in one component. Also, snow-

packs have a non-uniform layered structure with heteroge-

neous δ18O composition, and isotopic fractionation is likely

to occur as melting progresses and the snowpack is mixed

with rainwater (e.g. Raben and Theakstone, 1998; Lee et al.,

2010). It is also difficult to assess how representative snow

pits and ice transects are for the bulk δ18O value of each

component. Spatial differences in δ18O may exist within and

between snow pits, but the overall effect on the isotopic com-

position of the water leaving the melting snowpack at a given

time is unknown.

4.5 Longitudinal and transverse δ18O transects

Glacier ice samples were collected on the surface of Kuan-

nersuit Glacier to gain insights into the spatial variability of

δ18O on the newly formed glacier tongue. Both the longi-

tudinal and transverse transects showed large spatial fluctu-

ations in δ18O (Fig. 7). The longitudinal transect was sam-

pled along the centreline but showed unsystematic fluctua-

tions on a 500 m sampling increment scale. In contrast, the

transverse transect, which was sampled 3250 m up-glacier

with 50 m increments, showed a more systematic trend where

relatively high δ18O values were observed along both lateral

margins. From the centre towards the western margin an in-

creasing trend of 0.46 ‰ per 100 m prevailed, whereas the

eastern central part showed large fluctuations in δ18O be-

Figure 7. Variations in δ18O of glacier ice along a longitudinal tran-

sect and a transverse transect on Kuannersuit Glacier. The trans-

verse transect crosses the longitudinal transect at a distance of

3250 m from the glacier terminus.

tween −22.69 and −20.08 ‰. The total range of measured

δ18O in glacier ice along the transverse transect was 4.14 ‰.

A possible explanation of this marked spatial variability may

be that the ice forming the new tongue derived from differ-

ent pre-surge reservoirs on the upper part of the glacier. If

so, it is very likely that the marginal glacier ice was formed

at relatively low elevations (high δ18O signal), whereas the

glacier ice in the western central part mainly derived from

high-elevation areas of Sermersuaq ice cap (low δ18O sig-

nal). At present, there are only a few comparable studies

on transverse variations in δ18O across glacier tongues. Ep-

stein and Sharp (1959) found a decrease in δ18O towards the

margins of Saskatchewan Glacier, Canada. Hambrey (1974)

measured a similar decrease in δ18O towards the margins of

Charles Rabots Bre, Norway, in an upper transect, whereas a

lower transect showed wide unsystematic variations in δ18O.

Hambrey (1974) concluded that in the upper transect the

marginal ice derived from higher altitudes than ice in the cen-

tre, whereas in the lower transect the wide variations were

related to structural complexity of the glacier. However, both
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Table 3. Maximum and minimum δ18O in glacier rivers.

Site Sampling period Latitude Longitude Maximum (‰) Minimum (‰) Reference

Greenland

Mittivakkat Gletscher (local glacier) 2003–2009 65◦41′ N 37◦50′W −13.7 −17.4 This paper

Kuannersuit Glacier (ice cap outlet) 2000–2005 69◦46′ N 53◦15′W −17.8 −21.9 This paper

Hobbs Gletscher (local glacier) 2004 65◦46′ N 38◦11′W −14.7 −15.1 Yde (unpublished data)

Imersuaq (GrIS outlet) 2000 66◦07′ N 49◦54′W −24.3 −29.9 Yde and Knudsen (2004)

Killersuaq (ice cap outlet) 1982–1983 66◦07′ N 50◦10′W −19.5 −23.0 Andreasen (1984)

Leverett Glacier (GrIS outlet) 2009 67◦04′ N 50◦10′W −23.2 −24.2 Hindshaw et al. (2014)

Isunnguata Sermia (GrIS outlet) 2008 67◦11′ N 50◦20′W −26.2a Yde (unpublished data)

“N” Glacier (GrIS outlet) 2008 68◦03′ N 50◦16′W ∼−23.3 ∼−28.3 Bhatia et al. (2011)

Scandinavia and Svalbard

Austre Okstindbreen, Norway 1980–1995 66◦00′ N 14◦10′ E −11.8 −14.4 Theakstone (2003)

Storglaciären, Sweden 2004 & 2011 67◦54′ N 18◦38′ E −10.9 −15.9 Dahlke et al. (2014)

Austre Grønfjordbreen, Svalbard 2009 77◦56′ N 14◦19′ E −11.2a Yde et al. (2012)

Dryadbreen, Svalbard 2012 78◦09′ N 15◦27′ E −13.0 −15.5 Hindshaw et al. (2016)

Longyearbreen, Svalbard 2004 78◦11′ N 15◦30′ E −12.3 −16.7 Yde et al. (2008)

European Alps

Glacier de Tsanfleuron, Switzerland 1994 46◦20′ N 07◦15′ E ∼−7.8 −12.2 Fairchild et al. (1999)

