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Abstract

This thesis presents new running time analyses of nature-inspired algorithms
on various dynamic problems. It aims to identify and analyse the features of
algorithms and problem classes which allow efficient optimization to occur in
the presence of dynamic behaviour. We consider the following settings:

λ-MMAS on Dynamic Shortest Path Problems We investigate how in-
creasing the number of ants simulated per iteration may help an ACO algorithm
to track optimum in a dynamic problem. It is shown that while a constant num-
ber of ants per-vertex is sufficient to track some oscillations, there also exist more
complex oscillations that cannot be tracked with a polynomial-size colony.

MMAS and (µ+1) EA on Maze We analyse the behaviour of a (µ+ 1)
EA with genotype diversity on a dynamic fitness function Maze, extended to a
finite-alphabet search space. We prove that the (µ+ 1) EA is able to track the
dynamic optimum for finite alphabets up to size µ, while MMAS is able to do
so for any finite alphabet size.

Parallel Evolutionary Algorithms on Maze We prove that while a (1 + λ)
EA is unable to track the optimum of the dynamic fitness function Maze for
offspring population size up to λ = O(n1−ε), a simple island model with Ω(log n)
islands is able to do so if the migration interval is chosen appropriately.

Migration Topology in Island Models We investigate the impact of the
migration topology on the performance of an island model optimizing a Maze-
like dynamic function, demonstrating that in some cases, a less-dense migration
topology is preferable to a complete migration topology.

(1+1) EA on Generalized Dynamic OneMax We analyze the (1 + 1)
EA on dynamically changing OneMax, re-proving known results on first hitting
times using modern drift analysis, and providing a new anytime analysis showing
how closely the EA can track the dynamically moving optimum over time. These
results are also extended to a finite-alphabet search space.
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Danish Abstract
Analyse af Ant Colony Optimization og Population-based Evolutionary

Algorithms algoritmer på dynamiske optimeringsproblemer

Denne afhandling præsenterer nye køretidsanalyser af natur-inspirerede algo-
ritmer på forskellige dynamiske optimeringsproblemer. Den har til formål at
identificere og analysere de egenskaber af algoritmer og problem-klasser, der
tillader effektiv optimering til at finde sted selv ved forekomsten af dynamiske
ændringer. Vi betrager følgende kombinationer af problemer og algoritmer:

λ-MMAS på Dynamiske Korteste Stier Vi undersøger hvordan en øgelse
af antal myrer simuleret per iteration per knudepunkt kan hjælpe en myrekoloni-
baseret algoritme til at følge optimalløsningen i et dynamisk problem. Vi viser
at mens et konstant antal af myrer per knudepunkt er tilstrækkelig til at følge
nogle oscillationer, der findes også mere indviklede oscillationer som kan ikke
følges med kolonier af enhver polynomial størrelse.

MMAS og (µ+1) EA på Maze Vi analyserer hvordan en (µ+ 1) evolu-
tionær algoritme (EA) med genotype-mangfoldighed optimerer Maze, en dy-
namisk fitness-funktion udvidet over et alfabet af endelig størrelse. Vi beviser
at (µ+ 1) EA kan følge den dynamiske optimum på alfabeter med op til µ
tegn, mens myrekoloni-algoritme MMAS kan gøre det samme for enhver endelig
alfabet.

Parallele EA’er på Maze Vi beviser at mens en (1 + λ) EA kan ikke føl-
ge optimalløsningen af den dynamiske fitness-funktion Maze med en afkom-
population på op til λ = O(n1−ε) individer, en enkel ø-model kan klare dette
med kun λ = Ω(log n) øer, hvis intervalen mellem migrationer er valgt på en
passende måde.

Migration Topologi i Ø-modeller Vi undersøger hvordan valget af mi-
gration topologi påvirker en ø-models evne til at følge optimalløsningen af en
Maze-lignede funktion. Vi beviser at i nogle tilfælder, en mindre tæt topologi
kan føre til bedre evne til at følge optimalløsningen end en komplet topologi.
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(1+1) EA på Generaliseret Dynamisk OneMax Vi analyserer en (1 + 1)
EA på en dynamisk version af OneMax, genbeviser kendte grænser for køretiden
det tager algoritmen til at evaluere optimalløsningen for første gang, og supplerer
med en ny når-som-helst analyse, der går ud på at bevise hvor tæt EA kan
komme til optimalløsningen i et givet tidsbudget. Disse resultater er også udvidet
til et søgerum over et endelig alfabet.
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Chapter 1

Introduction

Optimization problems are wide-spread in both natural and human-defined set-
tings. For many such problems, we do not yet have a classical, deterministic
algorithm capable of finding the optimal solution in polynomial time, or even
know whether such an algorithm can exist. For others, it may be too computa-
tionally demanding to solve the full optimization problem directly. Yet natural
processes often depend on finding good solutions to such optimization problems,
even in settings where their parameters are allowed to change with time.

Nature-inspired algorithms incorporate models of natural behaviours, such as
the use of pheromone trails for pathfinding, or mutation and natural selection,
into randomized algorithms, aiming to find good, if not optimal, solutions in
reasonable time. While such algorithms have been applied in practice with
some success, few theoretical analysis results are available for practical problems,
although advances in the theoretic approaches have been made recently.

In this thesis, we consider how variants of two nature-inspired algorithms, Ant
Colony Optimization, and Population-based Evolutionary Algorithms, optimize
dynamic problems, whose conditions, and hence also optimal solutions, are al-
lowed to change over time. We aim to identify which aspects of the problems
make optimization difficult, and which algorithm features make efficient opti-
mization of some classes of problems possible.



2 Introduction

The work in this thesis appears in the following papers:

• Runtime Analysis of Ant Colony Optimization on Dynamic Short-
est Path Problems
Andrei Lissovoi, Carsten Witt.
In Theoretical Computer Science, Vol. 561 (2015) [LW15c]. A prelimi-
nary version appeared in the Proceedings of the Genetic and Evolutionary
Computation Conference (2013) [LW13b]. We note that while this article
was composed during the Ph.D. studies, some of the results also appeared
in preliminary form in the MSc thesis [Lis12].

• MMAS Versus Population-Based EA on a Family of Dynamic
Fitness Functions
Andrei Lissovoi, Carsten Witt.
In Algorithmica, currently in print; online in 2015 [LW15a]. A prelimi-
nary version appeared in the Proceedings of the Genetic and Evolutionary
Computation Conference (2014) [LW14b].

• A Runtime Analysis of Parallel Evolutionary Algorithms in Dy-
namic Optimization
Andrei Lissovoi, Carsten Witt.
The version presented here is a journal extension currently in review. A
previous version appeared in the Proceedings of the Genetic and Evolu-
tionary Computation Conference (2015) [LW15b].

• (1+1) EA on Generalized Dynamic OneMax
Timo Kötzing, Andrei Lissovoi, and Carsten Witt.
In the Proceedings of Foundations of Genetic Algorithms Workshop (2015)
[KLW15].

• The Impact of Migration Topology on the Runtime of Island
Models in Dynamic Optimization
Andrei Lissovoi, Carsten Witt.
Unpublished. Will be extended and submitted for publication in 2016.

In this chapter, we will provide an introduction to the prerequisites for the
results presented in subsequent chapters, as well as a high-level summary of our
contributions. Chapters 2 through 6 present the results independently, in a form
that closely matches the original publications.
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1.1 Nature-inspired algorithms

In this section, we will introduce the two main metaheuristics upon which the
algorithms considered in Chapters 2 through 6 are based: the Population-Based
Evolutionary Algorithm metaheuristic is based on natural selection – mutation
and selection steps are used to produce solutions with higher fitness; while the
Ant Colony Optimization metaheuristic is based on the foraging behaviour of
ants, who rely on pheromone trails to steer exploration towards solutions that
have been observed to be good in the past.

1.1.1 Population-based evolutionary algorithms

The (1 + 1) EA is a population-based evolutionary algorithm, shown as Algo-
rithm 1.1 below. In this formulation, the algorithm operates on n-bit strings
representing solutions to some optimization problem, which the fitness function
f(x, t) evaluates the quality of. In each iteration, the algorithm produces an
offspring individual x′ by applying a mutation operator (the commonly used
standard bit mutation operator is shown as Definition 1.1) to the current-best
solution x∗, and chooses whichever of x′ and x∗ has a higher fitness value ac-
cording to f(x, t) to be used as x∗ in a future iteration. We note that for static
problems, f(x, t) = f(x, t′) for any two iterations (t, t′), while in dynamic opti-
mization problems, we allow the fitness value of individuals to change from one
iteration to another.

Algorithm 1.1 (1+1) EA, a simple Population-based Evolutionary Algorithm

Choose x∗ ∈ {0, 1}n uniformly at random.
for t = 1, 2, . . . do

x′ ← mutate(x∗)
if f(x′, t) ≥ f(x∗, t) then

x∗ ← x′

Definition 1.1 (Standard bit mutation) The mutation operator
mutate(x) creates an image y ∈ {0, 1}n from x ∈ {0, 1}n by independently
replacing each bit xi of x (1 ≤ i ≤ n) with 1− xi with probability 1/n.

As previously mentioned, this approach mimics natural selection: the mutation
operator tends to make small changes to the current-best individual, which are
accepted if they represent an improvement (or at least not a worsening) of the
ancestor solution. In situations where there is a sequence of simple changes
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leading to the optimal solution, the (1 + 1) EA can be an efficient hill-climber,
finding the optimum in expected polynomial time.

We note that the n-bit string (or n-character string) representation is a natural
choice for the optimization problems considered in further chapters, as well as
some combinatorial optimization problems (such as Independent Set or Maximal
Clique, which require involve the maximal set of vertices in a graph which either
have no edges between them, or form a complete subgraph). For problems where
this is not the case, this framework may still be applied by adjusting the way
f(x, t) interprets the solution, or extending the mutation operator and fitness
function to operate on a more convenient solution representation.

Notably, the sizes of both the ancestor and offspring population may be increased
while using this framework: a (µ + λ) EA is able to store µ individuals as
potential ancestors, and generates λ new individuals in each iteration. Should
the size of the ancestor population increase, various diversity mechanisms could
be applied to prevent the ancestor population from being filled by a single
individual; the benefits of using such measures to ensure population diversity is
illustrated in Chapter 3.

1.1.2 Ant Colony Optimization algorithms

ACO is a metaheuristic based on the foraging behaviour of ants: as ants move
around to locate a food source (or return to the colony after locating a food
source), they leave pheromone trails in the environment. When exploring the
environment, ants tend to prefer to follow these pheromone trails, strengthening
them further if they eventually find a food source; while unreinforced pheromone
trails tend to evaporate over time. This allows the colony to maintain a “mem-
ory” of which choices have proven to be good in the past, eventually optimizing
their foraging behaviour to use more efficient routes to food sources.

The Max-Min Ant System (MMAS) algorithm, shown as Algorithm 1.2 below,
operates by constructing a path through a graph G, guided by the per-arc
pheromone values τ . The variant shown here simulates the path of a single ant,
starting at a distinguished source vertex s, through the graph G, guided by the
pheromone values τ . If G has n+1 vertices, arranged in a line, such that there
are always two directed edges from one vertex to the next, the path the ant
traces through the graph can be converted to an n-bit string, where picking a
particular edge between two vertices corresponds to setting a particular bit to
a 1, allowing this algorithm to be used in similar settings to the Evolutionary
Algorithms introduced in the previous section.
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Algorithm 1.2 Max-Min Ant System (MMAS) on a graph G = (V,A)

Initialize τa ← 1
/
deg+(v) for all a = (v, v′) ∈ A

for i← 1, 2, . . . do
Let x′ be an empty path starting at vertex s ∈ V
p← s, S ←

{
(p, v′) ∈ A | v′ ̸∈ x′}

while S is not empty and p ̸= t do
Pick arc a = (p, h′) from S with probability:

pa = τa
/∑

s∈S τs
Append a to x′

p← h′, S ←
{
(p, v′) ∈ A | v′ ̸∈ x′}

if i = 1 or f(x′) < f(x∗) then
x∗ ← x′

for each a = (v, v′) ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗

max(τmin, (1− ρ)τa) otherwise

The core of the algorithm lies in the pheromone memory τ : after computing a
path through G, the fitness value (or quality of the solution represented by that
path) is compared against the quality of the best-so-far solution x∗ to determine
the new best-so-far solution. Then, pheromone values are updated to guide the
path construction, and hence the solutions constructed by the algorithm, toward
the best-so-far solution: arcs that are on the best-so-far path x∗ have their
pheromone values reinforced (increased), while arcs that are not part of x∗ only
have their pheromone values evaporate (decrease), according to the evaporation
rate ρ (with greater ρ values increasing the impact each iteration has on the
pheromone values, while lower ρ values allow the algorithm to take more of
the past history into account when constructing new paths). Over time, this
increases the probability of constructing solutions similar to x∗. To avoid the
algorithm settling on constructing only x∗, the range of pheromone values are
constrained to [τmin, τmax].

We note that the pheromone memory allows MMAS to easily represent oscilla-
tions between two choices, potentially even identifying the frequency at which
particular solutions are favoured in an oscillation. This is used in particular in
Chapter 3.

In other settings, such as the one in Chapter 2, it may be beneficial to start an
ant (or more than one ant) at each vertex of the graph, and have the ants con-
structing paths from a particular vertex bear the sole responsibility for updating
the pheromone values on arcs leaving that vertex. This variation is typically
called λ-MMAS, where λ is the number of ants started at each vertex.
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1.2 Efficient optimization

In this section, we elaborate on how we evaluate performance of nature-inspired
algorithms.

In general, when performing runtime analysis on evolutionary or nature-inspired
algorithms on static problems, we consider their performance in terms of only
the number of fitness function evaluations performed before the global opti-
mum solution is found, reasoning that evaluating the fitness function is likely
to be considerably more computationally expensive than all other operations
performed by the algorithm. As nature-inspired algorithms are randomized al-
gorithms, we typically consider the expected runtime, i. e. the expectation of
the number of fitness function evaluations performed before the global optimum
is found, and, in some cases, tail bounds on the probability that a solution of a
particular quality is found within a certain number of iterations.

Generally, we consider “efficient optimization” to be possible for a nature-inspired
algorithm whenever its expected number of fitness function evaluations is poly-
nomial with respect to the problem size, as opposed to super-polynomial or
exponential runtimes. This term should not be taken to imply that nature-
inspired algorithms are the most efficient approach to a particular problem –
there may well exist other algorithms with better properties.

In some cases, if the work performed by a nature-inspired algorithm during
a single iteration is trivially parallelizable, we may instead consider the num-
ber of iterations that pass before the global optimum is found, reasoning that
this bound better corresponds to the time required to solve the problem when
sufficient hardware is available.

For dynamic optimization problems, our focus shifts to considering the algo-
rithms’ ability to track the optimum as it moves around the search space: thus,
instead of a runtime bound on the expected time to find the global optimum,
results focus on demonstrating that the algorithm remains close to the optimum
(or reaches it periodically) for some duration while the optimum is moving. This
is particularly important if the optimum moves frequently, for instance in os-
cillating patterns, rather than moving slowly enough to allow the algorithms to
always find the new optimum before it moves again.
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1.3 Our contributions

This section introduces the problems considered in the following chapters, and
provides a brief summary of our results.

1.3.1 Chapter 2: Runtime Analysis of Ant Colony Opti-
mization on Dynamic Shortest Path Problems

We consider the behaviour of a population-enhanced variant of the Max-Min
Ant System algorithm, λ-MMAS, on a dynamic version of the Single-Destination
Shortest Path Problem, where the goal is to find the shortest path to some sink
vertex in a directed graph where the weight function is allowed to change over
time. This builds on the previous analysis of 1-MMAS on the static SDSP
in [ST12a], using similar techniques to demonstrate that if the changes in the
weight function are not too frequent, λ-MMAS is able to keep track of the
optimum by continually recovering as if following a random initialization in
the static setting. Notably, minute changes in the weight function (such as
modifying the weight) of a single arc can require a large number of iterations for
λ-MMAS to rediscover all of the shortest paths, and conversely, large changes
might not affect the optimum shortest paths at all.

We prove that as some amount of time is spent waiting for particular paths
to be constructed, there is a straightforward improvement to be gained via
parallelization by increasing λ, the number of ants simulated from each vertex
in a single iteration, to ensure that such waiting times are reduced to an expected
constant number of iterations, yielding a modest improvement in the expected
number of iterations required to recover from a one-time change.

We then consider the behaviour of λ-MMAS in several settings where the opti-
mum oscillates quickly between two solutions. When such oscillation is limited
to a single triangle in the graph (and hence impacts only a single choice), we
prove that λ = 4 ants are sufficient to keep the pheromones in a state which al-
lows the optimum solution to be constructed with at least a constant probability
in every iteration for an exponential number of iterations. At the opposite ex-
treme, if the oscillation affects many choices in the graph, we show that even any
polynomial λ is not sufficient to achieve a constant probability of constructing
the optimum.

The considered settings illustrate that while the pheromone memory is able to
store that a dynamic optimum oscillates between several solutions, it is only
able to do so usefully while the difference between the solutions is minimal.
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1.3.2 Chapter 3: MMAS versus Population-Based EA on
a Family of Dynamic Fitness Functions

The Maze fitness function, defined over n bit strings in [KM12], moves the
global optimum from the all-ones bit string to the all-zeroes bit string in n+ 1
long phases, in which the optimum solution oscillates between 0i−11n−i+1 and
0i1n−i (favouring the latter solution two iterations out of three), while all other
individuals have lower fitness values forming a gradual slope to the all-ones bit
string. In [KM12], this function is used to illustrate that MMAS is able to
adapt its pheromone values to reflect the oscillations, and thereby track the
global optimum through the n oscillating phases, while the (1 + 1) EA with
high probability loses track of the optimum before the n phases are over, and
requires an exponential number of iterations to find the all-zeroes optimum at
the end of the maze.

We prove that by increasing the size of the ancestor population and requiring
genotype diversity, a (2+1) EA is able to track the optimum of the original Maze
function. Then, we extend the Maze fitness function over a finite alphabet,
proving that while a (µ + 1) EA can track the optimum of the Maze defined
over a µ-symbol alphabet, it with high probability fails to track the optimum
of the Maze defined over alphabets of µ+ 1 characters or more.

Finally, we return to the MMAS algorithm, and prove that it is able to track
the optimum of the finite-alphabet Maze function without requiring additional
modifications. Here, we refine the analysis of [KM12] to allow for shorter Maze
phase lengths, as long as the finite alphabet is not too large.

This work serves to illustrate that increasing the ancestor population size, and
requiring genotype diversity may allow population-based algorithms to track
the optimum of some rapidly-oscillating dynamic functions by enabling them
to store each individual solution the optimum oscillates between – but even
with genotype diversity, it is important to select a sufficiently large ancestor
population size, which is difficult to do in practice without insight into the
problem structure. On the other hand, this oscillation pattern, where a small
part of the optimal solution oscillates between multiple solutions, is the ideal
case for the pheromone memory used in MMAS, which is able to encode the
relative frequency of the oscillating solutions in pheromone values, and thereby
track the optimum of the considered fitness function.
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1.3.3 Chapter 4: A Runtime Analysis of Parallel Evolu-
tionary Algorithms in Dynamic Optimization

We consider a simple island model optimizing the Maze dynamic fitness func-
tion. In this model, λ islands each run a (1 + 1) EA independently, and
periodically-occurring migration copies the best solution found by any island
to all other islands. We investigate how τ , the interval between migrations, af-
fects whether the island model is able to track the dynamic optimum of Maze.

We prove that when τ = 1, the island model’s behaviour is equivalent to that of
a (1 + λ) EA, and it is not able to track the Maze optimum even for increased
offspring population size up to λ = O(n1−ε). On the other hand, if the migration
interval τ is increased sufficiently, even λ = Ω(log n) islands are sufficient to
track the optimum of the Maze function. Finally, we investigate additional
restrictions on migration that would allow the algorithm to track the Maze
optimum, concluding that as long as no migrations occur within Ω(n) iterations
prior to a Maze phase transition, and migrations occur more often than once
in every O(log λ) phases, the island model is able to track the optimum.

In this work, we replace the genotype diversity mechanism of Chapter 3 with
a different mechanism: allowing several independent (1 + 1) EAs to operate
in parallel, and periodically migrating the best solution to all islands. Without
migration, each island has a constant probability of failing to track the optimum
through each phase (as in the previous chapter); by performing migration, the
island model is able to return all islands to tracking the oscillating optimum as
long as at least one island has not yet failed when migration occurs. On the other
hand, migration proves to be a double-edged sword as a diversity mechanism:
when performed on a complete migration topology (i. e. migrating the best
solution to all islands), it actively removes diversity from the population. In
this work, we point out that this can be managed by carefully controlling when
migration occurs, but this requires some knowledge of the oscillation pattern
and phase length, a topic that is addressed further in Chapter 6.

1.3.4 Chapter 6: The Impact of Migration Topology on
the Runtime of Island Models in Dynamic Optimiza-
tion

In this work, we consider the impact of migration topology on the behaviour of
a simplified version of the island model considered in Chapter 4.



10 Introduction

We prove that using a unidirectional ring as the migration topology (i. e. having
each island only compare its current-best individual with that of its predecessor
in the ring), allows the simplified model to track the optimum of the Maze-
like fitness function in settings where using a complete graph as the migration
topology (i. e. having each island compare its current-best individual with that
of all other islands, as in Chapter 4) results in a failure to track the dynamic
optimum.

This demonstrates the importance of being able to preserve population diversity
when performing migration in an island model, providing an approach to Maze-
like oscillating functions that requires less problem-specific knowledge than the
approach that has been analysed in Chapter 4.

1.3.5 Chapter 5: (1+1) EA on Generalized Dynamic One-
Max

We consider the (1 + 1) EA on a dynamic version of OneMax introduced in
[Dro03], which we extend to deal with finite alphabets of r symbols. In dynamic
OneMax, the optimum string is allowed to mutate over time, with each bit
having a probability p of being toggled (or, in the case of the finite-alphabet
extension, changed to an adjacent value, chosen uniformly at random).

We re-prove previous results for the hitting-time of the optimum (i.e. the num-
ber of iterations before the optimum individual is evaluated for the first time)
using modern drift analysis tools, proving that as long as the optimum does not
move too quickly, or, more specifically, p ≤ c lnn

min{r,lnn}n2 , the expected first hit-
ting time of the optimum bit string is polynomial in n, while if p ∈ ω(log n/n2),
the first-hitting time is polynomial only with polynomially small probability.

Additionally, we provide an anytime analysis, as suggested by [JZ14], analyzing
how close the (1 + 1) EA can get to the dynamically moving optimum in a
specified time budget.

In this work, we apply modern drift theorems to previously-considered settings,
yielding cleaner and more general proofs, as well as contribute a new version
of a variable drift theorem, allowing for a small region of negative drift close
to the optimum, and showing that stochastic processes can bridge such an area
of headwind. The anytime analysis builds on the tools used in the analysis of
MMAS in Chapter 3.



Chapter 2

Runtime Analysis of Ant Colony
Optimization on Dynamic

Shortest Path Problems
Andrei Lissovoi Carsten Witt

DTU Compute, Technical University of Denmark

A simple ACO algorithm called λ-MMAS for dynamic variants of the single-
destination shortest paths problem is studied by rigorous runtime analyses.
Building upon previous results for the special case of 1-MMAS, it is studied
to what extent an enlarged colony using λ ants per vertex helps in tracking
an oscillating optimum. It is shown that easy cases of oscillations can be
tracked by a constant number of ants. However, the paper also identifies
more involved oscillations that with overwhelming probability cannot be
tracked with any polynomial-size colony. Finally, parameters of dynamic
shortest-path problems which make the optimum difficult to track are dis-
cussed. Experiments illustrate theoretical findings and conjectures.

A preliminary version of this work appeared in GECCO ’13: Proceeding of the Fifteenth
Annual Conference on Genetic and Evolutionary Computation Conference, pages 1605-1612,
ACM, New York, USA, 2013.

2.1 Introduction

Ant colony optimization (ACO) is a class of nature-inspired algorithms that is
mostly used to solve combinatorial optimization problems. In recent years, run-
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time analysis of nature-inspired algorithms has advanced considerably [AD11,
Jan13, NW10b]. Even though the majority of results still apply to simple evo-
lutionary algorithms, a lot of progress has also been made in the analysis of
ACO. With respect to problems from combinatorial optimization, which is the
classical domain of application for ACO, there are results on shortest paths
[AF08, ST12a], minimum spanning trees [NW10a], minimum cuts [KLNO10]
and the traveling salesperson problem [Zho09, KNRW12].

Real-world optimization problems are not always static in nature. Often prob-
lem and goal of optimization are dynamic, i. e., they change over time. In these
cases, it is important to find a solution that is “good” with respect to the current
goal of optimization. Nature-inspired algorithms are often considered to be “ro-
bust” optimizers which can adapt to such dynamic problems if the underlying
optimal solution does not change too quickly or extremely. In particular, many
applications of evolutionary algorithms, as well as ACO, on dynamic problems
are reported in the literature [GB02, XL08, NYB12].

In this paper, we are concerned with ACO on dynamic problems. Our aim is
to understand, using rigorous runtime analyses, the conditions under which
ACO algorithms are able to track the optimum of a dynamically changing
problem, i.e. maintain the ability to construct optimum, or close-to-optimum
solutions while the fitness function changes. Such runtime analyses are mo-
tivated by related theoretical studies of evolutionary algorithms for dynamic
problems [RLY09, JS05, Dro03]. We have chosen the single-destination short-
est path problem (SDSP) as object of our analysis as this is probably the
combinatorial optimization problem that ACO has been understood best on.
There are even runtime analyses of ACO on stochastic optimization problems
[ST12b, DHK12, FK13], which, together with dynamic problems, can be sub-
sumed under the term “optimization under uncertainty”. However, methods for
the analysis of stochastic optimization problems are not directly applicable to
dynamic problems.

So far, there is only a single runtime analysis of ACO on dynamic problems.
[KM12] compare a simple ACO algorithm and a simple evolutionary algorithm
on a dynamic pseudo-boolean problem and show that the ACO algorithm can
outperform the evolutionary one. To the best of our knowledge, our work is the
first runtime analysis of ACO on a dynamic combinatorial optimization problem.

Our findings can be summarized as follows. A simple ACO algorithm based
on the Max-Min Ant System [SH00] is studied on dynamic shortest path prob-
lems with increasing amount of dynamics. First it is analyzed how long it takes
the system to adapt to a one-time modification of the graph, observing that if
modifications to the weight functions occur slower than this, the dynamic opti-
mization process can be treated as a series of adaptations to one-time changes.
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It is proved that two extreme cases can happen: only a single pheromone value
or all pheromone values might need to be updated to adapt. Upper and lower
bounds on the time required are proved. Then, more rapid periodic changes are
studied by considering changing between two different functions in every itera-
tion as an extreme case. Examples are shown where the changes exhibit enough
locality for the system to track them reliably by updating independent compo-
nents, maintaining at least a constant probability of constructing the optimum
solution in any given iteration. Interestingly, this is possible by increasing the
size of the ant colony moderately. The utility of a population for tracking prob-
lems was studied in evolutionary computation by [JS05], but our result seems
the first of this kind in the runtime analysis of ACO. It is then proved that a
single ant started at each vertex is sufficient to track a slower oscillation in the
same setting. Finally, an example is given where the problem changes globally,
which makes it very unlikely that changes can be tracked quickly. Experiments
supplement the theoretical findings, and we discuss properties of the dynamics
that are related to the difficulty of the tracking problem.

The paper is structured as follows. Section 2.2 introduces notation and the
algorithm λ-MMAS, which generalizes previously studied MMAS by introducing
a larger population. Section 2.3 proves polynomial lower and upper bounds on
the time for the system to adapt to one-time changes. Periodic changes with
locality are studied in Section 2.4, where it is shown that the oscillating optimum
can be tracked by the ant colony for a super-polynomial number of iterations,
both for rapid oscillations using a larger colony, and for slower oscillations using a
single ant. Section 2.6 describes a globally changing example that is conjectured
to be difficult to track. Experiments are described in Section 2.7. We finish with
some conclusions.

2.2 Preliminaries

The λ-MMAS algorithm (Algorithm 2.1) is a generalized version of the MMASSDSP
analyzed on shortest path problems in [ST12a], where the generalization is due
to a use of a population (see NSW10 for a related algorithm in pseudo-boolean
optimization). The algorithm allows for negative weights, but requires that all
cycles in the graph are of strictly positive weight. We note that graphs with
∆ < 2 are not interesting for shortest path problems, and assume that ∆ ≥ 2
throughout the rest of the paper: otherwise, each vertex has at most one out-
going edge, and finding the shortest paths is trivial.

Every iteration of the algorithm starts λ ants at each vertex, and each ant
constructs a simple path through the graph, following arcs randomly with prob-
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s . . . t

r

Figure 2.1: An example graph; the weight on the (r,t) arc affects whether the
vertex r is visited or avoided by the shortest paths to t.

ability proportional to their pheromone values until it reaches the destination
vertex t, or until it reaches a vertex from which no arcs lead to a vertex that has
not already been visited. For each vertex v, the best-so-far path x∗

v is updated
to the path of least weight of the λ paths constructed from v in the current
iteration and the previous x∗

v path, and is then used to update the pheromone
values on arcs leaving v.

The algorithm needs to start at least one ant at each vertex, even if the goal is
to find the shortest path between a specific pair of vertices, in order to ensure
that the shortest paths can be found in expected polynomial time. The issue is
illustrated in [ST12a] using the graph shown in Figure 2.1: if the weight on the
(r, t) arc is n = |V | and all other arcs have unit weights, the vertex r is avoided
by the s-t shortest path. An ant started at s will, with probability 1− (1/2)n/2,
make no more than n/2 steps towards t (each taken with probability 1/2 as the
pheromone values are initialized to 1/deg+(v) = 1/2, and sum to 1 for each
vertex) before visiting r. Subsequent iterations will accept a path that makes
additional steps towards t only if it reaches t without visiting r, which occurs
with probability at most (1/2)n/2 (as each of the additional n/2 steps toward
t is made with probability at most 1/2); discovery, acceptance, and pheromone
updates based on paths that take even fewer steps towards t before visiting r
will only decrease the probability of reaching t without visiting r over time.

