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Investigations on the porous resistance coefficients for fishing net structures

Hao Chena,∗, Erik Damgaard Christensena

aSection of Fluid Mechanics, Coastal and Maritime Engineering, Department of Mechanical Engineering, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract

The porous media model has been successfully applied to numerical simulation of current and wave interac-
tion with traditional permeable coastal structures such as breakwaters. Recently this model was employed
to simulate flow through and around fishing net structures, where the unknown porous resistance coefficients
were adjusted by fitting the available experimental data. In the present paper, a new approach was proposed
to calculate the porous resistance coefficients based on the transformation of Morison type load model. The
transformation follows the principle that the total forces acting on a net panel from Morison type load model
should be equal to the forces obtained from the porous media model. In order to account for the interaction
effects in-between the twines, two coefficients were introduced, and they were calibrated by minimizing the
least square error function. Extensive validation cases were carried out to examine the performance of the
numerical model. This includes steady current flow through plane net panels and circular fish cages, and
wave interaction with plane net panels. A variety of fishing nets with different solidity ratios were used in the
validation cases, from which it was seen that the overall agreement between the numerical and experimental
results is fair.

Keywords: porous media model, resistance coefficients, fishing nets, Navier-Stokes equations

1. Introduction

Porous structures are widely used in coastal engineering, e.g. breakwaters for sea defense. A number
of studies have been carried out on numerical simulation of flow through and around such structures, e.g.
Jensen et al. (2014), Hsu et al. (2002), Liu et al. (1999), Losada et al. (2008), del Jesus et al. (2012),
Higuera et al. (2014a) and Higuera et al. (2014b). Among these works, the effect of porous structures on
the fluid was taken into account without resolving the exact geometry of them. Instead, they were treated
as one continuum from a macroscopic point of view. By volume averaging the Navier-Stokes equations
over a representative elementary volume, the effect of porous structures was included via a resistance term.
This term was usually described by the extended Darcy-Forchheimer equation, which includes linear and
nonlinear forces as well as inertia forces to account for accelerations.

Recently this approach was applied to simulate flow through fishing nets. In Patursson et al. (2010),
Zhao et al. (2013a) and Zhao et al. (2013b), the porous media model was applied to simulate steady flow
through a single net panel with different attack angles, multiple net panels and gravity cages, respectively.
Furthermore, in Bi et al. (2014a) and Bi et al. (2014b), the porous media model was coupled with a lumped
mass structural model to account for fluid-structure interaction effect. An iterative scheme was set up
between these two models and the steady solution of the flow field and net deformation was obtained after
several iterations. Similar work was also performed in Devilliers et al. (2016), where advanced adaptive
mesh refinement technique was developed to increase the mesh resolution and improve the accuracy of the
numerical results. Bi et al. (2015) and Zhao et al. (2014) further applied the porous media model for wave
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Nomenclature

γp Empirical coefficient in the expression of
added mass coefficient

λ Mesh bar length of the fishing net

〈p̄f 〉 Volume averaged ensemble averaged pore
pressure

〈ū′〉 Volume averaged ensemble averaged tur-
bulent fluctuating velocity field

〈ū〉 Volume averaged ensemble averaged ve-
locity field

〈µt〉 Volume averaged eddy viscosity

〈k〉 Volume averaged specific turbulent ki-
netic energy

µ Dynamic viscosity of the fluid

ν Kinematic viscosity of the fluid

ω Wave angular frequency

ρ Density of the fluid

θ Attack angle, where θ = 90◦ indicates the
flow is aligned with the normal direction
of the net panel

a Interaction coefficient in the expression of
normal quadratic drag resistance coeffi-
cient

Anet Outlined area of the net panel

b Interaction coefficient in the expression of
tangential quadratic drag resistance coef-
ficient

C Quadratic porous drag resistance coeffi-
cient

Cm Added mass coefficient of the porous me-
dia

Cd,net Drag force coefficient of the net

Cd,twine Drag force coefficient of the net twines

CI,twine Inertia force coefficient of the net twines

Cl,net Lift force coefficient of the net

D Linear porous drag resistance coefficient

d Twine diameter of the fishing nets

F Hydrodynamic forces acting on the
porous media based on the Morison type
load model

Fd,net Drag force of the net

Fd,twine Drag force of the net twines

FI,twine Inertia force of the net twines

Fl,net Lift force of the net

g Gravitation acceleration

KC Keulegan-Carpenter number

n Porosity of the fishing net

P Total pressure

p Excess pressure, where the hydrostatic
pressure is subtracted

Q Hydrodynamic forces acting on the
porous media based on the porous media
model

R Transformation matrix from local coordi-
nate system to global coordinate system

Re Reynolds number

S Porous drag resistance

S1 Total projected area for in-plane twines
of the considered net panel

S2 Total projected area for out-of-plane
twines of the considered net panel

Sn Solidity ratio of the fishing net, defined as
complement of porosity

T Wave period

u Velocity field

U∞ Magnitude of the velocity at infinity for
current flow

Um Magnitude of the maximum velocity in
one period for the considered wave

V Volume of the porous media zone

interaction with net structures. The transmission coefficients obtained from CFD simulations were compared
with laboratory tests under different wave conditions.

As described above, porous media model has already been used in several papers to simulate current and
wave interaction with fishing nets. The net was modeled as a sheet of porous media with very thin thickness,
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usually between 10 mm - 50 mm. Unlike the model used in breakwater design, anisotropy was taken into
account in porous media flow for fishing nets, due to the difference between the exerted resistances in
tangential and normal directions. Darcy-Forchheimer formula was applied to calculate the porous resistance
forces, where constant resistance coefficients were obtained by optimizing the fit between the measured
drag and lift forces from experiments and computed drag and lift forces at different flow velocities and
attack angles. This approach has advantages that it avoids direct modeling of the fishing nets geometry,
which is usually unrealistic since a single net panel may have tens of thousands of twins and knots. From
the validation of the numerical model provided in the above mentioned works, the predicted forces and
wake velocities from the porous media model in general agreed well with laboratory experiments, which
demonstrates the feasibility of this approach.

However, there remains one issue for direct application of porous media model on flow through fishing
nets, i.e. finding the porous resistance coefficients in Darcy-Forchheimer equation. Fitting procedure requires
that for each individual net panel, measured drag and lift forces must be available for a variety of incoming
velocities and attack angles, which limits its application in practical design. The present work provides
an alternative approach to calculate the porous resistance coefficients, which expresses them as a function
of physical parameters of the fishing net. These parameters are easily obtained from a given net panel,
therefore the resistance coefficients are directly determined without any need of experimental data. Hereby
this eases the application of the numerical model.

The remainder of the paper is organized as follows. In Section 2, a brief description is given on the
numerical model, where the volume averaged Reynolds averaged Navier-Stokes equations proposed in Jensen
et al. (2014) are employed as the governing equations. Section 3 gives the derivation and calibration of the
expressions for porous resistance coefficients, followed by summary and discussion on the overall numerical
model in Section 4. In Section 5, preliminary tests are run for the general setup and convergence analysis of
the numerical model, while in Section 6 extensive validation cases are performed against laboratory tests.
Series of experiments conducted in Patursson (2007), Zhan et al. (2006), Lader et al. (2007a) and Lader et al.
(2007b) are reproduced by the numerical model to examine its accuracy and performance. Furthermore,
sensitivity analysis is performed to test the influences of uncertainties in calculation of the porous resistance
coefficients in Section 7. Finally conclusions of the paper are given in Section 8.

2. Description of the numerical model

The numerical model was set up within the framework of the open source computational fluid dynamics
toolbox OpenFOAM with the version of extend-3.1. It uses finite volume discretization method with a
collocated variable arrangement on unstructured grid. The solvers employed in the present work solve the
volume averaged Reynolds averaged Navier-Stokes (VARANS) equations. For single phase porous media
flow, e.g. net panel in current, a transient single phase flow solver was employed. For two phase porous
media flow where waves were involved in, the solver solves VARANS equations for two incompressible,
isothermal and immiscible fluids where volume of fluid (VOF) approach (see Hirt and Nichols (1981)) was
used to capture the interface.

2.1. Governing equations

The VARANS equations proposed in Jensen et al. (2014) are the governing equations in the present
work. Start from the general form of the incompressible Navier-Stokes equations:

∂ui
∂xi

= 0 (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
− gjxj

∂ρ

∂xi
+

∂

∂xj
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2)

where xi = (x, y, z) is the global Cartesian coordinate system.
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If free surface is involved in the numerical model for handling cases of wave propagation and interaction
with fishing nets, an additional advection equation needs to be solved for local water volume fraction α:

∂α

∂t
+

∂

∂xi
(uiα) = 0 (3)

However, solving Eq. (3) introduces a number of difficulties with respect to boundness of the solution
and prevention of a smeared interface. In OpenFOAM, an artificial compression term was added where the
advection equation becomes:

∂α

∂t
+

∂

∂xi
(uiα) +

∂

∂xi
(uriα(1− α)) = 0 (4)

where ur is the compressive velocity field. By introducing this term, smear of the interface was effectively
prevented. Boundness of the volume fraction was guaranteed by a special designed solver called multi-
dimensionsal limiter for explicit solution (MULES) solver, where the bounded solution was achieved by
using flux from first order upwind scheme plus a limited portion of flux from high order scheme. Detailed
discretization method of Eq. (4) can be found in e.g. Berberović et al. (2009) and Márquez Damián (2013).
In Gopala and van Wachem (2008) it was concluded that this VOF scheme is completely mass conservative,
and as long as the Courant number is kept low, the interface can be captured sharply.

