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Highlights  

 

 Stabilizers modify interactions between nanoparticle and organisms and thus change 

toxicity 

 Chronic toxicity and behavior of silver nanoparticles are linked to body burden of 

Daphnia magna 

 Body burdens were higher in Daphnia exposed to more agglomerated AgNP 

 

 

 

Abstract 

While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or 

acute aquatic toxicity for differently stabilized AgNP have often been reported, these 

have rarely been studied in long-term ecotoxicity tests. In the current study, we 

investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with 

two different stabilizers (citrate and detergent), representative for charge and sterical 

stabilizers, respectively. This was coupled with a series of short-term experiments, 

such as mass balance and uptake/depuration testing, to investigate the behavior of 

both types of AgNP during a typical media exchange period in the D. magna test for 

chronic toxicity. As expected, the sterically stabilized AgNP were more stable in the 

test medium, also in the presence of food; however, a higher uptake of silver after 24 

h exposure of the charge stabilized AgNP was found compared to the detergent-

stabilized AgNP (0.046 ± 0.006 µg Ag µg DW-1 and 0.023 ± 0.005 µg Ag µg DW-1, 

respectively). In accordance with this, the higher reproductive effects and mortality 

were found for the charge-stabilized than for the sterically-stabilized silver 

nanoparticles in 21-d tests for chronic toxicity. (LOEC was 19.2 µg Ag L-1 for both 
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endpoints for citrate-coated AgNP and >27.5 µg Ag L-1 (highest tested concentration 

for detergent-stabilized AgNP). This indicates a link between uptake and toxicity. The 

inclusion of additional short-term experiments on uptake and depuration is 

recommended when longer-term chronic experiments with nanoparticles are 

conducted. 

 

Keywords: silver nanoparticle, D. magna, chronic toxicity, stabilizer effect, uptake 

 

 

 

1. Introduction 

 

Silver nanoparticles (AgNP) are currently the nanoparticles (NP) used in the highest 

number of consumer products (The Nanodatabase, 2016), with a range of different 

applications mainly due to their antimicrobial action (Vance et al., 2015; Wigger et al., 

2015). This widespread use in combination with the inherent toxic potential has 

raised concern about their human health and environmental effects (Hartemann et 

al., 2015), which has in turn resulted in a large number of experimental studies and 

reviews on the toxicity of AgNP (Fabrega et al., 2011; Hansen and Baun, 2012; Kim 

et al., 2013; Lapresta-Fernández et al., 2012; Levard et al., 2012; Sharma et al., 

2014). 

A number of studies have focused on the relation between the aquatic toxicity and 

properties of AgNPs, especially on the effect of colloidal stability of the used AgNP, 
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and the identity of the NP stabilizer has been shown to be a highly influential factor 

on colloidal stability (Kvitek et al., 2008; Silva et al., 2014; Tejamaya et al., 2012). 

Sterically stabilized AgNP show a very broad spectrum of colloidal stability in 

aqueous media; ranging from very stable, like for PVP-stabilized, to relatively 

unstable, like PEG or TWEEN 80-stabilized AgNP, with the degree of instability 

varying with media composition and stabilizer identity (Levard et al., 2012; Sharma et 

al., 2014; Silva et al., 2014; Tejamaya et al., 2012). Charge-stabilized AgNPs 

become less stable with increasing ionic strength of the test medium, especially in 

presence of divalent cations (Levard et al., 2012; Sharma et al., 2014; Silva et al., 

2014; Tejamaya et al., 2012). The colloidal stability in the test medium has a strong 

impact on the behavior and fate of the tested AgNP in a given system (Sharma et al., 

2014), directly affecting the exposure conditions of the test organism. 

However, the relation between the colloidal NP stability in aqueous media and toxicity 

is less clear. Higher toxicity of more stable AgNP has been found in several studies 

(Asghari et al., 2012; Kvitek et al., 2008; Morones et al., 2005). However, higher 

toxicity was observed for aggregated citrate-coated AgNP than for non-aggregated 

PVP-coated AgNP of similar primary particle size (Angel et al., 2013). An increase in 

size due to low colloidal stability in the test medium also caused higher uptake of 

AgNP by D. magna (Zhao and Wang, 2010), but this was found not to be the only 

factor causing the observed differences in toxicity in another study (Allen et al., 

2010). Surface charge has often been reported as an important factor influencing the 

NP toxicity (El Badawy et al., 2010; Kim et al., 2013; Levard et al., 2012), and surface 

charge combined with colloidal stability in the test medium were sufficient to explain 

the observed toxicity to E. coli and Daphnia magna in case of PVP-, BPEI- and 

citrate-coated AgNP (Silva et al., 2014).  



