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A NEW TOWER WITH GOOD p-RANK MEETING ZINK’S
BOUND

NURDAGÜL ANBAR, PETER BEELEN, AND NHUT NGUYEN

Abstract. In this article we investigate the asymptotic p-rank of a new
tower of function fields defined over cubic finite fields. Its limit meets
Zink’s bound, but the new feature of this tower is that its asymptotic p-
rank for small cubic finite fields is much smaller than that of other cubic
towers for which the asymptotic p-rank is known. This is of independent
interest, but also makes this new tower more interesting for theoretical
applications in cryptography.

1. Introduction

Let Fq be the algebraic closure of the finite field Fq with q elements. If F̄

is an algebraic function field with constant field Fq, then its p-rank γ(F̄ ) is

defined as the Fp-dimension of the group consisting of the divisor classes of

degree zero of order p, where p is the characteristic of Fq. In the case that F

is a function field with constant field Fq, we define its p-rank as the p-rank

of the compositum F ·Fq of F and Fq. The p-rank is of independent interest

and occurs in for example class field theory to estimate how many distinct

unramified Artin–Schreier extensions of degree p a function field F can have.

The p-rank also appears in [7] to analyse the theoretical behaviour of various

constructions related to multi-party computations and fast multiplication

algorithms. For such constructions a tower of function fields with low p-

rank is better than a tower of function fields with high p-rank. The main

contribution in this article is to define a new tower of function fields defined

over cubic finite fields Fq with excellent asymptotic behaviour.

To put our results in context, we introduce some notation and back-

ground. Following [16], we introduce F/Fq = (F1 ⊂ F2 ⊂ · · · ) a tower of

function fields over Fq. The limit λ(F/Fq) of the tower F/Fq is defined as

λ(F/Fq) := lim
n→∞

N(Fn)

g(Fn)
,

where N(Fn) and g(Fn) are the number of Fq-rational places and the genus

of the function field Fn, respectively. It is a well-known fact that the limit
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of the tower F/Fq satisfies

0 ≤ λ(F/Fq) ≤
√
q − 1 ,

which is called the Drinfeld–Vladut bound. Towers with λ(F/Fq) =
√
q− 1

are called optimal.

The asymptotic p-rank, or in short the p-rank of the tower F/Fq is defined

as

ϕ(F/Fq) := lim inf
n→∞

γ(Fn)

g(Fn)
.

Note that this quantity is defined in [7], where it is called the p-torsion limit

of the tower. Since for any function field 0 ≤ γ(F ) ≤ g(F ), we conclude that

0 ≤ ϕ(F/Fq) ≤ 1. Towers with ϕ(F/Fq) = 1 are called ordinary. It was for

example shown in [2] that the optimal tower in [9] is ordinary.

Motivated by [7], one is especially interested in towers F/Fq having a

large limit and p-rank as small as possible. The best would be to find an

optimal tower with zero p-rank, but it is not known if such towers exist.

What is known [7, 2] is that if q is a square, the explicit tower from [8] has

p-rank 1/(
√
q + 1). This gives the currently best known upper bound for

the minimal p-rank of a tower of function fields defined over square finite

fields. For non-square finite fields, much less is known. It is for example not

known if optimal towers exist. For non-prime values of q the towers F/Fq
introduced in [3] have the currently largest known limits for a given value

of q. Before this construction, the best known bound was Zink’s bound over

cubic fields Fp3e ; namely

A(p3e) ≥ 2(p2e − 1)

pe + 2
.

Even though the limit of the tower [3] coincides with Zink’s bound for e = 1,

it strictly exceeds Zink’s bound for e > 1. Therefore, after the square q case,

computing the p-rank of a tower over Fp3 with limit at least Zink’s bound

is the next obvious case to study. So far in [2] only the p-rank of a tower

BaGS/Fp3e introduced in [4], has been computed. There, it was shown that

its p-rank equals

ϕ(BaGS/Fp3e) =
2
(
p+1
2

)e − 2

(pe − 1)(pe + 2)
,

where
(∗
∗

)
denotes the binomial coefficient. This shows that the p-rank of

BaGS/Fp3e is strictly less than 1 for e > 1, while it is ordinary for e = 1.

In this article, we will introduce a new tower F/Fp3e satisfying the same

reducible recursive equation as the one used in [3] (see Equation (10)).

However, the defining equation of F/Fp3e is coming from a different factor;
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namely the unique factor of degree q2−1 (see Equation (11)), where q = pe.

In this respect, we can see F/Fp3e as a variant of the tower given in [3]. It

turns out that our tower contains the tower given by Bezerra Garcia and

Stichtenoth in [5] as a subtower. The limit of our tower is the same as the

limit of BaGS/Fp3e ; i.e. it meets Zink’s bound, but it has better p-rank

properties. In particular we will show that its p-rank satisfies

ϕ(F/Fp3e) ≤
p2e + pe + 4

4(p2e + pe + 1)
,

and in fact equality holds in the case e = 1 (see Theorem 4 and Remark 2).

Note that for e = 1, the p-rank of the new tower is significantly less than

that of the tower BaGS/Fp3 .
The article is organized as follows. First in the next section we give the

necessary preliminaries concerning the computation of p-rank. After that we

will in the third section introduce the new tower and compute its exact limit

using previous work on related towers. While doing so we compute the exact

genus of all the function fields occurring in the new tower and completely

describe its ramification structure. In the fourth section, we compute the

p-rank of the tower. The main effort there will be spent on computing the

p-rank of the second function field in the tower. After that the p-rank of

the tower will be computed using the Deuring–Shafarevich theorem and the

ramification structure described in section 3.

2. Preliminaries

Let E/F be a finite separable extension of function fields with the same

constant field. We denote by P(F ) the set of places of F . For a place Q ∈
P(E) lying above a place P ∈ P(F ), we write Q|P and denote by e(Q|P )

the ramification index and by d(Q|P ) the different exponent of Q|P . The

following formula is a crucial tool to compute the p-rank in p-extensions of

function fields.

Theorem 1 (Deuring-Shafarevich [11]). Let E/F be a Galois extension of

function fields over an algebraically closed field of characteristic p. Suppose

that the Galois group of the extension is a p-group. Then

(1) γ(E)− 1 = [E : F ](γ(F )− 1) +
∑

P∈P(F )

∑
Q∈P(E)
Q|P

(e(Q|P )− 1) .

Using the Riemann-Hurwitz genus formula

(2) 2g(E)− 2 = [E : F ](2g(F )− 2) + deg( Diff(E/F )) ,
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where Diff(E/F ) is the different divisor of E/F , we can compute the values

γ(E) and g(E) from Equations (1) and (2) once we have the following

information.

(1) The degree [E : F ] of the field extension E/F

(2) The values γ(F ) and g(F )

(3) The ramification structure in E/F ; i.e. e(Q|P ) and d(Q|P ) for any

Q ∈ P(E) and P ∈ P(F ) with Q|P
Computing the p-rank of a tower F/Fq = (F1 ⊂ F2 ⊂ · · · ) of function

fields is in general a difficult task. However, if each step Fi+1/Fi in the tower

is Galois with a p-group as its Galois group, then the Deuring–Shafarevich

theorem can be applied recursively in the tower. This requires knowing the

exact ramification structure for each of the steps Fi+1/Fi. Moreover, it re-

quires that the genus and p-rank of the “basis” function field F1 are known.

Some towers have this property [8, 4] and as mentioned in the introduction,

for these the exact p-rank is known. Especially in [4], the main difficulty

was to determine the p-rank of the basis function field. A similar phenom-

enon occurs in this paper. We will therefore need some tools for the p-rank

computation of a specific function field.

The tool that we will use to compute the p-rank of a function field F

with constant field Fq of characteristic p is to study the Cartier operator

and its action on the space of regular differentials of F . Therefore we will

briefly describe the main properties of the Cartier operator. Denote by ΩF

the space of differentials of F . If we fix a separating element x ∈ F , then

each differential ω ∈ ΩF has a unique representation of the form

ω = (zp0 + zp1x+ · · ·+ zpp−1x
p−1)dx ,

for some z0, z1, ..., zp−1 ∈ F . We then define the Cartier operator as a map

C : ΩF → ΩF by

C(ω) := zp−1dx .

We refer to [10] for more information on the properties of the Cartier opera-

tor. For us it will be more convenient to use powers of the Cartier operator.

The above definition implies directly the following [2, Lemma 4]. With no-

tation as above, assume that

ω =

pf−1∑
i=0

zp
f

i x
i

 dx ,

for some z0, . . . , zpf−1 ∈ F . Then

Cf (ω) = zpf−1dx .
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Moreover, if q = pf , then Cf acts Fq-linear on the space of regular differ-

entials. The relation between the p-rank γ(F ) of a function field F and the

Cartier operator is the following.