Three parameters affect the behavior of the algorithm: the evaporation rate
ρ controls the speed with which the pheromone values are updated, while the
pheromone bounds τmin and τmax control how likely an ant is to deviate from
a pheromone trail, balancing exploration with the ability to follow reinforced
paths. As in [ST12a], we choose the pheromone bounds are chosen based on ∆,
the maximum vertex out-degree, and ℓ, the maximum number of arcs in any
shortest path in the graph:

τmin = 1/(∆ℓ) τmax = 1− τmin

where n = |V | can be used in place of ∆ or ℓ if either value is unknown. With
this choice of pheromone values, an ant is able to follow a reinforced path of
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Algorithm 2.1 The λ-MMAS algorithm on a directed graph G = (V,A), with
pheromone bounds τmin and τmax, and evaporation rate ρ, where t ∈ V is the
destination vertex, deg+(v) is the outdegree of vertex v, and f(xv) is the fitness
value of a given path (sum of its arc weights if the path terminates at t, ∞ if it
does not).

Initialize τa ← 1
/
deg+(v) for all a = (v, v′) ∈ A

for i← 1, 2, . . . do
for each v ∈ V do

for j = 1, 2, . . . , λ do
Let xv,j be an empty path starting at v
p← v, S ←

{
(p, v′) ∈ A | v′ ̸∈ xv,j

}
while S is not empty and p ̸= t do

Pick arc a = (p, h′) from S with probability:
pa = τa

/∑
s∈S τs

Append a to xv,j

p← h′, S ←
{
(p, v′) ∈ A | v′ ̸∈ xv,j

}
xv ← argminxv,j f(xv,j)
if i = 1 or f(xv) < f(x∗

v) then
x∗
v ← xv

for each a = (v, v′) ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗
v

max(τmin, (1− ρ)τa) otherwise

ℓ − 1 arcs (where the pheromone values on the arcs in the path are all τmax,
and on all other outgoing arcs from vertices visited by the path are τmin) with
probability at least 1/e. This is proved in [ST12a] by considering the probability
of not deviating from the path at each vertex, which is at least (1−∆τmin)

ℓ−1 ≥
(1−1/ℓ)ℓ−1 ≥ 1/e, as the pheromones sum to at least τmin+τmax = 1 whenever
there’s an opportunity to deviate from the reinforced path.

The Lemma 2.1 is heavily used to study the probabilistic pheromone model, and
is proved in [ST12a]. As λ-MMAS selects the next arcs with probability equal
to the arc’s pheromone value divided by the sum of pheromone values on viable
arcs leaving the vertex, the lemma allows us to bound the probability that an
ant will follow any specific outgoing arc to a vertex it has not visited before by
at least τmin/2.

Lemma 2.1 The sum of pheromone values on all outgoing arcs from any vertex
is always at most 2.
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When the first shortest path from vertex v is constructed by an ant, it will be
used as the best-so-far path x∗

v in every subsequent pheromone update. The fol-
lowing Lemma from [AF08] bounds the freezing time – the number of iterations
of reinforcing a single arc before the pheromone values reach the pheromone
bounds, at which point they will remain unchanged by subsequent pheromone
updates until a new best-so-far path, using a different arc to leave v, is discov-
ered. The freezing time is also a bound on the number of iterations between the
discovery of a shortest path and the pheromone value on its first arc reaching
τmax.

Lemma 2.2 If x∗
v is unchanged for ln(τmax/τmin)/ρ iterations, the pheromone

value on the first arc of x∗
v is τmax, and equal to τmin on all other arcs leaving

v.

Proof. Consider the effect of ln(τmax/τmin)/ρ pheromone updates on the pheromone
value on an arc. It is easy to see that this number of pheromone updates is suf-
ficient to reduce a pheromone value to τmin, even if it was originally τmax:

τmax · (1− ρ)ln(τmax/τmin)/ρ ≤ τmax · e− ln(τmax/τmin) = τmin

Consider two pheromone values, initially set to τmax and τmin; while the first
evaporates, the second is reinforced. The sum of the two values is initially 1, and
remains 1 as multiplying both values by (1 − ρ) is exactly balanced by adding
ρ to the second value. Thus the number of iterations required to increase a
pheromone value from τmin to τmax is equal to the number of iterations required
to reduce it from τmax to τmin.

Therefore, ln(τmax/τmin)/ρ iterations of reinforcing a single arc is sufficient to
increase its pheromone value to τmax, while also reducing the pheromone values
on all other arcs exiting its source vertex to τmin.

The next section examines how λ-MMAS is able to handle a one-time change
to the weight function, and motivates using λ > 1 ants to reduce the expected
number of iterations needed to discover the shortest paths after a one-time
change. Following sections illustrate the benefits and limitations of pheromone
memory in a setting where the weight function is changed more frequently: it
allows a relatively small number of ants to keep track of shortest paths if the
differences between the weight functions are relatively minor, but requires a
super-polynomial number of ants if the changes are more significant.
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2.3 A one-time change

If the oscillation is sufficiently slow, λ-MMAS may be able to rediscover and
re-freeze all of the shortest paths before the next change to the weight function
occurs. If this is the case, the process can be treated as a series of one-time mod-
ifications to the weight function, with each modification followed by a number
iterations during which λ-MMAS rediscovers the shortest paths, and a number
of iterations during which the pheromones are frozen to favor the shortest paths,
resulting in each ant having at least a constant probability of constructing the
shortest path from its starting vertex.

The expected number of iterations λ-MMAS needs to discover the shortest paths
of the new weight function depends both on how similar these shortest paths
are to those of the previous weight function, and on the maximum number of
arcs in any shortest path in the graph using the new weight function. The more
similar the shortest paths, the fewer pheromone values need to be changed; and
the fewer arcs in the longest shortest path, the more shortest paths can be
discovered in parallel.

The proof of the following theorem is based on the analysis in [ST12a]. The
presentation here is simplified; a finer analysis in [ST12a] demonstrates that it
is not necessary to wait for the full freezing time, removing the log factor from
the freezing time component of the expected number of iterations.

Theorem 2.3 After O(ℓ∗/τmin + ℓ ln(τmax/τmin)/ρ) iterations 1-MMAS will
have, with high probability, discovered all shortest paths after a one-time change
to the weight function given that such shortest paths are unique, where ℓ∗ =
max(ℓ, log n) and ℓ is the maximum number of arcs in any shortest path to t
in the new graph. This is also the expected number of iterations before all the
shortest paths are rediscovered after the weight function is altered.

Proof. Consider an arbitrary vertex v: the shortest path from v to t has at most
ℓ ≤ ℓ∗ arcs. λ-MMAS can discover the shortest path from v to t by constructing
all of its subpaths (ending at t) in the order of increasing number of arcs. This
allows shortest paths to be discovered by only constructing subpaths with one
arc with a sub-τmax pheromone value at a time, waiting for the pheromones to
freeze, and repeating the process for the next subpath.

Let ppath be the probability that a specific ant constructs a specific k-arc path
containing a single sub-τmax arc. In order to discover the v-t shortest path,
at most ℓ∗ subpaths, all with k ≤ ℓ∗, need to be constructed (and frozen).
Assuming the pheromone values on the shorter subpaths are frozen at τmax, the
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probability of discovering a new shortest path in this fashion is at least ppath:

ppath ≥
τmin

2
· (1−∆τmin)

k−1 ≥ τmin

2e

where 1−∆τmin ≥ 1−1/ℓ is the probability of selecting the arc with pheromone
value τmax at any frozen vertex, recalling that the pheromone bounds τmin and
τmax were chosen so as to ensure that the probability of following ℓ−1 such arcs
was at least 1/e.

The number of the desired subpaths discovered in this fashion can be bounded
using a Chernoff bound: if every considered iteration is able to discover the
next subpath with probability ppath, the ℓ∗ desired subpaths are discovered
in t = 10eℓ∗/τmin iterations with high probability. Let Nt be the number of
subpath discoveries in t iterations, then µ = E(Nt) = t · ppath ≥ 5ℓ∗ (treating
Nt as binomially distributed), and apply the Chernoff bound:

P (Nt < ℓ∗) = P (Nt < (1− 4/5) · µ)

< e−5ℓ∗·(4/5)2/3 = O
(
n−16/15

)
inserting ℓ∗ ≥ log n in the last step.

At most ℓ ln(τmax/τmin)/ρ additional iterations are required to freeze the pheromone
values after each discovery to preserve the pmin lower bound on the probability
of discovering the next subpath in each iteration. Thus a shortest path from
an arbitrary v to t is discovered in at most 10eℓ∗/τmin + ℓ ln(τmax/τmin)/ρ it-
erations with high probability. Shortest paths from all of the n vertices in the
graph are also found with high probability, which can be shown by applying a
union bound:

P (min
v∈V

Nt ≥ ℓ∗) ≥ 1− (1− P (Nt < ℓ∗))n

≥ 1− nP (Nt < ℓ∗)

= 1−O
(
n−1/15

)
Treating this as a success probability in a geometric distribution, it is clear
that, in expectation, no more than O(1) phases of 10ℓ∗/τmin+ ℓ ln(τmax/τmin)/ρ
iterations each are required. Thus, the expected number of iterations before all
shortest paths are rediscovered after the weight function changed is O(ℓ∗/τmin+
ℓ ln(τmax/τmin)/ρ).

As remarked in [ST12a], the unique shortest paths constraint can be dropped
at the cost of introducing a log n factor to the first component of the bound, by
requiring in the analysis that all shortest paths of length i are found and frozen
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before λ-MMAS is considered to have a change to discover a shortest path of
length i+1; the expected time until all shortest paths of a particular length are
found (given that all shorter paths have been found and frozen) is dominated
by the coupon collector problem, and is therefore O(log n/τmin); in total, there
are no more than ℓ∗ such phases.

To illustrate the potential effects of a one time change, consider the graph in
Figure 2.1 and the weight functions w1 and w2 shown below; the shortest paths
of w1 visit r immediately, while w2 avoids r if possible:

w1(α) =

{
−1 if α = (r, t)
1 otherwise w2(α) =

{
n if α = (r, t)
1 otherwise

If the pheromone values are frozen to the shortest paths using w1, λ-MMAS will
require a large number of iterations to rediscover all of the shortest paths when
the weight function is changed to w2. The proof of the following lower bound is
also inspired by a related result in [ST12a], which allows for even finer bounds,
but considers a uniform initialization of pheromone values, which is not given
after λ-MMAS has frozen the pheromones to favor specific shortest paths.

Theorem 2.4 One-time changes to the weight function may require an ex-
pected Ω(ℓ/τmin) iterations for 1-MMAS with ρ = 1 to discover all shortest
paths, where ℓ is the maximum number of arcs in any shortest path to t in the
new graph.

Proof. The theorem is proved by example: we will show that if, on the graph
of Figure 2.1, all shortest paths under w1 are discovered and frozen, Ω(ℓ/τmin)
iterations are required to rediscover the shortest paths after the weight func-
tion is switched to w2. Given the high evaporation rate (ρ = 1), after the first
iteration, all pheromone values are at the pheromone bounds, and switch be-
tween those instantly whenever new shortest paths are discovered by λ-MMAS.
Assume for a moment that the optimization proceeds as in the proof of The-
orem 2.3: only shortest paths with a single non-τmax arc are discovered until
shortest paths from all vertices have been found.

The probability that the next subpath (with only one non-τmax arc) is discov-
ered in a single iteration is at most τmin. Let Ti be the number of iterations
between the discoveries of subpaths i− 1 and i; as ∆ ≥ 2 and hence τmin ≤ 1/2,
the probability that the next subpath is not discovered for at least 1/(2τmin)
iterations is:

P (Ti > 1/(2τmin)) ≥ (1− τmin)
1/(2τmin)

=
√
(1− τmin)1/τmin ≥ 0.5
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When the weight function is changed to w2, the entire ℓ-arc longest shortest
path needs to be rediscovered, changing the pheromone values on the outgoing
arcs from each of the ℓ non-trivial vertices. Let N be the number of subpaths
for which Ti > 1/(2τmin), and µ = E(N) ≥ ℓ/2. A Chernoff bound shows that
at least a quarter of the subpaths will require more than 1/(2τmin) iterations
each with overwhelming probability:

P (N ≥ ℓ/4) = 1− P (N < (1− 1/2)µ)

> 1− e−µ/22/3 ≥ 1− e−ℓ/24

Thus, if no shortest paths with more than one non-τmax arc are discovered,
Ω(ℓ/τmin) iterations are required with overwhelming probability.

How likely is λ-MMAS not to find any shortest paths with more than one non-
τmax arc? The probability pf of discovering such a path is greatest at the be-
ginning of the process, when shortest paths with 2, 3, . . . , ℓ non-τmax arcs can
be discovered; and the probability that no such paths are found for 1/τmin

2

iterations is at least a constant:

pf ≤ τmin
2

ℓ∑
i=2

τmin
i−2 < 2 · τmin

2

(1− pf)
1/τmin

2

≥ 1/16

assuming τmin ≤ 1/2 as before.

Thus, with at least constant probability, λ-MMAS does not discover any short-
est paths with more than one non-τmax arc in 1/τmin

2 ≥ ℓ/τmin iterations,
and Ω(ℓ/τmin) iterations are required to rediscover the shortest paths with over-
whelming probability if only subpaths with a single non-τmax arc are discovered.
Therefore, the expected number of iterations before the shortest paths are re-
discovered by λ-MMAS (with λ = 1 and ρ = 1) after switching from w1 to w2

is Ω(ℓ/τmax).

Conversely, there also exist combinations of weight functions for which the short-
est paths may be rediscovered relatively quickly – for example, switching from
w2 to w1 on the graph of Figure 2.1 is easier than the alternative, as a low ℓ = 2
value reduces the interdependency between shortest paths, allowing them to be
discovered in parallel without requiring ants to select more than one non-τmax arc
at a time. Additionally, changing the weight of the (r, t) arc to values between
the extremes considered in w1 and w2 would change only some of the shortest
paths, reducing the amount of pheromone values that need to be updated.
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These analyses suggest that λ-MMAS spends most of the iterations waiting to
discover the next subpath. The expected number of iterations spent waiting
can be reduced by increasing the number of ants simulated in each iteration,
as expanded upon in Theorem 2.5; this is similar in effect to increasing the
offspring population size in a (1 + λ) EA, as considered by [JJW05].

Theorem 2.5 Using λ = 2e/τmin ants allows λ-MMAS to discover new short-
est paths in expected constant time, allowing all shortest paths to be rediscovered
in O(ℓ+ ℓ ln(τmax/τmin)/ρ) iterations.

Proof. The probability that a single ant will construct a specific path with
only one non-τmax arc is at least τmin/2e, so the probability that at least one of
λ ants constructs it is at least pc:

pc ≥ 1− (1− τmin/2e)
2e/τmin ≥ 1− 1/e

Shortest paths up to ℓ arcs long may therefore be discovered using the same
mechanism as in Theorem 2.3, with each subpath taking an expected e/(e −
1) = O(1) iterations to discover, and ln(τmax/τmin)/ρ additional iterations
to freeze (as the freezing rate is unaffected by the increased number of ants
simulated in each iteration). The total number of iterations required to re-
discover and freeze all shortest paths is, per linearity of expectation, at most
O(ℓ+ ℓ ln(τmax/τmin)/ρ).

While increasing the number of ants simulated does not reduce the amount of
work performed by the algorithm, it does allow the work to be parallelized to
a greater extent, as each ant in an iteration can be simulated independently of
others, only needing to compare the fitness values of the constructed paths at
the end of the iteration.

The theorems presented in this section used ℓ, the maximum number of arcs in
any shortest path to t, to bound the complexity of rediscovering the shortest
paths after a weight function change. In the examples considered so far, this has
been accurate; though there are graphs where it is an overestimation (see e.g.
Figure 2.2). More precise bounds could instead consider, for each shortest path,
the number of vertices along the path at which an ant would have opportunity
to deviate from the shortest path, and for which the shortest path was altered
by the weight function change.
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2.4 Periodic local changes

If the weight functions change more frequently than the expected number of iter-
ations required to rediscover and re-freeze the shortest paths after each change,
the process can no longer be treated as a series of recoveries from one-time
changes. Taken to the extreme, the weight functions could change in every it-
eration of λ-MMAS. In this section, we consider such rapid oscillation between
two weight functions the shortest paths of which are extremely similar, differing
only in the choice of outgoing edge from a single vertex in the graph. Somewhat
surprisingly, λ-MMAS, with only a constant number of ants, maintains at least
a constant probability of constructing the optimum shortest path solution in
each iteration in this setting. We will then show that if the oscillation between
these two weight functions is slower (though not as slow as to allow analysis as
a series of one-time changes), 1-MMAS is also able to track the optimum.

Throughout this section, λ-MMAS is considered able to track the optimum so-
lution if it is able to maintain a constant probability of constructing the shortest
paths in any given iteration, i.e. the best possible probability of success when a
starting a constant number of ants at each vertex. In the local changes setting,
only a single choice of outgoing edge changes between the shortest paths of the
two different weight functions. λ-MMAS must therefore keep the pheromone
values on the oscillating edges within a constant distance of 1/2, as approaching
the pheromone bounds would reduce the probability that the correct shortest
paths is constructed in every iteration to a sub-constant value. We note that
adjusting the pheromone bounds directly, to keep the pheromones close to 1/2,
would be counterproductive: such bounds would reduce the probability of ants
following the non-oscillating portion of the shortest paths, which would’ve been
reinforced, to a sub-constant value when alternative paths are available. Addi-
tionally, a low evaporation rate is required in order for λ-MMAS to be able to
keep the pheromone values on the oscillating edges close to 1/2 for significant
amounts of time, as, intuitively, a too-high evaporation rate causes λ-MMAS to
forget that an arc was part of a shortest path sooner rather than later.

This section considers oscillation between two similar weight functions, shown
below, on the graph in Figure 2.2.

w1(α) =

{
1 if α = c
0 otherwise w2(α) =

{
−1 if α = c
0 otherwise

The graph and weight functions are chosen such that the longest shortest path
has at least n − 2 arcs, the shortest paths are only changed at a single vertex,
which isolates the simplest possible dynamic shortest path problem, and the
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s . . . t

b

a

c

Figure 2.2: Changing the weight of arc c controls which of the a and b arcs is
on the shortest path from s to t.

simulated ants only have the opportunity to deviate from the shortest path at a
single vertex. The latter limit on the opportunities to deviate from the shortest
paths is used only to simplify the analysis, and could be relaxed at the cost
of increasing the required number of ants by a constant factor, as discussed at
the end of this section; thus, similar results could be obtained for less artificial
graphs, as long as the oscillation could be isolated to a single triangle in the
graph.

In this situation, it is possible for λ-MMAS to use relatively few ants and still
maintain the ability to correctly identify the shortest path in each iteration with
at least constant probability for a super-polynomial number of iterations.

Lemma 2.6 Consider switching between the weight functions w1 and w2 on the
graph of Figure 2.2 during every iteration. Starting λ = 4 ants at each vertex is
sufficient to ensure that λ-MMAS, with ρ ∈ o(1/log n), will keep the pheromone
values on outgoing arcs from s in the [0.3, 0.7] range for a super-polynomial
number of iterations with respect to n with a probability super-polynomially close
to 1.

Proof. Let τ ′t = min(τt(a), τt(b)) be the minimum of the pheromone values on
the arcs a and b after iteration t. Consider the effect of two sequential pheromone
updates on τ ′t :

−ρ < τ ′t+2 − τ ′t < 2ρ (2.1)

as evaporation may at most reduce the smaller value by ρ/2 (as τt(a)+τt(b) = 1,
and hence τ ′t ≤ 1/2), and reinforcement may at most increase the smaller value
by ρ.

If the arc with the smaller pheromone value τ ′t is only reinforced in the second
of two pheromone updates, the effect is:

τ ′t+2 − τ ′t ≥ τ ′t(1− ρ)2 + ρ− τ ′t ≥ ρ− 2ρτ ′t (2.2)
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It is convenient to scale the minimum pheromone values, such that a constant
number of pheromone updates alter the scaled values by at most a constant:

g(τt) = min(τt(a), τt(b))/ρ

Consider the expected change ∆t(τ
′
t) = g(τt+2) − g(τt) of these scaled values

two pheromone updates after an update that favored reinforcing the arc with
the τ ′t pheromone value. For a lower bound, assume that the τ ′t arc is never
reinforced during the next iteration (when it is not on the shortest path), and
let pf be the probability that it is also not reinforced during the iteration after
the next (when it is on the shortest path), which yields:

E(∆t(τ
′
t)) > (1− pf) · (1− 2τ ′t) + pf · (−1)

= 1− 2pf(1− τ ′t)− 2τ ′t

by applying g to the bounds in (2.1) and (2.2). For the weight functions w1 and
w2, pf ≤ (1− τ ′t(1− ρ))λ. The drift is at least 0.02 when 0.3 ≤ τ ′t ≤ 0.4, λ = 4,
and ρ ≤ 0.05.

The simplified drift theorem [OW11, OW12] can then be applied to the scaled
values when the pheromones are within this region, treating two iterations of
λ-MMAS as a single step in a Markov process over the scaled values, ensuring
that the arc with the minimum pheromone value was always favored by the last
iteration in the step. This requirement simplifies the following analysis, but
may mean that the pheromone values enter the considered drift region during a
“wrong” iteration; to accommodate this, we will adjust the size of the drift region
by the equivalent of one iteration, pessimistically assuming that the iteration
resulted in the pheromone values being brought closer to the bounds.

The drift is greater than 0.02 within a region specified by a = (3/10)/ρ and
b = (4/10)/ρ. As mentioned perviously, the length of the drift region may need
to be reduced by the equivalent of a single pheromone update to ensure that the
last pheromone update favored reinforcing the τ ′t arc, so the length of the drift
region is ℓ ≥ b−a−1 = ω(log n). This region then satisfies the first requirement
of the simplified drift theorem.

As a consequence of (2.1), the process cannot make large changes to the scaled
values in a single iteration. The second requirement of the simplified drift the-
orem is satisfied by setting r(ℓ) = 4 and δ = 1:

P (|∆t| ≥ j) ≤ r(ℓ)

(1 + δ)j
= 22−j

as P (|∆t| > 2) = 0, and the right side of the inequality is at least 1 for j ≤ 2.
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Then, per the simplified drift theorem, there exists a constant c∗ such that with
probability 1− 2−ω(logn), the Markov process first reaches a state Xt ≤ a (and
hence first encounters a τ ′t ≤ 3/10) after at least 2c

∗ω(logn) iterations.

Given that the pheromone values remain within this range for a super-polynomial
number of iterations, the probability that the correct shortest path x∗

s is con-
structed also remains bounded for a super-polynomial number of iterations.

A more detailed analysis than the approximations used in Lemma 2.6 is needed
to show whether λ = 3 ants are also sufficient. This setting is revisited as part
of an experiment in Section 2.7.

Theorem 2.7 Consider switching between the weight functions w1 and w2 on
the graph of Figure 2.2 during every iteration. 4-MMAS with evaporation rate
ρ ∈ o(1/log n) will with probability super-polynomially close to 1 be able to find
the correct s-t shortest path with at least a constant probability in each iteration
for any polynomial number of iterations.

Proof. Let τ ′t = min(τt(a), τt(b)) after iteration t; then, the probability that
x∗
s is correct is at least the probability of any ant constructing a path through

the arc with pheromone value τ ′. As long as τ ′t is at least a constant, e.g. 0.3,
this probability is also at least a constant:

P (x∗
s is correct | τ ′t ≥ 0.3) ≥ 1− (1− 0.3)4 = 0.7599

Per Lemma 2.6, τ ′t ≥ 0.3 for a super-polynomial number of iterations with
probability super-polynomially close to 1, which proves the theorem.

The proof relies on a special property of the considered weight functions: only
the choice made at s affects whether the ant constructs a correct shortest path
to t. If the weight function or graph were changed to require the ants to follow
a pheromone-reinforced path after leaving s, λ = 4 ants may be insufficient to
ensure a positive drift. Using the usual pheromone bounds, the probability of
an ant successfully following any pheromone-reinforced path is at least 1/e, so
the failure probability can be adjusted accordingly:

pf ≤ (1− τ ′t(1− ρ) · 1/e)λ

With this adjustment, λ = 12 ants are sufficient to ensure that the drift is greater
than 0.003 for the same constraints on τ ′t and ρ as were used in Lemma 2.6.
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2.5 Slower local changes

The preceding section has shown that an ant colony can be useful when tracking
rapid oscillations, as increasing the number of ants increases the amount of
exploration the λ-MMAS algorithm performs before altering pheromone values.
If the evaporation rate is also sufficiently low, during rapid oscillation between
two similar shortest paths, λ-MMAS is able to keep the pheromone values on the
affected arcs close to 0.5, essentially being able to remember that both outgoing
arcs have been part of the shortest path recently.

A colony with only a single ant cannot track rapid oscillation in this fashion,
but as the following theorem shows, it can keep the pheromone values within
a constant range if the oscillation is sufficiently slow (i.e. each shortest path
remains the optimum for at least T ∈ ω(log n) iterations). With only a single
ant, the pheromones are instead kept within a constant range by the difference
in magnitude of the pheromone updates which change the values toward the
middle, and those toward the extremes.

Theorem 2.8 Consider switching between the weight functions w1 and w2 on
the graph of Figure 2.2 every T = 2/ρ iterations. 1-MMAS with an evaporation
rate ρ ∈ o(1/log n) will keep the pheromone values within the [0.01, 0.99] range
for an expected super-polynomial number of iterations.

Proof. Consider the optimization process as a series of phases, with alternating
phases using w1 and w2 as the weight functions. Then, at the beginning of an
optimization phase, at iteration t, let τt(a) be the pheromone value on the arc
favored by (i.e. on the shortest path of) the weight function used in the phase
that has just began. We shall show that if τt(a) ∈ [0.03, 0.5], then with super-
polynomially high probability, the pheromone value on the non-favored arc will
be in this range at the end of this optimization phase, i.e. τt+T (b) ∈ [0.03, 0.5].

If the new shortest path is discovered immediately, the pheromone value τt(b)
will not be reinforced in the following T iterations. Recall that τt(a)+τt(b) = 1,
so τt(b) ≥ 0.5, which after T evaporating pheromone updates will be reduced to
no less than 0.03, given that ρ ≤ 0.1, i.e. n is large enough:

τt+T (b) ≥ τt(b)(1− ρ)T

≥ 0.5(1− ρ)2/ρ ≥ 0.03

So regardless of when the new shortest path is discovered, the pheromone value
τt+T (b) cannot be reduced below the range acceptable for the next optimization
phase.
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Suppose that the new shortest path is not discovered immediately, so the pheromone
value on arc a is evaporated until the shortest path is discovered. In the first
T/2 iterations, the pheromone value on arc a cannot be reduced below 0.01,
given that ρ ≤ 0.1 as before:

τt+T/2(a) ≥ τt(a)(1− ρ)T/2

≥ 0.03(1− ρ)1/ρ ≥ 0.01

Thus the shortest path is discovered in the first T/2 iterations with super-
polynomially high probability:

1− (1− 0.01)T/2 ≥ 1− 0.991/ρ ≥ 1− 0.99ω(logn) ≥ 1− n−ω(1)

If the shortest path is discovered in the first T/2 iterations, the pheromone value
on arc b will be evaporated for at least T/2 iterations:

τt+T (b) ≤ τt+T/2(b)(1− ρ)T/2

≤ 0.99(1− ρ)1/ρ ≤ 0.99/e < 0.5

and will therefore be within the acceptable range for the next optimization
phase.

Therefore, if at the beginning of the phase, the pheromone value on arc favored
by the phase is within [0.03, 0.5], the pheromone value on the arc favored by the
next phase will also be within this interval at the start of the next phase with
super-polynomially high probability.

The first phase of the optimization process satisfies this precondition (as pheromone
values are initialized s.t. τ1(a) = τ1(b) = 0.5); and as each phase has a super-
polynomially small probability of failing, a failure occurs (potentially causing
pheromone values to exit the [0.01, 0.99] range) in an expected super-polynomial
number of iterations.

This illustrates that if the oscillation is sufficiently slow, and the evaporation
rate is sufficiently low, the pheromone update mechanism in MMAS can still
prevent the pheromones from freezing for an expected super-polynomial number
of iterations, even in a single-ant colony. More specifically, the magnitude of the
change in the pheromone values of an update bringing pheromone values closer
to 1/2 is greater than that in an update bringing pheromone values closer to
their bounds.
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Figure 2.3: Multiple oscillating triangles on the path from s to t.

2.6 Periodic global changes

Using pheromones as an implicit memory, λ-MMAS is able to reliably construct
shortest paths even with a constant number of ants when the oscillating weight
functions only make slight alterations to the shortest paths in the graph. In
this section, we consider an oscillation between two weight functions where the
shortest paths at many vertices change, and there are many opportunities for
an ant to deviate from the shortest path.

Suppose that there are k oscillating triangles on the path from s to t, as illus-
trated in Figure 2.3. The weight functions w1 and w2 can be extended such that
the shortest path using w1 avoids all of the vertices u1, . . . , uk, while w2 favors
visiting all of those vertices. Let U be the set of arcs leaving the ui vertices; the
extended weight functions are then:

w1(α) =

{
1 if α ∈ U
0 otherwise w2(α) =

{
−1 if α ∈ U
0 otherwise

When k is large, i.e. k ∈ ω(log n), ensuring that the correct shortest path
from s to t is constructed with at least constant probability in each iteration
requires starting a super-polynomial number of ants at each vertex. While
tracking the optimum during an oscillation between two dramatically different
weight functions is difficult, this setting illustrates a limitation of the pheromone
memory used by MMAS: it is unable to store distinct solutions (unlike e.g.
a (µ + λ) EA, which might be able to store both shortest path trees in the
population, and clone both in any given iteration if µ and λ are large enough).