5 

 

No general trends were reported for other properties such as hydrophilicity of the 

stabilizers or presence/absence of certain reactive groups in the coatings (Kim et al., 

2013; Levard et al., 2012). In addition, the stabilizer itself changed the toxicity as well 

as the mode of action of the investigated nanoparticles in other experimental studies 

(Baumann et al., 2014a; Bozich et al., 2014; Dominguez et al., 2015).  

While the relation between AgNP properties and short-term aquatic toxicity has been 

the focus of several studies, chronic toxicity is somewhat overlooked. To our 

knowledge, only one study used more than one AgNP type in a chronic Daphnia test 

(Blinova et al., 2013). The investigation of longer-term exposure to low 

concentrations is of special interest, as predicted environmental concentrations of 

AgNP are in the range of ng L-1, so they are much lower than the concentration levels 

usually used in chronic tests that are in the µg L-1 range (Batley et al., 2013; Fabrega 

et al., 2011; Gottschalk et al., 2013). Besides, most acute tests do not include 

feeding. For Daphnia tests feeding implies the addition of algae to the test system. 

Though algae are an important part of the environmental ecosystem, their presence 

in the test system may influence the AgNP behavior and alter the exposure 

conditions in comparison to the acute setup. In addition, AgNP behavior and toxicity 

are strongly affected by the materials chosen for the given test system (Sekine et al., 

2015). Consequently, the question of how stabilizers influence chronic toxicity can 

hardly be answered by comparing different studies with differently stabilized AgNPs, 

but needs to be tested in the same test setup.  

In the present study, we investigated whether chronic toxicity of two differently 

stabilized AgNPs can be linked to their behavior in the test medium. In addition to 

measurements of colloidal stability in the test medium, the fate of both AgNPs, 

citrate-coated (citAgNP) and detergent-stabilized (detAgNP), in the test system was 
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analyzed using mass-balance analysis during a typical media exchange period to 

assess differences in AgNP behavior under test conditions in more detail. The 

relation between AgNP behavior in tests and toxicity was further analyzed by 

comparing uptake and depuration of both AgNP types by D. magna on a short-time 

scale and by measuring silver body burden at the end of the chronic test. We 

expected citAgNP to be of lower colloidal stability in the ion-rich test medium, Elendt 

M7, resulting in lower silver concentrations in the aquatic phase, lower uptake and 

lower toxicity compared to detAgNP. Aside from this difference in toxic intensity, we 

expected the sensitivity of the different endpoints of the chronic test, such as 

reproduction, growth or mortality, to be similar in animals exposed to the two AgNPs. 
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2. Materials & Methods 

 

2.1 Chemicals and Test Dispersions 

 

The AgNP were citrate-coated AgNP (citAgNP) from Cline Scientific AB (Gothenburg, 

Sweden) and sterically stabilized AgNP (detAgNP) from Ras Materials GmbH 

(Regensburg, Germany; reference material NM-300K). Both AgNPs were of spherical 

shape and of similar initial size (20-30 nm). citAgNPs were supplied as 20 mg Ag L-1 

suspension and used directly to prepare test dispersions. detAgNPs were delivered 

as 10.16 wt% Ag suspension and were diluted twice before use: first, to a suspension 

of 2 wt% Ag with Milli-Q water (Merck KGaA), second to a suspension of 10 mg Ag L-

1 using Elendt M7 medium prepared according to OECD guideline No. 211 

(Organisation for Economic Co-operation and Development, 1998) after sonication 

(15min, water bath, UR 1, Retsch) of the Milli-Q diluted suspension. This 10 mg Ag L-

1 AgNP dispersion in Elendt M7 medium was used as a stock for all test dispersions 

with detAgNP without additional sonication. Both AgNP stock dispersions were stored 

at 4°C in the dark until use. All experiments were conducted using Elendt M7 medium 

as diluting agent for the AgNP dispersions and the pH was kept stable in the range of 

7.9 and 8.3 (SensION+ pH3, Hach-Lange).  

 

2.2 Test Organisms 

 

Daphnia magna were originally collected in Birkedammen, Denmark, in 1978, and 

were cultured continuously afterwards in the laboratory of the Environmental 

Engineering Department of the Technical University of Denmark. Elendt M7 medium 
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with a density of one individual per 100 mL at 20°C with 16:8 h light-dark cycle and 

daily feeding by an automatic pump with the green algae Pseudokirchneriella 

subcapitata were used for culturing. Algae were cultured using aeration and 

permanent illumination until an approximate cell density of 106 cells mL-1. For 

feeding, algae were concentrated at 4°C for two to three days by settlement and 

counted using a particle counter (Coulter Counter Z2, Beckmann Coulter). The 

carbon content was calculated according to relationship provided in Hailing-Sørensen 

et al. (1996), where 104 cells mL-1 correspond to 0.1 mg C L-1. 

