Improving dielectric permittivity by incorporating PDMS-PEG multi block copolymer into PDMS network

A Razak, Aliff Hisyam

Publication date:
2014

Document Version
Peer reviewed version

Citation (APA):
Improving dielectric permittivity by incorporating PDMS-PEG multi block copolymer into PDMS network

Aliff H. A Razak
Danish Polymer Centre (DPC)
Main supervisor: Anne Ladegaard Skov
Co-supervisor: Peter Szabo
Outline

• INTRODUCTION:
 – Dielectric electroactive polymer (DEAP).
 – Poly(dimethylsiloxane) (PDMS) versus Poly(ethylene glycol) (PEG)
 – Morphology of block copolymer and phase continuity
 – Experimental setup and characterization methods

• RESULTS
 – Properties of PDMS-PEG multi block copolymer
 – Binary polymer blends of PDMS-PEG block copolymer and commercial PDMS elastomer

• CONCLUSION
Principal of DEAP material
PDMS versus PEG

PDMS

- Hydrophobic
- Low surface energy
- Low conductivity
- Wide temperature range
- High stability
- Low modulus
- Low permittivity

PEG

- Hydrophilic
- High surface energy
- Low toxicity
- High mobility in solution
- High permittivity
- High Conductivity
Morphology in block copolymer (AB)

Phases in polymer blend

Illustration of PDMS: PDMS-PEG BC polymer blend

Sequence(s) of project

1st step - synthesize PDMS-PEG prepolymer

2nd step - Blending PDMS-PEG block copolymer with commercial PDMS elastomer

3rd step - crosslinking with methylhydrosiloxane-dimethylsiloxane copolymer (HMS-501)
Experimental setup

<table>
<thead>
<tr>
<th>PDMS Hydride-terminated</th>
<th>Reactant</th>
<th>Average number of molecular weight M_n [g/mol]</th>
<th>No. of repeating units - reactant- (N)</th>
<th>No. of repeating units - block copolymer- (X)</th>
<th>Stoichiometry ratio (r)</th>
<th>Volume fraction of PDMS (f_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H21</td>
<td>PEG-DE</td>
<td>250,00</td>
<td>4</td>
<td>6</td>
<td>1,21</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>PDMS Hydride-terminated</td>
<td>6000,00</td>
<td>81</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>PEG-DE</td>
<td>250,00</td>
<td>4</td>
<td>24</td>
<td>1,04</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>PDMS Hydride-terminated</td>
<td>1050,00</td>
<td>14</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H03</td>
<td>PEG-DE</td>
<td>250,00</td>
<td>4</td>
<td>38</td>
<td>1,03</td>
<td>0,62</td>
</tr>
<tr>
<td></td>
<td>PDMS Hydride-terminated</td>
<td>550,00</td>
<td>7</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIH</td>
<td>PEG-DE</td>
<td>250,00</td>
<td>4</td>
<td>57</td>
<td>1,02</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>PDMS Hydride-terminated</td>
<td>208,00</td>
<td>3</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characterization

1. Chemical reaction
 • NMR (Si-H ~ 4.70 ppm)

2. Mechanical properties
 • LVE properties.
 • Parallel plate (25 mm)

3. Electrical properties
 • Dielectric properties
 • 20 mm electrode

4. Contact angle
 • Sessile method
 • Static contact angle

1. Bruker 300 MHz NMR
2. Rheometer (ARES-G2)
3. Dataphysics OCA20
4. Novocontrol GmbH
Result: Block copolymer (H21, H11, H03, SIH)
Contact angle for all block copolymer

Comparison of contact angle between pure PDMS (Wacker) and PDMS-PEG block copolymers

- MJK 4/13 A & B
- PDMS-PEG (SIH6117.0)
- PDMS-PEG (H03)
- PDMS-PEG (H11)
- PDMS-PEG (H21)
Comparison of **Permittivity** among H21, H11, H03 and SIH

![Graph showing permittivity comparison between PDMS-PEG H21, PDMS-PEG H11, PDMS-PEG H03, and PDMS-PEG SIH. The x-axis represents frequency (Hz) and the y-axis represents tan(δ). The graph indicates the permittivity values at different frequencies for each material.](image-url)
Comparison of Conductivity among H21, H11, H03 and SIH

![Graph comparing conductivity among different materials](image-url)
Comparison of modulus among H21, H11, H03 and SIH
Result: Binary polymer blend of PDMS-PEG block copolymer and commercial PDMS elastomer
Comparison of permittivity for PDMS-PEG (H03) with commercial PDMS elastomer

![Graph showing comparison of permittivity for PDMS-PEG (H03) with commercial PDMS elastomer. The x-axis represents frequency (Hz) and the y-axis represents tan(δ). Different concentrations of PDMS-PEG (H03) and PDMS elastomer are plotted, showing the variation in permittivity across the frequency range.]
Comparison of conductivity for PDMS-PEG (H03) with commercial PDMS elastomer
Comparison of modulus for PDMS-PEG (H03) with commercial PDMS elastomer

![Graph showing comparison of modulus](image-url)
Conclusion

- PDMS-PEG is a conductive block copolymer (10^{-8} S/cm) with amphiphilic behaviour.
- Incorporating PDMS-PEG (H03) with commercial PDMS elastomer:
 - Improve storage permittivity up to 60% with low loss permittivity.
 - Maintain LVE properties compared to the commercial.
 - Has amphiphilic behaviour (contrast with PDMS elastomer).
Thank you

DPP Group