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Nick Rübner Papior

January 29, 2016

Thesis submitted for the degree of Doctor of Philosophy

DTU — Nanotech
Center for Nanostructured Graphene

2012–2016





Preface

This work is submitted in candidacy for the Ph.D. degree at the Technical University of
Denmark (DTU). The work has been carried out between August 2012 and January 2016
at the Department of Micro and Nanotechnology. The project has been funded by the
Center for Nanostructured Graphene (CNG), which is sponsored by the Danish Research
Foundation, Project DNRF58.

First and foremost I would like to thank my supervisor Prof. Mads Brandbyge. He
has persistently and continuously planted seeds of ideas, of which only a fraction have
had time to grow and spur research. His enthusiasm for research and acknowledgement
of students own prioritisations and their research interests is truly inspiring.

Through my Ph.D. I have had the pleasure of collaborating with many people. At
Barcelona ICN2 I worked with the group of Prof. Pablo Ordejón, and in particular Nicolás
Lorente. Here I came in contact with Georg Huhs whom have helped debugging and
testing the new TranSIESTA implementation. Additionally, I have visited DiPC in San
Sebastian, with Res. Prof. Thomas Frederiksen, Prof. Daniel Sánchez-Portal, Dr. Aran
Garcı́a-Lekue, Mads Engelund and Pedro B. Mendonça. In particular, Mads and Pedro
have been helpful in debugging and providing comments on the implementation.

A huge thanks to Prof. Alberto Garcı́a for his endurance with my many mails and
discussion topics. It has truly been a pleasure collaborating with him. A sincere grat-
itude to Alberto and the other SIESTA developers for inviting me as lecturer for a
SIESTA/TranSIESTA workshop in Tel-Aviv, 2014.

In conjunction with my SIESTA developments I was invited for a CECAM ESL work-
shop during the summer 2015 in Lausanne. I would like to thank the ESL community
for inspiring conversations and their belief in my ability to contribute.

I would also express my gratitude to all current and former members of the groups
headed by Mads Brandbyge and Prof. Antti-Pekka Jauho. Particularly, M. L. N. Palsgaard,
T. Gunst, D. Stradi, J. T. Falkenberg, K. W. Jacobsen and J. T. Lü, with whom I have
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Abstract

Nano-electronics industry has during the past decade decreased feature sizes to roughly
10nm. Such feature sizes are at the quantum limit, requiring a description at the
quantum mechanical level. Parallel to the experimental work reside the theoretical tools
used to investigate and understand such systems. These theoretical tools still have a
high computational requirement. Thus more efficient algorithms are needed to perform
studies on even larger systems. Although the gap between the theoretical tools and the
experimental setups are reduced, there is still a gap, and the used theoretical methods
require revised algorithms.

Furthermore, the advent of 2D materials may prove prominent in future nano-
electronics for electronic and heat transport devices. Such materials include the Nobel
Prize winning material, graphene which has unique properties.

The main focus of the work presented in this thesis has been to introduce extensions
to the non-equilibrium Green function code TranSIESTA which will help reduce the
gap between experimental and theoretical studies. One main achievement in this work
is a truly Ne ≥ 1 electrode implementation. Another contribution is a general Ne ≥
1 tight-binding transport code which enables not only electronic transport but also
phonon transport. This tight-binding code includes features such as, bond-currents,
transmission projections and bias-interpolations. For both codes the inversion algorithm
for calculating the Green function is revised. We implement a high performing block-tri-
diagonal algorithm for calculating the Green function and spectral density function —
even for Ne > 2. This is accomplished by bandwidth reduction schemes that increase the
quasi-1D interpretation.

We also present a new gating method capable of calculating gating effects. A graphite
example is used to highlight the importance of the quantum capacitance that is evident
in low density of states systems. Additionally the gating method was used in non-
equilibrium to study the gate-bias dependence on graphene nano-constrictions. This
indicated a pinning effect arising due to differences in coupling strength between the
device and the two electrodes.

Two studies are presented using the non-equilibrium method with Ne = 3. First,
graphene T-junctions are studied to uncover potential interconnects in future graphene
based devices. This T-junction is studied under two non-equilibrium situations. Our
second study is a graphene Scanning TunnellingMicroscopy setup where the inelastic cur-
rent is calculated. We show, that the experimental inelastic signal may be fully recovered
using density functional theory and non-equilibrium Green function techniques.
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Resumé

I det seneste årti er komponenterne anvendt i nanoelektronik industrien blevet mindre
og mindre, og de har nu nået dimensioner helt ned til omkring 10nm. Komponenter af
sådanne dimensioner kræver en beskrivelse af kvantemekanisk karakter. Udover den
store eksperimentelle indsats, der gøres for at beskrive sådanne komponenter, er der
behov for teoretiske værktøjer til at analysere og forstå dem. Disse teoretiske værktøjer
stiller stadig store krav til beregningskapaciteten og der er derfor behov for mere effektive
algoritmer og implementeringer. Selv om forskellene mellem de teoretiske modeller og
de faktiske eksperimentelle undersøgelser er blevet reduceret, findes der stadig et gab,
og de teoretiske modeller kræver derfor reviderede algoritmer.

Derudover kan forekomsten af 2D materialer være fremtræden i fremtidig nanoelek-
tronikmed henblik på elektroniske og transport af varme egenskaber. Et sådant materiale
er f.eks. det Nobel pris vindende materiale grafen med unikke egenskaber.

Denne afhandling har stort fokus på at introducere udvidelser til uligevægts Green
funktion koden, TranSIESTA. Dette vil hjælpe til at mindske gabet mellem eksperi-
mentelle og teoretiske studier. Et af de vigtigste resultater af arbejdet er udviklingen
af en generel Ne ≥ 1 kode. Et andet bidrag er en generel Ne ≥ 1 “tight-binding” trans-
port kode, som gør det muligt at beregne både elektron og fonon transport. Denne
“tight-binding” kode omfatter analyse metoder såsom, bånd-strømme, transmission
projektioner og spændings-interpolationer. For begge koder er inversions algoritmen
til at beregne Green funktionen revideret. Vi har implementeret en blok-tri-diagonal
algoritme for effektivt at beregne Green og spektral funktionen — selv for Ne > 2. Dette
er opnået ved en båndbredde reduktion, der øger kvasi-1D formen.

Vi præsenterer også en ny gate metode til beregning af effekter. En beregning på
grafen/grafit er anvendt som eksempel til at fremhæve betydningen af kvante kapac-
itansen, der er prominent for systemer med lav densitet af tilstande. Derudover er
gating metoden anvendt i uligevægt for at studere gate-skævhed afhængighed grafen
nano-forsnævringer. Dette viste en “pinning” effekt, der opstod på grund af forskelle i
koblings styrken mellem systemet og de to elektroder.

Yderlige to beregninger er præsenteret, der begge bruger uligevægts metoden med
Ne = 3. I den første beregning er et grafen T-kryds undersøgt for at afdække potentielle
forbindelser i fremtidige grafen baserede systemer. Dette T-kryds er undersøgt i to
uligevægt situationer. Den anden beregning omhandler et grafen STM setup hvor den
uelastiske strøm er beregnet. Vi viser, at det eksperimentelle uelastiske signal kan blive
fuldstændigt genproduceret ved hjælp af tæthedsfunktionalteori og uligevægts Green
funktion teknikker.
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Chapter 1

Introduction

The current technological era is expanding its horizons and applications in an expo-
nentially increasing stream of development. Most importantly the advancements made
within semi-conductor technology have driven forth a multitude of research areas as
the handling and analysis of massive amounts of data become accessible on common
work-station computers [1].

The workhorse of computers1 are transistors which enable the control of current,
as the name also implies. A transistor is the combination of the transconductance and
the transresistance of the device. It is not only defined by one of them, but both, hence
transistor [2]. Ever since the discovery of the transistor in 1947 it has decreased from a
mm-scale device to a nm-scale device, more than 6 orders of magnitude in 6 decades.
This has lead to the formulation of Moore’s lawwhich states that the number of transistors
per unit area would double around every 2nd year yielding an exponential increase in
transistor density. Remarkably transistors are still based on silicon technology due to
its unique features [3]. This advancement is a self perpetuating cycle as the increased
computer power allows the investigation of more complex and/or complete physical
models. This aids in the understanding of the physics governing even smaller features,
yielding to the development of smaller physical devices in a feedback loop. See Figure 1.1
for the currently used technology which was projected from 2007.

Feature sizes in current transistors are on the order of 10 nm which correspond
to roughly 40 atoms of silicon. A perplexing thought, that our current technological

Figure 1.1 | Advances within the tri-gate non-planar transistors implemented in Intel
processing units since 2007. The transformation from 2D planar structures to 3D structural
transistors allowed further increasing the density of transistors. From [3].

1Computers encompass; mobile phones, televisions, control boards for electricity, computer worksta-
tions up to HPC computers, etc.
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1.1. Will silicon remain dominant? Chapter 1. Introduction

Figure 1.2 | Experimental setup for gate controlled pn-junction displaying the quantum-
Hall effect. Quantised conductances are measured via gate controlling the graphene sheet
in separate regions. The back gate controls the entire sheet, while the top only controls the
left side of the sheet allowing a pn-junction. From [28].

world relies on cross sections of only 40 atoms! These feature sizes, although seemingly
extremely small, are still just touching the limit of the computational complexity involved
when simulating a full device using quantum mechanical tools.

From a theoretical point of view we need tools and methods to study realistic devices.
Within this thesis we focus on the density functional theory [4, 5] which greatly simplifies
the quantum mechanical N -particle problem. Current density functional theory codes
can handle thousands of atoms [6–9]. However, density functional codes does typically
not handle non-equilibrium situations such as that experienced in a transistor with
an applied bias. To handle non-equilibrium the Green function techniques are used
[10–18]. These techniques are typically heavier than equivalent calculations using
density functional theory. As such, research in both experimental downscaling and
computationally performing algorithms are crucial.

1.1 Will silicon remain dominant?

The versatility and shear abundance of silicon makes it a still prominent candidate to
carry the advancements into the near future, and perhaps longer [3]. However, several
new materials are emerging as candidates to replace silicon; carbon nanotubes for small-
scale 1D-like devices, graphene (also pure carbon) and other 2D-materials [19–23]. These,
however still face a large range of problems before they will be able to replace silicon.
Yet their possible influence have spurred a massive amount of research, including the
work presented in this thesis.

The 2D nature of graphene has some interesting features which are outlined in
Refs. [24, 25]. A particular feature of graphene is the tuneability of the Fermi level
due to doping [26, 27] allowing a range of doping corresponding to roughly 1 eV. So far,
control of graphene has been proven in various studies [28–34]. Figure 1.2 shows the
experimental setup conducted by Williams et al. [28], where a pn-junction is realised
using two gates, one gating the entire graphene sheet and another gating only part of
the graphene sheet. Due to the independent gating a pn-junction is formed, as indicated
by the two differently filled Dirac-cones. This device yields quantum conductance
channels exhibiting a step-wise increment of conductance. A needed feature in graphene

2
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Figure 1.3 |Molecular junction connecting two pristine graphene sheets. a) the molecule
bridged, b) the device setup with gate controlling the entire device, c) signature of molecule
signal from before and after molecule deposition, and d) the device features for varying
gate potentials. From [26].

for transistor operations is a band-gap. I.e. for the on state the device needs to be
tuned/gated out of the band-gap (non-vanishing density of states at the Fermi-level)
while the off state needs to be well in-side the band-gap (vanishing density of states
at the Fermi-level)2 [22]. Several suggestions for band-gap engineering exists [35, 36].
Generally, a confinement of the electrons generate particle-in-a-box like states which
inherently creates gapped energy levels with larger spread for narrower widths [37].
Graphene constrictions can be used while derivatives of connecting two pristine graphene
sheets with, for instance, molecules have already been realised [26, 38]. In Figure 1.3
a molecular junction is shown. a) and b) shows the molecule and experimental setup,
respectively. c) and d) presents the measurements indicating an adsorbed molecule in
the junction with and without gating potentials.

Theoretical models describing graphene are well studied, since they only involve
single specie parameterisations [39, 40]. It is ideal to study using tight-binding models
and empirical potential models for carbon. In these empirical models the scalability of
even the simplest calculations are extreme and one can easily calculate properties of
graphene systems exceeding 10,000 atoms. However, investigating graphene in chemical
environments such as adsorption of different chemical species requires parameter free
methods. Here lies the strength of density functional theory and extensions, such
as Green function techniques. However, they are heavily limited by the implemented
algorithms and calculations rarely exceed 1,000 atoms due to time and memory restraints
on the hardware.

2In this regard research is focusing on a multitude of different 2D-materials as graphene alternatives.
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1.2 Contacting < 3D materials

An interface to connect to external devices, such as bulk copper wires or gold contacts, is
required for using 1D/2D materials as intrinsic elements in electronics [41–43]. Studies
have shown that for graphene contacting metal, a 1D contact along the edge is favourable
[43]. However, we still lack a complete understanding of why this is. This also reflects
itself in STM experiments and gate controlled devices [29–31, 42, 44–46]. However,
conducting theoretical calculations to obtain current characteristics poses difficulties
for STM investigations of graphene and other low dimensional materials. An obstacle
is that the majority of non-equilibrium techniques can not simulate devices connected
to more than 2 electrodes. Hence, a tri-gated device becomes difficult to describe using
common codes. Sometimes, tri-gates can be simulated using phenomenological models
which describe the gate as a perturbation to the electrostatic environment [47–49]. Yet
generally methods for conducting truly Ne-terminal non-equilibrium calculations have
been scarce, and as far as the author is aware, no free academic code can handle full
non-equilibrium with Ne terminals. Reports do exist of NEGF Ne-terminal support such
as [14, 50, 51].

1.3 Outline of thesis

From this thesis perspective, two major issues exist; 1) the capability of non-equilibrium
Green function techniques is in dire need of expansion such that even larger and more
realistic systems can be analysed, 2) a generic Ne-terminal Green function technique
would complement the experimental advancements and allow more complex geometric
systems.

In Chapter 2 an introduction to density functional theory is given. The most basic
concepts are presented and the Hessian matrix, periodicity and the 1D chain band
structure problems are introduced. Furthermore, an introduction to SIESTA is given.

The Green function method is presented in Chapter 3. The concept of density of
states via Green functions and the self-energy is introduced. Bloch expansion of Green
functions are also covered.

Chapter 4 is covering the full re-implementation of TranSIESTA starting from the Ne

electrode Green function equations under equilibrium and non-equilibrium. The details
of the implemented algorithms are explained and several comparisons and peculiarities
of the method and algorithms are emphasised.

Chapter 5 covers TBtrans which enables the calculation of transport properties. The
inversion algorithm is, again, explained and several new techniques are covered, such as
interpolation, bond-currents, eigenstate transmission projections.

A new gate model is introduced in Chapter 6 where we show the importance of
correctly describing graphene with a gate-model and charging effects. In particular, the
electrostatics are behaving differently under such a gate-model.

T-junctions are investigated in Chapter 7. Here we make use of the Ne > 2 capabilities
of TranSIESTA to investigate how to make 3D interconnects in graphene 2D devices.

Lastly, in Chapter 8 the inelastic conductance of STM on graphene is covered.
Full DFT+NEGF calculations are used to reproduce experimental findings in pristine
graphene and nitrogen doped graphene.
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Chapter 2

Density functional theory

In this Chapter we will introduce the basic underlying methodology used throughout
this thesis, namely the mean-field theory: density functional theory (DFT). For the past
several decades the increase in computational power and ever more complex computer
codes have made DFT codes a common method in a physicists toolbox for understanding
complex systems. For more introductory material we refer to [52–55] which covers many
important aspects of condensed matter theory and DFT schemes. An example 1D chain
will be used to explain certain important aspects and it will be re-used in the following
Chapter.

Lastly, a dedicated section on SIESTA [6] introduces the local basis set used through-
out the thesis.

2.1 Density functional theory

Density functional theory (DFT) is one the most frequently used methods to describe
complex physics in a wide variety of environments. DFT is a parameter free method
giving it a predictive power, without relying on explicit fitting parameters. However, it
is based on ground state theory which will be made clear through this section.

The generic problem in the quantum mechanical picture is the solution of the time
independent Schrödinger equation

HΨ (r,R) = EΨ (r,R). (2.1)

Here r = {r1,r2, . . . } (electron positions) and R = {R1,R2, . . . } (nuclei positions). The Hamil-
tonian describes the system having terms originating from different levels of interaction,
the Hamiltonian can be written as a sum of kinetic and potential contributions

H = T+V, (2.2)

= Te +Tn +Vee +Ven +Vnn, (2.3)

where subscript e and n denotes electron and nuclei, respectively, henceVen describes the
potential contribution of electron-nuclei interactions. The contributions can be written
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as

Te = −
∑
i

~
2

2mi
∇i

Tn = −
∑
α

~
2

2Mα
∇α

;

Vee = +
e2

2

∑
i

∑
j

1
|rj − ri |

Ven = −
e2

2

∑
i

∑
α

1
|Rα − ri |

Vnn = +
e2

2

∑
α

∑
β

1
|Rβ −Rα |

(2.4)

with i, j denoting electronic indices and α, β nuclei indices. The 1/2 in the V terms
removes double counting terms.

In principle the exact wavefunction can be found by solving the Schrödinger equa-
tion including the terms in Eq. (2.4). However, the complete wavefunctions cannot be
calculated using conventional methods for anything but the simplest systems involving
very few particles. This is because the Schrödinger equation includes 3Ni +3Nα coupled
equations, with Ni , Nα being the number of electrons and atoms, respectively.

A first approximation in reducing the complexity, was the scheme of an adiabatic
separation of electrons and nuclei proposed by Born and Oppenheimer [56]. The mass
of the heavy nuclei are so large (even for Hydrogen) that the electrons will always see
the atoms in a static configuration,Mα ≈ 1836mi . This allows us to write the electrons
Schrödinger equation as

He = Te +Vee +Ven (2.5)

Heψ(r,R)χ(R) = Eψ(r,R)χ(R), (2.6)

where now the nuclei wavefunctions χ are separated from the electronic wavefunc-
tions ψ. Note that ψ still depends parametrically on the atomic coordinates due to the
environment1.

Secondly, as the name implies, density functional theory is based on the density
rather than the exact wavefunctions. The initial theorems of DFT originated in 1964 by
Hohenberg and Kohn [4] which has since been the basis of a plethora of successful DFT
codes. A thorough and now old, but still applicable review can be found in [57] while a
recent, short and concise summation of its influence over the past decades can be found
in [58].

The energy associated with a trial electronic density ρ can be given as

E[ρ] = F[ρ] +
U
drρ(r)Vext(r), (2.7)

F[ρ] = T [ρ] +Eee[ρ] = T [ρ] +EH [ρ] +EQ[ρ] (2.8)

where Vext(r) is the external potential and F[ρ] the electrons kinetic and electron-electron
interaction energy (also known as the Hohenberg-Kohn functional), both of which are
defined via ρ. The electronic interaction energy is split up in the classical Coulomb
(Hartree) energy and a non-classical part denoted by Q. The Hohenberg and Kohn
theorems states that the electronic density univocally determines the external potential,
hence if Vext ← ρ and Vext ← ρ′ then ρ ≡ ρ′. Further, the variational principle for the

1Equivalently χ depends on electron positions, r, but in an adiabatic approximation with an average
density of electrons, hence an explicit dependence of electron positions is too specific.
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ground state density enables us to find the ground state energy E0 by minimising the
energy functional E[ρ]

E0[ρ] = minT
V ρ
′dr→N

E[ρ′]. (2.9)

We note that the variational principle can be used to estimate an excited state through
E0[ρ′]Tρ′=N+1 −E0[ρ]

T
ρ=N .

At this point we know how to find the ground state by trying different densities
until you find the density with the lowest energy. However, this is unfeasible due to
the magnitude of the problem arising from a many-body wavefunction. To solve this
problem Kohn and Sham proposed the following [5]. They suggested to calculate the
kinetic energy of a non-interacting reference system which recreates the density in the
interacting frame

ρ(r) ≡ ρKS(r) =
∑
i

|ψKS
i (r)|2fi , (2.10)

TKS[ρ] = −
1
2

∑
i

〈ψKS
i |∇

2|ψKS
i 〉 (2.11)

where we call the non-interacting orbitals, or single-particle wavefunctions, ψKS
i the

Kohn-Sham orbitals and fi the distribution function of orbital i. fi is here the Fermi-
function. Note that the physical interpretation of the Kohn-Sham orbitals has been
debated since their formulation, yet their influence and appealing physical interpretation
is used throughout [59]. In the following we will disregard the super script KS and
assume them Kohn-Sham orbitals unless otherwise stated. By defining Eq. (2.11) in
a non-interacting frame we neglect the many-body effects contribution to the kinetic
energy through the two so-called exchange and correlation energies

Ex[ρ] +Ec[ρ] = T [ρ]− TKS[ρ] +EQ[ρ], (2.12)

where we also absorb the non-classical part from Eq. (2.8). Typically the exchange and
correlation energies are referred by a single energy functional Exc[ρ] resulting in the final
expression for the Hohenberg-Kohn energy functional

F[ρ] = TKS[ρ] +EH [ρ] +Exc[ρ]. (2.13)

If the exact exchange-correlation functional was known, so would the ground state
energy and density. The Kohn-Sham equations can then be written as the following
eigenvalue problem [

− 1
2
∇2 +Veff(r)

]
ψi = εiψi . (2.14)

The effective potiental, Veff(r), has the terms corresponding to the Hartree and the
exchange-correlation terms. The Kohn-Sham equations is a self contained set of equations
where the density from ψi are needed for calculating the effective potential. Hence the
equation can be solved by an iterative approach. This short introduction to DFT can be
extended by looking into the multitude of papers and text books on such codes [52–55].

From Eq. (2.13) it is important to note that we have simply moved several unknowns
into a single unknown, the exchange-correlation functional. The exact form of the
exchange-correlation is unknown and attempts to find the best (true) form is long, hard,
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and most importantly, still on-going [60]. It is thus outside the scope of this thesis to go
into a discussion of exchange and correlation functionals. Suffice to acknowledge that an
omnipotent form does not currently exist and each form has their own weakness’ and
strength’s. The open-source project LibXC [61] tries to collect the published functionals in
a single library and is considered the de facto library for exchange-correlation functionals.
Throughout this thesis we rely on the simple and widely used form of the local density
approximation (LDA) PZ [62], or the generalised gradient approximation (GGA) as
suggested by PBE [63].

2.1.1 Forces and the Hessian matrix

From the equilibrium density of a given atomic configuration we can calculate the forces
acting on the atoms via the Hellmann-Feynman theorem [64]. This further enables
DFT to minimise forces of a given geometry by rearranging the atoms. Eventually the
equilibrium positions are reached via the minimisation of the forces exerted on the atoms.
Nearly all studies start by this minimisation of forces to ensure that it is indeed the
equilibrium positions that is being studied.

Consequently one can calculate the force constant matrix, also known as the Hessian
matrix

K =
∂2E(R)
∂R′∂R′′

= −∂F(R)
∂R′′

. (2.15)

The calculation of the Hessian matrix can be cumbersome due to the double differential
of the energy functional. Two ways of calculation the Hessian are; 1) the atomic displace-
ment method also known as frozen phonons, or 2) via linear response theory which is a
derivative of the Hellmann-Feynman theorem. For an excellent review of the methods
see Baroni et al. [65].

The simplest method to implement is the frozen phonons. To correctly describe the
Hessian matrix one requires a displacement of each atom in every Cartesian2 direction
along the positive and negative direction3 for the direct calculation of the Hessian

KIa,Jb =
FJb(R+ δRIa)−FJb(R− δRIa)

2δRIa
, (2.16)

where a and b belong to the Cartesian directions {x,y,z}. One chooses δRIa so small that
the harmonic approximation holds. Hence for light species δRIa must be relatively small
compared to heavier atoms, however, the displacements must not be so small that the egg
box effect4 becomes important. Typically a value around 0.02 �A is a good compromise of
small δR to capture the harmonic approximation while large enough to disregard the
egg box effect, if the mesh is defined by a large enough cutoff. The dynamical matrix is
defined as the mass scaled Hessian matrix

DIa,Jb =KIa,Jb
1√
MIMJ

(2.17)

and the eigenvalues (ωi) and eigenvectors (vi) of the dynamical matrix are the correspond-
ing phonon spectrum and eigenmodes of the system in the harmonic approximation.

2It need not be a Cartesian direction, any orthogonal coordinate basis can be chosen, for example,
estimated phonon modes.

3One could do with one direction but it is advised to do both to capture symmetries.
4The egg-box effect arises due to finite grids where each element volume is too large.
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For calculating the entire Hessian, Eq. (2.15), a total of 6NA displacements are
necessary which makes the frozen phonon method extremely cumbersome for large
systems.

The linear response method is much faster as it is a perturbative method only relying
on the equilibrium position. Further the linear response theory enables the implicit
unfolding of q-points reducing the computationally complexity enormously. For further
details on the implementation of the linear response theory in SIESTA see [66].

2.1.2 Periodicity

An important aspect of periodic calculations is that one can expand periodic potentials
using Bloch’s theorem. In this section we take advantage of the reciprocal space with
wave vectors k defined in the Brillouin zone.

For each unit cell defined by the lattice vectors ai , for i ∈ {1,2,3} there exists a
reciprocal lattice vector bi such that ai · bj = 2πδij . The reciprocity can be related
through the volume relation

Va =
(2π)3

Vb
. (2.18)

By choosing Va→∞, we get Vb→ 0. In that limit there is no need to describe periodicity
as the system under investigation can be adequately sampled using a single k = 0
point. This special point is called the Γ -point. The reciprocal space can be used to
expand wavefunctions and other periodic quantities in terms of Bloch states. Whence a
wavefunction known in a unit cell is simultaneously known in a translated unit cell via
the wave vector components

ψk(r+T) = eik·Tu(r) (2.19)

where T = ia1 + ja2 + ka3 defines an integer translation of the unit cell lattice vectors.
Note that we have added a subscript k which is bounded in the interval k ∈]− 1

2 ;
1
2 ]b for

the first Brillouin zone. The wave vector ki describes a resulting periodicity in the ith
direction via

nki · ai = 2πm , for {n,m} ∈N, (2.20)

hence for k→ 0 the periodicity tends towards an infinite periodicity, i.e. the periodicity
of a single unit cell. While for ki = bi/2 (the Brillouin zone boundary) a periodicity of
the wave function spans two unit cells. Note that the allowed values of k are constrained
to be fractions of b.

At this point it is instructive to define the Hamiltonian for a certain k

Hk =Heik·R (2.21)

or alternatively as

Hk =Heik·r, (2.22)

with R, r being the lattice vector and interatomic distance, respectively. Both methods of
constructing the Hamiltonian are valid, the former is easier than the latter as one need
not determine the distance between atoms.

The energy dispersion in the first Brillouin zone creates a band-structure for the
crystal. For more details see [52, 54, 55].
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Figure 2.1 |One orbital system shown on top of band-structures with full lines the system,
and dashed lines the nearest neighbour interactions. Band structure of 1D chain with
hopping integral t = ∓1/2 showing the 2t cos(ka) dispersion.
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Figure 2.2 | Band structure of 1D chain with increasing number of orbitals N = {1,2,3}.
For larger cells the reciprocal cell scales inversely as indicated by the size of the k-axis.
Far right; a down folding of the N = 1 band into the first Brillouin zone of N = 3. This is
indicated by vertical slices of the Brillouin zone and translating them into the primary
zone.

In the following we will consider a 1D chain with nearest neighbour interactions,
and since it is 1D there is only one k component. For completeness sake we write the
energy dispersion in the reciprocal cell which can easily be derived to be

E(k) = 2t cos(ka). (2.23)

In Figure 2.1 the band structure of a 1D chain is shown with different signs of the
hopping parameter. The dispersion has maximum/minimum at the band-edges and the
Γ point. Note that at any given k there is only one eigenvalue.
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Figure 2.3 | Band folding method shown in reciprocal space. Can be compared to Fig-
ure 2.2 for the N = 3 case. The left shows the two reciprocal cells compared against each
other, R1 and R3. Each type of line represents an equivalence of k-points between the two
different cells. The right shows the same equivalence scheme by slicing the Brillouin zone
into 3 pieces. In this scheme a k3 point encompass all vertically crossed points in the k1
Brillouin zone. For any RN =NR1 there will be N splits with each band folding taking a
point from each split section. This is also indicated by the colouring of the Brillouin zone
parts.

By creating a unit cell with an integer number of more orbitals we find a band folding
as seen in Figure 2.2. With an N times larger system there exists N bands due to the
folding as seen by comparing the right-most figure with the 3 left figures. The N = 1
system has 1 band, for N = 2 there are two orbitals, i.e. two bands, while N = 3 has
3 bands. The arrows indicate the band folding due to increasing the system size, see
e.g. [52]. The figure also emphasises Eq. (2.18) by decreasing the Brillouin zone for
increasing N .

From Figure 2.3 the explicit k points that are down folded can be easily extracted by
splitting the smaller unit cell (larger reciprocal cell) into n parts and adding each of the
crossing k points in the smaller unit cell combined into a single k point in the larger unit
cell (smaller reciprocal cell).

Using the above folding description one can unfold the Hamiltonian for a 1D chain
of size R to any size nR ({}n) at any kn, index n to denote kn with respect to the nR unit
cell. Again only the primary Hamiltonian ({}1) for the system of size R for n different k1
values is needed

Hn
kn
=
1
n

n∑
i

ki=kn+2π
i−1
nR

H1
ki
·


I e−ikiR · · · e−inkiR

eikiR I · · · e−i(n−1)kiR

...
...

. . .
...

einkiR ei(n−1)kiR · · · I

 . (2.24)

This expansion involves several important aspects, first recognise that kN = 2πf /(NR)
with f ∈]− 1

2 ;
1
2 ].

1. ki = kN +2π i−1NR consists of two terms; 1) kN is equal to the equivalent k1 point as
k1 = kNNR/(NR)5, 2) 2π(i − 1)/(NR) are the expansion k1 points from the primary
cell downfolded into the larger unit cell (smaller reciprocal cell) and are equivalent
to the distance between marked points/crossing lines shown in Figure 2.3,

5Note that for generality a proper conversion is performed if non-parallel unit cells and/or different
lattice vector orderings are used.
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2. H1
ki
the Hamiltonian for the ith downfolded k1 point in the primary cell,

3. Matrix factors eiskiR with s ∈ {−N,−N +1, · · · ,N } are the translation factors of the
Bloch states according to Eq. (2.19), note that one need not the R factor as it is
redundant: eiskiR = eis2πfi , with fi = (f + i − 1)/N . Every matrix element is a sub-
matrix of dimensions equal to H1 and the · refers to element wise multiplications
in the matrix elements

From the above recipe, any Hamiltonian based on the primary unit cell Hamiltonian
can be calculated accurately and efficiently. Note, that it is not limited to expansions in
one direction, but in all directions, simply by expanding the sum and matrix sizes in the
order of unfolding. We will return to this unfolding in Sec. 3.3.

2.2 SIESTA

SIESTA is one of the large variety of DFT codes that solves the Kohn-Sham equations
Eq. (2.14) [6]. The underlying methodology requires a substantial effort to fully grasp,
hence a short introduction of the method is outlined here.

The basis set only utilise the valence electrons by absorbing the core electrons in an
effective potential using norm-conserving pseudo potentials. This choice of describing
the core electrons via effective potentials drastically reduces storage and computational
requirements and is widely used in numerous popular DFT codes [7–9, 16, 67, 68]. The
basis set is based on a linear combination of atomic orbitals (LCAO)

φαlmn(r) = φαln(r− rα)Ylm
( r− rα
|r− rα |

)
(2.25)

where α is an atomic index, l,m the angular momentum and n the multiple basis index for
orbitals with same angular momentum but differing radial dependence, these multiple
similar orbitals are referred to as multiple-ζ basis functions6. Ylm is the corresponding
spherical harmonic which is a collection of orthogonal polynomials. The choice of basis
orbitals thus equal that of free atoms in vacuum. The atomic orbitals are confined on the
atom with a decaying tail into vacuum. This natural decay limits the range and creates a
sparse Hamiltonian with non-zero elements only where two basis orbitals overlap. The
use of LCAO orbitals have several advantages; 1) the Hamiltonian becomes sparse and
a natural partitioning of the elements can be performed, 2) a sparse Hamiltonian can
enable order-N methods due to the fast internal data structures of a sparse matrix, 3) the
accuracy can be controlled by i) increasing the radial dependence, ii) adding additional
ζ orbitals for the same angular momentum with differing radial dependence and/or iii)
adding polarisation orbitals to account for the deformation induced by bond formation,
here we denote polarisation orbitals as ζ±. The disadvantage of this choice is that the
accuracy is not a simple parameter but a multitude of parameters, including the ones
mentioned above.

The LCAO basis is a non-orthogonal basis set resulting in a so called overlap matrix

Sµν = 〈φν |φµ〉, (2.26)

where for simplicity the complex indices for the φ orbitals have been reduced to single
Greek letters. The overlap matrix defines the dual basis of the basis orbitals by |φν〉 =

6The basis functions are named; single-ζ, double-ζ, etc.
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|φµ〉S−1µν , hence 〈φν |φµ〉 = δνµ . The Kohn-Sham orbitals are then expanded in terms of the
atomic orbitals by

ψi(r) =
∑
µ

φµ(r)cµi , (2.27)

cµi = 〈φµ|ψi〉 = S−1νµ〈φµ|ψi〉, (2.28)

where we have used that the overlap matrix is Hermitian. The above equations finally
describes the non-orthogonal Kohn-Sham eigenvalue problem with coefficients cνi being
the generalised eigenvector of H and S∑

ν

Hµνcνi = εi
∑
ν

Sµνcνi . (2.29)

This also changes the calculation of the density slightly via

ρ(r) = fi
∑
i

|ψi(r)|2 = fi
∑
i

∑
νµ

c∗νiφ
∗
ν(r)φµ(r)cµi (2.30)U

drρ(r) =N = fi
∑
i

∑
νµ

c∗νiSνµcµi , (2.31)

from which we define the density matrix

ρνµ ≡ fi
∑
i

c∗νicµi , (2.32)

which can express the density integral Eq. (2.31) in matrix formU
drρ(r) =N = Tr[ρS]. (2.33)

Note that the density matrix is distribution normalised to N via fi . Although the density
matrix is a dense matrix the only required elements are those defined where the overlap
matrix is non-zero, thus leaving the density matrix in a sparse format as well. The
indexed density of atomic orbitals are the equivalent Mulliken populations [69] which
conveniently divides the charge amongst atoms. Importantly it is difficult to fully
associate charges to explicit atoms. Many different schemes exists which divides the
atomic charges in various ways [70, 71].

2.2.1 Electrostatics

The Hartree electrostatic potential, Eq. (2.13), for the electrons is determined from the
difference between the self-consistent electron density ρ(r) and the neutral atom density7

ρatom(r) which we denote δρ(r) = ρ(r)− ρatom(r). The Poisson equation solved in SIESTA

can then be written as
∇2δV (r) = −δρ(r)/ε0. (2.34)

SIESTA uses periodic boundary conditions in all directions and thus enables the use of
a 3D Fourier transform for solving the Poisson equation. Further details may be found

7Determined from the basis orbitals and the neutral atom’s valence population.
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2.2. SIESTA Chapter 2. Density functional theory

in [6]. However, this adds some peculiarities for certain systems. For charge neutral
systems (

T
δρ(r) = 0) the Hartree potential is easily calculated, ∇2δV (r) = ∇2δV0(r) =

−δρ(r)/ε0. For charged systems the potential is obtained by adding a constant term
which corresponds to a uniform charge background that compensates the excess charge,
i.e. δV (r) = δV0(r) + δVback. This is a consequence of the Fourier transform which has
a zero wave vector component corresponding to the uniform background. For slab
calculations a vacuum is required to electrostatically decouple its periodic replica, and
using a slab dipole correction may be a requirement [72]. This is because the periodic
Fourier transforms does not impose Dirichlet8 boundary conditions at infinity. However,
for LCAO DFT vacuum is inexpensive, contrary to plane wave codes.

8Dirichlet: Fixed boundary potential. Neumann: Fixed potential derivative at the boundary.
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Chapter 3

Green function techniques

Green function1 is a general mathematical tool which we here use in a quantum me-
chanical picture. In this Chapter we will highlight a useful abstraction of the quantum
mechanical equations through the usage of Green function techniques.

This thesis use Green functions to describe non-equilibrium effects via, either a self-
consistent mean-field approach or from by quantifying the quantum transport properties,
or both. Its usage as a replacement for diagonalisation routines is outlined with respect
to the 1D chain introduced in the previous Chapter. The 1D chain will be used to show
how one can calculate the density of states using the Green function and compare this to
the eigenvalue problem shown in the previous Chapter. Also, the concept of a self-energy
is introduced and its importance and usefulness is again highlighted for the 1D chain.

This Chapter will not introduce the Green function technique of calculating the
transport problem. For this we refer to other texts, such as [55, 74, 75].

3.1 Single particle Green function

We start with the unperturbed retarded single particle Green function (G0)[
(E + iη)I−Hk

]
G0

k(E) = I, with η→ 0+, (3.1)

with k denoting the periodicity in the Brillouin zone. The 0 index is used to denote
the unperturbed Green function. Importantly the identity matrix, I, is used for an
orthogonal basis set while the overlap matrix, S, is used for a non-orthogonal basis set.
Either representation is valid while in the remaining section we will use an orthogonal
representation without loss of generality. We can rewrite Eq. (3.1) in terms of the
eigenstates of the Hamiltonian as

G0
k(E) =

N∑
i

|ψk,i〉〈ψk,i |
E + iη − εk,i

, (3.2)

where Eq. (3.1) can easily be asserted. We will omit the total number of orbitals N in
the following for clarity. It is instructive to split the Green function into the real and

1The community has still not converged on Green vs. Green’s function [73]. I prefer Green.

