129I and 137Cs in groundwater in the vicinity of Fukushima Dai-ichi nuclear power plant

Xu, Sheng; Zhang, Luyuan; Freeman, Stewart P.H.T.; Hou, Xiaolin; Yamaguchi, Katsuhiko; Cresswell, Alan J.; Sanderson, David C.W.

Published in:
Geochemical Journal

Link to article, DOI:
10.2343/geochemj.2.0414

Publication date:
2016

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
129I and 137Cs in Groundwater in the Vicinity of Fukushima Dai-ichi Nuclear Power Plant

Sheng Xu1,3,*; Luyuan Zhang2; Stewart P.H.T. Freeman1; Xiaolin Hou2; Katsuhiko Yamaguchi3; Alan J. Cresswell1,3 and David C.W. Sanderson1

1Scottish Universities Environmental Research Center

East Kilbride, G75 0QF, UK

2Center for Nuclear Technologies, Technical University of Denmark

4000 Roskilde, Denmark

3Fukushima University, Fukushima 960-1296, Japan

*Corresponding author

Tel: +44 1355 270189; Fax: +44 1355 229898; E-mail: s.xu@suerc.gla.ac.uk

Keywords:

129I, 137Cs, groundwater, vicinity of Fukushima Dai-ichi nuclear power plant, Fukushima nuclear accident
Abstract

This paper reports iodine (127I and 129I) and cesium (137Cs) isotope concentrations in groundwater of confined and unconfined aquifers in the vicinity of the Fukushima Dai-ichi nuclear power plant (FDNPP). 127I and 129I concentrations range from 2-13 µg/L and 5×10^7-8×10^{10} atom/L respectively, resulting in 129I/127I atomic ratios from 5×10^{-9} to 2×10^{-6}. In all samples, 137Cs concentrations were below detection limit. The deep-sealed groundwater from the confined aquifer did not contain significant quantities of Fukushima-derived 129I compared to the groundwater in the unconfined aquifer. The minimal 129I/137Cs activity ratios in the groundwater are more than 2-500 times higher than the FDNPP source ratio. These data can be explained by rainwater infiltrating through the surface soils, with the more water-soluble 129I preferentially extracted into the aqueous phase and the 137Cs preferentially retained in the soil.

INTRODUCTION

Following the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), radionuclide deposition resulted in serious radioactive contamination in the area near FDNPP, extending to a large area of eastern Japan. Numerous investigations on Fukushima-derived radionuclides in the various environments have been published recently. These include studies of aerosols, rainwater, seawater, soil, plants, animals, etc. from the local and worldwide environments. Among these studies some have focused on the migration of radiocesium (134Cs and 137Cs) and radioiodine (131I) in the soil layer (Ohta et al., 2012; Tanaka et al., 2012; Saito et al., 2014). It has been argued that the migration rates of 137Cs are so low that contamination of groundwater by 137Cs is not likely to occur in rainwater infiltrating into the surface soil after the Fukushima accident (Ohta et al., 2012). However there are very few direct measurements of radioiodine and radiocesium in groundwater samples. For this
purpose, this study determined 129I and 137Cs concentrations in five groundwater samples in addition to one rainwater sample near the FDNPP to assess the levels of Fukushima-derived radionuclides in confined and unconfined aquifers.

MATERIALS AND METHODS

Five groundwater samples were collected in the vicinity of the FDNPP on August 28, 2014 (Fig. 1). Sample Nos.1, 2 and 4 were collected from residential wells with the water surface 1.2 m, 1.8 m and 1.1 m below the ground surface, respectively. Sample No. 3 was also collected from a residential well, but water was overflowing from the well following the earthquake on March 11, 2011. Water in Site 5 was seeping from a channel in a gentle escarp, which is ~1.5 m below surface. Long-term monitoring of water level in Well Nos. 1, 2 and 4 shows rapid response to rainfall, indicating that rainfall rapidly penetrates the soil to these near surface aquifers. As described below, Marui (2015) also concluded that shallow groundwater within the FDNPP is generated by recent rainfall. As a result, an additional rainwater sample (No. 6) was contemporarily collected from Namie, ~7 km north of the FDNPP, which is considered representative of rainfall that had recently contributed to these aquifers.

Groundwater samples were first measured for pH, conductivity, salinity and oxidation-reduction potential (ORP). Aliquots of water samples (~100 mL) were filtered through a 0.45 µm membrane. The 127I and 137Cs in the filtered water were determined using inductively coupled plasma mass spectrometer and gamma spectrometer in the Technical University of Denmark. 129I concentration was measured by chemical extraction of iodine from the water combined with determination using a 5 MV tandem accelerator mass spectrometer (AMS) in the Scottish Universities Environmental Research Center. Detailed experimental procedures have been previously described in Xu et al. (2013; 2015).
RESULTS AND DISCUSSION

Analytical results including 127,129I concentrations and 129I/127I ratios together with water chemical and physical compositions are listed in Supplementary Table S1. Data of pH and ORP suggest two groups: one with low pH (6.23-6.87) and high ORP (192-298 mV), the other with high pH (8.5) and low ORP (20 mV). The electrical conductivity (7-70 mS/m) and salinity (0.01-0.03 %) overlap between the two groups. These groups are consistent with groundwater from shallow and deep strata below the FDNPP (Marui, 2015) which also indicate distinctive grouping for pH and conductivity for the deep and shallow aquifers. Figure 2 illustrates the relationship between pH and electrical conductivity of groundwater in this study and Marui (2015), showing that samples 1, 2, 4 and 5 from this study are consistent with shallow waters and sample 3 consistent with deeper water.