Lemma 1. Let F be a function field with genus g(F ) and constant field

Fq of characteristic p. Suppose that q = pf and that there exists a basis of

regular differentials such that with respect to this basis Cf is represented by

a matrix with coefficients in Fp. Then g(F )− γ(F ) is equal to the algebraic

multiplicity of the eigenvalue zero of Cf under the action on the space of

regular differentials of F .

Proof. This lemma is implicit in [2]. More precisely, the statements in the

lemma can directly be derived combining Lemma 3, Remark 5 and the first

paragraph in the proof of Theorem 19 in [2]. �

Later on we will see that some special binomial coefficients occur as

eigenvalues. Since we are working in characteristic p, it will be useful to have

a tool to investigate binomial coefficients modulo a prime. The following

classical lemma by Lucas [14] will be very useful.

Lemma 2 (Lucas). Let n and m be two non-negative integers and p be a

prime number. Suppose that in base p the integers m and n are written as

follows.

n := n0 + n1p+ · · ·+ nlp
l

and

m := m0 +m1p+ · · ·+mlp
l ,

with 0 ≤ ni,mi ≤ p− 1 for 0 ≤ i ≤ l. Then(
n

m

)
≡
(
n0

m0

)(
n1

m1

)
· · ·
(
nl
ml

)
mod p .

In particular, we see that
(
n
m

)
6≡ 0 mod p if and only if mi ≤ ni for all

i ∈ {0, ..., l}.

In the remainder of the preliminary section, we collect and cite several

facts from [5, 13, 6, 1] on a tower of function fields defined over a cubic field

Fq3 . This tower will be useful in later sections for computing the genera of

the function fields in our new tower. We start by considering the function

fields Z1 := Fq3(z1) and Z2 := Fq3(z1, z2), where

(3) (z2 − 1)q+1 +
z1 − 1

z1
(z2 − 1)q −

(
z1 − 1

z1

)q+1

z2 = 0 .
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From (the proof of) Lemma 3 in [1], we cite that the only ramified places

of Z1 in Z2/Z1 are (z1 = 0) and (z1 = ∞). More precisely, the following

holds:

Lemma 3. Let Z2 = Fq3(z1, z2) be the function field defined by Equation

(3). Then we have:

(i) There is a unique place P of Z2 lying over (z1 =∞), which is totally

ramified.

(ii) There are two places of Z2 lying over (z1 = 0), say P1 and P2, with

e(P1|(z1 = 0)) = 1 and e(P2|(z1 = 0)) = d(P2|(z1 = 0)) = q.

The first part implies in particular that Equation (3) is absolutely irre-

ducible. It is also shown in [1] that there exists an element α0 ∈ Z2, namely

(4) α0 :=
1− z1z2
z1 − 1

,

such that Z2 = Fq3(α0). Moreover, the elements z1 and z2 can be expressed

in α0 as follows

z1 = −1 + α0

αq+1
0

and z2 = −(α0 + αq+1
0 ) .

With this change of variables, the ramified places P , P1 and P2 of Z2 can

be given as

(5) P = (α0 = 0) , P1 = (α0 = −1) , and P2 = (α0 =∞) .

We now wish to define a tower Z/Fq3 = (Z1 ⊂ Z2 ⊂ · · · ), where for

n ≥ 1, Zn+1 := Zn(zn+1) and the quantities zn satisfy the recursive equation

(6) (zn+1 − 1)q+1 +
zn − 1

zn
(zn+1 − 1)q −

(
zn − 1

zn

)q+1

zn+1 = 0 .

However, it turns out that this recursion does not determine the tower

uniquely. We will describe in detail what happens and then define the tower

Z/Fq3 uniquely. Similarly as for Z2, for each n > 1 there exist variables

αn−1 such that Fq3(zn, zn+1) = Fq3(αn−1) and

(7) zn = −1 + αn−1

αq+1
n−1

and zn+1 = −(αn−1 + αq+1
n−1) .

Considering Z3 = Fq3(z1, z2, z3), we conclude that Z3 = Fq3(α0, α1) and that

α1 is a root of the polynomial

(8) T q+1 − 1

αq+1
n + αn

T − 1

αq+1
n + αn

;

if we set n = 0. This polynomial has a linear factor; namely

(9) T +
1

αn + 1
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and an absolutely irreducible factor of degree q [6]. Using the degree q factor,

one can define recursively A0 := Fq3(α0) and An := An−1(αn) and obtain

the tower A/Fq3 = (A0 ⊂ A1 ⊂ · · · ) studied in [6] (or to be very precise: the

dual of the tower studied there). We can now also uniquely define the tower

Z/Fq3 = (Z1 ⊂ Z2 ⊂ · · · ) using Equation (7) by Zn := Fq3(z1, . . . , zn).

Note that Zn+2 = An for all n ≥ 0, so the towers Z/Fq3 and A/Fq3 are

essentially the same. Moreover as observed in [6], it is also the same as a

tower given by Ihara [13] as a subtower of a tower given by Bezerra, Garcia

and Stichtenoth [5]. As a result, the genera g(An) of the function fields An

in A/Fq3 are given as follows.

Lemma 4. Let A/Fq3 = (A0 ⊂ A1 ⊂ · · · ) be the sequence of function fields

defined as above. Then for all n ≥ 0 the following holds:

(i) An+1/An is a separable extension of degree q.

(ii) Fq3 is the full constant field of An.

(iii) The genus g(An) of An is given as follows.

If n ≡ 0 mod 4, then

g(An) =
1

2(q − 1)

(
qn+1 + 2qn − 2q

n+2
2 − 2q

n
2 + q

)
− n

4
q

n−2
2 (q + 1).

If n ≡ 2 mod 4, then

g(An) =
1

2(q − 1)

(
qn+1 + 2qn − 4q

n+2
2 + q

)
− n− 2

4
q

n−2
2 (q + 1).

If n ≡ 1 mod 2, then

g(An) =
1

2(q − 1)

(
qn+1 + 2qn − q

n+3
2 − 3q

n+1
2 + q

)
− n− 1

2
q

n−1
2 .

Proof. See [6] and Theorem 2.9 in [5]. �

The precise ramification structure of the tower A/Fq3 has been deter-

mined in [6] and is restated for future reference in the following lemma.

Lemma 5. Let A/Fq3 = (A0 ⊂ A1 ⊂ · · · ) be the sequence of function fields

defined as above. Further let Q be a place of An and Pi be the restriction of

Q to Fq3(αi); i.e. Pi = Q ∩ Fq3(αi), for all i = 0, . . . , n. Then the following

holds:

If Pi = (αi = −1) then Pi+1 = (αi+1 = −1) or Pi+1 = (αi+1 = ∞). In

the first case, Pi is unramified in Fq3(αi, αi+1)/Fq3(αi) and Pi+1 is totally

ramified in Fq3(αi, αi+1)/Fq3(αi+1) with different exponent q. However in

the second case, both Pi and Pi+1 ramified with ramification index q − 1 in

Fq3(αi, αi+1)/Fq3(αi) and Fq3(αi, αi+1)/Fq3(αi+1), respectively.
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If Pi = (αi =∞) then Pi+1 = (αi+1 = 0). In this case, both Pi and Pi+1 are

unramified in Fq3(αi, αi+1)/Fq3(αi) and Fq3(αi, αi+1)/Fq3(αi+1), respectively.

If Pi = (αi = 0) then Pi+1 = (αi+1 = ∞). Further, Pi is totally ramified

in Fq3(αi, αi+1)/Fq3(αi) with different exponent q and Pi+1 is unramified in

Fq3(αi, αi+1)/Fq3(αi+1).

In particular, we see that there are four types of sequences (Pi)i≥0, with

ramification structure as indicated in Figure 1.

Type (1) · · ·

(α0 = −1)

e=1

(α1 = −1)

e=d=q

e=1

(α2 = −1)

e=d=q

e=1

· · ·

Type (2) · · · · · · · ·

(α0 = −1)

e=1

· · · (αi = −1)

e=d=q

e=q−1

(αi+1 =∞)

e=q−1
e=1

(αi+2 = 0)

e=1

e=d=q

(αi+3 =∞)

e=1

Type (3) · · · ·

(α0 =∞)

e=1

(α1 = 0)

e=1

e=d=q

(α2 =∞)

e=1

e=1

· · · (α2i =∞)

e=1

(α2i+1 = 0)

e=1

e=d=q

· · ·

Type (4) · · · ·

(α0 = 0)

e=d=q

(α1 =∞)

e=1

e=1

(α2 = 0)

e=1

e=d=q

· · · (α2i = 0)

e=d=q

(α2i+1 =∞)

e=1

e=1

· · ·

Figure 1. Ramification Structure of A.