In order to obtain the equations for porous media flow, Eq. (1 - 2) and Eq. (4) were ensemble averaged
and volume averaged over a representative elementary volume (REV). The size of REV was much smaller
than the size of the entire domain but much larger than the pore size. Therefore the volume averaged
property was not dependent on the size of REV. Detailed derivation of the volume averaged equations is
presented in Jensen et al. (2014) and here only the final equations are given:

∂〈ūi〉
∂xi

= 0 (5)

(1+Cm)
∂

∂t

ρ〈ūi〉
n

+
1

n

∂

∂xj

ρ〈ūi〉〈ūj〉
n

= −∂〈p̄〉
f

∂xi
−gjxj

∂ρ

∂xi
+

1

n

∂

∂xj
µ

(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
− 1

n

∂

∂xj
ρ〈u′iu′j〉+Si (6)

∂α

∂t
+

1

n

∂

∂xi
(〈ūi〉α) +

1

n

∂

∂xi
(〈ūri 〉α(1− α)) = 0 (7)

In Eq. (6), the resistance force exerted by the porous media was represented by two terms, namely the
added mass coefficient Cm, which accounts for the inertial effect due to the presence of the porous skeleton,
and the drag resistance S. The formulation of these two forces are given below in Section 2.2. In addition,
it should be mentioned that no turbulence model was applied in the present work, therefore ρ〈u′iu′j〉 = 0.
The detailed reason will be illustrated in Section 4, after we introduce the expressions for porous resistance
coefficients in Section 3.

2.2. Porous resistance force due to fishing nets

In this section, description is given to the flow resistance force due to presence of the fishing nets. As
mentioned above the resistance force was represented by two terms in Eq. 6, namely Cm and S. In van
Gent (1995) Cm was expressed as:

Cm = γp
1− n
n

(8)

where γp is a nondimensional empirical coefficient, and takes value of 0.34. This value was adopted in the
present work. In the following part, we keep the main focus of the work on the drag force of the fishing net
structures, and the inertia force will not be discussed until in Section 4.
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The porous drag resistance was usually described by Darcy-Forchheimer equation:

Si = −
(
µDij〈ūj〉+

1

2
ρCij

√
〈ūk〉〈ūk〉〈ūj〉

)
(9)

where D and C are the prescribed porous resistance coefficient matrix. In local x∗y∗z∗ coordinate where x∗

is normal to the net plane panel, y∗ and z∗ are in plane with the net panel but perpendicular to each other,
they are of the following form:

D∗ij =

D1 0 0
0 D2 0
0 0 D3

 C∗ij =

C1 0 0
0 C2 0
0 0 C3

 (10)

The first term in Eq. (9), proposed in Darcy (1856), addresses a linear relation between the resistance
and the volume averaged ensemble averaged velocity. The second term was added by Forchheimer (1901) to
consider a nonlinear relation between them. From the porous media point of view, the relative importance
of these two terms is dependent on the flow regime, which is defined based on the pore Reynolds number:

Re =
〈ū〉d
nν

(11)

In general the flow regimes are denoted as Darcy flow regime, Forchheimer flow regime, transitional flow
regime and fully turbulent flow regime. For a very low Reynolds number, the linear term dominates the
resistance and the quadratic term will not influence the total resistance to a very high degree. When the
Reynolds number is increasing from Forchheimer regime to fully turbulent regime, the quadratic term is
gaining importance. A detailed description of different flow regimes is given in Burcharth and Andersen
(1995). For flow through fishing nets, in general Re ∼ O(102 ∼ 103). This most probably corresponds to the
fully turbulent flow regime, where the linear term is negligible and the quadratic term completely dominates
over the linear term. Therefore it was reasonable to assume D∗ = 0. This assumption was further justified
by the physical explanation: Fishing nets are composed of twines with very small diameters, typical in
the order of millimeters, the quadratic drag force is the dominant force for such kind of marine structures.
Inertia and other forces are secondary. (This will be illustrated in detail in Section 4). The linear term is
not physical for flow through such structures, since the force should not be related to the dynamic viscosity
of water. Therefore in the present numerical model, the linear drag term was completely neglected and the
porous resistance force was calculated purely based on the quadratic drag term:

Si = −1

2
ρCij

√
〈ūk〉〈ūk〉〈ūj〉 (12)

If the local x∗y∗z∗ coordinate system of the porous media is not aligned with the global xyz coordinate
system, the coefficient matrix needs to be transformed from local to global coordinate system. In Zhao et al.
(2013a) and Patursson et al. (2010), two different methods were applied for the transformation. It was found
the transformation approach in Zhao et al. (2013a) has relatively simple mathematical formulation, but it
is valid only if the flow is unidirectional and the direction of the flow is aligned with x axis. Patursson et al.
(2010) applied a tensor transformation matrix, which is more complex but has universal applicability. The
details of these two approaches are presented in Appendix A, and in the present work, the latter one was
adopted.

2.3. Forces on the net

The instantaneous force on the net is one of the most important output from the numerical simulations.
Normally for simulation of flow around ships or other offshore structures, the geometry of the structure is
resolved as a boundary patch of the fluid domain, and the forces acting on them are obtained by integrating
the pressure and viscous force over the boundary patch. However, when it comes to the forces acting on the
porous media, the situation becomes more complex. The geometry of the structure is not resolved, therefore
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it is not possible to integrate the pressure and viscous stress on it. Patursson (2008) proposed a method
based on conservation of the linear momentum in a control volume. The control volume should enclose
the porous media, but the porous media does not have to fill the control volume. Furthermore the porous
media could be oriented arbitrarily. So the forces acting on the fluid from the porous media is equal to the
momentum loss in the control volume. The detailed derivation is illustrated in Appendix B and only the
final result is presented here:

Qi = − ∂

∂t

(∫
CV

ρui dV

)
−
∫
CS

ρuiujnj dS −
∫
CS

pni dS +

∫
CS

τijnj dS +

∫
CV

ρgi dV (13)

where τij is the viscous stress tensor, CV is the control volume and CS is the control surface.
This method requires that in the numerical simulation, each term on the right-hand side of Eq. (13) must

be found at every time step. In the present work another method was applied. As shown in Section 2.1 and
Section 2.2, the resistance force is the force acting on the fluid from the porous media. This resistance force
includes inertia and quadratic drag forces. Therefore the forces acting on the porous media should be the
reaction forces of them. In the numerical model, the inertia force was neglected for the output of the forces,
only the quadratic drag term was retained. This is primarily due to its difficulty to output time derivative
of the velocity at run time. However in general this is acceptable since this term has minor influence in
most of the cases, which will be discussed in detail in Section 4. The final expression for the output of the
instantaneous force is given as:

Qi =
1

2
ρ

∫
PV

Cij

√
〈ūk〉〈ūk〉〈ūj〉 dV (14)

The quadratic drag term in Eq. (14) should be exactly integrated on the instantaneous wet volume of the
porous media zone PV . In addition, the quadratic coefficient matrix C may vary inside the porous media
zone, therefore in Eq. (14) it should not be regarded as a constant and separated from the integrand. This
usually occurs in the simulation of flow through circular gravity cages, where cylindrical coordinate system
needs to be introduced as shown in Section 6.3. In local cylindrical coordinate system C∗ has the same
value everywhere in the porous media zone. However after transformation into global Cartesian coordinate
system, each cell has its unique value of C.

3. Calculation of the quadratic drag resistance coefficients

This section presents new formulas to calculate the quadratic coefficient matrix C in Eq. (12) for flow
through fishing nets. The expressions were derived based on the available rational load model. The derivation
indeed reflects a transformation process from the rational load model to the porous media model, and the
transformation follows the principle that the force acting on the porous media zone should be equal to the
force obtained from the rational load model.

The first issue here is to choose an appropriate rational load model for the transformation. Mainly two
types of load models were proposed in the existing literature. The first is Morison type load model. In
this kind of model, each twine of the net is treated as an individual cylinder, and the force acting on it
is calculated by Morison equation. Due to relatively high porosity for fishing nets, the interaction effects
between twines are neglected. So the total forces acting on the net panel is obtained by summing up the
force on each twine. This type of force model has been extensively applied in e.g. Moe et al. (2010), Xu
et al. (2013a), Xu et al. (2013b) and Huang et al. (2006).

Another kind of force model is the so-called screen type force model. This model was first introduced in
Løland (1993), where drag and lift force coefficients on a flat net panel were given as a function of solidity
ratio and attack angle. The formulas were based on curve fitting experimental data in Rudi et al. (1988),
and were suggested to be used for net panels with solidity ratio in between 0.13 and 0.317. It was further
extended in Kristiansen and Faltinsen (2012) and Kristiansen and Faltinsen (2015) to cover a wider range
of solidity ratios, and the effect of Reynolds number was accounted for.