15
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Figure 3.1 | DOS of linear chain (above left) calculated using different η values for fixed k
and E spacing. δE is shown in top right zoom of L. The wiggles appear due to inadequate
linear integration of Lk,i(E). This is because of a lower η. This is clear in the η = 0.002t
plot.

imaginary part

<G0
k(E) =

∑
i

|ψk,i |2Lk,i(E)(E − εk,i)/η (3.3)

=G0
k(E) = −

∑
i

|ψk,i |2Lk,i(E) (3.4)

Lk,i(E) ≡
η

(E − εk,i)2 + η2
, (3.5)

where for η→ 0+ we find an infinitely narrow Lorentzian (Lk,i(E)), a δ-function, with an
area of π and full width half maximum 2η. Hence the density of states (|ψk,i |2) can be
expressed as

DOS(E) = − 1
π
Tr[=G0

k(E)] (3.6)

LDOS(E) = − 1
π
=G0

k,{ii}(E), local at site i. (3.7)

Note that for non-orthogonal basis sets a similar expression to Eq. (2.33) is used. The
density of states yields the number of states at energy E with non-negligible contributions
from eigenstates with eigenenergies |E − ε| . 2η. As η→ 0 the density of states turns into
delta functions at the eigenenergies. Note that integrating the DOS in the full energy
spectrum will always be a normalised quantity, N , as can be inferred from the identity
I =

∑
i |ψi〉〈ψi |. While the total occupied orbitals can be obtained by integrating a product

of the Fermi function, nF(E), and DOS(E).
It is instructive to calculate the energy resolved DOS for a 1D periodic chain using

the single particle Green function method shown above. The system setup is shown in
Figure 3.1 top-left with hopping parameter t between the sites. We calculate the DOS
by integrating the Brillouin zone in a fine mesh of 400 points as well as an energy grid
spaced by δE = 0.02t. In Figure 3.1 the DOS is shown for three values of η, for a high
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3.2. Bulk Green function Chapter 3. Green function techniques

η > δE it is relatively smooth as would be expected if the Lorentzians are fully described
by discretised integrals. Furthermore we clearly find the van-Hove singularities for
∇k→ 0 at the band onset and band offset. For a slightly lower η = δE it almost does not
change. Yet, for even lower η < δE the DOS becomes non-recognisable and the general 1D
DOS cannot be recovered. The above discussion for δE also applies to the discretisation
of k via the eigenvalue difference for δk. This emphasise three points which we suggests
to be simultaneously fulfilled to adequately describe the DOS via Green functions

1. choose η ≥ δE to correctly capture band features in energy space,

2. then choose δk such that η ≥ δE|k+δk to correctly capture band features in recipro-
cal space.

3. Choose η as low as possible to correctly describe the Lorentzian features which
would otherwise get too broadened.

Here δE|k+δk is the maximum change in energy due to a shift in wavenumber for any
k. It should be recognised that a multitude of post-processing utilities for calculating
density of states using only the band-structure calculations rely on Eqs. (3.2) and (3.6)
and hence the above arguments should also be considered for seemingly non-Green
function calculations.

To recapitulate, the density of states can be a) performed using pristine Green
function techniques, or b) using diagonalisation of the Hamiltonian equation and post-
process the DOS according to Eq. (3.4) from the bandstructure. The latter is typically
preferred as you need only a Brillouin zone discretisation while the former requires both
a Brillouin and an energy space discretisation. Furthermore the latter is guaranteed to
capture all states as you explicitly calculate the eigenstates. Hence the majority of DFT
codes employ the latter for periodic calculations.

The following section describes how the Green function method can be used without
performing a double integral in a similar context via the use of self-energies.

3.2 Bulk Green function

The discussion in Sec. 3.1 suggests that Green functions are not suitable for periodic
systems as it requires a double integral (E and k) for estimating a correct DOS2. However,
the Green function technique possesses other methods to circumvent such difficulties.
In particular the term self energy is important. We will in the following omit the energy
dependence and only highlight its dependence when deemed necessary.

We will start by introducing a perturbation to the single particle Green function and
define the perturbed Green function (G)

[(E + iη)I−H−V]G = I, (3.8)

with V being the perturbation. Rewriting Eq. (3.1) and Eq. (3.8)

[(E + iη)I−H−V]G = I (3.9)

[(E + iη)I−H]G = I+VG (3.10)

G =G0 +G0VG, (3.11)

2Compared to the diagonalisation method which only requires a single integral.
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3.2. Bulk Green function Chapter 3. Green function techniques

which is known as the Dyson equation. The perturbation V can be of any kind, local
impurity, neighbouring impurity, neighbouring cell, infinite bulk etc. To illustrate its
usefulness we first describe a 2 orbital system and then extend it to our 1D chain.

H =
[
ε 0
0 ε

]
; V =

[
0 t
t 0

]
. (3.12)

We first consider the perturbation of H{1,1} due to the neighbouring site H{2,2}

G{1,1} =G0
{1,1} +G0

{1,1}V{1,2}G{2,1}, (3.13)

from the matrix product in Eq. (3.11) we take G{2,1} =G0
{2,2}V{2,1}G{1,1} and insert

G{1,1} =G0
{1,1} +G0

{1,1}V{1,2}G
0
{2,2}V{2,1}G{1,1} (3.14)

G{1,1} =
[
E + iη − ε −V{1,2}G0

{2,2}V{2,1}
]−1

(3.15)

G{1,1} ≡
[
E + iη − ε −Σ(E)

]−1
(3.16)

Here V{1,2}G0
{2,2}V{2,1} is typically referred to as the self energy Σ(E) with an energy

dependence due to G0
{2,2}. The self energy can be understood in terms of two aspects, 1)

the eigenstate energies (ε) are re-normalised and, 2) the life-time of the energy levels
are broadened from the imaginary part of the self energy. An important aspect of the
self energy is that the range of the normalisation terms correspond to the range of V that
couples the external perturbation into the system of consideration, hence the coupling of
the self energy must not go beyond the perturbed Green function.

The above example highlights an important feature of the Green function method,
namely

The solution of a system under an external perturbation only requires the self
energy of the perturbation.

An infinite system can be solved using a one-particle basis and the self energy
on the one-particle due to the remaining infinite system.

The last paragraph might seem contradictory in that we still need to calculate the self
energy of an infinite system? However, we will now show that it is, relatively, easy to
calculate the self energy of an infinite perturbation for certain infinite systems.

We start by showing the steps of calculating the surface self energy corresponding
to a particle connected to a bulk in one direction (hence surface). An infinite system
can be split into two surfaces, hence calculating the left and right surface self energy is
equivalent to one infinite chain. The Hamiltonian of a right semi infinite system

H =

ε 0

0
. . .

 ; V =


0 t 0

t
. . .

. . .

0
. . .

. . .

 . (3.17)
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We quickly repeat the calculations done in Eq. (3.13)

G{1,1} =G0
{1,1} +G0

{1,1}V{1,2}G{2,1} (3.18)

G{2,1} =G0
{1,1}V{2,1}G{1,1} +G0

{1,1}V{2,3}G{3,1} (3.19)

... (3.20)

G{n,1} =G0
{1,1}V{n,n−1}G{n−1,1} +G0

{1,1}V{n,n+1}G{n+1,1}. (3.21)

Where V{1,2} determines the size of the so-called primary layer. I.e. the size of the primary
layer only couples to one neighbouring layer in each direction of the bulk part. The
above recursive equations enables the calculation of the surface self energy [76] which
can be written as

G{1,1} =G0
{1,1} +G0

{1,1}V{1,2}TG{1,1} (3.22)

G{1,1} =
[
E + iη −H{1,1} −V{1,2}T

]−1
, (3.23)

where we define the self energy as Σ{∞,1} ≡ V{1,2}T. The self energy can be obtained
through the following recursive equations which are terminated when the difference
between two iteration’s surface self energy goes to 0.

Σ{1,1}(E) =V{1,2}
[
E + iη −H{1,1}

]
V{2,1} (3.24a)

Σ{i,1}(E) =V{1,2}
[
E + iη −H{1,1} −Σ{i−1,1}(E)

]
V{2,1} (3.24b)

and for large i the self energy will converge and the recursive scheme terminates. Σ{i,1}
will then be the surface self-energy which rescales the surface Hamiltonian due to the
underlying semi-infinite bulk. Although typically unused, the index i can be thought of
as the range of the electrostatic potential by the bulk. The recursive scheme in Eqs. (3.24)
is a slow method for calculating the self energy. It should never be the method of
choice for semi-infinite bulk. We will return to this point after showing a much faster
converging series for the surface self energy [76]. For this method it is convenient to use
both the left and right self energies

α0 =V{1,2} = β†0 =V†{2,1} (3.25a)

αi = αi−1
[
E + iη −H{1,1} −ΣL{i−1,1} −Σ

R
{i−1,1}

]−1
αi−1 (3.25b)

βi = βi−1
[
E + iη −H{1,1} −ΣL{i−1,1} −Σ

R
{i−1,1}

]−1
βi−1 (3.25c)

ΣL{i,1}(E) = ΣL{i−1,1}(E) +αi−1
[
E + iη −H{1,1} −ΣL{i−1,1} −Σ

R
{i−1,1}

]−1
βi−1 (3.25d)

ΣR{i,1}(E) = ΣR{i−1,1}(E) +βi−1
[
E + iη −H{1,1} −ΣL{i−1,1} −Σ

R
{i−1,1}

]−1
αi−1 (3.25e)

for i > 0 and ΣL/R{0,1} = 0. Eqs. (3.25) converges with exponential scaling 2i , i.e. the self

energy describes a re-normalisation from the nearest 2i layers as each iteration doubles
the amount of interacting layers. For further details see [76].

Eqs. (3.24) and (3.25) can be used to describe the bulk properties of a linear chain
by calculating both the left and right surface self energy and then calculate the bulk
Green function. The DOS and the number of iterations required for the calculation of
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Figure 3.2 | Top) density of states from self energy perturbation via two semi infinite bulk
parts. Middle) number of iterations for linear recursion algorithm, Eq. (3.24). y-axis in
base 2. Bottom) iterations for the exponential recursion algorithm, Eq. (3.25). The linear
uses ∼ 215 = 32768 iterations at E = 0 while the recursive converges in ∼ 15 iterations.
Clearly [76] converges much faster while they both yield the same DOS.

the self energy for the two methods are shown in Figure 3.2. The top plot shows the
DOS from the bulk Green function. In the middle plot we see the number of iterations
for the slow method with y-axis in base 2. The last plot shows the number of iterations
required for the fast method [76]. By having the linear in base 2 they become comparable
as they converge in roughly the same number of layers. By comparing Figure 3.1 to
Figure 3.2 it is clearly seen that the self energy method captures the DOS perfectly at
any energy, unlike the Brillouin zone integration which requires an extremely fine δk
for a smooth DOS. This is because all k points along the semi infinite direction is taken
into account and hence it corresponds to a smooth Brillouin zone integration along that
direction. Note how a larger η reduces the number of interacting layers. For η→∞ this
corresponds to a constant self energy and essentially a constant DOS smeared out from
E = −∞ to∞.

Recapitulating, the surface self energy describes the correction on a primary unper-
turbed layer via a re-normalisation of the energy spectrum due to the correction from all
particles in the semi infinite direction. In other words, it is equivalent to perturbing the
primary layer by all Bloch states in the semi infinite direction and thus the k resolution
along that direction becomes obsolete. It is remarkable that the perturbed Green function
defined in the primary layer can now express the DOS for a semi-infinite region.

Currently the recursive method by Sancho et al. is the most frequently used due to
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3.3. Bloch expansion of the self energy Chapter 3. Green function techniques

its simplicity, ease of use and strict convergence control. Incidentally it also converges
relatively fast, even for long range potentials in the bulk . 20 iterations seem to be
enough for reasonable η values. However, other methods which calculates the surface
self energy in a one-step process are available [10, 77–81]. The earlier methods involve
the inversion of a possible singular matrix (H{1,2}) leaving them unusable for certain
systems [10, 77, 78, 80] while a later method solved the singularity problem [81]. They
all utilise a quadratic eigenvalue problem of the form similar to this (here shown from
[81])

K{i,j} = (E + iη)S{i,j} −H{i,j} (3.26)[
K{1,1} K{2,1}
I 0

]
Φ+,n = e

ikn

[
K{1,2} 0
0 I

]
Φ+,n. (3.27)

While the calculation of the self energy does take a substantial amount of time one
can with benefit pre-calculate the self energy and store it to be used later at any time.
For this reason the used method in this thesis is the Sancho et al. recursive method and
storing them on disk for reducing calculations.

3.3 Bloch expansion of the self energy

From Sec. 3.2 a direct way of coupling a system to an infinite perturbation has been
presented. Yet, the recursive scheme Eqs. (3.25) are still requiring a decent number of
inversions making it a substantial part of any Green function calculation. The infinite
perturbations will typically describe truly bulk parts such as metals with transverse
periodicities that couples an integral periodic bulk system to a much larger system. Here
we, again, utilise Bloch’s theorem to reduce computational overhead. As explained in
Sec. 2.1.2 the periodicity can easily save computations by using a reduced unit-cell and
then unfolding it using Eq. (2.24). Particularly for the self energy calculation where
several inversions are made this will greatly increase performance. For clarity we re-write
the self energy unfolding here

Σnkn
=
1
n

n∑
i

ki=kn+2π
i−1
nR

Σ1
ki
·


I e−ikiR · · · e−inkiR

eikiR I · · · e−i(n−1)kiR

...
...

. . .
...

einkiR ei(n−1)kiR · · · I

 , (3.28)

where the variables are equivalently explained as for Eq. (2.24). To the author’s knowl-
edge this is only implemented in TranSIESTA while other codes could greatly benefit
from this simple abstraction of the self energy calculation, even in the direct calculation
of the self-energies. This will drastically increase throughput in calculations as one will
always be able to reduce the bulk self energy calculations to the minimal bulk periodic
cell.
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Chapter 4

TranSIESTA

In this Chapter we cover the full re-implementation of TranSIESTAwhich is a DFT+NEGF
code. The non-equilibrium Green function (NEGF) method, on which TranSIESTA is
based, is one theoretical model which has successfully described experimental findings
within many areas. It is a widely used method in the community and several codes
based on DFT also implements this approach. A selection of NEGF codes based on
SIESTA can be found in these Refs. [10–12, 81, 82]. Other NEGF codes, see Refs. [15,
16, 50, 51] are based on other DFT software. Importantly, the NEGF method is not
constrained to DFT. In particular it is heavily used in tight-binding studies [39, 83, 84].
Also parameterisations of DFT, such as Refs. [14, 85] implement DFT+NEGF. Altogether,
only few codes handles more than two electrodes [14, 15, 50, 51].

We will introduce the basics of TranSIESTA, starting from calculating the density
matrix using Green functions. For multi-electrode calculations these equations are
carefully written and we highlight important considerations when conducting multi-
electrode calculations. Optimisations of the equilibrium contour as well as the different
schemes involving non-equilibrium density averaging will also be covered. A large part
of this Chapter is devoted to the algorithms and the performance enhancements achieved
in this re-implementation. We emphasise the algorithm in context of Ne > 2 calculations
which complicates the algorithms.

4.1 Density matrix from Green function

The following discussion borrows techniques discussed in Secs. 2.2 and 3.1. Symmetries
will be implicitly used in the context of time-reversal symmetry and all relevant sym-
metries may be found in App. A. In the following we consider the Kohn-Sham orbitals
as mean-field one-electron orbitals used to describe non-equilibrium effects. The Exc
functional is assumed adequate for describing such non-equilibrium effects in conjunc-
tion with the Kohn-Sham orbitals. We limit this section to not consider many-body
effects and/or electron-phonon couplings. Also, the equations are easily generalised
for co-linear spin. Note that some expansions of the mean-field approximation may be
described using additional self-energy terms.

For clarity and later use, an explicit k dependence is added to the equations while e
refers to an electrode index. Furthermore all equations are written generically with Ne

electrodes to clarify specifics related for any number of electrodes Ne ≥ 1. The following

23



4.1. Density matrix from Green function Chapter 4. TranSIESTA

expressions are heavily used throughout the remainder of the thesis

Gk(z) =
[
zSk −Hk −

∑
e

Σe,k(z −µe)
]−1

, with z ≡ ε+ iη. (4.1)

Γ e,k(z) = i
(
Σe,k(z −µe)−Σ†e,k(z −µe)

)
(4.2)

Ae,k(z) =Gk(z)Γ e,k(z)G
†
k(z) (4.3)

Ãe,k(z) =G†k(z)Γ e,k(z)Gk(z) (4.4)

ρ =
1
2π

�
BZ
dkdε

∑
e

Ae,k(z)nF,e(ε)e
−ik·R, (4.5)

with the usual quantities. Σe and Ae(Ãe) are the self energy and spectral function
(time-reversed) of electrode e, respectively with associated scattering matrix. ρ is the
non-equilibrium density matrix. BZ denotes an integration over the Brillouin zone with
k being the Brillouin zone k-point. ε and η are the energy and 0+ small positive constant,
respectively. Eq. (4.5) is the standard form of the density matrix for equilibrium and
non-equilibrium. The chemical potential is denoted µ, and the temperature as kT . A
combined quantity for the chemical potential and the associated temperature is denoted
ς ≡ {µ,kT }. We will freely denote a Fermi distribution by nF,ς as well as nF,e where the
latter implicitly refers to ς belonging to the electrode e. Lastly, the so called “transport
direction” is omitted in the following as it can only be defined with respect to a plane.
For Ne > 2 or misaligned electrodes no single transport direction can thus be defined.
As such the terminology for NEGF calculations should be given with respect to the
semi-infinite directions. This is now the convention in TranSIESTA.

TranSIESTA also calculates the energy density matrix to enable force calculations via
NEGF [16, 86]

E =
1
2π

�
BZ
dkdεε

∑
e

Ae,k(z)nF,e(ε)e
−ik·R. (4.6)

In the following any derivation of the density matrix equally holds for the energy density
matrix with the additional ε multiplication in the integral. It is stressed that the forces
in a steady-state transport problem can be defined equivalently to a closed system at
equilibrium [87].

Remark that the definition of the Hamiltonian in the Brillouin zone is that of
Eq. (2.21). This choice has several advantages:

• reduces several computations as the phases can be pre-calculate for each auxiliary
cell instead of phases determined by inter-atomic distances,

• the inter-atomic distances are not needed so long as you know which Hamiltonian
element belongs to which auxiliary super cell,

• you allow any unit cell, even a semi-infinite direction which is not orthogonal to
the periodic directions: R∞ ·R , 0,

• periodicity of the device region can exist while a semi-infinite direction has the
same periodic direction.

We note that the calculation of the self energies are typically pre-calculated and
stored on disk to reduce overhead of re-calculating the same quantity for each self
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consistent cycle. Further, we use Eq. (3.28) to considerably speed up the calculation of
the surface self energy, as discussed in Sec. 3.3. Hence the calculation of the self energies
will in nearly all cases be a small fraction of the total computation time and focus will be
on algorithms regarding the Green function calculation.

4.1.1 Equilibrium (EGF)

By assuming all chemical potentials equal in Eq. (4.5) we rewrite

ρ =
1
2π

�
BZ
dkdεGk

∑
e

Γ e,kG
†
ke
−ik·RnF(ε) (4.7)

ρ =
i

2π

�
BZ
dkdεGk

[
Σk −Σ†k

]
G†ke

−ik·RnF(ε), (4.8)

by introducing Eq. (4.1)

ρ =
i

2π

�
BZ
dkdεGk

[
G†,−1k −G−1k +2iηSk

]
G†ke

−ik·RnF(ε) (4.9)

ρ =
i

2π

�
BZ
dkdε

[
Gk −G†k +2iηGkSkG

†
k

]
e−ik·RnF(ε) (4.10)

u

i

2π

�
BZ
dkdε

[
Gk −G†k

]
e−ik·RnF(ε) ≡ ρeq, (4.11)

only for the Γ point does Eq. (4.11) reduce to i(GΓ −G†Γ ) = −2=GΓ . We define Eq. (4.11)
as the equilibrium density ρeq belonging to the chemical potential nF .

4.1.2 Non-equilibrium (NEGF)

Non-equilibrium arises due to differences between the electrode electronic distributions
via ςe , ςe′ , either via the chemical potential or via temperature differences. The NEGF
part is the most complex part of the equations as it requires the Green function and a
triple matrix product. We start from Eq. (4.5) and a suitably chosen 0 term

ρ =
1
2π

�
BZ
dkdεGk

∑
e

Γ e,knF,e(ε)G
†
ke
−ik·R (4.12)

(1− 1)Gk

∑
e′,e

Γ e′ ,knF,e(ε)G
†
ke
−ik·R , note the Fermi function. (4.13)

Adding Eq. (4.12) and Eq. (4.13) and reducing yields

ρe = ρe
eq +

1
2π

∑
e′,e

�
BZ
dkdεGkΓ e′ ,kG

†
ke
−ik·R

[
nF,e′ (ε)−nF,e(ε)

]
, (4.14)

ρe ≡ ρe
eq +

∑
e′,e

∆e
e′ ≡ ρe

eq +ρe
neq, (4.15)

where we call ∆e
e′ a non-equilibrium correction term for the equilibrium density of

electrode e due to electrode e′. This reduce the non-equilibrium correction term integrals
to be confined in the bias window with respect to the different Fermi distributions.
Eq. (4.15) deserves a few comments. It can be expressed equivalently for all electrodes e,
and thus one finds Ne different expressions for the same quantity ρ = ρe = ρe′ as shown
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in [15]. If any two or more electrodes have the same Fermi distribution, ςe = ςe′ , we have
ρe
eq = ρe′

eq and ∆e
e′ = 0, whence we can reduce Ne to Nς different expressions. So for any

Ne > 2 electrodes with 2 different Fermi distributions we only have 2 equations made of
different terms (although they are mathematically equivalent). The number of correction
terms for e is equal to the number of electrodes with ςe , ςe′ . Equivalently, and more
rigorously, Eq. (4.15) can be written as

ρς = ρςeq +
1
2π

∑
e|ςe,ς

�
BZ
dkdεGkΓ e,kG

†
ke
−ik·R

[
nF,ςe(ε)−nF,ς(ε)

]
= ρςeq +

∑
e|ςe,ς

∆
ς
e , (4.16)

where e|ςe , ς are electrodes with Fermi distributions different from ς. Eq. (4.15) is
equivalent to Eq. (4.16) where the former have possible duplicates and the latter does
not.

Different implementations either calculate one or all ρςeq. The former is straight
forward while the latter requires an averaging of the quantities. For best convergence
properties the latter method is preferred.

4.2 Discretised integration

A problem with integrating Eqs. (4.11) and (4.16) is that the precision of the integral is
determined by the fineness of the energy contour. The discreteness of the integration has
to resolve the possibly very narrow eigenstates along the real axis.

To circumvent the meticulous and tedious calculation of the EGF along the energy
real axis, the integration variable, ε, is changed to a complex energy, z = ε + iη, which
moves the Green function far into the complex plane. The advantage is that the Green
function is quickly varying near the poles/the real axis, and slowly varying far from the
poles/the real axis. Hence we obtain a smoothly varying Green function which allows
numerically accurate quadrature methods instead of fine grid Newton-Cotes integration.
Consequently the residue theorem is applied which requires the function to be analytic.
For the Green function we know it has poles on the real axis (the eigenvalues of its
inverse) whereas the Fermi function nF has poles as

ResnF(zν) = kT , with zν = ikT π(2ν +1) ,ν ∈N (4.17)∮
dz

[
Gk(z)−G†k(z)

]
nF(z) = −2πikT

∑
zν

[
Gk(zν)−G†k(zν)

]
, (4.18)

To calculate the real axis integral one divides the enclosed contour into the real axis
and everything else. An example of two different, but equivalent, enclosed contours are
shown in Figure 4.1. Note that nF(ε)→ 0 for ε � EF which leverages the need for a
fully enclosed contour. It is stressed that the choice of contour in the complex plane
is purely a mathematical choice. The careful reader will also notice that the residue
theorem applied to Gk(z) −G†k(z) indeed is equivalent to two residue theorems. One
for the positive part of the imaginary coordinate system for integrating Gk(z), and the
second for the negative part of the imaginary coordinate system for integrating G†k(z).
This is indicated in Figure 4.1 with R+/−, a) and b), respectively. The imaginary part of
the contour line integral L/S should be chosen large enough so that the Green function
indeed is smooth. A higher number of poles increases the distance to the real axis. Thus
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a) R+ =
T
G(z)

E

=

EF

L+

C+

R+

S+

zi

b) R− = −
T
G†(z)

E

=

EF

L−

C−

R−

S−

zi

Figure 4.1 | Two enclosing contours in the complex plane. The red contour, C, is a circle
contour while the square contour, S , is shown by a blue line. Both are mathematically
equivalent. The arrows indicate the direction of the contour integration for the residue
theorem. a) is the integration of the retarded Green function while b) is the integration of
the advanced Green function. Note the sign change of the advanced Green function which
results in the opposite contour direction.

one should take care of the number of poles used in the calculation as the imaginary
part is solely determined by the temperature, see Eq. (4.17). Advisably the imaginary
energy should be above 2.5 eV. The previous TranSIESTA implementation, and all
available implementations denote the number of poles explicitly [10–12, 88], to the
author’s knowledge. However, we argue that a rigorous choice should be the imaginary
energy which uniquely defines the number of poles for the integral1. This rigorous
choice ensures that the line integral is far from the real-axis, irrespective of the electronic
temperature, and particularly so for non-equilibrium calculations with only electronic
temperature differences.

In TranSIESTA the line-integral L can be a Gauss-Fermi quadrature with pre-
calculated abscissa and weights or any other standard method with weight function
w(x) = 1.

Most importantly must the lower bound (end/start point of C+/−) of the contour
integration be well below the lowest eigenvalue of the system as the Green function
fans out when increasing the complex energy. If the real axis energy is not low enough
some density will be neglected in the residue theorem and the density cannot be fully
encapsulated, a simple check is to analyse the electrode band-structure and use the band
bottom as a reference.

4.2.1 Optimising the energy integral

As indicated in Sec. 4.2 several choices of the contour can be made and selecting an
optimum equilibrium contour is difficult [11, 13, 16, 50]. TranSIESTA implements
several different methods, from Newton-Cotes to advanced quadrature methods, using
Legendre polynomials or Tanh-Sinh quadrature [89]. Furthermore both circle and square
contours are possible as shown in Figure 4.1. The continued fraction suggested by
Ozaki [16, 90] is also implemented for full capability of standard methods described
in the literature. The strength of the continued fraction method is a single convergence
parameter: number of poles. The continued fraction integration is based on the continued

1For 100K 47 poles are required to have an imaginary part above 2.5 eV while for 1000K only 5 are
required.
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Figure 4.2 | Absolute free energy error, calculated using different Gaussian quadrature
methods. Comparison of the continued fraction method and the square and circle contour
using variants of integration methods. Regular Legendre, right Legendre and Simpson
quadrature methods. It is seen that the circle right scheme performs better than the regular
Legendre quadrature.

fraction expansion of the Fermi function

1
1+ ex

=
1
2
−

x/4

1+
x2/4

3+
x2/4

5+ ······

, (4.19)

where the mathematical extraction of the poles and weights consist of a diagonalisation
and the method can be found in [90]. Contrary to the continued fraction method, the
other enclosing contours methods have at least three convergence parameters, number
of poles (zν), points on line L+, points on circle/square C+/S+. A rule-of-thumb is that a
higher number of poles reduces the required number of points on the C and L contours
as the Green function becomes more smooth. TranSIESTA defaults to a Gauss-Legendre
for the circle contour C and a Gauss-Fermi quadrature for the line integral L.

Another optimisation of the residue theorem can be realised by examining Figure 4.1.
It is evident that the two contours C+/− for the retarded and advanced Green function in
practice is a connected circle (or square). Hence they can be considered as one integration
C+ + C−, far from any poles on the real axis the Green function is analytic. A quadrature
on the combined path with an even number2 of abscissa, N , will have N/2 abscissas on
C+ and the complex conjugate of the same points on C−. This choice has two advantages;
1) the contour at the band bottom end have fewer points, and 2) points will chunk closer
to the L+/− contour. This small “trick” allows one to slightly reduce the number of
equilibrium contour points without loss of accuracy. We call this optimisation the right
scheme.

To show the convergence properties of the equilibrium contour we have investigated
a 2 electrode gold system which is connected via a gold 1D chain (112 atoms) and
calculated the free energy as a function of contour points. The calculated free energy at
300 energy points is the reference3, as such the reference is itself. This study is difficult

2When defining any Ni contour points on a single C+/− path the combined points will be 2Ni =N which
is always even.

3As the convergence path is non-deterministic and the “correct” value cannot be found we resort to this
reference.
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to extrapolate to arbitrary systems, yet it is thought to be indicative for the convergence
properties of the different quadrature methods. The results are seen in Figure 4.2. x-
axis has total number of quadrature points while y-axis has the absolute error. The
number of poles are 16 and we use 10 L+ points. Both the circle and square contours
are presented using both the standard and the right scheme as well as the continued
fraction method. Note that the numerical accuracy limits the error to 10−6. Clearly, the
regular Newton-Cotes method using Simpson’s rule is a poor choice and the convergence
is extremely slow. The advanced quadrature methods converges considerably faster and
using the right scheme generally improves the integration further. The circle contour
outperforms the square which is related to the more smooth integration path of the circle
contour. Further the right scheme circle contour exhibits better convergence properties
compared to the continued fraction method. The square method cannot be easily applied
to a right scheme due to the piece wise parameterisation of the contour, this is clearly
visible in the poor convergence of said method. Lastly, the continued fraction scheme
also converges fast and indeed is a very powerful method given that it only has one
convergence parameter.

For all but the continued fraction method one should move the contour as far into
the imaginary plane as possible as the Green function becomes increasingly smooth and
thus the required number of circle contour points is reduced. By decreasing the required
imaginary energy for the poles (fewer poles) the graphs in Figure 4.2 will tend to shift
right, while for increasing the required imaginary energy (more poles) the graphs will
shift to the left. Hence for another set of parameters for the circle/square contour it may
perform equally well as the continued fraction method. Especially in this case where the
initial number of points on the L contour is relatively high.

4.2.2 Estimating the exact ρ

TranSIESTA uses Eq. (4.16), calculates all ρς and weighs them for improved conver-
gence. Importantly using Eq. (4.16) instead of (4.15) reduces memory requirements
substantially for Ne > Nς ≥ 2.

Similar to the original implementation TranSIESTA estimate the density by a unity
weight scheme

ρ =
U
BZ
dk

∑
ς

wςkρ
ς
k, (4.20)

with
∑
ςwςk = 1. The variance of ρςeq is assumed zero so that the error in ρ originates

only from the non-equilibrium correction terms ∆
ς
e . From Eq. (4.20) there are two

choices regarding the weights. They can be correlated4 in k-space which removes the k
dependence and the easier

ρ =
∑
ς

wςρ
ς (4.21)

can be used. Or they are un-correlated and Eq. (4.20) is used by setting the co-variance
term of Cov[∆ς

e,k,∆
ς
e,k′ ] = 0. We proceed the following derivations with the correlated

weights as uncorrelated weights are straightforwardly deduced.
The choice of weights are rationalised by the following argumentation. Assume that

the numerical integration is given by a stochastic variable ∆̃ with mean value ∆ and the

4We name it correlated because we do not know the co-variance term Cov[∆ς
e,k;∆

ς
e,k′ ] =?.
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Figure 4.3 | Diagram for different choices of weights. The orbitals on atom I are shown
in the left part (left of density matrix column). Atom J orbitals are shown in the right
(and top row of density matrix). The weights are created using different parts of the
sub-matrix indicated by boxes. The variance is estimated using the boxed elements shown
in the weight-matrix. Example; orb-Tr estimates the variance through the geometric mean
between the Ith atom’s orbital and the trace of the orbitals on atom J . Additionally the
boxed elements may be used in a correlated or uncorrelated scheme as indicated in the
top-left corner.

standard deviation proportional to the magnitude of the variable itself, i.e. Var[∆̃] = ∆2.
This choice defines the variance of the density as

Var[ρ] =
∑
ς

w2
ς

( ∑
e|ςe,ς

Var[∆ςe]
)
=
∑
ς

w2
ς

( ∑
e|ςe,ς

(∆ςe)
2
)
≡
∑
ς

w2
ςṼar[ρ

ς
neq], (4.22)

note the last definition of Ṽar. The weights that minimise the variance are found to be

wς =
∏
ς′,ς

( ∑
e|ςe,ς′

(∆ς
′

e )
2
)/{∑

ς′

∏
ς′′,ς′

( ∑
e|ςe,ς′′

(∆ς
′′

e )2
)}

(4.23)

=
∏
ς′,ς

Ṽar[ρς
′

neq]
/{∑

ς′

∏
ς′′,ς′

Ṽar[ρς
′′

neq]
}
. (4.24)

The physical interpretation is straightforwardly understood in a two electrode setup; if
∆
ς′
e > ∆

ς
e′ the density must be contained in the equilibrium contour of ς, as the correction

is small. As the equilibrium density is assumed precise it yields wς > wς′ . Note that
Eq. (4.23) is different from the expression used in Saha et al. [15].

After defining the variance and the optimum weights one has to apply the weights.
The original implementation uses an orbital based partitioning [11]. This can be reasoned
by assuming that each orbital is invariant to the local environment of other orbitals on
the same atom. E.g. if an STM tip s orbital couples to the pz orbital, the pz filling will
largely be unrelated to the px orbital population. Other variants exists such as Li et al.
who uses the geometric mean of the orbital trace for each atom to enhance the description
of bound states [13]. This assumes that the coupling to either the left/right chemical
potential must be an orbital averaged quantity on each atom. Altogether the best choice
of weight may depend on the environment.
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In TranSIESTA a multitude of different methods can be chosen as it is unclear which
choice is the best. Figure 4.3 shows the different choices available. Two atoms, I/J , each
with two orbitals px/y and their associated density sub-matrices are indicated on the
left and top of the matrix-structure. The orb-orb bases the weight on the individual
orbitals, orb-Tr is based on the geometric mean between the orbital of I and the trace of J .
Tr-Tr is using the same weight on all orbitals connecting two atoms using the geometric
mean of both atoms. Similarly for the

∑
-
∑

weight with the geometric mean of the full
sum of the sub-matrices. As indicated top-left, all methods can be used in a correlated
and uncorrelated version where either the

∑
is taken before or after squaring the ∆ς

contributions. Again, one method may prove good in certain environments, however,
seemingly the prevailing method is the orb-orb method which was already the standard
method [11].

A numerically upper bound of the error in the final density for the given parameters
is given by the maximum difference, emax, between the different estimations, while we
define the weighted error, ew, as the difference between the estimated density and the
individual densities

emax =max
[
ρς
′
−ρς;ρς

′′
−ρς;ρς

′′
−ρς

′
; . . .

]
(4.25)

ew =max
[
ρς −ρ;ρς

′
−ρ; . . .

]
. (4.26)

Typically emax = 2ew for 2 electrode systems with no vacuum gaps. Surely the error
increases for large systems as well as higher applied bias and thus the terminology “error”
does not fully apply.

4.3 Electrostatics in NEGF

NEGF calculations require certain boundary conditions which are needed to correctly
describe the electronic structure close to said boundaries. TranSIESTA uses the same
method for solving the Poisson equation (Eq. (2.34)) as SIESTA. Although one cannot
force strict boundary conditions such as Neumann or Dirichlet boundary conditions, the
overall accuracy using a 3D Fourier transform has proven reliable and fast.

When performing Ne electrode calculations one should start by considering the same
concepts as standard two-terminal calculations. The electrodes are coupled to a bulk
part and hence the electrostatics at the device-electrode boundary must be continuous
and bulk-like. In the following discussion pay attention to the difference between the
terms additional electrode and buffer layers. To ensure the device-electrode boundary
one adds a suitable amount of additional electrode layers before any perturbations of
the atomic structure takes place. For metals the typical amount of additional electrode
layers need not be more than the electrode size, while for semi-conductors long range
electrostatics require many more layers. Additionally the electrode must also enforce
bulk electrostatics and hence be connected to bulk on both sides of the semi-infinite
direction. The additional electrode layers ensure this towards the device region. For the
other direction it can be more difficult. In typical two electrode setups with the same
bulk electrode on the left and right, assuring a bulk electrostatics is easily accompanied
by making the cell periodic such that the electrodes are terminated by each other, i.e.
connected to bulk. For two electrodes of differing periodicity the common method
is to terminate each electrode by buffer layers consisting of the electrode replicated a
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suitable number of times. Note that these buffer layers do not participate in the actual
NEGF calculation and are merely used for enhancing the initial guess of the Hamiltonian
and retaining more stable electrostatics when calculating the Hamiltonian in the SCF
cycle. One should ensure possible dangling bonds in the buffer layers to be sufficiently
terminated to not introduce long range effects. Such as Hydrogen adsorption or other
chemical species. In addition to the buffer layers a sufficient vacuum region is needed to
decouple neighbouring super cells.

Generally these steps needs to be carefully followed

1. Setup all electrodes needed

a) Assert the range of the basis orbitals to correctly create a structure with only
principal layer interactions in the semi infinite direction

b) Perform bulk calculation with high number of k points (> 50 is advisable) in
the semi infinite direction

c) If symmetry allows, create the smallest unit cell in the transverse directions,
internal subsequent expansion via Eq. (2.24)

2. Construct device geometry

a) Add few(many) additional electrode layers for metallic(non-metallic) electrodes
to assert continuous electrostatics towards the bulk

b) If the electrode is non-periodic in the device, add a reasonable amount of buffer
layers on the back side of the electrode emulating the bulk for continuous
electrostatics

c) Add junction geometry to the device

3. (optional) the initial guess of the non-equilibrium Hartree potential may be user-
defined to improve convergence

Additionally, for junctions which emulate single contacts (STM for instance) one should
carefully ensure that the phase coherent transmission is reduced to an absolute minimum
as discussed in [91]. This can be accomplished by extending the system in the transverse
directions.

The boundary conditions for the electrostatic potential, as inferred from the above
discussion, is a very important aspect of Green function calculations. For equilibrium
calculations one must ensure the correct boundary conditions, and let the self-consistency
converge the electrostatics. For non-equilibrium calculations onemust enforce the correct
boundary conditions and, preferentially, supply an initial guess for the final Hartree
potential. In equilibrium and non-equilibrium one fixes the Hartree potential to that of
a constant plane such that the potential indeed is fixed. This is a necessity as the internal
potential is not fixed at a certain energy. For the initial guess of the Hartree potential
there are two cases encountered in TranSIESTA; 1) a single transport direction along a
unit-cell vector and 2) all other cases.

Considering the first case a common method is the use of the linear ramp which is
the solution for the electric field between two infinite plate capacitors [10, 11, 16, 88].
This enhances the convergence rate and has proven as a stable method even for systems
where the final potential profile can change drastically with different applied biases [92].
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In TranSIESTA two different linear ramps are implemented:

VH (x)← VH (x) +


µL , for x < xLC
µR , for xCR < x

(µR −µL)
x−xLC
xCR−xLC +µL , else,

(4.27)

where xLC , xCR are the transport direction coordinates that intersect a plane between
the left electrode and the device region, and the right electrode and the device region,
respectively. Eq. (4.27) assumes the electrodes to be bulk, whereas the same equation for
non-bulk electrodes would be simpler

VH (x)← VH (x) +V
(1
2
− x

Lx

)
, (4.28)

with Lx being the length of the cell vector along the transport direction. Remark that
only Eq. (4.28) was implemented in the older version of TranSIESTA as well as only c
axis could be used for the semi-infinite direction. This restriction has been relieved and
any vector can be used, even non-orthogonal cell vectors.