3. The new tower

We will now introduce a new tower over cubic finite fields. In this section

we investigate the genera of the function fields in the tower as well as its

limit and ramification structure. The new tower is a variation of a class

of towers introduced in [3]. In particular a class of towers was given with

function fields (Fqe(x1, . . . , xn))n≥1 whose variables for n ≥ 1 satisfy the
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following recursive equation

xq
e−1
n+1 − 1

xq
j−1
n+1

=
xq

e−1
n − 1

xq
e−qe−j

n

.

These equations were explained using the theory of Drinfeld modules and

turn out not to be irreducible in general. The towers studied in [3] corre-

spond to choosing specific factors. Whereas for e > 2 the resulting towers

in [3] will not have Galois steps, we will see that for e = 3 by choosing

different factors, one can obtain a tower F/Fq3 = (F1 ⊂ F2 ⊂ · · · ) with

Galois steps. While F1 := Fq3(x1), the other function fields will need to be

described carefully.

3.1. The defining equations of the new tower: For e = 3 and j = 2,

the equation given above reduces to

(10)
xq

3−1
n+1 − 1

xq
2−1
n+1

=
xq

3−1
n − 1

xq
3−q
n

.

However Equation (10) is not irreducible. More precisely,

Xq3−q(Y q3 − Y )− (Xq3−1 − 1)Y q2 = (Xq2−1Y q2 + Y q +Xq2−qY )q

−Xq3−q2(Xq2−1Y q2 + Y q +Xq2−qY ) ;

and hence

Xq3−q(Y q3 − Y )− (Xq3−1 − 1)Y q2

=
∏
α∈Fq

(Xq2−1Y q2 + Y q +Xq2−qY − αXq2)

= Y (Xq2−1Y q2−1 + Y q−1 +Xq2−q)×(11) ∏
α∈Fq\{0}

(Xq2−1Y q2 + Y q +Xq2−qY − αXq2) .

For the construction of the second function field F2 of F/Fq3 we consider

the factor, which has Y -degree q2 − 1. Items (i) and (ii) from the following

proposition imply that this factor is absolutely irreducible.

Proposition 1. Let F2 = Fq3(x1, x2) be an extension of the rational func-

tion field Fq3(x1) such that x1 and x2 satisfy

(12) xq
2−1

1 xq
2−1

2 + xq−12 + xq
2−q

1 = 0 .

Then the following holds.

(i) The extension degree [F2 : Fq3(x1)] is q2 − 1.

(ii) Fq3 is the full constant field of F2.

(iii) The genus g(F2) of F2 is (q4 − q3 − 4q + 6)/2.
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Proof. We multiply Equation (12) by x2/x
q2

1 to obtain that

xq
2

2

x1
+
xq2

xq
2

1

+
x2
xq1

=
xq

2

2

x1
+

(
x2
xq1

)q
+
x2
xq1

= 0 .

This implies that for α ∈ Fq3\{0} the place (x1 = α) splits completely in

the extension F2/Fq3(x1), since the equation

0 =
xq

2

2

α
+
(x2
αq

)q
+
x2
αq

=
(x2
αq

)q2
+
(x2
αq

)q
+
x2
αq

has q2 distinct solutions for x2 in Fq3 . This implies item (ii).

Moreover, if we set R := x2/x
q
1 and S := xq

2

2 /x1, then the following

equalities hold.

z1 := xq
3−1

1 =
S

Rq2
= −R

q +R

Rq2
= −R

q−1 + 1

Rq2−1 .

Since F2 = Fq3(x1, R), we can write F2 as the compositum of Fq3(x1) and

Fq3(R). Note that Fq3(x1)/Fq3(z1) is a Kummer extension and therefore

in particular a tame extension. The only ramified places of Fq3(z1) in this

extension are (z1 = 0) and (z1 =∞) both with ramification index q3−1. To

compute the ramification in F/Fq3(x1) we only need to find the ramification

behaviour in the extension Fq3(R)/Fq3(z1). To investigate the ramification

it will be convenient to extend the constant field to F := Fq3 .
The minimal polynomial p(T ) of R over F(z1) is equal to

p(T ) = T q
2−1 +

1

z1
T q−1 +

1

z1
.

For α ∈ F \ {0}, we denote by pα(T ) the polynomial given by

pα(T ) = T q
2−1 +

1

α
T q−1 +

1

α
.

We observe that pα(T ) and its derivative p′α(T ) cannot have a common zero

in F. This implies that none of the places P ∈ P(F(z1)) other than (z1 = 0)

and (z1 = ∞) ramify in F(R)/F(z1). From the defining equation of F(R)

over F(z1); i.e. z1 = −(Rq−1 + 1)/Rq2−1, we see that the following holds.

(a) Set B := {β ∈ F | βq−1 + 1 = 0}. There are q places of F(R) lying

over (z1 = 0); namely (R = β) for β ∈ B each of them satisfying

e((R = β)|(z1 = 0)) = 1 and (R =∞) with e((R =∞)|(z1 = 0)) =

q2 − q.
(b) (R = 0) is the unique place lying over (z1 = ∞). In particular,

e((R = 0)|(z1 =∞)) = q2 − 1.

Let Q be a place of F2 lying over (R = β) for some β ∈ B. Then by

Abhyankar’s lemma we can conclude that Q is ramified in F2/F(R) with

e(Q|(R = β)) = q3−1. This implies that the extension degree F2 over F(R)
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is equal to q3 − 1. Equivalently, we can conclude that the extension degree

F2 over F(x1) is q2 − 1, which proves item (i).

Now we compute the genus of F2 using the Riemann-Hurwitz genus

formula applied to the extension F2/F(R). We have already established

that the ramified places of F2 other than the ones lying over (R = β) for

β ∈ B, which are totally ramified in F2/F(R), can only lie over the places

(R = ∞) and (R = 0). Let Q1 and Q2 be places of F2 lying over (R = ∞)

and (R = 0), respectively. Then by Abhyankar’s lemma we deduce that

e(Q1|(R =∞)) = e(Q2|(R = 0)) = q2 + q+ 1. Since [F2 : F(R)] = q3−1, we

also deduce that there are q − 1 possibilities for Q1 as well as for Q2. Then

2g(F2)− 2 is given by

(q3 − 1)(−2) + (q − 1)(q3 − 2) + (q − 1)(q2 + q) + (q − 1)(q2 + q) .

Item (iii) now follows. �

The equation

Xq2−1Y q2−1 + Y q−1 +Xq2−q =
Xq2−1

Y

(
Y q2 +

Y q

Xq2−1 +
Y

Xq−1

)
.

was used to define F2 = Fq3(x1, x2), but using the same equation to recur-

sively define F3 = F2(x3) is somewhat subtle. The reason is that over F2 we

have the following factorization.

xq
2

3 +
xq3

xq
2−1

2

+
x3

xq−12

=

(
xq3 −

x3
(x1x2)q−1

)q
− xq−11

(
xq3 −

x3
(x1x2)q−1

)
=
∏
α∈Fq

(
x3 −

α

x1x2

) ∏
α∈Fq\{0}

(
xq3 −

x3
(x1x2)q−1

− αx1
)
.

Fortunately, we can choose any of the degree q factors to define F3 = F2(x3).

Moreover any choice gives rise to the same extension, since for any element

α ∈ Fq \ {0} we have

xq3 −
x3

(x1x2)q−1
− αx1 = xq3 −

x3
(αx1x2)q−1

− αx1 .

For convenience we will assume that for n > 1 we have

(13) xqn+1 −
xn+1

(xn−1xn)q−1
− xn−1 = 0 .

In principle, this equation could be reducible over Fn for some n ≥ 2 (though

we later will see that this does not happen). In either case, Equation (13)

gives rise to an Artin–Schreier polynomial, thus defines an Artin–Schreier

extension of Fn. Therefore, it is either absolutely irreducible, or it factors

completely, in which case Fn+1 would be equal to Fn. Regardless of what
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happens, we can uniquely define a tower of function fields by F1 := Fq3(x1),
F2 := Fq3(x1, x2) as in Proposition 1 and for n ≥ 2 Fn+1 := Fn(xn+1),

with xn+1 satisfying Equation (13). In the following lemma, we will see

that Equation (13) in fact for n = 2 defines an Artin–Schreier extension

F3 = F2(x3) of F2 of degree q. Later on we will see that also for all n ≥ 3,

the extension degree [Fn+1 : Fn] equals q.

Lemma 6. The polynomial T q − T/(x1x2)q−1 − x1 is absolutely irreducible

over F2.