Theorem 2.9 Rapid oscillation between two weight functions may require as
many as 2Ω(n) ants to be started at each vertex in order for λ-MMAS with
ρ ≤ 0.5 − Ω(1) to maintain at least a constant probability of constructing the
shortest paths in each iteration.
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Proof. The theorem is proved by example: we will show that on the graph
of Figure 2.3 with k = Ω(n) triangles, with weight functions swapping between
w1 and w2 during every iteration, λ-MMAS requires λ = 2Ω(k) = 2Ω(n) ants to
be started at each vertex to maintain a constant probability of constructing the
shortest path from s in each iteration. Essentially, λ-MMAS is no better in this
setting than exhaustive search during every iteration; this is somewhat expected
as the shortest paths for w1 and w2 are substantially different, and λ-MMAS is
not able to store distinct solutions in the pheromone memory.

Consider the pheromone state in an iteration of λ-MMAS. Classify triangle i as
favorable with respect to the current weight function if the pheromone value on
the correct shortest path arc from si is at least 0.5. If less than k/2 triangles
are favorable, constructing the shortest path from s requires a number of ants
that is exponential with respect to k, as at least some ant has to make the
correct choice of outgoing arc in all of at least k/2 unfavorable triangles. Let
ps be the probability that one of the λ ants started at s constructs the correct
shortest path, pk be the probability that a particular ant correctly navigates the
k/2 unfavorable triangles, and p1 ≤ 0.5 be the probability that a particular ant
correctly navigates a specific unfavorable triangle, then

ps ≤ 1− (1− pk)
λ ≤ 1− (1− (0.5)k/2)λ ≤ λ · 2−k/2

To ensure that ps is at least a constant, at least 2Ω(k) ants must be started from
s.

If more than half the triangles are favorable in the current iteration, an expo-
nential number of ants will be required to construct the shortest paths from s in
the next iteration. Let τ ≥ 0.5 be the pheromone value on the correct shortest
path arc in a triangle in the current iteration; then 1−τ is the pheromone value
on the other arc in the same triangle. In the next iteration, that other arc will
be on the shortest path, and its pheromone value will be at most 0.5 + ρ. As
long as ρ is upper-bounded by a constant less than 0.5, the derivation of ps can
be repeated using p1 ≤ 0.5+ρ to show that an exponential number of ants must
be started from s in the next iteration.

Thus, at least every second iteration requires λ to be exponential with respect
to the number of triangles in order for λ-MMAS to have a constant probability
of at least one ant constructing the shortest path from s to t.

A closer analysis may be able to show that in expectation, no more than some
constant fraction of the triangles will favor a specific weight function. This would
mean that an exponential number of ants is required in every iteration (rather
than at least every second iteration as concluded in the proof of Theorem 2.9) to
ensure a constant probability of the correct s-t shortest path being constructed
in an arbitrary iteration.



30 Analysis of ACO on Dynamic Shortest Path Problems

In general, the smaller the evaporation rate, the less effect the first iteration has
on the pheromone values, reducing the amount of bias towards w1 introduced
at the start of the optimization process. A smaller λ has a similar effect: ants
started further away from t may not be able to find the full shortest path,
which reduces the probability that the w1-favored arc is reinforced. Subsequent
iterations will, due to drift, reduce the bias introduced by the asymmetry at the
start of the process; i. e. if more triangles favor w1 than w2, in expectation more
w1-favoring triangles will be reinforced towards w2 during a w2 iteration than
w2-favoring triangles towards w1 during a w1 iteration.

In any case, the example illustrates the nature of the difficulty: the pheromone
memory is not capable of separating the two weight functions, and thus does not
scale well if the differences between the weight functions extend over multiple
vertices.

2.7 Experiments

To illustrate the behavior of λ-MMAS in settings introduced in previous sections,
a number of simulations were performed; all averages and medians presented in
the figures in this section are computed based on data from 1000 simulations
for each combination of MMAS parameters ρ and λ, and, where applicable,
oscillation frequency.

In the local changes setting with a single triangle, λ-MMAS with 2 ≤ λ ≤ 4 ants
started at each vertex was simulated with different evaporation rates, recording
the first iteration at which the pheromone values on the triangle exited the
[1/10, 9/10] range (i. e. were about to freeze) for the first time; the averages
are shown in Figure 2.4. While it seems the λ = 2 curve is concave, which
suggests that λ = 2 ants are not sufficient to prevent pheromones from freezing
for a super-polynomial number of iterations, it seems that λ = 3 ants may be
sufficient to achieve this.

For 1-MMAS in the local changes setting, the single-ant colony was simulated
with different evaporation rates and phase lengths T , recording the first iteration
at which pheromone values on the triangle arcs exited specific ranges; the results
are shown in Figure 2.5. There appears to be a more significant difference
between T = 4 and T = 3 than T = 3 and T = 2. Additionally, it seems that
the pheromone values also remain within more restrictive ranges than [0.01, 0.99]
for significant numbers of iterations.
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Figure 2.4: Number of iterations before pheromone values on the triangle
leave [0.1, 0.9] for the first time for varying evaporation rates for
λ-MMAS, with λ = 2, 3, 4 ants started at each vertex during a
single iteration.

In the global changes setting with k = 200 triangles in series, λ-MMAS was
simulated with λ = 6 and ρ = 1/50. The number of triangles with pheromone
values outside the [1/4, 3/4] range was recorded; Figure 2.6 displays the average
number of triangles favoring with pheromone values outside this range, collated
by which weight function the pheromone values were favoring. Notably, the
number of triangles favoring either weight function increases at approximately
equal rates, and eventually stabilizes, keeping approximately a third of the tri-
angles in the graph within the [1/4, 3/4] pheromone range.

Figure 2.7 presents the same metric in the global changes setting with the evapo-
ration rate set to ρ = 1 to maximize the impact of the first iteration. Somewhat
surprisingly, even with this extreme evaporation rate, the ratio between the
number triangles frozen to favor w1 and w2 is initially only 3:2. As suggested
in Section 2.6, the ratio decreases gradually over time, illustrating that the im-
pact of the initial bias is counteracted, rather than compounded, by subsequent
iterations.

The number of triangles favoring w1 in Figure 2.6 is consistently greater than
the number of triangles favoring w2; this is an artifact of always recording the
number of triangles after an iteration using the w1 weight function. In 2.7, the
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data points alternate between iterations using w1 and w2, causing the lines to
appear jagged.

2.8 Conclusions

We have studied a simple ACO algorithm called λ-MMAS for dynamic variants
of the single-destination shortest paths problem. Building upon previous results
for the special case of 1-MMAS, it was studied to what extent an enlarged
colony using λ ants per vertex helps in tracking an oscillating optimum. We
showed that λ-MMAS, even with constant number of ants per vertex, can deal
with dynamic shortest paths problems where the shortest paths are changed
infrequently (by rediscovering the shortest paths before the next change occurs),
or changed rapidly between a small set of possible similar solutions (by keeping
the pheromone values close to 1/2 for the affected arcs). It has also been shown
that even a single-ant colony can prevent the pheromone values from freezing for
a sufficiently slow oscillation. However, we also identified an example where a
fast oscillation between two weight functions that are sufficiently different is so
hard to track that a super-polynomial number of ants is needed. Furthermore,
we have discussed properties of the dynamics that make the problem hard.
Experiments show that the theoretical results are also valid for small problem
dimensions and illustrate effects that are not yet visible in theorems.

2.9 Future Work

In the future, the performance of λ-MMAS in settings with more complex weight
function changes could be analyzed – for instance, generalizing the results to
oscillations with constant phase lengths, oscillations between more than two
weight functions, or using a less regular schedule than was considered here.
Having different components of the graph oscillate at different frequencies could
also pose an interesting challenge to ACO algorithms, one that could potentially
be addressed by maintaining several sets of pheromones updated using different
evaporation rates.
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Figure 2.5: Local changes with slower oscillation periods; showing the me-
dian, quartiles, and 9th and 91st percentiles of the number of
observations required to leave specific pheromone ranges. The left
subfigure illustrates the effect of phase length, while the right sub-
figure illustrates, for T = 4, the number of iterations during which
1-MMAS pheromone values remain within [a, 1 − a] for various
constants a.
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Figure 2.6: 200 triangles in series; average across 1000 simulations; λ = 6, ρ =
1/50.
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Chapter 3

MMAS versus Population-Based
EA on a Family of Dynamic

Fitness Functions
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We study the behavior of a population-based EA and the Max-Min Ant
System (MMAS) on a family of deterministically-changing fitness functions,
where, in order to find the global optimum, the algorithms have to find
specific local optima within each of a series of phases. In particular, we
prove that a (2+1) EA with genotype diversity is able to find the global op-
timum of the Maze function, previously considered by Kötzing and Molter
(PPSN 2012, 113–122, [KM12]), in polynomial time. This is then general-
ized to a hierarchy result stating that for every µ, a (µ+1) EA with genotype
diversity is able to track a Maze function extended over a finite alphabet
of µ symbols, whereas population size µ− 1 is not sufficient. Furthermore,
we show that MMAS does not require additional modifications to track the
optimum of the finite-alphabet Maze functions, and, using a novel drift
statement to simplify the analysis, reduce the required phase length of the
Maze function.
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3.1 Introduction

Evolutionary algorithms (EAs) are a class of nature-inspired algorithms that
can be applied to solve a wide variety of optimization problems. Runtime ana-
lysis of nature-inspired algorithms has advanced considerably in recent years
[AD11, NW10b], though most focus on static optimization problems, where the
objective is simply to find the global optimum within the least amount of steps.
Many real-world optimization problems are dynamic in nature, meaning that
the optimal solution to a given problem may change as the problem conditions
change over time, and the algorithms therefore need to be able to not only find
the optimum at some point of time, but also to track the optimal solution over
time as the problem changes.

Application of EAs to Dynamic Optimization Problems is the subject of study
in the Evolutionary Dynamic Optimization field, which in recent years has at-
tracted much activity. Many applications of evolutionary algorithms on dynamic
problems are considered in literature [NYB12, ANS13], and there are runtime
analyses building on theoretical studies of evolutionary algorithms for dynamic
problems [RLY09, JS05, Dro03]. The utility of a population for tracking prob-
lems was studied in evolutionary computation by Jansen and Schellbach [JS05],
while different mechanisms for ensuring population diversity have been consid-
ered by Oliveto and Zarges [OZ13]. In particular, a mechanism called genotype
diversity was proved to be inefficient on a particular dynamic problem. Recently,
Jansen and Zarges [JZ14] compared evolutionary algorithms and artificial im-
mune systems on a bi-stable dynamic optimization problem.

In [KM12], Kötzing and Molter introduced a dynamic pseudo-boolean function
called Maze, the optimum of which slowly moves from the all-ones to the all-
zeroes bit string in n phases, in each of which the optimum oscillates between
two solutions that differ in the value of a single bit. The paper shows that
while the Max-Min Ant System is able to track the changes occurring in this
fitness function and find the optimum all-zeroes string within polynomial time,
a (1+1) EA loses track of the optimum and requires an exponential amount of
time to find the all-zeroes optimum with high probability.

In this paper, we consider the impact of introducing a population and a simple
diversity mechanism to the (1+1) EA, showing that a (2+1) EA with genotype
diversity is able to track the optimum of the Maze function. We then generalize
the Maze to a function over a finite alphabet, and prove a hierarchy result with
respect to the population size. More precisely, for any µ and any c > 0, there
is a variant of the Maze such that a (µ+1) EA with genotype diversity will
with probability 1 − O(n−c) succeed in tracking the optimum, whereas an EA
with population size µ − 1 will with probability 1 − O(n−c) lose track of the
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optimum. Finally, we return to consider the performance of the MMAS* Max-
Min Ant System Ant Colony Optimization (ACO) algorithm, and conclude that
MMAS*, due to its pheromone memory model, is able to successfully track the
optimum of the finite-alphabet version of Maze, even with shorter phase lengths
than considered in [KM12] (if the alphabet is not too big). Our proofs are based
on mixing time arguments, fitness levels with tail bounds, and a new variant
of a variable drift theorem, which allows for a tail bound on the probability
distribution of the pheromone value in MMAS*.

The paper is structured as follows. Section 3.2 defines the dynamic fitness func-
tion Maze, and the (µ+1) EA with genotype diversity and MMAS* algorithms
generalized to larger alphabets. Section 3.3 proves the positive result for the
simple (2+1) EA w. r. t. the classical Maze function on bit strings. The hier-
archy result for larger alphabets is proven in Section 3.4. Finally, Section 3.5
shows that MMAS* is efficient in tracking the optimum for every polynomial
alphabet size. We finish with some conclusions.

3.2 Preliminaries

The Maze dynamic fitness function defined in [KM12] consists of n+ 1 phases
of t0 = kn3 logn iterations each, where k is a sufficiently large constant. During
the first phase, which we will for convenience refer to as phase 0, Maze is
equivalent to OneMax, a fitness function that simply counts the number of
1-bits in an n-bit string. In each subsequent phase i, the function assigns fitness
values n+2 and n+1 to bit strings 0i−101n−i and 0i−111n−i, oscillating between
assigning the higher fitness value to these individuals in a 0-0-1 pattern, with
0i1n−i being favored, i.e. having the higher fitness value, every two iterations
out of three.

The version shown below has been extended to assign fitness values to n-
character strings over a finite alphabet; for r = 1, i. e., bit strings, it is exactly
equivalent to the original Maze. In this context, OneMax counts the number
of literal 1 characters in the string, and the sets OPTp and ALTp generalize the
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Algorithm 3.1 (µ+1) EA with genotype diversity for a finite alphabet Σ =
{0, 1, . . . , r}.

Initialize x∗ = {x1, . . . , xµ}, st. xi ̸= xj for all i ̸= j.
for t← 1, 2, . . . do

Select xa from x∗ uniformly at random.
Let xt = mutr(xa).
if xt ̸∈ x∗ then

G← x∗ ∪ {xt}
xmin ← argminx∈G f(x, t), chosen uniformly at random
x∗ ← G \ {xmin}

0-0-1 oscillation pattern.

Maze(x, t) =

 n+ 2 if t > t0 ∧ x ∈ OPT(t)
n+ 1 if t > t0 ∧ x ∈ ALT(t)
OneMax(x) otherwise

OPT(t) =

{
OPT⌊t/t0⌋ if t ̸= 0 mod 3
ALT⌊t/t0⌋ otherwise

ALT(t) =

{
ALT⌊t/t0⌋ if t ̸= 0 mod 3
OPT⌊t/t0⌋ otherwise

ALLp =
{
0p−1x1n−p | x ∈ {0, 1, . . . , r}

}
OPTp =

{
0p1n−p

}
ALTp = ALLp \OPTp

In this paper, we will examine how a (2 + 1) Evolutionary Algorithm (EA)
performs on the original Maze function, and how the (µ+1) EA and MMAS
algorithms perform on our finite-alphabet version. Rather than only focusing on
expected optimization times (i.e. the expected iteration during which OPTn is
first constructed following the start of the final phase of the Maze), we consider
the probability that OPTn will be constructed by the algorithms by the end of
phase n of the Maze, as well as what is likely to happen if it is not.

The (µ+1) EA with genotype diversity [Sto08, OZ13] is shown as Algorithm 3.1.
Definition 3.1 extends the mutation operator mutr to support a finite alphabet
as in [Gun05, DP12]; for r = 1, it is equivalent to the standard mutation operator
of the (1+1) EA.

Several lemmas throughout this paper state that “a specific event occurs with
high probability.” Definition 3.2 provides a more formal definition of this con-
cept.
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Algorithm 3.2 The MMAS* algorithm on a directed multigraph G = (V,E),
with pheromone bounds τmin and τmax, and evaporation rate ρ, where v0, vn ∈ V
are the start and destination vertices respectively, and deg+(v) is the outdegree
of a vertex.

Initialize τa ← 1
/
deg+(v) for all a = (v, v′) ∈ E

for t← 1, 2, . . . do
Let xt be an empty path.
p← v0, S ←

{
(p, v′) ∈ E | v′ ̸∈ xt

}
while |S| > 0 and p ̸= vn do

Select edge e = (p, h′) from S with probability:
pe = τe

/∑
s∈S τs

Append e to xt

p← h′, S ←
{
(p, v′) ∈ E | v′ ̸∈ xt

}
if t = 1 or f(xt, t) > f(x∗, t) then

x∗ ← xt

for each e ∈ E do

τe ←
{

min(τmax, (1− ρ)τe + ρ) if e ∈ x∗

max(τmin, (1− ρ)τe) otherwise

Definition 3.1 Let Σ = {0, 1, . . . , r} be a finite alphabet.

The mutation operator mutr creates an image y ∈ Σn from x ∈ Σn by indepen-
dently replacing each character xi of x (1 ≤ i ≤ n) with probability 1/n with a
symbol drawn uniformly at random from Σ \ {xi}.

Definition 3.2 An event E is said to occur with high probability if, for every
constant c > 0, Prob(E) = 1 − O(n−c). An event E is said to occur within
O(f(n)) iterations with high probability if for every constant c > 0 there exists a
c′ > 0, possibly depending on c but not on n, such that E occurs within c′f(n)
iterations with probability 1−O(n−c).

In Section 3.5, we will consider how the Max-Min Ant System [SH00] algorithm
MMAS*, shown as Algorithm 3.2, is able to track the optimum of the finite-
alphabet Maze function.

To use a path-constructing algorithm with a fitness function that assigns values
to n-character strings, we use the construction graph shown in Figure 3.1: every
n-character string x ∈ Σn corresponds to the path from v0 to vn consisting of
the edges ei,c for which xi = c, and every v0-vn path corresponds to some
x ∈ Σn in this fashion. We use the standard choice for τmax = 1 − 1/n, and
set τmin = 1/(rn) and ρ = Ω(1/(rn)) to accommodate an (r + 1)-character
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alphabet of the extended Maze function. Notably, for r > 1, the sum of the
pheromone values on edges leaving a vertex is no longer always equal to 1, and,
when considering probabilities of selecting a particular edge, we have to use
the bounds presented in Lemma 3.3, similar to [ST12a, Lemma 1] and [Sud11,
Lemma 15].

v0 v1

. . .
vn−1 vn

...
...

...
...

e1,0

e1,r

e2,0

e2,r

en−1,0

en−1,r

en,0

en,r

Figure 3.1: Construction graph used for MMAS* on the finite-alphabet Maze
function. There are r + 1 edges between each pair of vertices
(vi−1, vi).

Lemma 3.3 The sum of the pheromone values on edges leaving any specific
vertex v, τsum, can be bounded as:

1 ≤ τsum ≤ 1 + (deg+(v)− 1)τmin = 1 + 1/n,

where deg+(v) is the out-degree of vertex v.

Proof. Recall that deg+(v) = r+1 and τmin = 1/(rn). We prove these bounds
by induction, noting that both hold at initialization, where τsum = 1.

If, prior to a pheromone update, τsum ≥ 1, and no pheromone values are affected
by the τmax border, τsum(1 − ρ) + ρ ≥ 1 after the update; while if there are
pheromone values capped at τmax after the update, we note that even if all the
other pheromone values are τmin, τmax+r ·τmin = 1, proving the first inequality.

If, prior to a pheromone update, τsum ≤ 1 + 1/n, τsum(1 − ρ) + ρ ≥ τsum can
only occur as a consequence of pheromone values being affected by the lower
pheromone border (as τsum ≥ 1), i. e., those for which τ(1−ρ) ≤ τmin, increasing
τsum by at most ρτmin for each such value. We note that there can be at most r
such values, as the reinforced pheromone value cannot drop below τmin, thus the
sum of pheromone values after the update is at most τsum(1−ρ)+ρ+r ·ρτmin =
τsum(1− ρ) + ρ+ ρ/n ≤ 1 + 1/n, proving the second inequality. □

Note that both algorithms re-evaluate the fitness function when updating the
population or the best-so-far solution. Similarly to [JZ14], the considered clock t
is external to the Maze function, making it possible to evaluate many solutions
in one clock tick of the Maze; this corresponds to having hardware available to
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evaluate many solutions in parallel, while the problem changes occur at fixed
intervals regardless of the number of parallel evaluations.

3.3 (2+1) EA on Maze

The (1+1) EA will with high probability require an exponential amount of
time to find the 0n optimum on the Maze function, because there is at least a
constant probability of ending each phase p > 0 with x∗ ̸= 0p1n−p, which lets the
(1+1) EA revert to optimizing OneMax, destroying the 0-prefix constructed so
far, and eventually requiring a large mutation to recover [KM12]. In this section,
we will show that a (2+1) EA with genotype diversity avoids this problem by
being able to store both of the oscillating individuals in each phase, thereby
ensuring that 0p1n−p is in the population at the start of the next phase. This
ensures that at the end of the last phase, the 0n individual is in the population
with high probability.

Theorem 3.4 The (2+1) EA with genotype diversity will with high probability
have the 0n optimum in the population at the end of the last phase of the Maze.

To show this, we will prove that the 1n = OPT0 individual is found with high
probability during the initial OneMax phase, and the EA is then able to follow
the oscillation process: if OPTp−1 is in the population at the beginning of
phase p, OPTp will be in the population at the end of that phase – meaning
that at the end of final phase, OPTn = 0n will be in the population.

Lemma 3.5 The (2 + 1) EA will discover the 1n individual within O(n log n)
iterations with high probability.

Proof. Recall that each phase of the Maze lasts kn3 log n iterations for some
constant k > 0. The fitness level method can be applied: partition the possible
populations into levels based on the maximum fitness value of any individual
within the population. The probability of an iteration leaving the level where
the highest fitness value is n − i is at least pi ≥ (1/2) · (1/n) · (1 − 1/n)n−1 ≥
i/(2ne): i. e., that of selecting the best-valued individual in the population as
the ancestor, and flipping a single zero bit. Even if the EA starts at the lowest of
n+1 fitness levels, it has to leave at most n levels in order to reach the level where
1n is in the population; in expectation, this takes E(T ) ≤

∑n
i=1

1
pi

= 2en log n
iterations.
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The high probability result is obtained by applying the tail bounds on fitness
levels derived in [Wit14, Theorem 2]: using s = 50n2 > 4π2e2n2/6 ≥

∑n
i=1

1
pi

2 ,
and h = 1/(2en) ≤ min pi, the probability that 1n is found within E(T ) + δ

iterations is at least 1− e−
δ
4 ·min{δ/s,h}. Setting δ = 50cn log n, where c > 0, and

observing that h < δ/s for sufficiently large n, yields a probability of finding 1n

within O(n log n) = o(kn3 log n) iterations of at least

1− e−
50cn log n

4 ·min{ 50cn log n

50n2 , 1
2en} ≥ 1− e−

50c log n
8e > 1− n−2c.□

Lemma 3.6 If OPTp−1 is in the population at the beginning of phase p, OPTp

will with high probability be in the population when phase p ends.

Proof. As OPTp−1 ∈ ALLp, it has a fitness value of at least n + 1 during
phase p, and therefore cannot be removed from the population. The OPTp

individual can be constructed by selecting OPTp−1 as the ancestor and flipping
a single bit, which occurs in each iteration with probability at least 1/(2en).
The probability of this occurring within n3 log n iterations is at least:

1− (1− 1/(2en))n
3 logn ≥ 1− e−

1
2en

2 logn = 1− n−Ω(n2).

As OPTp has a fitness value of at least n+1 during phase p, when constructed,
it will replace a OneMax-valued individual in the population, and cannot be
removed from the population during phase p. □

Combined, Lemma 3.5 and Lemma 3.6 prove Theorem 3.4.

Proof of Theorem 3.4. By applying a union bound on the probabilities of
failure during each of Maze’s n+1 phases, we can conclude that the (2+1) EA
finishes phase n with 0n in the population with high probability. □

3.4 (µ+1) EA and the finite-alphabet Maze

While a (2+1) EA with genotype diversity is able to track the optimum of
the original Maze, it is interesting to consider whether there exist Maze-like
functions for which a larger population is required. In this section, we use the
Maze function extended over a finite alphabet Σ = {0, 1, . . . , r}, and consider
a (µ+1) EA with genotype diversity, where r ∈ O(n) and µ < n/2. The phase
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length is still kn3 log n for some sufficiently large constant k > 0. We will build
toward two results: a population of µ ≤ r is insufficient to track the optimum,
while µ > r is sufficient and enables the (µ+1) EA to find 0n in polynomial
time. These results are formalized in Theorems 3.7 and 3.8.

Theorem 3.7 If r ≥ µ, r ∈ O(n), and µ ≤ n/(2 + ε), where ε > 0 is
an arbitrarily small constant, (µ+1) EA with genotype diversity will with high
probability not find the 0n optimum on Maze within a polynomial number of
iterations.

Theorem 3.8 If µ, r ∈ O(n), and r < µ, (µ+1) EA with genotype diversity
will with high probability finish the last phase of the Maze with the 0n optimum
in the population given that an appropriately large constant k is chosen for the
phase length t0.

As before, we need to verify that 1n is found during the initial OneMax phase;
this is done in Lemma 3.9; notably, the constant k in the phase length t0 may
need to be adjusted based on the high-probability constant c: i. e., in order to
make sure that 1n is located initially, the initial phase needs to be sufficiently
long. Then, Lemma 3.10 shows that if an iteration begins with one of ALLp

individuals (i. e., those with a non-OneMax value during that phase) in the
population, the population will with high probability be saturated with ALLp

individuals before the phase is over. These two lemmas are used in the proofs
of both Theorems 3.7 and 3.8.

Lemmas 3.11 and 3.12 are used for Theorem 3.7. The former shows that once a
population of µ ≤ r individuals is filled with ALLp individuals, the probability
of OPTp being in the population is at most a constant after a small number
of additional iterations; while the latter states that if a phase p begins with
no ALLp individuals in the population (i. e., OPTp−1 was not in the popula-
tion when the phase p − 1 ended), the (µ+1) EA loses track of the optimum
and reverts to optimizing OneMax with at least constant probability. This
proof strategy is inspired by the lower bound for the (1+1) EA on the original
Maze [KM12].

Lemma 3.9 The (µ+1) EA will discover the 1n individual within O(µrn log n) =
O(n3 logn) iterations with high probability.

The method used to prove Lemma 3.5 can be applied to prove Lemma 3.9 as
well: we require that the best-fitness individual in the population is chosen as
the ancestor, and the mutation operator changes a single non-1 character into a
1, resulting in an individual with a higher OneMax-value than any previously
in the population.
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Lemma 3.10 During phase p, once an individual from ALLp is in the popu-
lation, the population will contain min(µ, r + 1) individuals from ALLp within
O(µrn log n) iterations with high probability.

Proof. The general form of the fitness level method can be applied by partition-
ing the µ-individual populations into levels by the number of ALLp individuals
they contain, from 0 to min(µ, r+ 1), observing that the number of ALLp indi-
viduals in the population cannot be reduced during phase p. As the phase starts
with a population containing at least one ALLp individual, there are at most
min(µ, r+1)− 1 “population levels” that the process may need to pass through
before the population is saturated with ALLp individuals; the time for this to
happen can be bounded as a sum of geometrically distributed waiting times to
leave each “level”.

If i < min(µ, r + 1) is the number of ALLp individuals in the population, the
probability of a single iteration creating a new ALLp individual (and hence
moving to a higher level) by selecting one of the i as the ancestor and performing
a one-character mutation is pi ≥ i

µ
r+1−i

r
1
en . Let T be the number of iterations

before the population is saturated with ALLp individuals, and m = min(µ, r +
1)−1 be the number of ALLp individuals that need to be added to the population
to achieve saturation, thus the expectation E(T ) is at most:

m∑
i=1

µ

i

r

r + 1− i
en = rµen

m∑
i=1

1

i(r + 1− i)
= O(rµn).

Applying the tail bounds from [Wit14, Theorem 2]: using s = 13µ2r2n2 >∑m
i=1

1
pi

2 , and h = 1/(µren) < min pi, the probability that m ALLp indi-
viduals are added to the population within E(T ) + δ iterations is at least
1 − e−

δ
4 ·min{δ/s,h}. Setting δ = 13cµrn log n, where c > 0, and observing that

h < δ/s for sufficiently large n, yields a probability of reaching the final level
within O(µrn logn) iterations of at least

1− e
− 13crµn log n

4 ·min
{

13crµn log n

13µ2r2n2 , 1
erµn

}
≥ 1− e−

13c log n
4e > 1− n−c.

Thus, if an ALLp individual exists in the population during phase p, the pop-
ulation will be saturated with ALLp individuals in O(µrn log n) iterations with
high probability. □

The following lemmas consider the situation for µ ≤ r, i. e., a population size too
small to contain every individual in ALLp. In this case, OPTp can be removed
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from the population after being discovered. Interestingly, this happens with
constant probability regardless of µ.

Lemma 3.11 If, during phase p, the population consists of µ individuals from
ALLp, and r ≥ µ, then after Ω(rn) iterations, the probability that OPTp is in
the population is at most a constant smaller than 1.

Proof. OPTp can be replaced by an ALTp individual that was not in the
population during an iteration that favors ALTp individuals over OPTp. The
probability pL of OPTp being replaced by one of r+1−µ ALTp individuals not
yet in the population can then be bounded:

pL =
r + 1− µ

r

1

n

(
1− 1

n

)n−1

,

1

rne
≤ pL ≤

1

n
.

The OPTp individual can be added to the population during any iteration favor-
ing it over the ALTp individuals by a single-character mutation of any individual
in ALTp. The probability pW of OPTp being rediscovered during an iteration
favoring it can be bounded:

pW =
1

r

1

n

(
1− 1

n

)n−1

,

1

rne
≤ pW ≤

1

rn
.

Consider the probability of the OPTp individual being in the population after
three additional iterations: it is greatest when the first of these three iterations
favors ALTp individuals, and the subsequent two favor OPTp. Let pW3 be the
probability that OPTp is constructed during the two iterations favoring it (being
added to the population if it was not already there):

pW3 = pW + (1− pW ) · pW ,

1

rne
≤ pW ≤ pW3 ≤ 2pW ≤

2

rn
,

and pL3 be the probability that OPTp is replaced by an ALTp individual in the
first iteration, and then not constructed in the two following iterations:

pL3 = pL · (1− pW3),

1

2rne
≤ 1

rne

rn− 2

rn
≤ pL3 ≤

1

n

(
1− 1

rne

)
<

1

n
,
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where the lower bound holds for n ≥ 4.