For the second case (arbitrary alignments of the semi-infinite directions) an initial
potential profile cannot be easily defined and hence the simplest and most reasonable
approximation is to enforce the boundary conditions on the electrodes only. This can be
expressed as

VH (r)← VH (r) +
∑
e

µe , for r ∈ re
0 , for r < re

, (4.29)

where re denotes a region of the simulation cell that fully encapsulates the electrostatics
of the electrode. This forces the correct boundary condition in the electrode regions while
it does not infer any conditions on the device region. As this is sub-optimal in terms of
estimating an initial potential profile TranSIESTA implements a generic interface for
using a user-supplied potential profile as a guess on the final profile

VH (r)← VH (r) +V
G
H (r), (4.30)

with V GH (r) being the user-defined guess. This guess must enforce Eq. (4.29) for the
electrode regions. Generally, if the electrode chemical potentials are a linear parame-
terisation of the applied bias, so will V GH (r) be, which means that the user only needs
one calculation of V GH (r) for one applied bias, V G, and any subsequent guess can be
calculated as

VH (r)← VH (r) +
V GH (r)
V G

V , (4.31)

where V is the applied bias for the current simulation.
In Figure 4.4 an example of the convergence property for a Ne = 6 electrode device is

shown. The system consists of 3 linear gold chains and 3 linear Carbon chains connected
via a middle junction, see b). At the end of each linear chain is an electrode (colors) with
buffer atoms (tainted purple) attached to disconnect it from the asymmetric supercell
image. In a) the charge difference (y) from charge equilibrium is shown as a function
of SCF iterations for the equilibrium calculation (dashed) and for two different guesses
for the electrostatic potential. One using Eq. (4.29) and the other an elaborate multigrid
(MG) solver for the Poisson equation for the boxed electrode chemical potentials. For
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Figure 4.4 | a) Charge conservation with respect to # of SCF iterations for a Ne = 6 device
(b). Both equilibrium and two different initial guesses of the Hartree potential VH (r) are
shown. The dashed curve is for equilibrium while the full lines are an electrode box
guess and a guess based on a multigrid (MG) solution. Providing a better guess improves
convergence. b) also shows the initial MG guess for 4 iso-values ±V /2 and ±V /10. The box
guess only uses the two iso-values ±V /2.

the electrode boundary condition the initial charge fluctuation is more than 1e while the
MG method is roughly 1/4e which indicates the importance of an accurate initial guess.
Subsequent SCF iterations have the electrode boundary condition more fluctuating as
opposed to the MG method with smaller fluctuations providing smoother and more
efficient convergence. In b) the initial guess for the MG solution is seen for 4 different
iso-values, ±V /2 (coloured boxes, Eq. (4.29)) and ±V /10 (irregular surfaces).

The multigrid5 solver has been developed uniquely for the purpose of solving the Pois-
son equation as initial guesses for TranSIESTA. It can solve a mesh grid with Dirichlet,
Neumann and/or periodic boundary conditions chosen in any of the cell directions.

4.4 Algorithms for inverting a matrix

In the preceding sections the governing equations for NEGF calculations have been
established. A short discussion on the essential requirements for correctly performing
NEGF calculations has also been discussed. Here the importance of the chosen algorithms
are discussed.

Implementations of Green function techniques have received an increasing amount
of attention through the development of efficient and alternative routines for inverting
a matrix [10, 12, 15, 16, 50, 51, 76, 82, 93–96]. The challenging aspect of NEGF tech-
niques is inversion of the matrix Eq. (4.1) and, in particular, a fast triple matrix product
Eq. (2.32). The EGF and NEGF routines require two different algorithms. Generally,
NEGF calculations are notoriously heavy in terms of memory which calls for optimum
memory usage. TranSIESTA tries to never have any unused memory allocated at memory
peak time. This enables a very efficient memory usage without altering the underlying
algorithms and data-distributions. Most importantly, the needed quantities are the
elements in the Green/spectral function which corresponds to the sparse elements in the
density matrix Eq. (4.16), hence only a subset of the full matrix is needed.

A common method used for fast inversion algorithms is the recursive Green function
method [93] which is widely used [12, 96, 97]. For truly 1D systems it is an efficient and

5Development by Nick R. Papior at: http://github.com/zerothi/multigrid
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Figure 4.5 | Block-tri-diagonal inversion algorithm shown in terms of the Hamiltonian
elements of a 2-electrode system indicated by A, B and C. The surface self-energies
are calculated from the bulk electrodes A0 and A4. Subsequently the self-energies are
propagated through the system, allowing one to calculate the exact Green function in any
block of the infinite matrix.

easily implemented method and even for quasi-1D it is a highly used and fast method.
Other methods involve sparse inversion algorithms such as [98–103]. These sparse
inversion algorithms also exist for efficiently calculating the spectral function [101, 104].

In this section we will cover the implemented inversion algorithms in TranSIESTA

and compare them to already available methods. An emphasis on speed and optimal
library choices will be emphasised and the standard libraries BLAS, LAPACK and its
routines will be used throughout. In the following the spectral function (triple product)
can be schematised as block matrix products where only the black parts are required

Ae(z) =G(z)Γ e(z)G
†(z) =

†
=

†
. (4.32)

Finally a perspective on future Ne inversion algorithms are discussed.

4.4.1 Block-tri-diagonal inversion

The block-tri-diagonal (BTD) inversion follows the recursive scheme [93] given by the
following equations [105] and which can be illustrated as shown in Figure 4.5

G−1 =



A1 C2 0 · · ·
B1 A2 C3 0 · · ·

0 B2
. . .

. . . 0
... 0

. . .
. . . Cp

... 0 Bp−1 Ap



X̃n = [An+1 −Xn+1]−1Bn ,Xp = 0

Xn = Cn+1X̃n
Ỹn = [An−1 −Yn−1]−1Cn ,Y1 = 0

Yn = Bn−1Ỹn

(4.33)

Where Ai , Bi and Ci corresponds to the non-zero elements of S −H −
∑

eΣe. Xi/Yi
can be thought of as the downfolded self-energies as also indicated in Figure 4.5, for
instance Y2 corresponds to a left surface self-energy of an infinite bulk part connecting
to A1. Note that only for a Left/Right terminal system with strict ordering of atoms
will A1 = S{1,1} −H{1,1} − ΣLeft and Ap = S{p,p} −H{p,p} − ΣRight. Generally this is not a
requirement6 and Σe can exist in any Ai , Bi or Ci . A detailed implementation of the
Green function calculation can be seen in Alg. 4.6 EGF.

Calculating X̃/Ỹ matrices, Alg. 4.6 EGF) line 5 and 6, can be performed in the
standard 2-step process

6Σe will only be split into two consecutive blocks as it is a dense matrix.
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EGF

1: allocate M and N with p blocks
2: for all ς ∈Nς do
3: initialise all Ai , Bi , Ci in M
4: for all i ∈ {1, . . . ,p − 1} do
5: Ni+1,i ← Ỹi+1
6: Np−i,p−i+1← X̃p−i
7: end for
8: for all i ∈ {1, . . . ,p} do
9: Ni,i ←Gi,i
10: end for
11: for all i ∈ {1, . . . ,p − 1} do
12: Ni+1,i ←Gi+1,i
13: Np−i,p−i+1←Gp−i,p−i+1
14: end for
15: ρςeq←N
16: end for

NEGF

1: allocate M with p blocks + padding
2: allocate N with p blocks
3: initialise all Ai , Bi , Ci in M
4: for all i ∈ {1, . . . ,p} do
5: for all e ∈ {1, . . . ,Ne} do
6: if any(column(e)) ∈Mi,i then
7: calc(i)← True
8: else
9: calc(i)← False
10: end if
11: end for
12: end for
13: for all i ∈ {1, . . . ,p − 1} do
14: Ni+1,i ← Ỹi+1
15: Np−i,p−i+1← X̃p−i
16: end for
17: for all i ∈ calc = True do
18: Ni,i ←Gi,i . Only columns needed
19: end for
20: for all e ∈ {1, . . . ,Ne} do
21: Mi,i ←Gi,iΓ eG†i,i
22: for all {m,n} ∈ {1, . . . ,p} do
23: if m+n < 2i then
24: Mm,n← Ỹm+1 · · · ỸiGi,iΓ eG†i,i Ỹ

†
i · · · Ỹ

†
n+1

25: else
26: Mm,n← X̃m−1 · · · X̃iGi,iΓ eG†i,i X̃

†
i · · · X̃

†
n−1

27: end if
28: Mm,n← (−1)m+nMm,n
29: end for
30: ∆

ς,ςe
e ←M

31: end for

Algorithm 4.6 | The algorithm used for inverting a generic BTDmatrix as well as columns
for calculating the spectral function in NEGF calculations. The EGF algorithm is a direct
recursive algorithm [105], while the NEGF algorithm is based on the same recursive scheme
which can easily be employed after an initial triple-matrix product of the scattering state
in the diagonal entry. Note that there is no memory overhead of the NEGF algorithm.

1. Calculate inverse

2. Matrix multiplication (gemm)

or by using a single step process considering AXC = IC as the solution of a set of linear
equations. One saves two matrix-multiplication operations per block by applying the
latter method. Solving G−1G = I, Alg. 4.6 EGF) line 9, 12 and 13, follows the iterative
solution of these equations

Gn,n = [An −Xn −Yn]−1 (4.34)

Gm,n = −X̃m−1Gm−1,n , for m > n (4.35)

Gm,n = −Ỹm+1Gm+1,n , for m < n. (4.36)

The equilibrium energy points are easily calculated and further optimisation could be
to limit Eqs. (4.34)–(4.36) for only the sparse elements. This is particularly so for the
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off-diagonal blocks which could be reduced by approximately 50% or more for large
systems.

For the non-equilibrium integral the algorithm with the optimal performance is not
so straight forwardly contemplated. Here we need the triple matrix product Eq. (4.32)
for all Ne electrodes at any given energy point. There are two possible strategies. The
first is straightforward and involves calculating the Green function column following
Eqs. (4.35) and (4.36) for the columns where the scattering matrix exists. Subsequently
the spectral function can be calculated using (assuming Γ e lives in the first block), as
Eq. (4.32)

Ae,m,n =Gm,1Γ eG
†
n,1. (4.37)

Assuming that G1,1 is calculated the calculation ofAe for the BTD blocks involves 5p−3
matrix multiplications; p − 1 for calculating the G column, and 4p − 2 for calculating the
triple-product for all blocks.

The second strategy is a propagation of the spectral function using X̃/Ỹ which has
the same complexity as the Green function algorithm7, with an additional 2 matrix mul-
tiplications. Essentially this makes the NEGF contour points roughly as computationally,
or less, demanding as the EGF contour points. Rewriting Eq. (4.37) yields

Ae,m,n = (−1)m+nX̃m−1 · · · X̃2X̃1G1,1Γ eG
†
1,1X̃

†
1X̃
†
2 · · · X̃

†
n−1 , for m+n > 2 (4.38)

while generally

Ae,m,n = (−1)m+nỸm+1 · · · ỸiGi,iΓ eG
†
i,iỸ
†
i · · · Ỹ

†
n+1 , for m+n < 2i. (4.39a)

Ae,m,n = (−1)m+nX̃m−1 · · · X̃iGi,iΓ eG
†
i,iX̃
†
i · · · X̃

†
n−1 , for m+n > 2i (4.39b)

Note that we define X̃j<i · · · X̃i = Ỹj>i · · · Ỹi ≡ 1. Importantly Eqs. (4.39) are recursive equa-
tions as implemented in lines 22 – 29. Assuming that Gi,i is calculated the calculation of
Ae for the BTD blocks involves 3p−1 matrix multiplications; 3p−3 for all blocks besides
Ae,i,i and 2 for theAe,i,i block. Note that this complexity is equivalent to calculating G
in an equilibrium calculation (with an additional 2 matrix multiplications).

Consequently if the spectral function is needed Eqs. (4.39) is minimally 7/5 times
faster (p = 2) and up to 5/3 times faster (p → ∞) than Eq. (4.37). Note that these
speedups only apply if all blocks and scattering matrices have the same size. If Γ e has
more rows/columns than any other block the speedup becomes much larger, and if
Γ e has fewer rows/columns than any other block the first strategy may be better. In
TranSIESTA both are implemented and for Ne ≥ 4 the column method is used as the
quasi-1D system forces blocks which generally may be much larger than the scattering
matrices. However, the chosen algorithm can be changed at will.

Instead of re-calculating the Green function for each spectral function for each energy
point we pre-calculate all X̃i and Ỹi , further we also calculate Gi,i for all columns where
all Γ e are non-zero, Alg. 4.6 NEGF) lines 13 – 19. Hence only a small subset of Gi,i are
needed, while generally all X̃i and Ỹi are needed. These 3 quantities are stored in one
of two BTD matrices. The subsequent calculation of all electrode spectral functions are
straightforward following Eqs. (4.39) or Eq. (4.37) in the second BTD matrix, without
additional memory usage.

7For p > 2Ne it is most certainly less complex, while for p > Ne it may be less complex than calculating
the full Green function. This is because one need not calculate any diagonal block of the Green function
where any Γ e does not live.
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4.4.1.1 Orbital pivoting for minimizing bandwidth

The performance of the BTD algorithm is determined solely by the bandwidth of the
Hamiltonian and overlap matrices matrices, i.e. the size of the An blocks. The bandwidth
can be understood as an expression of the quasi 1D size

B(M) = max
(
|i − j |

∣∣∣Mij , 0
)
. (4.40)

Several different methods for minimising the bandwidth have already been investigated,
for a brief overview see [106, 107]. In SIESTA the sparse matrix, and hence bandwidth, is
dependent on the input sequence of the atoms. However, this sparsity pattern will rarely
have the minimum bandwidth. To minimise the matrix bandwidth, and heavily increase
performance, 5 different pivoting methods have been implemented. 1) connectivity
graph based on the Hamiltonian non zero elements (basis orbital range)8, 2) peripheral
connectivity graph based on a longest-path solution before a connectivity graph between
end-points, 3) Cuthill-Mckee [108], 4) Gibbs-Poole-Stockmeyer [109], and 5) generalised
Gibbs-Poole-Stockmeyer [110]. The first 2 are developed by the author and exhibits a
good bandwidth reduction of the matrix for a majority of systems. The latter 3 methods
are heavily used in interaction graphs with few nodal points which may be the reason for
their, sometimes, poor bandwidth reduction capability in atomic structure calculations
with many orbitals per atom, hence many nodal points per orbital. In TranSIESTA both
the orbital interaction graph and the atomic interaction graph can be used as a mean to
minimise the bandwidth. The atomic interaction graph ismuch faster and unsurprisingly
yields similar results as the orbital graph. In TranSIESTA this can be chosen by the user.

Pivoting becomes increasingly important when considering Ne > 2 electrodes as the
quasi 1D block-partitioning becomes less obvious. In Figure 4.7 we illustrate the naive
block partition for Ne = {2,3,4} together with an improved partitioning. For Ne = 2 (a)
the naive is a good partitioning. The naive Ne = 3 (b) problem will create a big block
for n = 2 which will heavily impact performance. However, by grouping two of the
electrodes the quasi-1D problem will be much improved. The grouping should be chosen
to minimise all block sizes, e.g. if the self-energy bandwidth of B(Σ2) > B(Σ1) + B(Σ3)
then the Σ1 and Σ2 branches should swap places in Figure 4.7b. Similarly for Ne = 4 (c)
two groups occur for both ends of the quasi 1D matrix. The grouping of electrodes can
easily be generalised for any Ne electrodes. Specifically if one electrode is much larger
than the other (d) it can be beneficial to group the remaining electrodes.

Pivoting complicates the triple product Eq. (4.32) due to partitioning of the scattering
matrix with respect to the Green function. However, each block An can be sorted such
that Γ e becomes consecutive in memory for optimal performance. This will maximally
split Γ e into two blocks. We stress that having more blocks far outweighs the benefit of
Γ e being fully consecutive.

An example of the importance of pivoting is shown in Figure 4.8 where a graphene
nano-ribbon system is connected to either 3(top) or 4(bottom) electrodes. The figure in
the far right shows the system explored with the heavily coloured atoms terminated by
semi-infinite electrodes. The top purple electrode is only an electrode in the 4-electrode
setup. The total number of atoms is 2,400 atoms resulting in 21,600 orbitals. When the
atomic indices are randomised, except the electrodes, the sparsity pattern comes out
as the left figures. The 4 electrodes can be seen as the four dense sub-blocks. The left

8Similar to the Contact block reduction formalism [106].
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Figure 4.7 | Quasi 1D (Q1D) partitioning into 3 parts indicated by dashed lines, for vary-
ing number of electrodes. The dotted lines denote the cell boundary and the fully drawn
lines encompass the atoms/Hamiltonian elements. Σi are the self-energies that couple the
device to the semi-infinite electrodes. The crossed illustrations are the naive partitioning
of the quasi-1D system (the naive partitioning for Ne = 2 is the best partitioning), whereas
a better quasi-1D pivoting is also shown for Ne > 2. Note that in any of the systems shown,
the ordering of the self-energies can be swapped at will as also highlighted in d).

figure can only be BTD partitioned in 2 blocks as indicated by the square lines dividing
the matrix in two blocks. The sparsity pattern is then analysed using 20 different9

pivoting algorithms and the two optimum pivoting results are shown in the middle
figure. The resulting BTD format effectively removes roughly 87% zero elements from
the computation. The 3-electrode system is partitioned best using a connectivity graph
starting from the blue electrode, while the 4-electrode systems exhibits the best pivoting
using the GPS algorithm [109]. After pivoting, the matrix can be split into 29 blocks. To
see other pivoting matrix structures for the same system, see App. B.

4.4.2 Parallelisation

The inversion methods are embarrassingly parallelised across energy points, meaning
that each MPI processor handles one energy point on the contour. As the matrices dealt
with in TranSIESTA can become of GB size this parallelisation choice will quickly reach
the memory limit, mainly dependent on the width of the electrodes. A method to further
increase system sizes is to use a hybrid parallelisation strategy which is a combination of
MPI and OpenMP. We have applied OpenMP 3.1 threading to the SIESTA code10 and on
top of this TranSIESTA is also fully OpenMP 3.1 threaded in all routines. Thus instead
of using Ntot processors and reaching the memory limit, one can use Ntot/NT processors
and NT threads per processor to reduce TranSIESTA memory requirement by a factor of
roughly NT and still obtain a good scaling. In Figure 4.9 the threading performance for
TranSIESTA is shown for different hardware architectures using both OpenBLAS(left
column) and MKL(right column). The x axis shows the number of threads used for the

9The combination of orbital/atomic interaction graphs, number of electrodes and all different methods
+ the reversed counter parts, yields 20 different schemes.

10
SIESTA threading has only been implemented a few places, with priority on grid operations, as the

SIESTA code is huge. However, using a threaded BLAS/LAPACK enables threaded diagonalisation.
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Figure 4.8 | Optimal pivoting algorithms for a 3- and 4-electrode system, shown in top-
right. Graphene ribbons connected at various points along a wider ribbon. Coloured atoms
are electrodes. In the left column the randomised sparsity pattern with non-zero elements
are shown for 3/4 electrodes (top/bottom). To the right of the randomised pattern are
the optimal pivoted matrices which are seen to cluster elements along the diagonal. The
3-electrode system has an optimal pivoting by considering the connectivity graph starting
from electrode 3 (blue). The 4-electrode system further improves the pivoting by using the
GPS algorithm. Both systems removes ∼ 87% of the zero elements. Each BTD matrix thus
only occupy ∼ 0.9GB as opposed to ∼ 7.0GB.

respective architecture. A single node is used and hence MPI-communication can be
considered negligible for hardware with multiple sockets. In our implementation an
increase of MPI processors will not affect the threading performance, however additional
MPI processors would increase MPI communication time, thus favouring threading for
large number of MPI processors. Our system consists of 11 BTD blocks with an average
block size of NB = 830 using the k-space version of the BTD method with a bias, we
expect this system to represent a typical medium sized system of 9130 orbitals. We
overall find a good scaling which is seen in the top plots (y-axis speedup). In the bottom
plots we show the parallel fraction f , expressed from Amdahl’s law

f (NT ) =
1− T (NT )/T (1)

1− 1/NT
, (4.41)

T (NT ) = execution time =
f

NT
T (1) + (1− f )T (1) (4.42)

where f is the parallel fraction of the program. As is seen in the bottom plot it retains a
parallel fraction of about 95% across all NT . In this context it is important to note that
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Figure 4.9 | Threading performance for TranSIESTA using different hardware archi-
tectures on a single node using either GCC and OpenBLAS(left column) or Intel and
MKL(right column). The test system have 11 blocks with roughly 830 orbitals per BTD
block. As the threading performance primarily stems from the threaded BLAS library one
can see that the threading reaches a limit due to the relatively small blocks. The bottom
row shows that the calculated parallel fraction of the TranSIESTA code. It is found to be
approximately 95% dependent on library and compiler.

threading is optimal for NB/NT ≫ 1 which is one reason for the limiting speedup for
large thread-counts in the example. We note that advanced CPU extensions (vectori-
sation) of the Intel processors further leverages the threading performance for 2660v3.
Only for even wider problem sizes will the threading limitation be relieved for high
performance processors. This aptly demonstrates when hybrid parallelisation can be of
greater benefit and when one should revert to pure MPI parallelism.

4.4.3 Direct inversion and sparse inversion

The BTD method discussed in Sec. 4.4.1 may generally be the best inversion algorithm,
however TranSIESTA also implements 2 other inversion algorithms. This enables the
user to choose and test the performance of either of the methods in a single code.

4.4.3.1 Direct inversion

The most simple algorithm for inversion is the direct inversion of a matrix using dense
linear algebra [11, 12, 16, 111]. The EGF calculation is simple as we invert the full matrix
and retain the density matrix elements.

For NEGF Eq. (4.32) is used and one immediately recognise that only the columns
where Γ e lives are needed. Instead of recalculating the different columns for different
electrodes we can simultaneously calculate all required columns by solving a set of linear
equations with the inverse Green function on the LHS and the block diagonal identity
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matrix for all columns where Γ e lives on the RHS

Γ L(z) = , Γ R(z) = (4.43)

G−1G̃ =


I 0
0 0
0 I

 , (4.44)

the subsequent triple matrix product can be carried out using regular dense BLAS
routines.

The direct inversion algorithm is by far the slowest method and its use is discouraged
other than for testing purposes.

4.4.3.2 Sparse inversion —MUMPS

Instead of calculating the full Green function one can calculate selected entries of an
inverse matrix [99, 100, 102, 112, 113]. In TranSIESTA the MUMPS method is employed
[99, 100, 113]. For the EGF part this has the advantage of only calculating the required
elements. MUMPS performs best for very high sparsity which means that for small
systems it performs poorly. As the different methods are embarrassingly parallelised
across energy points and not across orbitals this method will appear as a slower method
than it is in a fully parallelised code. Future work on TranSIESTA may implement
parallel MUMPS for better scalability.

The difficulty using MUMPS stem from calculating dense parts as required by Eqs.
(4.15) and (4.32). Computing dense parts using the MUMPS method is sub-optimal
and thus the performance for NEGF calculations is poor compared to the BTD and just
slightly faster than the dense LAPACK.

A comparison of the three methods is shown in Figure 4.10. A pristine graphene
system is used with electrodes of 48 atoms (single-ζ±; 9 orbitals), corresponding to
2x6, zig-zag by arm-chair respectively, square electrode. a) shows the speedup vs. the
old TranSIESTA 3.2 for different lengths and the three implemented algorithms. Both
EGF(left) and NEGF(right) are compared. Note that we cannot go higher than ≈ 576
atoms due to the high requirement of memory in 3.2. b) shows the timing for the same
calculation but comparing the advanced methods against the LAPACK implementation,
for both EGF and NEGF. The speedup seen in a) EGF and NEGF for the LAPACK method
arise only due to sparse matrices and algorithm optimisations besides the LAPACK
routines. MUMPS yields up to 15 times faster for the largest matrices. The BTD method
excels in this setup as the 2D (quasi-1D) matrix bandwidth becomes very narrow. With
almost 50 and 100 times faster for EGF, NEGF respectively the performance is much
faster for even these relatively small systems of 576 atoms. Note that MUMPS scales
poorly for NEGF due to clustering of columns.

4.5 Example memory usage and timing

The previous sections have covered the specific implementation, algorithms and per-
formance enhancements. Here an example is covered to showcase the scalability in
memory consumption and speed. It is imperative that the reader knows the limitation of
such information, i.e. no direct transferability to other systems of similar atomic sizes,
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Figure 4.10 | a) Comparison of the currently implemented TranSIESTA against the
previous v3.2. The speedup of the LAPACK method are optimisations related to data
layouts etc. and is pretty stable around ×10 for non-equilibrium. For non-equilibrium
a speedup of ∼ 100 at 5,616 orbitals is seen, this corresponds to the memory limit of
v3.2 in this setup. b) Comparison between the different inversion methods in the current
implementation. For non-equilibrium at 8,640 orbitals the intrinsic LAPACK speedup of
×10 yields a speedup of roughly ×250 compared to v3.2.

etc. However, it can be used as a guideline to estimate memory requirement for Ne = 2
systems.

The example system is a bulk Gold system using a single-ζ± basis set with varying
electrode11 and device size. The basis range is roughly 4 �A. A full initialisation and
memory peak read-out is performed while simultaneously a timing of the density matrix
calculation using a full NEGF scheme with V , 0. Tests are performed for full paral-
lelisation with each core performing 1 EGF and 1 NEGF calculation. The CPU type is a
modern 20 core Xeon2660v3. There is no threading involved in these tests.

Results are shown in Figure 4.11 where the left contour shows the total memory
usage while the right shows the SCF timing for 1 EGF and 1 NEGF calculation. On top
of each plot the corresponding colorbars are shown. On the x-axis the total number of
orbitals (Green function dimension) is shown, while the y-axis is the dense matrix size of
the electrode self-energies. A mark at 576 orbitals indicates a rather typical electrode
size corresponding to an 4×4×4 atom electrode. For tiny electrodes one can easily reach
30,000 orbitals with extremely fast SCF times, while generally such narrow electrodes
are rarely used.

11The careful reader will notice that an electrode size may be reached by either a repetition in 1 direction
or a combination of 2 directions, here we show the version with the highest memory usage.
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Figure 4.11 | Test bulk system of 9 orbitals per atom. The x-axis corresponds to the total
number of orbitals (electrodes plus device). The y-axis is the number of orbitals in each
of the self-energies, i.e. dense electrodes. Left plot is the maximum memory usage of
TranSIESTA up to 6GB/core. The black highlighted contour line is the 4GB mark and the
white contour line is the 2GB mark. An extra highlighted electrode size of 576 orbitals,
corresponding to 4×4×4 atoms, indicates that such a typical electrode allows 1,200 atoms
with only 2GB available per core and up to 2,500 atoms with 4GB available per core. Right
plot shows the corresponding timings for 1 EGF and 1 NEGF per core. Timing is roughly
per SCF timing in TranSIESTA. I.e. calculating density via Green function techniques.
The black contour line corresponds to 15 minutes per SCF, while the white contour is for 5
minutes per SCF.

Two memory usages are highlighted via additional contour lines for the two typical
hardware limits, 2GB and 4GB per core. Correspondingly if one uses the 576 size
electrode one can reach system sizes of 11,000 orbitals (1,200 atoms) with 2GB per core
and 23,000 orbitals (2,500 atoms) with 4GB per core. Similarly for SCF timings below 15
minutes one can e.g. calculate 1 EGF and 1 NEGF SCF cycle with electrode sizes of 1,600
orbitals and a device size of 20,000 orbitals. Note that for these matrix sizes, TranSIESTA
is the memory limiting part of the calculation. Whence, using threading can double (2
threads per process) or quadruple (4 threads per process) the achievable system sizes.

The electrode size can be reached in combinations of either one direction repetition
or two directions repetitions. Indeed the memory usage will change drastically if one of
the directions is 1D like, for instance graphene and other 2D materials.

4.6 Summary

In this Chapter a full description of non-equilibrium calculations has been outlined from
the initial density matrix to the different algorithms available for inverting matrices. We
investigated the different available contour integration techniques for the equilibrium
density with the continued fraction and two simple enclosed contours. In the latter
methods a reduction of needed contour points were shown by selecting the right part of
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the quadrature abscissa. It was shown that TranSIESTA employs an averaged density
matrix calculation for V , 0 which better approximates the exact non-equilibrium density.
A consequence of the electrode electronic structure distributions for non-equilibrium
equations was that one may reduce the complexity of Ne > Nς ≥ 2 calculations by
reducing from Ne equivalent densities to Nς. This reduction in complexity becomes
increasingly important for large scale calculations, for both memory and throughput
considerations. We showed that a multitude of different weighting schemes for Nς > 1
may be used. Both k resolved density matrix weighting and Brillouin zone integrated
density matrix weighting are available, as well as choices regarding orbital vs. atomic
weighting schemes.

The 3 implemented inversion algorithms were covered and compared. For the
investigated systems the BTD algorithm proved more efficient than using the MUMPS
or the direct inversion algorithms. For an example graphene system the BTD is up to
250 times faster than the previous TranSIESTA implementation for ∼ 8000 orbitals. The
BTD algorithm was thoroughly explained to highlight some selected design choices for
the underlying data structures and in particular the 2 different ways of computing the
spectral density matrices. Either via column product or a propagation method. For
Ne = 2 the propagation method will in almost all cases be faster than the column product.
Several different bandwidth reduction methods where presented and an example for a
complex system with Ne = {3,4} electrodes where shown. In the shown example the BTD
algorithm could reduce memory usage by ∼ 87%.

Importantly the implemented algorithms were shown to encompass a threading
parallelisation on top of the embarrassingly parallelisation across energy points. This
provides TranSIESTA to handle even bigger systems as threading reduces memory
consumption by ≈ NT with NT being number of threads. An example for a medium
sized system showed a scalable code with a parallel fraction of around 95%. Finally we
showed TranSIESTA memory usage for a bulk system with varying electrode and device
size.

Future implementations may use the parallel MUMPS method [99, 100] or the
massively parallel PEXSI algorithm [102]. An extension of the parallelisms could also be
made by using more recent methodologies of MPI, such as remote-memory-access in one-
sided communications. Furthermore we expect the BTD algorithm to be expanded into a
branching algorithm which deals with matrices in a more general way, an example of
such a branching algorithm will be apparent from the implemented inversion algorithm
explained in Sec. 5.2.
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Chapter 5

Tight binding transport calculations

In this Chapter we cover the implementation details of the ballistic transport equations
and in particular expand on the algorithm choices concerning Ne ≥ 1. The general
transport formalism for multi-terminal cases are covered in various articles and books
which we refer to for additional information. Both the Landauer-Büttiker formalism and
Lippmann-Schwinger equation, among others, are covered in [55, 74, 75, 114–118].

It is important to consider transport calculations as a separate entity compared
to self-consistent calculations as other optimisations will be important. Furthermore,
other quantities such as transmission eigenvalues, projections, DOS, spectral DOS and
bond-currents may be important.

While TBtrans is primarily intended as a back-end for TranSIESTA we emphasise
the generality of TBtrans which is a generalised code for performing tight-binding
transport calculations. Hence no prior knowledge to SIESTA/TranSIESTA is required.
Also TBtrans exists in a variant, PHtrans, which enables phonon transport calculations.
As such, TBtrans can be used without any SIESTA/TranSIESTA interaction. In this
Chapter we will, however, not cover the tight-binding usage. See App. C for an example
and more details. The recently released GOLLUM code [119] is another code capable of
custom transport tight-binding calculations as well as multi-terminal support.

5.1 General calculated quantities

The transport equations governing Ne electrodes can be derived as also done in [15, 85,
114, 119, 120]. The bias, V , will in the following be an implicit dependency of variables
via the non-equilibrium Hamiltonian and the self-energies. For non-self consistent
Hamiltonians the bias dependency must be implemented by hand.

One quantity calculated is the density of states which has been formulated in Eqs. (3.6)
and (3.7) for an orthogonal basis set. However, the direct conversion to a non-orthogonal
basis set can be performed by using Eq. (2.33) which yields the DOS and spectral DOS
using the Mulliken population separation, [69]

ρ(ε) = − 1
π
=Tr[G(ε)S], (5.1a)

ρe(ε) =
1
2π
<Tr[Ae(ε)S], (5.1b)
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while the local DOS on orbital ν can be expressed as

ρν(ε) = −
1
π
=[G(ε)S]ν , (5.1c)

ρeν(ε) =
1
2π
<[Ae(ε)S]ν . (5.1d)

Importantly the overlap matrix S infers some problems for estimating the exact Mulliken
DOS. Special care must be taken for the orbitals on the boundary of the device region.
For these orbitals ν a slight error is made by disregarding the shared population with
orbitals outside the defined region. Typically this error can be neglected while one
should note the importance of this deficiency.

The transmission functions can be calculated using the scattering matrix formalism
[10], we will implicitly assume energy dependence on all quantities,

see′ = −δee′ + iΓ 1/2
e GΓ 1/2

e′ , (5.2)

where see′ is an element in the scattering matrix with indices corresponding to the
electrodes. The transmission between any two electrodes is Te→e′ = s

†
ee′see′ . For e = e′ it is

the reflection, hence Re ≡ Te→e. It is instructive to write up Te→e′ , the definition of Te
and Re

Te→e′ = Tr
[
Γ e′GΓ eG

†
]

, for e , e′ (5.3)

Te ≡
∑
e′,e

Te→e′ (5.4)

Re = 1−Te = 1−
{
iTr

[
(G−G†)Γ e

]
−Tr[Γ eGΓ eG

†]
}
, (5.5)

where Te→e′ is the usual calculated quantity. A rule-of-thumb to remember the sequence
of matrix multiplications for the e→ e′ is that the spectral function is the origin of the
electron and the remaining scattering matrix is the absorbing electrode. Te is the total
transmission out of an electrode. The reflection is conveniently written in 2 terms; 1
is the number of open channels in electrode e at the given energy (bulk transmission),
the last term consists of yet another two terms. The first is the total transmission out of
electrode e plus Tr[Γ eGΓ eG†], the last term is a correction term1, see Eq. (A.22). Eq. (5.5)
display an important, and often overlooked detail. In transport calculations with Ne = 2,
one can calculate the transmission using only the diagonal Green function and only
one scattering matrix. We stress that the quantities calculated may have numerical
deficiencies as Tr[(G −G†)Γ e] and Tr[Γ eGΓ eG†] may both be numerically large values
which leads to inaccuracies when the transmission is orders of magnitudes smaller than
the reflection2.

In App. A.1 symmetry arguments can be made for Tk,e→e′ (ε) = T−k,e′→e(ε) = Tk,e′→e(ε)
which is implicitly assumed in the following3. The conductance can be expressed in
terms of the transmission as

Ge→e′ (ε) = G0

U
BZ
dkTk,e→e′ (ε) =

e2

h

U
BZ
dkTk,e→e′ (ε) =

dI
dV

, (5.6)

1We are currently unaware of any physical meaning of Tr[Γ eGΓ eG†] why we resort to correction term.
2Typically this is a problem for systems with large bulk transmissions. If the number of incoming

channels is only a couple of orders larger than the transmission the numerical precision is adequate.
3Even though Tk,e→e′ (ε) = Tk,e′→e(ε) it is important to keep the terminology as this equality only holds

for B = 0.
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Figure 5.1 | Three different Ne systems. a) simple quasi 1D system with 2 electrodes
divided in 6 BTD blocks. b) 3 electrode system connected via a circular region. c) connectiv-
ity graph of a 6 terminal system (coloured atoms are electrodes), the lines are equivalent to
a non-zero Hamiltonian element. TBtrans allows calculating the transport in the smallest
region where all electrode self-energies can uniquely be defined.

where spin multiplicity is intentionally left out. The total current then becomes

Ie→e′ =
U
dεGe→e′ (ε)[nF,e(ε)−nF,e′ (ε)]. (5.7)

Simultaneously the thermal energy exchange of the electronic reservoirs can be calculated
by the similar energy integral

He→e′ =
1
h

�
BZ
dkdε(ε −µe)Tk,e→e′ (ε)[nF,e(ε)−nF,e′ (ε)], (5.8)

which generally fulfils He→e′ ,He′→e. Only in the case of a fully symmetric junction will
He→e′ =He′→e.

These above quantities are the easiest and simplest to calculate. In following sections
we will cover more advanced features of TBtrans.

5.2 Algorithms for inverting a matrix — again

The calculation of the Green function is not exactly equivalent to the TranSIESTA

counterpart. Mainly because if one is only interested in calculating the transmission
function inverting the full matrix is needlessly complex [97]. However, the algorithm
used for the following discussion is roughly equivalent to the algorithm presented in
Sec. 4.4.1.

When calculating the transmission TBtrans only need the diagonal Green function
where all self-energies can be separately defined4. The self-energies are “down-folded”

4As explained in Sec. 5.1 one can calculate the transmission via only one diagonal block, Eq. (5.5), and
one scattering matrix but for Ne ≥ 3 this is not a viable strategy.
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e1

e2

e3e1+

B1

e2+

e3+D

Bi = buffer region

ei = electrode

D = device

ei+ = downfolding

1. Remove buffer regions Bi
2. Define region D

3. Calculate bulk Σei

4. Downfold Σei
through ei+ to Σ+

ei
in D

5. Calculate Γ +ei from Σ+
ei

in D

6. Calculate G in D

7. Calculate transport using Γ +ei in D

8. . . .

Figure 5.2 | Algorithm for calculating the Green function in TBtrans for a 3 terminal
system. Electrodes are marked by thick black lines. After defining the “device” region,
D, self-energies are downfolded through ei+ to D. Subsequently, the system used for
calculating any quantity is based on region D which means that DOS etc. can only be
estimated in this region.

from each electrode via Eq. (4.33) into some region denoted the “device” region. The
down-folding of the self-energies is shown schematically in Figure 4.5 and correspond to
the Ỹi matrices. Additional examples are presented in Figure 5.1 where a) corresponds to
a simple 2 electrode setup (directly transferable to Figure 4.5), b) a 3 electrode setup and
lastly c) which is the atomic interaction graph from TranSIESTA of a 6 electrode setup.
In a) the transmission can be calculated in block 2, or block 3, or blocks {3,4} etc. For b)
the minimal region required for calculating all transmission coefficients is the outermost
ring of the circular connecting region. One can also add any number of the square blocks,
while it cannot be reduced to any of the smaller rings as then the self-energies become
entangled and their origin is lost. For c) the differently coloured atoms correspond to
electrodes which all connect via a single crossing junction. This is like b) where circles
can be formed from the centre and out.