Proof. As we consider the absolute irreducibility of a polynomial, we can

continue to assume that F2 is a function field with the full constant field

F = Fq3 . With the same notation as in the proof of Proposition 1, we have

Q1 ∩ F(x1) = (x1 = 0) and Q2 ∩ F(x1) = (x1 =∞). We use the transitivity

of ramification index and the transitivity of different exponent to conclude

that

e(Q1|(x1 = 0)) = q , e(Q2|(x1 =∞)) = q+1 and d(Q1|(x1 = 0)) = q3+q−2 .

We now count the number of ramified places lying over (x1 = ∞) and

(x1 = 0). Since any place Q of F2 lying over (x1 = ∞) lies over (R = 0)

with ramification index e(Q|(x1 =∞)) = q+1, we conclude by Fundamental

Equality (see [16], Theorem 3.1.11) that there are q − 1 places lying over

(x1 =∞), say Q1` for ` = 1, . . . , q− 1. Now suppose that Q is a place of F2

lying over (x1 = 0). We note that there exist q − 1 places of F2 lying over

(R = β) for β ∈ B, which are not ramified in F2/F(x1). We denote by Qβ

the unique place of F2 lying over (R = β). On the other hand, any place

of F2 lying over the place (R = ∞) ramifies with ramification index q and

different exponent q3 +q−2. From Fundamental Equality, we conclude that

there are q− 1 places of F2 lying over (x1 = 0), which are ramified, say Q2`

for ` = 1, . . . , q − 1. Then we can give the principal divisors of x1 and R in

F2 as follows:

(x1) =
∑
β∈B

Qβ + q

q−1∑
`=1

Q1` − (q + 1)

q−1∑
`=1

Q2`

(R) = (q2 + q + 1)

q−1∑
`=1

Q2` − (q2 + q + 1)

q−1∑
`=1

Q1` .

Denote by vi the valuation at the place Q2i for some i ∈ {1, . . . , q−1}. Now

we substitute T by T/(x1x2) in T q − T/(x1x2)q−1 − x1 and then multiply

the polynomial by (x1x2)
q to obtain T q − T − xq+1

1 xq2. It is enough to show

that the Artin-Schreier polynomial T q−T−xq+1
1 xq2 is absolutely irreducible.



A NEW TOWER WITH GOOD p-RANK MEETING ZINK’S BOUND 13

However this comes from the valuation of xq+1
1 xq2 at the place Q2i for some

i ∈ {1, . . . , q − 1} (see [16], Proposition 3.7.8) since

vi(x
q+1
1 xq2) = vi(x

q2+q+1
1 Rq) = −(q2 + q + 1) ,

where R = x2/x
q
1. �

We will now establish a relation between the tower F/Fq3 and a known

cubic tower Z/Fq3 = (Z1 ⊂ Z2 ⊂ · · · ) described in Section 2. Using this

relation, we will show that indeed F/Fq3 is a tower.

Theorem 2. Let F/Fq3 = (F1 ⊂ F2 ⊂ · · · ) be the sequence of function

fields given by F1 = Fq3(x1) and Fn+1 = Fn(xn+1) where

(14) xq
2−1

1 xq
2−1

2 + xq−12 + xq
2−q

1 = 0 and xqn+1 −
xn+1

(xn−1xn)q−1
= xn−1 ,

for n ≥ 2. Then F/Fq3 is a tower.

Proof. We introduce zn := xq
3−1
n for n > 0, and define Zn := Fq3(z1, . . . , zn).

It can easily be seen from Equation (10) that the zn satisfy the following

recursive equation

(zn+1 − 1)q
2+q+1

zq+1
n+1

=
(zn − 1)q

2+q+1

zq
2+q
n

.

In [1] it was shown that this equation (seen as a function in two independent

variables) has two absolutely irreducible factors, one of degree q+1 and one

of degree q2. The one of degree q + 1 is the following:

(zn+1 − 1)q+1 +
zn − 1

zn
(zn+1 − 1)q −

(
zn − 1

zn

)q+1

zn+1 = 0 .

Note that this is exactly Equation (6). Now we show that z1 and z2 cannot

satisfy an irreducible equation of degree q2 in z2. If that would be the case,

then the extension degree [F2 : Z1] would be divisible by q2. However this

is not possible since by Proposition 1 we have

[F2 : Z1] = [F2 : F1] · [F1 : Z1] = (q2 − 1)(q3 − 1) .

From this we conclude that [F2 : Z2] = [F2 : Z1]/[Z2 : Z1] = (q− 1)(q3 − 1).

We have seen in the discussion after Equation (8) that [Z3 : Z2] equals

either 1 or q. Since F3 = Z3(x1, x2, x3) is a multiple Kummer extension

(given by xq
3−1
i = zi), its degree is a divisor of (q3 − 1)3. Hence the degree

[F3 : Z3] is relatively prime to q.

If [Z3 : Z2] = 1, then on the one hand the extension degree [F3 : Z2] =

[F3 : Z3] is relatively prime to q. But, on the other hand we know by Lemma
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6 that [F3 : F2] = q, which implies that the degree [F3 : Z2] is divisible by

q, since

[F3 : Z2] = [F3 : F2][F2 : Z2] = q(q − 1)(q3 − 1) .

Hence we conclude that [Z3 : Z2] = q and [F3 : Z3] = (q − 1)(q3 − 1). This

equivalently means that the tower Z/Fq3 can be defined first using Equation

(6) for n = 1 and afterwards for n ≥ 2 recursively by the degree q factor of

Equation (6). As a result we see that the tower Z/Fq3 is indeed the tower

Z/Fq3 from Section 2. In particular, we then have that [Zn+1 : Zn] = q for

all n ≥ 2. As Z/Fq3 is a subtower of F/Fq3 and Fn+1 is the compositum

Fn · Zn+1 of Fn and Zn+1 for all n ≥ 2, by comparing degrees we conclude

the following using induction:

[Fn+1 : Fn] = q and [Fn+1 : Zn+1] = (q − 1)(q3 − 1) for all n ≥ 2.

Furthermore we know that any extension Zn+1/Zn contains a totally rami-

fied place for n ≥ 2 (see Figure 1), which by Abhyankar’s lemma (since all

ramification in the multiple Kummer extension Fn/Zn is tame) shows the

existence of a totally ramified place in the extension Fn+1/Fn for n ≥ 2.

In particular, this shows that Equation (13) is absolutely irreducible for all

n ≥ 2 and hence that Fq3 is the full constant field of Fn for any n ≥ 2. All

in all we have shown that F/Fq3 is indeed a tower defined over Fq3 . �

Remark 1. Combining Lemma 3 with the ramification behaviour in the

proof of Proposition 1, it is not hard to see that the ramification in the

extension F2/Z2 is as follows:

e(Q|Q ∩ Z2) = e(Q1|Q1 ∩ Z2) = e(Q2|Q2 ∩ Z2) = q3 − 1 .

Moreover, each of Q, Q1 and Q2 can be chosen in q − 1 distinct ways.

3.2. Genus and limit of the new tower: We now compute the exact

genera of the function fields in the tower F/Fq3 . Using this, we will deter-

mine the limit of F/Fq3 as well. Since the exact genus of each function field

An = Zn+2 is known by Lemma 4, our approach in the following proposition

is to compute the exact genus of Fn by using the Riemann-Hurwitz genus

formula for the extension Fn/Zn.

Proposition 2. Let F/Fq3 = (F1 ⊂ F2 ⊂ · · · ) be the tower of function

fields given by Equation 14 in Theorem 2. Then

g(Fn) = 1 + (q − 1)
(q2 + q + 1)(q + 2)qn−2 − (q + 1)q2 − rn

2
,

with
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(i) For n = 2k + 3 and k ≥ 0,

rn =
(
(2k + 1)q3 + 2q2 + 5q − 2k + 2

)
qk.

(ii) For n = 2k + 2, k ≡ 0 (mod 2) and k ≥ 0,

rn =
(
(k − 1)q4 + (k + 2)q3 + 3q2 − (k − 6)q − k

)
qk−1.

(iii) For n = 2k + 2, k ≡ 1 (mod 2) and k > 0,

rn =
(
kq4 + (k + 1)q3 + 3q2 − (k − 5)q − (k − 1)

)
qk−1.

Proof. As we are interested in the genus of a function field, we can without

loss of generality extend the field of constants to F := Fq3 . The facts that

Fn+2 is the compositum of F2 and An over A0, and that the extension degree

qn of Fn+2/F2 is relatively prime to the extension degree (q − 1)(q3 − 1) of

F2/A0 for each n ≥ 0 imply that a place Q of An is ramified in Fn+2/An if

and only if Q∩A0 is ramified in F2/A0. Equivalently, this holds if and only

if Q lies over a place of A0 in the set {(α0 =∞), (α0 = 0), (α0 = −1)} (see

Figure 1).