Dammagletscher, Switzerland 2008 46◦38′ N 08◦27′ E −13.3 −17.3 Hindshaw et al. (2011)

Hintereisferner, Austria 1969–1970 46◦49′ N 10◦48′ E ∼−13.8 ∼−19.4 Behrens et al. (1971)

Kesselwandferner, Austria 1969–1970 46◦50′ N 10◦48′ E ∼−14.8 ∼−18.1 Behrens et al. (1971)

Andes

Cordillera Blanca catchments, Peru 2004–2006 9–10◦ S 77–78◦W −13.3 −15.3 Mark and McKenzie (2007)

Juncal River, Chile 2011–2012 32◦52′ S 70◦10′W ∼−16.4 ∼−18.0 Ohlanders et al. (2013)

Asia

Hailuogou Glacier river, China 2008–2009 29◦34′ N 101◦59′ E −13.7 −17.6 Meng et al. (2014)

Kumalak Glacier no. 72, China 2009 41◦49′ N 79◦51′ E −9.8a Kong and Pang (2012)

Urumqi Glacier no. 1, China 2009 43◦07′ N 86◦48′ E −8.7a Kong and Pang (2012)

a Single sample.

of these studies are based on few samples. Hence, it therefore

remains unknown whether a high spatial variability in δ18O is

a common phenomenon or related to specific circumstances

such as surge activity or presence of tributary glaciers.

5 Discussion

5.1 Differences in δ18O between the Mittivakkat

Gletscher river and Kuannersuit Glacier river

A significant difference between the δ18O dynamics in the

Mittivakkat Gletscher river and Kuannersuit Glacier river is

the marked diurnal oscillations in the former and the lack of a

diurnal signal in the latter during the peak flow period. At the

Mittivakkat Gletscher river, the 2004 hydrograph separation

analysis showed a 3 h lag of δ18O to run-off caused by the dif-

ference in travel time for ice melt and snowmelt. Meltwater

in the early melt season was dominated by snowmelt with rel-

atively high δ18O and weak diurnal oscillations; whereas di-

urnal oscillations with amplitudes between 0.11 and 0.49 ‰

existed during the peak flow period due to mixing of a dom-

inant ice melt component and a secondary snowmelt com-

ponent. Diurnal oscillations in δ18O are common in meltwa-

ter from small, glacierised catchments; for instance, at Aus-

tre Okstindbreen, Norway, the average diurnal amplitude is

approximately 0.2 ‰ (Theakstone, 1988, 2003; Theakstone

and Knudsen, 1989, 1996a, b). The largest diurnal ampli-

tudes in δ18O (up to 4.3 ‰) have been observed in small-

scale GrIS catchments, such as at Imersuaq and “N Glacier”,

where large differences in δ18O exist between various ice fa-

cies and snowmelt (Yde and Knudsen, 2004; Bhatia et al.,

2011).

The lack of strong diurnal oscillations as observed in the

post-surge years at the Kuannersuit Glacier river indicates

a mono-source system, a well-mixed drainage network or a

multi-source system, where the primary components have

similar δ18O compositions. The expected primary compo-

nent, glacier ice melt, has lower δ18O than bulk run-off, and

there must be additional contributions from basal ice melt

(similar δ18O composition to run-off), snowmelt (unknown

δ18O composition) or rainwater (higher δ18O composition

than run-off). We therefore hypothesise that the presence of a

well-mixed drainage network is the most likely reason for the

observed δ18O signal in the bulk run-off from Kuannersuit

Glacier. During the surge event the glacier surface became

heavily crevassed and the pre-existing drainage system col-

lapsed (Yde and Knudsen, 2005a). It is a generally accepted

theory that the drainage system of surging glaciers trans-
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forms into a distributed network where meltwater is routed

via a system of linked cavities (Kamb et al., 1985; Kamb,

1987), but little is known about how subglacial drainage sys-

tems evolve into discrete flow systems in the years following

a surge event. In the initial quiescent phase at Kuannersuit

Glacier, frequent loud noises interpreted as drainage system

roof collapses were observed, in addition to episodic export

of ice blocks from the portal, suggesting ongoing changes to

the englacial and subglacial drainage system. A consequence

of these processes is also visible on the glacier surface, where

circular collapse chasms formed above marginal parts of the

subglacial drainage system (Yde and Knudsen, 2005a).

Lack of diurnal oscillations in δ18O has previously been

related to other causes at non-surging glaciers. At Glacier

de Tsanfleuron, Switzerland, sampling in the late melt sea-

son (23–27 August 1994) showed no diurnal variations in

δ18O, which was interpreted by Fairchild et al. (1999) as a

consequence of limited altitudinal range (less than 500 m) of

the glacier. An alternative explanation may be that snowmelt

only constituted so small a proportion of the total run-off in

the late melt season that discrimination between snowmelt

and ice melt was impossible. At the glacier Killersuaq, an

outlet glacier from the ice cap Amitsulooq in west Green-

land, Andreasen (1984) found that diurnal oscillations in

δ18O were prominent during the relatively warm summer of

1982, whereas no diurnal δ18O oscillations were observed in

1983 because the glacier was entirely snow-covered through-

out the ablation season, due to low summer surface mass bal-

ance caused by the 1982 El Chichón eruption (Ahlstrøm et

al., 2007).