The algorithm for calculating the Green function can be shown schematically in
Figure 5.2. The system comprise of 3 electrodes, ei marked by thick lines, connected
through the light coloured line. A sub-region in the system is defined as the “device”
region (D in figure). This region is subsequently used for calculating all requested
quantities. The buffer region B1 indicates a needed region when carrying out SCF
calculations in TranSIESTA, in TBtrans this region is automatically removed. The
electrode self-energies are down-folded through ei+ into D via Ỹi where the scattering
matrices are then calculated from the down-folded Σ+

ei
= Yp. This procedure arises

naturally from the BTD matrix inversion algorithm outlined in Sec. 4.4.1 and is also
identical to the linear self-energy calculation Eq. (3.24). Remark that only Ỹi are needed
in the down-folding algorithm. One must ensure that regions {ei+} < {ej+} for any i , j
such that the origin of the self-energy can always be tracked. A too small or ill chosen
“device” region can be checked in the sparsity pattern via the connectivity graph from
each electrode. Another benefit of choosing the “device” region is the possibility of
carrying out extreme scale transport calculations using an efficient and scalable code.
The memory footprint of TBtrans is only5 dependent on the number of orbitals in the

5While internal data structures keep track of the full structure, and do contribute to the total memory
footprint, they are not nearly as memory consuming as the “device” Green function.
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“device” region.
The algorithm can be generalised to anyNe ≥ 1 where forNe = 1 one may use TBtrans

to explore, for example, bound states or bond currents. Neither MUMPS or full matrix
inversions can be used in TBtrans.

TBtrans is created with high throughput as the top priority and hence it automati-
cally decides on algorithms for optimal performance dependent on the quantities that
needs to be calculated. From Eq. (5.3) it can be deduced that calculating the transmission
only requires the diagonal of the quadruple matrix product. Te→e′ can be calculated via
the spectral functionAe,{e′} in the diagonal block where Γ e′ exists, denoted {e′}. Instead
of taking the trace of the full matrix multiplication, one can calculate the trace via the
dot-product of the vectorised matrices:

Te→e′ =
∑
i∈{e′}

Γ e′ ,{i,:} ·Ae,{:,i} = vec(Γ Te′ ) · vec(Ae,{e′}), (5.9)

where vec translates the matrix to a vector. Note that for an efficient implementation one
of the matrices must be transposed and hence storing the transposed scattering matrix is
beneficial. If one requests the transmission eigenvalues [11, 121, 122] the full diagonal
matrix from the 4th matrix multiplication in {e′} is needed. One need not the entire
matrix Γ e′Ae as

det
(
Γ e′Ae −λI

)
= det

(
−λI

)
= det



0 0 A
0 0 B
0 0 C

−λI
→ det(C−λI). (5.10)

This reduces the complexity considerably when calculating the transmission eigenvalues
while also reducing the required memory.

Due to internal data structures the calculation of the Green function DOS is a
relatively expensive calculation due to the NEGF algorithm outlined in Alg. 4.6.

5.2.1 Orbital pivoting for minimising bandwidth

In Figure 5.2 the calculation is divided into Ne+1 regions, one for each electrode and one
“device” region. All Ne +1 regions are regarded as separate BTD matrices and hence the
bandwidth of all regions, Eq. (4.40), becomes essential for fast performing algorithms.
Dividing the system into Ne + 1 regions improves the quasi-1D handling in each of
the regions thus further increasing performance. However, the performance is highly
dependent on the proper choice of the device region. This will often make TBtrans

inversion much faster than TranSIESTA as one can define the “device” region so small
that it becomes more quasi 1D like than the equivalent full system from TranSIESTA,
particularly so for Ne > 2.

5.3 Bias interpolation

Though the implementation outlined in Chapter 4 suggests that performing NEGF calcu-
lations is much faster than previously, they are still a heavy duty analysis tool. Especially
for I-V characteristics which requires many bias calculations. To increase throughput,
and decrease the number of full NEGF calculations a general interpolation scheme has
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Figure 5.3 | Bias interpolation of transmission for C60 molecule at −1.5V. The converged
is the SCF NEGF calculation at −1.5V. A linear interpolation using −2V and −1V SCF
calculations. This captures the majority of features seen in the transmission plot. The
spline interpolation also use the 0V, 1V and 2V SCF calculations. A better agreement
with the converged calculation is seen for the spline.

been implemented. Two interpolations are implemented; 1) a linear interpolation and, 2)
a natural spline interpolation. The interpolated quantity is the Hamiltonian

Hint
k (V ) = f (V ,Hk(V1),Hk(V2), . . . ) = fH(V ,V1,V2, . . . ) (5.11)

with Hint(V ) being the interpolated Hamiltonian and f the interpolation function. Cur-
rently we are only aware of the OpenMX code which employs the linear interpolation
scheme [16]. The linear interpolation only uses the Hamiltonian from the two closest
bias points while a spline interpolation is a smooth function which crosses each bias
point exactly.

In Figure 5.3 an example of interpolation of the Hamiltonian for a given bias and
the resulting transmission plots. The system is a C60 molecule slightly protruding
the surface of one Copper electrode while the other Copper electrode has the form
of an STM tip. The electrodes have the semi infinite direction along the 111 lattice
direction. Full NEGF calculations have been performed between −2.4V to 2.4V with
δV = 0.1V. Interpolated transmissions for all bias calculations have been performed
using 5 converged Hamiltonians taken at −2V, −1V, 0V, 1V and 2V. From these 44
interpolations we select the interpolated transmission which deviated the most and plot
the corresponding transmissions in Figure 5.3. The interpolated bias which deviated
the most was −1.5V. This corresponds roughly to a level alignment of the protruding
electrode Fermi level with the highest 5 semi-degenerate HOMO levels (∼ −0.75eV). This
alignment may correspond to a larger change in the electronic structure which cannot
be captured by interpolating across 0.5V ranges. For both the linear and the spline
interpolation the main features are well captured. Clearly the spline interpolation has a
smaller error compared to the linear interpolation scheme. We believe interpolation may
be used to efficiently calculate I-V characteristics with high precision for a large variety
of systems while care is needed if the electronic structure is non-linear in V .

Future interpolation algorithms which takes drastic changes in the electronic struc-
ture into consideration may prove even better than the presented interpolation schemes.
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5.4 Bond currents

An increasingly used methodology for understanding currents in nanoscale structures
is via the so-called “bond currents” [83, 85, 86, 123]. Bond currents are defined via the
spectral density matrix for an originating electrode Ãe,k. Here, {̃ } denotes that the basis
set is orthogonal. We omit the implicit energy dependence. The resulting (orbital) bond
current can be expressed via [83, 85]

Je,k,νµ =
1
~

=
[
Ãe,k,νµH̃k,µν − Ãe,k,µνH̃k,νµ

]
, (5.12)

Je,νµ =
U
BZ
dkJe,k,νµ (5.13)

where ν and µ are orbital indices. For the Γ -point this reduces to

Je,Γ ,νµ =
2
~

=
[
Ãe,Γ ,νµH̃Γ ,µν

]
. (5.14)

Any sum of bond currents crossing a surface separating the originating electrode from the
remaining device will result in the total current due to the current continuity equation.

Importantly the above bond currents are valid in an orthogonal basis set while for
non-orthogonal basis sets they do not apply [83, 85]. This is related to the ambiguity in
associating populations on individual atoms via Mulliken population analysis [69, 70,
124]. It then becomes an issue whether an electron is on atom I or J which is important
when calculating bond currents. In order to attribute local bond currents in a non-
orthogonal basis set a transformation to an orthogonal basis set is required. Typically the
Löwdin transformation, [125], is used as it is straightforwardly applied by extracting Sk
from Eq. (3.1) resulting in this alternate Hamiltonian and Green function

H̃k = S−1/2k HkS
−1/2
k (5.15)

G̃k = S1/2k GkS
1/2
k , (5.16)

Ãe,k = S1/2k GkΓ e,kG
†
kS

1/2
k . (5.17)

Unfortunately the Löwdin transformation delocalises the orbitals creating long-range
interactions non-ideal for efficient block tri diagonal inversion algorithms. To the authors
knowledge no strict formulation of bond currents in a non-orthogonal basis set have been
achieved[124, 126]. However, through tests it is found that orbital currents calculated
equivalently to Eq. (5.12) with a non-orthogonal basis set provide significant physical
intuition, nonetheless. Hence, the bond currents shown later in Sec. 7.1 will be calculated
in a non-orthogonal basis, well knowing that a transformation to an orthogonal basis is
required for correct definition. For a non-orthogonal basis set the bond-current becomes
[124, 126]

Je,k,νµ =
1
~

=
[
Ae,k,νµ(Hk,µν − εSk,µν)−Ae,k,µν(Hk,νµ − εSk,νµ)

]
, (5.18)

In the following, the k point is omitted without loss of generality.
For atoms with more than one orbital a total bond current from atom I to atom J can

be defined as
Je,IJ =

∑
µ∈I

∑
ν∈J
Je,µν . (5.19)
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T
BZdk with BZ ∈ [0; 12 ]

T
BZdk with BZ ∈]− 1

2 ;
1
2 ]

Figure 5.4 | Bond current example of (3rd nearest neighbour, [39, set D; orthogonal])
tight-binding model for periodic graphene flake with an asymmetric hole. Scattering states
originate from electrode at the bottom. The left figure are bond currents calculated only
using positive k values (thus imposing TRS). Clearly the momentum tilts the current to
the right (k ≥ 0 has right momentum). The right figure has both positive and negative k
(no TRS) and hence also the average bond current with the left momentum is seen. A very
different picture arises although the transmissions are the same.

Further definitions include an absolute atomic current and an absolute orbital current
flowing through atom I as

J |a|e,I ≡
1
2

∑
J

|Je,IJ |, (5.20)

J |o|e,I ≡
1
2

∑
µ∈I

∑
ν

|Je,µν |. (5.21)

For atoms with only one orbital they are equivalent, while in general J |o|e,I ≥ J
|a|
e,I . J

|o|
e,I

may be much larger than J |a|e,I as there may be outwards current and inwards current
through orbitals on pair atoms. If there is a lot of circulating current between pair atoms
one may get help in distinguishing this via a single atomic quantity which we will call
the activity current, defined as the geometric mean6 between the absolute atomic and
absolute orbital current

J Ae,I ≡
√
J |a|e,IJ

|o|
e,I . (5.22)

For no excess activity we have J Ae,I = J
|a|
e,I , while a larger number will correspond to an

excess current circulating between atom I and its connecting atoms. In Sec. 7.1 we will
return to the usefulness of Eq. (5.22).

For bond currents with k points one have to take extra care. One cannot apply time
reversal symmetry (TRS) when imaging the bond currents. This can be seen in Figure 5.4
which is an example of a tight-binding calculation for a periodic graphene flake with

6One could define the ratio between the absolute and magnitude current, however, the absolute atomic
current may often be very small, often zero.
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an asymmetric hole and third nearest neighbour interactions, [39, set D; orthogonal].
The bond currents are calculated at −0.375 eV with a full Brillouin zone sampling of 41
k-points, carbon atom sizes are scaled according to the absolute atomic current. The
scattering states originates from the bottom and exits the system at the top. In the
left figure TRS is applied and only the positive k ≥ 0 points are sampled yielding a
net current-momentum exhibiting the same k direction, i.e. a tilt towards the right.
Removing TRS, the full Brillouin zone is sampled and the negative k points are included,
as is visible in the right figure. Clearly the interpretation of the bond currents change
drastically!

5.5 Eigenstate projection of transmission

Another way to analyse systems having localised eigenstates is to project the transmission
onto these eigenstates [127]. Here we expand on the molecular projected self-consistent
Hamiltonian (MPSH) method which importantly is not limited to molecules. Moreover,
the following discussion only concentrates on Ne = 2 while it is also possible to use for
Ne , 2. In this section we expand on the possibility of projecting scattering matrices onto
localised eigenstates to differentiate between conducting and non-conducting eigenstates.
Several important aspects covered in Sec. 2.2 are used throughout.

A multitude of nanoscale electronic calculations using NEGF simulations are based
on molecular electronics [128–132]. Within this methodology the understanding of the
molecular orbitals is increasingly important in for instance STM experiments where
topography maps can differentiate between HOMO or LUMOmolecular orbitals [128,
130, 132]. In the following a molecule will be used as an example of localised eigenstates.

We begin by denoting the entire basis set of the system as {S}. Within {S} we can
define a subset consisting of an equal or fewer basis components {M} with {M} ⊆ {S},
henceforth known as the “molecule”. Typically this molecule subset coincides with
the device region as covered in Sec. 5.2. A diagonalisation of {S} and {M} provides the
eigenstates for the device and the molecule

H{S}|S ′i 〉 = ε
{S}
i S{S}|S ′i 〉, (5.23)

H{M}|M ′i 〉 = ε
{M}
i S{M}|M ′i 〉, (5.24)

where |A′i〉 are the generalised eigenvectors with associated eigenvalues ε{A}i defined in
the basis functions of the non-orthogonal basis. Note that in a non-orthogonal basis
subset 〈A′i |S{A}|A

′
j〉 = δij still applies. To create orthogonal eigenvectors we rotate the

basis set to form orthonormal projection vectors |Ai〉 ≡ S1/2{A} |A
′
i〉 such that 〈Ai |Aj〉 = δij ,

i.e. the Löwdin transformation [125]. We note that the eigenset {M} will only coincide
with the eigenset {S} if the subset {M} is fully decoupled from the complement basis set
{C} = {S} \ {M}. In cases where the molecule is only slightly hybridised by {C}, one can
assume that the molecular eigenstates are sufficiently describing a subset of the device
eigenstates. The transmission through molecular orbitals can be adequately attributed
close to this limit.

Lets rewrite (assuming k and ε dependencies implicit, and {e,e′} = {L,R})

TL→R = Tr[Γ RGΓ LG
†] (5.25)
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Figure 5.5 | Schematic illustration of two molecules, A (2 states) and B (3 states), coupled
to 2 electrodes, L/R. One can follow each of the lines connecting molecule A and B. An
electron has to scatter across the molecular states |A1〉, |A2〉, |B1〉, |B2〉 and |B3〉 to reach
electrode R.

inserting 1 on each side of the scattering states, implicit
∑(
|·〉〈·|

)
parenthesis

= Tr
[∑

j

|Sj〉〈Sj |Γ R
∑
j

|Sj〉〈Sj |G
∑
i

|Si〉〈Si |Γ L
∑
i

|Si〉〈Si |G†
]
. (5.26)

Instead of using {S}, we can use {M} which requires the scattering states to only exist on
this subset. This requirement can be forced by down-folding the self-energies onto the
subset {M} by selecting {M} as the “device” region. Hence by reducing the boundaries
for the transport calculations we can project onto {M} instead of {S} and select for which
eigenstates we calculate the transmission. Note that the choice of projectors is not
immediately obvious as also discussed in [133]. An investigation of different projectors
is outside the scope of this work and we will use projectors comprising those of the form
in Eq. (5.26).

As an example we sketch a possible two molecule projection in Figure 5.5. It com-
prises of two electrodes (densely packed lines) and two molecules A and B. Molecule A
consists of 2 localised eigenstates whereas molecule B consists of 3 localised eigenstates.
The electron may propagate onto molecule A through either |A1〉 or |A2〉 and further
propagate onto molecule B. Lastly it may propagate onto the right electrode through
either |B1〉, |B2〉 or |B3〉, or any combination of the three. These choices are schematised
using the different connecting lines. One choice would be the transmission through |A1〉
and through |B{1,2}〉,

TA{1}B{1,2} = Tr
[ 2∑
j=1

|Bj〉〈Bj |Γ R
2∑
j=1

|Bj〉〈Bj |G|A1〉〈A1|Γ L|A1〉〈A1|G†
]
, (5.27)

and by defining the symbol |i〉
A,Γ
〈i|j〉〈j | ≡ |Ai〉〈Ai |Γ |Aj〉〈Aj | we find

= Tr
[(
|1〉

B,Γ R
〈1|1〉〈1|+ |2〉

B,Γ R
〈2|2〉〈2|+ |1〉

B,Γ R
〈1|2〉〈2|+ |2〉

B,Γ R
〈2|1〉〈1|

)
G|1〉

A,Γ L
〈1|1〉〈1|G†

]
.

(5.28)

All scalar quantities
A/B,Γ
〈i|j〉 can be saved as an extra level of information. Hence

B,Γ R
〈1|2〉

yields the right second molecular orbital projected onto the scattering states and the
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Figure 5.6 | Projected transmission on monolayer C60 molecule adsorbed on a Cu(111)
surface. Projections of the 5 degenerate HOMO, E < −1eV, (top) levels as well as the
3 degenerate LUMO, E = 0eV, (bottom) levels are show with both non-dispersive (left)
and dispersive (right) projectors. The black transmission curve is the non-projected
transmission. Particularly for the LUMO projections in the dispersive projection one finds
a better Lorentzian at E = 0eV compared to the non-dispersive. This reveals the dispersive
nature of the monolayer. Generally, projections describe well the HOMO/LUMO peaks
while it is found that only a single LUMO eigenstate contributes to the transmission.

probability that this overlaps with the first molecular orbital. Essentially the projection
removes the scattering states that are not the molecule eigenstates and retains only the
scattering states which enters the projection molecule eigenstates. Consequently using
the projected scattering states the spectral density matrix may also be used to track
the density of states originating from a particular projected eigenstate. Importantly
the projection states can either be real or complex eigenstates corresponding to Γ or k
resolved projections. If the molecular eigenstates are non-dispersive in the Brillouin
zone they yield the same result.

The projection method where used to estimate the molecular eigenstate transmissions
through a C60 molecule [134]. In this setup the molecule is protruding the surface layer
“digging” a hole in the cobber (111) surface. Due to the densely packed monolayer
coverage of C60 there exists a slight dispersion in the Brillouin zone on the order of meV.
The transmissions are calculated on a 13×13 Monkhorst-Pack grid. Figure 5.6 show a
comparison of the full transmission (thick black) vs. the projected transmissions. The
projections used are

TL{ }→R{ } = Tr
[∑
j,j ′∈{C60}

|j〉
C60,Γ R
〈j |j ′〉〈j ′ |G

∑
i,i′∈{C60}

|i〉
C60,Γ L
〈i|i′〉〈i′ |G†

]
, (5.29)

i.e. a projection of both scattering states onto the molecular orbitals. The figures in
the left column are the Γ -point projectors used in the entire Brillouin zone, while the
right column figures are the k dependent projectors. All single integer projections
are single molecular level projections, while 1 . . .X are the summed projector over the
HOMO (X = 5) or LUMO (X = 3) levels. The HOMO levels cover a range between −2.5 eV
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Figure 5.7 | Diagram for none(top-left), L(bottom-left), R(bottom-right) or L+R(top-right)
projections. Region L/R, denote the incoming/outgoing scattering states while M is the
traversing projected molecule. We use a 2 eigenstate molecule, |1〉 and |2〉, with projection
onto |2〉. If both the left-right scattering states are projected the incoming and outgoing
eigenstate |1〉 is filtered out. This is marked by ×. If only the left scattering state is projected
the outgoing states may exit through either of the molecular states, while if only the right
scattering state is projected the outgoing states may only exit through the projected state.
Using L+R both incoming and outgoing scattering states are projected.

to −1.25 eV while the LUMO peak is more localised at 0 eV. The hybridisation of the
molecule with the surface is clear from the degeneracy lifting of the C60 molecule7. For
the LUMO transmission projections labelled 2 and 1-3 we have

TL2→R2 = Tr
[∑
j,j ′∈{2}
|j〉

C60,Γ R
〈j |j ′〉〈j ′ |G

∑
i,i′∈{2}
|i〉

C60,Γ L
〈i|i′〉〈i′ |G†

]
, (5.30)

TL{1,2,3}→R{1,2,3} = Tr
[∑

j,j ′∈{1,2,3}
|j〉

C60,Γ R
〈j |j ′〉〈j ′ |G

∑
i,i′∈{1,2,3}

|i〉
C60,Γ L
〈i|i′〉〈i′ |G†

]
. (5.31)

As can be seen in the figure, a clear indication of which molecular orbitals contribute
and which does not contribute to the transmission. Especially for the LUMO peak it is
clear that only a single LUMO level is contributing. Further, the projected transmissions
captures the separation of transmission through either HOMO or LUMO levels in the
appropriate energy ranges. The dispersion of the eigenstates is also visible in the differ-
ence between the Γ and k transmissions. Clearly the k resolved transmission provides
a sharper peak at the LUMO peak as would be expected for a Lorentzian broadened
eigenstate.

An important detail of the projections is that the summed projections 1 . . .X does not
sum up to the total transmission for the LUMO peak. This may be related to the method
of projection. In the implemented projection method in TBtrans one may use either of
three methods. These different methods are outlined in Figure 5.7 where a model of a
molecule (M) connected to two leads L/R is shown. The molecule consists of 2 eigenstates
|1〉 and |2〉. For no projection, top-left, the two eigenstates may scatter onto the molecule
and may split into either of the eigenstates. The scattering state origin is lost as there
may be mixing. Subsequently the same occurrence is found at the right electrode. In

7The lone C60 molecule has a 5-degenerate HOMO level and a 3-degenerate LUMO level.
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Figure 5.8 | See Figure 5.6 for details. Different methods of projections compared. Bulk/L
only projects the incoming scattering states onto the molecular orbitals. STM/R only
projects the outgoing scattering states onto the molecular orbitals. L+R performs both
projections. For the LUMO peak 1-3 the L+R restricts the transmission which indicates a
splitting of the projected scattering states. This is confirmed in the L projection where high
peaks occur in the HOMO and LUMO+1 energy range. As the tip is weakly coupled to the
C60 a small hybridisation occurs and the splitting is thus only present for L and not R.

bottom-left (method L) the incoming scattering states are projected only onto |2〉 which
removes the |1〉 contribution. However, the incoming state may mix and leave in either of
the two eigenstates. In the bottom-right figure (method R) the incoming scattering state
is unchanged while the outgoing scattering state may only leave through |2〉. The full
projection, top-right (method L+R), projects both the incoming and outgoing scattering
states. The above three methods may indeed yield very different results. However, for
geometry symmetric junctions at V = 0, or symmetric DOS, L and Rmethods are equal.
Remark that transmission symmetry still applies.

In Figure 5.8 the three methods are compared for the same C60 system. The L+R
projections are the equivalent summed projections in Figure 5.6. The difference is mostly
visible on the LUMO peak. The L + R has the lowest transmission which indicates a
mixing of the projected scattering states once they enter the molecule. This is confirmed
in the L projection on LUMO 1-3 where high peaks occur in the HOMO and LUMO+1
energy range, suggesting a large hybridisation with the surface. Neither of the other two
projections exhibit this mixing which we attribute to the weak coupling between the tip
and the C60 molecule. Another feature on the R projections is that they exhibit little to
no difference between Γ and k resolved projections. This is because the tip scattering
states are non-dispersive, unlike the bulk electrode scattering states.
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5.6 Summary

In this Chapter the basis for tight-binding calculations with Green functions have been
presented. The focus has been on the transport code TBtrans and its implementation.

The basic quantities such as, density of states, spectral density of states, transmission
spectra, transmission eigenchannel, electron thermal energy exchange, non-equilibrium
current, bond-currents and molecular projected transmissions. All these quantities are
calculated in a so-called “device” region which is the primary calculation unit that is the
basis for all quantities.

Calculating the elastic current is performed by integrating the transmission function.
To increase throughput with little loss of accuracy two interpolation schemes were
presented. It was shown that spline interpolations was superior to the simplest linear
interpolation scheme for an example system.

Bond-currents (or orbital currents) are describing the local current flow which is used
for intuitive understanding of current flow in nanostructures. We have presented the
importance of proper k point sampling where one must image both ±k for interpretation.
We introduced the activity current which an atom is responsible for is important when
dealing with atoms having more than one orbital.

Lastly, we presented calculations of molecular orbital projections of the transmission
function. This distinguishes between transmitting and non-transmitting molecular
eigenstates. Detailed studies of molecular junctions can be performed via different
projections, which may differ in terms of which scattering states are projected. It was
shown that k resolved molecular projections are needed for dispersive molecular orbitals.

60



Chapter 6

Electrostatic gating 2D materials

A unique feature of graphene electrodes is that their electronic properties can easily be
tuned by electrostatic gating. In fact, electrostatic gates can be used to increase the carrier
density in graphene to above 10× 1013 cm−2 [27]. For ion gating it has even been possible
to reach carrier densities of 10× 1014 cm−2 which correspond to a Fermi energy shift of
about 1eV [135]. For non-graphene electrode devices it has been shown that gating can
tune resonances localised in the narrowest part of the junction, [26, 136] as the electronic
states in the electrodes are affected only weakly by the gate-induced capacitive field [137].
However, for graphene electrodes, the low DOS and flat geometry, makes it comparable
to the junction, and is thus likely to be perturbed similarly by gating. This peculiarity
leads to a novel, yet largely unexplored, paradigm for graphene-based electronics. In
effect graphene electrodes becomes a part of the device as they too are influenced by the
gate. In electronic transport simulations, the effect of electrostatic gating and induced
charge doping in the device has often been mimicked by rigidly shifting the position of
the Fermi-level/chemical potential in calculations without explicitly including gate or
dopants [18, 36, 138, 139]. However, despite accounting for some of the effects, these
approaches neglect the self-consistent response of the device to the additional charge
doping or the gate-induced electric field.

This chapter will start by introducing the empirical gate model. The model will be
used on a graphene/graphite slab and also on a graphene nanoconstriction of which
[140] is the resulting published paper.

6.1 Empirical gate model

A field effect setup consists of a gate, a dielectric and the system itself, in that stacking
order. Applying a gate voltage charges the system like a capacitor setup, thus inducing
an electrostatic potential gradient across the dielectric. The additional charge will
redistribute to create a polarisation in the system along the electric field direction.

Such field effect setups can be realised in DFT software by employing a non-equilibrium
Green function (NEGF) scheme [11], or by solving the Poisson equation with appropriate
boundary conditions [47, 72]. The former is an expensive calculation while the latter
method is relatively inexpensive.

The implementation can be schematised as shown in Figure 6.1 and it is instructive
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Gate plane +g

−g

Figure 6.1 | Schematic view of the gate implementation by redistribution of charge. The
gate electrode has a certain charge g (blue) and charges the system by an equal negative
amount −g (red), atoms shown as black dots. The charge redistribution for the system and
the electric field are self-consistently calculated.

to have the equations governing a parallel plate capacitor setup in mind:

E =
V

d
=

g

εrε0
(6.1a)

V = Ed =
gd

εrε0
(6.1b)

E = −V q = Edq =
gqd

εrε0
, (6.1c)

where g is the charge on the gate(same and opposite charge in the system), d is the
distance between the two plates, q a charge. V , E, and E are the potential difference,
potential energy and electric field. ε0 is the vacuum permittivity and εr is the relative
permittivity. Analogous to a plate capacitor setup we assume that an applied gate voltage
induces a charge −δe− in the system and a corresponding counter-charge +δe− in the
gate plane. This situation is accounted for by charging the system with a given charge
g = −δe−, and by distributing homogeneously the corresponding counter-charge +δe−

in a well defined region of the unit-cell, denoted gate, so that the overall system+gate
remains charge neutral. Thus for g > 0 we have a p-doped system, similarly for g < 0 we
have a n-doped system. Solving the Poisson equation inherently calculates the electric
field between the gate and the system. As the calculation cell is periodic we apply
the slab dipole correction [72] to terminate the periodic electric field induced by the
charge redistribution. Another method is via changing the periodic boundary conditions
[47]. In addition to the planar gates this method can readily be employed for arbitrary
gate configurations. For instance a planar gate with an additional spherical charge
which would correspond to a charge impurity in the gate medium. Such a gate model is
referred to as charge gates. However, the gate model has a deficiency when the charge
redistribution is not mirrored completely in the gate medium.

The gating method can also be adopted in transport calculations using NEGF if the
gate is uniformly applied to the electrodes and the device1. Additionally, the gate at
the electrodes must have a resulting electric field perpendicular to the applied bias to
assert the correct boundary conditions. Our implementation resembles that of Brumme
et al. [48, 49] except that we use an LCAO model, opposed to a plane-wave basis, which

1Strictly we only require the boundary conditions to be correctly described and hence any gate configu-
ration which fulfils this may be used.
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Figure 6.2 | Applied electric field on a slab of two non-interacting graphene sheets. The
electric field will induce a charge-redistribution which will cost up to the potential energy
that the electric field can supply Eext = gdEext, with d being the interlayer distance. a)
Charge redistribution fully screens the electric field as ∆E < Eext. b) ∆E > Eext and field
penetrates, resulting in a non-vanishing E′ext.

means that the dielectric need not, necessarily, be simulated by a potential barrier to
limit electronic penetration.

In conjunction with the charge gate model a Hartree gate model has also been
implemented. This is an already widely used method and has already proven quite
useful [16, 50, 88]. The Hartree gate model can be defined via this simple correction to
the Hartree potential

VH (r)← VH (r) +VG(r), (6.2)

where VG(r) is the gate potential defined via planes, geometric spheres and/or boxes.
Although exhibiting the electronic repulsion/attraction due to +/ − |VG(r)| it does not add
an explicit charging effect of the system. For metallic systems such a gate is sufficient
while for low-DOS systems a charge gate is needed to account for charge redistribution.

Thus TranSIESTA is capable of calculating charging effects due to capacitor like
setups while simultaneously adding repulsive/attractive potentials for a full control of
the environment. In the following we will only concentrate on the charge gate model.

6.2 Gating N -layer graphite

The electrostatic dependence of graphene/graphite is an on-going interest for the field
of graphene based nano-devices. Santos and Kaxiras have investigated [137] the field-
dependence of pristine graphene and graphite with remarkably close results to exper-
imental results [17, 141–146]. The theoretical studies were conducted using SIESTA

however, using a constant electric field across the entire slab and it restricts it self to the
Dirac point (ED), i.e. no charge gating of the slab. Thus any redistribution of electrons
occurs around the Dirac point where the DOS is low and the quantum capacitance is high
[30, 147–149]. The quantum capacitance is an effect only arising in low DOS regimes and
hence for small gating values, |EF −ED | < 100meV [148]. In this section we will highlight
the importance of taking into account the electric field and charging of a (few-layer)
graphene system.

A simple picture (plate capacitor) describing the competing effects is shown in
Figure 6.2. The quantum capacitance effect can be understood in terms of two non-
interacting graphene sheets with a single gate. The two sheets tries to screen any applied
electric field by inducing charge polarisation. However, the electric field can only be
fully compensated if the energy cost of moving the electrons is lower than the potential
energy in the electric field, Eq. (6.1). For gated graphene (a) the the energy cost of moving

63



6.2. Gating N -layer graphite Chapter 6. Electrostatic gating 2D materials

0

1

2
·10−4

Graphene

−
0
.002

e −
/U

C

−0.2

0

0.2

0.4

Graphene

−
0
.0004

e −
/U

C

δρ
(x
,g

)[
e−
/U

C
/Å
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Figure 6.3 | Three different gating levels, each with 8 different number of layers in the
graphite slab positioned as indicated in the top plot. The top figure has the highest gate
level decreasing to the lowest gating level for the bottom plot. The top plot has a smoothly
decaying screening length, adding additional layers have minimal influence on the pre-
ceding layers, which results in a short screening length. The middle configuration barely
screens the field in the slab. The different layers have different screening properties which
indicates a high barrier for interlayer charge redistribution. For the lowest gating level a
penetration through all layers is present and the 8 different systems behave differently all
together. This regime may in the limit of quantum capacitance.

charge from one layer to the other is relatively low. This is because the DOS is much
higher at the Fermi level. For non-gated graphene (b), EF = ED , the DOS close to the
Fermi level is very low and a large energy range is required to compensate the electric
field. As such the screening capability is an effect of both the magnitude of the electric
field and the gating level.

The following discussion is based on calculations made with SIESTA, a DZP basis
set and a 44 × 44 Monkhorst-Pack grid, mesh cutoff of 276Ry, exchange-correlation
GGA-PBE [63].

Understanding the charge/gate effects of graphene/graphite layers become a non-
trivial task as it is a non-linear effect. In Figure 6.3 we plot the charge redistribution
due to the gate model described in Sec. 6.1. Here a symmetric gate/doping is used. A
figure to remember for graphene is Eg/UC = 33.4V/ �A. This is the electric field for a plate
capacitor charged with one electron on an area of the graphene unit-cell. The charge
distribution is calculated via

δρ(x,g) =
�

dydzρg(x,y,z)− ρ0(x,y,z). (6.3)

Every plot has 8 different lines corresponding to the number of layers in the graphite
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slab. The top plot has graphene layers indicated by atoms (black dots), with indicated
removal of charge (red). The far left blue region indicates the position of the gate and the
associated charge added on the gate. The top figure has the highest electric field and the
highest gating level, 0.002 e/UC (EF −ED = 177meV for graphene), whereas the bottom
figure has the lowest electric field and lowest gating level, 8× 10−5 e/UC (EF − ED =
84meV for graphene). Clearly there are two effects; 1) an intralayer redistribution due to
polarisation across single layers; 2) an interlayer redistribution, long range polarisation.
Comparing the top and bottom plots it is clear to see the electric field is fully screened in
the top plot while the bottom plot seem only partially screened. The middle gate plot is
also partially screening the electric field. The highly gated structure has a much shorter
screening length while the lowest gating level does not screen nearly as good. However,
the charge distribution in the first layer for the two top plots are equal for all different
number of layers. This indicates a limit to the charge redistribution at that gate and
electric field level for few layers of graphene. The high charge redistribution on the far
side of the low gated system may be artefacts from the periodic calculation.

To conclude on this study; applying electric fields to <3D materials is a highly non-
trivial task. The intrinsic quantum capacitance is creating non-linear effects. Indeed
system properties are dependent on electric field strength and charge redistribution
which is traced back to the low DOS region close to the Fermi level. Future studies should
include gating effects such as those covered here. Additionally, a non-even gate/electric
field complicates the analysis further. This is important as the electric field may be
different than the equivalent capacitor setup. It is however, important to consider when
additional non-linearity can be exposed via simple models which for instance may apply
when the gating shifts the Fermi level far from the Dirac point.

6.3 Gating nanostructured graphene

In the following we extend the analysis of the gating method by introducing non-
equilibrium effects using TranSIESTA NEGF capabilities. This combines the complexity
of the gate method and the complexity of NEGF method.

Our systems are two geometrically similar, “left-right” symmetric graphene nano-
junctions, formed by a nanoribbon (GNR) connected to pristine graphene electrodes, see
Figure 6.4 and Figure 6.5. For zero gate/doping (g = 0) the former yields an electron-hole
symmetric electronic structure (Hydrogen GNR), whereas the latter yields a e–h asym-
metric electronic structure (Oxygen GNR) [150–152]. The gate is placed 20 �A beneath
the graphene plane and we sweep the gating levels, g, according to g × 1013 ecm−2.

In Figure 6.4, we plot the potential drop across the graphene constriction at 0.5V for
g = 0, a), and n-doped with g = −2 gating, b). The potential profile has been integrated
in the perpendicular direction to the graphene surface for electronic densities above

ρ > ρε = 0.008e �A
−3

projected onto the x–y plane. The lower panels, c) and d), is a further
projection onto the transport direction (x) as indicated in Figure 6.4b. At g = 0 we
obtain an anti-symmetric potential drop in the transport direction (∆V (x) = −∆V (−x)) as
expected for a fully e–h and left-right symmetric constriction. On the other hand, for
g = −2 (n-doped), we see a clear pinning of the potential profile to the positive electrode,
i.e. the potential drop at the negative electrode. Conversely, a calculation with g = +2
(p-doping) with 0.5V display a pinning at the negative electrode, while for g = +2 and
−0.5V we regain the plot shown. This confirms the geometric symmetry.
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Figure 6.4 | Electronic Hartree potential drop integrated perpendicular to the plane and

above a cutoff electron density ρε = 0.008e �A
−3

and projected to the graphene plane for
the Hydrogen GNR, a), b). c) and d) are the contour plot further integrated in the box
indicated in b). The non-gated system shows a linear gradient, whereas for g < 0 (n-doped)
a pinning of the potential towards the right (positive) electrode.

In Figure 6.6 we show the transmission spectra for the hydrogen passivated constric-
tion at 0V, a), and 0.5V, b), for different values of g each vertically shifted 1/2. As a
measure of gating we track the position of two resonances, and marks, corresponding
to a resonance in the constriction located at the edge and in the center, respectively.
The middle thick line is the transmission for g = 0, and is equivalent to earlier results
where these resonances are discussed [36]. In addition, we plot the energy shift of the
Dirac point for pristine graphene as vertical lines aligned at each of the two resonances
at g = 0. These vertical lines match exactly the shift in chemical potential due to the
doping in the electrodes. Discrepancies between the electrode gating (lines) and the
resonance positions (dots) illustrate the difference in just rigidly shifting the resonances
according to electrode doping, and a fully self-consistent calculation of the resonance
positions. Importantly, at 0V we find that the resonance peaks does not simply follow
the gating. Moreover, the two peaks are shifting/gated independently of each other; the
center resonance peak, , follows the pristine doping closer than the edge resonance
peak, , due to a difference in electrode coupling between the resonances. On the other
hand, at 0.5V we find that both peaks follow the pristine graphene electrode doping. As
shown in Figure 6.4b, the junction behaves as an extension of the positive electrode and
therefore the resonance position is pinned at the Fermi level of this particular electrode.
The self-consistent calculation is needed to capture the correct transition with bias from
semi-independent resonances to the pinned behavior.

Figure 6.5 are for the Oxygen terminated graphene nanoribbon. This nanoribbon
has no e–h electronic DOS symmetry [150–152]. Similarly to the Hydrogen system we
calculate for g = 0 and g = −2 at 0.5V. a) shows that the Oxygen edges pins slightly to
the negative electrode for zero gating, while gating, b), the entire ribbon is pinned to the
positive electrode, equivalent to the Hydrogen case Figure 6.4b. This is also seen in the
projected potential profiles Figure 6.5c and d). This confirms that the selectivity of the
potential profile in the gated devices does not rely on the e–h symmetry of the junction,
and conjectures the generality of this behaviour in systems with electrodes having low
DOS around EF , regardless of the electronic structure of the central part connecting the
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Figure 6.5 | Electronic Hartree potential drop integrated perpendicular to the plane and

above a cutoff electron density ρε = 0.008e �A
−3

and projected to the graphene plane for the
Oxygen GNR, a), b). c) and d) are the contour plot further integrated in the box indicated
in b). The non-gated system shows a gradient at the GNR boundary, whereas for g < 0
(n-doped) a pinning of the potential towards the right (positive) electrode.

two electrodes.
The generic behavior of the potential drop just outlined is summarised in Figure 6.7,

which shows the one-dimensional potential drop calculated for the hydrogen-terminated
constriction for a number of different gates and positive bias voltages, similar to that of
Figure 6.4c and d). Independently on the particular value of the bias voltage applied,
gating the system always leads to a marked asymmetry of the potential drop across the
constriction. For any value of n-doping, the potential drop pins always to the positive
(right) electrode for positive bias. Similarly, for any value of p-doping, the system couples
to the negative (left) electrode for positive bias. These results further demonstrate the
general phenomena that does not depend on the particular values of applied gate and/or
bias voltage. Furthermore, our calculations highlight the important fact that the charge
neutrality point for the electrodes is a special case which does not extrapolate to the gated
case. This becomes even more important if one considers the experimental difficulties in
retaining a charge neutral sample [153, 154].