We differentiate the investigation of the ramified places of An in the

extension Fn+2/An into three cases.

Case (1): LetQ be a place of An lying over the set {(α0 =∞), (α0 = 0)}.
Using Figure 1, we see that (α0 = ∞) and (α0 = 0) ramify and split in an

alternating way in the tower A/F. By induction, we show that there are

qk+1 +qk places of An if n = 2k+1, and there are 2qk places of An if n = 2k

lying over {(α0 = ∞), (α0 = 0)}. By Remark 1 for each place of An lying

over {(α0 = ∞), (α0 = 0)} there are q − 1 places of Fn+2 lying over it, all

with ramification index q3 − 1. All in all this gives a contribution to the

different Diff(Fn+2/An) of degree (qk+1 + qk)(q − 1)(q3 − 2) if n = 2k + 1

and of degree 2qk(q − 1)(q3 − 2) if n = 2k.

Case (2): There is a unique place Q of An lying over (α0 = −1) with

Q∩F(αi) = (αi = −1) for all i = 0, . . . , n. Since (α0 = −1) is ramified with

ramification index q3−1 in the extension F2/Z2 = F2/A0 and it is unramified

in An/A0 (see Figure 1), by Abhyankar’s lemma we can conclude that the

ramification index of a place of Fn+2 lying over Q is equal to q3 − 1. Hence

there are q − 1 places lying over Q each with ramification index q3 − 1

in Fn+2/An. All in all this gives a contribution to Diff(Fn+2/An) of degree

(q − 1)(q3 − 2).

Case (3): From Remark 1 and Abhyankar’s lemma we conclude that for

each place Q of An lying over (α0 = −1) other than the one from Case (2),

the ramification index in the extension Fn+2/An is equal to q2 + q + 1 and

hence there are (q−1)2 places of Fn+2 lying over Q. Note that for any i ≥ 0
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the place (αi = −1) of F(αi) splits into two places R1 and R2 in F(αi, αi+1)

with e((αi = −1)|R1) = 1 and e((αi = −1)|R2) = q − 1 (see Lemma 5).

In fact R1 and R2 are the places of F(αi, αi+1) lying over (αi+1 = −1)

and (αi+1 = ∞), respectively. The precise ramification behaviour in the

tower A/F is complicated, but was settled completely in [5, 6]. Using their

results one can directly determine the number of places of An lying above

(α0 = −1) not occurring in Case (2). For n = 2k + 1 this number equals

2(qk+1 − 1)/(q − 1)− 1, while if n = 2k we have qk + 2(qk − 1)/(q − 1)− 1

such places. This gives a contribution to Diff(Fn+2/An) of degree

(2(qk+1 − 1)(q − 1)− (q − 1)2)(q2 + q) = (2qk+1 − q − 1)(q3 − q)

if n = 2k + 1, and of degree

(qk(q− 1)2 + 2(qk− 1)(q− 1)− (q− 1)2)(q2 + q) = (qk+1 + qk− q− 1)(q3− q)

if n = 2k.

Adding all contributions we calculate the degree of the different divisor

Diff(Fn+2/An) of Fn+2/An.

deg(Diff(F2k+3/A2k+1)) = (qk+1 + qk)(q − 1)(q3 − 2) + (q − 1)(q3 − 2)

+(2qk+1 − q − 1)(q3 − q)(15)

= (q − 1)(qk+4 + 3qk+3 + 2qk+2 − 2qk+1 − 2qk)

−(q − 1)(2q2 + q + 2)

deg(Diff(F2k+2/A2k)) = 2qk(q − 1)(q3 − 2) + (q − 1)(q3 − 2)

+(qk+1 + qk − q − 1)(q3 − q)

= (q − 1)(3qk+3 + 2qk+2 + qk+1 − 4qk)

−(q − 1)(2q2 + q + 2) .

Then by the Riemann-Hurwitz genus formula together with Lemma 4 we

obtain the desired result. �

Theorem 3. Let F/Fq3 = (F1 ⊂ F2 ⊂ · · · ) be the tower of function fields

given by F1 = Fq3(x1) and Fn+1 = Fn(xn+1) where

xq
2−1

1 xq
2−1

2 + xq−12 + xq
2−q

1 = 0 and xqn+1 −
xn+1

(xn−1xn)q−1
= xn−1 ,

Then

λ(F/Fq3) =
2(q2 − 1)

q + 2
.

Proof. Since Z/Fq3 is a subtower of F/Fq3 with exact limit 2(q2−1)/(q+2)

(see[1]), we obtain that λ(F/Fq3) ≤ λ(Z/Fq3) = 2(q2 − 1)/(q + 2). On the
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other hand, a place of the form (x1 = β) with β ∈ Fq3\{0} splits in the

tower F/Fq3 , as can be seen directly from Equation (10). Combined with

the genus formulas from Proposition 2 we see that

λ(F/Fq3) ≥ lim
n→∞

(q3 − 1)(q2 − 1)qn−2

(q − 1) (q
2+q+1)(q+2)qn−2

2

=
2(q2 − 1)

q + 2
.

�

3.3. The ramification: Even though we have already computed the limit

of the tower F/Fq3 , it is required to know the exact ramification in Fn+1/Fn

for n ≥ 2 to compute the p-rank of the tower. In this section we first show

that the tower is (q2 + q+2)-bounded, which will be crucial to calculate the

number of ramified places in Fn+1/Fn.

Proposition 3. Let Q ∈ P(Fn+1) be the place lying above P ∈ P(Fn) for

n ≥ 2. Then d(Q|P ) = (q2+q+2)(e(Q|P )−1). In other words, the extension

Fn+1/Fn is (q2 + q + 2)-bounded.

Proof. As the argument trivially holds if Q|P is unramified, we only con-

sider the case in which there is a ramification. We know that for n ≥ 2,

Fn+1/Fn is a Galois extension of degree q and that Fn/An−2 is a tame ex-

tension. Then by Abhyankar’s lemma we deduce that a place Q of Fn+1 is

ramified in Fn+1/Fn only if Q ∩ An−2 is ramified in An−1/An−2. In turn,

Q ∩ An−2 is ramified in An−1/An−2 only if Q ∩ Fq3(αn−2) is ramified in

Fq3(αn−2, αn−1)/Fq3(αn−2). By Figure 1, we see that (still assuming n ≥ 2)

the place Q lies above a place of A0 in {(α0 =∞), (α0 = 0), (α0 = −1)} as

well as that either αn−2(Q) = −1 and αn−1(Q) = ∞ or αn−2(Q) = 0 and

αn−1(Q) =∞. Moreover, in the former case we have e(Q∩An−1|Q∩An−2) =

q−1 and in the latter e(Q∩An−1|Q∩An−2) = d(Q∩An−1|Q∩An−2) = q. We

analyse the ramification structure of such places distinguishing two cases.

Case (1): Suppose that Q is a place of Fn+1 that ramifies in Fn+1/Fn

lying over either (α0 =∞) or (α0 = 0). Then by Figure 1 and the assump-

tion that Q is ramified, we see that we are in the case where αn−2(Q) = 0

and αn−1(Q) =∞. From the proof of Proposition 2, we see that Q∩An−2 is

ramified in Fn/An−2 with ramification index q3− 1. By Abhyankar’s lemma

and transitivity of different we conclude that Q is also totally ramified in

Fn+1/Fn with different exponent q3 + q − 2 = (q2 + q + 2)(q − 1).

Case (2): Now suppose thatQ is a place of Fn+1 that ramifies in Fn+1/Fn

lying over (α0 = −1). In this case, there are two possibilities as given below.

(i) αn−2(Q) = −1 and αn−1(Q) =∞
(ii) αn−2(Q) = 0 and αn−1(Q) =∞
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In case (i), Q∩An−2 is ramified in An−1/An−2 with ramification index q−1.

This place is also ramified in Fn/An−2 with ramification index q3 − 1 and

hence by Abhyankar’s lemma Q is not ramified in Fn+1/Fn. In case (ii), we

know that the ramification of Q∩An−2 is 2-bounded in An−1/An−2 (see [6])

with ramification index 1 or q. That is to say e ∈ {1, q} and d = 2(e − 1)

for the ramification index e and different exponent d of any possible place

of An−1 lying above Q ∩ An−2. On the other hand Q ∩ An−2 is ramified

in Fn/An−2 with ramification index q2 + q + 1. By transitivity of different,

we conclude that either Q is not ramified or that it is totally ramified in

Fn+1/Fn with different exponent q3 + q − 2 = (q2 + q + 2)(q − 1).

In either case, we see that the (q2 + q+2)-bounded condition is satisfied.

�

In the above proposition we have e(Q|P ) ∈ {1, q} for any Q ∈ P(Fn+1)

lying over P ∈ P(Fn). Therefore, if Q is ramified in Fn+1/Fn, then the

different exponent d(Q|P ) = q3 + q − 2. Moreover, we have the following.