137Cs concentrations are below the detection limit (<0.5 Bq/L) in all samples. The measured 127I and 129I concentrations vary from 2 µg/L to 13 µg/L and from 5×10^7 to 8×10^{10} atom/L respectively, resulting in 129I/127I atomic ratios from 5×10^{-9} to 2×10^{-6}. Figure 3 shows the relationship between 127I and 129I. The variation in 127I is relatively small, reflecting variations in soil geochemistry, therefore the large variations in the 129I/127I ratio are mainly controlled by 129I in the groundwater system.

Hydrochemical and hydrological features of groundwater

The most striking feature in this study is that sample No. 3 has higher pH, lower ORP, 129I, 129I/127I than other samples. This suggests that the source of groundwater in sample No. 3 is most likely different from the other samples.

Groundwater can hydrologically originate from the confined and unconfined aquifers. Indeed, all shallow groundwater in this study is generally catalogued into the unconfined
aquifer. Marui (2015) conducted several boring holes within the FDNPP for geomorphological and geological investigations. The shallower ground water (the mid-sized sandstone stratum I and the alternate strata stratum III) have lower pH values of 6.1-6.9, and the deeper water from coarse and fine sandstone stratum IV has higher pH of 7.5-9.0. This chemical composition is consistent with the two groups of pH values in our study (Fig. 2), with sample No. 3 being from the deeper source. The deeper aquifer might be confined, otherwise it would not be under sufficient pressure to rise to the surface and overflow the top of Well No. 3. The shallow aquifer is probably in the Quaternary terrace deposits, which are estimated to be 5-10 m deep at the well sites (far deeper than the 1-2 m below surface of the top of the water table).

Within the FDNPP site and its adjacent areas, the strata I-IV generally eastwardly incline with the dip angle ~30º (Marui, 2015). Extrapolating the cross section, at our No. 3 the stratum IV would be about 10 m below the surface without any of the younger sandstone strata (I-III) above it. The level of water table in the Well No. 3 used to be similar to others. However, it was elevated and water was overflowing to surface after the earthquake. It is suggested that the earthquake might have caused a blockage of the eastward water flow underneath the well, but also resulted in fractures from which groundwater in the stratum IV can flow upward. Therefore, these observations support sample No. 3 being considered as a representative of deep-sealed groundwater from the confined aquifer, whereas groundwater in other sites originated from the upper unconfined aquifer.

Radionuclides in groundwater in the confined aquifer

Sample No. 3 has the regional lowest 127I and 129I concentration of 2 µg/L and 4.6×10^7 atom/L respectively. They were obviously lower than those (4 µg/L and 2.4×10^8 atom/L) in the contemporary rainwater (No. 6) collected nearby. The 129I concentration is also clearly
lower than those in rainwater from Fukushima city prior to the Fukushima accident (1.0-2.8×10^8 atom/L between November 2010 and February 2011 (Xu et al., 2013). The \(^{129}\)I/\(^{127}\)I ratio of 4.5×10^{-9} is not only lower than that (1.3×10^{-8}) in the contemporary rainwater, but also much lower than those in rainwater from Fukushima city since the Fukushima accident (Xu et al., 2013). Furthermore, the \(^{129}\)I/\(^{127}\)I ratio in this groundwater is also lower than those determined in water samples from the background area at Chiba in 1983 (1×10^{-8}, Muramatsu et al., 1986), in the atmospheric fallout in Tokyo from 1963 to 1980 (1-2×10^{-8}, Toyama et al., 2012), and in surface soils in Fukushima before the accident (<3×10^{-8}, Matsuzaki et al., 2007). Therefore, it can be concluded that the deep-sealed groundwater in the confined aquifer in the vicinity of FDNPP has not been contaminated by Fukushima-derived radionuclides.

However, the \(^{129}\)I concentration here is significantly higher than previous estimates of 10^3 to 10^4 atom/L for groundwater prior to nuclear weapons testing (Rao and Fehn, 1999; Alvarado Quiroz et al., 2002). Previous studies have indicated that brackish to saline waters in granites can have \(^{129}\)I concentrations between 2×10^6 and 3.4×10^8 atom/L attributed to leaching of \(^{129}\)I produced by spontaneous fission of \(^{238}\)U in granites (Moran et al., 1995; Kotzer et al., 1998). Local geological evidence also supports that \(^{129}\)I in the confined aquifer is most likely derived from spontaneous fission of \(^{238}\)U enriched in the basement Cretaceous granites beneath the FDNPP (Tsutsumi et al., 2010).