6.3.1 Voltage drop model

We will now consider a simple model which can explain the electrode selectivity of
the voltage drop depending on the doping/electrostatic gating. Figure 6.8 is a guided
reference for the following discussion. The position of the voltage drop can be obtained
by considering the change in charge in the scattering region when applying a bias. If
the scattering region becomes more positive, one can view it as the positive electrode
extending into the scattering region and thus the voltage drop will occur closer to the
negative electrode and vice versa. The change in charge in the scattering region is linked
to the change in injected charge from left and right electrodes in the bias window, as
noted in the Methods section. The linear dependence of the DOS in the graphene
electrodes makes the coupling/broadening functions of the scattering region display the
energy dependence,

Γ L/R(E) ∝ |E −µL/R +EF |, (6.4)
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Figure 6.6 | Transmission spectra for the constriction at various doping levels for 0V,
a), 0.5V, b), and for dopants, c). The middle line (black) at zero gating is a symmetric
transmission function with two distinct resonances (marked, and ). Gating the constric-
tion shifts the resonances as indicated by the displacements of the marks. The full lines,
crossing vertically the different doping levels, indicates the graphene electrode Fermi level
shift due to the doping aligned at the g = 0 mark.

where E = 0 corresponds to the equilibrium Fermi level, EF is the shift of Fermi level due
to doping, EF ∝ −g/ |g |

√
|g |, and µL/R is the change in the chemical potential of left/right

electrodes with applied voltage bias (V ). We will use µL = eV /2 and µR = −eV /2, and
take V > 0. This definition means that the scattering region as a starting point will not
preferentially select the left or right electrode for an electron-hole symmetric system,
and the potential drop profile will be spatially anti-symmetric, ∆V (x) = −∆V (−x). We
will now consider the voltage bias as a “perturbation” onto the system without bias, and
calculate the change in charge in the scattering region. Thus we first neglect the change
in potential set up by the change in charge, which again will impact the charge in the
self-consistency. With this we have the density of scattering states from left and right,
AL/R ∝ Γ L/R ∝ |E −µL/R +EF |, and the change in electrons(holes) injected from left(right)
electrode can be written as,

δe =
∫ eV /2

0
AL

(
E
)
dE ∝ eV

2

(
EF − eV4

)
, (6.5)

δh =
∫ 0

−eV /2
AR

(
E
)
dE ∝ eV

2

(
EF +

eV
4

)
(6.6)
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Figure 6.7 | Integrated Hartree potential profile in a region of width corresponding to
the ribbon along the entire constriction. The thick middle line is the potential profile for
g = 0. The blue regions correspond to n-doped graphene (full lines), while red are p-doped
graphene (dashed lines). The non-gated calculations show a linear behavior whereas gated
systems have a asymmetry between the left and right electrode DOS breaking the left-right
anti-symmetry in the potential drop. e) summarises the trends where L/Rmeans pinning
to the left/right electrode.

a) b)V = 0 V > 0
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Figure 6.8 | Illustration of asymmetric coupling induced by doping out of symmetry. a)
shows the zero bias configuration with broken e–h symmetry due to doping, g < 0. b)
shows a difference among the electrode contributions in the bias window which pins the
system to the right electrode.

where we assume |V /2| < |EF |. The scenario is shown schematically in Figure 6.8b
showing more injection of positive carriers δh > δe. Thus the scattering region will as the
first response to the non-equilibrium filling become more positive and we conclude that
for n-doping, g < 0 and EF > 0, the positive electrode will “extend” into the constriction
resulting in a voltage drop at the negative electrode, as seen in Figure 6.7. We stress that
this behavior stems from the vanishing DOS of graphene at the Dirac point yielding a
large relative difference between the electron/hole contributions. Contrary if we take
EF to be very large in Eqs. (6.5) and (6.6) we get δe ≈ δh and the constriction does not
change its charge. Indeed, the pinning effect is smaller at 1V compared to 0.5V as seen
in Figure 6.7a vs. c). This is due to the DOS of one lead being very close to zero at 0.5V;
µi −EF ≈ ED with ED being the Dirac point, and hence a much larger relative difference
in DOS.

In order to substantiate that the voltage drop is controlled by the vanishing electrode
DOS we smear the DOS energy dependence gradually into a flat function by introducing
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Figure 6.9 | Change of potential drop vs. level broadening parameter, ηL/R, for 0.5V.
Increasing values smear out the electrode DOS which evens out the electronic contribution
from both electrodes in the bias window. The voltage drop becomes anti-symmetric at
even charge injection rates from the two electrodes (large smearing).

an artificial increase in the broadening parameter, η, for the electrode self-energies in
Eq. (3.16). Hence Γ L(E) ≈ Γ R(E) for η � 0 irrespective of the applied bias and gating.
This forces δe ≈ δh and a resulting anti-symmetric voltage drop. Figure 6.9 shows the
voltage drop in the middle part of the constriction for four η values. Clearly the anti-
symmetric voltage drop is regained when ηL,R ≥ 0.5eV. Note that since we have not
made assumptions in the model about the nature of the constriction we anticipate that it
can straightforwardly be applied to similar systems between graphene electrodes in the
high-conductance regime.

Constriction, hydrogen terminated with dopants. Since Gr consists entirely of sur-
face atoms it is also extraordinarily susceptible to external influences such as chemical
modification or charged impurities. We will now discuss the influence of modifying the
passivation or having adatoms [155–158] as a source of charge doping alternative to the
electrostatic gating. We examine the effect of a donating lithium (Li) or an accepting
flourine (F) adatom placed either inside or outside the constriction at the positions shown
in Figure 6.4a. The Li or F atoms are positioned above the center of a hexagon, or ontop
a carbon atom, respectively. In Figure 6.6c we show the transmission for the different
adatom configurations. The transmission spectra indicate that very little scattering due
to the dopants themselves takes place, especially when the adatoms are positioned out-
side the constriction. The doping effect is clearly seen from the shift in the two resonance
peak positions. Li will n-dope the graphene constriction while F p-dope it. Surprisingly,
we find that most of the charge transfer to the device resonances is maintained when the
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dopants are moved outside the constriction. This suggests that nanostructured graphene
devices will not necessarily be very sensitive to the actual position of the adatoms. In
the case of F it is actually more efficient outside the constriction. Comparing the most
significant peak with the field effect gating transmission curves we find that Li donates
at least 0.2 electrons while F accepts at least 0.3 electrons from graphene. In addition,
we find that a pinning of the potential to the positive/negative electrode occurs for
Li(n-doping)/F(p-doping) for positive bias, consistent with the potential drops obtained
from field effect gating (see Figure 6.4). Adatoms may therefore provide an alternative
way to manipulate the voltage drop by pinning the potential to either of the two elec-
trodes. This underlines the conclusion that the main effect is determined by the addition
or removal of charge from the device, together with the uneven injection rates from the
electrodes.

6.4 Summary

In this Chapter a new method for investigating the electronic structure of doped/gated
structures has been presented. The method is based on simple capacitor arguments by
moving charge from the system to a fixed user defined space where a gate is placed. This
induces an intrinsic electrostatic contribution to the self-consistent calculations. Such a
gate is denoted a charge gate. An explicit Hartree gate is also implemented and can be
used in conjunction with the charge gate.

The charge gate model was used to understand the electronic structure and quantum
capacitance effects of N -layer graphite under an external gate-potential. Importantly it is
found that the screening length is dependent on the number of layers, gate strength and
charging. For high gate levels the external field is fully screened and the top layer charge
redistribution is constant for all N -layer graphite stacks. For low gates the external field
penetrates the graphite and the charge redistribution is highly dependent on N due to
the quantum capacitance.

Additionally the gate method was used in a non-equilibrium system with the NEGF
method. We investigated a graphene nano-ribbon connected to two pristine graphene
electrodes. In this system the charge gate induced a non-linearity in the induced elec-
trostatic potential by a pinning effect. This is explained via a simple voltage model for
graphene. Effectively the electrostatic potential was pinned to the electrode that had
the highest coupling to the device region thus leaving the voltage drop at the opposite
electrode. Additionally it was shown that adatoms with a doping effect such as flourine
or lithium atoms also exhibit the pinning effect.

We expect that using gate models for graphene systems are generally important
to describe the electronic structure in nanostructured graphene coupled to pristine
graphene electrodes.
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Chapter 7

N -electrode calculations

A large variety of experiments are based on multi-electrode setups. In particular for
graphene, expectations of using it for nanoelectronics requires interconnects with very
low contact resistances. Such low resistance electrodes have been seen in metals [43].
Another possibility is using other 2D materials as interconnects, or perhaps graphene it-
self. In this Chapter we investigate non-equilibrium calculations of 3 electrode graphene
T-junctions based on the article [159]. Here we expand on the study in [159] by using
more geometries. Furthermore we present NEGF calculations of the graphene T-junction.
For further information on the introductory material we refer to the paper [159].

7.1 T-junction

Since the discovery of graphene [21, 22] it has been thought as a future replacement for
several nanoelectronic components. However, a key problem that needs to be solved is
how to efficiently connect electrodes and create circuitry of graphene, and 2D materials
in general. Recently 1D contacts to graphene have been accomplished with 3D metal
electrodes with surprisingly low contact resistance [43]. Metal contacts are needed when
coupling the device together with other electronics via wires, however, interconnects
in circuitry may be viably created by the same chemical species. In [159] we study an
interconnect using a so-called T-junction. A T-junction is formed by the attachment
of a semi-infinite sheet of graphene vertically onto a graphene sheet. The intrinsic
sp2 bonding of graphene will at the junction be altered to a sp3 hybrid thus creating a
tetrahedral-like bond on the connecting atom. The binding energies of these T-junctions
with only carbon bonds are high with energies around 0.5 eV while such structures
may be achieved by fusing or synthesis [159], additional introductory prospects and
energetics can be found in the article.

Here we expand on the Jacobsen et al. [159] study and investigate the conductance
properties of such T-junctions with different geometries. The calculations are performed
using the GGA-PBE functional [63], a real-space grid cut-off of 254Ry, filter cutoff
150Ry [160], 17 transverse k-points per Ångstrom. Single-ζ± (polarisation) is used as
double-ζ± showed no difference in geometries and transmissions. Bias calculations are
performed with a non-equilibrium energy integral of ∆ε = 0.01eV and η = 0.002eV. The
equilibrium contours start at −40 eV, connected to a line lifted 2.5 eV above the real
energy axis with 16 points from −10kT to ∞ by a Fermi quadrature. The electronic
temperature is 25meV. Transmission plots are created with 1700 transverse k-points per
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a) zig-zag α = 90◦ b) armchair α = 90◦

c) zig-zag α = 55◦ d) armchair α = 55◦

Figure 7.1 | Relaxed T-junction geometries. The transport directions are shown with
(left to right), (left to top) and (top to right). Small insets are a close-up side-view of

the junction. a) and c) are zig-zag junctions with 90◦ and 55◦ degree angles with respect to
the planar graphene. The 90◦ is symmetric for and . b) and d) are armchair junctions
with 90◦ and 55◦ degree angles with respect to the planar graphene. The armchair junction
is asymmetric. A clear transition from graphene sp2 to tetrahedral-like sp3 hybrid is seen
for all junctions. The blue and red electrodes constitute the planar graphene sheet with an
attached semi-infinite graphene terminated by an electrode (green).

Ångstrom with a subsequent interpolation [161]. We limit the study to encompass an
armchair and a zig-zag connection. To compare the two directions we width-normalise
the transmission and current. In Figure 7.1 the different relaxed geometries are shown.
Both systems are investigated with α = 90◦ and α = 55◦. The angle α is the alignment
of the third electrode with respect to the base graphene sheet, i.e. 90◦ corresponds
to a perpendicular electrode. Remark that for both angles the relaxed geometry ex-
hibits a vertical bonding to the graphene plane in accordance with a tetrahedral-like
bonding. Hence an equilibrium bonding environment will preferentially uphold the
tetrahedral-like bonding irrespective of the electrodes angle far from the junction. The
intrinsic ripples in graphene will have negligible effect on the electronic properties [162],
consequently it is expected that the long wave length ripples arising due to the junction
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Figure 7.2 | Transmission (width normalised) for the different structures shown in Fig-
ure 7.1 at 0V. Armchair (AC) and zig-zag (ZZ) for two different T-angles α = {90◦,55◦}. For
comparison the pristine graphene curve is also shown. The lowest transmission for all ge-
ometries is the . ZZ 90◦ has by symmetry arguments equivalent and transmissions.
ZZ 55◦ has a slightly broken symmetry with having a larger transmission compared to
. The AC structure has a transmission remarkably close to pristine graphene, while

and have much lower transmissions.

also has negligible effect. In the following we denote each transmission path via three
symbols; left to right(right to left) as , left to top(top to left) using and top to
right(right to top) via . Note that transmission symmetries apply, see App. A.

Figure 7.2 shows the 0V transmission for the 4 structures (sorted in the same 2×2
diagram). For the ZZ 90◦ structure and have almost equivalent transmissions
which can be deduced by symmetry arguments from the junction. Interestingly has
a lower transmission compared to the other. The junction may be viewed in terms of
kinks [163]. In path a single kink disrupts the electron pathway, while has a kink
up, then kink down, i.e. two kinks. See inset Figure 7.1a. Effectively the left-right
electrodes are decoupled which is counter intuitive given that the junction is formed
from a flat graphene flake. In the plane the tetrahedral-like bonding atom has 4 bonds
completing the shell which effectively makes it inert. Hence the π cloud from the left
electrode will always couple more to the top electrode as the overlap with the π orbitals
in the top electrode are extensively larger than the direct coupling to the π orbitals on
the right electrode. This also holds for ZZ 55◦ where transmission increases (larger π
orbital overlap due to a lower angle towards the right electrode) and decreases. is
largely unaffected which is expected as their coupling will only slightly depend on the
vertical environment.

For the armchair junction we find to almost retain a pristine graphene transmission
while both and have very low transmissions. Importantly, and paths does not
have a symmetric junction. Consequently if we shift the top electrode one atom towards
either the left or right electrode the transmissions and will swap. If one follows the
alternating A/B site notation commonly used for graphene, the sequence for the path
is A-B-⊥-B-A while for it is A-B-⊥-A-B where ⊥ corresponds to a vertical bond. Hence
the former bond sequence preserves the best conductance properties.
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zig-zag left scattering states armchair left scattering states

Figure 7.3 | Bond-currents (non-orthogonal) originating from the left electrode (E =
−0.2eV). Ordered according to Figure 7.1. The large figures are sideviews of the system,
while the insets are looking from above the left electrode, focusing on the junction. Red
arrows are scaled according to the bond current. Atoms are scaled according to the activity
current, Eq. (5.22). The tetrahedral-like bonded atom at the centre of the junction does not
carry any bond-current in an energy range of −1 eV to 1 eV. Clearly the bond-currents are
migrating towards the top electrode and the atoms close to the junction have an excess
activity current.

zig-zag top scattering states armchair top scattering states

Figure 7.4 | Same as Figure 7.3 however from the top electrode scattering states. Similarly
to the left scattering states there is no current passing the tetrahedral-like bonded atom.
The top scattering states for the ZZ primarily propagate towards the closest electrode
while for α = 90◦ it becomes evenly divided. For AC the division is dependent on the
tetrahedral-like bonded atom which determines the high transmission path.
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In Figs. 7.3 and 7.4 we plot the bond currents1 as explained in Sec. 5.4 calculated
using the non-orthogonal basis set. We note that bond-currents still maintain a physical
interpretation. Atom sizes are scaled according to the activity current, Eq. (5.22), and
normalised within each frame. Hence the largest atoms have a large excess activity
current. The large figures are side views of the geometries, while the small insets are
top skewed views from above the left electrode viewing down on the T-junction. For
all junctions the bonding atom has no activity current, this has been checked in a range
across −1 eV to 1 eV. For the ZZ geometries the lowest angle between two electrodes
seem decisive for the highest transmission. Moreover, the left scattering states have an
excess current compared to the top scattering states, corresponding to a larger circulating
current in the junction around the bonding atom. This is apparent as all the top electrode
atoms for the top scattering states have, roughly, the same size while the left electrode
atoms for the left scattering states have increasing size with the largest being at the
junction interface. For the AC geometries, the selectivity of the transmission is also
confirmed where is dominant for α = 90◦ and increases for lower angles, albeit
the increase is very low and thus the angle dependence on AC structures seem less
pronounced. Clearly the asymmetric position of the top electrode has a high influence on
the transport properties. In realistic devices this selectivity may be difficult to measure
as it would require a pristine attachment of the T-junction with no bond deformations
giving rise to discontinuities at the boundary. The bond currents aide in determining
important geometrical effects for a graphene T-junction and shows that in fact the top
electrode has the highest total transmission TT . Importantly, they highlight which atoms
participate in carrying the transmission, and which does not. For the T-junction it is
shown that the bonding atom is not participating in any current carrying transport.

7.1.1 Non-equilibrium

As shown in Sec. 6.3 non-equilibrium calculations of graphene junctions easily become
elaborate as external gating may greatly influence the conductance and characteristics
of the system [140]. Comparatively for the T-junction this complexity increases as we
further add a third electrode. One could envision a device where the left-right and
top electrodes were gated individually, additionally the three electrodes could have
individual chemical potentials yielding 5 variables to tune for full device characteristics.
3 voltages and 2 gates.

Here we investigate the I-V characteristics of the T-junction. Current integration is
performed using a fine energy grid of 0.001 eV with a spline interpolated Hamiltonian
from full non-equilibrium calculations at −1.2V to 1.2V in steps of 0.3V (9 calculations).
The interpolation is in steps of 0.05V, see Sec. 5.3 for details.

The applied bias is considered in two cases, 1) with V /2 = µL = µR = −µT and 2) with
V /2 = µL = −µT and µR = 0. To work as a transistor-like system one would require case 2)
with variation of the relative potential profiles. However, such investigations quickly
become truly elaborate. The following arguments considering for the I-V characteristics
can be translated to the transmissions shown in Figure 7.2.

Case 1 is seen in Figure 7.5 for all 4 systems. Note that there is no I-V curve for
as the Fermi levels are aligned. For the orthogonal ZZ system and are symmetric
and two equivalent I-V curves are found, as expected from the 0V transmission. For ZZ,

1Note that the VMD view-ports are different between different images [164], whence the relative
difference in atomic sizes can only be compared on single images.
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Figure 7.5 | I-V characteristics for ZZ and AC structures with different angles. The
chemical potentials are in terms of the applied bias: V /2 = µL = µR = −µT . For the ZZ
structures the selectivity of the rotated top-electrode is seen as is roughly doubled with
respect to (for α = 55◦). For the AC structures the low angle dependency is seen as the
current is roughly the same for α = 90◦ and α = 55◦. The relative difference is around 5.

α = 55◦, the increased transmission of is consistent with the I-V curves where is
roughly twice as large as . For the AC structures the decoupling of the right electrode
is seen as is roughly 5 times larger than for both angles. Again, if the entire top
electrode was shifted one atom, left or right, the I-V curves would be reversed. Here
there is little difference between the angles as seen for the 0V transmission.

In the second case the I-V characteristics is seen in Figure 7.6. Note that here all
chemical potentials are different. The current scale is the same as that in Figure 7.5. Note
that and have half the bias width compared to . The high potential electrodes
(left, top) will couple more to the device region as their DOS in the bias window is
comparatively larger than the right electrode. See discussion in Sec. 6.3. Effectively the
right electrode couples weakly and so the resulting current will be low. This effect is
apparent across all structures, irrespective of the angles involved. The resulting current
is carried in the junction and it is roughly equivalent to the maximum current in
Figure 7.5. This highlights the decoupling of the three electrodes. I.e. the angle has
little influence on I-V characteristics as it is mainly dependent on the coupling of the
electrodes to the device.

Comparing case 1 and 2 demonstrates a possible mechanism to control current
carrying pathways by coupling/decoupling via a third electrode, thus “gating” the device
using the third electrode2. Further studies are required to assert this for a wider range
of potential differences. In particular calculations for V /2 = µL = −µR and µT = 0 might
prove the coupling statements as the is the smallest current for the investigated
structures. Note that the conclusions made for zero bias are difficult to translate into a
generic bias perspective as the relative chemical potentials and couplings are important
for the I-V characteristics.

2We acknowledge the limitation of such “gating” as the off-state current will be high.
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Figure 7.6 | I-V characteristics for ZZ and AC structures with different angles. The
chemical potentials are in terms of the applied bias: V /2 = µL = −µT and µR = 0. For
all structures is the major current carrying pathway. In this bias configuration it also
exhibits the largest difference between the electrode chemical potentials. There is nearly
no angle dependence and in general the currents are similar to the maximum currents
seen in Figure 7.5.

7.2 Summary

We have used the Ne method in TranSIESTA and conducted transmission analysis on
a T-junction system consisting of pristine graphene electrodes and a T junction. Using
bond-currents we found that the bonding atom (tetrahedral-like bonded atom) had
almost zero activity current in a range of 2 eV around the Fermi level. The current is thus
redirected around the respective atom. The I-V characteristics shows that the electrode
coupling is important, as shown previously in Figure 6.3. This makes the maximum
current equivalent for the investigated systems. However, the current carrying pathway,

, or may be bias controlled by coupling/decoupling the last electrode.
Consequently, the T-junction may be a future prototype-device used to yield gate

controlled junctions based on pure graphene electrodes. Such devices are interesting
due to their low resistances and thus the need for contacting to a bulk material becomes
superfluous if current-pathways can be controlled in a graphene grid.

T-junctions can have a great variation of the chemistry in the junction. As shown
in [159] the bonding atom may be a substitutional boron/nitrogen/oxygen atom. Such
bonding atoms are probably more likely to occur as the graphene edges may be exposed
via chemical etchants composed of aforementioned atomic species. Such considerations
are important for a full understanding of T-junctions. These investigations have been
outside the scope of this thesis.
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Chapter 8

Inelastic conductance in
STM-graphene

Scanning Tunnelling Microscopy/Spectroscopy (STM/STS) is a commonly used method
to investigate electronic structure of surfaces and 2D materials. This is partly due to,
its high-resolution imaging but also its local spectroscopic capability. In particular
STM/STS on graphene have shown interesting results with giant phonon induced con-
ductances [165]. Furthermore are doping effects due to boron and nitrogen substitutions
of increasing interest [166–168].

First an introduction to the concepts of inelastic conductance will be provided. The
inelastic conductance is due to the electron-phonon interaction which creates steps at
energies corresponding to phonon energies. The phonons can be estimated using the
Hessian matrix as explained in Sec. 2.1.1. Then, we will turn to inelastic calculations
in a 3-terminal system which proves extremely powerful in reproducing graphene’s
inelastic conductance in STS [165, 169, 170]. The results presented are based on the
paper published in [171] and a subsequent collaborative work with Lagoute et al. [168].

8.1 Inelastic conductance

The following description is from the excellent implementation article1 Frederiksen et al.
[172]. For further explanations we refer to [139, 173].

The inelastic signal originates due to the interaction of the electronic structure with
the phonons. The inelastic effect occurs at electron energies above a corresponding
phonon energy. An excitation of a phonon can only occur when the bias is equal to or
above the phonon frequency, eV ≥ ~ω. The electron-phonon coupling can be described
using the extended Hamiltonian equation

H =He +Hph +He−ph (8.1)

Hph =
∑
λ

~ωλb̂
†
λb̂λ (8.2)

He−ph =
∑
λ

∑
i,j

Mλ
i,j ĉ
†
λĉλ(b̂

†
λ + b̂λ), (8.3)

1Note that [172] uses the term LOE. We adopt the terms LOE-WBA for [172] and LOE for [139].
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with He being the electronic Hamiltonian under the Born-Oppenheimer approximation,
Eq. (2.5). {b̂, ĉ} are the phonon and electron annihilation operators († creation). λ is the
associated phonon index and {i, j} are the electron indices. Mλ describes the coupling
element between the electronic structure and the phonon mode λ. The electron phonon
coupling is a function of the electronic Hamiltonian derivative with respect to atomic
coordinates (I)

Mλ =
∑
Iν

〈
i
∣∣∣ ∂He

∂RIν

∣∣∣j〉vλIν√ ~

2MIωλ
, (8.4)

where vλIν is the normalised eigenvector for the phonon mode λ and frequency ωλ.
The following discussion will be based on the Lowest Order Expansion Wide Band
Approximation (LOE-WBA) and the LOE expansion. For a full description of the self
consistent Born approximation we refer to [172].

The phonon modes and electronic Hamiltonian derivatives are calculated via the
frozen phononmethod as described in Sec. 2.1.1. The LOE-WBA approximation describes
the inelastic current (without elastic contribution) for a single phonon λ as

ILOE−WBA
λ = γλI

sym
λ +κλI

asym
λ (8.5)

γλ = Tr
[
G†Γ LG

{
MλARM

λ + i
2

(
Γ RG

†MλAMλ −H.c.
)}]

(8.6)

κλ = Tr
[
G†Γ LG

{
Γ RG

†Mλ
(
AR −AL

)
Mλ +H.c.

}]
, (8.7)

whereA =
∑

eAe. The symmetric and anti-symmetric functions I , are respectively

I symλ =
e

π~

(
2eV 〈nλ〉+

~ωλ − eV
e(~ωλ−eV )/kT − 1

− ~ωλ + eV
e(~ωλ+eV )/kT − 1

)
, (8.8)

Iasymλ =
e

2π~

∫ ∞
−∞
dε

[
nF(ε)−nF(ε − eV )

]
Hε′

{
nF(ε

′ + ~ωλ)−nF(ε′ − ~ωλ)
}
{ε}, (8.9)

where H is the Hilbert transform. We stress that the above equations governing the
LOE-WBA requires the Green function, spectral function and scattering matrices at the
Fermi level. In effect, the wide band approximation is that the electronic structure is
slowly varying in the limited energy range of the phonon spectrum. Hence, for systems
with significantly varying density of states around the Fermi level an inclusion of the
changing electronic structure needs to be taken into account.

The LOE approximation improves the WBA by taking into account the change in
electronic structure at the bias threshold of the phonon frequency [139]. Further, the
LOE estimates the conductance above threshold as a constant contribution (linear in
current). The main differences can be outlined schematically in Figure 8.1. The two
electrodes, Left and Right, are shown with the associated applied bias eV . The DOS
spectrum is marked in each of the two electrode regions by the thick black line. LOE-
WBA and LOE are highlighted in different colours and the phonon excitation is shown as
a wiggly line, ~ω. An inelastic conductance contribution for phonon mode λ is constant
for ~ωλ ≥ eV for both LOE-WBA and LOE. For LOE-WBA this contribution is for the
spectral densities evaluated at ε = εF (single line crossing both DOS’s at same energy),
while for LOE it is calculated using the spectral densities at ε = ±eV /2 (different lines in
each electrode). These two methods yields different results as the the DOS may change
drastically, even for low phonon energies. However, the wide band approximation has
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ω
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~ω

Figure 8.1 | Comparison of LOE-WBA and LOE contributions to the density of states
from the two leads. The two methods have their own colour coding. The applied bias
matches the phonon energy ~ω = eV which creates a constant contribution above eV > ~ω
to the inelastic current in both approximations. The LOE-WBA only takes the Fermi level
electronic structure into consideration. LOE takes into account the at threshold DOS from
both the left (initial) state to the right (final) state.

proven sufficiently accurate in many cases. The LOE equations can be written without
the elastic contribution as

ILOE
λ ≈ e

π~

∫ ∞
−∞
dε<Tr

[
G(ε)Σλ(ε)AL(ε)Γ R(ε)

](
nF,L(ε)−nF,R(ε)

)
+

e

h

∑
σ=±

(
coth

~ωλ
2kT

− coth ~ωλ + σeV
2kT

)
× (8.10)∫ ∞

−∞
dεTr

[
MλÃL(ε)M

λAR(εσ )
](
nF,L(ε)−nF,R(ε)

)
where the threshold dependent energies εσ ≈ µR = µL + σ~ωλ are used instead of the
constant Fermi level as in LOE-WBA. The phonon self energy, Σλ, can be found elsewhere
[139].

The inelastic currents are seen as discontinuities in the current which can be under-
stood via a constant DOS model. Here the elastic current I =

T
G is linear plus jumps at

eV = ~ωλ. Hence, dI/dV yields a constant elastic conductance and a step for the inelastic
conductance. A second differential d2I/dV 2 only retains the inelastic contribution as a
peak. The second derivative of the current is commonly known as the inelastic tunnelling
spectroscopy signal (IETS) which may be divided by the conductance, dI/dV , to decouple
strong vs. weak signals via rescaling. In effect, IETS is the strength of the signal. Both the
non-scaled and the scaled are seen in literature [172].

This concludes the theoretical background for the calculations and we turn to an
application of the above equations on graphene.

8.2 Inelastic tunnelling into graphene

Here we present the results from the published articles [168, 171].
Experimental STS measurements on graphene have shown interesting phonon in-

duced features [165, 174]. These features are found for both SiC and SiO2 substrates.
A “giant” phonon induced conductance with a gate dependency was found as seen in
Figure 8.2 from [165]. a) shows the sample setup while b) shows the STS experiment for a
range of gate voltages. Red arrows indicate the Dirac point in the graphene sample which
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a) b)

Figure 8.2 | a) Experimental setup of STS experiment with graphene on SiO2 substrate. b)
STS spectra of gated graphene and inelastic conductance. Each arrow indicates the Dirac
point of graphene and hence an exact doping profile can be mapped out by fitting the VD
dips vs. applied gate bias. Both from [165].

follows the gating via the well-known
√

dependency of the doping. Several explanations
exists which all are based on single phonon models [165, 169, 175]. The explanation can
be thought of as an example of Fermi’s Golden rule, which is an energy conservation rule
of the rate; R ∝ δ(ε − ~ωλ). An electron from the tip has momentum k⊥ corresponding
to an energy of eV . However, the only states available at energies close to the Fermi
level lie at the K (Dirac) point in graphene thus having a high k‖ momentum. Energy
conservation forces the incoming electron to have at least an energy corresponding to
this momentum transfer. An excitation of a phonon at q = ±K with energy eV preserves
energy with q±K = 0 and a momentum transfer is allowed. At q±K the phonon spectrum
has acoustic out-of-plane modes [176] at an energy around ~ωλ = 65meV. The half-width
gap seen in Figure 8.2b corresponds well to this energy. Further the dip features, shown
by arrows, indicate the graphene Dirac point which is probed via the STS spectra for
various gating and bias levels.

We have studied the system using full first-principles calculations, thus calculating
the full phonon spectrum, the electron-phonon couplings and the resulting LOE inelastic
current as explained in the previous section [168, 171]. Our model2 setup can be seen in
Figure 8.3a with the red atoms being the electrodes, left/right/tip with the tip being a
gold chain with attached 4 atom gold tip. The black atoms indicates the region where
the phonon modes are calculated, the green atoms are an extended electrode to allow the
electronic structure to “relax” from the scattering region and is also used together with
the black atoms to calculate the electron-phonon coupling matrix elements, see [172] for
details.

2We use a split DZP basis set, a mesh cutoff of 200Ry, a Monkhorst-Pack k-point mesh of 1× 2× 1 and
the LDA xc-functional [62] to calculate the electronic structure.
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Figure 8.3 | a) Method setup for calculating the first-principle study of inelastic tun-
nelling into graphene. Phonon region (black atoms), electron-phonon coupling region
(black+green), electrodes (red). From [171]. b) At and above threshold, eV = ~ω, LOE adds
a constant inelastic contribution for said phonon. While the LOE′ constantly follows the
chemical potential of the left and estimates the contribution at threshold for all phonons
thus probing the Right DOS.

Further characterisation of this setup is needed. In an STM setup the device is weakly
coupled to the sample, i.e. the tunnelling regime. In this regime the graphene will
retain a constant potential which is equal to the gating level. However, LOE expresses
the spectral functions at ±eV /2 as seen in Figure 8.1. To circumvent this restriction
we adopt an altered scheme as shown in Figure 8.3b. Here the chemical potential in
graphene is constant (Right DOS) and equal to εF,G = εD + eVg with εD being the Dirac
point energy and eVg the gating level. Note that the gating level is a shift for the entire
electronic structure. The tip chemical potential follows the applied bias and equals
εF,T = εF + eV (Left DOS). Resulting in threshold contribution following the graphene
DOS as indicated by LOE′. We remark that this approximation relies on the tip DOS to
be roughly constant in the energy range investigated as the different bias contributions
are from different relative energies. We have checked that the DOS on the tip atom is
approximately constant in a range of 1 eV around the Fermi level.

In Figs. 8.4 we compare experimental measurements with calculated STS spectrum.
The most prominent features are extremely well reproduced; the gap around εF and
the dip features at the Dirac point in graphene. In b) top-right the phonon mode that
dominates the inelastic contribution is shown with the A-B anti-symmetric out-of-plane
displacements indicated by the arrows. For further understanding the different mode
contributions the b) bottom-right plot is an equivalent calculation by taking into account
the full phonon spectrum (full line) and only phonons with energies 60meV to 70meV
(dashed line). A blue-shift and a magnitude increase is seen by including more phonons.
These contributions originates from both lower phononmodes around 40meV and higher
optical (in-plane) phonon modes around 150meV. This blue-shift can at εD = 100meV
lead to an error of 32% when estimating the gating level from the dip feature. These
findings may explain the difference seen in [177].

Being able to fully reproduce the inelastic signal for STS on graphene we proceed
to investigate IETS signals on defected graphene. In this case defects are expected to
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Figure 8.4 | a) Experimental findings from [165]. b) First principle calculations of the
LOE′ calculations which captures all notable features, the tunnelling gap around V = 0 and
the gate dependent Dirac dip. The mode with the largest contribution can be seen in the
top-right figure which is a phonon at K with anti-symmetric out-of-plane displacements.
The bottom-right figure shows the boxed data (full line) together with only phonons in the
range 60meV to 70meV (dashed line) to indicate that this is not only governed by single
phonon excitations. From [171].

lift the q = ±K dependency and a corresponding high elastic signal. Hence the inelastic
signals in the conductance are quenched and IETS is required to capture these effects. In
Figure 8.5 we show the IETS signal for pristine graphene, a buckled Stone-Wales defect
(SW) and a hydrogen terminated edge. For pristine graphene the same spectra is seen for
hollow and bridge sites of the tip. By comparing all other spectra against the pristine
one can find signature features due to the changing environment and, hence, phonon
spectrum. The SW is buckled as a lower energy minimum is found for out-of-plane
buckling [178]. The marked feature (b) of the bond-mode at the SW centre is higher than
the corresponding graphene modes and we expect it to be visible in an experimental
spectrum. The same calculation for the flat SW has a blue-shift of ∼ 5meV which also
confirms the relaxation of the bond-mode with a buckled structure. A signature for
the hydrogen terminated edge has a slight change as the only contributing modes are
in-plane. The in-plane signature mode is fully dependent on the mass of the passivating
specie via mass-scaled electron-phonon couplings. The out-of-plane hydrogen modes
are hardly adding any inelastic signal. RI percentages denote the fractional contribution
from inelastic signals

RI =
dI
dV

∣∣∣∣∣
V=max(~ωλ)

/
dI
dV

∣∣∣∣∣
V=0

. (8.11)

Pristine graphene has RI = 95% due to the V = 0 gap and all others have a significant
elastic contribution lowering RI .

In Figure 8.6 an equivalent analysis has been performed on graphene adsorbents.
We investigate multiple different configurations and species. The hydrogen adsorbent
has been investigated on-top, below, near-by and a graphane dimer which all but below
have a significant high IETS peak corresponding to a hydrogen mode. All defects
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Figure 8.5 | IETS signals for 3 graphene
structures. (a) Pristine graphene scaled by
1/3. (b) Energy minimum buckled Stone-
Wales defect with finger-print signal at
225meV higher than pristine graphene IETS
signals. The corresponding mode is shown
in the right inset. (c) Hydrogen terminated
graphene edge, the hydrogen signal lies in
the graphene phonon energy range but a sig-
nificant hydrogen mode at 170meV is seen.
From [171].

0.1 0.2 0.3 0.4
0

5

10

15

H Dimer (f)

H below (e)

Near H (d)

Ontop H (c)×0.5

SiO2 (b)
×2

Ontop F (a)×2

Bias (V)

IE
T

S
(a

.u
)

(a) RI = 2% (b) 4% (c) 8%

(d) 21% (e) 2% (f) 8%

Figure 8.6 | IETS signals for 6 graphene ad-
sorption defects as noted in the figure. Only
“near H” and SiO2 have a weak graphene
background signal while all others show sig-
natures related to the adsorbent. Remark that
it is possible to decipher the above/below
case of hydrogen. From [171].

are out-of-plane phonons while the near-by IETS is due to an in-plane phonon. The
below case does not have a hydrogen phonon mode that couples to the tip. The IETS
signal of the fluorine defect corresponds well to the mass-scaled hydrogen signal. This
mass-scaling is achieved by dividing with

√
19au/

√
1au ≈ 4.3. Our results indicate a

measurable difference between the hydrogen above/below case which may determine
whether hydrogen is intercalated or adsorbed [179, 180].

IETS measurements of adsorbents and defects exhibit signatures making the method
suitable for determining the local environment. This is so far difficult with STM topogra-
phy maps as it does not differ between species. Also, all defects induce mid-gap states
which greatly increase the elastic conductance which makes IETS difficult. We expect
more detailed IETS measurements to exhibit signatures for different specie environments
and thus usable as finger prints.

In [168] we compared IETS measurements and calculations on nitrogen substituted
graphene. The atomic substitution exhibited an increase in the elastic contribution due
to the broken symmetry, much like the defects shown in Figure 8.5. The calculations
reproduce the gap features which remains a consequence of the Dirac point in graphene.
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8.3 Summary

In this Chapter we have presented the LOE-WBA and LOE methods used to calculate
the inelastic transmission due to electron-phonon coupling. We use the revised LOE
method to reproduce inelastic signals for pristine graphene. To correctly capture the low
DOS regime around the Dirac point one needs to follow the graphene DOS to account
for the drastic change under non-equilibrium. This slight change captures all seen
effects in experimental work and our calculations assert the out-of-plane mode to be
dominant in the inelastic contribution. However, we emphasise the importance of a
wider range of phonons which exhibit a blue-shift and magnitude shift of the IETS
signal. We also presented several inelastic signals for various defects in graphene using
the same approach. Structural defects such as Stone-Wales and hydrogen terminated
graphene. Additionally adatoms, hydrogen, fluorine and SiO2 was investigated. A
generic feature for all defects was that the elastic transmission lifted the momentum
rule, thus drastically increasing the elastic signal. This unfortunately makes IETS
measurements more difficult.

88



Chapter 9

Conclusion & Outlook

9.1 Conclusion

In this thesis we have considered and expanded the non-equilibrium Green function
(NEGF) theory in TranSIESTA. TranSIESTA is a NEGF code based on density functional
theory within SIESTA.