Corollary 1. For n ≥ 2 and k ≥ 0,

degDiff(Fn+k/Fn) = (q2 + q + 2)
∑

P∈P(Fn)

∑
Q∈P(Fn+k)

Q|P

(e(Q|P )− 1) .

Proof. The proof is by induction on k using transitivity of the different. �

4. Computing the p-rank

We now turn our attention to computing the p-rank of the function fields

in the tower F/Fq3 in case q = p. Since many of our arguments are valid

for general q we will work in this generality and indicate where precisely we

assume that q = p. Using Theorem 1 (the Deuring–Shafarevich theorem),

we can compute recursively the p-rank of all function fields in the tower, as

soon as the p-rank of F2 is known. Indeed for n ≥ 2, the extension Fn+1/Fn

is an Artin–Schreier extension, so Theorem 1 applies. Our main effort will

in fact go into the computation of the p-rank of F2. To this end we will use

the action of the Cartier operator on the space of regular differentials of F2.

4.1. The action of the Cartier operator on regular differentials of

F2: We first need to determine a basis for the space of regular differentials of

the function field F2 in order to apply Lemma 1. We use a change of variable

also used in Proposition 1; i.e. we set R := x2/x
q
1. Then F2 = Fq3(x1, x2) =

Fq3(x1, R) and the defining equation of F becomes

(16) xq
3−1

1 Rq2−1 +Rq−1 + 1 = 0 .
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We can determine an explicit basis of the space of regular differential forms

as follows (also see Figure 2).

Lemma 7. Let F2 = Fq3(x1, R) be the function field with the defining equa-

tion given in Equation (16). Then a basis for the space ΩF2(0) of regular

differentials of F2 is given by the set of differentials of the form

ωij =
dR

xq
3−1−i

1 Rq2−j
,

where (i, j) satisfy

(17) i > 0, j(q2 +q+1)− i(q+1) > 0, and j(q2 +q+1)− iq < q3−1 .

Proof. We use the same notation as in Proposition 1 and Lemma 6. In other

words, we denote by Qβ the unique place of F lying over (R = β) for β ∈ B,

by Q1` the places of F2 lying over (R =∞) and by Q2` the places of F2 lying

over (R = 0) for ` = 1, . . . , q − 1. From the proof of Lemma 6 we conclude

that the divisors (x1), (R) and (dR) in F are given by

(x1) =
∑
β∈B

Qβ + q

q−1∑
`=1

Q1` − (q + 1)

q−1∑
`=1

Q2` ,

(R) = (q2 + q + 1)

q−1∑
`=1

Q2` − (q2 + q + 1)

q−1∑
`=1

Q1` , and

(dR) = −2(q2 + q + 1)

q−1∑
`=1

Q1` + Diff (F2/Fq3(R)) ,

where Diff (F2/Fq3(R)) is the different divisor of F2/Fq3(R), see [16, Remark

4.3.7]. As

Diff (F2/Fq3(R)) = (q2 + q)

q−1∑
`=1

(Q1` +Q2`) + (q3 − 2)
∑
β∈B

Qβ ,

we compute the divisor of the differential ωij as follows.

(ωij) = (dR)− (q3 − 1− i)(x1)− (q2 − j)(R)

= (i− 1)
∑
β∈B

Qβ + (iq − j(q2 + q + 1) + q3 − 2)

q−1∑
`=1

Q1`(18)

+ (j(q2 + q + 1)− i(q + 1)− 1)

q−1∑
`=1

Q2` .

From Equality (18) we conclude that ωij is regular if and only if the following

conditions hold.

i > 0 , j(q2 + q + 1)− iq < q3 − 1 and j(q2 + q + 1)− i(q + 1) > 0 .

(19)
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Furthermore, the set {ωij} is Fq3-linearly independent since we have that

[F2 : Fq3(x1)] = q2 − 1, [F2 : Fq3(R)] = q3 − 1. Determining the number of

possibilities for (i, j) satisfying the conditions in (19), amounts to counting

the number of interior integral points in the triangle in Figure 2. A direct

computation (or using for example Pick’s theorem [15]) gives that this num-

ber is equal to the genus g(F2) of F2, which was determined in Proposition

1. Since the dimension of ΩF2(0) equals the genus, we conclude that the set

of differentials ωij forms a basis. �

0 q3 − 1

0

q2 − 1

q − 1

i

j

Figure 2. ωij is regular if (i, j) lies inside the triangle.

Next we investigate the action of the Cartier operator on the space of

regular differentials ΩF2(0) of the function field F2 using the basis found

in Lemma 7. Set q3 := pe. Instead of computing the action of the Cartier

operator C directly, it turns out to be very convenient to consider Ce, the

e-th power of the Cartier operator. Note that by the p−1-linearity of the

Cartier operator, Ce defines an Fq3-linear map on ΩF2(0) and by Lemma

1 the p-rank can be determined studying Ce instead of C. The following

simple lemma specifies the action of Ce on ΩF2(0) completely.

Lemma 8.

(20) Ce(ωij) = (−1)i
(

q3 − i− 1

j(q2 + q + 1)− i(q + 1)

)
ωij .

Proof. By p−1-linearity of the Cartier operator we have

Ce(h−1ω) = h−1Ce(hq
3−1ω)
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for h ∈ F and ω ∈ ΩF2 . In our case, we set h := xq
3−1−i

1 and ω := dR/Rq2−j;

i.e. ωij = h−1ω. Then we have the following equalities.

Ce(ωij) = Ce

(
1

xq
3−1−i

1

dR

Rq2−j

)
=

1

xq
3−1−i

1

Ce

(
(xq

3−1−i
1 )q

3−1 dR

Rq2−j

)
=

1

xq
3−1−i

1

Ce

(
(xq

3−1
1 )q

3−1−i dR

Rq2−j

)
.

Equation (16) implies that xq
3−1

1 = −(1 + Rq−1)/Rq2−1. As a result, the

following holds.

Ce(ωij) =
1

xq
3−1−i

1

Ce

((
−1 +Rq−1

Rq2−1

)q3−1−i
dR

Rq2−j

)

=
(−1)i

xq
3−1−i

1

Ce

 1

R(q2−1)(q3−1−i)+(q2−j)

q3−1−i∑
a=0

(
q3 − 1− i

a

)
Ra(q−1)

 .

By definition of the Cartier operator, we need to determine a for which the

exponent is congruent to −1 modulo q3; i.e.

(21) − 1 ≡ −(q2 − 1)(q3 − 1− i)− (q2 − j) + a(q − 1) (mod q3) .

Note that Equation (21) has a unique solution, since 0 ≤ a ≤ q3 − 1. To

find it, we first multiply both sides of Equation (21) by q2 + q+ 1. Then we

have

−(q2 + q + 1) ≡ −(q + 1)i+ (q2 + q + 1)j − (q2 + q + 1)− a (mod q3) .

Hence we see that Equation (21) holds if and only if

a ≡ −(q + 1)i+ (q2 + q + 1)j (mod q3) .

This shows that a = −(q + 1)i+ (q2 + q + 1)j as i, j satisfy the conditions

in (17), which implies that

0 ≤ −(q + 1)i+ (q2 + q + 1)j ≤ q3 − 1− i .

For this value of a we have

Ce(ωij) =
(−1)i

xq
3−1−i

1

(
q3 − i− 1

a

)
R`dR ,

where the exponent ` is given by

` =
1

q3
(
− (q2 − 1)(q3 − 1− i)(q2 + q + 1)

−(q2 − j)(q2 + q + 1) + a(q3 − 1)
)

= −q2 + j .

This gives the desired result. �
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4.2. The p-rank of F2: We now use the previous result to compute the

p-rank of F2. We set

bij :=

(
q3 − i− 1

j(q2 + q + 1)− i(q + 1)

)
.

We have seen in Lemma 8 that (−1)ibij is an eigenvalue of Ce associated

with ωij. In order to calculate the p-rank of F2 using Lemma 1, we have to

determine for how many pairs (i, j), the value bij is zero (as element of F2,

that is to say zero modulo p). We will use Lemma 2 for this, but first we

will rewrite bij in an easier form.

Lemma 9.

(22) bij = (−1)j
(
j(q2 + q + 1)− iq

i

)
.

Proof. First note that bij is the coefficient of T j(q
2+q+1)−i(q+1) in (T+1)q

3−i−1.

We write

(T + 1)q
3−i−1 = (T + 1)q

3 1

(T + 1)i+1
=

T q
3

(T + 1)i+1
+

1

(T + 1)i+1
.