6



y
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U∞

z

Uxy

Uz

Figure 1: Left: illustration of the decomposition of the velocity vector in 3D. Right: simplification of net panel into twines
without knots.

Actually both load models could be transformed to obtain the quadratic drag resistance coefficients,
but with different complexities. The theory behind screen type force model is more reasonable, since the
interaction effects in-between the net twines are naturally accounted for, while in Morison type load model
they are neglected. However, the mathematical expressions obtained from Morison type force model have
similarities with the quadratic drag force. This could greatly ease the transformation process, and lead to
simple mathematical formulations. In addition, it was found that one could still obtain reasonable results
by properly dropping the attack angle dependence of the derived coefficients from Morison type force model.
But this will result in constant quadratic drag resistance coefficients, which is expected by the authors. This
concerns the following reason: Time and space independent porous resistance coefficients could be applied
in most of the open source or commercial CFD code without any modification of the code itself, as long as
they support solvers for Darcy-Forchheimer type porous media flow. Therefore the derived formulas could
be easily applied in most of the softwares. So it was decided to use a Morison type load model in the present
paper. In order to eliminate the side effects of the assumption made in Morison type force model, i.e. there
is no interaction in-between twines due to the high porosity, two new interaction coefficients a and b were
introduced in the expressions for normal and tangential quadratic drag resistance coefficients. Physically
they represent a compensation due to the above mentioned assumption. The details will be given in the
following.

3.1. Derivation

Below in this section a generalized 3D derivation is given on the transformation of the quadratic drag
resistance coefficients from Morison type load model. Assume that a fishing net panel is in steady current
and only composed of twines without knots. The panel is within y-z plane and the normal direction of the
net is aligned with x direction, so transformation of the coefficient is not needed. The flow is ambient in
3D and is decomposed into components in x-y plane and z axis. Fig. 1 illustrates the decomposition of the
velocity vector and simplification of the net panel into small twines without knots. The purpose of such a
decomposition is to simplify the 3D case into 2D where Uxy = U∞ cosβ and Uz = U∞ sinβ. We now focus
on the forces acting on net twine 1 and net twine 2.

First we consider the velocity vector in x-y plane, namely Uxy and its induced forces on net twines, as
shown in Fig. 2. According to the cross flow principle (see e.g. Hoerner (1965)), the forces acting on twine
1 and twine 2 are different. For twine 2 the incoming flow is fully normal, and the generated force is in the

7



x

1

2

y

Uxy
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Fxy,2

Fxy,1

Figure 2: The projected velocity and its induced forces in x-y plane

same direction with the flow and its magnitude is equal to:

Fx,2 =
1

2
Cd,twineρA2U

2
xy sin θ (15)

Fy,2 =
1

2
Cd,twineρA2U

2
xy cos θ (16)

where A2 is the projected area of twine 2.
However, for twine 1, the current velocity is decomposed into the tangential and normal components to

the twine. The tangential component does not generate any forces (the friction force is small and neglected).
The normal velocity generates a force aligned with x direction:

Fx,1 =
1

2
Cd,twineρA1U

2
xy sin2 θ (17)

Fy,1 = 0 (18)

where A1 is the projected area of twine 1.
Then we consider the forces generated by Uz. since it is fully parallel to twine 2, no force is generated

on that twine. Meanwhile it is fully perpendicular to twine 1, so generates a force aligned with z direction:

Fz,1 =
1

2
Cd,twineρA1U

2
z (19)

Then the total forces acting on a fishing net panel are simply superposition of the drag force for each
twine:

Fx =
1

2
Cd,twineρU

2
xy

sin θ

M∑
i=1

A2,i + sin2 θ

N∑
j=1

A1,j

 (20)

Fy =
1

2
Cd,twineρU

2
xy cos θ

M∑
i=1

A2,i (21)

Fz =
1

2
Cd,twineρU

2
z

N∑
j=1

A1,j (22)

(23)
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where M is the number of twines parallel to twine 2, or the so-called out-of-plane twin. N is the number of
twines parallel to twine 1, which is the in-plane twine.

On the other hand, according to Section 2.3, the forces acting on the porous media Q were obtained by
applying Eq. (14):

Qx =
1

2
ρC1V U∞Uxy sin θ (24)

Qy =
1

2
ρC2V U∞Uxy cos θ (25)

Qz =
1

2
ρC3V U∞Uz (26)

Here it was assumed that the unknown volume averaged velocity 〈ū〉 is equal to the undisturbed velocity.
This is a reasonable assumption since fishing net is kind of porous structure with very high porosity, and the
velocity reduction is not significant, as shown in Bi et al. (2013a). Therefore the volume averaged ensemble
averaged velocity 〈ū〉 inside the porous media should be very close to the undisturbed velocity.

Since the fishing nets were approximated by a sheet of porous media, the forces acting on the porous
media should be equal to the superposition of forces from each twine, i.e. F = Q. By substituting the
expression of F and Q into the equilibrium relation, the following relations were obtained for C1, C2 and
C3:

C1 =
1

V
Cd,twine cosβ

 M∑
i=1

A2,i + sin θ

N∑
j=1

A1,j

 (27)

C2 =
1

V
Cd,twine cosβ

M∑
i=1

A2,i (28)

C3 =
1

V
Cd,twine sinβ

N∑
j=1

A1,j (29)

As mentioned at the beginning of this section, two coefficients a and b were introduced to account for
the interaction effects in-between twines in tangential and normal direction, respectively. In addition, the
derived expressions for C as shown above have attack angle dependence, indicating time and space varying
quadratic drag resistance coefficients in unsteady flow. However, in traditional porous media theory, C was
applied as a constant for all the attack angles. Angle dependence of porous resistance was merely handled
by transformation from local to global coordinate system, while porous resistance coefficients were kept the
same. Recalling that in the literature survey in Section 1, almost all the paper applied constant porous
resistance coefficients, but still obtained good agreement between numerical and experimental results. This
indicates that angle dependence of the porous resistance coefficients might have minor effects on the final
results. Therefore in the present work, it was directly dropped, and constant drag resistance coefficients
were applied throughout the paper. Actually this further indicated that an averaged value of C against
different attack angles was employed, and this contribution was implicitly included in the parameters of a
and b. This leads to the final expressions for the coefficients:

C1 =
1

V
aCd,twine (S1 + S2) (30)

C2 =
1

V
bCd,twineS2 (31)

C3 =
1

V
bCd,twineS1 (32)

where S1 is the total projected area for in-plane twines where S1 =
∑N

j=1A1,j , S2 is the total projected area

for out-of-plane twines where S2 =
∑M

i=1A2,i. Given Eq. (30 - 32), the forces acting on the porous media
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were expressed as:

Qx =
1

2
ρaCd,twineU

2
∞(S1 + S2) cosβ sin θ (33)

Qy =
1

2
ρbCd,twineU

2
∞S2 cosβ cos θ (34)

Qz =
1

2
ρbCd,twineU

2
∞S1 sinβ (35)

A few additional comments are given here on the interaction coefficients a and b: (1) When considering
flow through nets, mainly two interaction effects should be accounted for, namely the shading effect of the
downstream twines from the upstream twines for large inflow angles, and the local speed-up of the flow
in-between the twines. This has been explained in detail in Kristiansen and Faltinsen (2012). Both of them
are affected by the solidity ratio, therefore a and b were believed to be functions of solidity ratio. (2) The
parameter a, which is in the expression for the normal quadratic drag resistance coefficient C1, is strongly
influenced by the local speed-up interaction effect. Therefore it is expected that when Sn → 0, where the
distance between the twines is infinitely large, the flow should not speed up and a→ 1. (3) Both tangential
porous resistance coefficients C2 and C3 share the same interaction coefficient b. This is reasonable since for
most of the fishing nets, the material properties in y and z direction, (i.e. within the net panel plane) are
the same. Therefore the interaction effects in both directions should be the same. Indeed for most of the
fishing nets, especially the nets used in aquaculture industry, C2 ≈ C3 since they usually have symmetric
mesh patterns. In previous works, they were usually represented by a single tangential resistance coefficient
called Ct. (4) For parameter b, which accounts for the flow interaction effects for tangential porous resistance
coefficient, both interaction effects may play important roles. Shading effect will result in a reduction of the
force on the downstream twine due to decrease of the incoming velocity. But the local speed-up effect will
lead to an increase of the force on the twine. (5) By comparison of the results between CFD simulations
and experiments, it was found that for nets with small solidity ratios, b was almost kept as a constant.
Meanwhile, it started to increase for nets with intermediate to high solidity ratios. This indicated that
both effects are equally important for nets with small solidity ratios but the local speed-up effect is gaining
importance when solidity ratio increases.