The equations for the NEGF approach were expanded and generalised for generic
Ne ≥ 1 calculations. We emphasised that the complexity of solving Ne > 2 NEGF systems
is primarily governed by the number of different electrode electronic distributions
and secondly by the number of electrodes. A major workload of the NEGF method
is the calculation of the density matrix via two distinct energy integrals, one called
the equilibrium contribution and the other the non-equilibrium contribution. The
equilibrium contribution can be calculated in the complex plane using different methods.
We compared several different methods. In particular the continued fraction method and
the residue theorem with variations. For some cases, the residue theorem converge faster
than the continued fraction while for others it may be reversed. However, the continued
fraction method has the benefit of using a single convergence parameter.

We highlighted the importance of the boundary conditions for NEGF calculations.
The Ne > 2 case was covered as it is a non-trivial task to fully describe the electrostatics.
A simple scheme only forcing the boundary conditions on the electrodes was presented.
This is the simplest form estimating the true electrostatic boundary potential. It was
shown that convergence rate and charge conservation was much improved by using a
more complete electrostatic guess.

Most importantly, the NEGF method is based on inverting a matrix with dimen-
sion equal to the number of basis orbitals in the system. We showed that any Ne ≥ 1
system may be described in a quasi 1D matrix such that an efficient block tridiagonal
matrix inversion algorithm could be used. To reduce the bandwidth of the quasi 1D
matrix several pivoting algorithms were tested and implemented. It was also shown
that the implemented algorithms scaled very efficiently using a hybrid MPI+OpenMP
parallelisation. The parallel fraction using the threading of TranSIESTA is an impressive
95%.

In conjunction with TranSIESTA a post-processing tool, TBtrans has been fully re-
implemented. Several new features have emerged including; very efficient transmission
calculation for extreme scale systems, bias interpolation schemes by interpolating the
Hamiltonian and bond-currents to quantify local currents in nanostructures. For bond-
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currents it is important to consider the entire Brillouin zone when visualising a periodic
system. We also introduced a highly advanced eigenstate transmission projection method.
This can distinguish between conducting and non-conducting localised eigenstates. This
provide a general analysis tool to understand the complexity of transmission pathways
in the view of localised eigenstates.

We implemented and used a gating method to perform investigations on graphene
nanostructures. This gate-model takes into account the charging effects in a capacitor-
like setup which is important when considering low-DOS devices such as graphene
around the Dirac point. The gating model was used on a N -layer graphene (graphite)
and it was shown that the gating effects are non-linear in terms of the screening length
for different number of layers and gating levels. Additionally, a graphene nanoribbon
was studied with NEGF and the gate model. This revealed a peculiar pinning effect which
created an unsymmetric potential drop across a symmetric junction. This was attributed
to a difference in coupling strength due to the difference in DOS arising from gating
and NEGF. This simple understanding was confirmed by both adatom dopants and via
smearing the non-equilibrium DOS that accounts for the difference in coupling strength.
Such an unsymmetric potential drop may be experimentally found using Kelvin Probe
Force Microscopy.

Subsequently, graphene interconnects were studied. We investigated pure graphene
interconnects using a T-junction setup. This setup consisted of 3 electrodes in four
different geometric configurations. An I-V characteristic was carried out in two different
linear bias configurations. The pinning effect seen for the graphene nanoconstriction
was recurring for the T-junction exhibiting a transistor-like effect. However, the relative
difference was only ∼ 5.

Lastly, we reproduced inelastic tunnelling on graphene in an STM setup using first
principles DFT+NEGF theory. This setup included a 3-electrode geometry using the
extended lowest order expansion of the inelastic current. The confident results spurred
a set of predictive IETS signals for various defects in graphene. Both structural defects
and adsorbant defects were considered.

9.2 Outlook

This thesis has contributed to a more elaborate NEGF method enabling Ne ≥ 1 electrode
calculations and gated systems. The importance of the boundary conditions for the
Hartree potential was shown. Future studies may improve on Poisson solvers enabling
other boundary conditions such as Dirichlet or Neumann. This would improve precision
and convergence rate.

A fully N -branched inversion scheme may be implemented to enhance the inversion
algorithm. This algorithm is much like the currently used algorithm in TBtrans. The
block-tri-diagonal matrix may be divided into several quasi-1D blocks orthogonal to each
other and sub-partitions of the matrix inversion may be performed. This abstraction will
reduce memory requirements as well as increase throughput for very complex systems.

By using other Poisson solvers one may also improve the gate method by ensuring
better boundary conditions. This is related to a difficulty in expressing the correct
dipole for multi-layer structures with a gate strictly confined in a region. However, the
models simplicity and usefulness is expected to be of relevance for the community of 2D
materials.

90



Appendix A

Symmetries

Symmetries can be one of the most powerful tools to reduce problems to manageable
sizes. Whenever you find symmetry, use it. In the following no time-dependency is
shown, and it should not be regarded as a dependent variable. The system is assumed
to conserve time reversal symmetry. This means that the solution to the Schrödinger
equation is symmetric in t

Ψ (r, t) and Ψ ∗(r,−t), (A.1)

are both solutions to the Schrödinger equation. Hence B = 0 is assumed.
In this section the k dependence will be explicit and these operators are defined

{·}T , transpose (A.2)

{·}∗ , element wise complex conjugate (A.3)

{·}† ≡ ({·}∗)T , transpose and element wise complex conjugate. (A.4)

The Hamiltonian and overlap matrices are Hermitian matrices and obey the usual k
symmetry

HT
k =H−k (A.5a)

H∗k =H−k (A.5b)

H†k =Hk (A.5c)

the same thing applies for the overlap matrix:

STk = S−k (A.6a)

S∗k = S−k (A.6b)

S†k = Sk (A.6c)

From the above symmetries the sub-matrix symmetries in a Hermitian matrix are

VT
k{i,j} =V−k{j,i} (A.7a)

V∗k{i,j} =V−k{i,j} (A.7b)

V†k{i,j} =Vk{j,i} (A.7c)

The Green function is defined in the usual way (the retarded Green function)

Gk =
[
(E + iη)Sk −Hk

]−1
, (A.8)
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and simultaneously we define the advanced Green function

GA
k =

[
(E − iη)Sk −Hk

]−1
. (A.9)

In the following we set S = I and assume it implicit without loss of generality. The
following symmetries for the Green function applies

GT
k =

[
E + iη −HT

k

]−1
=
[
E + iη −H−k

]−1
=G−k (A.10a)

G∗k =
[
E − iη −H∗k

]−1
=
[
E − iη −H−k

]−1
=GA

−k (A.10b)

G†k =GA
k . (A.10c)

The self energy term can be written in this form

Σk =Vk{1,2}gkVk{2,1} =Vk{1,2}gkV
†
k{1,2}. (A.11)

Symmetries governing the self energies are

ΣT
k =VT

k{2,1}g
T
kV

T
k{1,2} = Σ−k (A.12a)

Σ∗k =V∗k{1,2}g
∗
kV
∗
k{2,1} = ΣA−k (A.12b)

Σ†k =Vk{1,2}g
†
kVk{2,1} = ΣAk (A.12c)

As seen from Eqs. (A.10) the same symmetries applies to the self energy as the Green
function.

An often used quantity is the scattering matrix Γ k which we define as

Γ k = i[Σk −Σ†k], (A.13)

with the following symmetries

Γ T
k = iΣT

k − i
(
Σ†k

)T
= Γ −k (A.14a)

Γ ∗k = −iΣ∗k + i
(
Σ†k

)∗
= Γ −k (A.14b)

Γ †k = −iΣ†k + i
(
Σ†k

)†
= Γ k (A.14c)

which is seen to retain the symmetries of a regular Hermitian matrix.

A.1 Transmission symmetries

Here we apply the symmetries derived above for the Green function transport formalism.
We need the scattering matrices for two electrodes, Γ e,k and Γ e′ ,k.

The transmission for a certain k-point can be written as

Tk,e′→e = Tr
[
Γ e,kGkΓ e′ ,kG

†
k

]
(A.15)

which is the transmission from e′ to e. The last triple product is also known as the
spectral functionAe,k ≡GkΓ e,kG†k. A rule of thumb is that the spectral function in the
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transmission function is the origin of the electron and the remaining scattering matrix is
the absorbing electrode, whence e′→ e. The symmetries ofAe,k are the following

AT
e,k =G†−kΓ e,−kG−k ≡ Ãe,−k, (A.16a)

A∗e,k =G†−kΓ e,−kG−k = Ãe,−k, (A.16b)

A†e,k =Ae,k, (A.16c)

with Ãe,k being the time reversed version ofAe,k.
There are general rules for the trace of a function, i.e. it is invariant under cyclic

permutations and is also invariant if taking the transpose. This means we can do

Tk,e′→e = Tr
[
Γ e,kGkΓ e′ ,kG

†
k

]
= Tr

[
Γ e,kAe′ ,k

]
= Tr

[
Γ e′ ,kÃe,k

]
, (A.17)

Tk,e′→e = Tr
[
Γ e,kAe′ ,k

]T
= Tr

[
Ãe′ ,−kΓ e,−k

]
(A.18)

= Tr
[
Γ e,−kÃe′ ,−k

]
= Tr

[
Γ e′ ,−kAe,−k

]
= T−k,e→e′ , (A.19)

which is the time reversal symmetry argument. We can also take the complex conjugate

Tk,e′→e = Tr
[
Γ e,kAe′ ,k

]∗
= Tr

[
Γ e,−kÃe′ ,−k

]
= T−k,e→e′ , (A.20)

which proves that the transmission is a real quantity.
Further we can calculate the sum of all spectral functions

Ak ≡
∑
e

Ak,e = i
∑
e

Gk

[
Σk,e −Σ†k,e

]
G†k = i

[
Gk −G†k +2iηGkIG

†
k

]
� i[Gk −G†k], (A.21)

where I may be replaced by the overlap matrix if needed. The symmetries forAk are the
general Hermitian symmetries

AT
k = i(G−k −G†−k) =A−k (A.22a)

A∗k = −i(G†−k −G−k) =A−k (A.22b)

A†k =Ak. (A.22c)

Using Eqs. (A.22) we can easily prove that the transmission is symmetric of k. We
will in the following limit ourselves to two electrodes without loss of ambiguity

Tk,e′→e = Tr[Γ e,kGkΓ e′ ,kG
†
k] = Tr[Γ e,kAk]−Tr[Γ e,kAe,k] (A.23)

= iTr
[
Γ e,k(Gk −G†k)

]
−Tr[Γ e,kAe,k] = iTr

[
Γ e,k(Gk −G†k)

]T
−Tr[Γ e,kAe,k]

T

(A.24)

= iTr
[
Γ e,−k(G−k −G†−k)

]
−Tr[Γ e,−kAe,−k] = T−k,e′→e. (A.25)

In effect one only needs to calculate the transmission for one k point and consequently
the transmission for −k is known.
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BTD Pivoting

This chapter further expands on the different pivoting algorithms in TranSIESTA. The
structure we study is shown in Figure B.1 and is equivalent to the system in Figure 4.8.
Note that the initial orbital arrangement can also be seen in Figure 4.8.

The system consists of 2,400 atoms with 9 orbitals per atom, totalling at 21,600
orbitals. The used pivoting algorithms are

CM/rev-CM Cuthill-Mckee [108], “rev” denotes the reverse pivoting which for Cuthill-
Mckee has proven a much better candidate for reducing bandwiths [107]

GPS/rev-GPS Gibbs-Poole-Stockmeyer [109] algorithm for reducing bandwidth. This is
a much more advanced method in that it first finds the periphery of the graph and
creates a permutation matrix to reduce the bandwidth with the periphery points as
end-points. As this has implicit reverse capability very rarely (if ever) should the
reverse algorithm outperform the standard algorithm.

PCG/rev-PCG Peripheral connectivity graph. Based on the periphery end points from
the GPS algorithm the subsequent bandwidth reduction is performed by a sim-
ple connectivity graph starting from the end-point. In this case can the reverse
algorithm outperform the standard PCG.

GGPS/rev-GGPS Generalised Gibbs-Poole-Stockmeyer [110] algorithm for reducing
bandwidth. This is a more complex variant of GPS and does better periphery
analysis, as well as better intermediate analysis on the optimum path chosen for
minimising the bandwidth. This also implicitly has reverse capability and very
rarely (if ever) should the reverse algorithm outperform the standard algorithm.

In Figure B.2 the pivoting algorithms outlined above are shown for the 3-electrode
system. The percentage of the total matrix elements is shown in the top-right while the
lower-left denotes the used pivoting algorithm. The number of elements is reduced to
approximately 16%-17%.

In Figure B.2 the pivoting algorithms outlined above are shown for the 4-electrode
system. Figures are outlined similarly to Figure B.2. The number of elements is reduced
to approximately 13%. The difference between the 3 and 4 electrode system indicates
the difficulty in reducing the bandwidth as the 3-electrode system should have a smaller
bandwidth compared to the 4-electrode because there is a dense block corresponding to
the self-energy of the additional electrode.
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TranSIESTA is implemented such that any custom atomic pivoting scheme may be
used. Hence, one may test other pivoting algorithms on equal footing with the already
implemented methods.

Figure B.1 | System investigated for pivoting algorithms. 3/4 electrodes coloured heavily
and randomised atoms. 2,400 atoms with 9 orbitals per atom, yielding 21,600 orbitals.
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Figure B.2 | Cuthill-Mckee, peripheral connectivity graph, Gibbs-Poole-Stockmeyer and
generalised Gibbs-Poole-Stockmeyer algorithms (top), and the equivalent reverse algo-
rithms (bottom) for the 3-electrode system.
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Figure B.3 | Cuthill-Mckee, peripheral connectivity graph, Gibbs-Poole-Stockmeyer and
generalised Gibbs-Poole-Stockmeyer algorithms (top), and the equivalent reverse algo-
rithms (bottom) for the 4-electrode system.
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Appendix C

Tight-binding calculations

An important feature in TBtrans is the capability of performing large scale tight-binding
transport calculations. To create parameterisations in native TBtrans data format we
have developed a Python1 package called sids

2. The full usage of sids is beyond the
scope of this section.

An example of a transport tight-binding calculation can be seen in the following
code:

#!/usr/bin/env python
import numpy as np
import sids as si

alat = 1.42

# Setup tight−binding parameters
on, r0 = [−0.6 , 1.], 0. # on−site
n1, r1 = [−2.7 , 0.], alat # nearest neighbor
n2, r2 = [−0.2 , 0.], alat*3**.5 # next−nearest
n3, r3 = [−0.18, 0.], alat*2 # next−next−nearest

# Add small distance to remove numerical noise
dR = np.array([r0,r1,r2,r3]) + 0.1

# Define maximum orbital range
C = si.Atom(6, R = dR[−1])
# Create periodic structure
el = si.geom.graphene(alat, C).rotatec(−30).translate([alat/2,alat/2,0])
el.cell[1,1] *= −1 # only for VMD

# Create tight−binding parameter set and save it
si.TightBinding(el).construct(dR, [on,n1,n2,n3]).write(’electrode.nc’)

# Create full electrode and device
el = el.repeat(30, 0)
dev = el.tile(30, 1)
# Remove 1% atoms as defects (set same seed for reproducability)
np.random.seed(13240508)
rem = np.random.randint(len(dev), size=int(len(dev)*0.01/100))

# Reduce and add electrodes
dev = el.append(dev.remove(rem), 1).append(el, 1)

si.TightBinding(dev).construct(dR, [on,n1,n2,n3]).write(’device.nc’)

1Both Python2 and Python3 compliant.
2http://github.com/zerothi/sids
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Appendix C. Tight-binding calculations

The script perform these operations:

1. Initialise needed packages, sids and numpy

2. Create atom with correct orbital range of 3rd nearest neighbour

3. Create electrode of the graphene unit-cell

4. Create tight-binding parameters in a 3rd nearest neighbour model [39, set D]

5. Expand minimal electrode to full device size and remove 1% of the atoms for a
defected system

6. Create tight-binding parameters for full device

To create the following plots one needs the following FDF input file:

# Set device parameters
TBT.TSHS device.nc

# Calculating DOS of electrodes, also calculates bulk transmission of the electrodes
TBT.DOS.Elecs

# Calculate transmission eigenvalues (highest 4)
TBT.T.Eig 4

# Define k−grid [a, b, c] cell directions
%block TBT.k
diag 51 1 1
%endblock

# Electrode setup
TBT.Elecs.Eta 0.001 eV
%block TBT.Elec.Left
TSHS electrode.nc
chemical−potential Left
semi−inf−direction −a2
electrode−position 1
rep−a1 30 # use repetition

%endblock
%block TBT.Elec.Right
TSHS electrode.nc
chemical−potential Right
semi−inf−direction +a2
electrode−position end −1
rep−a1 30 # use repetition

%endblock

To greatly speed up execution time we use the repetition scheme as defined in Eqs. (2.24)
and (3.28).

The system, transmission and first 3 transmission eigenchannels are shown in Fig-
ure C.1. The system examined is shown in a). The electrodes are marked by big red
atoms and k-points are used in the transverse direction. Electrons originate from the
bottom electrode. In b) the transmission for the defected structure is compared against
pristine graphene. Furthermore the eigenchannel transmission is shown. With the
eigenchannel transmission one can track the opening of new channels. New channels
open approximately when the latest eigenchannel reaches 1/2.

This approach shows a generic implementation which can generate custom tight-
binding parameterisations for a highly scalable transport code.
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Figure C.1 | a) Graphene with 1% defects. The electrodes are marked by the large red
atoms. 51 transverse k-points is used in the transport calculation. Note the skewed trans-
port direction aligned with the graphene unit-cell. b) The corresponding transmission of a
3rd nearest neighbour model for the geometry shown compared to pristine graphene (gray).
There are no corrections neighbours to the defects. We also plot the first 3 eigenchannel
transmissions for tracking their increase. They all 3 converge to 1 for high transmissions.
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Abstract
Electron transport through a single C60 molecule on Cu(1 1 1) has been investigated with a
scanning tunnelling microscope in tunnelling and contact ranges. Single-C60 junctions have
been fabricated by establishing a contact between the molecule and the tip, which is reflected
by a down-shift in the lowest unoccupied molecular orbital resonance. These junctions are
stable even at elevated bias voltages enabling conductance measurements at high voltages and
nonlinear conductance spectroscopy in tunnelling and contact ranges. Spectroscopy and first
principles transport calculations clarify the relation between molecular orbital resonances and
the junction conductance. Due to the strong molecule–electrode coupling the simple picture of
electron transport through individual orbitals does not hold.

Keywords: scanning tunnelling microscopy, scanning tunnelling spectroscopy,
single-molecule junction, transport calculation

(Some figures may appear in colour only in the online journal)

1. Introduction

The transport of electrons through atomic-scale contacts
between two electrodes may be interpreted in terms of
transport channels—quantum states extending between the
electrodes—and their transmission probabilities τn [1]. In
calculations, these probabilities vary drastically as a function
of the electron energy [2–5]. Experiments have addressed
the low-bias conductance [2, 6–14] and therefore typically
provided little information on the transport channels and their
τn. Metallic contacts between superconducting leads are a
notable exception. In this case, Andreev reflections have been
used to experimentally determine the τn at low bias [2, 6, 7].
However, experimental data on the variation of τn with the
electron energy E were not reported.

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Molecular junctions are expected to exhibit more and
sharper structure of τn(E) [15]. The energy gap between
occupied and unoccupied states of many molecules used in
contact experiments is of the order of electron volts. As
a result, probing their contributions to the conductance at
contact is difficult. At the required elevated voltages and
correspondingly large currents heating of the junctions occurs
[16–19] and may lead to their destruction [17]. In a previous
break-junction experiment the number of transport channels
in benzene junctions has been determined using shot noise
measurements [20]. To date, hardly any experimental data are
available for highly conductive molecular junctions [20, 21].

Here, we report results from single-molecule contacts to
C60 on Cu(1 1 1). Owing to a C60-induced reconstruction
the contacts are stable enough for conductance spectroscopy
[G(V )] at elevated bias voltages. Conductance resonances
are observed and quantitatively analyzed using first-principles
calculations. As expected, the molecular orbitals leave their

0953-8984/15/015001+06$33.00 1 © 2015 IOP Publishing Ltd Printed in the UK
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footprint on G(V ). However, it turns out that a picture of
parallel transport through individual orbitals is too simple and
only accounts for a fraction of the total conductance.

2. Experiment

Experiments were performed with a scanning tunnelling
microscope (STM) operated at 8 K and in ultrahigh vacuum
with a base pressure of 10−9 Pa. Chemically etched W tips
and Cu(1 1 1) surfaces were cleaned by Ar+ bombardment
and annealing. C60 molecules were sublimated from a Ta
crucible and adsorbed to clean Cu(1 1 1) at room temperature.
After C60 deposition the surface was annealed at 500 K for
10 min. This preparation leads to the formation of well
ordered C60 islands and a reconstruction of the Cu(1 1 1)
surface [22]. To form a single-molecule contact the STM
tip was brought closer towards the center of a molecule and
the current was simultaneously recorded. Before and after
contact experiments STM images and spectra of the differential
conductance (dI/dV ) were recorded to detect tip or molecule
modifications. It turned out that the junctions are stable up to
currents of ≈20 µA at elevated voltages of ≈1 V. Spectroscopy
of dI/dV was performed by modulating the sample voltage
(10 mVrms, 8 kHz) and measuring the current response with a
lock-in amplifier.

3. Theory

To simulate experimental data, tunnelling and contact junctions
were modelled by a tetrahedral Cu tip attached to a 4 × 4
surface unit cell in a 7-layer Cu slab (substrate) and a C60

molecule adsorbed with a C hexagon to an on-top Cu(1 1 1)
site (inset to figure 3(b)). The electronic structure, contact
formation and conductance of the C60 junction were calculated
within density functional theory (DFT) with the generalized
gradient approximation (GGA-PBE) [23] to the exchange-
correlation functional and a 2 ×2 surface k-point sampling. A
localized atomic orbital basis set (SIESTA) [24] as well as a
plane-wave basis set (VASP) [25] were used in order to access
and avoid basis set superposition errors, which are present in
calculations based on the linear combination of atomic orbitals.
A series of calculations were performed in which the tip and the
surface were approached towards each other in steps of 0.1 Å
by decreasing the unit cell dimension in the approach direction.
Relaxations of the tip tetraeder, the C60 molecule, and the two
outermost surface layers were considered in these calculations.
The TRANSIESTA [26] method was then applied to perform
transport calculations of the linear conductance as well as non-
equilibrium calculations of the current–voltage characteristics
for two selected junction configurations in the tunnelling and
contact range.

4. Results and discussion

The inset to figure 1 shows a constant-current STM image from
the interior of a C60 island. Similar to previous observations
from other surfaces [27–30], the molecules exhibit three
protrusions, which are due to the next-to-lowest unoccupied

Figure 1. (a) Conductance of C60 on Cu(1 1 1) in a STM versus
displacement of the tip towards the molecule. Red and black lines
indicate data recorded at sample voltages V = 0.5 V and 1.5 V,
respectively. Dashed lines illustrate the definition of the point of
contact formation and the corresponding conductance Gc. Vertical
lines separate different conductance ranges, namely tunnelling,
transition, and contact. Inset: pseudo-three-dimensional
representation of a constant-current STM image of a C60 monolayer
on Cu(1 1 1) (1.5 V, 100 pA, 6 × 6 nm2). (b) dI/dV and (c) I/V
curves as a function of V acquired at fixed tip heights in the
tunnelling range (grey) and at contact (black). Tip heights were set
by disabling the STM feedback loop at 0.6 V and, respectively,
0.7 nA and 11.6 µA in tunnelling and contact ranges. The small
sharp feature at V = 0 in (c) is a numerical artefact.

molecular orbital (LUMO+1). This orbital is centred at the
three C pentagons that surround a hexagon in the observed
trifoliate way. When the tip is brought closer to a molecule
the conductance varies as displayed in figure 1(a). Tunnelling,
transition and contact ranges are defined using the intersections
of exponential fits to the conductance data (indicated in the
lower curve of figure 1(a)) [31]. The two data sets shown
were recorded at sample voltages V = 0.5 V and 1.5 V and
exhibit different conductances Gc at the transition to contact,
namely ≈0.15 G0 and ≈0.25 G0, respectively.

To relate the bias dependence of the conductance to
the electronic structure of the adsorbed molecule, dI/dV

spectra were acquired at constant tip–sample separations. The
grey and black lines in figure 1(b) show data sets from the
tunnelling and contact ranges, respectively. In the tunnelling
range constant-height dI/dV spectra of C60 can be routinely
recorded over a fairly wide range of bias voltages. At contact,
however, currents on the order of 10 µA flow and the junction
usually becomes unstable at much lower voltages. Owing to
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Figure 2. Contact conductance Gc (black) and tunnelling dI/dV
data (grey) versus sample voltage. Gc has been extracted from
individual conductance-versus-displacement curves (see figure 1(a))
acquired at voltages between −2 V and 1.6 V.

the particular stability of the structures used here, the range
from −0.5 to 0.5 V can be probed. The tunnelling data of
figure 1(b) show a peak centred at ≈100 mV. Previous reports
have shown that it is due to the C60 LUMO [22, 32]. At contact,
a similar peak is observed, albeit broadened and shifted to
≈0 mV. Our calculations (vide infra) reveal a hybridization
of C60 with the tip. It is not clear that the contact data may
simply be interpreted in terms of a density of states of the
junction. Ignoring this issue for the moment, we find that
the differences of the contact spectrum are consistent with the
calculated electronic structure of the junction. Figure 1(c)
shows the conductances G = I/V , which were recorded along
with the dI/dV spectra.

To extend the accessible range of voltages at contact, a
different method was used. Rather than sweeping the voltage
at a fixed tip–molecule distance, the current was recorded
as a function of the tip height while keeping V fixed. The
conductance Gc at contact formation was then extracted as
described above (figure 1). The results are depicted in
figure 2 (black) together with a constant-height tunnelling
dI/dV spectrum (grey). Over the investigated voltage range
−2 V � V � 1.6 V, the contact conductance Gc varies
significantly between 0.07 G0 and 0.26 G0. Moreover, the
maxima at V ≈ 0 V and ≈1.5 V) are close to maxima of
the tunnelling dI/dV data at ≈100 mV (LUMO) and ≈1.3 V
(LUMO+1).

DFT calculations based on the structure shown in the inset
to figure 3(b) were performed to rationalize the experimentally
observed shift of the LUMO resonance to lower energies upon
the tunnelling-to-contact transition. Figure 3 shows the zero-
bias transmission functions calculated with a 9 × 9 surface
k-point sampling. The peak-like structure close to the Fermi
energy (EF) is due to the LUMO resonance, which clearly
shifts towards EF upon decreasing tip–C60 distances and thus
increasing hybridization. According to a Bader charge analysis
based on the VASP calculations [33] a charge of ≈0.4 e
is transferred from the tip to the molecule. For large tip–
molecule distances in the tunnelling range the transmission
function exhibits an approximate exponential variation with

Figure 3. Transmission functions calculated using relaxed
geometries obtained from SIESTA (a) and VASP (b) with
PBE-GGA labelled by the unrelaxed tip–C60 distances measured
from the tip apex atom to the C hexagon plane. Beyond contact
formation at 1.7 Å (unrelaxed distance) the relaxed tip–C60 distance
hardly changes. Instead the tip is progressively compressed in both
SIESTA and VASP calculations. The transmission functions show
the change of the C60 LUMO resonance close to the Fermi energy
(EF) at zero bias during contact formation. A clear lowering of the
resonance energy towards EF is observed (vertical arrows). The
functional form of the transmission versus energy roughly shows an
exponential decrease in magnitude with increasing tip–C60 distance
in the tunnelling range starting from ≈2.7 Å. The inset to (b) shows
the structural model of the junction used in the calculations.

the distance. The contact formation may be observed as
a deviation from this scaling behaviour due to the onset
of chemical interactions leading to a resonance shift and
broadening. Such deviations are indeed present for a tip–
hexagon distance between 2.3 and 2.7 Å with a corresponding
conductance of ≈0.2 G0. According to the experiments the
contact conductance close to zero bias voltage is ≈0.16 G0

(figure 2). For tip–molecule distances at which repulsive
interactions start to deform the tip apex into a flat geometry the
conductance is close to 0.3 G0. At positive energies, starting
from ≈0.4 eV the tail of a second transmission resonance has
been observed in the calculations (figure 3).

Figure 3 compares results using geometries obtained
from SIESTA (figure 3(a)) and VASP PBE-GGA (figure
3(b)) calculations. Both methods lead to virtually identical
evolutions of the energy-dependent transmission functions.
In the SIESTA calculations the tip apex atom is slightly
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Figure 4. Comparison of experimental Gc (grey) and calculated
conductances (black). In the calculations the tip apex atom was
separated by 2 Å from the closest C60 hexagon.

stretched towards the C60 molecule upon approaching the
tip to the surface. Further approach of the tip leads to a
repulsive tip–molecule interaction and deforms the tip apex
towards a flat geometry. Including van der Waals forces in the
VASP calculations [34] (not shown) did not lead to markedly
different conductance behaviour with tip displacement. While
the calculated conductances in the contact range are in
good agreement with the experimentally observed values, the
calculated exponential variation of the conductance with the
tip–molecule distance in the tunnelling range is somewhat
larger than in the experiments. This observation is probably
due to the use of an atomic basis set description of the
tip [35]. In addition, as is evident from figure 1(a) the
slope of conductance-displacement characteristics depends
on the bias voltage both in tunnelling and contact ranges.
Thus, the bias voltage plays a significant role in the effective
tunnelling barrier as well as in the contact formation. This
effect could likewise involve bias voltage-induced atomic
relaxations. In the calculations we neglect the computationally
very demanding bias-induced relaxations but note that these
can lead to significant forces in the contact range [19].

Next, full non-equilibrium calculations based on the
junction geometries obtained from SIESTA were performed.
The resulting bias voltage-dependent conductances at contact
in figure 4 (black) displays much similarity with the
experimental data (grey). A resonance with ≈1 V full width at
half maximum is centred around 0 V. In addition, resonances
are observed in the calculations for negative and positive bias
voltages, which are similar to the experimental results.

Figure 5 shows how these transmission maxima change
with the sample voltage. As expected from the strong C60–
Cu(1 1 1) coupling, the maxima essentially follow the sample
chemical potential, which is defined as −eV/2 with V the
sample voltage. Slight deviations from the evolution of the
sample chemical potential are due to a small coupling between
the molecule and the tip. As exposed in detail next, the notion
of individual molecular states and their identification with
transmission maxima requires some caution due to the strong

Figure 5. Density plot of the transmission function,
T (E, V ) = ∑

n τn(E, V ), for different energies E and voltages V in
the contact range. The energies of the transmission maxima labelled
HOMO, LUMO, and LUMO+1 approximately follow the chemical
potential of the sample −eV/2 (dashed line). Weaker transmission
features are related to tip states and follow the chemical potential of
the tip (+eV/2, dotted line).

molecule–electrode coupling. Allowing only transport via
the highest occupied molecular orbital (HOMO), LUMO, or
LUMO+1 states of the molecular region in the calculation does
indeed warrant this designation. However, the simple picture
of parallel transport via each of these orbitals only accounts
for a fraction of the total transmission, as demonstrated below.

The standard Green function expression [26] for the
elastic transmission, T , reads

T (E) = Tr
[
G(E)�L(E)G†(E)�R(E)

]
, (1)

where G is the retarded Green function matrix and �L/R the
electrode coupling matrices in the full basis set describing
the scattering region. The transmission eigenchannels
τn, with T (E) = ∑

n τn(E) (figure 6(a)) [15], provide
an exact decomposition of the total transmission, but do
typically not show a separation into molecular orbitals. The
dominant transmission eigenchannel (black line in figure 6(a),
transmission probability τ1(E)) closely follows the C60

HOMO, LUMO, and LUMO+1. The single channel giving
rise to the LUMO transmission is due to the coupling of
the rotational symmetric s orbital on the tip around the
Fermi energy. Close to the LUMO+1 energy (≈0.9 eV) three
channels contribute to the conductance.

To test whether transport takes place in parallel via
molecular orbitals of C60 the eigenstates of the molecule-
projected self-consistent Hamiltonian (MPSH) [36] were
calculated, which correspond to the HOMO, LUMO, and
LUMO+1. The coupling matrices in equation (1) were then
projected onto each of these orbitals in order to evaluate
the transmission probability of electrons that enter and exit
the C60 junction via one of these orbitals. The projected
electrode couplings read �α

L/R = Pα�L/RPα , where α is one
of the molecular orbitals and Pα a corresponding projector

4



J. Phys.: Condens. Matter 27 (2015) 015001 N L Schneider et al

Figure 6. (a) Eigenchannel transmissions, τn(E) (n = 1, . . . , 4), at
zero bias for the contact range (tip–C60 distance: 1.9 Å) averaged
over all k points. The dominant transmission channel (black,
transmission probability τ1(E)) closely follows the C60 HOMO,
LUMO, and LUMO+1. Around the energy of the LUMO+1
(≈0.9 eV) three channels contribute to the conductance. (b)
Orbital-projected transmission functions Tα(E) for the C60 HOMO
(green), LUMO (blue) and LUMO+1 (red) resonances evaluated at
the indicated voltages (tip–C60 distance: 1.9 Å, i.e. in the contact
range). Several contributions are observed from each orbital due to
their partial degeneracy. The grey line depicts the sum of all
transmissions,

∑
α Tα(E), while the solid black line is the total

transmission calculated according to equation (1).

for the same subset region. Using �α
L/R in equation (1) the

resulting Tα ,

Tα(E) = Tr
[
G(E)�α

L(E)G†(E)�α
R(E)

]
, (2)

is interpreted as the electron transmission via orbital α.
Therefore, Tα(E) may be used to judge the extent to which
the assignment of individual orbitals to a specific transmission
feature is valid. Figure 6(b) shows the k-averaged transmission
functions Tα(E) for the HOMO (green), LUMO (blue) and the
LUMO+1 (red) at bias voltages of −1.5 V (top), 0 V (middle),

Figure 7. Contributions to LUMO and LUMO+1 transmissions
from diagonal (dashed lines) terms (α = LUMO, LUMO + 1 in
equation (2)), and off-diagonal/mixing (full lines) contributions to
the LUMO, LUMO+1 transmission from nearby orbitals (HOMO,
LUMO, LUMO+1) (equation (3)).

+1.5 V (bottom). The fivefold (threefold) degeneracy of the
HOMO (LUMO, LUMO+1) of the free C60 molecule is partly
lifted for C60 attached to the electrodes. Each degenerate
orbital contributes to the transmission. The sum of all
transmission curves is plotted as a grey line.

It is clear from figure 6(b) that the projected transmissions
of the HOMO, LUMO, and LUMO+1 do indeed follow the
main peaks in the total transmission. The shift of individual
transmission peaks to lower energies with increasing bias
voltage (figure 5) is also visible. However, the projected
transmissions of HOMO, LUMO, LUMO+1 do not add up to
the total transmission (black line in figure 6(b)) in the energy
range where we expect the conductance to take place in these.
Mostly the sum of projected transmissions (grey line) is lower
than the total transmission (black line)4. In figure 6(b) we
have restricted the calculations to the HOMO, LUMO and
LUMO+1. It is necessary to include more molecular orbitals
in the sum to obtain peaks farther from EF. For instance, in
figure 6(b) the total transmission peaks for energies exceeding
1 eV cannot be accounted for by the contributions from
the chosen projected orbitals (grey line) and would require
inclusion of the LUMO+2. For obtaining the full picture
the off-diagonal contributions from different α in equation (2)
must be considered. Electrons enter and exit the molecule via
different orbitals α, α′ and may play a significant role for the
transmission. Due to the strong molecule–electrode coupling
the resonances originating from the molecular orbitals have
weight inside the metal and mix with each other. The terms
that describe the mixing are mainly positive leading to a lower
sum of projected transmission. Occasionally they are negative
which leads to a higher projected transmission at certain
energies. The mixing can be quantified by the corresponding

4 At some energies the sum of projected transmissions occasionally exceeds
the total transmission, which is due to interference phenomena.
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off-diagonal transmission,

Tα,α′(E) = Tr
[
G(E)�α

L(E)G†(E)�α′
R (E)

]
, (3)

where α and α′ are different. In figure 7 we show the
transmission for the LUMO and the LUMO+1 with (full lines)
and without (dashed lines) the mixing with nearby orbitals
including HOMO, LUMO, LUMO+1. Including the mixing
yields a significant contribution and thus mixing between
orbitals due to the strong coupling in the junction plays a
significant role. Thus we conclude that the approximation
of parallel transport through individual C60-states neglects
significant contributions to the conductance.

5. Conclusion

Conductance spectroscopy and first-principles transport
calculations clarify the role molecular orbital resonances play
in determining the conductance of a molecular junction at
contact. A picture of electron transport through individual
orbitals [2, 37] does not hold. Rather, for strong molecule–
electrode couplings mixing of orbitals must be considered for
the correct description of the junction conduction.
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Bürkle M, Cuevas J C and Schön G 2008 New J. Phys.
10 125019

[5] Bilan S, Zotti L A, Pauly F and Cuevas J C 2012 Phys. Rev. B
85 205403

[6] Scheer E, Joyez P, Esteve D, Urbina C and Devoret M H 1997
Phys. Rev. Lett. 78 3535

[7] Naaman O and Dynes R C 2004 Solid State Commun. 129 299

[8] Agraı̈t N, Untiedt C, Rubio-Bollinger G and Vieira S 2002
Phys. Rev. Lett. 88 216803
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[18] Néel N, Kröger J and Berndt R 2011 Nano Lett. 11 3593
[19] Ulstrup S, Frederiksen T and Brandbyge M 2012 Phys. Rev. B

86 245417
[20] Kiguchi M, Tal O, Wohlthat S, Pauly F, Krieger M, Djukic D,

Cuevas J C and van Ruitenbeek J M 2008 Phys. Rev. Lett.
101 046801

[21] Chen W, Widawsky J R, Vázquez H, Schneebeli S T,
Hybertsen M S, Breslow R and Venkataraman L 2011
J. Am. Chem. Soc. 133 17160–3

[22] Pai W W et al 2010 Phys. Rev. Lett. 104 036103
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.