5.2 δ18O compositions in glacier rivers

It is clear from the studies at Mittivakkat Gletscher and Kuan-

nersuit Glacier that glacier rivers have different δ18O compo-

sitions. The bulk meltwater from Mittivakkat Gletscher has a

δ18O composition similar to the water draining the nearby lo-

cal glacier Hobbs Gletscher and to waters from studied valley

and outlet glaciers in Scandinavia, Svalbard, the European

Alps, the Andes and Asia (Table 3). The δ18O composition

of Kuannersuit Glacier is lower and similar to the δ18O com-

position of the glacier Killersuaq (Table 3). Currently, the

lowest δ18O compositions are found in bulk meltwater drain-

ing the GrIS in west Greenland (Table 3), but there is a lack of

δ18O data from Antarctic rivers. Estimations of δ18O based

on δD measurements suggest δ18O values of −32.1, −34.4

and −41.9 ‰ in waters draining Wilson Piedmont Glacier,

Rhone Glacier and Taylor Glacier, respectively (Henry et al.,

1977).

The differences in δ18O in glacial rivers are due to a com-

bination of geographical effects related to altitude, continen-

tality and latitude (Dansgaard et al., 1973) and temporal ef-

fects that work on various timescales and in specific envi-

ronments. These temporal effects include a seasonal effect

(Dansgaard, 1964), a monsoonal effect (Tian et al., 2001;

Kang et al., 2002), a precipitation amount effect (Holdsworth

et al., 1991) and a palaeoclimatic effect (Reeh et al., 2002).

For instance, the altitude and continentality effects cause low

δ18O in rivers draining the GrIS compared to rivers drain-

ing valley glaciers at similar latitudes (Table 3). More data

on the δ18O composition and dynamics in glacial rivers are

needed to improve the understanding of how the relative in-

fluence of geographical and temporal effects varies on local

and regional scales.

6 Conclusions

In this study, we have examined the oxygen isotope hydrol-

ogy in two of the most studied glacierised river catchments

in Greenland to improve our understanding of the prevailing

differences between contrasting glacial environments. This

study has provided insights into the variability and compo-

sition of δ18O in river water draining glaciers and ice caps

adjacent to the GrIS.

The following results were found:

– The Mittivakkat Gletscher river on Ammassalik Is-

land, southeast Greenland, has a mean annual δ18O of

−14.68± 0.18 ‰ during the peak flow period, which

is similar to the δ18O composition in glacier rivers in

Scandinavia, Svalbard, the European Alps, the Andes

and Asia. The Kuannersuit Glacier river on the island

Qeqertarsuaq, west Greenland, has a lower mean annual

δ18O of −19.47± 0.55 ‰, which is similar to the δ18O

composition in bulk meltwater draining an outlet glacier

from the ice cap Amitsulooq but higher than the δ18O

composition in bulk meltwater draining the GrIS.

– In the Mittivakkat Gletscher river the diurnal oscilla-

tions in δ18O were conspicuous. This was due to the

presence of an efficient subglacial drainage system and

diurnal variations in the ablation rates of snow and ice

that had distinguishable oxygen isotope compositions.

The diurnal oscillations in δ18O lagged behind the diur-

nal oscillations in run-off by approximately 3 h. A hy-

drograph separation analysis revealed that the ice melt

component constituted 82± 5 % of the total run-off and

dominated the observed variations in total run-off dur-

ing the peak flow period in 2004. The snowmelt com-

ponent peaked between 10:00 and 13:00, reflecting the

long travel time and a possibly inefficiently distributed

subglacial drainage network in the upper part of the

glacier.

– In contrast to the Mittivakkat Gletscher river, the Kuan-

nersuit Glacier river showed no diurnal oscillations in

δ18O. This is likely a consequence of glacier surging. In

the years following a major surge event, where Kuan-

nersuit Glacier advanced 10.5 km, meltwater was routed

through a tortuous subglacial conduit network of linked
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cavities, mixing the contributions from glacier ice, basal

ice, snow and rainwater.

– This study has shown that environmental and physi-

cal contrasts in glacier river catchments influence the

spatio-temporal variability of the δ18O compositions. In

Greenlandic glacier rivers, the variability in δ18O com-

position is much higher than previously known ranging

from relatively high δ18O values in small-scale coastal

glacierised catchments to relatively low δ18O values in

GrIS catchments. This study demonstrates that water

isotope analyses can be used to obtain important infor-

mation on water sources and subglacial drainage system

structure that is highly desired for understanding glacier

hydrology.

The Supplement related to this article is available online

at doi:10.5194/hess-20-1197-2016-supplement.
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