3.2. Calibration of the parameters

In this section, the unknown interaction coefficients a and b were calibrated for nets with different solidity
ratios. The reference values for three specific nets were determined first based on the selected experimental
data in Rudi et al. (1988). The principle for determination of a and b is that the error between the drag and
lift forces obtained from Eq. (33 - 34) and from laboratory tests should be minimized. (The out-of-plane
lift force Qz was not considered here due to 2D flow in Rudi et al. (1988), i.e. β = 0◦.) The error function
E was defined based on the least square normalized error:

E =

P∑
p=1

(
FM
x,p −Qx,p

FM
x,p

)2

+

K∑
k=1

(
FM
y,k −Qy,k

FM
y,k

)2

(36)

where FM is the measured force with different incoming velocities and attack angle for one specific net. P
and K are the number of data used in calibration for forces in x and y direction, respectively. Substituting
Eq. (33) and Eq. (34) into Eq. (36) reads:

E =

P∑
p=1

(
1− 1

2FM
x,p

ρaCp
d,twineU

2
∞,p sin θp (S1 + S2)

)2

+

K∑
k=1

(
1− 1

2FM
y,k

ρbCk
d,twineU

2
∞,k cos θkS2

)2

(37)

As mentioned above, the incoming velocity U∞, attack angle θ and drag coefficient Cd,twine are varying
with index of the experimental data p and k. By taking derivative of E with respect to a, and equaling it
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to zero, a was expressed as:

a =

Anet

∑P
p=1

(
Cp

d,twine sin θp

Cp
d,net

)

(S1 + S2)
∑P

p=1

(
sin2 θp(Cp

d,twine)
2

(Cp
d,net)

2

) (38)

By the same manipulation b was obtained:

b =

Anet

∑K
k=1

(
Ck

d,twine cos θk

Ck
l,net

)

S2

∑K
k=1

(
cos2 θk(Ck

d,twine)
2

(Ck
l,net)

2

) (39)

where the drag and lift force coefficients of the net panel were defined as

Cd,net =
Fd,net

1/2ρAnetU2
∞

(40)

Cl,net =
Fl,net

1/2ρAnetU2
∞

(41)

In Rudi et al. (1988) series of experiments were conducted under a variety of velocities and attack angles
for nets with different solidity ratios. The experimental data for three net cases were selected to calibrate
the formula and their geometrical characteristics are listed in Table 1. The reason to select these three nets
is that extensive experiments have been done in Rudi et al. (1988) for these three net panels, and plenty
of data are available. In addition the solidity ratio of these three nets are distributed from low to high,
providing the reference value of a and b in a wide range of net panels. The calculated reference values of
the interaction coefficients are also presented in Table 1.

Table 1: The geometric parameters of the three nets in Rudi et al. (1988) and the calibrated reference values of the interaction
coefficients

Net case no. 1 2 3
Solidity ratio 0.13 0.243 0.317

Twine diameter (mm) 1.83 1.83 1.83
Bar length (mm) 29.0 15.5 12

a 1.31 1.45 1.85
b 0.92 0.85 1.50

Linear interpolation was applied to obtain the interaction coefficients for nets with other solidity ratios.
This considers the boundness property of linear interpolation, i.e. for a net panel with solidity ratio in-
between the solidity ratios for the reference nets, the interaction coefficients a and b should also remain
in-between the values of the coefficients for the reference nets. Polynomial fit may introduce unexpected
extroplative behavior. For 0 < Sn < 0.13, asymptotic value of a was used while b was kept constant. This
has been explained in Section 3.1. The final expression of a and b is given in Eq. (42) and Eq. (43).

a =


2.3484Sn + 1 0 < Sn ≤ 0.13

1.3128Sn + 1.1346 0.13 < Sn ≤ 0.243

5.3094Sn + 0.1634 0.243 < Sn ≤ 0.317

(42)

b =


0.9241 0 < Sn ≤ 0.13

−0.6310Sn + 1.0061 0.13 < Sn ≤ 0.243

8.7581Sn − 1.2754 0.243 < Sn ≤ 0.317

(43)
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4. Discussions on the overall numerical model

So far the description of the numerical model for flow through fishing nets is completed, and below
discussions will be given on several topics related to our numerical model. This includes the discussion of
VARANS equations and its application in the present model, the inertia effect for flow through fishing nets,
the turbulent effects and the reason why no turbulence model was applied in the present model.

4.1. Comments on solid-fluid interaction effects in VARANS equations

In the present model, VARANS equations derived from Jensen et al. (2014) were employed as the
governing equations. Meanwhile we notice that in previous works, e.g. Patursson et al. (2010), a different
mathematical formulation of porous media flow was used:

∂ui
∂xi

= 0 (44)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂P
∂xi

+
∂

∂xj
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ Si (45)

The main discrepancies between Eq. (44 - 45) and Eq. (5 - 6) lie in the inertia term, and the porosity
was not included in Eq. (45). The added mass coefficient will be discussed in Section 4.2, and here it is
focused on the influences of including porosity in the governing equations. Actually Eq. (45) implicitly
indicated that the porosity of the fishing nets was equal to one. Therefore it was assumed that the volume
of the net was neglected, and water was filled in the domain everywhere. The only effect of the net was the
resistance force. Essentially instead of volume averaging Eq. (1 - 2), only one extra resistance term was
added. This could be considered as a reasonable simplification for clean net, which has a very high porosity
value, normally between 0.7 and 0.9. However for nets with biofouling, as shown in Lader et al. (2015), the
porosity could be reduced to a very low value. Then this simplification is questionable. However, in the
present model, the effect of porosity i.e. net-fluid interaction was neither fully considered, as shown in the
derivation of the resistance term S. In Section 3.1, it was seen that the fundamental assumption behind
Morison type load model is that due to relatively high porosity, the interaction effects in-between the twines
are neglected. This indicated that the load on each twine was calculated individually first, assuming in
the infinite fluid domain without the presence of its neighboring twines. Then this was compensated by
introducing the interaction coefficients a and b, which are determined based on the experimental data.

4.2. Inertia force for flow through fishing nets

The inertia effect due to presence of the porous skeleton was not accounted for in Eq. (45). But in Eq.
(6), this was considered in a generic way, i.e. only as a function of porosity and irrespective the details of
the porous skeleton. Previous works show that this term has minor effects in most of the cases, e.g. in del
Jesus (2011) and Jacobsen et al. (2015). Actually the inertia force on a fishing net panel should be a small
part of the total force, since the ratio between magnitude of inertia force and drag force for a twine of unit
length in periodic unsteady flow was expressed as (see Eq. (4.31) in Sumer and Fredsøe (2006)):

FI,twine

Fd,twine
=
CI,twineπd

2ωUm

2Cd,twinedU2
m

=
π2

KC

CI,twine

Cd,twine
(46)

For net twines whose diameter is normally a few millimeters, KC number is in the order of hundred while
CI/CD ≈ 2. So the ratio was expected to be small. Although in Balash et al. (2009) and Lader et al.
(2007a), it was reported that inertia force may be important for nets with high solidity ratios, in the present
work we focus on the drag force, and the inertia term was just inherited from Jensen et al. (2014) without
further investigations.
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4.3. Turbulence effects for flow through fishing nets

As shown in Section 2.2, for flow through net structures, it is most probably in the fully turbulent
regime. Therefore turbulence is generated in the wake, which is also shown in Bouhoubeiny et al. (2011),
Pichot et al. (2009), Kim (2012) and Lader et al. (2007b). However in the numerical model, the geometry
of the net was not resolved, so the boundary layers of the twines and knots were not able to be modeled.
Instead, the turbulence level in the porous media was represented by −ρ〈u′iu′j〉 in Eq. (6). Ideally this term
should be taken into account by a turbulence model. By applying Boussinesq assumption, this term can be
approximated as:

−ρ〈u′iu′j〉 = 〈µt〉
(
∂〈ūi〉
∂xj

+
∂〈ūj〉
∂xi

)
− 2

3
ρ〈k〉δij (47)

where δij yields Einstein summation and δii = δ11 + δ22 + δ33 = 3.
This requires that the equations involved in the applied turbulence model should also be volumed aver-

aged. Nakayama and Kuwahara (1999) presented how the transport equations for turbulence kinetic energy
and dissipation rate were volume averaged for a k − ε turbulence model. However by following the averag-
ing procedure, some extra unknown terms were introduced representing generation and dissipation of the
turbulence kinetic energy. They were determined by numerical experiments to close the system.

For flow through fishing nets, due to its relatively high porosity, in general most of the turbulence can
be freely convected through the nets. Only large scale turbulence whose length scale is larger than the mesh
bar length will be damped, while small vortex will be generated in the wake of the twines.

However, it was decided not to apply any turbulence model in the present work, i.e. 〈µt〉 = 0 and 〈k〉 = 0.
This concerns that the actual level of turbulence kinetic energy was of minor interests. Meanwhile the flow
resistance term S, which was described by Darcy-Forchheimer equation, was introduced to the Navier-Stokes
equations as a closure model for handling the porous drag force which cannot be resolved directly in the
model. This also corresponds to the concept of a closure model for turbulence modeling. In Section 3 it was
shown that the quadratic drag resistance coefficients were written as a function of physical parameters of the
fishing nets, and also the so-called interaction coefficient a and b. They were actually calibrated based on
the measurements, which already included all the dissipative effects including turbulence. Application of a
turbulence model may introduce dual turbulence dissipation. This is considered to be a valid approximation
in many engineering applications and it was also applied in Jensen et al. (2014) and Jacobsen et al. (2015).
However one should notice that by doing so, the flow in the wake was not described in a correct way by the
numerical model, where the turbulence generated behind the fishing nets was not resolved. When studying
the circular fish cages, this may affect the analysis in the rear part of the cage.