77 3865
[24] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J,

Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens.
Matter 14 2745

[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K

2002 Phys. Rev. B 65 165401
[27] Abel M, Dimitriev A, Fasel R, Lin N, Barth J V and Kern K

2003 Phys. Rev. B 67 245407
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[31] Kröger J, Néel N and Limot L 2008 J. Phys.: Condens. Matter

20 223001
[32] Wang L L and Cheng H P 2004 Phys. Rev. B 69 045404
[33] Sanville E, Tang W and Henkelman G 2009 J. Phys.:

Condens. Matter 21 084204
[34] Grimme S 2006 J. Comput. Chem. 27 1787
[35] Garcia-Lekue A and Wang L W 2010 Phys. Rev. B 82 035410
[36] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P

2003 Comput. Mater. Sci. 27 151–60
[37] Cuevas J C, Yeyati A L and Martı́n-Rodero A 1998 Phys. Rev.

Lett. 80 1066

6



RAPID COMMUNICATIONS

PHYSICAL REVIEW B 91, 121403(R) (2015)

Unravelling the role of inelastic tunneling into pristine and defected graphene

Mattias L. N. Palsgaard, Nick P. Andersen, and Mads Brandbyge*

Center for Nanostructured Graphene, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads,
Building 345E, DK-2800 Kongens Lyngby, Denmark

(Received 11 October 2014; revised manuscript received 17 February 2015; published 5 March 2015)

We present a first principles method for calculating the inelastic electron tunneling spectroscopy (IETS) on
gated graphene. We reproduce experiments on pristine graphene and point out the importance of including
several phonon modes to correctly estimate the local doping from IETS. We demonstrate how the IETS of typical
imperfections in graphene can yield characteristic fingerprints revealing, e.g., adsorbate species or local buckling.
Our results show how care is needed when interpreting scanning tunneling microscopy images of defects due to
suppression of the elastic tunneling on graphene.

DOI: 10.1103/PhysRevB.91.121403 PACS number(s): 63.22.Rc, 63.20.dk, 68.37.Ef, 72.10.Di

Imperfections such as lattice defects, edges, and impu-
rity/dopant atoms can degrade the superb transport properties
of graphene [1–4], or may, if controlled, lead to new function-
ality [5]. Scanning tunneling microscopy and spectroscopy
(STM/STS) have been used extensively to obtain insights into
the local electronic structure of graphene with atomic resolu-
tion [6–10]. However, contrary to most STM/STS experiments
where elastic tunneling plays the dominant role, for graphene
the inelastic tunneling prevails. This was clearly demonstrated
experimentally as a “giant” signal in the second derivative
of the current with regard to voltage obtained in inelastic
electron tunneling spectroscopy (IETS) performed on gated,
pristine graphene with STM [6–8]. The pronounced inelastic
features are rooted in the electronic structure of graphene. The
electrons have to enter the Dirac points corresponding to a
finite in-plane momentum leading to weak elastic tunneling.
The IETS signal of pristine graphene has been reproduced
qualitatively by Wehling et al. by considering the change
in the wave-function decay when displacing the carbon
atoms along a selected frozen zone-boundary out-of-plane
phonon [11]. In general, the important role of the inelastic
process complicates the interpretation of STM results on
graphene. Ideally, STM images on graphene structures should
be accompanied by local STS/IETS measurements, in order to
distinguish between contributions from the inelastic and elastic
channel. On the other hand, first principles calculations based
on density functional theory (DFT) often provide essential
unbiased insights into STM/STS/IETS experiments to help
the interpretation.

In this Rapid Communication we present a method for DFT
calculations of the STS/IETS on gated graphene. We demon-
strate its predictive power by reproducing from first principles
the features of the experimental results for the giant inelastic
conductance of gated pristine graphene [6–8]. We then provide
results for IETS signals of defected graphene systems by
determining the relative impact on the current of the various
phonon modes. In particular, we identify inelastic fingerprints
of selected defects, suggesting that IETS measurements can be
a powerful tool in the characterization of imperfect graphene.
Our analysis also illustrates how one should keep in mind

*mads.brandbyge@nanotech.dtu.dk

the in-plane momentum conservation when performing STM
on graphene. In particular, we demonstrate how defects can
locally lift the suppression of elastic tunneling. The resulting
increased local conductance may be misinterpreted as a high
local density of states (LDOS).

Method. The calculations are performed with DFT using the
SIESTA/TRANSIESTA [12,13] code and the INELASTICA package
for inelastic transport [14]. Our system, shown in Fig. 1,
is divided into a top lead (source), device and sample lead
(drain) following the standard transport setup [13–15]. We
consider a suspended graphene sheet located 5 Å below the
tip of a gold STM probe model and a voltage bias between
the tip and sample leads. The electron-phonon coupling (Mλ)
is calculated in the coupling region (green+black atoms in
Fig. 1) of phonon modes (index λ) calculated in a dynamical
region (black atoms) as described in Ref. [14]. Floating orbitals
are included between the STM tip and the graphene sample,
to give a better description of the vacuum [16].

Following the lowest order expansion (LOE) [17], sim-
plified and efficient expressions for the IETS signals can
be derived under the assumption of weak electron-phonon
coupling. The LOE expressions involve just the evaluation
of the spectral density matrices for states coming from
the tip/sample, AT/S(ε), at a discrete number of chemical
potentials, ε = μT ,μS , corresponding to the threshold voltage
bias (Vb) for excitation of a given phonon (λ), |μT − μS | =
�ωλ. Thus the LOE expression does not per se reflect changes
in the DOS above the phonon excitation threshold. However,
in the context of STS on gated graphene, this is highly
relevant since the DOS behavior leads to a distinct dip in the
differential conductance at a specific applied voltage, Vb = VD

[6], enabling a determination of the local chemical potential
of graphene.

In order to encompass this important variation in the DOS
above threshold we make the following observations (see also
Fig. 2). The expressions for the current which gives rise to
inelastic signals have a Fermi’s golden-rule-like form at low
temperature,

Ii ≈ e

�
� (e|Vb| − �ωλ)

×
∫ μT

μS±�ωλ

dε Tr
[
MλÃT (ε)MλAS(ε ∓ �ωλ)

]
, (1)

1098-0121/2015/91(12)/121403(5) 121403-1 ©2015 American Physical Society
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FIG. 1. (Color online) The system setup with semi-infinite leads
(red), device region (green), dynamic region (black), and periodic
boundary conditions along the dashed lines.

for Vb ≷ 0, where � is the Heaviside step function and ÃT is
the time reversed AT . Above threshold (|Vb| > �ωλ) the step
behavior is unimportant and we are left with the bias behavior
of the integral. For finite bias the states in the device, that
is, the spectral functions, change with Vb. However, in this
STM setup, the device is strongly coupled to the sample lead
and very weakly coupled to the tip lead. Consequently, the
potential in the device is pinned to that of the sample lead,
which is the Fermi level εF of graphene. The DOS of the gold
STM probe varies slowly with regard to energy. Thus the only
important voltage dependent term in Eq. (1) is the tip chemical
potential defined by μT = εF + eVb, with μS = εF , yielding
the differential conductance expression

∂Vb
Ii ≈ γλ∂Vb

Isym, (2)

where

γλ = Tr
[
MλÃT (eVb + εF )MλAS(eVb + εF ∓ �ωλ)

]
, (3)

for Vb ≷ 0, and Isym is a temperature broadened version of
the step function in Eq. (1) [14]. Equation (2) is equivalent to
the usual LOE expression but valid above threshold due to the
constant tip DOS. The same argument can be applied to the

dVb
ε

Vb μT − ωλ

μT

ωλ

εF

Tip DOS Sample DOS

FIG. 2. (Color online) Energy diagram showing the important
(green) contributions of the tip/sample DOS when calculating the
differential conductance for Vb > �ωλ.
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FIG. 3. (Color online) (a) Calculated STS spectra of pristine
graphene at different Fermi levels. (b) Out-of-plane acoustic graphene
phonon. (c) Closeup of the dip at VD for εF = −0.25 eV, when
including only phonons in the 0–400 meV (solid) and 60–70 meV
(dashed) energy range.

other terms in LOE. See supplemental material [18] for details
of the calculation used, to obtain STS spectra.

Results—pristine graphene. Calculated STS spectra on
pristine graphene for a number of different applied gate
voltages (Fermi levels) are shown in Fig. 3(a). The gap feature
around Vb = 0 of width 0.13 V is reproduced in detail and
the dip at VD , caused by inelastic tunneling into the charge
neutrality point of graphene, appears outside the gap, as seen
in experiments [6–8]. As the gate is applied, VD moves across
the spectrum, changing polarity, while the position and width
of the gap feature is stable.

Most major steps in differential conductance come from
acoustic out-of-plane phonons at energies just below 67 meV
[19]. In particular, the mode shown in Fig. 3(b) gives a
large contribution. However, we find that acoustic out-of-plane
graphene phonons with energies as low as 42 meV give
considerable contributions as well. We also find important
inelastic signals from optical graphene phonons at energies
above 67 meV. The additional features away from 67 mV
make up about half the signal, and have not been included
in previous studies [11]. If we restrict our calculations to
phonons in the 60–70 meV range, we obtain a 15 mV change
in VD [see Fig. 3(c)] and changes in both the width and
height of the inelastic gap. The change in VD is caused
mostly by the experimentally observed [8] inelastic signal
near 150 mV, coming from the optical in-plane modes, and
occurs for |VD| > 150 mV. In STS experiments VD is used to
extract the energy position of the charge neutrality point from
ED = e|VD| − �ω0, where �ω0 = 63 meV is half the width of
the gap feature which corresponds to the energy of an acoustic
out-of-plane graphene phonon [6,7]. The change in VD could
explain why all points with |ED| < 100 meV in the ED versus
gate voltage plot of Ref. [7] fall below the fitted line. The local
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FIG. 4. (Color online) IETS as a function of bias for pristine
graphene, a Stone-Wales defect, and a hydrogen passivated armchair
edge (geometries shown above the plot). The blue marker indicates
characteristic signals. The fraction of differential conductance coming
from the inelastic channel (RI ) is shown above the geometries.

charge-carrier density (n) of graphene is also extracted from
VD in STS experiments [7,9,10]. Mistaking ED = 100 meV
for ED = 115 meV results in a 32% error in n. To capture
these experimental details one must include several phonons,
and account for their impact in an ab initio manner.

Encouraged by the agreement for pristine graphene, we
next predict the inelastic signals from various defects to shed
light on what information can be obtained from STM-IETS.

Results—structurally defected graphene. In Fig. 4 we show
the calculated IETS spectra from an on-top position in pristine
graphene [Fig. 4(a)], directly above a Stone-Wales defect
(SW) [Fig. 4(b)], and above a passivated armchair edge [Fig.
4(c)]. The result shown for pristine graphene is the same at
hollow sites and bridge sites. The gap feature shows up as
giant peaks in the IETS below 100 mV for pristine graphene.
The signals from in-plane graphene phonons are also seen
at 150 mV and above. We find that the low voltage IETS
above a SW are very similar to that of pristine graphene.
Gap like features have also been observed experimentally
for regions with heptagon-pentagon defects [20]. However,
a characteristic signal can be seen at Vb = 223 mV bias, above
any of the pristine graphene phonon bands which can be traced
to the high-frequency stretch mode localized at the twisted C-C
bond shown in Fig. 4.

Ignoring the out-of-plane buckling introduced to the
graphene sheet near a SW, and calculating the IETS for a flat
SW system, leads to a 5 mV blueshift of the signal from the
twisted C-C bond, as previously proposed [21]. Furthermore,
signals from in-plane modes at 150 mV in Fig. 4(b) generally
become weaker in the flat system, indicating a weaker coupling
of these modes to the out-of-plane current. We also see strong
signals at low bias. These signals are caused by low-frequency
sinelike out-of-plane modes. These modes couple strongly to
the current because they break the mirror symmetry across the
twisted C-C bond. In the buckled system, this symmetry is
inherently broken, leading to an increase in elastic tunneling.
Measuring strong low bias inelastic signals and a 228 mV
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FIG. 5. (Color online) IETS as a function of bias voltage, for
various adsorbates on graphene (geometries shown above the plot).
Fingerprints for each adsorbate are marked and the phonon shown.
The fraction of differential conductance coming from the inelastic
channel (RI ) is shown above the geometries.

signal above a SW therefore indicates that it is in a metastable
flat configuration, whereas increased elastic transmission and
a 223 mV signal is a sign of local buckling. Above a passivated
armchair edge, a dip in IETS is seen at Vb = 168 mV, which is
caused by a collective transverse mode of the hydrogen atoms
shown in Fig. 4. Changing the mass of the passivating agent to
that of fluor, we observe a corresponding change in the position
of the inelastic signals. This indicates that IETS can be used
to obtain knowledge of graphene edge passivation.

Results—adsorbates on graphene. In Fig. 5 we show IETS
spectra from a range of different covalently bonded impurities.
For all systems, delocalized in-plane graphene modes cause
signals around 200 mV. In Fig. 5(a) a clear inelastic signal
from the longitudinal mode of a fluor adsorbate is seen at 95
mV. Above a hydrogen adsorbate, we see a strong inelastic
peak at 332 mV caused by the stretch mode of the C-H
bond [see Fig. 5(c)]. This signal serves as a fingerprint for
a hydrogen impurity above the graphene sheet as opposed to
below where the signal disappears, as can be seen in Fig. 5(e).
The corresponding STS spectra show a strong zero-energy
peak [22]; this behavior is, however, expected for all covalently
bonded impurities [23], above or below the sheet, and therefore
cannot be used as a fingerprint.

The STS spectra on the hydrogenated system with the
probe above a carbon atom 4.25 Å laterally away from the
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impurity in Fig. 5(d) show additional signals. The graphene
out-of-plane phonon signals reappear and a signal is also
seen at 134 mV, caused by a transverse mode of the C-H
bond. Above a graphanelike hydrogen dimer [Fig. 5(f)] the
signal caused by the C-H bond stretch mode is seen, however,
here it is caused by two degenerate modes and blueshifted by
11–16 mV, indicating a lower energy configuration.

Common for all the imperfect systems is that the gap
seen in pristine graphene is quenched and considerable elastic
tunneling is seen, as indicated by the severe reduction of the
inelastic conductance ratio (RI ) in Figs. 4 and 5. Out-of-plane
corrugations in the graphene sheet can lift the suppression
of elastic tunneling if they are on the same length scale as
the graphene lattice constant [11]. Our results indicate that
defects can also lift the suppression locally. This is because
the selection rules causing the suppression in pristine graphene
are a result of the translational symmetry of the crystal lattice.
When this symmetry is broken, the suppression is lifted and the
elastic tunneling dominates. The expected order of magnitude
change in tunneling conductance should lead to bright spots
in STM topographies. In the case of granular chemical vapor
deposited (CVD) graphene, protruding grain boundaries are
often attributed to localized electronic states [20]. Our results
here point out that one may expect increased tunneling near
disordered areas of graphene, even if no localized electronic
states are present and the area is completely flat. As seen in
Figs. 5(b) and 5(e), this is also the case for strong interactions

with a SiO2 substrate or hydrogen sitting below the graphene
sheet, which should therefore be visible as protruding from the
graphene sheet.

In summary, we have presented a first principles method
and used it for calculations of IETS and STS spectra of
pristine and defected graphene. We showed how measured
STS spectra on pristine gated graphene can be reproduced
in detail as a function of gating. The inclusion of several
phonons had a strong impact on all aspects of the STS
spectrum of pristine graphene. In particular, we found that
including optical in-plane phonons changed the VD value
for certain gate voltages. This is of importance for studies
where IETS is used to probe the local doping of graphene
[7,9,10] where it may lead to a significant overestimation of
the local charge inhomogeneity. We predicted the IETS of
typical imperfections in graphene, and demonstrated how these
can yield characteristic fingerprints revealing, e.g., adsorbate
species or local buckling. Additional elastic contributions
above defects should make them protrude in STM regardless of
the actual geometric or electronic structure, and care is needed
when interpreting STM images.
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Giant tunnel-electron injection in nitrogen-doped graphene
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Scanning tunneling microscopy experiments have been performed to measure the local electron injection in
nitrogen-doped graphene on SiC(0001̄) and were successfully compared to ab initio calculations. In graphene,
a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling channel. At nitrogen
sites, this feature vanishes due to an increase of the elastic channel that is allowed because of symmetry breaking
induced by the nitrogen atoms. A large conductance enhancement by a factor of up to 500 was measured at the
Fermi level by comparing local spectroscopy at nitrogen sites and at carbon sites. Nitrogen doping can therefore
be proposed as a way to improve tunnel-electron injection in graphene.

DOI: 10.1103/PhysRevB.91.125442 PACS number(s): 73.22.Pr, 63.22.Rc, 68.37.Ef

The exploitation of the electronic properties of graphene
allows us to envision the development of new electronics
based on carbon materials [1–3]. Due to the particular band
structure of graphene, low-energy electronic states, driving
the current in transport devices, are only available at the
large parallel momentum (k‖) K and K ′ points in graphene.
As a consequence, perpendicular tunneling of electrons into
a graphene sheet is quenched at low bias voltage due to
the competing large k‖ momentum conservation and the
exponentially decaying tunneling probability with increasing
k‖. Scanning tunneling microscopy (STM) experiments on
graphene on SiO2 have revealed that above 63 mV an inelastic
channel corresponding to the excitation of an out-of-plane
phonon is opened, which enhances substantially the tunneling
current [4]. A gaplike feature in the dI/dV spectroscopy is
therefore observed around the Fermi level EF [4–8]. Inter-
estingly, the same feature has been measured in spin devices
using magnetic tunnel junctions [9] where magnetoresistance
measurements were performed at bias voltages larger than
the gap feature. Using a large bias in such devices can be
a limitation as the magnetoresistance signal decreases with
the bias voltage. Therefore, enhancing the electron injection
at low energy in graphene turns out to be a cornerstone for
improving the performances of graphene-based electronic and
spintronic devices. As the quenching of electron injection is
due to the momentum conservation of electrons imposed by
the symmetry of the graphene sheet, breaking the symmetry of
the system can lead to an enhancement of electron injection.
In that respect, introducing atomic defects is a promising
strategy to restore an elastic channel for vertical injection

*jerome.lagoute@univ-paris-diderot.fr
†Present address: Université de Pau et des Pays de l’Adour, IPREM

- ECP CNRS UMR 5254, technopole hélioparc, 2 av. du Président
Angot, 64053 Pau Cedex 09, France.

in graphene. The nitrogen doping of graphene obtained by
substitution of nitrogen atoms for carbon atoms is a suitable
route to achieve well-controlled and well-characterized point
defects with limited atomic relaxation [6–8] while preserving
the band structure of graphene. At the atomic level, nitrogen
doping induces a redistribution of the electron density on one
sublattice and a localized resonance at nitrogen sites [8] that
have been widely studied theoretically [10]. In this paper, we
perform scanning tunneling spectroscopy (STS) experiments
to study the local electron injection in nitrogen-doped graphene
on SiC(0001̄). dI/dV and tunneling current decay length
spectra reveal that below the out-of-plane phonon energy,
elastic tunneling is allowed at nitrogen sites leading to a large
enhancement of the electron injection by a factor of up to
500 close to zero bias. This interpretation is supported by
first-principle calculations and well explained by a simple
analytical model. Our findings allow us to propose nitrogen
doping of graphene as an efficient way to improve electron
injection in graphene without altering its band structure.

The graphene sample was grown by the confinement control
sublimation (CCS) method on SiC(0001̄) [11]. It consists
of about five non-Bernal stacked layers on top of SiC. The
postsynthesis doping was achieved in an ultrahigh-vacuum
(UHV) chamber by exposing the sample during 30 mn to
a nitrogen radical flux produced by a remote (∼30 cm) RF
plasma source (MPD21 from Oxford Applied Research [12])
fed with N2 (purity 99.999%) [8]. The scanning tunneling
experiments were performed with a UHV Low-Temperature
STM (4.2 K) from Omicron GmbH using electrochemically
etched tungsten tips. dI/dV spectra were acquired with a
lock-in detector at 710 Hz and a modulation amplitude of
24 mV. Prior to spectroscopic measurement on graphene the
STM tip was calibrated on a Au(111) substrate by applying
voltage pulses until the dI/dV spectrum shows the onset of
the Shockley surface state. This procedure is necessary to
obtain reliable spectra as it was mentioned by Zhang et al. [4].

1098-0121/2015/91(12)/125442(5) 125442-1 ©2015 American Physical Society
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FIG. 1. (Color online) (a) dI/dV spectra measured above
graphene far from the nitrogen atoms (blue) and above a nitrogen
atom (red). The spectrum in inset is a zoom at low bias voltages of the
spectra. The image in inset is a 2 × 2 nm2 image of the nitrogen atom
where the measurement was performed. (b) dI/dV spectra around EF

on carbon (blue) and nitrogen (red) sites measured in constant height
mode conditions prior to the spectroscopy measurement (110 pA at
100 mV above graphene carbon area).

After synthesis and doping, the sample was transported in the
atmosphere and outgassed in UHV at ∼800 ◦C before the STM
measurements.

Nitrogen atoms substituted to carbon atoms (graphitic
nitrogen) in graphene on SiC(0001̄) appear in the STM images
as bright spots with a triangular shape [bottom right inset
in Fig. 1(a)]. This can be attributed to a combination of
charge transfer between the nitrogen and the three neighboring
carbon atoms [8] and the opening of the elastic channel as
shown in the following. The dI/dV spectrum in Fig. 1(a)
measured on graphene far from the nitrogen atoms reveals
a gaplike feature of 130 mV around EF . This feature has
been attributed to the inelastic excitation of an out-of-plane
phonon [4]. Indeed, momentum conservation in the tunneling
process imposes a large in-plane momentum k‖ for electrons
tunneling to graphene where the only available states are at the
K points. However, above a threshold voltage corresponding
to the energy of an out-of-plane graphene phonon, an inelastic
tunneling channel is opened, which leads to a large increase
of the tunneling current. In the dI/dV spectrum this inelastic
excitation appears as two onsets symmetric with respect to
EF at the energy of the phonon. The spectrum measured
above a nitrogen atom is totally different [Fig. 1(a)]. The
inelastic signal almost disappears, only fainted onsets can
be seen [top inset in Fig. 1(a)]. This is indicative of a
strong decrease of the inelastic/elastic transmission ratio. A
quantitative comparison of the conductance at nitrogen and
carbon sites cannot be obtained from the curve in Fig. 1(a)
as these spectra were measured with a constant current
condition before measurement (U = 1V,I = 500 pA). Indeed
the nitrogen atoms lie in the graphene plane as it was suggested
by voltage-dependent STM measurements [8] and confirmed
by ab initio calculations on monolayer [13] and bilayer [14,15]
graphene. Electronic effects lead to an apparent height of about
1 Å, the tip-sample distance is larger above the nitrogen atom
than above graphene. In order to quantitatively compare the
conductance at carbon and nitrogen sites, spectra have to be
measured with the same tip-sample distance (constant height
mode). Such data are displayed in Fig. 1(b). The measurements
obtained with the same tip-sample separation reveal a huge

(a) (c)

(b) (d)

FIG. 2. (Color online) (a) Current image measured at 1.3 mV in
constant height mode (4 × 2.4 nm2, 12 pA at 100 mV above graphene
carbon area) on which STS measurements have been performed at
each point. (b) Two-dimensional (2D) map representing the spectra
measured along the line shown in (a). (c) Conductance map measured
in constant current mode at 2.5 mV (12 × 6 nm2). The marks N and
N1−3 indicate one single substitutional nitrogen atom, and a nitrogen
pair with two nitrogens in second neighbor position. (d) Spectra
measured on a pair of nitrogen atoms in second neighbor positions.
The black curve was measured on the graphene area far from nitrogen
atoms, the color curves were measured at the positions marked by
the cross in the inset that is a zoom of (c) corresponding to the
nitrogen pair.

increase of dI/dV above nitrogen. At EF the conductance at
the Fermi level above a nitrogen atom is 70 times larger than
on the graphene sheet revealing a very large enhancement of
electron injection at nitrogen sites.

The increase of conductance above nitrogen atoms was
systematically observed as shown in Fig. 2. Figure 2(a)
displays the current image measured in constant height mode
on an area with two nitrogen atoms. Figure 2(b) shows the
evolution of the spectra along a line crossing a nitrogen atom
[cf. dotted line of Fig. 2(a)] revealing the increase of the dI/dV

signal above nitrogen over a distance characterized by a full
width at half maximum of 5 Å. This extent corresponds to
the typical size of the triangular pattern associated with a
nitrogen atom in the STM images. Such a spatial extension
also corresponds to the variation of the potential around a
nitrogen atom [10]. The ratio between the conductance at the
Fermi level above graphene (0.017 nS) and above nitrogen
(9.15 nS) in Fig. 2 is about 500, which is larger than the
above-mentioned measure (ratio of 70). As will be discussed
below, we attribute this difference to the tip-sample distance
that is larger in the second case, which increases the ratio of
conductance between nitrogen and graphene. In Fig. 2(c) we
show a conductance map measured in constant current mode
at 2.5 mV. Although this mode reduces the contrast, it allows
us to obtain more details along the whole image. This image
shows again that the conductance is stronger above the nitrogen
atoms confirming that the phonon gap feature vanishes above
nitrogen as previously observed in the spectrum of Fig. 1(a).
Interestingly, on a nitrogen pair identified as two nitrogen

125442-2



GIANT TUNNEL-ELECTRON INJECTION IN NITROGEN- . . . PHYSICAL REVIEW B 91, 125442 (2015)

-0.4 -0.2 0 0.2 0.4
Bias (V)

0.2

0.3

0.4

0.5 Au(111)

Nitrogen

Graphene

(a) (b)

0.540.10

(A)°

(A
)°

FIG. 3. (Color online) (a) Voltage dependent current decay
length λ measured on a reference Au(111) sample (black), N-doped
graphene carbon area (blue) and above a graphitic nitrogen atom
in graphene (red). (b) λ mapping at 20 mV extracted from spectra
measured at each point of the topographic image shown in the inset
(10 × 10 nm2, U = 0.1 V, I = 500 pA).

atoms in second neighbor positions, a strong contrast with
atomic resolution is clearly observed in the dI/dV map.
The spectra in Fig. 2(d) measured on the nitrogen atoms and
between the nitrogen atoms of this pair clearly reveal that
although the inelastic feature is almost suppressed above the
nitrogen atoms, it is unaffected at the central position between
the N atoms. This is in line with previously reported data
showing that the inelastic feature is observed at the center of a
nitrogen pair [7].

Details on the tunneling mechanism at nitrogen sites can be
obtained by measuring the voltage-dependent current decay
length λ as discussed for undoped graphene on SiO2 [4]. In
that case, the decay length inside and outside the phonon gap
has been measured to be 0.25 Å and 0.5 Å respectively [4] by
fitting, at different bias voltages, the I (z) curves with the func-
tion I = exp(−z/λ). Here we performed a continuous voltage-
dependent measure of λ using a lock-in technique. A sinusoidal
modulation at 715 Hz with an amplitude of 0.06 Å was applied
to the piezo z signal. A lock-in detection was used to record the
corresponding current response allowing to measure the dI/dz

signal. The measures were performed with a closed feedback
loop in order to keep the current constant during the spectrum
and obtain a signal directly proportional to 1/λ. After dividing
by the mean value of the current we obtain the λ(V ) curve.
The resulting spectra are shown in Fig. 3(a). The λ(V ) curve
measured above graphene looks similar to previously reported
λ(V ) curves obtained by fitting I versus z measurements [4].
We obtain λ values ∼0.18 Å inside the phonon gap and 0.42
Å outside the phonon gap. As a reference we have measured
the λ(V ) curve on a Au(111) with the same tip just before
measuring on the graphene sample. The corresponding curve
shows the expected value of 0.45 Å for λ independent of the
voltage. Above a nitrogen atom, the λ(V ) curve obtained is in
strong contrast with the one measured on graphene. The λ(V )
curve above nitrogen is similar to the one measured on Au(111)
suggesting that the transport is dominated by elastic tunneling.
A slight phonon feature is nevertheless observable with a much
weaker amplitude (0.42 Å in the gap, 0.44 Å outside the gap).
The use of the lock-in technique allows us to perform a system-
atic measure of local λ(V ) spectra at each point of an image
and to extract a λ mapping at any bias voltage. An example of
such an image is displayed in Fig. 3(b) showing a λ mapping at
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FIG. 4. (Color online) (a) Calculated dI/dV spectra above pris-
tine graphene (blue) and a nitrogen (red) with (solid) and without
(dotted) electron-phonon coupling. The spectrum in inset is a close-up
of the inelastic conductance steps near EF on a single nitrogen
(red) and at the center of a nitrogen dimer (black) in graphene.
(b) Calculated constant height dI/dV spectra around EF on pristine
graphene (blue) and a nitrogen (red) sites. (c) Resonant scattering state
of the nitrogen dimer blue/red indicates positive/negative isovalues.
(d) Out-of-plane phonon that mediates tunneling into the scattering
state of (c).

20 mV measured simultaneously with the image shown in the
inset. This mapping shows a uniform value of λ on the carbon
areas of around ∼0.2 Å and a clear larger value on nitrogen
atoms of ∼0.4 Å. A consequence of the different decreasing
lengths at nitrogen and carbon sites is that the conductance
ratio between these sites is expected to be distance dependent.
Indeed this ratio is expected to increase with the tip-sample
distance z according to the quantity exp[z(1/λC − 1/λN )]
where λC and λN are the decreasing lengths at EF above carbon
and nitrogen sites respectively. This allows us to understand
the different dI/dV ratios measured to be 70 in Fig. 1(b) and
500 in Fig. 2(b). In these measurements, the current above the
graphene area at a reference bias of 100 mV is I1 = 110 pA
in the Fig. 1(b) and I2 = 12 pA in the Fig. 2(b). This means
that the tip-sample distance in the two measurements varies
by �z(V ) = λC(V )ln( I1

I2
) = 0.55 Å [using λC(V ) = 0.25 Å

for V = 100 mV]. The ratios of conductance are therefore
expected to vary by a factor of 5.7 (with λC = 0.18 Å and
λN = 0.42 Å at the Fermi level), which is close to the
ratio 500/70.

Using the DFT-NEGF method and setup described in
Ref. [16],1 dI/dV spectra including vibrational effects were
calculated directly above a nitrogen dopant in graphene and
above pristine graphene. For all calculations shown we use
a tip-to-sample distance of d = 5 Å since tunneling at larger

1We use a split DZP basis set, a mesh cutoff of 200 Ry, a
Monkhorst-Pack k-point mesh of 1 × 2 × 1 and the Ceperley-Alder
LDA functional [22] to calculate the electronic structure. Supercell
dimension and ky of 27 × 12.8 Å(101)/27 × 17 Å(81) is used to
calculate inelastic transport for pristine/nitrogen doped graphene.
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distances is not described well by the LCAO basis set used [17].
To simulate single nitrogen sites, the nitrogen atoms were
separated by 1.7 nm. To test that this separation was sufficient
the STS spectrum was calculated exactly between adjacent
nitrogen pairs (8.5 Å away from either site) and seen to
coincide with that of pristine graphene. The dI/dV spectra
on a nitrogen and pristine graphene are shown in Fig. 4(a).
The dotted line shows the equivalent spectrum above nitrogen
without electron-phonon coupling. Note that the spectrum on
graphene has been enhanced to allow a better comparison with
the experimental data of Fig. 1(a) where the constant current
imaging condition brings the intensity of the signal above
graphene close to the intensity of the signal above nitrogen. For
pristine graphene, the spectrum is dominated by the inelastic
features. As discussed previously [16] the 130 meV gap is
reproduced, and the dip caused by inelastic tunneling into the
Dirac point is seen at the expected bias value. As in the mea-
sured dI/dV spectra of Fig. 1(a) a broad resonance emerges at
Vb = 700 meV above nitrogen, and the inelastic features near
the Fermi level are not seen. Comparing the dI/dV spectra
above nitrogen with and without electron-phonon coupling, it
is clear that the elastic channel dominates, and the inclusion of
vibrations only leads to a stronger resonance slightly shifted
in bias. In Fig. 4(b) the calculated dI/dV spectra around
EF are shown on the same scale. Comparing these spectra
with the constant height measurement of Fig. 1(b), both the
conductance magnitudes and their ratio suggest that d > 5 Å
in the experiment as expected.

The inelastic steps in dI/dV excluding elastic contributions
on nitrogen and at the center of a nitrogen dimer are
investigated using the lowest-order expansion [18]. This
method was previously found to give a good description of the
gap feature of pristine graphene.[16] The results are shown
in the inset of Fig. 4(a). The inelastic steps above a single
nitrogen are of similar magnitude to those of pristine graphene,
but the elastic contribution is an order of magnitude larger
above nitrogen making them nearly invisible in measurements.
At the center of the nitrogen dimer the inelastic feature is
about three times larger. This additional inelastic feature is
a result of the mirror symmetry along armchair direction
between the two nitrogen sites. The resonant scattering state
of the dimer system shown in Fig. 4(c) has odd symmetry at
the dimer center and consequently does not couple elastically
to the s-like state of the STM-tip. In the presence of the
73 meV out-of-plane phonon shown in Fig. 4(d) the mirror
symmetry is broken and a large inelastic step in conductance
is seen in very good agreement with the experimental data
of Fig. 2(d). Therefore, the DFT-NEGF results support the
conclusion based on the measurements that the opening of an
elastic channel above nitrogen substitutions leads to a giant
increase in tunneling conductance.

The enhancement of the elastic tunnel electron injection at
nitrogen sites can be rationalized further in terms of a simple
model. In the presence of disorder, k conservation is broken

and an elastic tunneling channel is opened. For the case of N
doping the Hamiltonian of the system now includes a potential
V localized on the impurity sites that produces a resonance
about 0.5 eV above the Dirac point in the bulk π states [10].
For simplicity we will assume that the free-electron states can
be described locally in terms of atomiclike functions. One of
them has a π -like character (state of symmetry A2u [19] also
denoted 1− in Ref. [20]) and can be coupled to the genuine
π states of pristine graphene. Assuming the potential to be
localized on the nitrogen atoms, its relevant matrix elements
for a single impurity at site 0 only involve the π state at
this site |π,0〉 as well as the localized function associated
with the A2u state |A2u,0〉. In k space the potential obviously
couples all states. In this very localized limit, the main
matrix element 〈π,0|V |π,0〉 has been estimated to be about
10 eV [10]. Because of the different extensions of the orbitals
the other matrix element should be much weaker, allowing
us to keep just one off-diagonal term v = 〈π,0|V |A2u,0〉. We
can now directly adapt the calculation by Wehling et al. [21]
and calculate the self-energy and the local Green’s function
corresponding to the new � elastic channel. Finally, in a
second-order perturbation theory, the local density of states
on the nitrogen site is n�(E) � v2nπ (E)/(E − Eσ )2 where
nπ (E) is the corresponding density of states of the π states
in the presence of the nitrogen impurities [10] and Eσ is the
energy of the free-electron -like state [21].

Close to the Dirac point E � 0 and the intensity of the new
channel is a fraction (v/λel−ph)2 of the inelastic channel, where
λel−ph is the electron phonon coupling strength. Assuming v

to be at least equal to λel−ph (about 0.5 eV [21]) we see that
the elastic channel can be at least as efficient as the inelastic
channel in agreement with the experiments and the above ab
initio calculations.

In conclusion, using STM/STS we measured an increase
of differential conductance leading to a vanishing of the
phonon gaplike feature at nitrogen sites. This leads to a
two orders of magnitude increase in electron injection into
graphene. First-principles calculations reveal that although the
inelastic excitation of graphene phonon still occurs at nitrogen
sites, an elastic channel opens that substantially increase the
conductance. Therefore we expect that nitrogen doping of
graphene can be used to improve tunnel electron injection
in graphene-based devices.
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Manipulating the voltage drop in graphene
nanojunctions using a gate potential†

Nick Papior,*ab Tue Gunst,ab Daniele Stradiab and Mads Brandbygeab

Graphene is an attractive electrode material to contact nanostructures down to the molecular scale

since it can be gated electrostatically. Gating can be used to control the doping and the energy level

alignment in the nanojunction, thereby influencing its conductance. Here we investigate the impact of

electrostatic gating in nanojunctions between graphene electrodes operating at finite bias. Using

quantum transport simulations based on density functional theory, we show that the voltage drop across

symmetric junctions changes dramatically and controllably in gated systems compared to non-gated

junctions. In particular, for p-type(n-type) carriers the voltage drop is located close to the electrode with

positive(negative) polarity, the potential of the junction is pinned to the negative(positive) electrode. We

trace this behaviour back to the vanishing density of states of graphene in the proximity of the Dirac

point. Due to the electrostatic gating, each electrode exposes different density of states in the bias

window between the two different electrode Fermi energies, thereby leading to a non-symmetry in the

voltage drop across the device. This selective pinning is found to be independent of device length when

carriers are induced either by the gate or dopant atoms, indicating a general effect for electronic

circuitry based on graphene electrodes. We envision this could be used to control the spatial distribution

of Joule heating in graphene nanostructures, and possibly the chemical reaction rate around high

potential gradients.

Introduction

Graphene (Gr) shows great promise as a central material for
future two-dimensional (2D) nanoelectronic applications.1,2 In
particular, its semi-metallic character and its record high
mean-free path3 makes it a top candidate for ultra-fast and
flexible electronic components.4,5 Fuelled by these perspectives,
nanostructured devices down to the molecular scale using
electrodes based on Gr have recently been put forward.6–9 In
their most generic form, these devices are composed by a Gr
constriction where the narrowest junction consists of a Gr
nanoribbon (GNR)10,11 or an organic molecule.6–9 More complex
structures such as Gr antidot lattices12,13 can also be viewed as
consisting of a network of constrictions.

A unique feature of Gr electrodes is that their electronic
properties can easily be tuned by electrostatic gating. In fact,
electrostatic gates can be used to increase the carrier density in
Gr up to above 1013 cm�2.14 For ion gating it has even been
possible to reach carrier densities of 1014 cm�2 which correspond
to a Fermi energy shift of about 1 eV.15 It has been shown that

gating can be used to tune the resonances localized in the
narrowest part of the junction,16,17 as the electronic states of the
electrodes are usually affected only weakly by the gate-induced
capacitive field due to effective screening by the high density of
states (DOS).18 However, for Gr electrodes, the lower DOS and its
flat geometry, makes it comparable to the junction itself, and is
thus likely to be perturbed similarly by gating. This peculiarity
leads to a novel, yet largely unexplored, paradigm for graphene-
based electronics, as the transport characteristics of the device
ultimately depend on the response of the entire system to the gate.
In electronic transport simulations, the effect of electrostatic
gating and induced doping charge in the device has often been
mimicked by rigidly shifting the position the Fermi-level/chemical
potential in calculations without explicitly including the gate or
dopants.19–22 However, despite accounting for some of the effects,
these approaches completely neglect the self-consistent response
of the device to the additional charge doping or the gate-induced
electric field.

Here, we investigate these issues by extending the TranSIESTA
electronic transport package, based on density functional theory
and nonequilibrium Green function (DFT–NEGF),23,24 with the
inclusion of a physically motivated gate model, see Fig. 1a. This
improvement allows us to consider on an equal footing the effect
of charge doping, capacitive gate field, and of the finite bias
voltage in our DFT + NEGF simulations (see the Methods section
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for additional details of the implementation). We apply this
methodology to Gr constrictions consisting of nanoribbon
junctions between Gr electrodes. For these we demonstrate
how the transport characteristics depend in a non-trivial way
on the applied source/drain and gate voltages. As seen in
Fig. 1b, upon gating and bias, the voltage drop is pinned to
the electrode of a given polarity depending on the doping type
and the bias, even for a constriction of 8.3 nm. We can relate the
phenomenon to the gate-dependent behavior of the voltage
drop in the system which, in turn, can be traced back to the
energy dependence of the DOS in the Gr electrodes. The
electronic structure of the semi-metallic Gr electrodes displays
zero DOS at its charge neutrality point, and a linear increase of
the DOS away from it (V-shape). Our analysis demonstrates how
the V-shaped DOS in the electrodes control the voltage drop in
the Gr junctions indicating a quite generic scenario.