Then the coefficient of T j(q
2+q+1)−i(q+1) only comes from the second sum as

1

(T + 1)i+1
= (1− T + T 2 + · · · )i+1 and j(q2 + q + 1)− iq ≤ q3 − 1 .

The fact that 1/(T + 1)i+1 =
∑

m≥0(−1)m
(
i+m
m

)
Tm (see for example [12,

Chapter 5.4]) gives the following equalities for the coefficient d of T j(q
2+q+1)−i(q+1).

d = (−1)j(q
2+q+1)−i(q+1)

(
j(q2 + q + 1)− iq

j(q2 + q + 1)− i(q + 1)

)
= (−1)j

(
j(q2 + q + 1)− iq

i

)
.

�

For a final simplification we reparametrize the binomial coefficients from

Lemma 9.

Lemma 10. The set of binomial coefficients of the form(
j(q2 + q + 1)− iq

i

)
,

with (i, j) ∈ Z2 satisfying the conditions in Equation (17) is the same as

the set of binomial coefficients(
aq + b

b(q + 1)− a

)
,



A NEW TOWER WITH GOOD p-RANK MEETING ZINK’S BOUND 23

where (a, b) ∈ Z2 and

(23) a < b(q + 1), a(q + 1) > bq, and aq + b < q3 − 1 .

Proof. We have

(j(q2+q+1)−iq, i) = i·(−q, 1)+j·(q2+q+1, 0) = (i−(q+1)j)·(−q, 1)+j·(1, q+1) .

Setting a := (q + 1)j − i and b := j, we see that(
j(q2 + q + 1)− iq

i

)
=

(
aq + b

b(q + 1)− a

)
.

Since i = (q + 1)b − a we see that (i, j) ∈ Z2 if and only if (a, b) ∈ Z2.

Further Equation (17) directly implies Equation (23) and vice versa. �

We are now ready to compute the p-rank of F2.

Proposition 4. Assume that q = p is a prime, then the p-rank of F2 is

γ(F2) =
1

8
(q4 + 2q3 + 3q2 − 22q + 24) .

Proof. We have seen that binomial coefficients occur as eigenvalues of Ce

and that these coefficients can be described using (a, b) ∈ Z2 lying inside a

certain triangle 4 defined by Equation 23 as in Lemma 10. For (a, b) in ∆,

we have to count the number of pairs (a, b) for which(
aq + b

bq + b− a

)
=

(
aq + b

(a− b)q + a

)
≡ 0 (mod p)

in order to calculate the p-rank of F2. We can write a, b in a unique way as

a = a1q + a0 and b = b1q + b0 for some 0 ≤ a0, a1, b0, b1 ≤ q − 1 .

In light of Lucas’s lemma, we consider the following binomial coefficients.

(24)(
a1q

2 + (a0 + b1)q + b0
(a1 − b1)q2 + (a0 − b0 + a1)q + a0

)
=

(
a1q

2 + (a0 + b1)q + b0
b1q2 + (b1 − a1 + b0)q + b0 − a0

)
.

We divide the possibilities for (a, b) up into several smaller regions, see

Figure 3 for an illustration. More precisely, we divide the triangle 4 into

four sub-triangles with the following boundary conditions.

Triangle I: a < q2 − q, b > q − 1 and a > b

Triangle II: a ≤ b < q2 − q, bq < a(q + 1) and 0 < a < q2 − q
Triangle III: 0 < b ≤ q − 1, a < b(q + 1) and q − 1 < a < q2 − 1

Triangle IV: q2−q ≤ a < q2−1, q−1 < b < q2−1 and aq+b < q3−1

Now we investigate each sub-triangle separately. In this investigation we

mainly make use of Lemma 2. Recall that we assume that q = p, a prime.
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0 q − 1 q2 − q q2 − 1

0

q − 1

q2 − q

q2 − 1

I

II

IV

III

a

b

Figure 3. The triangle 4 and its sub-triangles.

Triangle I: First note that since a > b in Triangle I, we obtain that

(25) a1 > b1 + (b0 − a0)/q ≥ b1 − (q − 1)/q,

implying that a1 ≥ b1, since a1 and b1 are integers. Further, in the case that

a0 > b0, we can see from Lemma 2 and Equation (24) that
(

aq+b
b(q+1)−a

)
≡ 0

(mod q). For this reason we first divide Triangle I into small squares whose

sides have length q. For each fixed b1 ∈ {1, . . . q−3} and a1 ∈ {b1, . . . , q−2}
we define the square with boundary conditions

b1q ≤ b = b1q + b0 ≤ b1q + q − 1 and a1q ≤ a = a1q + a0 ≤ a1q + q − 1 .

Then we separate each square into two triangles according to a lower triangle

a0 > b0 and an upper triangle a0 ≤ b0. We have seen that in the first case,

i.e. in the lower triangle part of the square, the condition that
(

aq+b
b(q+1)−a

)
≡ 0

(mod q) always holds. We observe that for fixed b1 there are q−1−b1 many

lower triangles. In other words, there exist

(q − 2) + (q − 3) + · · ·+ 1 =
(q − 1)(q − 2)

2

many lower triangles in Triangle I.

Note that in each lower triangle part, b0 ∈ {0, . . . , a0 − 1} for a fixed

a0 ∈ {1, . . . , q − 1}. That is; for a fixed a0 there exist a0 many b0’s with

a0 > b0. As a result, each lower triangle contains

1 + 2 + · · ·+ q − 1 =
q(q − 1)

2

many pairs (a, b). This gives rise to Nlt = q(q−1)2(q−2)
4

many pairs (a, b) with(
aq+b

b(q+1)−a

)
≡ 0 (mod q).
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Now we consider the upper triangle parts; i.e. the part for which a0 ≤ b0.

In this case, by Equation (24) we conclude that
(

aq+b
b(q+1)−a

)
≡ 0 (mod q) if

and only if (
a1q + (a0 + b1)

b1q + (b0 + b1 − a1)

)
≡ 0 (mod q) .(26)

We investigate congruence (26) into four cases according to the q-adic ex-

pansions a1q + (a0 + b1) and b1q + (b0 + b1 − a1). We denote by Nut,k the

number of pairs (a, b) in the upper triangles with
(

aq+b
b(q+1)−a

)
≡ 0 (mod q)

satisfying the conditions in Case (k) for k = 1, . . . , 4.

Case (1): 0 ≤ b0 + b1 − a1 ≤ q − 1 and 0 ≤ a0 + b1 ≤ q − 1.

By Lucas’s Lemma 2 we see that(
aq + b

b(q + 1)− a

)
≡

(
a1
b1

)(
a0 + b1

b0 + b1 − a1

)(
b0

b0 − a0

)
(mod q) .

Then
(

aq+b
b(q+1)−a

)
≡ 0 (mod q) if and only if a0 + a1 < b0. This inequality

combined Equation 25 implies a1 > b1. More precisely, from our assumptions

for Case (1) we have the following equivalent conditions:

1 ≤ b1 < a1 ≤ q − 2 and a0 + b1 < b0 ≤ q − 1 .

Note that 1 ≤ b1 ≤ q− 3. For a fixed b1 ∈ {1, . . . , q− 3}, we have that a1 ∈
{b1+1, . . . , q−2}, a0 ∈ {0, 1, . . . , q−2−a1} and b0 ∈ {a0+a1+1, . . . , q−1}.
Furthermore, for each such choice of (a0, a1, b0, b1) the pair (a, b) lies in an

upper triangle in Triangle I. As a result, the number Nut,1 of pairs (a, b)

with
(

aq+b
b(q+1)−a

)
≡ 0 (mod q) is given as follow.

Nut,1 =

q−3∑
b1=1

q−2∑
a1=b1+1

q−2−a1∑
a0=0

(q − 1− a0 − a1) =

q−3∑
b1=1

q−2∑
a1=b1+1

q−1−a1∑
t=1

t

=

q−3∑
b1=1

q−2∑
a1=b1+1

(
q − a1

2

)
=

q−3∑
b1=1

q−b1−1∑
s=2

(
s

2

)

=

q−3∑
b=1

(
q − b1

3

)
=

q−1∑
u=3

(
u

3

)
=

(
q

4

)
Case (2): b0 + b1 − a1 < 0 and 0 ≤ a0 + b1 ≤ q − 1.

In this case, by Lucas’s Lemma 2 we have(
aq + b

b(q + 1)− a

)
≡

(
a1

b1 − 1

)(
a0 + b1

q + b0 + b1 − a1

)(
b0

b0 − a0

)
(mod q) .

In other words,
(

aq+b
b(q+1)−a

)
≡ 0 (mod q) if and only if a0 +a1 < b0 + q, which

trivially holds as a0 ≤ b0.