This behavior can be modeled in a two-state Markov chain, where the states
represent having or not having OPTp in the population, with transition proba-
bilities pW3 and pL3; each step of this Markov chain thus corresponds to three
iterations of the (µ+1) EA. Let πH be the steady-state probability of the OPTp

individual being in the population:

πH · pL3 = (1− πH) · pW3

1− πH

πH
=

pL3

pW3
≥ 1

4e

πH ≤
1

1 + 1
4e

< 0.916.

Assume, as the worst case, that the OPTp individual is in the population when it
becomes saturated with ALLp individuals. Markov chain mixing time, t(ε), can
then be used to find the number of steps required to reduce the total variation
distance to the steady state πH to at most some ε (and hence the number of
iterations required to reduce the probability of OPTp being in the population to
at most some constant smaller than 1), and can be upper-bounded by coupling
time as in [Sud11, Corollary 4]:

t(ε) ≤ min

{
t : max

x,y∈Ω
Pr(Txy > t) ≤ ε

}
,

where Txy = min{t : Xt = Yt | X0 = x, Y0 = y} is the coupling time, i. e., the
earliest time at which the two equivalent Markov chains Xt and Yt, initialized
in different states x, y, are in the same state.

With only two states (and symmetry), the coupling time Txy is greatest when
the chains begin in different states. The probability that the chains remain in
different states for at least t steps is then:

max
x,y∈Ω

Pr(Txy > t) = (pL3pW3 + (1− pL3)(1− pW3))
t
.

To get an upper bound on t(ε), an upper bound on the expression in parentheses
is needed. Inserting the appropriate bounds on pW3 and pL3 yields:

2pW3pL3 + 1− pL3 − pW3 ≤
4

rn2
+ 1− 3

2rne

≤ 1− 1

rne

(
1.5− 4e

n

)
< 1− 1

rne
(for n ≥ 22),

t(ε) ≤ min

{
t :

(
1− 1

rne

)t

≤ ε

}
.



3.4 (µ+1) EA and the finite-alphabet Maze 47

After, e. g., t(0.01) < 4.61rne steps of the Markov chain, the probability that
coupling has not occurred is at most 0.01. As coupling time is an upper bound
for mixing time, and each Markov chain step corresponds to three EA iterations,
this means that after at most 37.60rn iterations, the probability that OPTp is
in the population is at most πH +0.01, and so the probability that OPTp is not
in the population is at least 0.083.

Therefore, Ω(rn) iterations after the population is saturated with ALLp indi-
viduals, the probability that OPTp is in the population is at most a constant.

□

Lemma 3.11 therefore implies that there is at least a constant probability of
phase p+1 beginning with only ALTp individuals in the population when r ≥ µ.
The following lemma considers the consequences of this – as OPTp is the only
individual in both ALLp and ALLp+1, this means that phase p+1 begins without
any ALLp+1 individuals in the population, leaving the EA with only OneMax-
valued individuals at the beginning of phase p+ 1.

Lemma 3.12 If at the beginning of phase p ≥ n/2+4, the population contains
no individuals from ALLp, and only individuals with fitness values between n−p
and n, with at least constant probability, the population at the end of phase p
will consist only of 1n and one-character mutations of 1n.

Proof. Observe that ALLp contains only individuals with fitness values n −
p and n − p − 1: thus, in order to construct an ALLp individual from the
individuals in the population, a mutation must change at least one character
to a specific value. If an ALLp individual is constructed, it will be accepted,
and the optimization process will resume according to Lemma 3.10. If no such
individual is constructed, individuals with higher OneMax-values will continue
being accepted into the population, eventually leading to the discovery of 1n as
in Lemma 3.9.

Until an ALLp individual has been constructed, the probability of constructing
one can be upper-bounded by the probability of a mutation changing a character
at a specific position to a specific value, i. e., 1/(rn).

Let a value-improving mutation be a mutation that produces an individual with
a strictly higher OneMax-value than the worst individual currently in the pop-
ulation. Note that even if a value-improving mutation occurs, the resulting
individual might already be one of the µ − 1 other individuals in the popula-
tion, in which case the population is not modified. We will now show that the
probability pI of such a mutation occurring while the minimum OneMax-value
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of any individual in the population is below n− p+ 4 is at least:

pI ≥
n

2

1

n

1

r

(
1− 1

n

)n−1

≥ 1

2er
.

Let n−p ≤ v ≤ n−p+3 be the minimum OneMax-value of an individual in the
population during an iteration. If the ancestor selected during an iteration has
a OneMax-value of at least v+2, any one-character mutation will produce an
individual of sufficient value to be accepted; there are n ≥ n/2 such mutations.
If the selected ancestor has a value of at most v+1, it contains at least n− (n−
p+ 4) ≥ n/2 non-1 characters, and hence at least n/2 one-character mutations
can produce an individual with a strictly higher OneMax-value than such an
ancestor. Thus, regardless of the ancestor selection, there are at least n/2
possible one-character mutations leading to an acceptable fitness value.

No more than a constant fraction of those value-improving mutations can fail
to be accepted due to already being in the population (as µ ≤ n/(2 + ε)). This
means that the probability of a value-improving mutation occurring and being
accepted during a single iteration is at least Ω(pI) = Ω(1/r).

Consider the probability of the minimum OneMax-value of the population
rising to at least n − p + 4 without any ALLp individual being constructed;
this requires that at most 4µ value-improving mutations to be accepted (as a
value-improving mutation can only introduce an individual with the same fitness
value into the population at most µ times). This occurs with at least constant
probability: let A be the event that an ALLp individual is constructed, and V
be the event that a value-improving mutation is accepted, then:

Prob(A | A ∨ V ) ≤ 1/(rn)

1/(rn) + Ω(1/r)
= O(n−1),

Prob(4µ V s without A) ≥ (1− Prob(A | A ∨ V ))4µ = (1−O(n−1))O(n) = Ω(1).

Once the minimum OneMax-value of the population is raised to n − p + 4,
constructing an ALLp individual requires at least three characters to be changed
into a 0 simultaneously, which occurs with probability at most 1/(rn)3.

Thus, with at least constant probability, if phase p begins without an ALLp

individual in the population, no ALLp individual is constructed within the
O(µrn log n) iterations required to find the 1n individual with high probabil-
ity (per Lemma 3.9). Furthermore, once the 1n individual is in the population,
one-character mutations of that individual will fill the population in O(µ log n)
iterations with high probability, making construction of an ALLp individual
require a p− 2 = Ω(n) character mutation. □
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By combining these lemmas, it is now possible to prove Theorems 3.7 and 3.8.

Proof of Theorem 3.7. Per Lemma 3.9, the EA is able to construct the
1n individual with high probability during phase 0, and therefore also fill the
population with one-character mutations of 1n. At the start of each phase p,
the fitness value of individuals in the population is thus with high probability
not below n − p, as any individual would have to have been accepted during
the previous phase, so it was either an individual in ALLp−1, which have a
fitness value of at least n− p, or has a OneMax fitness value at least that of an
individual already in the population.

Pessimistically assume that at the end of the phase n/2 + 3, the population
does not yet consist of 1n and one-character mutations of it, i.e. the EA has
not fully reverted to optimizing OneMax during the first n/2+3 phases. Ω(n)
of the remaining phases, per Lemma 3.11, have at least a constant probabil-
ity of beginning without an ALLp individual in the population, and with all
individuals in the population having fitness values between n − p and n; per
Lemma 3.12, a phase beginning under such circumstances will with at least
constant probability end with a population consisting of 1n and one-character
mutations thereof. Once the population is in this configuration, constructing an
ALL individual (for this or any future phase) will require at least Ω(n) charac-
ters to be mutated correctly in a single iteration, which occurs with probability
(rn)−Ω(n).

Therefore, with high probability, the EA will find the initial 1n optimum, but
will at some point fail to track the oscillation, revert to optimizing OneMax,
and require an exponential number of iterations to find the final 0n optimum.

□

Proof of Theorem 3.8. Per Lemma 3.9, the EA is able to find the 1n in-
dividual with high probability during phase 0. For the subsequent n oscillation
phases, apply Lemma 3.10: if the phase begins with OPTp−1 (i. e., an individ-
ual from ALLp) in the population, then the remaining individuals from ALLp,
including OPTp will be added to the population before phase p ends with high
probability. Add up the failure probabilities in these n+1 phases using a union
bound; with high probability, none of the phases fail, and phase n ends with
OPTn = 0n in the population – so the (µ+1) EA is able to find the 0n optimum
within a polynomial number of iterations with high probability when µ > r. □



50 MMAS versus Population-Based EA on Maze

3.5 ACO on larger alphabets

Kötzing and Molter [KM12] study the case where r = 1, i. e., the case of bit
strings, and show that MMAS* with overwhelming probability (i. e., probability
1− 2−Ω(n)) will track the optimum of Maze with oscillation phase length t0 =
kn3 log n in polynomial time. Their proof can be summarized as follows, wherein
all references to lemmas and theorems refer to the paper:

(i) While a bit is oscillating, taking the total over three steps of a so-called
OPT-OPT-ALT oscillation (where OPT is favored in the first two steps
and ALT in the last step) there is a drift of the pheromone value on the 0-
edge of the bit (i. e., the edge associated with OPT) towards its maximum.
With overwhelming probability, the pheromone value will reach its upper
border in O(n3 log n) steps (Lemma 2 in their paper) provided the bit keeps
oscillating so long. To obtain the bound on the probability, a multiplicative
drift theorem is used, which, according to [KM12], “wastes a lot” since the
bound on the drift obtained is additive.

(ii) Despite the fact that the pheromone value reaches its upper border within
the oscillation phase of a bit, the multiplicative drift theorem does not
imply that the pheromone value stays close to the border by the end
of the oscillation phase. To prove that this is unlikely, a negative drift
theorem is applied (Lemma 3), implying that it takes a large polynomial
amount of time until the pheromone value drops below 1−O((log2 n)/n).

(iii) The transition from “bit i oscillating” to “bit i + 1 oscillating” is ana-
lyzed. It is shown that a string outside ALL will be best-so-far string
only temporarily for at most O(log n) steps after the transition, with high
probability (Lemma 3). Drift arguments towards the 0-value are applied
afterwards.

(iv) Using an O((n log n)/ρ) bound from the literature on the time from initial-
ization until the all-ones string with is found high probability (Lemma 5)
and basically applying union bounds leads to the result (Theorem 6).

It turns out that the above analysis to a very large extent carries over to larger
alphabets. Basically, one can group together all edges belonging to the non-0
entries of a character and identify the sum of their pheromone values with the
pheromone on the 1-edge in the binary case. The only thing to pay attention to
is the new lower bound on the pheromone values, which may increase the time
to reach the upper border by a factor of r.

However, we are going to present a stronger and, as we think, more elegant
analysis here. In particular, we contribute a technique that supplements the
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drift result from Lemma 3 in [KM12] with a statement on probability distri-
butions (also called occupation probabilities), which makes the application of
the negative drift theorem (Lemma 4 in [KM12]) unnecessary. In addition, the
stronger analysis allows us to work with shorter oscillation phase lengths, as
detailed below.

We now present the tool by which the statement on occupation probabilities is
obtained. The following lemma is a variable drift theorem that is not concerned
with the expected first hitting time of a set of target states but with the proba-
bility of being in this set at any time t (however, results on the hitting time can
be easily obtained from this probability). It is a spin-off of the variable drift
theorem with tail bounds from [LW13a] and goes back to a statement from Ha-
jek’s paper [Haj82] that, to the best of our knowledge, has not been applied in
the running time analysis of evolutionary algorithms yet. The lemma requires
a bound on the moment-generating function of a potential function g that is
usually derived from the one-step drift (via the function h).

Lemma 3.13 Let (Xt)t≥0, be a stochastic process, adapted to a filtration (Ft)t≥0,
over some state space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let a, b ∈
{0} ∪ [xmin, xmax], b > a. Let h : [xmin, xmax] → R+ be such that 1/h is in-
tegrable on [xmin, xmax] and define g : {0} ∪ [xmin, xmax] → R≥0 by g(x) :=
xmin

h(xmin)
+
∫ x

xmin

1
h(y) dy for x ≥ xmin and g(0) := 0.

If there exist λ > 0, β < 1 and D > 0 such that for all t ≥ 0

E(e−λ(g(Xt)−g(Xt+1)) · 1 {Xt > a} | Ft) ≤ β

and E(e−λ(g(a)−g(Xt+1)) · 1 {Xt ≤ a} | Ft) ≤ D,

then

Prob(Xt ≥ b | X0) < βt · eλ(g(X0)−g(b)) +
1− βt

1− β
Deλ(g(a)−g(b))

for all t > 0.

Proof.

We use ideas implicit in the proof of Inequality 2.6 of [Haj82], which uses the
exponential method (a generalized Chernoff bound), and argue

Prob(Xt ≥ b | X0) = Prob(g(Xt) ≥ g(b) | X0) = Prob(eλg(Xt) ≥ eλg(b) | X0)

≤ E(eλg(Xt)−λg(b) | X0),



52 MMAS versus Population-Based EA on Maze

where the first inequality uses that g(x) is non-decreasing, the equality that
x 7→ ex is a bijection, and the last inequality is Markov’s inequality. Now,

E(eλg(Xt) | X0) = E
(
eλg(Xt) · 1 {Xt−1 > a} | X0

)
+ E

(
eλg(Xt) · 1 {Xt−1 ≤ a} | X0

)
= E

(
eλg(Xt−1) · E(e−λ(g(Xt−1)−g(Xt)) · 1 {Xt−1 > a} | Ft) | X0

)
+ E

(
eλg(a) · E(e−λ(g(a)−g(Xt)) · 1 {Xt−1 ≤ a} | Ft) | X0

)
≤ βE

(
eλg(Xt−1) | X0

)
+Deλg(a)

by our prerequisites; we omitted the condition on X0 for space reasons in lines
2–4. Inductively (note that this does not assume independence of the g(Xt−1)−
g(Xt)), we get

E
(
eλg(Xt) | X0

)
≤ βteλg(X0) +

t−1∑
r=0

βrDeλg(a),

altogether

Prob(Xt ≥ b | X0) ≤ eλ(g(X0)−g(b))βt +
1− βt

1− β
Deλ(g(a)−g(b))

as suggested. □

The preceding lemma will be applied to show Lemma 3.15, whose purpose is to
combine Lemmas 2 and 3 from [KM12] and which shows that the pheromone
value after a certain point of time will come close to its border and stay close with
high probability. In fact, due to the strength of the lemma, we can work with
a smaller oscillation length per character if r is not too big. More precisely, we
redefine t0 := kr2n2 ln(rn) in the Maze function, for some constant k, which
is less than the original kn3 log n if r = o(

√
n). By contrast, [KM12] needs

Ω(n3 log n) oscillations per bit due to the application of the multiplicative drift
theorem along with negative drift.

To prepare the proof of Lemma 3.15, we set up an appropriate potential function
to define a non-negative stochastic processs (Xt)t≥0, which is partially based on
the distance of the pheromone value to its border. However, as in [KM12], it
also includes an indicator random variable based on the best-so-far entry. The
following lemma summarizes some crucial properties of the process. Hereinafter,
we call the pheromone values of a character i, 1 ≤ i ≤ n, saturated according to
the best-so-far solution x∗ if the edge corresponding to x∗

i has pheromone τmax
and all other edges for character i have value τmin.
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Lemma 3.14 Assume ρ ≤ 1
7rn and ρ = Ω( 1

rn ). Consider an OPT-OPT-ALT
oscillation of a single character, with the best-so-far solution from ALL, and
pheromone values of the non-oscillating characters saturated according to the
best-so-far solution. Let τt be the pheromone value on the edge corresponding
to the 0-entry for the oscillating character after t OPT-OPT-ALT oscillations,
Ct be an indicator that the best-so-far solution at the start of the oscillation is
OPT, and Xt := 1 − 1/n − τt +

7
2ρ(1 − Ct) be a potential function. Then, for

Xt ≥ 1/n, the following observations hold:

(i) Prob(Xt+1 > Xt | Ct = 1) = O(Xt) and Prob(Xt+1 < Xt | Ct = 0) =
O(1−Xt),

(ii) (Xt−Xt+1 | Ct = 1) = O(Xtρ) and (Xt+1−Xt | Ct = 0) = O((1−Xt)ρ),

(iii) E(Xt − Xt+1 | Ct = 1) = Ω(Xtρ) and E(Xt − Xt+1 | Ct = 0) = Ω((1 −
Xt)ρ).

Proof. Consider the statements conditioned on Ct = 1 first: i. e., those that
consider oscillations that begin with OPT as the best-so-far solution. In such
oscillations, the first two iterations will always reinforce τt, as the best-so-far
solution OPT has the highest possible fitness value; while the last iteration may
replace OPT with a solution from ALT if one is constructed.

We note that the potential function Xt decreases unless an ALT solution is
constructed in the third iteration, and upper-bound this probability using τt,
noting that iterations reinforcing τt do not increase the probability that ALT
solutions are constructed:

Prob(Xt+1 > Xt | Ct = 1) < 1− τt = Xt +
1
n ≤ 2Xt,

as Xt ≥ 1/n.

If an ALT solution is not constructed, τt is reinforced thrice during the oscilla-
tion, decreasing Xt by at most:

(Xt −Xt+1 | Ct = 1) ≤ τt(1− ρ)3 + ρ
(
1 + (1− ρ) + (1− ρ)2

)
− τt

= (1− τt)ρ(3− 3ρ+ ρ2) < 3(Xt +
1
n ) = 6Xtρ,

as Xt ≥ 1/n.

Finally, for the expected decrease in Xt, bound the probability of constructing
ALT in the third iteration using pa ≤ (1− τt/τsum)τmax

n−1 ≤ (1 − τt/τsum)/2,
where τsum denotes the sum of pheromone values on the edges belonging to the
character. The upper bound equals the probability of selecting an oscillating
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edge corresponding to an ALT solution, and n− 1 other edges with pheromone
values τmax corresponding to the remaining characters in the ALT solution,
using that τmax

n−1 ≤ 1/2 for n > 1. Hence,

E(τt+1 | Ct = 1) = τt(1− ρ)3 + ρ(1− ρ)2 + ρ(1− ρ) + (1− pa)ρ,

E(Xt −Xt+1 | Ct = 1) = E(τt+1 | Ct)− τt − pa ·
(
7
2ρ
)

= ρ
(
(1− τt)

(
3− 3ρ+ ρ2

)
− 9

2pa
)

≥ ρ
(
(1− τt)

(
3
4 − 3ρ+ ρ2

)
− 9

4τt/n
)
= Ω(ρXt),

recalling that τsum ≤ 1 + 1/n, yielding (1− τt/τsum) ≤ 1− τt + τt/n.

In the statements conditioned on Ct = 0, the best-so-far solution is in ALT.
The first two iterations will evaporate τt unless an OPT solution is constructed;
while the final iteration will evaporate τt if an ALT solution is constructed, or
if OPT was not constructed during the first two.

We note that Xt increases unless an OPT solution is constructed during at
least one of the first two iterations, and upper-bound this probability using τt,
τmax

n−1 ≤ 1/2 for n > 1, and a union bound:

Prob(Xt > Xt+1 | Ct = 0) < 2(τt/2) = τt = 1−Xt − 1
n + 7

2ρ < 1−Xt.

If an OPT solution is not constructed, τt is evaporated thrice during the oscil-
lation, increasing Xt by at most:

(Xt+1 −Xt | Ct = 0) = τt − τt(1− ρ)3 = τtρ(3− 3ρ+ ρ2)

< 3(1−Xt − 1
n + 7

2ρ)ρ < 3(1−Xt)ρ.

Finally, to compute the expected decrease in Xt, we need to derive bounds for
three probabilities: po, the probability that OPT is constructed at least once
in the first two iterations; pf , the probability that given OPT is constructed
in the first two iterations, it was constructed in the first iteration; and pa, the
probability that given that OPT was constructed in the first two iterations, an
ALT solution is constructed in the third iteration.

Using τmax
n−1 ≥ 1/e, we upper-bound the probability that OPT is not con-

structed by 1 − po ≤ (1 − τt/(eτsum))(1 − τt(1 − ρ)/(eτsum)), which provides a
lower bound on po.

In most cases, OPT is more likely to be constructed in the first iteration com-
pared to the second, as its corresponding pheromone value would decrease due
to pheromone evaporation. However, if τt(1−ρ) drops below τmin, and τsum > 1
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is reduced, the second iteration may be more likely to construct OPT than the
first. This effect is greatest when τt = τmin and τsum is as large as possible,
i. e., 1 + 1/n, i.e. the probability that OPT is constructed during the first iter-
ation can be bounded as p1 ≥ τmin/(1 + 1/n), while the probability that OPT
is constructed in the second given that it was not constructed in the first can
be bounded as p2 ≤ τmin/(1 + 1/n − ρ/n), i. e., the first iteration is at least
p1

p2
= n+1−ρ

n+1 ≥ 2−1/7
2 = 13

14 times as likely to construct OPT as the second.
The probability that OPT is then constructed in the first iteration given that
it is constructed at all during the first two iterations is then pf ≥ p1

p1+(1−p1)p2
,

and thus pf > 1/3 can be used as a very coarse lower-bound by substituting
p2 ≥ p1 ≥ 13

14p2 and computing the limit as p2 approaches 0 from above.

Pessimistically assuming that OPT is not constructed in the first iteration, so
the pheromone value on the OPT edge evaporates during the first iteration,
and lower-bounding the effect of the pheromone evaporation and reinforcement
in the second iteration as 0, the pheromone value on the OPT edge is at least
τ(1 − ρ) during the third iteration, and hence the probability of constructing
an ALT solution can be upper-bounded as pa ≤ (1− τt(1− ρ)/τsum)τmax

n−1 ≤
(1− τt(1− ρ)/τsum)(38/100) for n > 15.

Combining the three probability bounds, we consider the expected pheromone
value τt+1 on the edge corresponding to OPT, and then the distance Xt+1,
which additionally decreases by 7

2ρ if OPT is constructed in either of the first
two iterations, and ALT is not constructed in the third iteration:

E(τt+1 | Ct = 0) ≥ τt(1− ρ)3 + poρ(pf (1− ρ)2 + (1− ρ) + (1− pa)),

E(Xt −Xt+1 | Ct = 0) ≥ E(τt+1 | Ct = 0)− τt + po(1− pa)
7
2ρ

≥ ρ
(
po
(
35
6 −

9
2pa
)
− 3τt

)
+ ρ2

(
3τt − 5

3po
)
− ρ3

(
τt +

1
3po
)

= ρτt
((

35
6 −

9
2pa
)
b− 3 + ρ

(
3− 5

3b
)
− ρ2

(
1− 1

3b
))

= ρτt

((
1237
300 + 171

100
τt

τsum

)
b− 3 + ρ

(
3− 5

3b−
171
100

τtb
τsum

)
− ρ2

(
1− 1

3b
))

,

where b = 2−ρ
eτsum

− τt
1−ρ

e2τsum2 ≤ po/τt. By bounding 2
e > b > 2

e −
τt
e2 − o(1),

E(Xt −Xt+1 | Ct = 0) ≥ ρτt
((

1237
300 + 1.71τt/τsum

)
b− 3−O(ρ)

)
> ρτt

((
1237
300 + 1.71τt/τsum

) (
2/e− τt/e

2 − o(1)
)
− 3− o(1)

)
= ρτt

(
1237
150e − 3 + τt

(
3.42
eτsum

− 1237
300e2 −

1.71τt
e2τsum

)
− o(1)

)
> ρτt (0.033− o(1)) = Ω(ρ(1−Xt)),

by observing that for a sufficiently large n (and hence a τsum sufficiently close
to 1), the expression multiplied with the inner τt is positive. □
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Lemma 3.15 Let the assumptions from Lemma 3.14 hold; recall that τt de-
notes the pheromone value on the edge corresponding to the 0-entry for the
oscillating character after t oscillations. For t ≥ C(rn2 + αn), where C > 0 is
some sufficiently large constant, and all α ≥ 0 it holds

Prob

(
τt ≤ 1−O

(
1

n
+

log2 n

rn

))
≤ e−α + e−Ω(log2 n).

Proof. We will apply Lemma 3.13, using the bounds from Lemma 3.14. Note
that 0 ≤ Xt ≤ 1− 1

n−
1
rn+

7
2ρ ≤ 1− 1

2n since 1
rn ≤ τt ≤ 1− 1

n and ρ ≤ 1
7rn . We will

consider the cases Ct = 0 and Ct = 1 separately. First, let Ct = 1. If Xt ≥ 1/n,
we get from the third item of Lemma 3.14 and the choice ρ = Θ(1/(rn)) a drift
of the Xt-process according to E(Xt −Xt+1 | Xt;Xt ≥ 1/n) = Ω(Xtρ) ≥ c1Xt

rn
for some sufficiently small constant c1 > 0. We therefore set xmin := 0, a := 1

n ,
b := a+ log2 n

rn , xmax = 1− 1/(2n) and h(x) := c1
rn2 in Lemma 3.13. The choice

of h(x) results in E(Xt −Xt+1 | Xt;Xt > a) ≥ h(Xt). Moreover, by definition,
g(x) := xrn2

c1
since xmin = 0. Hence, we have the following simple bound on the

drift of the g(Xt)-process:

E(g(Xt)− g(Xt+1) | Xt;Xt > a) ≥ E(Xt −Xt+1 | Xt;Xt > a)

c1/(rn2)

≥ c1Xt/(rn)

c1/(rn2)
= Xtn.

Note that Xt−Xt+1 ≤ 13
2 ρ since three iterations can change τt by at most 3ρ and

Ct ≤ 1 holds. This implies g(Xt)− g(Xt+1) ≤ c2rn
2ρ for some constant c2 > 0.

Hence, as ρ = Θ(1/(rn)), we get g(Xt) − g(Xt+1) ≤ c3n for another con-
stant c3 ≥ 1. An expansion of the exponential function will show for λ := c4

n ,
where c4 > 0 is a sufficiently small constant, that

E(e−λ(g(Xt)−g(Xt+1)) · 1 {Xt > a} | Xt) ≤ E(e−λ(g(Xt)−g(Xt+1)) | Xt;Xt > a)

≤ 1− λ

2
≤ e−λ/2,

which then can be used to prove the lemma.

We supply the details for the expansion now. By setting c4 ≤ 1
c3

, we get
λ(g(Xt)−g(Xt+1)) ≤ 1. Using e−x ≤ 1−x+x2 for x ≤ 1, we get for the moment-
generating function (mostly omitting the conditions Xt;Xt > a in expectations
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for readability)

E
(
e−λ(g(Xt)−g(Xt+1)) | Xt;Xt > a

)
≤ 1− λE (g(Xt)− g(Xt+1)) + λ2E

(
(g(Xt)− g(Xt+1))

2
)

≤ 1− λE (g(Xt)− g(Xt+1)) + λ2E (|g(Xt)− g(Xt+1)|) (c3n)

We alrady know that E(g(Xt)− g(Xt+1)) ≥ Xtn. We are left with an estimate
for E(|∆|), where ∆ := g(Xt) − g(Xt+1). By the law of total probability (and
again using |∆| ≤ c3n, where c3 ≥ 1),

E(|∆|) ≤ E(∆ | ∆ > 0) + c3nProb(∆ < 0) ≤ c5Xtn+ c3nc6Xt ≤ (c5 + c6)c3nXt,

where we used the first and second item from Lemma 3.14 and introduced
appropriate constants c5, c6 > 0 to cover the implicit constants from O-notation
and the factor 1/c1 from g(x).

Hence,

E(e−λ(g(Xt)−g(Xt+1))) ≤ 1− λXtn+ λ2(c5 + c6)Xt(c3n)
2

≤ 1− λXtn+ λ
c4
n
(c5 + c6)(c

2
3n)Xtn.

Choosing c4 ≤ 1/(2c23(c5 + c6)), we get from last bound that

E(e−λ(g(Xt)−g(Xt+1))) ≤ 1− λXtn+
λ

2
Xtn = 1− λ

2
Xtn ≤ 1− λ

2
,

which completes the analysis for Ct = 0 if Xt > a = 1/n.

If Ct = 0, we can redo the above calculations analogously with E(g(Xt) −
g(Xt+1)) ≥ (1−Xt)n and replace Xt with 1−Xt. We note that 1−Xt ≥ 1/(2n),
hence still E(Xt − Xt+1 | Xt;Xt ≥ 1/n) = Ω(1/(rn2)). In the estimation of
E(|∆|), the events ∆ < 0 and ∆ > 0 are swapped. The constants may take
different values, but remain constants. Choosing c4 small enough to cover both
cases, we get

E(e−λ(g(Xt)−g(Xt+1)) | Xt;Xt > a) ≤ 1− λ

2
≤ e−λ/2

regardless of whether Ct = 0 or Ct = 1.

We are left with the case Xt ≤ a in Lemma 3.13. Pessimistically assuming the
maximum change (13/2)ρ of the Xt-values, we can bound

E(e−λ(g(a)−g(Xt+1)) · 1 {Xt ≤ a} | Xt) ≤ ec4c2ρrn ≤ D
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for some constant D > 0. Applying Lemma 3.13 with β := 1− λ/2 ≤ e−λ/2,

Prob(Xt ≥ b) ≤ e−
tc4
2n +

c4
n

rn2

c1 +
D

λ/2
· eλ(g(a)−g(b))

since X0 ≤ 1. Now, if t = 2rn2

c1
+ 2αn

c4
then Prob(Xt ≥ b) ≤ e−α+ 2D

λ eλ(g(a)−g(b)).
The second term is O(n) · e−Ω(log2(n)) = e−Ω(log2(n)). Setting C := max{ 2

c1
, 2
c4
}

and noting that Xt ≥ b corresponds to τt ≤ 1−O( 1n+
log2 n
rn ), the lemma follows.

□

We remark here that the statement of Lemma 3.15 can most likely be strength-
ened to hold already for t ≥ C(rn lnn+αn) by using a different h(x). However,
since the bottleneck will be in the analysis of the time needed for phase 0, we
are content with the present statement.