The control of the position of the voltage drop on the nano-
scale with gate could be useful in practical applications. We
envision this feature, f.ex., could be used to tune the spatial
distribution of Joule heating in the device and influence its
breaking at the nanoscale.21,25 Our results highlight the importance
of using fully self-consistent electronic transport simulations
to predict and design the gating behavior under operating
conditions of the emerging class of devices with electrodes
having a vanishing DOS.18

Results and discussion

We have applied our method to two geometrically similar, ‘‘left-
right’’ symmetric Gr nanojunctions, formed by a Gr nanoribbon
connected to pristine Gr electrodes, see Fig. 2 and 3. For zero
gate/doping (g = 0) the former yield an electron–hole symmetric
electronic structure (hydrogen GNR), whereas the latter yield a
e–h non-symmetric electronic structure (Oxygen GNR).26–28 The
hydrogen-terminated system is also investigated using dopant
atoms instead of the electrostatic gating.11 The simulation unit
cell has an area of B200 Gr unit cells. The gate is placed
20 beneath the planar Gr structure and we sweep the gating
levels (g) according to g � 1013 e� cm�2.

In Fig. 2a and b, we plot the potential drop across the Gr
constriction at 0.5 V for g = 0, (a), and n-doped with g = �2
gating, (b). The potential profile has been integrated in the
perpendicular direction to the Gr surface for electronic densities
above re = 0.008 e Å�3 projected onto the x–y plane. The lower
panels, (c) and (d), is a further projection onto the transport
direction (x) as indicated in Fig. 2b. At g = 0 we obtain
an anti-symmetric potential drop in the transport direction
(DV(x) = �DV(�x)) as expected for a fully e–h and left-right
symmetric constriction. On the other hand, in the g = �2
(n-doped Gr), we see a clear pinning of the potential profile
to the positive electrode, the potential drop at the negative
electrode. Conversely, calculations with g = +2 (p-doping) with
0.5 V display a pinning at the negative electrode, while for g = +2
and �0.5 V we regain the plot shown. This confirms the
geometric symmetry.

In Fig. 4 we show the electron transmission spectra for the
hydrogen passivated constriction at 0 V, (a), and 0.5 V, (b), for
different values of g each vertically shifted 1/2. As a measure of
gating we track the position of two resonances, and dots,
corresponding to a resonance in the constriction located at the

Fig. 1 (a) implementation of the field effect gate model. Redistribution of
charge from atoms to gate plane. (b) resulting voltage drop for a 8.3 nm
long constriction including a field effect gate of n = 2� 1013 e� cm�2 and a
bias of 0.5 V. Contour lines are separated by 0.022 V.

Fig. 2 Electronic Hartree potential drop integrated perpendicular to the
plane and above a cutoff electron density re = 0.008 e Å�3 and projected
to the graphene plane for the Hydrogen GNR, (a) and (b). (c) and (d) are the
contour plot further integrated in the box indicated in (b). The non-gated
system shows a linear gradient, whereas for g o 0 (n-doped) a pinning of
the potential towards the right (positive) electrode.

Fig. 3 Electronic Hartree potential drop integrated perpendicular to the
plane and above a cutoff electron density re = 0.008 e Å�3 and projected
to the graphene plane for the Oxygen GNR, (a) and (b). (c) and (d) are the
contour plot further integrated in the box indicated in (b). The non-gated
system shows a gradient at the GNR boundary, whereas for g o 0
(n-doped) a pinning of the potential towards the right (positive) electrode.
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edge and in the center, respectively. The middle thick line is the
transmission for g = 0, and is equivalent to earlier results where
these resonances are discussed.21 In addition, we plot the
energy shift of the Dirac point for pristine graphene as vertical
lines aligned at each of the two resonances at g = 0. These vertical
lines match exactly the shift in chemical potential due to the
doping in the electrodes. Discrepancies between the electrode
gating (lines) and the resonance positions (dots) illustrate the
difference in just rigidly shifting the resonances according to
electrode doping, and a fully self-consistent calculation of the
resonance positions. Importantly, at 0 V we find that the
resonance peaks does not simply follow the gating. Moreover,
the two peaks are shifting/gated independently of each other; the
center resonance peak, , follows the pristine doping closer than
the edge resonance peak, , due to a difference in electrode
coupling between the resonances. On the other hand, at 0.5 V
we find that both peaks follow the pristine graphene electrode
doping. As shown in Fig. 2b, the junction behaves as an extension
of the positive electrode and therefore the resonance position is
pinned at the Fermi level of this particular electrode. The self-
consistent calculation is needed to capture the correct transition
with bias from semi-independent resonances to the pinned
behavior. The same calculation was performed on a 8.3 nm
long ribbon Fig. 1b exhibiting the same pinning feature.

Fig. 3 are for the Oxygen terminated graphene nanoribbon.
This nanoribbon has no e–h electronic DOS symmetry.26–28

Similarly to the hydrogen system we calculate for g = 0 and
g = �2 at 0.5 V. a shows that the Oxygen edges pins slightly to
the negative electrode for zero gating, while gating, (b), the
entire ribbon is pinned to the positive electrode, equivalent to
the hydrogen case Fig. 2b. This is also seen in the projected
potential profiles Fig. 3c and d. This confirms that the selectivity
of the potential profile in the gated devices does not rely on the
e–h symmetry of the junction, and conjectures the generality of
this behavior in systems with electrodes having V-shaped DOS
around EF, regardless of the electronic structure of the central
part connecting the two electrodes.

The generic behavior of the potential drop just outlined is
summarized in Fig. 5, which shows the one-dimensional
potential drop calculated for the hydrogen-terminated constriction
for a number of different gates and positive bias voltages, similar
to that of Fig. 2c and d. Independently on the particular value of
the bias voltage applied, gating the system always leads to a
marked asymmetry of the potential drop across the constriction.
For any value of n-doping, the potential drop pins always to the
positive (right) electrode for positive bias. Similarly, for any value of
p-doping, the system couples to the negative (left) electrode for
positive bias. These results further demonstrate the general
phenomenon that does not depend on the particular values of
applied gate or bias voltage. Furthermore, our calculations
highlight the important fact that the charge neutrality point
for the electrodes is a special case which does not extrapolate to
the gated case. This becomes even more important if one
considers the experimental difficulties in retaining a charge
neutral sample.29,30

Fig. 4 Transmission spectra for the constriction at various doping levels
for 0 V, (a), 0.5 V, (b), and for dopants, (c). The middle line (black) at zero
gating is a symmetric transmission function with two distinct resonances
(marked , and ). Gating the constriction shifts the resonances as
indicated by the displacements of the marks. The full lines, crossing
vertically the different doping levels, indicates the graphene electrode
Fermi level shift due to the doping aligned at the g = 0 mark.

Fig. 5 (a)–(d) Integrated Hartree potential profile in a region of width
corresponding to the ribbon along the entire constriction for varying gate
levels and applied bias. The thick middle line is the potential profile for
g = 0. The blue regions correspond to n-doped graphene (full lines), while
red are p-doped graphene (dashed lines). The non-gated calculations
show a linear behavior whereas gated systems have a non-symmetry
between the left and right electrode DOS breaking the left-right anti-
symmetry in the potential drop. (e) summarizes the trends where L/R
means pinning to the left/right electrode.
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Voltage drop model

We will now consider a simple model which can explain the
electrode selectivity of the voltage drop depending on the
doping/electrostatic gating. Fig. 6 is a guided reference for
the following discussion. The position of the voltage drop can
be obtained by considering the change in charge in the scattering
region when applying a bias. If the scattering region becomes
more positive, one can view it as the positive electrode extending
into the scattering region and thus the voltage drop will occur
closer to the negative electrode and vice versa. The change in
charge in the scattering region is linked to the change in injected
charge from left and right electrodes in the bias window, as noted
in the Methods section. The linear dependence of the DOS in the
graphene electrodes makes the coupling/broadening functions of
the scattering region display the energy dependence,

GL/R(E) p |E � mL/R + EF|, (1)

where E = 0 corresponds to the equilibrium Fermi level, EF is
the shift of Fermi level due to doping, EF /

ffiffiffi
g
p

, and mL/R is the
change in the chemical potential of left/right electrodes with
applied voltage bias (V). We will use mL = eV/2 and mR = �eV/2,
and take V 4 0. This definition means that the scattering
region as a starting point will not preferentially select the left or
right electrode for an electron–hole symmetric system, and
the potential drop profile will be spatially anti-symmetric,
DV(x) = �DV(�x). We will now consider the voltage bias as a
‘‘perturbation’’ onto the system without bias, and calculate the
change in charge in the scattering region. Thus we first neglect
the change in potential set up by the change in charge, which
again will impact the charge in the self-consistency. With this
we have the density of scattering states from left and right,
AL/R p GL/R p |E� mL/R + EF|, and the change in electrons(holes)
injected from left(right) electrode can be written as,

de ¼
ðeV =2

0

ALðEÞdE /
eV
2

EF �
eV
4

� �
; (2)

dh ¼
ð0
�eV =2

ARðEÞdE /
eV
2

EF þ
eV
4

� �
(3)

where we assume |V/2| o |EF|. The scenario is shown schematically
in Fig. 6b showing more injection of positive carriers dh 4 de.
Thus the scattering region will as the first response to the

nonequilibrium filling become more positive and we conclude
that for n-doping, g o 0 and EF 4 0, the positive electrode will
‘‘extend’’ into the constriction resulting in a voltage drop at the
negative electrode, as seen in Fig. 5. We stress that this behavior
stems from the vanishing DOS of graphene at the Dirac point
yielding a large relative difference between the electron/hole
contributions. Contrary if we take EF to be very large in eqn (2)
and (3) we get de E dh and the constriction does not change its
charge. Indeed, the pinning effect is smaller at 1 V compared to
0.5 V as seen in Fig. 5a vs. 5c. This is due to the DOS of one lead
being very close to zero at 0.5 V; mi � EF E ED with ED being the
Dirac point, and hence a much larger relative difference in DOS.

In order to substantiate that the voltage drop is controlled
by the vanishing electrode DOS we smear the DOS energy
dependence gradually into a flat function by introducing an
artificial increase in the broadening parameter, Z, for the
electrode self-energies in eqn (4). Hence GL(E) E GR(E) for
Z c 0 irrespective of the applied bias and gating. This forces
de E dh and a resulting anti-symmetric voltage drop. Fig. 7
shows the voltage drop in the middle part of the constriction for
four Z values. Clearly the anti-symmetric voltage drop is regained
when ZL,R Z 0.5 eV. Note that since we have not made assumptions
in the model about the nature of the constriction we anticipate
that it can straightforwardly be applied to similar systems
between graphene electrodes in the high-conductance regime.

Constriction, hydrogen terminated with dopants

Since Gr consists entirely of surface atoms it is also extraordinarily
susceptible to external influences such as chemical modification
or charged impurities. We will now discuss the influence of

Fig. 6 Illustration of non-symmetric coupling induced by doping out of
symmetry. (a) Shows the zero bias configuration with broken e–h sym-
metry due to doping, g o 0. (b) Shows a difference among the electrode
contributions in the bias window which pins the system to the right
electrode.

Fig. 7 Change of potential drop vs. level broadening parameter, ZL/R, for
0.5 V. Increasing values smear out the electrode DOS which evens out the
electronic contribution from both electrodes in the bias window. The
voltage drop becomes anti-symmetric at even charge injection rates from
the two electrodes (large smearing).
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modifying the passivation or having adatoms31–34 as a source
of charge doping alternative to the electrostatic gating. We
examine the effect of a donating lithium (Li) or an accepting
flourine (F) adatom placed either inside or outside the constriction
at the positions shown in Fig. 2a. The Li or F atoms are positioned
above the center of a hexagon, or ontop a Carbon atom, respectively.
In Fig. 4c we show the transmission for the different adatom
configurations. The transmission spectra indicate that very little
scattering due to the dopants themselves takes place, especially
when the adatoms are positioned outside the constriction. The
doping effect is clearly seen from the shift in the two resonance
peak positions. Li will n-dope the graphene constriction while
F p-dope it. Surprisingly, we find that most of the charge
transfer to the device resonances is maintained when the
dopants are moved outside the constriction. This suggests that
nanostructured graphene devices will not necessarily be very
sensitive to the actual position of the adatoms. In the case of F it
is actually more efficient outside the constriction. Comparing
the most significant peak with the field effect gating transmission
curves we find that Li donates at least 0.2 electrons while F accepts
at least 0.3 electrons from graphene. In addition, we find that a
pinning of the potential to the positive/negative electrode occurs
for Li(n-doping)/F(p-doping) for positive bias, consistent with
the potential drops obtained from field effect gating (see Fig. 2).
Adatoms may therefore provide an alternative way to manipulate
the voltage drop by pinning the potential to either of the two
electrodes. This underlines the conclusion that the main effect is
determined by the addition or removal of charge from the device,
together with the uneven injection rates from the electrodes.

Conclusion

We have implemented an electrostatic gate method which
introduce charge carriers and the corresponding electric field
in a capacitor-like setup in self-consistent DFT–NEGF calculations
with open boundary conditions to semi-infinite electrodes. The
gate method has been applied to several graphene constrictions
where the narrowest junction corresponds to a graphene nano-
ribbon with either hydrogen or oxygen passivation. For positive
voltage bias and with electrostatic gating the junction potential
gets preferentially pinned to the positive(negative) electrode for
n(p)-type doping charge, and vice versa for polarity changes
of gating and/or bias. Thus the position of the voltage drop
can be manipulated by the gate potential or correspondingly
from charge doping from adatoms. The constrictions was found
to couple selectively to the electrode with the highest DOS
contribution in the bias window. The behavior was traced back
to the vanishing DOS of graphene close to the Dirac point. A
simple perturbation model showed how the selectivity is due to
the low DOS of graphene around the Fermi level, irrespective of
the details of the junction electronic structure. The V-shaped
DOS is also true for the local DOS at armchair edges.19 Thus we
anticipate that our results also apply to molecular junctions
more weakly coupled via a barrier to armchair edges of graphene.
We suggest that this selectivity and high potential gradient can be

utilized in experiments on nanostructured graphene or similar
2D materials to control regions of reactivity, manipulate polar
adsorbates, or providing control of and insights into the local
Joule heating.25,35 We expect that Kelvin Atomic Force Micro-
scopy,36 Scanning Tunnelling Potentiometry37 or Low-Energy
Electron Potentiometry38 to be suitable experimental techniques
to examine the effect pointed out here in nanostructured graphene.

Methods

The simulations have been performed using the SIESTA/TranSIESTA
code with the PBE-GGA functional for exchange-correlation39 and a
SZP basis-set. A confinement radii determined from an energy shift
of 230 meV. The real-space grid cutoff was 230 Ry. The electronic
temperature has been set to 25 meV (50 meV for the O-terminated
constriction). Unless stated otherwise, the smearing parameter Z was
set to 10�2 eV. The geometries were relaxed until all forces were
smaller than 5 � 10�2 eV Å�1. Five transverse k-points were used in
the electronic structure calculation. This was increased to between
25 and 50 k-points in the transport calculations. The transmission
data have subsequently been interpolated.40 A vacuum gap of 120
was used in the direction normal to the constriction plane.

Our field effect setup consists of a gate electrode, a dielectric,
and the system, here being the graphene nanojunctions. Applying
a gate voltage charges the system and electrodes like in a capacitor
setup, thus inducing an electrostatic potential gradient across the
dielectric, which in this implementation is vacuum. The additional
charge will redistribute to create a polarization in the system
along the electric field direction. Such field effect setups can be
realized in open-boundary DFT calculations by employing a
nonequilibrium Green function (NEGF) scheme,24,41 or by solving
the Poisson equation with appropriate boundary conditions.42,43

The former is a computationally expensive calculation compared
to the latter.

Analogous to a plate capacitor setup we assume that an
applied gate voltage induces an electron charge �de� in the
system and a corresponding counter-charge +de� in the gate
plane. This situation is accounted for by charging the system
with a given electron charge g = �de�, and by distributing
homogeneously the corresponding counter-charge +de� in a
well defined region of the unit-cell, denoted gate, so that the
overall system + gate remains charge neutral. The setup is
shown schematically in Fig. 1a. Thus for g 4 0 we have a
p-doped system, similarly for g o 0 we have a n-doped system.
Solving the Poisson equation inherently calculates the electric
field between the gate and the system. As the calculation cell is
periodic we apply the slab dipole correction42 to terminate the
periodic electric field induced by the charge redistribution. The
gating method can readily be adopted to transport calculations
using NEGF if the gate is uniformly applied to the electrodes
and the device. Additionally, the gate at the electrodes must
have a resulting electric field perpendicular to the applied bias
to assert the correct boundary conditions. Our implementation
resembles that of Brumme44,45 except that we use a linear
combination of atomic orbitals method, which means that
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the dielectric need not be simulated by a potential barrier to
limit electronic penetration.

We note that the DFT–NEGF24 calculation relies on calculating
the density by occupying the left and right scattering states to
the different respective chemical potentials. This is done by
integrating the left/right spectral density matrices, AL/R, given in
terms of the retarded Greens function, G,

AL/R(E) = G(E)GL/R(E)G†(E), (4)

G(E) = [(E + iZ)S � H � SL(E) � SR(E)]�1. (5)

Here H, S, GL/R(E) = i[SL/R(E) � S†
L/R(E)] are the Hamiltonian, the

overlap and the electrode broadening matrices. The parameter
Z - 0+ introduce a vanishingly small broadening of DOS.
However, a finite Z broadens the electrode DOS.

The simple Voltage drop model is developed based on the
following more detailed description. We consider a left-right
symmetric conductor. In nonequilibrium the density (matrix)
can formally be written at as an ‘‘equilibrium’’ contribution
corresponding to the equilibrium Fermi energy, EF, plus two
‘‘nonequilibrium’’ contributions originating from the change
in filling of left and right originating scattering states, say,
mL 4 EF 4 mR. The ‘‘nonequilibrium’’ terms corresponding to
negative charge injection from the negative electrode, and
positive charge injection from the positive electrode,

r ¼ �1
p

ð
dE ImðEÞnF;EF þ de� dh; (6)

where de and dh are defined in eqn (2) and (3). We choose
EF = (mL + mR)/2 and consider the different fillings as a
perturbation. If we neglect the resulting Landauer dipole field
in H, which appear in the response to this perturbation in the
self-consistent DFT–NEGF calculation, then the first ‘‘equilibrium’’
term can not break left-right symmetry and result in a left-right
symmetric density. It is then clear that the symmetry breaking and
charge in the device is determined by the competition between the
latter two contributions which are of opposite sign.

The systems studied here belong to the class highly
conducting carbon junctions for which the DFT–NEGF method
has been compared favorably to detailed experiments both in
the linear46,47 and non-linear conductance regime.48 In any
case, we are here mainly interested in the qualitative aspects of
the behavior of the voltage drop.
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Abstract

Using ab-initio methods we investigate the possibility of three-terminal graphene
“T-junction” devices and show that these all-graphene edge contacts are en-
ergetically feasible when the 1D interface itself is free from foreign atoms.
We examine the energetics of various junction structures as a function of
the atomic scale geometry. Three-terminal equilibrium Green’s functions are
used to determine the transmission spectrum and contact resistance of the
system. We find that the most symmetric structures have a significant bind-
ing energy, and we determine the contact resistances in the junction to be in
the range of 1−10 kΩµm which is comparable to the best contact resistance
reported for edge-contacted graphene-metal contacts[1, 2]. We conclude that
conducting all-carbon T-junctions should be feasible.

1. Introduction

Two-dimensional (2D) materials are being vigorously investigated as a
platform for nano-scale electronics due to their potential use e.g. in flexible
electrodes[1], high performance electronics, photovoltaics and spintronics[3].
Graphene plays a key role, not only because it was the first 2D material
to be isolated and experimentally characterized[4], but also because of its

∗Corresponding author. Tel: +45 45 25 63 28. E-mail:
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Figure 1: a) Sketch of a possible experimental realization where the GTJ is partly encapsu-
lated in a stack of hexagonal boron-nitride. b) Schematic of the graphene T-junction sys-
tem (side view) consisting of 3 semi-infinite graphene electrodes (“Mid”/“Buffer”, “Left”,
“Right”) used in the DFT-EGF calculation. In the calculations that include passivation,
the connection atom was substituted with other elements. The structure shown here is
the result of a nitrogen substitution in the ZZ geometry.

extraordinary electronic properties, which can be harnessed by various types
of nanostructuring and chemical functionalization[5, 6, 7, 8, 9, 10, 11, 12].

Recently graphene has played a role as contact electrode to semi-conducting
transition metal di-chalcogenides (TMDC) encapsulated in insulating hexag-
onal boron-nitride (hBN) layers[2]. In these devices graphene is connected to
the external circuit via one-dimensional edge-contacts to 3D metal electrodes[2,
13]. In the fabrication process the hBN-G-hBN stack is etched with a slope of
approximately 45◦ resulting in a graphene edge being exposed to subsequent
metal electrode deposition.

While these studies have so far focused on planar devices it is relevant
to investigate various ways of extending the 2D structures into 3D circuitry.
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To this end, and inspired by the experimentally realized 1D edge contacts[2],
we here use first principles calculations to investigate graphene T-junctions
(GTJ), where the bulk metal electrode is replaced by graphene as illustrated
in Fig. 1 and 2. The out-of-plane bonding is possible due to the sp2 na-
ture of graphene, which can hybridize further to sp3 and thus allows the
formation of a “standing” sheet (or ribbon). The electronic properties of
the graphene T-junctions are only limited by the junction itself as the long
range ripples are an intrinsic detail in graphene[14]. Formation of such a
T-junction requires the edge atoms of one layer to form covalent bonds to
the plane of another layer, which can either be done by fusing or by syn-
thesis. Coalescing or fusing of separate carbon nanostructures can either
be achieved through Joule heating[15, 16], ion[17, 18] or electron[19] irradi-
ation, where the extraordinary ability of sp2 carbon nanostructures to self-
repair[20] can be exploited to reach well-defined, stable, low-energy config-
urations. In principle, the alternative approach of bottom-up synthesis can
can also lead to creation of complex hybrid all-carbon architectures with in-
terconnections such as graphene carbon-nanotubes[1, 21], 3D interconnected
graphene “foam”[22] and vertical T-junction-like “nanowalls”[23, 24]. While
graphene-nanotube two-terminal systems have been investigated by first prin-
ciples calculations[25], the electronic transport properties of T-junctions in-
volving three semi-infinite graphene or graphene nano-ribbon (GNR) elec-
trodes have not, to the best of our knowledge, been investigated. The paper
is organized as follows: In Sec. 2 we describe the systems and computational
method. In Sec. 3 we present the results for the energetics and structure of
both infinitely wide junctions and narrow ribbon junctions to the graphene
plane, and discuss the electronic transmission as a function of electronic en-
ergy (doping level or gate voltage) and electrical contact resistance. Finally,
we summarize the results and present an outlook of future work and experi-
mental realization of graphene T-junctions in Sec. 4.

2. Systems and methods

In order to predict the atomic structures and their binding energy we
employ density functional theory calculations (DFT). Electronic transport
is calculated by the Green’s function method[26] extended to the multi-
terminal case, which in the present work involve three electrodes denoted
“Left”, “Right” and “Mid”, see Fig. 1. The middle electrode corresponds to
a graphene layer which for instance could be encapsulated in a hBN stack

3
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Figure 2: Sketch showing the three main principal structures of interest. The structures are
periodic in the transverse direction and yellow indicates atoms belonging to the unit cell.
The insets shows the binding energy of the middle part as calculated with the SIESTA (blue
bar) and VASP (green bar) codes which are in reasonable agreement. The insets show
sideviews of the structures, clearly illustrating the sp3 geometry at the junction.

as shown in Fig. 1. Here only non-gated graphene electrodes are considered,
while in general care must be taken to account properly for gating effects of
graphene electrodes[27]. The geometrical structure of the junction is, as we
shall see, a main factor determining the resistance.

We first focus on the two main symmetry directions of current flow in
graphene (zig-zag and armchair) and consider three different principal struc-
tures corresponding to perfect match in the junction as shown in Fig. 2. We
note that the structures have been rotated compared to Fig. 1 so that the
“mid”-section is pointing out-of-plane of the graphene sheet going from “left”
to “right”. The simplest possible connection is denoted “ZZ” according to
the zig-zag edge of the attached “ribbon” as shown in Fig. 2a, and is mirror
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Figure 3: a) The setup for the starting configurations of the calculations of ribbon T-
junctions. Each calculation was initiated with the ribbons placed one bondlength above
the base sheet and with the bottom corner atom above one of the three sites, hexagon
(green), bridge (yellow) or on-top (blue). The ribbons were rotated around the anchor
points in steps of 5◦ between the directions indicated with red. b), c) The blue curve
shows the mean energy of the three ribbons started at each angle (one for each site). It
is shown atop a gaussian kernel density plot (red colors) of the two bottom rows of atoms
in each of the relaxed ribbons translated to have the outermost atom in the same point
and projected onto the plane. The orientation of the underlying graphene sheet is as in
a). Both types of ribbons energetically favor the 0◦ and 60◦ directions, making the zig-zag
ribbon similar to the ZZ(S) structure in Fig. 2, but the armchair ribbon different from AC
in the same figure.

symmetric around the middle part and involves only hexagonal carbon rings.
The second principal structure is a shifted zig-zag (ZZS) and is also mirror
symmetric, but the middle part has been shifted one half of a unit cell re-
sulting in 4- or 8-ring transition in the T-junction. The armchair junction
(AC) in Fig. 2c has no mirror-symmetry between the electrodes. However,
it is noted that the left-mid and the mid-right transitions have similar grain
boundary types in the junctions. In Sec. 3.2 we will see how this similarity
is reflected in the transmission through the junction. For all these structures
we employ periodic boundary conditions (PBC) along the one-dimensional
junction. We have also investigated junctions with an initial angle differ-
ent from 90◦ between the “mid” section and the base sheet. When allowed
to move freely, however, the “mid” section relaxes towards the symmetric
configuration in all cases.

In order to examine the role of a less symmetric match in the T-junction
we also investigate rotated junctions by attaching the nano-ribbons in the
“Mid” position on top of an infinite graphene sheet (still containing “Left”/“Right”
electrodes). Both zig-zag and armchair nano-ribbons are investigated by plac-
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ing the bottom right carbon atom one bond-length above the graphene sheet
consisting of 10 × 5 4-atom unit cells (indicated in Fig. 3). The attachment
site on the graphene sheet is chosen among the three high-symmetry sites,
on-top, bridge, and hexagon, as illustrated in Fig. 3a. For each attachment
site, the ribbons are rotated in steps of five degrees within the angles as
indicated in the figure.

In summary, with the use of periodic boundary conditions, we examine
T-junctions formed by infinte graphene sheets as shown in Fig. 2 and finite-
width ribbons intersecting with an infinite graphene layer as depicted in the
small illustrations in Fig. 3.

2.1. Computational methods

The DFT calculations were performed using the software packages SIESTA[28]
and VASP[29]. The former utilizes a localized basis set (LCAO), which al-
lows much faster calculations than the the more accurate plane-wave basis
in VASP, which provides a quality check on the total energies of the LCAO
method. A SZP basis set was chosen for SIESTA after noting only negligible
differences in the resulting relaxed geometries and transmission spectra when
comparing to a DZP basis set. The plane-wave calculations used a cut-off
of 400 eV. The PBE-GGA functional for exchange-correlation[30] was used
for both methods, as well as an atomic force tolerance of 0.04 eV/Å. Ad-
ditionally, the SIESTA calculations used confinement radii determined from
an energy shift of 275 meV with a real-space grid cutoff energy of 300 Ry.
The PBC of the principal structures along the 1D junction was utilized in
k-point sampling by a Monkhorst-Pack grid of 15 × 1 × 1 ensuring relative
energy convergence. In the subsequent transport calculations, the three elec-
trodes (“left”, “right”, and “mid”) were all treated as semi-infinite while the
system was modelled as periodic in the transverse direction. The transport
calculations were performed using the TranSIESTA[26, 31] method extended
with a recently implemented N -electrode capability following Saha et al. [32].
This allows the description of proper boundaries for the three semi-infinite
graphene leads. All electrodes are described using surface self-energies from
separate bulk calculations. Here we focus on low bias properties and only
present equilibrium transport calculations while full non-equilibrium calcu-
lations are presented elsewhere[31]. We extended the “Mid” electrode us-
ing “buffer” atoms[26] in order to obtain a bulk electrode potential profile
for this. Transmission calculations are performed using 100 k-points and
post-processed using the interpolation technique described by Falkenberg

6



and Brandbyge [33] in order to obtain well converged smooth transmission
functions.

3. Results

3.1. Energetics

All three structures shown in Fig. 2 have a negative binding energy, and
could thus be experimentally feasible. The total energy calculations were
consistent when comparing energies from SIESTA with VASP after relaxing
the atoms, as is shown as bars to the right of the structures in Fig. 2.

We investigate the rotation of ribbons perpendicularly attached to a
graphene sheet, but attached to the sites shown in Fig. 3a and allowing
the atoms to relax. In the calculation, one row of atoms in the base sheet
was fixed in space while all other atoms – including the entire ribbon – was
free to relax. The zig-zag and armchair ribbons were both four rows of atoms
wide. Only negligible rotation is observed of the carbon atoms in the GNRs
the furthest away from the base sheet, thus allowing us to define a starting
angle. The averaged energy of the three ribbon configurations is shown in
Fig. 3b,c. The blue line is the mean energy for the three relaxed structures
at each starting angle subtracted the minimum energy configuration of the
entire set of structures. The angles in Fig 3b,c indicate the initial rather
than the final angle of the relaxed structure, which may be slightly different.
In order to examine the relaxed direction a density map of atoms is shown
as the background of the energy plot. All relaxed configurations have been
translated and projected to the graphene plane.

We see that the zig-zag ribbons preferentially will be oriented in the di-
rections similar to the principal periodic structure in Fig. 2a, and are thus
corresponding to a geometric transition similar to that of pristine graphene.
Note that the armchair ribbons also have the lowest energies when oriented
along the armchair direction of the base sheet and are thus not similar to
the periodic armchair structure described earlier, cf. Fig. 2c. In this con-
figuration, the ribbons are situated symmetrically, but in a way that cannot
be periodic without inducing a substantial strain in the graphene layers.
Fig. 3c seem to break the 60◦-rotation symmetry as the energies at 0◦ and
5◦ are much larger than the ones around the other armchair direction. This
is caused by one of the three calculated structures in each case that quickly
relaxed in to a local minimum with very high energy, thus raising the average
energy considerably.
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3.2. Transmission
The transmission spectra shown in Fig. 4 show conductance per junction

length for each of the three principal systems and between each of the three
electrodes defined in Fig. 2. The gray transmission curve is that of pristine
graphene. The geometric symmetries of the periodic zig-zag structures (ZZ,
ZZS) are reflected in the transmission spectra as the left-mid (blue) and
the mid-right (green) curves are identical. Interestingly, it is found that
the transmission T through the base sheet (i.e. left-to-right) is lower than
that from the base and into the mid-terminal for all principal structures.
In contrast to the ZZ and ZZS structures the armchair (AC) transmission
spectrum display a bandgap-like feature for low energies, but yield the highest
transmission into the mid-electrode from left (green curve in Fig. 4 AC) of
all the structures.

We can compare the left-right transmission Tleft-right through the ZZ struc-
ture to that found for hydrogenated kinked graphene[12]. This can be done
by realizing that the row of atoms in the mid-part closest to the junction
can be exchanged by hydrogen atoms while the rest of the mid-atoms can be
removed. Since the junction atoms are allowed to relax we locally have an
sp3-configuration directly comparable to the hydrogenated kinks acting as
transmission barriers. There are minor numerical differences in normalized
transmission but the trends remain the same: hole transport slowly grows
to around 0.03 G0/Å at −2 eV, while the electron transmission grows more
rapidly to 0.1 G0/Å at 2 eV.

As previously stated, there are similarities in the atomic transitions from
left-to-right and from mid-to right in the AC structure. One could thus
expect Tleft-right and Tmid-right to differ from Tleft-mid and this is also what
is found in Fig. 4 AC. The Tleft-right and Tmid-right transmission spectra are
rather similar even though the angle the electrons have to pass through differs
greatly.

For the sake of completeness, we have also briefly investigated the effect of
forcing the “mid” part into an non-orthogonal angle with the base graphene.
As previously mentioned, the ZZ(S) T-junctions relax towards the symmetric
structures shown in Fig. 2 and to avoid this, we have in one case fixed the
“mid” terminal part to move doing these relaxations. With an imposed angle
of 55◦ between the “mid” and “right” terminals in an ZZ configuration, only
minor changes in the transmission spectrum was observed. The left-to-right
and left-to-mid transmissions remained almost unaffected while the mid-to-
right lowered a bit to have roughly the same behavior as left-to-right.
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1b).
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3.3. Passivation

Wang et al. suggest[2] that graphene edges exposed after etching might
be passivated with H, F or O. They further treat the edges with an O2

plasma to change chemical composition[34, 35]. After such processing the
edges may be oxygen terminated while other contaminants remaining from
the edges should have been removed. To investigate the effects of this edge
termination on the transport through the junction we substituted the edge
atoms (see connecting atom in Fig. 1b) of the principal T-junction structures
with H, F, O or N. We found, as expected, that H and F passivated edges
did not bind to the graphene base sheet. On the other hand we found that
while O only bonds in one case (ZZ), N binds to both in the ZZ and ZZS
structures. A negative formation energy has been obtained for N on a clean
zig-zag edge, originating from a N2 gas[36] making incorporation during hBN
etching a possibility. Most importantly, both O and N in the connection
introduce an angle between the mid part and the base sheet around 45◦, see
Fig. 1b which shows the relaxed ZZ-N structure. The same size as the angle
in the hypothetical structure based on the hBN-G-hBN setup due to the
etch[2] as illustrated in Fig. 1. As seen from Fig. 4 (ZZ-N) the introduction
of N in the junction and the resulting angle breaks the left-mid and right-
mid symmetry in the transmission spectrum. Now left-mid transmission is
significantly higher than that of right-mid while the left-right transmission
is nearly unchanged compared to the C-only junction (ZZ). Even though the
symmetry breaking due to the nitrogen completely changes the transmission,
the magnitude of the transmission does not to vary much between the various
configurations. We note that similar high left-mid/left-right transmissions
were obtained for O passivation.

For all the relaxed structures with a negative binding energy, similar cal-
culations, i.e. the same number of atoms, were made, but without a connec-
tion between the mid part and the base sheet. That is, the atoms were lifted
off the graphene sheet such that no contact was possible between the two.
This setup was then relaxed, and the energy was used as reference for the
binding energy. None of the edge-passivated structures had lower energies
when forming a T-junction and are thus unlikely to occur.

3.4. Junction resistance

In order to determine the resistance of the contact between the graphene
sheet and the attached “Mid” graphene terminal, we calculated the mean
junction resistance for electrons with energies on each side of the equilibrium
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Fermi energy (EF = 0) in the 0 eV − 0.5 eV range, and likewise for holes, in
the −0.5 eV − 0 eV range. This can be compared to the pristine graphene
result for both principal structures and their ribbon counterparts. The result
is shown in Fig. 5. Note that since the armchair ribbons have a bandgap
we average from the valence/conduction band edges for holes/electrons in
this specific case. This explains why some of the AC ribbon resistivities are
smaller than their corresponding values for the infinite structures. In general,
it is seen that the infinite structures are much more electron-hole-symmetric
than the ribbons and have lower resistances. This can clearly be seen in the
combined mid-right/left-mid resistance,

Rcombined =

(
1

RMR

+
1

RLM

)−1

which takes into account both sides of the base layer through the junction.
In an experimental realization of the T-junction it is likely that the con-

nection between the two parts consists of many different bonding configura-
tions due to disorder, defects and the specific orientation of the sheets. In
such a case, the transmission would be dominated by the most transparent
interface and would probably average to some effective resistance over the
junction length.

4. Discussion and Conclusions

Using ab initio calculation methods, we find that three-dimensional graphene
T-junctions are energetically feasible when no passivation is present in the
connection. For N and O passivation some of the junctions are stable, but
unlikely to occur because of their relatively high formation energy. The anal-
ysis of junctions created between graphene ribbons and an infinite base sheet
using a large ensemble of possible starting configurations, revealed a prefer-
ential junction orientation along the armchair direction. Interestingly, this
was regardless of whether the ribbons were of zigzag or armchair type.

Utilizing the three-terminal Green’s functions transport capabilities of
TranSIESTA, we find that the transmissive properties of the junctions de-
pend heavily on the specific connection geometry, but that the transmis-
sion from the base graphene sheet to the middle terminal is larger than the
one through the base sheet. The contact resistance of various metals end-
contacted to graphene encapsulated in hBN have been measured[2]. The
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Figure 5: Resistance times length in the T-junctions compared to similar ribbons. The
resistivity is taken as the mean value of electrons with energies between 0 eV and 0.5 eV
on both the hole and the electron side.
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lowest are obtained using Cr (∼ 0.1 kΩµm), followed by Ti (∼ 10 kΩµm)
and Al, Pd (∼100 kΩµm).

Our results show that not only are such T-junctions feasible, but also in
some configurations exhibit superior contact properties. More importantly,
the emerging van der Waals technique[37, 2] provides an ideal platform for
creating such edge-plane contact architectures in a controlled and possibly
scalable manner. Since a number of techniques to form seamless junctions
between carbon nano-structures have been demonstrated experimentally, the
T-junction architecture opens for a number of exciting possibilities. While we
show that the behavior of the all-graphene junctions is already rich, struc-
turally similar materials that should immediately be possible to join and
combine in T-junctions include hexagonal boron nitride and boron-carbon-
nitrogen alloys[38], where a mix of boron, carbon and nitrogen atoms allows
for tunability of the electrical properties, paving the way for bandgap engi-
neered T-junctions. A T-junction with a single sheet of graphene terminated
with a few atomic rows of hBN grown by in-plane heterostructures[39] would
be a compelling 1D equivalent of a field effect transistor, with the shortest
channel imaginable. In fact, the topological similarity with several transistor
geometries combined with in-plane heterosynthesis suggests that other 1D
analogues of conventional semiconductor components should be possible to
realize. Finally, control of the edge chemistry[40] opens for a wide range of
possibilities in terms of tailoring the structural and electrical properties of
such junctions.
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