5. Preliminary tests on convergence analysis

Series of preliminary tests have been run for convergence analysis. The purpose is to find an appropriate
mesh resolution for CFD simulations. In addition, for net cages in steady current, analysis was also performed
to examine the convergence property in time domain. Some of the conclusions made in Patursson et al.
(2010) were also applied in the present model.

Hexahedral mesh was adopted in the simulation where the mesh was refined in the near-net region. The
overall aspect ratio was kept between one to two, and the mesh grading was smoothened from far field to
the near field. Convergence property of the mesh was studied for cases in Patursson et al. (2010) with
θ = 90◦ and different incoming velocities U∞. The detailed setup of the numerical model will be given in
Section 6.1, and the results for the convergence study are shown in Fig. 3. Here the resolution of the mesh
was represented by the number of the layers N used in the porous zone. The exact numerical solution was
not known, and the absolute error vector was expressed as the difference between the solutions from the
current mesh resolution and the finest mesh resolution for different incoming velocities. The relative error
was computed as the second norm of the ratio between absolute error and solutions from the finest mesh
resolution, and it is also shown in Fig. 3. It was concluded that the mesh resolution is important for the
numerical solution, and the numerical solution is monotonic against mesh resolution, indicating that it is
converging towards an exact numerical solution. However, the difference between the numerical results from
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Figure 3: Convergence study for cases in Patursson (2007) with θ = 90◦ and different incoming velocities U∞. The left shows
the absolute drag force as a function of incoming velocities for different solidity ratios. The right gives the relative error as a
function of mesh resolution.
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Figure 4: An example of convergence rate for numerical simulation of cases with θ = 90◦ in Patursson et al. (2010).

two finest mesh resolutions is around 12%. Therefore we could not conclude that the numerical solution
was converged. Compromises were made between the computational cost and accuracy of the numerical
solution, and it was decided to use a mesh resolution of N = 3 for all the validation cases.

The convergence property in time domain was investigated for fishing nets in steady current. It was
found that in general the forces got converged in a rapid speed. An example of convergence in time domain
is presented in Fig. 4, where numerical simulations were also carried out for cases in Patursson et al. (2010).
In Fig. 4, the ratio ∆R between the instantaneous drag forces and the converged drag forces is plotted as
a function of time for the flow with θ = 90◦ and four different incoming velocities. For all the four cases,
the forces converged at t = 10 s, and the convergence rate is proportional to the inverse of the incoming
velocities. In Section 6, care was taken to make sure that the probed data were fully converged for the
validation cases for nets in steady current.

In Patursson et al. (2010) some conclusions have been drawn on general setup of the numerical model,
and the most important conclusion is that, as long as guidelines based on the physical consideration were
adhered to, the model was remarkably insensitive to many of the specific choices. The thickness of the porous
media representing the net was 50 mm in Patursson et al. (2010), and it was found that this parameter does
not affect the simulation significantly. Therefore the same thickness was used throughout the paper. Effects
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Table 2: The selected drag force coefficients for the net twines and the calculated quadratic drag resistance coefficients for the
net panel used in Patursson et al. (2010) under different incoming velocities

U [m/s] 0.125 0.25 0.5 0.75
Re 350 700 1400 2100

Cd,twine 1.35 1.15 1.00 1.00
C1 7.18 6.12 5.32 5.32
C2 2.32 1.98 1.72 1.72
C3 2.32 1.98 1.72 1.72

of near wall treatment was also investigated in Patursson (2008). It was concluded that no significant
difference was found by using different near wall treatment. In the present work, both slip and no-slip
boundary condition were applied in different validation cases.

6. Validation of the numerical model

In this section, the overall numerical model is validated thoroughly against laboratory tests. The vali-
dation cases include both plane net panels and also circular net cages. The cases were carried out with the
focus on current and wave loads on fishing nets under a variaty of conditions. The selected net panels cover
a wide range of solidity ratios in order to demonstrate the universal applicability of the numerical model.

6.1. Current interaction with plane net panel: validation case 1

The first validation case is based on the experimental data presented in Patursson (2007) for a plane net
panel in current flow under various attack angles and incoming velocities. The experiments were conducted
in the towing tank in University of New Hampshire (UNH) in United States. The towing tank is 37 m long,
3.66 m wide and 2.44 m deep. The net panel was positioned in the center of the cross section and well below
the water surface. A rigid frame was used to hold the net so the deformation was negligible. The drag and
lift forces on the net panel, and the velocity at 2.5 m behind the net panel were measured. The velocity
reduction factor Ur was calculated as

Ur =
U∞ − U2.5

U∞
(48)

where U2.5 is the velocity at 2.5 m behind the net panel.
The net used in the experiments was a 1 m by 1 m knotless nylon net with d = 2.8 mm and λ = 29 mm.

This gave a solidity ratio of 0.184. The measurements were performed at the attack angle of 0◦, 15◦, 30◦,
45◦, 60◦ and 90◦ and under the towing speed of 12.5, 25, 50, 75 cm/s.

A three dimensional numerical model was set up based on the experiments. The sketch of domain and
the measurement point are presented in Fig. 5. According to the mesh bar length and diameter of the
twines of the net panel, the porous resistance coefficients were calculated based on Eq. (30 - 32), with the
parameters a and b obtained from Eq. (42 - 43). The calculated coefficients are listed in Table 2 with the
drag coefficients of the twines chosen from Schlichting and Gersten (2003).

The velocity contours at a variety of attack angles from the CFD simulations are plotted in Fig. 6 for
U∞ = 0.5 m/s. In general it has the same characteristics with the flow field shown in Patursson et al. (2010).
In cross flow direction, the width of the wake is approximately the same with the net panel. Meanwhile along
the flow direction, the reduction of the flow speed starts a short distance in front of the plane net panel,
and finally reaches the steady state behind the net panel. But we also notice some differences on the near
flow field behind the net panel. In Patursson et al. (2010) a continuous process of reduction was observed,
and the distance from the net panel to the start point of the steady flow speed level is approximately one to
two times the width of the net panel. But in the present simulations, a very rapid process of the reduction
was seen. It might be due to the difference in model setups. In Patursson et al. (2010), the frame was also
modeled as small diameter cylinders. But in the present model, it was neglected.
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Figure 5: Sketch of the domain for reproduction of the experiments in Patursson (2007). (a) side view. (b) top view. (unit:
m)

The drag and lift force coefficients, and the velocity reduction factor calculated from the experimental
data in Patursson (2007) and the present numerical model in OpenFOAM are shown in Fig. 7. In addition,
the results from Patursson et al. (2010) based on the fitting procedure with different error functions, namely
the least square absolute normalized error function (LANE), least square absolute error function (LAE),
and least square normalized error function (LSNE) are also presented in Fig. 7. The associated relative
error is presented in Fig. 8.

Regarding the drag force coefficients, the present model gave similar predictions with fitting methods.
For cases with U∞ = 0.25 m/s, U∞ = 0.5 m/s and U∞ = 0.75 m/s, the drag force coefficients at θ = 90◦

were slightly underestimated by 10% by all the methods. The relatively large errors at θ = 0 were induced
by the small absolute values of the drag force coefficients. However, there appears discrepancy between
the present model and fitting methods for prediction of lift force coefficients at U∞ = 0.125 m/s. Better
predictions were given by fitting methods in general, where the present model overestimated the lift force
coefficients by 20% − 30%, except at θ = 60◦. For cases with the remaining incoming velocities, they have
similar performance. The nonzero lift force at θ = 90◦ from experiments may be due to the anti-symmetries
in the net panel as explained in Patursson et al. (2010), and this results in significant relative errors as
shown in Fig. 8. Regarding wake velocity, significant discrepancies were observed between CFD simulations
by all the methods and experimental data at small attack angles. In Patursson et al. (2010) the reasons
were explained: In the experiment the high velocity in the wake was due to the effect from the frame, while
in CFD model the effect from the frame was small (in the numerical model of Patursson et al. (2010)) or
nonexistent (in the present model). However, it appears that the present model gave much more reasonable
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Figure 6: The velocity contours from the present numerical model on a vertical plane cut through the center of the net panel
at different angles of attack for incoming velocity of 0.5 m/s.
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Table 3: The physical parameters of the net panels in Zhan et al. (2006), and calculation of the corresponding porous resistance
coefficients

Net case 1 2 3
λ(m) 0.0125 0.0065 0.0130
d(m) 0.0008 0.0007 0.0015
Sn 0.128 0.215 0.223
S1(m3) 0.0588 0.0988 0.1028
S2(m3) 0.0593 0.0992 0.1037
V (m3) 0.0455 0.0455 0.0455
a 1.30 1.42 1.43
b 0.93 0.87 0.87

U∞ = 0.25 m/s
Re 200 175 362
Cd,twine 1.55 1.60 1.35
C1 5.23 9.86 8.74
C2 1.87 3.04 2.66
C3 1.85 3.02 2.64

U∞ = 0.5 m/s
Re 400 350 725
Cd,twine 1.30 1.35 1.10
C1 4.39 8.32 7.13
C2 1.57 2.56 2.17
C3 1.55 2.55 2.15

U∞ = 0.75 m/s
Re 600 525 1080
Cd,twine 1.18 1.20 1.00
C1 3.98 7.40 6.48
C2 1.42 2.28 1.97
C3 1.41 2.27 1.96

U∞ = 1 m/s
Re 800 700 1450
Cd,twine 1.10 1.15 1.00
C1 3.71 7.09 6.48
C2 1.32 2.18 1.97
C3 1.31 2.17 1.96

results for the wake velocity at U∞ = 0.125 m/s and U∞ = 0.25 m/s at θ = 0◦.