The following lemma takes the role of Lemma 4 in [KM12], which analyzes the
transition from character i oscillating to character i + 1 oscillating. It applies
to the case that the best-so-far solution at the end of phase i is not OPTi

but ALTi despite the pheromone values favoring OPTi. Then, when the new
phase starts and the best-so-far is reevaluated, the fitness function will equal
OneMax. However, it is very likely that MMAS* recovers quickly from this;
more precisely, it will sample the solution OPTi, which is in ALLi+1, again
before the pheromones have changed significantly. The lemma can be proven in
the very same way as in [KM12]. In fact, the probability of setting a character
being 0 in the best-so-far solution to 1, assuming saturated pheromones, will
even be 1/(rn). This is less than the bound 1/n used in the proof from [KM12].

Lemma 3.16 Let ρ = Θ( 1
rn ). Assume for i ∈ {1, . . . , n} that the current-

best solution is 0i−11n−i+1 and that the pheromones of the first i − 1 edges
belonging to 0-entries as well as the last n − i edges belonging to 1-entries all
are τmax = 1 − 1/n. Finally, assume that the pheromone belonging to the i-th
0-entry is 1 − O((log2 n)/n). Then for all c > 0, MMAS* will sample 0i1n−i

within O(log n) iterations with probability 1−O(n−c).

Finally, Theorem 5 in [KM12] states a tail bound on the optimization time
of classical MMAS* on OneMax, which is used in phase 0 of Maze, where
the all-ones string is the first target. This theorem carries mostly over to our
enlarged search space, see Theorem 3.18 below, except for that the modified
lower pheromone border introduces a factor of r at two places. The following
lemma is used for the analysis.

Lemma 3.17 Assume there is a character whose value remains fixed in all
best-so-far solutions of MMAS*. Then the pheromone values of the character
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will be saturated according to the best-so-far solution after at most ln(rn)/ρ
steps.

Proof. The edges belonging to the r entries different from the best-so-far value
each have a pheromone value of at most

τmax · (1− ρ)
t

or are already capped by their lower border after t steps, all of which by assump-
tion reinforce the edge belonging to the best-so-far entry. Setting t := ln(rn)/ρ,
the expression becomes at most 1/(rn) = τmin. Since by Lemma 3.3 always
τsum ≥ 1, the value for the best-so far entry must be at least 1− rτmin = τmax.

□

Theorem 3.18 For all c > 0 with probability 1 − O(n−c), MMAS* for the
search space {0, . . . , r}n optimizes OneMax in O(nr log(rn)/ρ) iterations and
then saturates the all-ones string in pheromone.

Proof. We will use a fitness-level argument combined with an analysis of “freez-
ing time” as commonly used in the analysis of ACO algorithms [NW10b, page
125]. The number of characters being 1 in the best-so-far solution is non-
decreasing over time. By Lemma 3.17, pessimistically assuming no update of
the best-so-far, the pheromone values of every 1-entry must be saturated after
at most ln(rn)/ρ steps. This applies to all characters simultaneously, also to
the entries different from 1. Hence, pheromone values are saturated according
to the best-so-far solution after a so-called freezing time of O(ln(rn)/ρ) steps
(or an improvement is found before).

Given a current OneMax-value of i ≤ n − 1, the probability of finding an
improvement in such a situation is at least(

n− i

1

)
τmax

iτmin ≥
n− i

ern
=: pi

Hence, in the notation of Theorem 2 in [Wit14], we have n + 1 fitness levels
A0, . . . , An corresponding to the OneMax-values and corresponding probabil-
ities of improvement (assuming saturated pheromones) given by pi for 0 ≤
i ≤ n − 1. Now, s =

∑n−1
i=0 1/p2i = O(r2n2), h = Ω(1/(rn)) and

∑n−1
i=0 1/pi =

O(rn log n). Hence, by setting δ = Ccrn lnn for some constant C > 0 in the the-
orem, the time to reach the last level (without the freezing time) is O(rn log n)
with probability 1− n−c
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On at most n levels, the pheromone values need to be saturated according to
the best-so-far solution in order for the fitness-level argument to apply; one
more saturation may be required for the final all-ones string. This accounts for
a deterministic term of O(n ln(rn)/ρ) that has to be added to the time bound
given by the fitness-level argument. Taking the two bounds together, the lemma
follows. □

We note that the proof of Theorem 3.18 is the only place in our analysis where
the strict >-selection for the update of the best-so-far solution by MMAS* is
used. Otherwise, the arguments would hold for the algorithm using non-strict
≥-selection, which is often simply called MMAS in the literature.

Putting everything together, we obtain the following theorem, taking the role
of Theorem 6 in [KM12]. Recall that t0, the length of the so-called oscillation
phase, is the number of iterations that a character is oscillating as OPT-OPT-
ALT; however, the very first phase of length t0, called phase 0, has objective
function OneMax.

Theorem 3.19 Given any r > 0, choose ρ ≤ 1
7rn and ρ = Ω( 1

rn ). We say
that MMAS* tracks the optimum of the Maze for the (r+1)-character alphabet
if the best-so-far solution at the end of every oscillation phase has Hamming
distance at most 1 to the optimum. Then for all c > 0 there is a constant k
such that choosing t0 ≥ kr2n2 ln(rn) makes MMAS* track the optimum with
probability 1−O(n−c).

Proof. We follow the argumentation in [KM12]. Let k′ be the largest implicit
constant in the bounds of Lemma 3.15, Lemma 3.16 and Theorem 3.18 for
obtaining a failure probability of O(n−c−1). Let k = 3k′. In the following, we
assume that the events proved to hold with probability 1 − O(n−c−1) actually
happen and call it a failure otherwise.

Since Maze equals OneMax within phase 0, we know from Theorem 3.18 that
MMAS* finds the all-ones string and saturates all pheromones in the phase with
probability 1 − O(n−c−1). The conditions of Lemma 3.15 hold for the start of
phase 1, where the first character is oscillating. Setting α = n, we get that the
pheromone value on the corresponding 0-edge will be at least 1−O(log2 n/(rn))
by the end of the phase with probability 1− o(n−c−1). The best-so-far solution
by the end of phase 1 is guaranteed to be in ALL1; however, it might be ALT1,
which does not belong to ALL2.

We now analyze the transition to phase 2. According to Lemma 3.16, a solu-
tion from ALL2 will be created in the first third of the phase with probability
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1 − O(n−c−1). Within at most O(rn ln(rn)) steps of the second third of the
phase, MMAS* by Lemma 3.17 saturates all pheromones except for the oscil-
lating character corresponding to the solutions from ALL2. Now the conditions
of Lemma 3.15 are satisfied. By the end of the final third of the phase, the
pheromone value on the 0-edge for character 2 will be 1 − O(log2 n/(rn)) with
probability 1− o(n−c−1). The subsequent phases are analyzed in the very same
way as the second one.

By a union bound, the failure probability over all n+ 1 phases is O(n−c). □

3.6 Conclusions

We have revisited the analysis of evolutionary algorithms and ACO on the dy-
namic fitness function Maze [KM12]. First, we have shown that a (2+1) EA
with a simple population diversity mechanism is able to track the optimum,
which the (1+1) EA cannot. Subsequently, we have generalized this to a hier-
archy result on strings over finite alphabets, where for given µ, there exists a
Maze variant for which a population size of at least µ in a (µ+1) EA with geno-
type diversity is sufficient to track the optimum, whereas population size µ− 1
causes the EA lose track of the optimum. Surprisingly, it turns out that a
generalization of MMAS* to the larger state space does not require a popula-
tion and is sufficient on all functions from the hierarchy. Along the way, we
have introduced a variable drift theorem dealing with occupation probabilities,
which allows for a more precise and simpler analysis of the pheromone values in
MMAS* compared to [KM12]. As a subject for future research, it is interesting
to study the benefits and the limitations of ACO on other dynamic problems.
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Chapter 4

A Runtime Analysis of Parallel
Evolutionary Algorithms in

Dynamic Optimization

Andrei Lissovoi Carsten Witt

DTU Compute, Technical University of Denmark

A simple island model with λ islands and migration occurring after every
τ iterations is studied on the dynamic fitness function Maze. This model
is equivalent to a (1+λ) EA if τ = 1, i. e., migration occurs during every
iteration. It is proved that even for an increased offspring population size
up to λ = O(n1−ε), the (1+λ) EA is still not able to track the optimum
of Maze. If the migration interval is increased, the algorithm is able to
track the optimum even for logarithmic λ. The relationship of τ , λ, and the
ability of the island model to track the optimum is then investigated more
closely. Finally, experiments are performed to supplement the asymptotic
results, and investigate the impact of the migration topology.

4.1 Introduction

Evolutionary algorithms (EAs) are a class of nature-inspired algorithms which
can be applied to solve a wide variety of optimization problems. Rigorous run-
time analysis of nature-inspired algorithms, building on mathematical methods
from the analysis of classical algorithms, has advanced considerably in recent
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years [AD11, NW10b]. While most of these studies focus on so-called static
optimization problems, whose set of optima is fixed, there has been increasing
interest in the analysis of evolutionary and other nature-inspired algorithms on
so-called dynamic problems. Many real-world optimization problems are subject
to dynamics in that the optimal solution may change as the problem conditions
change over time, and the algorithms therefore need to be able to not only find
or approximate the optimum at some point of time, but also to track the optimal
solution over time as the problem changes.

Application of EAs to dynamic optimization problems is the subject of study
in the Evolutionary Dynamic Optimization field, which in recent years has at-
tracted much activity. Many applications of evolutionary algorithms on dynamic
problems are considered in the literature [NYB12, ANS13], and there are already
a number of runtime analyses of evolutionary algorithms for dynamic problems
[Dro03, JS05, RLY09, JZ14, KLW15, DJL15].

Despite the increasing interest in the area, it has not been well understood what
mechanisms allow EAs or related nature-inspired algorithms to efficiently track
the optimum of a dynamic problem. In [KM12], Kötzing and Molter intro-
duced a dynamic pseudo-boolean function called Maze that separates simple
evolutionary algorithms and ant colony optimization. More precisely, the paper
shows that while a Max-Min Ant System (MMAS) is able to track the changes
occurring in the Maze fitness function and finds the optimum within polynomial
time, a (1+1) EA loses track of the optimum and requires with high probability
an exponential amount of time to find the optimum. Very recently, we have built
upon this study [LW15a] and shown that introducing a parent population makes
the evolutionary algorithm efficient in tracking the Maze again, presenting a
generalization of the Maze function that allows for a hierarchy result, where a
family of functions parameterized by µ is defined such that a parent population
size of µ allows efficient tracking of the optimum, while population size µ − 1
makes the algorithm lose track of the optimum with high probability. Addition-
ally, a simple MMAS is proved insensitive with respect to the parameter as it is
able to track the optimum without any modifications for a wide range of values
for µ.

In this work, we consider a different mechanism and analyze its benefit in track-
ing the optimum of the Maze benchmark function. We focus on parallel nature-
inspired algorithms, which are heavily employed in practice due the rapid de-
velopment of parallel computer architectures. The survey by Alba, Luque and
Nesmachnow [ALN13] describes important applications and theoretical studies
in this area. In particular, it refers to experiments with parallel nature-inspired
algorithms in dynamic optimization, including a study of a parallel swarm algo-
rithm for dynamic vehicle routing problems [KSA+11]. It is therefore interest-
ing to determine the theoretical properties of parallel nature-inspired algorithms
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that allow them to track the optimum of a dynamic problem. Both the num-
ber of so-called islands (independent subpopulations) and the communication
between them seem influential. From a more general perspective, [NYB12] em-
phasizes the usefulness of memory and diversity-maintaining operators in EAs
for dynamic optimization.

Our contribution is represented by a runtime analysis of a parallel EA for the
dynamic Maze problem. We define a simple parallel EA using an island model
with communication occurring within regular intervals, the so-called migration
intervals, in the style of Lässig and Sudholt [LS14], who pioneered the runtime
analysis of parallel EAs. The impact of two parameters is studied, namely the
number of islands λ and length of the migration intervals τ . In the extreme case
that τ = 1, i. e., migration occurs in every generation, the model boils down to
a (1+λ) EA. It is shown that offspring population sizes, i. e., number of islands,
of up to λ = O(n1−ε), where n is the problem size and ε an arbitrarily small
positive constant, do not allow this algorithm to track the Maze efficiently. In
contrast, if τ is chosen appropriately, ensuring that migration does not occur too
frequently, already λ = Ω(log n) islands allow efficient tracking of the optimum
of the Maze. Moreover, more general conditions on the choice of τ are worked
out, resulting in either efficient tracking or losing track of the optimum. To the
best of our knowledge, our contribution represents the first runtime analysis of
parallel EAs in dynamic optimization. The results indicate that carefully choos-
ing the migration policy and thereby the communication strategy of an island
model can be more advantageous than a mere increase of offspring population
size.

This paper is structured as follows. In Section 4.2, we introduce the parallel EA
and the dynamic optimization problem Maze studied throughout the paper,
and define important tools used in the analysis. Section 4.3 is concerned with
the negative result for the parallel EA with τ = 1, i. e., the (1+λ) EA. The
case of appropriately chosen τ , leading to efficient tracking with a small number
of islands, is analyzed in Section 4.4. Moreover, the section elaborates on the
impact of the choice of τ on efficient tracking in a more general sense. Section 4.5
validates the theoretical results of previous sections by presenting experimental
results. We finish with some conclusions.

4.2 Preliminaries

The Maze fitness function, proposed in [KM12], and defined formally below,
consists of n+1 phases of t0 = kn3 logn iterations each. This phase length was
used in [KM12] to allow the Max-Min Ant System (MMAS) algorithm time to
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adjust the pheromone values during each phase, and is preserved here for mostly
historical reasons. For convenience, we will assume that k is chosen such that
t0 is a multiple of 3.

During the first phase of the Maze, which we will for convenience refer to as
phase 0, the function is equivalent to OneMax: the fitness of an n-bit string is
equal to the number of 1-bits in the string. In the next n phases, higher fitness
values n+1 and n+2 are assigned to two individuals determined by the phase in
an oscillating pattern: every two iterations out of three, the OPTp individual is
assigned the fitness value n+2 while the ALTp individual is assigned the fitness
value n + 1, and during every third iteration, these assignments are reversed;
all other individuals retain their OneMax values. Past the last oscillating
phase (“phase n”), Maze behaves in a fashion similar to Trap: all individuals
except 0n are assigned OneMax values, while 0n is the global optimum, being
assigned the highest fitness value. [KM12] proves that a (1+1) EA loses track of
the optimum of this Maze function, reverting to optimizing OneMax, and is
therefore not able to construct the final OPTn = 0n optimum in a polynomial
number of iterations.

Maze(x, t) =


n+ 2 if t > (n+ 1) · t0 ∧ x = 0n

n+ 2 if t > t0 ∧ x = OPT(t)
n+ 1 if t > t0 ∧ x = ALT(t)
OneMax(x) otherwise

OPT(t) =

{
OPT⌊t/t0⌋ if t ̸= 0 mod 3
ALT⌊t/t0⌋ otherwise

ALT(t) =

{
ALT⌊t/t0⌋ if t ̸= 0 mod 3
OPT⌊t/t0⌋ otherwise

OPTp = 0p1n−p for p ≤ n

ALTp = 0p−11n−p+1 for p ≤ n

ALLp = {ALTp,OPTp}

We note that the clock t is considered external to the Maze function, allowing
the fitness value of multiple solutions to be evaluated in each clock value t.
For (1+λ) EA, and the λ island model, this corresponds to having hardware
available to evaluate many solutions in parallel, or having the problem changes
occur at fixed intervals regardless of the number of parallel evaluations.

We consider the behavior of the (1+λ) EA, shown as Algorithm 4.1, and that of a
simple island model running λ (1+1)EAs in parallel with various choices for the
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frequency of migration, shown as Algorithm 4.2, on the Maze function. Both
algorithms use the standard bit mutation operator, formalized in Definition 4.1.

For our purposes, Algorithm 4.2, if migration is set to occur in every iteration,
behaves equivalently to the (1+λ) EA on Maze: the algorithms differ only in
their initialization of x∗ and the first offspring population, which is less signif-
icant as both are able to find the OneMax optimum within the initial phase
with high probability. The order of mutation and migration in Algorithm 4.2
has been selected to allow for this similarity, essentially allowing an ALT indi-
vidual constructed during an ALT-favoring iteration of the Maze to migrate to
all islands, similar to how it would be assigned to x∗ in a (1+λ) EA.

Algorithm 4.1 (1+λ) EA

Select x∗ uniformly at random from {0, 1}n.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
xi ← mutate(x∗)

xm ← argmaxxi f(xi, t)
if f(xm, t) ≥ f(x∗, t) then

x∗ ← xm

Algorithm 4.2 Island model with λ islands running (1+1)EAs in parallel.

for i← 1, . . . , λ do
Select x∗

i uniformly at random from {0, 1}n.
for t← 1, 2, . . . do

for i← 1, . . . , λ in parallel do
xi ← mutate(x∗

i )
if f(xi, t) ≥ f(x∗

i , t) then
x∗
i ← xi

if migration occurs during iteration t then
Let m = argmaxi f(x

∗
i , t)

x∗
i ← xm for all i ∈ {1, . . . , λ}

Definition 4.1 (Standard bit mutation) The mutation operator
mutate(x) creates an image y ∈ {0, 1}n from x ∈ {0, 1}n by independently
replacing each bit xi of x (1 ≤ i ≤ n) with 1− xi with probability 1/n.

In the analysis of the (1 + λ) EA and the simple island model, we make use
of Markov chain mixing times to bound the probability that the algorithm is
in a particular state (i. e. has a particular best-so-far individual) after a cer-
tain number of iterations. This has been applied to ant colony optimization in
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[Sud11] and to analyze the (µ+ 1) EA on Maze in [LW15a]; for completeness,
we repeat the definitions of mixing and coupling times below.

Definition 4.2 (Mixing time) Consider an ergodic Markov chain over a
state space Ω with stationary distribution π. Let p(t)x denote the distribution of
the Markov chain t iterations after starting in state x, and let

t(ε) := max
x∈Ω

min

t :
1

2

∑
y∈Ω

∣∣∣p(t)x (y)− π(y)
∣∣∣ ≤ ε

 .

The mixing time tmix of the Markov chain is then defined as tmix = t(1/(2e)).

Definition 4.3 (Coupling time) Consider a pair process (X(t), Y (t)),
where both X(t) and Y (t), viewed in isolation, are instances of the same Markov
chain. Coupling time Txy is the random time until the two processes, initialized
in different states x and y, are in the same state for the first time:

Txy = min{t : X(t) = Y (t) | X(0) = x, Y (0) = y}.

The worst-case coupling time is an upper bound on the mixing time:

t(ε) ≤ min

{
t : max

x,y∈Ω
P (Txy > t) ≤ ε

}
.

Additionally, the following drift theorem, adapted from [DG13, DJW12], is use-
ful when considering longer migration intervals.

Theorem 4.4 (Multiplicative Drift) Let S ⊆ R be a finite set of pos-
itive numbers with minimum smin > 0. Let {X(t)}t≥0 be a sequence of random
variables over S ∪ {0}. Let T be the random first point in time t ≥ 0 for which
X(t) = 0.

Suppose there exists a δ > 0 such that

E(X(t) −X(t+1) | X(t) = s) ≥ δs

for all s ∈ S with P (X(t) = s) > 0. Then for all s0 ∈ S with P (X(0) = s0) > 0,

E(T | X(0) = s0) ≤
ln(s0/smin) + 1

δ

Moreover, it holds that P (T > (ln(s0/smin) + r)/δ) ≤ e−r for any r > 0.
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Several lemmas throughout this paper state that “a specific event occurs with
high probability.” Definition 4.5 provides a more formal definition of this con-
cept.

Definition 4.5 An event E is said to occur with high probability if, for every
constant c > 0, P (E) = 1−O(n−c).

In general, we say that an algorithm is able to track the optimum of the Maze
when it is able to construct the OPTn individual in polynomial time (with
high probability). Typically, this would correspond to maintaining at most
a constant Hamming distance to the OPTp intermediate optima during the
oscillating phases.

4.3 (1+λ) EA on Maze

In this section, we analyze the behavior of the (1+λ) EA on Maze. As long as
λ is not too large (trivializing the problem by exploring the entire neighborhood
of hamming distance 1 during every iteration), the EA is not able to track the
optimum of the Maze, and reverts to optimizing OneMax. This is formalized in
the following theorem, whose proof is inspired by the strategy taken in [LW15a].

Theorem 4.6 (1+λ) EA with λ ∈ O(n1−ε), for any constant ε > 0, will with
high probability lose track of the optimum of Maze, i. e. with high probability
it will require an exponential number of iterations to construct OPTn.

We first note that the EA is able to find OPT0 = 1n successfully, but then has at
least a constant probability of ending each of the following n oscillating phases
with x∗ ̸= OPTp, and at least a constant probability of ending the next phase
after at least a constant fraction of such phases with x∗ = 1n; if this occurs
sufficiently late in the optimization process, constructing an ALLp individual
from 1n requires a large simultaneous mutation, the waiting time for which is
exponential with respect to n.

Lemma 4.7 (1 + λ) EA constructs OPT0 = 1n during the initial phase with
high probability.

Proof. The initial phase consists of optimizing OneMax, which a (1+1) EA
accomplishes in O(n log n) iterations with high probability. Increasing the size
of the offspring population λ can only decrease the time required; and we note
that t0 is asymptotically greater than O(n log n).
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To prove that the (1+1) EA finds 1n on OneMax with high probability in
O(n log n) time, apply Theorem 4.4, defining X(t) as the number of zero-bits
in the bit string x∗ during iteration t, and pessimistically assuming X(0) ≤ n,
which yields:

E(X(t) −X(t+1) | X(t) = x) ≥ x(1− 1/n)n−1

n
≥ 1

ne
x

E(T | X(0) ≤ n) ≤ ln(n) + 1

1/(ne)
= ne ln(n) + ne

Applying the tail-bound with r = c1 lnn yields an upper bound on the proba-
bility of exceeding the expected number of iterations to reach Xt = 0 (i. e. to
find the 1n optimum) by more than c2n lnn additional iterations, where both
c1, c2 are constants:

e−c1 lnn = n−c1

i. e. 1n is constructed by the (1+1) EA in ne ln(n) + ne+ c2n lnn = O(n log n)
iterations with probability 1 − n−c1 . As previously stated, increasing the off-
spring population size λ can only reduce the number of iterations required by
the (1+λ) EA. □

Lemma 4.8 Given that x∗ ∈ ALLp at least cλ/n iterations before the end of
phase p, the probability that phase p ends with x∗ = OPTp is in Θ(1), and the
probability that phase p ends with x∗ = ALTp is also in Θ(1).

Proof. Once an ALLp individual is constructed, only OPTp and ALTp can be
accepted as the best-so-far individuals during the remainder of the phase, with
single-bit mutations at specific iterations of the oscillation allowing the EA to
switch between the two.

Let p1 be the probability of a specific single-bit mutation occurring in a single
iteration of (1 + λ) EA, i. e. the probability that OPTp is constructed from
ALTp or vice versa:

p1 = 1−
(
1− (1− 1/n)

n−1 · 1/n
)λ

1− (1− 1/(en))
λ ≤ p1 ≤ 1− (1− 1/(2n))

λ

λ/(2en) ≤ 1− e−λ/(en) ≤ p1 ≤ λ/(2n)

assuming n ≥ 2 for the upper bound, and using (1−x) ≤ e−x, and e−x ≤ 1−x/2
(for x ≤ 1) for the lower bound.
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Consider the phase as a series of oscillations, each oscillation consisting of three
iterations. During the first two iterations of an oscillation, OPTn has a higher
fitness value than ALTn (and vice versa during the third and final iteration). We
then consider the probabilities pO and pA of the best-so-far individual switching
from OPTp to ALTp, and from ALTp to OPTp respectively during a single
oscillation:

pO = (p1 + (1− p1)p1)(1− p1)

= 2p1 − 3p1
2 + p1

3 = p1(2− 3p1 + p1
2)

pA = p1

The identity of the best-so-far individual x∗ of the (1 + λ) EA, observed at the
end of each OPT-OPT-ALT oscillation can be modeled using a two-state Markov
chain, with one state corresponding to x∗ = OPTp, the other to x∗ = ALTp,
and transition probabilities between the states as above.

Let πO and πA = 1 − πO be the steady-state probabilities of x∗ = OPTp and
x∗ = ALTp respectively; per the definition of a steady-state probability:

πOpA = πApO

πOp1 = (1− πO)p1(2− 3p1 + p1
2)

πO =
2− 3p1 + p1

2

3− 3p1 + p12

i. e. πO approaches a constant; we note that πO ≤ 2/3, and as λ ∈ o(n) and
hence p1 ≤ λ/(2n) ≤ 0.5, πO ≥ 3/7.

Over time, the probability of OPTp being the best-so-far individual at the end
of an oscillation will approach the steady-state probability πO. Markov chain
mixing time can be used to bound the number of oscillations required until
this probability is within an ε of πO. Markov chain mixing time can be upper-
bounded by coupling time, i. e. the maximum number of steps Txy until the
probability that two independent instances of the chain initialized in different
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states are in the same state becomes sufficiently small:

t(ε) ≤ min

{
t : max

x,y∈Ω
P (Txy > t) ≤ ε

}
maxP (Txy > t) = (pApO + (1− pA)(1− pO))

t

= (1 + 2pApO − pA − pO)
t

= (1− p1(3− 7p1 + 7p1
2 − 2p1

3))t

≤
(
1− λ

2en

(
3− 7λ

2n
+

7λ2

4e2n2
− 2λ3

8n3

))t

<

(
1− λ

2en

)t

by recalling that λ = o(n), and observing that the expression in the inner
parentheses is greater than 1 when λ/n ≤ 0.5. Then, an upper bound on the
coupling time is:

t(ε) ≤ min
{
t : (1− λ/(2en))t ≤ ε

}
After at most t(0.01) < 9.22en/λ steps of the Markov chain, i. e. at most 76n/λ
iterations of the (1+λ) EA, the probability that x∗ = OPTp is therefore within
[πO−0.01, πO+0.01], and, as 3/7 ≤ πO ≤ 2/3, in Θ(1). Similarly, the probability
that x∗ = ALTp is within [1− πO − 0.01, 1− πO + 0.01], and therefore in Θ(1).

□

Lemma 4.9 If a phase p > n/2 + 3 begins with x∗ ̸∈ ALLp satisfying f(x∗) >
n − p + 1, the (1 + λ) EA with offspring population size λ = O(n1−ε), for any
constant ε > 0, ends the phase with x∗ = 1n with at least constant probability.

Proof. At the start of phase p, x∗ contains strictly more 1-bits than any indi-
vidual in ALLp, and the Hamming distance between x∗ and the closest ALLp

individual is at least 1. Let pR ≤ p1 be the probability that an ALLp individual
is constructed during an iteration.

We want to consider the probability that the number of 1-bits in x∗ exceeds that
in any ALLp individual by at least 3 before an ALLp individual is constructed.
An individual with a greater OneMax value is constructed via a single-bit
mutation with probability at least pL:

pL ≥ 1− (1− n/2 · (1− 1/n)n−1/n)λ

≥ 1− 0.75λ ≥ 1/4
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as there are at least n/2 0-bits that can be flipped to increase OneMax value.
We note that after at most 2 OneMax-improvements, constructing the closest
ALLp individual requires at least 3 1-bits to be flipped simultaneously.

Consider the probability that two OneMax improvements occur before an ALLp

individual is constructed. Let V be the event that a OneMax-improving single-
bit mutation occurs, and A be the event that an ALLp individual is constructed:

P (A | A ∨ V ) ≤ pR
pR + pL

≤ λ

2n
(

λ
2en + 1/4

)
=

2eλ

en+ 2λ
∈ O(λ/n)

P (2 V s without A) ≥ (1− P (A | A ∨ V ))
2 ∈ Ω(1)

Once this occurs, constructing an ALLp individual requires at least 3 specific
bits to mutate simultaneously, which with high probability does not happen
within the time required to find 1n per Lemma 4.7. Thus, the (1 + λ) EA has
at least a constant probability of ending the phase with x∗ = 1n. □

These lemmas can then be combined to prove Theorem 4.6.

Proof of Theorem 4.6. With high probability, OPT0 = 1n is found during
phase 0 per Lemma 4.7. At the start of each subsequent phase p, f(x∗) > n−p,
as only individuals in the ALL sets of the preceding phases can be accepted while
decreasing the number of 1-bits in x∗, and the minimum OneMax value of any
individual in sets ALL0,. . . ,ALLp−1 is n − p + 1. Furthermore, if x∗ ̸∈ ALLp,
f(x∗) > n− p+ 1, as this excludes x∗ = OPTp−1, which had the lowest fitness
value of all individuals in the union of the previous ALL sets.

If x∗ ̸= 1n at the start of phase p ≥ n/2 + 3, the phase has at least a constant
probability of ending with x∗ ̸= OPTp per Lemma 4.8, and hence x∗ ̸∈ ALLp+1.

If phase p + 1 begins with x∗ ̸∈ ALLp+1, it has at least a constant probability
of ending with x∗ = 1n per Lemma 4.9.

Thus, at least a constant fraction of Ω(n) phases beyond n/2+3 have at least a
constant probability of ending with x∗ = 1n; i. e. with high probability, at least
one of those phases will end with x∗ = 1n. Constructing an ALLp individual
from 1n in future phases requires at least Ω(n) bits to be flipped simultaneously,
which with high probability does not occur in polynomial time. □
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We note that the proof of Theorem 4.6 relies on λ = o(n) primarily in the bounds
on p1 in Lemma 4.8, although, if λ is increased a little further to Ω(n log n), the
behavior described by Lemma 4.9 would also no longer occur, allowing (1+λ) EA
to recover from any phase which ends with an ALTp with high probability.

Lemma 4.10 (1+λ) EA with offspring population size λ ≥ c1n log n, where
c1 > 0 is a sufficiently large constant, is able to track the optimum of the Maze
function, constructing OPTn at the end of the Maze with high probability.