Radionuclides in groundwater in the unconfined aquifer

Groundwater samples in other sites (Nos. 1, 2, 4 and 5) have \(^{127}\)I and \(^{129}\)I ranging in 4-13 \(\mu\)g/L and (3-836)×10^8 atom/L, respectively. In contrast to the narrow range of \(^{127}\)I, a large range in \(^{129}\)I/\(^{127}\)I from 1.6×10^{-8} to 2.1×10^{-6}, over two orders of magnitude, is found within the region near the FDNPP. The \(^{127}\)I, \(^{129}\)I and \(^{129}\)I/\(^{127}\)I values are significantly higher than those in
the contemporary rain (No.6). The highest 129I and 129I/127I values in these groundwater samples are similar to those in rainwater from Fukushima city in June 2011 (Xu et al., 2013) and comparable with those in the top surface soils within 5 km from the FDNPP ($\sim 3 \times 10^{-6}$, Miyake et al., 2015). The 129I dataset indicates that there are variable but significant amounts of Fukushima-derived 129I in groundwater in the unconfined aquifer near the FDNPP. The high detection limit for 137Cs in these measurements does not allow quantification of activity concentrations in these groundwater samples. However, assuming that the detection limit is the maximal 137Cs value in groundwater, the minimal 129I/137Cs activity ratios in groundwater ($\sim 9 - 2000 \times 10^{-7}$ Bq/Bq) are $\sim 2 - 500$ times higher than the Fukushima-derived source value ($\sim 4 \times 10^{-7}$, Tumey et al., 2013; Xu et al., 2015). It is also significantly higher than those in the surface soils distributed within 5 km from the FDNPP ($\sim 5 \times 10^{-7}$, Miyake et al., 2015; Fujiwara et al., 2012).

Questions then arise regarding the mechanism for Fukushima-derived radioiodine migration into the groundwater in the unconfined aquifer. Radionuclides released during the Fukushima accident have been deposited on the land near the FDNPP and a large area of eastern Japan. The fact that 129I/127I ratio is similar for water and topmost section of surface soil near the FDNPP suggests that 127I and 129I in the water is derived from the surface soil. The FDNPP is located on Quaternary alluvial deposits composed of clay and sand. The middle layer (20-30 m above sea level) consists of sandy loam while the overlying (0-20 m above sea level) are mainly of sandstone (Saeki, 1967; Marui, 2015). Such local lithology suggests that the migration of 129I and 137Cs into a deeper soil layer (>5 cm) is restricted due to their strong affinities for humic substances and clay minerals, respectively (Ohta et al., 2012; Tanaka et al., 2012; Saito et al., 2014). Nevertheless, water-leaching experiments on soil have shown that less than 1 % of 137Cs and about 10 % of 131I can be dissolved into the aqueous phase at any pH (Tanaka et al., 2012). Sequential extraction experiments have also
indicated that 5-15 % 137Cs and 42-61 % 129I in aerosols were water-soluble (Xu et al., 2015). These observations confirm that iodine is much more water-soluble than cesium, which can result in large fractionation between iodine and cesium. It is noted that cesium and iodine may also be carried by nano- or micrometer scale particles which may also be transported by water from the surface to the relatively shallow aquifers. However, the below detection limit concentrations of 137Cs observed indicate that this is not a significant 137Cs transport mechanism for these samples. The large range in 129I/127I in groundwater, over two orders of magnitude, within the region near the FDNPP may imply that Fukushima-derived 129I and natural 127I are transported separately across the region, presumably related to differences in chemical form and time since deposition.

CONCLUSIONS

Fukushima-derived radionuclides are not observed in groundwater in the confined aquifer near the FDNPP, however, they have been found in the unconfined aquifer. Rain infiltration extracts water-soluble 129I and 137Cs from contaminated soils. As 129I is much more extractable than 137Cs, large fractionation between 129I and 137Cs has occurred in the aqueous phase. The variations in Fukushima-derived radionuclide concentrations in groundwater at different locations may be of benefit in understanding the current hydrology of the area surrounding the FDNPP site.

Acknowledgements – We thank N. Shima of Fukushima University and staff of Okuma Town Government for sampling assistance, A. Dougans and P. Gallacher of SUERC for laboratory assistance, and D. Fabel of SUERC for discussion. Two anonymous reviewers are greatly appreciated for their constructive comments. The Great Britain Sasakawa Foundation is appreciated for partly supporting the fieldwork.
REFERENCES

Ohta, T., Mahara, Y., Kubota, T., Fukutani, S., Fujiwara, K., Takamiya, K., Yoshinaga, H.,

Figure 1. Map showing the FDNPP and sampling locations of groundwater. Map data © 2015 Google, image © 2015 TerraMetrics.
Figure 2. Relationships between pH and electrical conductivity of groundwater for different strata beneath the FDNPP (Marui, 2015), and for the samples in this study. Strata I and III are shallow (<10 m below the surface at FDNPP) and stratum IV deeper (20-30 m below the surface at FDNPP). Samples 1, 2, 4 and 5 from this study show characteristics consistent with the shallow ground waters from Marui (2015), and sample 3 with the deeper ground waters.
Figure 3. Correlation between 127I and 129I in water samples near the FDNPP. The dotted lines denote 129I/127I atomic ratios.