6.2. Current interaction with plane net panel: validation case 2

Further validation cases were carried out for plane net panel in steady current. In order to cover wider
range of different net panels, we selected the experiments performed in Zhan et al. (2006) to validate
our numerical model. The experiments were conducted in the towing tank at the Department of Applied
Mechanics, Zhongshan University in China. The towing tank has a dimension of 204 m × 6 m × 3 m.
The net panel was 1.3 m long and 0.7 m high, and tightly fixed in the frame where the deformation was
negligible. The drag force for the net panel was measured under attack angles of 30◦, 60◦ and 90◦. Four
towing speeds were applied in the experiments, namely 0.25 m/s, 0.5 m/s, 0.75 m/s and 1 m/s.

Totally three kinds of net panels with different solidity ratios were studied in the experiments. The mesh
for all the three nets were square diamond pattern. The physical parameters of the net panels are listed in
Table 3, with the associated parameters for calculation of the quadratic drag resistance coefficients.

The sketch of the domain for numerical model is presented in Fig. 9. The depth of the domain was
reduced in the numerical model. Moreover, slip condition was applied for the bottom wall. The main reason
behind this setup is that the bottom should have negligible effects on flow through the net panels. This is
beneficial in the perspective of computational time.
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Figure 7: Comparison of the drag force coefficients Cd,net, lift force coefficients Cl,net and velocity reduction factors Ur from
experimental data in Patursson (2007) , the present numerical simulations in OpenFOAM, the fitted data based on a least
square absolute normalized error (LANE), least square absolute error function(LAE), and least square normalized error function
(LSNE) as shown in Patursson et al. (2010) for different incoming velocities: (a) u=0.125 m/s. (b) u=0.25 m/s, (c) u=0.5 m/s,
(d) u=0.75 m/s.

19



0 15 30 45 60 90

θ [°]

0

10

20

30

40

50

60

E
rr

o
r 

- 
C

d
 [
%

]

U
∞

 = 0.125 m/s

U
∞

 = 0.25 m/s

U
∞

 = 0.5 m/s

U
∞

 = 0.75 m/s

0 15 30 45 60 90

θ [°]

0

10

20

30

40

50

60

E
rr

o
r 

- 
U

r [
%

]

0 15 30 45 60 90

θ [°]

0

10

20

30

40

50

60

E
rr

o
r 

- 
C

l [
%

]

Figure 8: The relative error between numerical simulation and experimental data in Patursson et al. (2010).

The comparison between the numerical simulations and laboratory tests is presented in Fig. 10, and
the relative error is given in Fig. 11. For net case 1, the relative errors are varying significantly with
different attack angles and incoming velocities. The largest discrepancy between the numerical prediction
and experimental data was for case with θ = 30◦ and U∞ = 0.5 m/s, where the drag force was overpredicted
about 40% by the numerical model. However, the relative errors for most of the remaining cases are well
below 20%. The drag force for net case 2 was well predicted by the numerical model, where the errors for
most of the cases are about or below 10%. The largest average error was associated with net case 3. The
drag force at all incoming velocities and attack angles were underestimated. This somehow indicated an
underestimation of a and b for this net panel. For most cases the errors are between 10%− 20%. However,
for cases with U∞ = 0.75 m/s and U∞ = 1 m/s at θ = 30◦, the relative errors reach 30%.

6.3. Current interaction with fixed circular fish cages

Zhan et al. (2006) also conducted experiments on circular fish cage in steady current, and the numerical
model was also validated against this set of experiments. The purpose is to examine the performance of
the numerical model for more complex flows. The general setup of the experiments was the same with the
experiments described in Section 6.2. The net used in the experiments are also exactly the same, and they
were fixed tightly in a circular rigid frame well below the water surface.

The numerical model was set up in the same manner as described in Section 6.2. The sketch of the
computational domain is given in Fig. 12. A local cylindrical coordinate was set up for the circular cage,
where the origin of the coordinate was aligned with the center line of the circular fish cages. The porous
resistance coefficients for the fish cages were exactly the same as shown in Table 3 in this local cylindrical
coordinate system, and they were transormed to global coordinate system for each grid cell.

An example of flow visualization is presented in Fig. 13, where the velocity contours is plotted on the
horizontal plane through the center of the circular fish cage with Sn = 0.128. The incoming velocity is
U∞ = 0.5 m/s. In front of the fish cage, there exists a small area where the velocity was reduced. The
main velocity reduction area is inside and behind the cage. The wake approximately has the same width
with the diameter of the fish cage in the cross flow direction, which is the same with the flow characteristics
described in Section 6.2 for plane net panel in current. The velocity inside the circular cage was reduced to
approximately 0.96U∞. This is a reasonable value considering the relatively small solidity ratio of the net
used in the simulation. Similar results were also reported in Bi et al. (2013b) and Løland (1993). Further
reduction was also observed in the wake behind the cage due to the rear part of the cage.

Comparison of the drag force of the circular cages between numerical simulations and experimental data
is presented in Fig. 14, and the associated relative errors are plotted in Fig. 15. The overall characteristics of
the comparison are the same with the plane net panel in Section 6.2. For net case 1 the significant variation
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Figure 9: Sketch of the domain for reproduction of the experiments for current interaction with plane net panels in Zhan et al.
(2006). (a) side view. (b) top view. (unit: m)

Table 4: The parameters of the regular waves from Lader et al. (2007a) and Lader et al. (2007b)

Wave case no. 1 2 3 4 5
Wave frequency, f (Hz) 1.42 1.42 1.42 1.25 1.00

Wave length, L (m) 0.77 0.77 0.77 1.00 1.54
Wave period, T (s) 0.70 0.70 0.70 0.80 1.00
Wave height, H (m) 0.044 0.064 0.084 0.104 0.165

occurs again for cases with different incoming velocities. But the maximum error was reduced to less than
30% for case with U∞ = 0.25 m/s. The numerical model for net case 2 gave the best prediction, where for
all the case the relative error was well below 10%. Meanwhile the underprediction of drag force for net case
3 was also reflected here in the simulation, where for all three incoming velocities, the drag force for the
circular cylindrical cage was underestimated by 20% approximately.

6.4. Wave interaction with net panels

In Lader et al. (2007a) and Lader et al. (2007b), series of experiments were performed for analysis of wave
interaction with net panels in the hydrodynamic laboratory at the Department of Mathematics, University
of Oslo. Net panels with 0.5 m wide and 1.0 m high were positioned in the 8.3 m downstream of the wave
maker, and attached at the top and bottom by custom made net forks to hold the net in place. The flume
was 25m long, 0.5 m wide and 1.0 m high, and the still water depth was set to 0.62 m. In the experiments
three kinds of net panels were used, and they were exposed to five different regular wave conditions. The
relevant wave parameters are given in Table 4. A piston type wave maker with a vertical flap was used to
generate waves. Two wave gauges were installed in the upstream and downstream with a distance of 1.4 m
from the net to measure the surface elevation. Readers are referred to Lader et al. (2007a) and Lader et al.
(2007b) for detailed information on setup of the experiments.
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Figure 10: Comparison of the drag force coefficients Cd,net between the present numerical simulations in OpenFOAM (solid
line) and the data from laboratory tests in Zhan et al. (2006) (diamond) for three net panels: (a) net case 1 (b) net case 2 (c)
net case 3.
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Figure 11: The relative error between numerical simulation and experimental data in Zhan et al. (2006) for plane net panels
in steady current.

A two dimensional numerical wave tank was set up based on the physical experiments, since the width
of the flume in the experiments was the same with the width of the net panels, and three dimensional effects
could be neglected. The utility developed in Jacobsen et al. (2012) was applied for wave generation and
absorption. Fig. 16 depicts the domain of the numerical wave tank where two relaxation zones were set up
at the inlet and outlet of the numerical tank. In the center of wave tank the net panel was represented by a
sheet of porous media with thickness of 50 mm and height of 1 m, and the waves were generated according
to the stream function wave theory in Fenton (1988). The calculated quadratic drag resistance coefficients
of the three net panels are presented in Table 5, where the drag coefficients were estimated from Sumer and
Fredsøe (2006).

Fig. 17 - Fig. 21 depicts comparison of the time series of surface elevation, drag and lift forces between
numerical simulations in OpenFOAM and experimental results from Lader et al. (2007a). Fig. 17(a) - Fig.
21(a) presents the surface elevation at the position of net when the wave was propagating without net. It was
seen that the higher harmonic components in the wave motion were captured accurately by the numerical
simulation and the surface elevation of the generated waves in the numerical model agreed well with the
experimental results.