Proof. We pessimistically assume that each of the n oscillating Maze phases
ends with x∗ = ALTp. Consider the probability pr of constructing an ALLp+1

individual in the first iteration of the next phase, which can be lower-bounded by
the probability that a specific one-bit mutation occurs (flipping the previously
oscillating bit to a 0),

pr = 1− (1− (1− 1/n)n−1/n)c1n logn

≥ 1− (1− 1/(ne))c1n logn

≥ 1− e−c2 logn = 1− n−c2

We can then use a union bound to lower-bound the probability pR that all n
phases construct an ALLp individual in their first iteration:

pR ≥ pr
n ≥ 1− n1−c2

By picking a sufficiently large constant c1 in λ = c1n log n, we can ensure that
the (1+λ) EA constructs an ALLp individual in the first iteration following
every phase transition with high probability. □

4.4 A simple island model

Splitting the λ offspring onto λ islands, which only compare the fitness values
of their x∗ individuals periodically (for instance, every τ iterations, where τ > 0
is the migration interval), allows the resulting island model to track Maze even
with a modest λ. In this section, we consider the effect of various migration
schedules on how the island model is able to track the Maze.

To begin with, consider an island model where migration occurs on the first
iteration of every phase, i. e. every τ = t0 iterations of the Maze. This ensures
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that an ALLp individual migrates to all islands if any of the islands end the
preceding phase with x∗ = OPTp−1.

Theorem 4.11 An island model with λ = c log n islands, where c is a suffi-
ciently large constant, each island running a (1+1)EA, and migration occurring
during the first iteration of every phase (i. e. with migration interval τ = t0) is
able to find the OPTn optimum of the Maze with phase length t0 = kn3 log n
in polynomial time with high probability.

Proof. We note that individually, the islands behave exactly like a (1+1)EA
on Maze, and the effects of migration are limited to selecting the best-so-far
individual at the start of each phase, and propagating it to all islands. Thus,
as long as any island ends phase p with x∗ = OPTp, all islands will receive an
ALLp+1 individual during the first iteration of phase p+ 1.

The initial OneMax optimum, OPT0, is found during phase 0 on each island
with high probability. Lemma 4.8, applied with λ = 1, states that the proba-
bility that an island that begins phase p with x∗ ∈ ALLp ends the phase with
x∗ = OPTp with at least constant probability; let ps = Ω(1) be a lower bound
on this probability, and pf an upper bound on the probability that all λ islands
end the phase with x∗ ̸= OPTp. As long as the latter event does not occur, all
islands will receive an ALLp+1 individual at the start of the next phase, allowing
the argument to be repeated inductively. A union bound can then be used to
upper-bound the probability of failing in any of the n phases:

pf ≤ (1− ps)
λ

npf ≤ n(1− ps)
λ ≤ ncc2 logn

1 ≤ n1+c2 log c1

noting that for any constant c > 0, choosing c2 ≥ −(1 + c)/ log c1 (recall that
c1 ≤ pf < 1, so log(c1) is negative) results in pf ≤ n−c.

Thus, with λ = c2 log n islands, where c2 is a sufficiently large constant, at
least one island ends each phase with x∗ = OPTp with high probability; this
individual is propagated to all other islands at the start of the next phase,
allowing OPTn to be constructed and propagated to all islands at the end of
the last phase. □

4.4.1 Shorter migration intervals

It is also possible to track Maze with shorter migration intervals τ < t0. We
first consider the case where migration may occur multiple times during a phase,
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as long as the final migration occurs at least Ω(n) iterations before the end of the
phase, allowing the islands time to reconstruct OPTp if migration propagated
ALTp to all islands.

Theorem 4.12 With the migration interval τ ≤ t0, λ = c1 logn islands are
sufficient to track the optimum of the Maze as long as no migration occurs dur-
ing c2n iterations preceding any phase transition, where c1 and c2 are sufficiently
large constants, and migration occurs at least once during each phase.

Proof. We follow the proof of Theorem 4.11, and pessimistically assume that
the last migration during each phase occurs c2n iterations before the end of the
phase, where c2 > 0 is a sufficiently large constant, during an ALT-favoring
iteration, and propagates the ALT individual to all islands.

Lemma 4.8 can then be applied: on each island, the probability of ending phase
p with x∗ = OPTp is then at least a constant greater than 0, as x∗ = ALTp ∈
ALLp has been propagated to the island at least c2n iterations before the end of
the phase. Thus, the situation at the end of the phase returns to that considered
in Theorem 4.11: each of λ = Ω(log n) islands has at least a constant probability
of ending phase p with x∗ = OPTp.

With a large-enough λ, we can with high probability conclude that during each
phase p, migration propagates ensures that all islands have an ALLp individual
as the best-so-far solution at least c2n iterations before the end of the phase,
and therefore each phase will with at least one island having x∗ = OPTp. That
island will then have an ALLp+1 individual during the next phase, which will
migrate to the any islands that lose track of the Maze during the next phase,
allowing the argument to be repeated inductively for each of n phases. □

Additionally, if migration is only allowed to occur during iterations assigning
the OPT individual the greatest fitness value, it can never replace an OPT
individual on an island with an ALT individual; in this case, migration can
occur close to the end of the phase without negative consequences.

Theorem 4.13 When migration occurs only during iterations when f(ALTp) <
f(OPTp), and occurs for the first time at least c1n iterations before the end of
each phase, λ = c2 log n islands, where c1 and c2 are sufficiently large constants,
are sufficient to track the optimum of the Maze.

Proof. The initial OneMax phase still succeeds with high probability, as mi-
gration cannot decrease the fitness of x∗ on each island, and will instead only
increase the fitness of the islands lagging behind the current global best-so-far.
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During the subsequent Maze phases, migration only occurs when OPT indi-
viduals have the highest fitness value, and therefore cannot cause an island to
replace an OPT best-so-far individual with an ALT individual; thus, it can only
increase the probability that x∗ = OPTp on an island at any given time in
comparison with the situation considered in Theorem 4.11.

Thus, the argument from the proof of Theorem 4.11 applies: by selecting a
sufficiently-large constant for λ = c log n, the probability that all islands end
phase p with x∗ ̸= OPTp can be made small enough to ensure that this event
does not occur with high probability during the n phases of Maze: then, as
long as at least one island ends each phase with x∗ = OPTp, that island’s
x∗ ∈ ALLp+1 will be propagated to the other islands, and per Lemma 4.8, c1n
iterations later, every island will once again have at least a constant probability
of having x∗ = OPTp+1. □

Thus, we have shown that λ = c2 log n islands running a (1+1) EA are sufficient
to track the optimum of the Maze with varying migration intervals, as long
as migration occurs at least c1n iterations before a phase transition, and any
migration occurring within c1n iterations prior to a phase transition occurs only
while the OPT individual has a higher fitness value than the ALT individual.
Both theorems rely on a mixing time argument to ensure that at least a constant
fraction of the Ω(log n) islands end the phase with x∗ = OPTp, and migration
is used to repopulate any islands that lose track of the Maze prior to the next
phase transition.

4.4.2 Longer migration intervals

Migration intervals longer than the Maze phase length are also viable: es-
sentially, there is no need to repopulate all islands after every phase transition.
When τ > t0, we merely need to ensure that migration occurs frequently enough
to repopulate the islands that lose track of the Maze before all islands do so.
We will show that if τ ≥ c t0 log λ, λ = O(log n) islands are no longer sufficient
to track the Maze.

Theorem 4.14 For τ = c1 t0 log λ, where c1 > 0 is a sufficiently large con-
stant, λ = O(log n) islands are not sufficient to track the optimum of the Maze.

Proof. Consider an interval of c t0 log λ iterations during which no migration
will occur, where c1 ≥ c > 0 is a sufficiently large constant, starting at the
beginning of some phase p, such that n/2 + 3 < p < n − log λ. Pessimistically
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assume that before the start of phase p, none of the λ = c log n islands lost track
of the Maze, and thus all islands begin phase p at least a constant probability
of having an ALLp individual per Lemma 4.8.

Considering each island individually, each of the log λ phases in the interval has
at least a constant probability of ending with x∗ ̸= OPTp, causing the next
phase to have at least a constant probability of ending with x∗ = 1n; let pL > 0
be a constant lower bound on the probability of each phase ending with x∗ = 1n.
Let X(t) be the number of islands with x∗ ̸= 1n at the start of phase p+ t (and
X0 = λ); it then holds that:

E(X(t) −X(t+1) | X(t)) ≥ pLX
(t)

E(X(t) | X(0)) = (1− pL)
tX(0)

Theorem 4.4 can then be applied: the expected number of phase transitions
T = mint{X(t) = 0} until all islands have lost track of the Maze (i. e. have
x∗ = 1n) is:

E(T | X(0)) ≤ ln(X(0)) + 1

1− pL
= O(lnλ)

By applying Markov’s inequality, we can bound P (T ≥ 2E(T | X0)) ≤ 1/2,
and hence by setting τ = 2E(T | X0) = c log λ, where c is a sufficiently large
constant, lower-bound the probability of all islands ending the interval with x∗ =
1n by at least 1/2. As there are Ω(n/(log λ)) = Ω(n/(log log n)) such intervals
following phase p > n/2 + 3, the probability that the island model does loses
track of the Maze in at least one of these intervals is at least 1−2−Ω(n/ log logn).

□

4.5 Experiments

To supplement the asymptotic results expressed in Theorems 4.6 and 4.11, we
have also performed simulations of the island model (Algorithm 4.2) with τ = 1
(migration occurring in every iteration) and τ = t0 (migration occurring at the
beginning of each phase) for n = 75, t0 = n3, and various choices of λ.

The results of the simulations are summarized in Figure 4.1: λ = 10 is sufficient
for none of the 250 simulations to lose track of the Maze over the n+ 1 phases
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Figure 4.1: Number of simulations of Algorithm 4.2 with n = 75, t0 = n3, and
various choices of λ and τ , having an individual with a better-than-
OneMax value at the start of each Maze phase; 250 simulations
for each choice of λ. Only the first 25 phases are shown here, as
there were no further changes observed in the subsequent phases.

when τ = t0, while when τ = 1, all of the simulations performed lose track of
the Maze even when λ = 50. During the first few phases of Maze, it is possible
for the islands to reconstruct an ALLp individual by a modest simultaneous-bit
mutation within a single phase, slowing the failure rate of the first few phases;
this becomes exponentially less likely as Maze progresses. Notably, increasing
λ does not have a strong positive effect in the τ = 1 setting for the considered
values of λ, perhaps because each phase ends on an iteration where the ALT
individual is assigned a higher fitness value.

In Algorithm 4.2, the migration topology is a complete graph: the best individ-
ual among all islands in a given iteration is chosen to migrate to all islands. This
does not maintain any diversity at migration points and is potentially danger-
ous when migration occurs frequently. We therefore wondered whether a sparser
migration topology might be more beneficial with frequent migration. In an ex-
periment, we have replaced the complete topology with a directed ring: during
migration, each island selects a new best-so-far individual among its current
best-so-far individual, and the best-so-far individual of its predecessor in the
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Figure 4.2: With n = 75, t0 = n3, with various choices of λ, τ , and the mi-
gration topology (either a complete graph or a directed ring); 250
simulations in each setting. For λ = 2, the ring and complete
topologies are equivalent.

ring. Figure 4.2 displays the results in the setting with n = 75, t0 = n3 and the
directed ring topology used with τ = 1, compared to the complete topology and
τ = t0. Experimentally, choosing τ = 1, λ > 2 and the ring migration topology
appears to yield better probability of tracking Maze than τ = t0, λ = 5 and the
complete migration topology.

4.6 Conclusions

We have presented a first runtime analysis of parallel EAs in dynamic optimiza-
tion. A simple island model with λ islands and length of the migration interval τ
was studied on the dynamic benchmark function Maze. In the case of extreme
communication, i. e., τ = 1, even a large number of islands does not allow ef-
ficient tracking of the optimum. However, with a carefully chosen value for τ ,
already a logarithmic number of islands was proven to be sufficient for efficient
tracking. Finally, the relationship of τ , λ, and the ability of the island model to
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track the optimum was investigated more closely. Our results indicate that the
careful choice of the migration policy, and more generally, the communication
in parallel EAs, can be significantly more advantageous than a large population.

In future work, we would like to study parallel EAs on different dynamic opti-
mization problems in order to understand the interplay of migration intervals
and number of islands more thoroughly. As our positive results are crucially de-
pendent on a proper choice of τ , it may also be worth studying adaptive or even
self-adaptive choices of the migration interval in order to automatically deter-
mine a good value for τ . Here the adaptive model suggested in [MS14] could be
interesting. Additionally, the impact of the migration topology, something that
we have only investigated experimentally, could be considered in more detail
and formalized.
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Chapter 5

(1+1) EA on Generalized
Dynamic OneMax

Timo Kötzing+ Andrei Lissovoi∗ Carsten Witt∗

+ Friedrich-Schiller-Universität, Jena, Germany
∗ DTU Compute, Technical University of Denmark

Evolutionary algorithms (EAs) perform well in settings involving uncer-
tainty, including settings with stochastic or dynamic fitness functions. In
this paper, we analyze the (1+1) EA on dynamically changing OneMax, as
introduced by [Dro03]. We re-prove the known results on first hitting times
using the modern tool of drift analysis. We extend these results to search
spaces which allow for more than two values per dimension.

Furthermore, we make an anytime analysis as suggested by [JZ14], analyzing
how closely the (1+1) EA can track the dynamically moving optimum over
time. We get tight bounds both for the case of bit strings, as well as for the
case of more than two values per position. Surprisingly, in the latter setting,
the expected quality of the search point maintained by the (1+1) EA does
not depend on the number of values per dimension.

5.1 Introduction

Randomized search heuristics, such as evolutionary algorithms (EAs), are gen-
eral purpose optimization algorithms applicable to virtually any (formal) op-
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timization task. In particular, EAs (and other randomized search heuristics)
have been applied very successfully in domains featuring uncertainty ; for exam-
ple, the objective functions (so-called fitness functions) can be randomized or
dynamically changing (see JB05 for an excellent survey on evolutionary algo-
rithms in settings featuring uncertainty). In this paper we focus on dynamically
changing fitness functions.

We call a fitness function dynamic if the fitness values of search points depend
on the iteration number (but might be deterministic for each iteration). For
example, the shortest path between two cities might depend on whether it is
rush hour or not. The classical task of an optimization algorithm is to find the
best solution it can (in terms of fitness); for dynamic optimization, there need
not be a single solution which is good at all times: solutions that are good now
might be bad later. Thus, algorithms in this domain need to be able to find and
track the optimal solution (or at least a good solution) over time as the problem
changes.

With this paper we contribute to the theoretical foundations of randomized
search heuristics, for the domain of dynamic fitness functions. While there has
been a lot of work on the theory of randomized search heuristics in static settings
(see AD11, NW10b, Jan13), there are only a few works on dynamically changing
fitness functions. The utility of a population for tracking problems was studied
in evolutionary computation by [JS05], while different mechanisms for ensuring
population diversity have been considered by [OZ13]. In particular, a mechanism
called genotype diversity was proved to be inefficient on a particular dynamic
problem. The papers by [KM12] and [LW15a] consider dynamic pseudo-Boolean
functions where the optimum moves slowly from the all-ones to the all-zeros bit
string; the papers show that, while the Max-Min Ant System is able to track
the changes occurring in this fitness function, an evolutionary algorithm (in
LW15a using a population) loses track of the optimum. [JZ14] analyzed the
performance of a standard evolutionary algorithm on a dynamically changing
fitness function, introducing “anytime analysis”, the expected distance to the
optimum at any given point in time.

The oldest theoretical running time analyses of evolutionary algorithms for dy-
namic fitness functions are probably due to [Dro02, Dro03]. Here the fitness
function is the (Hamming-) distance to a (dynamically changing) point in the
hypercube (so-called dynamic OneMax). In each iteration, the current opti-
mum is changed by flipping each bit with some fixed probability p; from [Dro03]
we know that the standard (1+1) EA is able to find the optimum in polynomial
time if and only if p = O(log n/n2).

In this paper we build on the setting of dynamic OneMax from [Dro03]. We
re-prove the classic results using the modern tools of drift theory and extend
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them as follows. First, we generalize the domain by allowing not only bit strings,
but each position can take any of the values in {0, . . . , r − 1}. Fitness is again
distance from the current optimum; we measure distances as the sum of the dis-
tances of each component, where in each component we measure distance “with
wrap around” (giving each component the metric space of a ring, see Section 5.2
for a detailed definition). We extend the (1+1) EA by letting mutation change
any position independently with probability 1/n; any changed position is ran-
domly increased or decreased by one (with probability 1/2 each). Note that
similar extensions of the OneMax function (without dynamic changes) have
been studied by [DJS11] and [DP12]; they considered arbitrary linear functions
over {0, . . . , r}, and a mutation where changing a position means selecting a
new value at this position uniformly at random (excluding the old value). We
chose the ring topology, as we consider it more natural for a dynamically moving
optimum, which can now never run into a boundary.

The second extension to [Dro03] is that we do not only consider the first hitting
time of the optimum but, as suggested by [JZ14], we give an “anytime analysis”,
an analysis of the distance to the optimum at any time of the search process.

We state our setting more formally in Section 5.2. In Section 5.3 we give our
anytime results, considering cases with p = o(1/n). The first part is about the
case of bit strings (i. e. r = 2), where we show that the distance to the optimum
is (in the limit) strongly concentrated at Θ(pn2). This gives an anytime result
as suggested by [JZ14]. The second part shows that, for large r, the distance to
the optimum in each dimension is strongly concentrated at O(1), leading to an
expected distance of O(n) from the optimum (again an anytime result). Note
that this shows that the distance is independent of r.

In Section 5.4 we consider the expected hitting times of the (randomly moving)
optimum. Here we re-prove the result of [Dro03] (who considered the case
of r = 2) that the first hitting time is polynomial if p = O(log n/n2). We use
modern drift theory, leading to a much shorter and more elegant proof, resulting
in a better bound. We extend this result to arbitrary r.

[Dro03] also gave a lower bound, which shows that for p = ω(log n/n2) we do
not get polynomial hitting times; in Section 5.5 we re-prove this result (again
with modern drift theory) and extend them to arbitrary values of r.

As mentioned, we will use modern drift theory to derive our results. In Sec-
tion 5.2 we restate known drift theorems, partly in more general form than
before, and also present new variants. A new theorem regards variable drift,
which allows for negative drift close to the optimum and shows how stochastic
processes can bridge such an area of headwind. For our anytime analysis, the
crucial tool is a lemma by [LW15a], which we restate as Lemma 5.6 below, effec-
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tively turning expected drift into probabilities about deviating from the target
of the drift after having reached that target.

5.2 Preliminaries

In this section we first make our setting formal (see Section 5.2.1) and then give
a number of helpful theorems, both from the literature and new theorems (see
Section 5.2.2).

5.2.1 Setting

[Dro03] proposes a dynamic version of OneMax and analyses the performance
of (1+1) EA on this dynamic fitness function in terms of first hitting times of
the optimum. We extend this dynamic version of OneMax as follows.

For all r ∈ N, let [r] = {0, . . . , r − 1}; for two elements x, y ∈ [r], we let
d(x, y) = min((y − x) mod r, (x − y) mod r) (intuitively, d is the metric of [r]
with wrap-around). We consider the search space [r]n (note that r = 2 gives
the standard setting of bit strings).

Given a current optimum a, we let

OneMaxa : [r]n → R, x 7→
n∑

i=1

d(ai, xi).

The goal of the (1+1) EA is to evolve and maintain bit strings with as small
as possible OneMaxa-value. In particular, in this setting optimization means
minimizing.

We consider the following mutation operator on [r]n, parametrized by p ∈ [0, 1].
Given x ∈ [r]n, create mutant x′ by choosing, for each component i ≤ n inde-
pendently,

x′
i =


xi + 1 mod r, with probability p/2;
xi − 1 mod r, with probability p/2;
xi, with probability 1− p.

We use this operator with p = 1/n for the (1+1) EA (see Algorithm 5.1).
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Algorithm 5.1 (1+1)-EA
Choose x ∈ [r]n uniformly at random
for ever do

x′ ← mutate(x)
if fitness(x′) ≤ fitness(x) then

x← x′

In each iteration, we change the optimum by applying the mutation operator
with some fixed p. This extends the setting of [Dro03], where only the case of
r = 2 was addressed.

5.2.2 Drift Theorems

In this section we first discuss drift theorems regarding first hitting times, and
afterwards discuss how one can turn statements about the drift into statements
about occupation probabilities (of a random process).

5.2.2.1 First Hitting Times

As mentioned in the introduction, almost all of our proofs use state-of-the-art
drift statements, many of which were not available to [Dro03]. The simplest case
is the one of additive drift, as described in the following theorem. It goes back
to [HY01]; however, is presented in a more general form here, which is proved
in [LW14a].

Theorem 5.1 (Additive drift, expected time)
Let (Xt)t≥0, be a stochastic process, adapted to some filtration Ft, over a
bounded state space S ⊆ R+

0 . Let T0 := min{t ≥ 0: Xt = 0} denote the first
hitting time of 0 and assume that both E

(
X0
)

and E
(
T0 | X0

)
are finite. Then:

(i) If E
(
Xt −Xt+1 | Ft;X

t > 0
)
≥ ε then E

(
T0 | X0

)
≤ X0

ε .

(ii) If E
(
Xt −Xt+1 | Ft;X

t > 0
)
≤ ε then E

(
T0 | X0

)
≥ X0

ε .

Intuitively, the filtration Ft describes the history of the process up to time t.
For Markov processes, it simplifies to the state at time t; for instance, the first
drift condition would read E

(
Xt −Xt+1 | Xt;Xt > 0

)
≥ δ instead.
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Often, the state space Z of the underlying stochastic process and the support S
of the random variables Xt are not identical. Obviously, this is the case if
the state space is not a subset of R, e. g., if we are dealing with bit strings,
where we have Z := {0, 1}n. In particular, even if the state space is the real
numbers, it might be convenient to introduce a so-called potential function (also
called Lyapunov function) g : Z 7→ S, which leads to a new stochastic process
Y t := g(Xt) on the new state space S. One reason might be that the drift of
Y t is easier to compute. We abstract away from this mapping by allowing the
random variables Xt from Theorem 5.1 to represent a process obtained after
any transformation of the original process using a potential function. Such a
transformation might turn Markovian processes into non-Markovian ones.

Theorem 5.1 is only concerned with bounds on the expected value of the first
hitting time of the target state 0. Recently, it has been shown in [Köt14] that
the first hitting time is sharply concentrated (exhibits so-called tail bounds)
if additional assumptions are made on the step size. We restate this in the
following theorem.

Theorem 5.2 (Additive Drift, Tail Bounds)
Let the prerequisites of Theorem 5.1 hold and assume additionally that |Xt −
Xt+1| < c for some c > 0 and all t ≥ 0. Then:

(i) If E
(
Xt −Xt+1 | Ft;X

t > 0
)
≥ ε then Pr(T0 > s) ≤ exp(−sε2/(16c2))

for all s ≥ 2X0/ε.

(ii) If E
(
Xt −Xt+1 | Ft;X

t > 0
)
≤ ε then Pr(T0 < s) ≤ exp(−(X0)2/(16c2s))

for all s ≤ X0/(2ε).

The previous two theorems dealt with a drift towards the target state 0. If
the drift is directed away from the target, lower bounds on the hitting time
can be proved. This is the realm of negative drift theorems, several variants of
which exist (see OW11, OW12 for the original version). In this work we use the
following version, adapted from [RS14, Theorem 4], which takes into account
the probabilities of staying at a state. For technical reasons, it is restricted to
Markov processes and the use of a possible potential function is made explicit.

Theorem 5.3 (Negative drift with self-loops)
Let (Xt)t≥0, be a Markov process over a state space S. Suppose there exist an
interval [a, b] ⊆ R+

0 , two constants δ, ε > 0, a function r(ℓ) satisfying 1 ≤ r(ℓ) =
o(ℓ/ log(ℓ)), and a potential function g : S → R+

0 , such that for all t ≥ 0, the
following two conditions hold:

(i) E(∆t | Xt; a < g(Xt) < b) ≥ ε(1− pt,0),
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(ii) Pr(|∆t| ≥ j | Xt; a < g(Xt)) ≤ r(ℓ)(1−pt,0)
(1+δ)j for j ∈ N0,

where ∆t = g(Xt+1)− g(Xt) and pt,0 := Pr(∆t = 0 | Xt).

Then there is a constant c∗ > 0 such that for T ∗ := min
{
t ≥ 0 : g(Xt) ≤ a | g(X0) ≥ b

}
it holds

Pr
(
T ∗ ≤ 2c

∗ℓ/r(ℓ)
)
= 2−Ω(ℓ/r(ℓ)).

Intuitively, drift away from the target makes it difficult to reach the target.
Nevertheless, if the drift is negative only for a few states and directed towards
the target at the remaining states, the expected first hitting time of the target
might still be small. Such a scenario of “headwind drift” on the way towards
the target will appear in our analyses if the probability of flipping a bit of the
optimum is small, e. g., p = O((log n)/n2)), resulting in only very few states
close to the target having negative drift.

The following novel theorem proves upper bounds in the presence of possibly
negative drift. The bounds δ(i) are lower bounds on the drift at state i, pes-
simistically assuming that all steps towards the target improve only by 1. The
p−(i) and p+(i) are bounds on the probability of improving by at least 1 and
worsening by at least 1, respectively. The theorem is general enough to analyze
different scenarios, e. g., blind random walks on the hypercube. However, we
will mostly apply Corollary 5.5, which is easier to use.

For notational convenience, we state the theorem only for Markov processes,
however, it can easily be generalized to non-Markovian ones. Extensions to con-
tinuous search spaces seem also possible; however, these are not straightforward.
Therefore, the state space is restricted to be non-negative integers.

Theorem 5.4 (Headwind drift, upper bound)
Let (Xt)t≥0 be a Markov process on {0, . . . , N}. Let bounds

p−(i) ≤ Pr
(
Xt+1 ≤ i− 1 | Xt = i

)
and

p+(i) ≥ Pr
(
Xt+1 ≥ i+ 1 | Xt = i

)
,

where 0 ≤ i ≤ N , be given, and define

δ(i) := p−(i)− E
(
(Xt+1 − i) · 1{Xt+1 > i} | Xt = i

)
.

Assume that δ(i) is monotone increasing w. r. t. i and let κ ≥ max{i ≥ 0 | δ(i) ≤
0} (noting that δ(0) ≤ 0). The function g : {0, . . . , N + 1} → R+ is defined by

g(i) :=
N∑

k=i+1

1

δ(k)
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for i ≥ κ (in particular, g(N) = g(N + 1) = 0), and inductively by

g(i) :=
1 + (p+(i+ 1) + p−(i+ 1))g(i+ 1)

p−(i+ 1)

for i < κ.

Then it holds for the first hitting time T := min{t ≥ 0 | Xt = 0} of state 0 that

E
(
T | X0

)
≤ g(0)− g(X0).

Remark. δ(i) respects the following simple lower bound:

δ(i) ≥ E
(
(i−Xt+1) · 1{Xt+1 ≥ i− 1} | Xt = i

)
.

Proof. We will prove that g(i) is a monotone decreasing function and can be
used as a potential function to satisfy the drift condition

E
(
g(Xt+1)− g(i) | Xt = i ∧ i > 0

)
≥ 1.

Due to the monotonicity of g(i), the first hitting time where g(Xt) = g(0)
equals the first hitting time where Xt = 0 for the original Xt-process. Then the
theorem follows by the additive drift theorem (Theorem 5.1).

To prove the monotonicity of g(i), we observe that g(i)− g(i+ 1) ≥ 0 for i ≥ κ
immediately by definition. For i < κ, we get

g(i)

g(i+ 1)
=

1
g(i+1) + (p+(i+ 1) + p−(i+ 1))

p−(i+ 1)

≥ p+(i+ 1) + p−(i+ 1)

p−(i+ 1)
≥ 1,

where we used g(i+ 1) ≥ 0. This completes the proof of the monotonicity.

To prove the drift condition, we distinguish between two cases. Suppose Xt =
i > κ. The monotonicity of the δ(i) implies the “concavity” condition g(i− 1)−
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g(i) ≥ g(i)− g(i+ 1) for i > κ. We obtain

E
(
g(Xt+1)− g(i) | Xt = i

)
≥ p−(i)(g(i− 1)− g(i))

−

(
N∑

k=1

(g(i)− g(i+ k))Pr
(
Xt+1 = i+ k

))
≥ p−(i)(g(i− 1)− g(i))

−

(
N∑

k=1

k(g(i− 1)− g(i))Pr
(
Xt+1 = i+ k

))
= p−(i)(g(i− 1)− g(i))

− (g(i− 1)− g(i))E
(
(Xt+1 − i)1{Xt+1 > i} | Xt = i

)
= (g(i− 1)− g(i))δ(i) =

1

δ(i)
· δ(i),

where the second inequality used the concavity repeatedly. If Xt = i ≤ κ,
we pessimistically assume all steps towards the target to reach i − 1 and all
away from it to reach N (resulting in zero g-value). Hence, using the definition
of g(i− 1),

E
(
g(Xt+1)− g(i) | Xt = i

)
≥ p−(i)(g(i− 1)− g(i))− p+(i)g(i)

= p−(i)

(
1 + (p+(i) + p−(i))g(i)

p−(i)
− g(i)

)
− p+(i)g(i)

= 1,

which proves the bound on the drift and, therefore, the theorem.

We now state the announced corollary, which gives us a closed expression for
the expected first hitting time E

(
T | X0

)
. This expression involves the factor∑N

k=κ+1
1
δk

that is reminiscent of the formula for the expected first hitting time
of state κ under variable drift towards the target (see, e. g., RS14 for a formu-
lation of the variable drift theorem). For the states less than κ, where drift
away from the target holds, the product

∏κ
k=1

p+(k)+p−(k)
p−(k) comes into play. In-

tuitively, it represents the waiting time for the event of taking κ consecutive
steps against the drift. Since the product involves probabilities conditioned on
leaving the states, which effectively removes self-loops, another sum of products
must be added. This sum, represented by the second line of the expression for
E
(
T | X0

)
, intuitively accounts for the self-loops.
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Corollary 5.5 Let the assumptions of Theorem 5.4 hold. Then

E
(
T | X0

)
≤

((
N∑

k=κ+1

1

δk

)(
κ∏

k=1

p+(k) + p−(k)

p−(k)

))

+

 κ∑
k=1

1

p−(k)

k−1∏
j=1

p+(j) + p−(j)

p−(j)

 .