Then 1 ≤ b1 ≤ q − 3 and for a fixed b1 ∈ {1, . . . , q − 3}, we have

a1 ∈ {b1 + 1, . . . , q − 2}, b0 ∈ {0, . . . , a1 − b1 − 1} and a0 ∈ {0, . . . , b0}.
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Furthermore, for each such choice of (a0, a1, b0, b1) the pair (a, b) lies in an

upper triangle in Triangle I. Therefore there are

Nut,2 =

q−3∑
b1=1

q−2∑
a1=b1+1

a1−b1−1∑
b0=0

(b0 + 1) =

(
q

4

)
pairs (a, b) with

(
aq+b

b(q+1)−a

)
≡ 0 (mod q).

Case (3): b0 + b1 − a1 < 0 and a0 + b1 ≥ q.

We observe that the conditions b0 + b1 < a1, a0 ≤ b0 and a0 + b1 ≥ q implies

a1 ≥ q, which is a contradiction. Therefore, there is no pair (a, b) satisfying

these conditions; i.e. Nut,3 = 0.

Case (4): 0 ≤ b0 + b1 − a1 ≤ q − 1 and a0 + b1 ≥ q.

In this case we observe that any pair (a, b) satisfying these conditions also

satisfies
(

aq+b
b(q+1)−a

)
≡ 0 (mod q) and with a similar argument we show that

there are

Nut,4 =

q−3∑
b1=1

q−2∑
a1=b1+1

q−1∑
a0=q−b1

(q − a0) =

(
q

4

)
pairs (a, b) satisfying these conditions.

To sum up, in Triangle I there are

q(q − 1)2(q − 2)

4
+ 3

(
q

4

)
= 9

(
q

4

)
+ 3

(
q

3

)
pairs (a, b) with

(
aq+b

b(q+1)−a

)
≡ 0 (mod q).

Now we continue with the Triangle IV.

Triangle IV: The boundary conditions a ≥ q2 − q, q − 1 < b and

aq + b < q3 − 1 imply that

a1 = q − 1, 0 < b1 ≤ q − 1 and a0 + b1 < q .

We remind that in this case(
aq + b

b(q + 1)− a

)
=

(
(q − 1)q2 + (a0 + b1)q + b0

(q − 1− b1)q2 + (a0 − b0 + q − 1)q + a0

)
.

We then investigate
(

aq+b
b(q+1)−a

)
in two cases.

Case (1): Suppose that a0 ≤ b0. Then by Lucas’s lemma 2(
aq + b

b(q + 1)− a

)
≡

(
q − 1

q − 1− b1

)(
a0 + b1

a0 − b0 + q − 1

)(
b0
a0

)
(mod q) .

As a result, we see that
(
c
i

)
≡ 0 (mod q) if and only if b0 + b1 ≤ q− 2. Here

we observe that 0 ≤ a0 ≤ q− 3, and for a fixed a0 ∈ {0, . . . , q− 3}, we have
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b0 ∈ {a0, . . . , q − 3} and b1 ∈ {1, . . . , q − 2− b0}. As a result, there are

q−3∑
a0=0

q−3∑
b0=a0

(q − 2− b0) =

(
q

3

)
pairs (a, b) with

(
aq+b

b(q+1)−a

)
≡ 0 (mod q).

Case (2): Suppose that a0 > b0. In this case
(

aq+b
b(q+1)−a

)
≡ 0 (mod q)

as observed before. In this case 0 ≤ a0 ≤ q − 2, and moreover, for a fixed

a0 ∈ {0, . . . , q−2}, we have b0 ∈ {0, . . . , a0−1} and b1 ∈ {1, . . . , q−2−a0}.
Similar calculations show that there are

(
q
3

)
pairs (a, b) satisfying this case.

To sum up, Triangle IV contains exactly 2
(
q
3

)
pairs (a, b) satisfying that(

aq+b
b(q+1)−a

)
≡ 0 (mod q).

We could calculate the number of desired pairs (a, b) in Triangles II and

III similarly as in Triangle IV; however, we can related the pairs in Triangles

II and III with the pairs in Triangle IV. For this we consider the affine map

f defined by

f : (a, b) 7→ (ã, b̃) = (b− a+ q2 − q,−a+ q2 − 1) .

Then the map f acts on Triangles II, III and IV. More precisely, f not

only permutes them but also preserves the boundary conditions. For a pair

(c, i) = (aq + b, b(q + 1) − a), we set (ĉ, î) := (ãq + b̃, b̃q + b̃ − ã). Now we

show that
(
c
i

)
≡ 0 (mod q) if and only if

(
ĉ
î

)
≡ 0 (mod q), which proves

that all triangles contain the same number of pairs (a, b) with
(

aq+b
b(q+1)−a

)
≡ 0

(mod q); namely 2
(
q
3

)
.

We see by definition of f that(
ĉ

î

)
=

(
−a(q + 1) + bq + q3 − 1

−aq − b+ q3 − 1

)
=

(
−a(q + 1) + bq + q3 − 1

−a+ b(q + 1)

)
.

For convenience we set α := a(q+ 1)− bq and β := −a+ b(q+ 1). Then we

have

α = a(q + 1)− bq = aq + b+ (a− b(q + 1)) = aq + b− β ,

and the boundary conditions bq < a(q + 1) and a < b(q + 1) (see the

boundary conditions for Triangle II and III) imply that

0 < α < q3 − 1 and 0 < β < q3 − 1− α .

Therefore
(
ĉ
î

)
=
(
q3−1−α

β

)
is equal to the coefficient of T β in (T + 1)q

3−1−α.

As we observed in the proof of Lemma 9, this is equal to the coefficient of

T β in the power series expansion of 1/(T + 1)1+α; i.e. we have the following
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equalities.(
ĉ

î

)
= (−1)β

(
α + β

α

)
= (−1)β

(
α + β

β

)
= (−1)β

(
aq + b

bq + b− a

)
= (−1)β

(
c

i

)
,

which shows that
(
ĉ
î

)
≡ 0 (mod q) if and only if

(
c
i

)
≡ 0 (mod q).

From all counting arguments above we conclude that

g(F2)− γ(F2) = 9

(
q

4

)
+ 9

(
q

3

)
= 9

(
q + 1

4

)
.

The above equality together with Proposition 1 gives the desired result and

finishes the proof. �

Theorem 4. The p-rank ϕ(F/Fp3) of the tower F/Fp3 satisfies

ϕ(F/Fp3) =
p2 + p+ 4

4(p2 + p+ 1)
.

Proof. Let n be a non-negative integer. By transitivity of ramification index

and Fundamental Equality we show

(27) γ(Fn+2)− 1 = pn(γ(F2)− 1) +
∑

P∈P(F2)

∑
Q∈P(Fn+2),Q|P

(e(Q|P )− 1) .

The fact that all extensions Fi+1/Fi for all i > 0 are p2 + p + 2-bounded

(see Proposition 3) implies that Fn+2/F2 is p2 +p+2-bounded. Then by the

Riemann-Hurwitz genus formula we have

(28)
∑

P∈P(F2)

∑
Q∈P(Fn+2),Q|P

(e(Q|P )− 1) =
2g(Fn+2)− 2− pn(2g(F2)− 2)

(p2 + p+ 2)
.

Combining Equations (27) and (28) we obtain that

γ(Fn+2)

g(Fn+2)
=

(29)

2

p2 + p+ 2
+

(p2 + p+ 2) (pn(γ(F2)− 1) + 1))− 2 (1 + pn(g(F2)− 1))

g(Fn+2)(p2 + p+ 2)
.

Using Proposition 2, we conclude that

lim
n→∞

γ(Fn)

g(Fn)
=

2

p2 + p+ 2
+ 2

(p2 + p+ 2) (γ(F2)− 1)− 2 (g(F2)− 1)

(p3 − 1)(p+ 2)(p2 + p+ 2)
.

Then by Proposition 1 and 4, the theorem follows. �

Remark 2. Note that from Equation (29) and Proposition 2, we directly

can find a closed formula for γ(Fn) for n ≥ 2. Also note that going through

the proof of Proposition 4 again, one easily concludes that the found pairs

(a, b) for which the corresponding binomial coefficient vanishes modulo p

also vanish for general q. The condition that q = p was only used to ensure
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that for the remaining pairs (a, b) the corresponding binomial coefficients

do not vanish modulo p. In other words for general q we have:

γ(F2) ≤
1

8
(q4 + 2q3 + 3q2 − 22q + 24) .

This is enough to be able to conclude that for general q the p-rank of the

tower F/Fq3 satisfies

ϕ(F/Fq3) ≤
q2 + q + 4

4(q2 + q + 1)
.

As mentioned before the case q = p is the most interesting, since for non-

prime q there exist towers over Fq3 with a better limit. It is future work to

investigate the p-rank of these kinds of towers.
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