When analyzing the experimental results of wave forces on the net panels, higher harmonic components
and multiple extreme points were observed within each zero crossing interval, e.g. in the crest of force
cycles in Fig. 19(g). In Lader et al. (2007a) the introduction/increase of the high harmonic components
was explained as a result of the nonlinearity in the wave to force process: since the wave force is dependent
on not only particle velocity but also exposed surface area, therefore the time series of the wave force
should contain higher order components than wave motion itself. Due to the higher harmonics in the force
waveforms, multiple extreme points also exists in each zero crossing interval. However, although in the
numerical model, the forces were integrated at the instantaneous wet volume of the porous media, the
multiple extreme points were not able to be captured, and only single extreme point occurs within each
zero crossing interval. It was believed that the occurrence of the multiple extreme points was not only
due to the higher harmonic components, but also due to the complex flow interaction between twines and
knots, and the vortex shedding behind the twines. The lack of vortex shedding can also partially explain
the smoother curves from the numerical simulation compared to the experiments. With such high KC
number, the shedding frequency may increase which results in high frequency oscillations. Furthermore, in
model scale experiments, the mesh bar length is comparable with the wave height. Therefore the significant
variation of instantaneous wet volume might be another reason of this oscillation.

The phase shift is another feature worth mentioning. In general from the experiments it was observed
that the horizontal force is approximately in phase with the wave elevation. However for some of the cases
a slight shift relative to the wave phase was observed, e.g. the crest of the force signal in Fig. 18(f).
This phenomenon was not captured by the numerical model, and the horizontal forces from the numerical
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simulations are in phase with the surface elevation.
Fig. 22 depicts the relative error between the prediected and measured wave height for different cases.

The relative error was defined as the average of the ratio between the absolute error of the wave height and
the wave height from experimental data. The absolute error includes error from both wave peak and wave
trough. By this definition the shift up or down from the numerical results (e.g. the numerical results in
Fig. 17(b)) was also accounted for in the error definition. It was found in Fig. 22 that for the first three
wave conditions, the relative errors are in-between 20% − 40% for most of the cases. However, for wave
condition 4 and 5, most of the relative errors are reduced to about 20%, except the drag force of net case
2 which suffers from a significant overprediction. We notice that in the experiments, the drag force of net
case 2 under wave condition 4 and 5 has almost the same amplitude with drag force of net case 1. This is
difficult to explain, since under the same wave condition, the net with higher solidity ratio was expected
to be subjected to larger wave load. This has been reflected in the first three wave conditions. Therefore
there might be an underestimation to some degree from the experimental data. Meanwhile, the significant
overprediction of the wave force from the numerical model may be partially due to the error in estimation of
Cd,twine. This is the motivation of the sensitivity analysis that will be presented in Section 7. In addition,
there are some known issues in wave-making by CFD methods (especially OpenFOAM), this has been given
in e.g. Wroniszewski et al. (2014). The near-surface kinematics were not able to be reproduced correctly by
the solver, which might serve as an error source. Overprediction of the velocity close to the free surface will
lead to the overprediction of wave forces. However this seems to be case sensitive, since for the first three
wave conditions they are within the reasonable error bound.

7. Sensitivity analysis on porous resistance coefficients

The sensitivity analysis was carried out to examine if the results were still located in a reasonable bound
when taking uncertainties of the numerical model into account. The overall procedure of the analysis is the
same as shown in Kristiansen and Faltinsen (2012), where one of the selected parameters was varied while the
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Figure 13: The velocity contours from CFD simulation on a horizontal plane cut through the center of the circular fish cage.
The solidity ratio Sn = 0.128 (net case 1). The incoming velocity is 0.5 m/s.
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Figure 14: Comparison of the drag force Fd,net between the present numerical simulations in OpenFOAM (solid line) and the
data from laboratory tests in Zhan et al. (2006) (diamond) for three circular fish cages.

others were kept the same as nominal values. However, in the present work we focused on the uncertainties
in calculation of porous resistance coefficients, other uncertainties were not involved in the analysis. The
uncertainties of the porous resistance coefficients come from the followings: The drag force coefficient of the
twines for a fishing net was assigned with a 10% uncertainty due to i.e. misreading of the figure for drag
force coefficients, difference between the shape of the real twine and a cylinder etc.; The projected area S1

and S2 for the in-plane and out-of-plane twines were varied with 5%, since they were usually calculated
based on the mesh distance λ and the overall dimension of the fishing nets, therefore there exists round-off
errors. The other parameters in Eq. (30 - 32) were usually given, therefore uncertainties were not assigned
on these values.

The total error bound ∆F of the uncertainties was estimated as:

∆F =

(∑
i

(∆Fi)
2

)1/2

(49)

where ∆Fi is the error bound due to variation of each parameter. Eq. (49) indicates that the error sources
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Figure 15: The relative error between numerical simulation and experimental data in Zhan et al. (2006) for three circular fish
cages in steady current.

Figure 16: Sketch of the computational domain for simulation of wave interaction with plane net panel. (unit: m)

were assumed to be stochastically independent of each other. ∆Fi was calculated as:

∆Fi =
1

2

2∑
j=1

|Fj − F0| (50)

where F0 is the nominal force and Fj is the force from a run with variation.
The results is shown in Fig. 23 for current flow through circular fish cages in Zhan et al. (2006). The

case setup has been illustrated in detail in in Section 6.3. The following conclusion were drawn from the
presented results: (1) In general solidity ratio has minor effect on the relative error of drag force due to
uncertainties of the parameters, i.e. the circular cages with different solidity ratios have the same order of
magnitude of error when one specific parameter was varied. (2) The incoming velocity has minor effect on
the relative error of drag force, i.e. for a given fish cage, the relative errors of drag force due to variation
of one specific parameter with different incoming velocities are in the same order of magnitude. (3) The
relative error induced by uncertainties of S1 and S2 is insignificant, usually below 5%. (4) The dominant
error source is the uncertainty due to Cd,twine. However, it was found that by 10% variation of drag force
coefficient, the relative error of drag force in general is around or less than 10%. We believe that this is an
reasonable error bound. This is important or fishing nets in waves, where Cd,twine is difficult to find due to
relatively small Re number but large KC number. A rough estimation of Cd,twine in this case might still
produce acceptable results.

8. Conclusions

The present paper investigates the porous media model with application to flow through fishing net
structures, where the main effort was paid to derive new expressions for the porous resistance coefficients
of the fishing net. The volume averaged Reynolds averaged Navier-Stokes equations were employed as the
governing equations, and the differences of the mathematical formulations used in the present work and
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Figure 17: Comparison of time series of surface elevation, drag and lift forces between numerical simulation in OpenFOAM
(dashed line) and experiments from Lader et al. (2007a) (solid line) for wave case 1 (wave frequency f = 1.42Hz, wave height
H = 0.044cm). (a) surface elevation at the position of the net when wave propagating without net. (b) drag force for net case
1. (c) lift force for net case 1. (d) drag force for net case 2. (e) lift force for net case 2. (f) drag force for net case 3. (g) lift
force for net case 3.

27



8 8.5 9 9.5 10 10.5
-0.05

0

0.05
η
 [
m

]
(a)

8 8.5 9 9.5 10 10.5
-0.5

0

0.5

F
d

,n
e

t [
N

]

(b)

8 8.5 9 9.5 10 10.5
-0.2

0

0.2

F
l,
n

e
t [

N
]

(c)

8 8.5 9 9.5 10 10.5
-1

0

1

F
d

,n
e

t [
N

]

(d)

8 8.5 9 9.5 10 10.5
-0.2

0

0.2

F
l,
n

e
t [

N
]

(e)

8 8.5 9 9.5 10 10.5
-2

0

2

F
d

,n
e

t [
N

]

(f)

8 8.5 9 9.5 10 10.5

t/T [-]

-0.5

0

0.5

F
l,
n

e
t [

N
]

(g)

Figure 18: Comparison of time series of surface elevation, drag and lift forces between numerical simulation in OpenFOAM
(dashed line) and experiments from Lader et al. (2007a) (solid line) for wave case 2 (wave frequency f = 1.42Hz, wave height
H = 0.064cm). Legend as the same with Fig. 17
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Figure 19: Comparison of time series of surface elevation, drag and lift forces between numerical simulation in OpenFOAM
(dashed line) and experiments from Lader et al. (2007a) (solid line) for wave case 3 (wave frequency f = 1.42Hz, wave height
H = 0.084cm). Legend as the same with Fig. 17
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Figure 20: Comparison of time series of surface elevation, drag and lift forces between numerical simulation in OpenFOAM
(dashed line) and experiments from Lader et al. (2007a) (solid line) for wave case 4 (wave frequency f = 1.25Hz, wave height
H = 0.104cm). Legend as the same with Fig. 17
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Figure 21: Comparison of time series of surface elevation, drag and lift forces between numerical simulation in OpenFOAM
(dashed line) and experiments from Lader et al. (2007a) (solid line) for wave case 5 (wave frequency f = 1.00Hz, wave height
H = 0.165cm). Legend as the same with Fig. 17
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Table 5: The physical parameters of the three nets used in Lader et al. (2007a) and Lader et al. (2007b), with calculation of
the porous resistance coefficients in five wave conditions. The detailed wave conditions are given in Table 4.