Proof. It is sufficient to prove that the right hand side is an upper bound
on the g(0) defined in Theorem 5.4. We note that

∑N
k=κ+1

1
δk

= g(κ). The

inductive expression for g(i) yields g(i) ≤ 1+(p+(i+1)+p−(i+1))g(i+1)
p−(i+1) for i ≤ κ−1.

Inductively

g(0) ≤

κ−1∏
j=0

p+(j + 1) + p−(j + 1)

p−(j + 1)

 g(κ)

+

κ−1∑
k=0

1

p−(1)

k∏
j=1

p+(j) + p−(j)

p−(j + 1)

 ,

and the corollary follows by index transformations and regrouping terms.

5.2.2.2 Occupation Probabilities

In this section we move away from analyses of the first hitting time of a state
and direct our attention to so-called occupation probabilities. For the anytime
analysis in Section 5.3, we want to make statements about how far from the
optimum the (1+1) EA will stray, and with what probability. In particular, we
want to know the probability that the current search point is more than j away
from the optimum in iteration t, for large t. The idea is that a stochastic process
(Xt)t≥0 on R which has a drift towards 0 will, after hitting 0 for the first time,
likely stay in the proximity of 0 and stray off only with a low probability. This
is what is meant by “occupation probabilities”.

[Haj82], in his third section, already gives some general bounds on these proba-
bilities. This is also the idea of another lemma regarding occupation probabili-
ties given in [LW15a, Lemma 13] (restated below as Lemma 5.6), from which we
will here derive a simple version (Theorem 5.7), tailored to the case of additive
drift and Markov processes with self-loops.
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Lemma 5.6 (LW15a, Lemma 13)
Let (Xt)t≥0, be a stochastic process, adapted to a filtration (Ft)t≥0, over some
state space S ⊆ {0}∪ [xmin, xmax], where xmin ≥ 0. Let a, b ∈ {0}∪ [xmin, xmax],
b > a. Let h : [xmin, xmax] → R+ be such that 1/h is integrable on [xmin, xmax]
and define g : {0} ∪ [xmin, xmax] → R≥0 by g(x) := xmin

h(xmin)
+
∫ x

xmin

1
h(y) dy for

x ≥ xmin and g(0) := 0.

If there exist λ > 0, β < 1 and D > 0 such that

E
(
e−λ(g(Xt)−g(Xt+1)) · 1

{
Xt > a

}
| Ft

)
≤ β

and E
(
e−λ(g(a)−g(Xt+1)) · 1

{
Xt ≤ a

}
| Ft

)
≤ D

then

Pr(Xt ≥ b | X0) < βt · eλ(g(X
0)−g(b)) +

1− βt

1− β
Deλ(g(a)−g(b))

for t > 0.

We give two definitions regarding Markov processes before giving our theorem
regarding occupation probabilities. Let a Markov process (Xt)t≥0 on R+

0 be
given. We say that (Xt)t≥0 has step size at most c ∈ R if, for all t, |Xt−Xt+1| ≤
c. We say that (Xt)t≥0 has self-loop probability at least p0 ∈ R iff, for all t such
that Xt > 0 we have Pr

(
Xt = Xt+1 | Xt

)
≥ p0. From Lemma 5.6 we derive

the following statement on occupation probabilities for the case of bounded step
sizes.

Theorem 5.7 (Occupation probabilities)
Let a Markov process (Xt)t≥0 on R+

0 with additive drift of at least d towards
0 be given, starting at 0 (i.e. X0 = 0), with step size at most c and self-loop
probability at least p0. Then we have, for all t ∈ N and b ∈ R+

0 ,

Pr(Xt ≥ b) ≤ 2e
2d

3c(1−p0)
(1−b/c)

.

Proof. First, we define a new Markov process (Y t)t≥0 obtained from Xt by
omitting all steps that do not change the current state; formally, since we con-
sider Markov chains, we have Y t − Y t+1 = Xt −Xt+1 in the conditional space
where Xt+1 ̸= Xt. By definition of conditional probability and expectation, we
obtain

E
(
Y t − Y t+1 | Xt

)
=

E
(
Xt −Xt+1 | Xt

)
Pr(Xt+1 ̸= Xt | Xt)

≥
E
(
Xt −Xt+1 | Xt

)
1− p0
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since the probability of changing the state is at most 1− p0.

The theorem makes a statement for all t, however, to prove it, it is enough to
consider steps that actually change state. Hence, in the following, the aim is to
analyze the Y -process using Lemma 5.6 with a := xmin := 0 and the constant
function h(x) := 1. From this we obtain the trivial potential function g(x) = x.
From our prerequisites and the previous paragraph, we get

E
(
g(Y t)− g(Y t+1) | Yt;Y

t > 0
)

= E
(
Y t − Y t+1 | Yt;Y

t > 0
)

≥
E
(
Xt −Xt+1 | Xt;Xt > 0

)
1− p0

≥ d

1− p0
.

Let d∗ := d/(1 − p0). To bound the moment-generating function of the drift,
we abbreviate ∆t := Y t−Y t+1. We already know that E(∆t | Y t;Y t > 0) ≥ d∗

and argue

E
(
e−λ∆t

· 1{Y t > 0} | Y t
)
≤ E

(
e−λ∆t

| Y t;Y t > 0
)

In the following, we condition on Y t;Y t > 0 everywhere but omit this from
the formulas for the sake of readability. Using the Taylor expansion of the
exponential function, we get

E
(
e−λ∆t

)
≤ 1− λE

(
∆t
)
+

∞∑
k=2

λkE
(
|∆t|k

)
k!

,

which for any η ≥ λ is at most

1− λE
(
∆t
)
+

λ2

η2

∞∑
k=2

ηkE
(
|∆t|k

)
k!

.

Now, by setting η := 1/c, λ := 2d∗/(3c2) and noting that ∆t ≤ c (also for the
Y -process), we get the bound

1− λE
(
∆t
)
+ λ

2d∗

3c2 · (1/c2)
·

∞∑
k=2

1

k!
≤ 1− λE

(
∆t
)
+ λ

d∗

2

where the last inequality used that
∑∞

k=2
1
k! = e − 2 ≤ 3/4. Altogether, using

E(∆t) ≥ d∗, we get

E
(
e−λ∆t

· 1
{
Y t > 0

})
≤ 1− λd∗

2
≤ e−λd∗/2

= e−
(d∗)2

3c2 =: β < 1.
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Moreover, in order to apply Lemma 5.6, we need to bound

E
(
e−λ(a−Y t+1) · 1

{
Y t = 0

}
| Yt

)
≤ ecλ = e

2d∗
3c =: D > 1

using a := 0 and the bounded step size. Altogether, from the lemma we get

Pr(Y t ≥ b) ≤
(
βt +

1− βt

1− β
D

)
e−λb

≤ (1 +D)e−λb ≤ 2e
2d∗
3c e−

2bd∗
3c2

= 2e
2d

3c(1−p0)
− 2bd

3c2(1−p0) ,

and the last expression is also a bound on Pr(Xt ≥ b) as it does not depend
on t.

5.3 An Anytime Analysis

In this section we give our anytime analysis, separately for the cases of r = 2
and for large r. We will start in Section 5.3.1 with the classical case of r = 2,
i. e., bit strings. In Section 5.3.2 we consider large r. We restrict ourselves to
p = o(1/n), i. e., in expectation less than one bit of the optimum is changed.

5.3.1 The Case of r = 2

We fix r = 2 and start by computing the expected change (drift) in the search
point. We expect the (1+1) EA, starting from a random string, to make some
progress towards the optimum until the number of incorrect bits is lower than
the drift caused by the dynamically changing optimum.

More precisely, we consider the process Xt given by the current OneMax-
value (i. e., the number of incorrect bits) and assume a current OneMax-value
of Xt = i < n/2. We identify a forward drift

∆−(i) := (i−Xt+1) · 1{Xt+1 < i}

caused by the selection mechanism of the (1+1) EA and a backward drift

∆+(i) := (Xt+1 − i) · 1{Xt+1 > i}

caused by the random movement of the optimum. The total drift ∆t = (Xt −
Xt+1) under Xt = i satisfies ∆t = ∆−(i)−∆+(i), and also E(∆t) = E(∆−(i))−
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E(∆+(i)). We bound the forward and backward drift. Progress is made when
one of the incorrect bits flips and neither the rest of the bits nor the optimum
flips, and can only be made by flipping incorrect bits of the current string or the
optimum. The total expected number of flipping bits among i bits is i(p+1/n).
We obtain

(1− p)n
(
1− 1

n

)n−i
i

n
≤ E

(
∆−(i)

)
≤ i

n
+ ip,

and, since p = o(1/n),
i

e2n
≤ E

(
∆−(i)

)
≤ 2i

n
.

Similarly, since the OneMax-value can only increase (move away from the op-
timum) by flipping bits of the optimum, we get

(1− 1/n)n(n− i)p(1− p)i ≤ E
(
∆+(i)

)
≤ np,

implying, since i < n/2
np

4e2
≤ E

(
∆+(i)

)
≤ np.

We solve E(∆t) = 0 to find an i∗ where we have a drift of zero, and get from
the inequalities above that

1

8e2
n2p ≤ i∗ ≤ e2n2p.

If i > e2n2p, there is certainly a drift towards the optimum; and if i < 1
8en

2p,
there is certainly a drift away from the optimum. In the region of i∗ = Θ(n2p)
there is an equilibrium with zero drift, and we would expect the (1+1) EA to
approach this region and not to move significantly away from it afterwards. This
is made precise in the following theorem.

Theorem 5.8 Let r = 2, p = o(1/n) and 1/p = nO(1). Let (xt, at)t∈N be
the sequence of random variables denoting the pair of current search point and
current optimum as given by running the (1+1) EA on dynamic OneMax.
Then, for any t ≥ 0 and any α = ω(lnn) there is bt := n− tpn

7 such that

Pr
(
d(xt, at) ≥ max{αbt, 2e2n2p+ α}

)
≤ e−Ω(α).

Moreover, for all t ≥ α/p,

Pr
(
d(xt, at) ≥ 2e2n2p+ α

)
≤ e−Ω(α).

Proof. Still, Xt := OneMaxat(xt) = d(xt, at). We recall that there is a drift
towards the target if Xt > i∗. More precisely, from the estimations presented
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before this theorem we obtain

E
(
i−Xt+1 | Xt = i

)
= E

(
∆−(i)

)
− E

(
∆+(i)

)
≥ i

e2n
− np ≥ np

for i ≥ 2e2n2p. In the following, we analyze the Xt-process using Lemma 5.6
with a := 2e2n2p, b = max{αbt, a + α}, xmin := 0 and the constant function
h(x) := 1. From this we obtain the trivial potential function g(x) = x. To
bound the moment-generating function of the drift if Xt > a, we use ∆ :=
g(Xt)− g(Xt+1) = Xt −Xt+1 and argue

E
(
e−λ∆ · 1{Xt > a} | Xt

)
≤ E

(
e−λ∆ | Xt;Xt > a

)
.

In the following, we condition on Xt;Xt > a in all expectations unless stated
otherwise but omit this for the sake of readability. Using the Taylor expansion
of the exponential function, we get

E
(
e−λ∆

)
≤ 1− λE(∆) +

∞∑
k=2

λkE
(
|∆|k

)
k!

,

which for any η ≥ λ is at most

1− λE(∆) +
λ2

η2

∞∑
k=2

ηkE
(
|∆|k

)
k!

= 1− λE(∆) +
λ2

η2

(
E
(
eη|∆|

)
− ηE(|∆|)− 1

)
︸ ︷︷ ︸

Ψ

.

The aim now is to bound the term in parentheses such that Ψ = O(η2(pn +
i/n)). To this end, note that |∆| is stochastically dominated by a sum of two
independent random variables

Z ∼ Bin(n, p) + Bin(i, 1/n)

since it is necessary to flip a bit of the optimum or a wrong bit of the current
state to change the state. The sum of the two random variables overestimates
the change of distance since the two types of flips might cancel each other.
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The moment-generating function of the binomial distribution is well known and,
for our parameters, given by

E
(
eηZ
)
= E

(
eηBin(n,p)

)
· E
(
eηBin(i,1/n)

)
= (peη + 1− p)

n ·
(
1

n
eη +

(
1− 1

n

))i

≤
(
p
(
1 + η + η2

)
+ 1− p

)n · ( 1

n

(
1 + η + η2

)
+ 1− 1

n

)i

=
(
(η + η2)p+ 1

)n(η + η2

n
+ 1

)i

for η ≤ 1 as ex ≤ 1 + x+ x2 for x ≤ 1. Using 1 + x ≤ ex, we obtain from this

E
(
eηZ
)
≤
(
e(η+η2)p

)n (
eη/n+η2/n

)i
= e(pn+i/n)η+(pn+i/n)η2

Introducing q := pn+ i/n ≤ 2, we have

E
(
eηZ
)
≤ 1 + (qη + qη2) + (qη + qη2)2

= 1 + qη + qη2 + q2η2 + 2q2η3 + q2η4

≤ 1 + qη + qη2 + 2qη2 + 2qη3 + 2qη4

≤ 1 + qη + 7qη2,

where we assumed qη + qη2 ≤ 1, which holds for η ≤ 1/4. Since E(Z) = q, we
have established

Ψ =
∞∑
k=2

ηkE
(
|∆|k

)
k!

≤
∞∑
k=2

ηkE
(
Zk
)

k!
= E

(
eηZ
)
− ηE(Z)− 1

≤ (1 + qη + 7qη2)− qη − 1 = 7qη2

since η ≤ 1.

Plugging this into the above bound on E
(
e−λ∆

)
, we get

E
(
e−λ∆

)
≤ 1− λE(∆) + 7λ2q
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for λ ≤ η ≤ 1/4. Since E(∆) ≥ i
e2n − np, we choose λ = 1

21e2 (and η = 1/4) to
get

E
(
e−λ∆

)
≤ 1− λ

(
i

e2n
− np

)
+ 7λ

1

21e2
q

= 1− λ

(
i

e2n
− np

)
+

λ

3e2

(
i

n
+ pn

)
≤ 1− λ

(
2i

3e2n
− 22pn

21

)
=: β ≤ 1− 6pn

441e2

where the final inequality holds since i ≥ a = 2e2n2p. In addition, we have then

β ≤ e−6pn/(441e2).

So far, we have bounded the moment-generating function of the drift by less
than 1. We are left with a bound on

E
(
e−λ(a−Xt+1) · 1

{
Xt ≤ a

})
.

Noting that the exponent is positive for Xt+1 ≥ a ≥ Xt, we bound the expres-
sion by

E
(
eλ|X

t−Xt+1| | Xt ≤ a
)
≤ E

(
eλZ | Xt ≤ a

)
≤ 1 + 8λq ≤ 1 + 16λ =: D

using the estimations that bounded E
(
eηZ
)

further above. Applying Lemma 5.6,
we get

Pr
(
Xt ≥ b

)
≤ βt · eλ(X

0−b) +
1

1− β
De−λα

≤ e−
6tpn

441e2 e
n−b

21e2 +
441e2

6pn

(
1 +

16

21e2

)
e−

α
21e2 .

As b ≥ bt = n − tpn
7 , the first term is e−b/(882e2). Hence, if b ≥ α(n − tpn

7 ), it
is e−Ω(α). Assuming α = ω(lnn), the second term is e−Ω(α) = n−ω(1), which
makes the polynomial 441e2

6pn negligible. This proves the first statement from the
theorem. The second one follows for t ≥ nα/(pn) = α/p since then the first
term is clearly e−Ω(α).

Altogether, for t large enough, we have

Pr
(
Xt ≥ b

)
≤ e−Ω(α).□
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Theorem 5.8 shows that after a polynomial amount of time, the distance is
very likely to be not by much above the equilibrium state. We can also show
a somewhat symmetrical statement, showing that it is very likely to be not by
much below the equilibrium state. This is proven in the following theorem.

Theorem 5.9 Let r = 2, p = o(1/n) and 1/p = nO(1). Let (xt, at)t∈N be
the sequence of random variables denoting the pair of current search point and
current optimum as given by running the (1+1) EA on dynamic OneMax.
Then, for any α = ω(lnn) and all t ≥ 0

Pr
(
d(xt, at) ≤ n2p/(16e2)− α

)
≤ e−Ω(n) + e−Ω(α).

Proof. We essentially follow the analysis from the proof of Theorem 5.8, but
focus on a region close to the target where the negative drift is stronger than the
positive one. To match the drift theorem, we flip the orientation of the space
and let Xt = n−OneMaxat(xt). We recall that there is a drift away from the
optimum if n−Xt < i∗. More precisely, from the estimations presented at the
beginning of this subsection we obtain

E
(
(n− i)−Xt+1 | Xt = n− i

)
= E

(
∆+(i)

)
− E

(
∆−(i)

)
≥ np

4e2
− 2i

n
≥ np

8e2

for i ≤ n2 p
16e2 . This corresponds to Xt ≥ n−n2 p

16e2 . In the following, the aim is
to analyze the Xt-process using Lemma 5.6 with a := n−n2p/(16e2), b = a+α,
xmin := 0 and the constant function h(x) := 1. From this we obtain the trivial
potential function g(x) = x. We define ∆ and bound the moment-generating
with the same procedure as in the proof of Theorem 5.8. Then (on Xt;Xt > a,
which means i < n2p/(16e2))

E
(
e−λ∆

)
≤ 1− λE(∆) + 7λ2q.

Since E(∆) ≥ np
8e2 , we choose λ = 1

112e2 to get

E
(
e−λ∆

)
≤ 1− λ

( np

17e2

)
= 1− np

1904e4
=: β < 1.

The bound
E
(
e−λ(a−Xt+1) · 1

{
Xt ≤ a

})
≤ 1 + 16λ =: D
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is the same as in the proof of Theorem 5.8 since it only takes into account the
worst-case distribution of ∆. Altogether,

Pr
(
Xt ≥ b

)
≤ e−

tpn

1904e4 e
X0−b

112e2 +
1904e4

np

(
1 +

16

112e2

)
e−

α
112e2 .

If X0 ≤ 2n/3, which happens with probability 1− 2−Ω(n) according to Chernoff
bounds, the first term is e−Ω(n) since b = n − O(n2p) = n − o(n). The second
term is e−Ω(α) by the same arguments as in the proof of Theorem 5.8. Hence,
turning back to the original state space,

Pr
(
d(xt, at) ≤ n2p/(16e2)− α

)
≤ e−Ω(n) + e−Ω(α)

as suggested.

5.3.2 The Case of Large r

In this section we consider large values of r. With the next theorem we show
that, even for exponentially large r, the (1+1) EA maintains search points which
differ from the optimum only by a constant in each dimension (in expectation)!
This holds after an initial mixing phase, the length of which depends linearly
on r.

Theorem 5.10 Let p = o(1/n) and let (xt, at)t∈N be the sequence of random
variables denoting the pair of current search point and current optimum as given
by running the (1+1) EA on dynamic OneMax. Then there are k0, k1 > 1 such
that, for all t ≥ k0 rn

2,

∀b ≥ 4 : Pr
(
OneMaxat(xt) ≥ bn

)
≤ n2−k1 b (5.1)

and
E
(
OneMaxat(xt)

)
= O(n). (5.2)

In particular, this bound is independent of r. In addition, for all i ≤ n and all
t ≥ k0 rn

2,
∀b ≥ 4 : Pr

(
d(ati, x

t
i) ≥ b

)
≤ 2−k1 b. (5.3)

Proof. We start by showing Equation (5.3). Fix a bit position i ≤ n. We
reason with drift on dt = d(ati, x

t
i) and show that it leads towards 0. Note that

this value can change by at most two per iteration (one movement step of the
algorithm, one of the optimum). Let some time t be given and suppose dt ̸= 0.
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Let E be the event that the (1+1) EA keeps all bits other than i unchanged.
We bound the expectation of moving in the wrong direction conditional on E
as

E
(
dt+1 − dt | E

)
= o(1/n),

as the optimum might move away with probability o(1/n) but, if the new solu-
tion is accepted at all, it is more likely to be accepted if the i was changed in
the right direction than when it was changed in the wrong direction. We further
bound expectation of moving in the right direction conditional on E as

E
(
dt − dt+1 | E

)
= Ω(1/n),

as we will not accept a worsening, but do accept an improvement, which will hap-
pen with probability Ω(1/n). Using that P (E) approaches 1/e as n approaches
infinity, we get a drift of Ω(1/n) towards the optimum.

With the use of the additive drift theorem (Theorem 5.1), this shows that the
first time we have dt = 0 is expected to be at most k1 rn iterations, for some
k1 large enough. Let T be the random variable denoting the smallest t with
dt = 0. Using concentration bounds for additive drift (Theorem 5.2), we get

∀s ≥ 2k1 rn : P (T ≥ s) ≤ exp
(
− s

64n2

)
.

Let t0 = 2k1 rn
2. Thus, we do not have dt0 = 0 for the first time within the

first t steps with probability 2−Ω(r).

We now set up to use Theorem 5.7 to derive bound for straying from the op-
timum after reaching it for the first time. In the notation of that lemma, our
process has a drift of d = O(1/n), a self-loop probability of p0 = 1 − O(1/n)
and a step size of at most c = 2. Thus, Lemma 5.7 gives some k such that, for
all t,

∀b ≥ 4 : Pr
(
d(ati, x

t
i

)
≥ b | t > T ) ≤ 2−k b.

We have, for all t ≥ t0,

Pr
(
Xt ≥ b

)
≤ Pr

(
d(ati, x

t
i

)
≥ b | t > T ) + Pr(t ≤ T )

≤ 2−k b + 2−Ω(r).

This gives the existence of a k1 as desired, which shows Equation (5.3). Equa-
tion (5.1) now follows from the union bound, while Equation (5.2) follows from
linearity of expectation (and the trivial bound on the expectation of exponen-
tially decaying random variables).
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5.4 Upper Bound on Hitting Time of Target

In this section, we re-prove the upper bound given by [Dro03] in Theorem 5.12
and then extend it to the case of arbitrary r in Theorem 5.14. We start with the
case of r = 2. Let Xt, t ≥ 0, be the Hamming distance of the current optimum
string and the current search point of the (1+1) EA at time t. Hence, we get a
process on {0, . . . , n} with target state 0. We lower bound the parameter p−(i)
and the “drift” δ(i) in the sense of Theorem 5.4.

Lemma 5.11 For i > 0, Pr(Xt+1 = i− 1 | Xt = i) ≥ (1− p)n i
en , Pr(Xt+1 ≥

i+ 1 | Xt = i) ≤ pn and δ(i) ≥ (1− p)n i
en − pn.

Proof. The distance to the optimum decreases if the optimum does not move
(probability (1−p)n) and exactly one wrong bit flips (probability (1−1/n)n−1 i

n ≥
i
en ), which proves the bound on Pr(Xt+1 = i − 1 | Xt = i). The distance
to the optimum can only increase if the dynamic component flips a bit. By
a union bound, the probability is at most pn, which proves the bound on
Pr(Xt+1 ≥ i+ 1 | Xt = i).

To bound E
(
(Xt+1 − i) · 1{Xt+1 > i} | Xt = i

)
, which appears in the definition

of δ(i), we pessimistically assume that each change of the optimum string in-
creases the distance to the current search point. The expected number of bits
changed by the dynamic component equals pn, which altogether leads to the
bound on δ(i).

Hereinafter, we work with p−(i) = (1 − p)n i
en and p+(i) = pn. We get the

following polynomial upper bound in the case of bit strings.

Theorem 5.12 Let r = 2 and p ≤ c lnn
n2 for some constant c. Then the

expected optimization time of the (1+1) EA on the dynamic OneMax is
O(n4.8c+2 ln2 n).

Proof. By solving the equation δ(i) = 0 with the bounds from Lemma 5.11, we
are allowed to set κ := pen2

(1−p)n . Using the assumption on p, κ = (1+o(1))ec lnn ≤
3c lnn for n large enough. Moreover, we have p+(i) + p−(i) ≤ c lnn

n + c lnn
n ≤
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2c lnn
n for i ≤ κ. Then

E
(
T | X0

)
≤

((
n∑

k=3c lnn+1

1
k
en − (c lnn)/n

)
3c lnn∏
k=1

2c lnn
n

(1− p)n k
en

)

+

3c lnn∑
k=1

1

(1− p)n k
en

k−1∏
j=1

2c lnn
n

(1− p)n j
en


≤

n∑
k=3c lnn+1

1

k/(10n lnn)
· P + 3c lnn · P,

where P := en(1− p)−n
∏3c lnn

k=2
2ce lnn

k . If n is not too small, we have

E
(
T | X0

)
≤ (10n ln2 n) + 3c lnn)P ≤ (11n ln2 n)P.

Now,

P ≤ en

(
1− c lnn

n2

)−n
(2ce lnn)3c lnn

(3c lnn)!

≤ en(1 + o(1))

(
2ce2

3c

)3c lnn

≤ 2ene3c ln(2e
2/3) lnn ≤ 2en4.8c+1

using k! ≥ (k/e)k. Altogether,

E
(
T | X0

)
≤ 22en4.8c+2 ln2 n

for n large enough.

For comparison, [Dro03] proves the upper bound E(T ) = O(n4ce/ ln(2)+1 lnn),
i. e., the exponent is almost 12c. Hence, state-of-the-art drift analysis yields
more precise results, is more versatile and leads to cleaner and shorter proofs
than the previous analysis by [Dro03].

It is not to difficult to generalize Theorem 5.12 to arbitrary r if we replace the
prerequisite on p by p ≤ c lnn

rn2 . Basically, a factor of r is lost if we work under the
worst case assumption that wrong positions have distance r from the optimum,
resulting in only OneMaxat(xt)/r wrong positions. To increase the regime
of polynomial hitting times, we have to prove this worst case to be unlikely.
Fortunately, the anytime analysis from Theorem 5.10 can be used here to show
that we lose a factor of at most O(log n) regardless of r. To this end, we will
use the following lemma, which immediately follows from Theorem 5.10.
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Lemma 5.13 Let p = o(1/n). Then there are constants a > 0, b > 1 such that
for any i ∈ [n], j ∈ N and all t ≥ rn2 lnn it holds Pr(d(ati, x

t
i) ≥ j) ≤ ab−j.

We now state the theorem concerned with polynomial hitting times for large r.
To ease the statement, we only consider polynomial-sized r.

Theorem 5.14 Let r ≤ nk for some constant k and p ≤ c lnn
min{r,lnn}n2 for

some sufficiently small constant c (possibly depending on k). Then the expected
optimization time of the (1+1) EA on the dynamic OneMax is polynomial in n.

Proof. Let t∗ = rn2 lnn. Pessimistically ignoring the case that the optimum is
hit in less than t∗ steps, we apply Lemma 5.13. Choosing j∗ = ln(an2t∗)/(ln b) =
O(log n), we obtain that Pr(d(ati, x

t
i) ≥ j∗) ≤ 1/(t∗n2) for any j and t ≥ t∗. By

a union bound, the probability that for all i ∈ [n] we have d(ati, x
t
i) ≤ j∗ is

1 − O(1/(t∗n)). From now on, we assume this to hold in a phase of length t∗,
starting from time t∗ up to time 2t∗−1. Again by a union bound, the probability
that within t∗ steps all positions have distance at most j∗ from the target is still
1 − O(1/n) − n−ω(1) = 1 − o(1). If j∗ ≥ r, the assumption holds trivially, i. e.,
with probability 1.

Under our assumption, we conduct a drift analysis with respect to Xt :=
OneMaxat(xt). Similarly to Lemma 5.11, Pr(Xt+1 ≥ i + 1 | Xt = i) ≤ pn
since each changing position of the target increases the distance by at most 1
and also

E
(
(Xt −Xt+1) · 1

{
Xt+1 > Xt

}
| Xt = i

)
≤ pn.

If Xt = i, then there are at least i
min{r,j∗} wrong positions, hence p−(i) =

Pr(Xt+1 = i− 1 | Xt = i) ≥ (1− p)n i
min{r,j∗}en and

δ(i) ≥ (1− p)n
i

min{r, j∗}en
− pn

≥ (1− p)n
i

min{r, j∗}en
− c lnn

min{r, lnn}n
.

By our assumptions, j∗ ≤ kc1 lnn for some constant c1 (depending on a and
b) for large enough n. Using our assumption on p, we get that δ(i) ≥ 0 for
i ≥ c3 lnn, where c3 is a constant such that c3 = cc1k+c2 for another constant c2.
Hence, we work with κ := c3 lnn. If c2 is chosen appropriately, then we also
have p+(i)+p−(i) ≤ c3 lnn

2n for i ≤ κ. Similarly as in the proof of Theorem 5.12,
we get for small enough c that

E
(
T | X0

)
≤

j∗n∑
ℓ=c3 lnn

1

ℓ/(2ekc1n lnn)
· P + c3 lnn · P,



106 (1+1) EA on Generalized Dynamic OneMax

where

P := enmin{r, j∗}(1− p)−n
c3 lnn∏
ℓ=2

(c3/2) lnn

ℓ
.

If n is not too small, E
(
T | X0

)
≤ 3ekc1c3n(ln

2 n)P , so we are left with an
estimate for P . We get

P ≤ O(n ln2 n)

(
c3e lnn

2c3 lnn

)c3 lnn

≤ nc3

for n large enough. Altogether,

E
(
T | X0

)
≤ ncc1k+c2 .

If n is large enough and c is sufficiently small but still constant, then ncc1k+c2 ≤
t∗/2. Hence, by Markov’s inequality, the probability that a phase of t∗ steps is
successful, i. e., the optimum is hit, is at least 1/2; still conditioning on maximum
distance j∗ for all positions. By the considerations from above, the unconditional
probability of a successful phase is at least 1/2 − o(1). In case of a failure, we
consider the subsequent phase of t∗ steps. The expected number of phases is at
most 2 + o(1), hence the overall expected first hitting time of the target is at
most t∗ + (2 + o(1))t∗ = (3 + o(1))t∗, i. e., polynomial.