Net case no. 1 2 3
Sn 0.095 0.220 0.288
λ(m) 0.021 0.016 0.025
d(m) 0.0010 0.0018 0.0036
S1(m2) 0.0247 0.0571 0.0738
S2(m2) 0.0252 0.0581 0.0756
V (m3) 0.0250 0.0250 0.0250
a 1.22 1.42 1.69
b 0.92 0.87 1.25

Wave case 1
Re 197 355 710
KC 139 77 38
Cd,twine 1.80 1.60 1.60
C1 4.63 11.15 15.17
C2 1.73 3.37 5.52

Wave case 2
Re 287 516 1033
KC 202 112 56
Cd,twine 1.70 1.50 1.50
C1 4.39 10.49 13.15
C2 1.64 3.17 4.78

Wave case 3
Re 377 678 1356
KC 265 147 73
Cd,twine 1.50 1.40 1.30
C1 4.15 9.84 13.15
C2 1.55 2.97 4.78

Wave case 4
Re 410 736 1472
KC 305 169 85
Cd,twine 1.40 1.30 1.30
C1 3.91 9.18 13.15
C2 1.46 2.77 4.78

Wave case 5
Re 500 898 1796
KC 499 277 139
Cd,twine 1.20 1.30 1.20
C1 3.17 7.87 12.14
C2 1.19 2.38 4.41

previous works have been discussed. The force acting on the net was obtained by integrating the porous
resistance force over the instantaneous wet volume of the porous media.

The linear drag force was neglected in the present work, and only quadratic drag force was accounted
for for the porous media resistance. The explanations have been given in terms of porous media model
and physical background for flow through fishing nets. A new formula was proposed to address the lack
of method on calculation of the quadratic drag force coefficient. The formula was derived based on the
transformation of Morison type load model, and it follows the principle that the force acting on the porous
media zone should be equal to the force obtained from the Morison type load model. The angle dependence
was dropped in the derivation of the formula, in order to get a constant coefficient in time and space domain.
This is based on the previous works which gain some good results under this assumption. The interaction
effects between twines were accounted for by two new parameters, and they were calibrated by minimizing
the error between forces from experimental results and the derived formula. Three reference values of the
parameters were obtained based on the available experimental data, and a linear interpolation was used to
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Figure 22: Relative error between results from the present numerical model and experimental data for the mean wave height
in Lader et al. (2007a)

obtain the parameters for other nets with different solidity ratios.
The overall numerical model was extensively validated against available experimental data in the current

literature. The validation includes both plane net panels and circular fish cages in both steady and unsteady
flows. The comparison between numerical and experimental data was given for each validation case, and the
relative error was also presented in percentage. It was found that for most of the cases the numerical model
could reproduce the experiments adequately. The cases with large relative errors have been investigated and
the reason has been explained.

Based on the overall performance, it was concluded that porous media model is a feasible approach for
modeling flow through fishing net structures. The derived formula could give porous resistance coefficients
of fishing nets within a reasonable error bound, indicating that a and b could account for the interaction
effects to a large degree. However, regarding the assumption that angle dependence has minor effects on the
numerical results, and application of time and space independent porous resistance coefficients is sufficient
for modeling fish cage, more validations are necessary in more complex 3D flow scenarios, i.e. circular fish
cages in wave or combined wave and current conditions.
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Appendix A. Comparison of the two coordinate transformation approaches

When modeling flow through fishing nets by porous media model, the anisotropy property must be taken
into account since the porous resistance is influenced by the orientation of the porous media. They must be
transformed from local to global coordinate system before calculating the resistance forces.

In Patursson et al. (2010) and Zhao et al. (2013b), the porous resistance force was modeled by Darcy-
Forchheimer equation as shown in Eq. (9). But two different approaches were applied in the transformation
of the porous resistance coefficients. In this section analysis will be given on the differences and limitations
of the approaches.

For the most universal cases where neither the flow direction nor the local coordinate of the porous media
is aligned with the global coordinate, a strict 3D coordinate transformation matrix R must be employed.
Therefore D and C in global coordinate system were formulated as:

Dij = RipRjqD
∗
pq Cij = RipRjqC

∗
pq (A.1)
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Figure 23: Sensitivity analysis for flow through circular fish cages with different solidity ratios: (a) Sn = 0.128. (b) Sn = 0.215.
(c) Sn = 0.223. The left figures shows the error bounds of the drag force of the cages due to numerical model uncertainties:
Cd,twine, S1 and S2. The right figures depict the relative error due to these uncertainties.

where

R =

cos(x, x∗) cos(x, y∗) cos(x, z∗)
cos(y, x∗) cos(y, y∗) cos(y, z∗)
cos(z, x∗) cos(z, y∗) cos(z, z∗)

 (A.2)

where cos(xi, x
∗
i ) is the cosines of the angle between xi axis and x∗i axis where i = (x, y, z). In 2D cases

where z∗ and z are aligned, we introduce ζ as the rotation angle from local to global coordinate (the positive
direction is based on the right-hand rule). Hereby the transformation matrix was simplified as:

Rij =

[
cos ζ sin ζ
− sin ζ cos ζ

]
(A.3)

This matrix is equivalent to the transformation matrix adopted in Patursson et al. (2010). Substituting Eq.
(A.3) into Eq. (A.1) gave the final expressions of D and C:

Dij =

[
D∗1 cos2(ζ) +D∗2 sin2(ζ) −D∗1 sin(ζ) cos(ζ) +D∗2 cos(ζ) sin(ζ)

−D∗1 sin(ζ) cos(ζ) +D∗2 cos(ζ) sin(ζ) D∗1 sin2(ζ) +D∗2 cos2(ζ)

]
(A.4)
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Cij =

[
C∗1 cos2(ζ) + C∗2 sin2(ζ) −C∗1 sin(ζ) cos(ζ) + C∗2 cos(ζ) sin(ζ)

−C∗1 sin(ζ) cos(ζ) + C∗2 cos(ζ) sin(ζ) C∗1 sin2(ζ) + C∗2 cos2(ζ)

]
(A.5)

Instead to use matrix multiplication, Zhao et al. (2013b) employed a simplified method as:

D1 =
D∗1 +D∗2

2
+
D∗1 −D∗2

2
cos(2ζ) = D∗1 cos2 ζ +D∗2 sin2 ζ (A.6)

C1 =
C∗1 + C∗2

2
+
C∗1 − C∗2

2
cos(2ζ) = C∗1 cos2 ζ + C∗2 sin2 ζ (A.7)

D2 =
D∗1 −D∗2

2
sin(−2ζ) = −D∗1 sin ζ cos ζ +D∗2 sin ζ cos ζ (A.8)

C2 =
C∗1 − C∗2

2
sin(−2ζ) = −C∗1 sin ζ cos ζ + C∗2 sin ζ cos ζ (A.9)

By comparing Eq. (A.4 - A.5) with Eq. (A.6 - A.9), it was found that in the transformed D matrix,
D11 = D1 but D12 = D21 = D2, and D22 was not calculated in Zhao et al. (2013b). It was the same with
C. The formulation of porous resistance in Zhao et al. (2013b) should be expressed as:

S =

D1µ|u|+
1

2
C1ρu

2

D2µ|u|+
1

2
C2ρu

2

 (A.10)

Therefore the simplification in Zhao et al. (2013b) limits its application, and it is valid only when the
flow is unidirectional and the flow direction is aligned with x axis. For wave interaction with fishing nets,
Eq. (A.6 - A.9) are not valid anymore, and Eq. (A.4 - A.5) should be used due to the orbital motion of
water particles.

Appendix B. The force on porous media based on linear momentum conservation of control
volumes

The forces acting on porous media could be obtained by linear momentum conservation on control
volume, as shown in Patursson (2008). Below a detailed derivation is presented for this method.

Assume that the porous media is enclosed by the control volume CV . Therefore the integral form of the
momentum conservation in the control volume was expressed as:

d

dt

(∫
CV

ρui dV

)
= −

∫
CS

pni dS +

∫
CS

τijnj dS +

∫
CV

ρgi dV −Qi (B.1)

Here the term in the left hand side in Eq. (B.1) is the material derivative of the momentum on the control
volume. The terms on the right-hand side are pressure, viscous stress, body force and finally the force on
porous media due to fluid. Note that the force on porous media from the fluid and the force on the fluid
from porous media are a pair of force according to Newton’s third law.

Furthermore, assume that the control volume is not varying with time, e.g. the porous media is always
enclosed by a fixed control volume. Then the volume integral is not a function of time. Then the material
derivative of the momentum was given as:

d

dt

(∫
CV

ρui dV

)
=

∂

∂t

(∫
CV

ρui dV

)
+

∫
CV

∂

∂xj
(ρuiuj) dV (B.2)

By applying Gauss theorem, the second term on the right-hand side of Eq. (B.2) was converted to surface
integral, then Eq. (B.2) was rewritten as:

d

dt

(∫
CV

ρui dV

)
=

∂

∂t

(∫
CV

ρui dV

)
+

∫
CS

ρuiujnj dS (B.3)
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Substituting Eq. (B.3) into Eq. (B.1) yields the final expression of Qi:

Qi = − ∂

∂t

(∫
CV

ρui dV

)
−
∫
CS

ρuiujnj dS −
∫
CS

pni dS +

∫
CS

τijnj dS +

∫
CV

ρgi dV (B.4)
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