We conjecture that the assumption on p in Theorem 5.14 can be replaced by p ≤
c lnn
n2 , i. e., that the same regime for polynomial first hitting time holds regardless

of r. However, we cannot prove this at the moment since the processes describing
the distance from the target for different positions are not independent.

5.5 Lower Bound on Hitting Time of Target

When the mutation probability applied to the optimum is asymptotically larger
than log n/n2, [Dro03] shows that the first hitting time of (1+1) EA on OneMax
for r = 2 is polynomial only with super-polynomially small probability. We re-
prove this result for any r ≥ 2 and p ≤ 1/n using drift analysis.

Theorem 5.15 With p ∈ ω(log n/n2) and p ≤ 1/n, the first hitting time of
the (1+1)EA on the dynamic OneMax for any r ≥ 2 is polynomial only with
super-polynomially small probability.

Proof. To prove the result, we let Xt be the current solution of the EA and
apply Theorem 5.3 using potential function g(Xt) =

∑n
i=1 [a

t
i ̸= xt

i], i. e., the
number of characters the individual and the optimum differ by at time t.
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Consider the effects of mutating the optimum and the mutation/selection step
separately. When g(Xt) ≤ n/2, the effect of optimum mutation on g(Xt) non-
matching characters is countered by the effect of mutation on g(Xt) matching
characters, leaving n − 2g(Xt) matching characters which cause a drift away
from the optimum:

E
(
g(Xt+1)− g(Xt) | St

)
≥ (n− 2g(Xt)) · p,

where St is the event that no mutation occurs during the mutation/selection
step of iteration t.

For the mutation/selection step, the expected increase in the number of match-
ing characters is at most the number of mutated non-matching characters. We
can consider the mutation/selection occurring after the optimum is mutated, so
the number of non-matching characters is in expectation increased by at most
1 for p ≤ 1/n, leading to a combined drift of:

E
(
g(Xt+1)− g(Xt)

)
≥ (n− 2g(Xt)) · p− (g(Xt) + 1) · 1/n.

Let p = α(n) · log n/n2 ≤ 1/n, where α(n) ∈ ω(1) ≤ n/ log n; limiting g(Xt) <
b = α(n)c log n, where c < 1 is a constant, reveals a drift away from the optimum:

E
(
g(Xt+1)− g(Xt) | g(Xt) < b

)
≥ (n− 2g(Xt)) · p− (g(Xt) + 1) · 1/n

≥ α(n) log n

n
− α(n)c log n

n

(
2α(n) log n

n
+ 1

)
− 1

n

∈ Ω

(
α(n) log n

n

)
.

With low p and g(Xt), a large number of iterations might not alter the value
of g(Xt) (causing a “self-loop”). The probability p0 of an iteration resulting
in a self-loop can be bounded by considering the probability that none of the
characters of the optimum mutate, and none of the non-matching characters in
the current individual mutate:

p0 = Pr
(
g(Xt+1) = g(Xt) | Xt

)
≥ (1− p)n · (1− 1/n)g(X

t)

≥ 1− nα(n) log n

n2
− α(n)c log n

n

(1− p0) ∈ O

(
α(n) log n

n

)
.
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Thus, there exists a constant ε > 0 satisfying the first requirement of Theo-
rem 5.3. We then need to bound the probabilities of g(Xt) changing signifi-
cantly in a single iteration. Throughout the following, let M be the event that
a self-loop does not occur, i. e., g(Xt+1) ̸= g(Xt).

Let c1 = n− g(Xt) ≤ n be the number of matching characters in the optimum
and the current individual (for which d(ai, xi) = 0). We note that mutating such
a character in the optimum would increase g(Xt+1) unless it is also mutated in
the current individual; let C1 be the number of such mutations that occur:

Pr(M) ≥ c1 · p(1− p)n−1 · (1− 1/n)n

≥ c1p/4e

Pr(C1 ≥ j) ≤
(
c1
j

)
pj

Pr(C1 ≥ j |M) ≤ (c1p)
j−14e

2j−1
≤ 8e

2j

for n ≥ 2.

Let c2 ≤ g(Xt) ≤ n be the number of characters for which d(ai, xi) ≥ 2, i. e.,
those that would not transform into matching characters even if improved by
mutation; notably, c2 = 0 if r = 2. When both, a matching character mutation,
and a mutation improving such a character occurs in the current individual,
g(Xt+1) increases without reducing fitness, allowing the mutated individual to
be accepted; let C2 be the number of such mutations that occur:

Pr(M) ≥ c1c2/(8en
2)

Pr(C2 ≥ j) ≤
(
c1
j

)(
c2
j

)
n−2j

Pr(C2 ≥ j |M) ≤ (c1c2)
j

22(j−1)n2j

8en2

c1c2

≤ (c1c2)
j−1

n2(j−1)

32e

4j
<

32e

4j

as c1c2 ≤ n2.

The increase in potential value is at most the sum of these two effects, and
hence:

Pr
(
g(Xt+1)− g(Xt) ≥ j |M

)
≤ Pr(C1 + C2 ≥ j |M).

By Lemma 5.16, there exists a choice of r(ℓ) and δ that satisfies the second
condition of Theorem 5.3 for jumps away from the optimum.
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For jumps toward the optimum, let k1 be the number of characters for which
d(ai, xi) = 1, i. e., those that can be corrected by a mutation in either the
optimum or the current individual; let J1 be the number of such characters
corrected in a given iteration. Proceeding as before,

Pr(J1 ≥ j |M) ≤
(
2k1
j

)
1

nj

8en

k1

≤ (2k1)
j−18e

nj−13j−2
≤ 36e

1.5j
,

noting that if r > 2, a mutation in a specific direction is required while con-
sidering P (M), while a mutation either direction is acceptable to upper-bound
P (J1 ≥ j).

Furthermore, let k2 be the number of characters for which d(ai, xi) = 2, i. e.,
those that can match if they are mutated appropriately in both the optimum
and the current individual; let J2 be the number of such characters corrected in
a given iteration. Similarly,

Pr(J2 ≥ j |M) ≤
(
k2
j

)( p

4n

)j 16en
k2p

≤ k2
j−14e

8j−1

( p
n

)j−1

≤ 32e

8j

as k2 ≤ n ≤ 1/p.

The reduction in potential value is at most the sum of these two effects, and so:

Pr
(
g(Xt+1)− g(Xt) ≤ −j |M

)
≤ Pr(J1 + J2 ≥ j |M).

Per Lemma 5.16, there exists a choice of r(ℓ) and δ that satisfies the second
condition of Theorem 5.3 for jumps toward the optimum.

Thus, there exists a choice of r(ℓ) and δ that satisfies the second requirement of
Theorem 5.3 both for jumps away from and jumps toward the optimum.

Finally, we note that the probability of a randomly initialized character match-
ing the optimum is 1/r ≤ 1/2. Using Chernoff’s inequality, the probability
that more than 3n/4 characters are initialized correctly is at most e−n/12, and
therefore g(X0) ≥ n/4 > b with high probability.

By applying Theorem 5.3 with g(Xt), b = α(n)c log n and a = 0, and hence ℓ =
ω(log n), we can conclude that if p ∈ ω(log n/n2) ≤ 1/n, the (1+1) EA finds the
optimum in polynomial time with only super-polynomially small probability.
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While proving that large jumps are exponentially unlikely even after removing
self-loops from the process, we used the following lemma to combine upper
bounds for different kinds of jumps.

Lemma 5.16 Let J = J1+J2; if there exist constants r1, r2 ≥ 1, and d1, d2 >
1, s.t. for some event E,

Pr(J1 ≥ j | E) ≤ r1/d1
j

Pr(J2 ≥ j | E) ≤ r2/d2
j

and it holds that Pr(J2 ≥ j2 | E, J1 ≥ j1) ≤ Pr(J2 ≥ j2 | E), then there also exist
constants r, d > 1, s.t.

Pr(J ≥ j | E) ≤ r/dj .

Proof. Let r∗ = max(r1, r2) and d∗ = min(d1, d2); given the conditions, it is
the case that:

Pr(J ≥ j | E)

≤
j∑

i=0

Pr(J1 ≥ i | E)Pr(J2 ≥ j − i | E, J1 ≥ j1)

≤
j∑

i=0

Pr(J1 ≥ i | E)Pr(J2 ≥ j − i | E)

≤ r2∗d
−j
∗ (j + 1).

We note that (j + 1)d−j
∗ ≤

√
d∗

−j for j ≥ 16/(ln2 d∗). It is possible to pick a

constant c =
√
d∗

16/(ln2 d∗), ensuring that c/
√
d∗

j ≥ 1 for j ≤ 16/(ln2 d∗), which
proves the lemma with r = r∗c and d =

√
d∗.

5.6 Conclusion

In this paper we revisited the setting of dynamic OneMax as introduced by
[Dro03], where the optimum moves by flipping the bit of each position with
some fixed probability p.

We showed that his results, both the upper and the lower bound, extend to
versions of dynamic OneMax where each dimension has r different possible
values. By using modern drift analysis, the proof is shorter and more elegant.
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Furthermore, we made an analysis of how far from the optimum the (1+1) EA
strays after getting close for the first time. For the case of bit strings, this value
is concentrated around Θ(pn2) (for p = o(1/n)), which shows that the optimum
is very elusive unless p is small. On the other hand, we showed that only the
dimension, and not the size, of the search space has an impact on the ability of
the (1+1) EA to track good solutions. We did this by considering search spaces
with r possible values in each dimension, and saw that r does not influence the
resulting bounds, i. e., the distance is bounded by a constant in expectation in
each dimension if r is large (see Theorem 5.10).

We believe that the methods we used, especially the statements about the oc-
cupation probabilities as given in Lemma 13 of [LW15a] or in our Theorem 5.7,
will be beneficial in many more settings, especially those aiming at an anytime
analysis for dynamic problems.
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Chapter 6

The Impact of Migration
Topology on the Runtime of

Island Models in Dynamic
Optimization

Andrei Lissovoi Carsten Witt

DTU Compute, Technical University of Denmark

We introduce a simplified island model with behaviour similar to the λ
(1+1) islands optimizing the Maze fitness function considered in our previ-
ous work [LW15b], and investigate the effects of the migration topology on
the ability of the simplified island model to track the optimum of a dynamic
fitness function. More specifically, we prove that there exist choices of model
parameters for which using a unidirectional ring as the migration topology
allows the model to track the oscillating optimum through n Maze-like
phases with high probability, while a using a complete graph as the mi-
gration topology results in the island model losing track of the optimum
with overwhelming probability. This serves to illustrate that a less-dense
migration topology may be useful when optimizing dynamic functions with
oscillating behaviour, and requires less problem-specific knowledge to deter-
mine when migration may be allowed to occur.
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6.1 Introduction

Optimization problems are often dynamic in nature, as the environment in which
they have to be solved often changes with the passing of time. Nature-inspired
algorithms are based on approaches to solving optimization problems observed
in nature, and we might therefore hope that they would also provide a reasonable
solution to copying with dynamic changes in optimization problems.

In a dynamic optimization problem, the optimum is allowed to move in the
search space over time, as conditions of the problem change. The goal of the
evolutionary algorithm is then not only to locate the optimum once, as in the
case of static optimization problems, but also be able to track the optimum as
it moves, maintaining good solutions over time.

The Maze fitness function, introduced in [KM12], is an artificial fitness function
consisting of n+1 long oscillating phases, over the course of which the optimum
slowly shifts from the all-ones bit string to the all-zeroes bit string, while oscil-
lating between two specific solutions during each phase. In [KM12], it is shown
that a simple (1+1) EA is not able to track the oscillating optimum through
all n phases. In subsequent work [LW15a, LW15b], we have considered how
various diversity mechanisms impact the ability of evolutionary algorithms to
track the optimum of this function, observing that an island model can provide
the necessary diversity as long as migration on a complete migration topology
is carefully managed, and does not occur too close to a Maze phase transition
– conditions which require somewhat specific knowledge of the fitness function,
which may not be available for other problems.

In this paper, we investigate whether using a less-dense migration topology, such
as a unidirectional ring, can be beneficial, and allow some of the requirements
on when migration is allowed to occur to be relaxed. Intuitively, changing the
migration topology weakens the negative effect of migration on population diver-
sity, and may allow good solutions to survive migration occurring at inopportune
times.

We base our analysis on a simplified version of the island model studied in
[LW15b], which incorporates the major elements of the original setting: an
oscillating fitness function, islands performing independent mutation/selection
steps, and the effect of Maze phase transitions on the islands’ ability to track the
optimum based on their current-best individuals at the time of the transition.
The simplified model incorporates more randomization, as both the oscillating
pattern and migration are made non-deterministic, which both simplifies the
analysis, and disallows some of the more artificial solutions possible in the origi-
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nal model, such as only performing migrations on iterations that assign a higher
fitness value to the desirable solution.

Using this simplified model, we prove that the unidirectional ring migration
topology allows the island model to track the optimum of the dynamic fitness
functions in some settings where the complete migration topology does not.

This paper is structured as follows. In the next section, we introduce the simpli-
fied island model, and highlight its key differences by comparing to the setting
of [LW15b]. Section 6.3 introduces the drift theorems used in subsequent proofs.
Sections 6.4.1 and 6.4.2 consider the case of migration occurring in every itera-
tion, the former proving that a complete migration topology leads to a failure to
track the optimum, while the latter proves that switching to the unidirectional
ring topology allows tracking the optimum with high probability. We finish with
some conclusions, as well as a discussion of further possibilities for analysis.

6.2 The Simplified Island Model

In order to analyze the impact of migration topology on the island model be-
haviour, and remove some of the artifacts arising from the Maze fitness function,
we will construct a somewhat simplified model of the optimization algorithm,
while maintaining similarities to λ islands using (1+1) EAs to optimize Maze.
The simplified model is shown as Algorithm 6.1 below; this section discusses the
key differences.

Some changes have been made to the model of the Maze fitness function: in-
stead of a fully deterministic oscillation defined on bit strings, Algorithm 6.1 dis-
tinguishes between three states, OPT, ALT, and DEAD, and non-deterministically
selects which of OPT and ALT has a higher fitness value, independently favour-
ing OPT over ALT in each iteration with probability pOPT. When a Maze phase
transition occurs, all islands holding an OPT individual transition to holding an
ALT individual, while all other islands transition to holding a DEAD individual.
The OPT, ALT and DEAD individuals thus correspond to having OPT, ALT,
and OneMax-valued individuals in the original Maze, where the OPT individual
in each phase becomes the ALT individual of the next phase, while the ALT
individual becomes a OneMax-valued individual following a phase transition.

Each island behaves like a simplified (1+1) EA, maintaining a current-best so-
lution x∗

i (t) by applying mutation and selection. The mutation operator is sim-
plified to allow construction of OPT from ALT (or vice versa) with probability
pmut, while preventing construction of either OPT or ALT from DEAD. With
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an appropriate value of pmut based on a probability of a specific single-bit mu-
tation occurring, this is a pessimistic model of (1+1) EA’s behaviour on Maze,
where for Ω(n) phases, beginning a phase with a OneMax valued individual
(i.e. a DEAD individual in the simplified model) would cause the (1+1) EA to
revert to optimizing OneMax with at least constant probability, leaving it with
an overwhelmingly small probability of finding the oscillating optimum again.

Finally, migration is made non-deterministic by allowing it to occur in each
iteration independently at random with probability pmut. This essentially pre-
vents the algorithm from being able to ensure that it performs migration only
on OPT-favouring iterations.

Algorithm 6.1 Simplified island model for Maze on G = (V,A).
Set x∗

i (1) = OPT for all i ∈ V .
for t← 1, 2, . . . do

With probability pOPT, y+ ← OPT, y− ← ALT; otherwise, vice versa.
M ← bernoulli(pmig)
for all i ∈ V in parallel do

Let N = {x∗
i (t)} ∪ {x∗

j (t) |M = 1 ∧ (j, i) ∈ A}

x′
i ←

 y+ if y+ ∈ N
y− if y− ∈ N
DEAD otherwise

x∗
i (t+ 1)←

{
y+ with probability pmut if x′

i = y−

x′
i otherwise

if t mod t0 = 0 then ▷ A phase transition occurs
for all i ∈ V do

x∗
i (t+ 1)←

{
ALT if x∗

i (t+ 1) = OPT
DEAD otherwise

Thus, the parameters of the simplified model are:

• n, number of phases being considered,
• t0, number of iterations in each phase,
• pOPT, probability of OPT having a higher fitness value than ALT,
• λ, number of islands,
• pmut, probability of constructing OPT/ALT from ALT/OPT,
• pmig, probability of migration occurring,
• G = (V,A), a directed graph specifying migration topology,

where the impact of G on the algorithm’s ability to track the oscillating OPT/ALT
optimum (i.e. have at least one island remain in the OPT/ALT state after n
phases) is of interest to us.



6.3 Drift theorems 117

We note that the following choice of parameters yields a setting similar to the
original Maze considered in [KM12]: t0 = n3, pOPT = 2/3, λ = Ω(log n), pmut =
Θ(1/(ne)), pmig = 1/τ (where τ is the original interval between migrations),
and G = Kλ.

6.3 Drift theorems

To derive our theoretical results, we use the following two drift theorems, de-
scribing the expectation of first-hitting time in the presence of additive drift,
and a tail bounds on the first-hitting time in the presence of negative drift.

Theorem 6.1 (Additive drift, expected time, [LW14a, HY01])

Let (Xt)t≥0, be a stochastic process over a bounded state space S ⊆ R+
0 , and let

T0 := min{t ≥ 0: Xt = 0} denote the first hitting time of 0 and assume that
both E

(
X0
)

and E
(
T0 | X0

)
are finite. Then, if

E
(
Xt −Xt+1 | Ft;X

t > 0
)
≥ ε,

it holds that E
(
T0 | X0

)
≤ X0

ε .

Theorem 6.2 (Negative drift, [OW11, OW12]) Let (Xt)t≥0, be a
Markov process over a state space S. Suppose there exist an interval [a, b] ⊆ R+

0 ,
two constants δ, ε > 0, a function r(ℓ) satisfying 1 ≤ r(ℓ) = o(ℓ/ log(ℓ)), and
a potential function g : S → R+

0 , such that for all t ≥ 0, the following two
conditions hold:

(i) E(∆t | Xt; a < g(Xt) < b) ≥ ε,

(ii) Pr(|∆t| ≥ j | Xt; a < g(Xt)) ≤ r(ℓ)
(1+δ)j for j ∈ N0,

where ∆t = g(Xt+1)− g(Xt).

Then there is a constant c∗ > 0 such that for T ∗ := min
{
t ≥ 0 : g(Xt) ≤ a | g(X0) ≥ b

}
it holds

Pr
(
T ∗ ≤ 2c

∗ℓ/r(ℓ)
)
= 2−Ω(ℓ/r(ℓ)).
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6.4 Continuous migration

As a simple case, consider setting pmig = 1, i. e. requiring migration to occur
in every iteration. We consider the impact of two extreme choices of G in this
setting: a complete graph Kλ, and a λ-vertex unidirectional ring.

6.4.1 Complete migration topology

We first prove that using the complete migration topology with continuous mi-
gration results in the simplified model being unable to track the optimum of the
Maze through all n phases.

Theorem 6.3 When pmig = 1, and G = Kλ, i. e. the case of using the
complete migration topology and migration occurring in every iteration, and t0 =
Ω(n), pmut = 1/(en), λ = O(n), and a constant 0 < pOPT < 1, the probability
that all islands are in the DEAD state after n · t0 iterations is overwhelmingly
large.

Proof. We note that the probability at least one mutation occurs during a
phase with at least a constant probability:

1− (1− pmut)
λt0 ≥ 1− e−c

while the probability that mutation occurs in a single iteration is at most a
constant:

(1− pmut)
λ ≤ e−c′

where c > 0 and c′ > 0 are constants.

Thus, with at least a constant probability, the last mutation in a phase occurs
at least one iteration before the phase transition. With probability (1−pOPT)

2,
i. e. at least a constant probability, both the iteration when the last mutation
occurs, and the iteration immediately following it favour ALT over OPT; thus,
if all islands were in the OPT state, the mutation would produce an ALT in-
dividual which would migrate to all islands, while if at least one island was in
the ALT state, its original individual would migrate to all other islands. As
no further mutation occurs before the phase transition, we conclude that each
phase has at least a constant probability of ending with all islands having the
ALT individual, and thus losing track of the oscillating optimum following the
next phase transition.
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Thus, if each of n phases has at least a constant probability of failing pf > 0,
the probability that all n phases complete successfully is at most 1−(1−pf )

n =
1− 2−Ω(n), i. e. overwhelmingly small. □

It is worth noting that this proof approach is flexible enough to be adapted to
settings where migration occurs less often – as long as with at least constant
probability, the number of iterations in which mutations occur following the
final migration in a phase can be bounded by a constant.

6.4.2 Unidirectional ring topology

For the other extreme, suppose that G is minimally connected, i. e. a unidi-
rectional ring of λ vertices and λ arcs. This reduces the effect that continuous
migration has on the island memory, making it impossible for a single migration
to propagate an undesirable individual to all islands. In this section, we will
prove that the simplified island model is able to track the oscillating optimum
for the full n phases.

Theorem 6.4 When G is an λ-vertex unidirectional ring, pmig = 1, and
t0 = Ω

(
n2
)
, pmut = 1/(en), λ = Ω(

√
n), and pOPT = 2/3, the simplified island

model is able to track the oscillating optimum for at least n phases with high
probability.

We will prove this by showing that as long as each phase begins with at least one
island still tracking the optimum, the phase will end with at least one island
having x∗

i (t) = OPT. Notably, any constant pOPT > 1/2 is sufficient, and
pOPT = 2/3 was chosen to correspond to the oscillation pattern of the original
Maze.

Lemma 6.5 Under the preconditions of Theorem 6.4, if a phase begins with at
least one island having x∗

i (t) ̸= DEAD, with high probability, there will exist an
iteration t′ before the phase ends such that all islands will have x∗

i (t
′) = OPT

with high probability.

Proof. We note that after at most λ iterations, all islands will have a non-
DEAD individual as their current-best solution – in the worst case, λ iterations
are enough to migrate the non-DEAD individual from the single surviving island
to all other islands, with fewer iterations being required if there is more than
one surviving island.
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Let t′ be the iteration during which no islands have a DEAD individual as their
current-best solution, and consider the drift in Xt, the number of islands having
x∗
i (t+t′) = ALT. Let St = |{(u, v) ∈ A | x∗

u(t+ t′) = OPT ∧ x∗
v(t+ t′) = ALT}|,

i. e. the number of segments in the unidirectional ring of the migration topology
which are composed of islands having OPT as their current-best solution.

E(Xt −Xt+1 | Xt < λ, St) ≥ pOPT (pmigSt + pmut(λ−Xt))−
(1− pOPT) (pmutXt + pmigSt)

= pOPT (2pmigSt + pmutλ)− pmutXt − pmigSt

> 2pOPTSt − St − pmutXt

> Ω(1)− pmutλ = Ω(1)

and

E(Xt −Xt+1 | Xt = λ) = pOPTpmutλ =
2

3e
√
n
.

Applying the additive drift theorem, the expected first hitting time T = min{t :
Xt = 0} = O(

√
nλ) = O(n). As this is much shorter than the phase length

t0 = Ω(n2), we can conclude that Xt = 0 is hit during the phase with high
probability, and hence at least at some point during the phase, all islands have
OPT as their current-best solution. □

We then need to show that it is not likely that the island model will manage to
replace OPT with ALT on all islands during the remainder of the current phase.

Lemma 6.6 Under the preconditions of Theorem 6.4, if there occurs an iter-
ation where x∗

i (t) = OPT for all islands i, with high probability, an iteration
where for all islands i, x∗

i (t) ̸= OPT does not occur before the next phase tran-
sition.

Proof. We note that it is difficult to apply the Negative Drift Theorem di-
rectly in this setting, as the drift depends on St: if there are many OPT/ALT
boundaries in the migration topology, migration may cause drastic changes in
the number of islands having OPT as their current-best individual. Instead,
our strategy is to bound the number of islands having ALT as their current-best
individual by considering the effects of each OPT-to-ALT mutation that occurs
in isolation, i. e. as if it was the only ALT segment around at any specific time.
Then, by bounding the maximum length such a segment may reach, the number
of iterations such a segment survives, and the rate at which such mutations are
accepted, we arrive at an upper-bound on the total number of islands having
ALT as their current-best solution at any one time.
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When considered in isolation, an OPT-to-ALT mutation creates an ALT seg-
ment with initial length 1 in the migration topology. We only consider its
length to be modified by migration: increased by 1 if migration occurs during
an ALT-favouring iteration, and decreased by 1 if migration occurs during an
OPT-favouring iteration; any further OPT-to-ALT mutations would be treated
as separate isolated segments, and pessimistically, no ALT-to-OPT mutations
occur within the ALT segment. It is straightforward to apply the Negative
Drift Theorem to bound the maximum length of such an isolated segment: it
decreases by a constant in expectation, as pOPT = 2/3, and the maximal possible
change is by 1 in either direction. Thus, per the negative drift theorem (The-
orem 6.2), the probability that the length of an ALT segment exceeds ℓ =

√
λ

within t0 = O(n2) = O(ℓ8) iterations is no more than 2−Ω(n1/4).

To bound the maximum number of iterations before a freshly-created ALT seg-
ment is reduced to length 0 by migration, use a tail bound on the binomial
distribution: the segment is guaranteed to be reduced to length 0 if in 2k it-
erations, more than k favour OPT. Let X2k be the number of iterations that
favour OPT of 2k iterations:

P (X2k ≤ k) ≤ exp

(
−2(2kpOPT − k)2

k

)
= e−2k/9

using Hoeffding’s inequality and recalling pOPT = 2/3. Setting k = n2/3, we
conclude that with probability 1 − e−Ω(n2/3), an OPT-to-ALT mutation dis-
appears after n2/3 iterations. We note that in total, the expected number of
OPT-to-ALT mutations within a phase is at most (1−pOPT)pmutλt0 = O(n1.5),
so by a straightforward union bound on the probabilities of an ALT iteration
surviving more than n2/3 iterations, none of the OPT-to-ALT mutations that
occur in the considered interval survive for more than the desired number of
iterations with high probability.

Finally, we need to show that the rate at which OPT-to-ALT mutations are
accepted is low enough to allow any accepted mutations to dissolve through
migration without overrunning the island model. To that end, we can bound
Yk, the number of OPT-to-ALT mutations that are accepted within k = n2/3

iterations using a Chernoff bound:

E(Yk) < kλpmut = O(n1/6) = µ

P (Yk ≥ 3µ) ≤ e−µ = e−Ωn1/6

recalling that λ =
√
n, pmut = 1/(ne), and ignoring the possibility that some of

these mutations occur during iterations which assign a higher fitness value to
OPT, and therefore would not be accepted.
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Thus, no more than O(n1/6) OPT-to-ALT mutations are accepted during a n2/3

iteration period with high probability, and all accepted mutations disappear
after n2/3 iterations with high probability. By dividing the Maze phase into
blocks of n2/3 iterations each, we can conclude that with high probability, at
most 2 · O(n1/6) = O(n1/6) OPT-to-ALT segments can be active at the same
time: with high probability, no more than O(n1/6) appear at the exact end of an
n2/3 iteration block, and no more than O(n1/6) appear during the next block,
with the former group being all being reduced to length 0 before the next-next
block begins.

This yields a bound on the total number of islands that can have ALT as their
best-so-far individual at the same time: with high probability (as all of the
individual bounds apply with high probability to a single ALT segment, and
only a polynomial number of ALT segments can appear within a phase), this
can be no more than

O(
√
λ) ·O(n1/6) = O(n5/12) = o(λ)

islands during a phase: thus, for a sufficiently large n, there will with high
probability still be an island with x∗

i (t) = OPT at the end of the phase. □

We note that the bounds used in Lemma 6.6 take a very dim view of the situa-
tion, and could probably be improved significantly. In practical simulations, we
observe that the simplified island model converges to a larger-than-pOPT major-
ity of islands having OPT as their current-best solution, and any OPT-to-ALT
mutations disappear quickly.

Applying Lemmas 6.5 and 6.6 inductively over n phases yields a proof of The-
orem 6.4.

Proof of Theorem 6.4. For the first iteration, Lemma 6.6 may be applied
immediately, as all islands are initialized with the OPT individual. Per the
lemma, at least one island ends the phase with x∗

i (t) = OPT with high prob-
ability, allowing Lemma 6.5 to be applied at the beginning of the next phase.
Per that Lemma, there is with high probability an iteration within the phase
when OPT is the current-best individual on all islands, allowing Lemma 6.6 to
be applied again.

As both of these Lemmas succeed with high probability, and we only require
n successes of each Lemma, we can use a simple union bound on the failure
probabilities to conclude that with high probability, at least one island is still
tracking the oscillating optimum after the n phases are over. □
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Thus, we have proven that using a unidirectional ring as the migration topology
can allow the simplified island model to track the oscillating optimum of the
Maze in settings where this is not possible for the complete migration topology.
Intuitively, this is achieved by removing the ability of a single ill-timed migration
to propagate an undesirable individual to all islands.

6.5 Conclusion

We have demonstrated there exist choices of parameters for our simplified island
model for which a complete migration topology with high probability results in
a failure to track the oscillating optimum through all n phases, while a uni-
directional ring migration topology allows the optimum to be tracked through
all n phases with high probability. This example illustrates that a less-dense
migration topology can mitigate the effects of migration occurring during un-
favourable iterations of an oscillating fitness function, reducing the need to rely
on problem-specific knowledge as in [LW15b].

In future work, it would be useful to extend these results beyond the extreme
case of pmig = 1, i. e. for migration occurring less often than during every
iteration. We note that while our theoretical analysis here does not prove this
directly, pmig = 1 combined with a low λpmut actually leads to a reduction in
population diversity, with the majority of the islands settling on OPT as their
current-best solution, rather than achieving a pOPT-like balance between OPT
and ALT islands. We conjecture that with slower migration, such a balance
could be achieved.
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