 

2.3 Particle Characterization 

 

To estimate how both AgNPs behave during the chronic test, particles were 

characterized by measuring both particle size, as hydrodynamic diameter, and zeta 

potential in the test medium using a Zetasizer Nano ZS (Malvern Instruments Ltd.) 

with 173° backscattering angle at 25 °C with an equilibration time of 60 s and three 

repeats per sample. Samples were prepared to represent the conditions in the 

chronic test as closely as possible using the same volume of Elendt M7 medium, 

temperature and light intensity as in the chronic test. However, no food could be 

added to the samples, as the algae would have disturbed the particle measurements. 

In addition, the used silver concentration of 1 mg Ag L-1 was higher than what was 

used in all further experiments, but being at the lower limit of detection for particle 

characterization with the used device. Samples for size and surface potential 

measurements were taken at 0, 1, 2, 4, 6, 24 and 48 h in duplicates.  

To visually compare the shape and the behavior of the two AgNP, Transmission 

Electron Microscopy (TEM) images of the stock dispersions were made using a 
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Tecnai T20 G2 (FEI). The samples were prepared by drying a 4 µL drop of each 

AgNP dispersion on a copper grid covered with carbon film (Agar Scientific). 

 

2.4 Experiments 

 

All experiments were conducted at 20 ± 0.2°C in a climate room with a 16:8 light-

dark-cycle with 0.15 mg C L-1 d-1 animal-1 of a Pseudokirchneriella subcapitata culture 

resuspended in Elendt M7 as food source. For all experiments, < 24 h old neonates 

were used. To avoid spatial effects, all test vessels were rotated daily. 

Samples for silver analysis were prepared using 65% nitric acid and stored in the 

dark at 4°C until measurement. Medium silver concentrations as well as silver in D. 

magna and at the beakers were measured using Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) (7700x Series ICP-MS, Agilent Technologies Inc.).  Samples 

of ionic silver in the test medium were measured by graphite furnace atomic 

adsorption spectrometry (C GF-AAS; GF 90 and Solaar 989QZ, Unicam) after 

ultracentrifugation (Vivaspin 500, 3000kD filters, Sartorius Stedim Biotech GmbH). 

 

2.4.1 Mass Balance Analysis 

 

For mass balance analysis, a three-day media exchange period was used (72 h). 

Test conditions were set as described above (2.4). Two testing concentrations (10 

and 30 µg Ag L-1) were used for both AgNP types in triplicate. Apart from that, a 

control sample of the pure test medium and samples of all test dispersions at the 

start of the experiment were taken. Sampling was done after 24 and 72 h and 

included: 1) silver in the test medium, 2) ionic silver in the test medium, 3) silver in/on 
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the test organisms, and, 4) silver attached to the test vessel surface. For each 

sampling, one beaker was chosen for samples 1 to 4 and 9 additional beakers were 

used for sample 3 to pass the detection limit of the ICP-MS. Medium samples (1) 

were taken from the middle of the beaker and prepared as described above (2.4). 

Ionic silver samples were taken from the same location and centrifuged at 10,000 g 

for 30 min (Multifuge X3R, Thermo Fisher Scientific) using ultracentrifugation cups 

(Vivaspin 500, Sartorius Stedim Biotech GmbH). A subsample from the filtrate was 

acidified with 1% HNO3 and stored in the dark until measurement. Ten D. magna 

were collected with gauze, and digested using concentrated HNO3 in the dark. Silver 

adsorbed to the beaker was sampled as follows: beakers were emptied, rinsed two 

times with concentrated HNO3. A subsample of the washing solution was used for 

analysis and immediately diluted with Milli-Q water. All samples for ICP-MS (1,3,4) 

were stored for 48 h in the dark before diluting all samples to a content of 1% HNO3 

with Milli-Q water for measurements. 

 

2.4.2 Uptake and Depuration Experiment 

 

For testing the silver uptake, neonates were exposed to a nominal concentration of 

30 µg Ag L-1 for 24 h in triplicates. The test conditions were as described above (2.4), 

except the animal density which was 10 neonates in 100 mL. Sampling took place 

after 2, 4, 6, and 24 h during uptake and depuration. Before the start of the 

depuration, all remaining neonates were rinsed in Elendt M7 to remove silver loosely 

attached to their carapaces and to reduce transfer of AgNP to the clean medium. 

Samples of the test medium were taken during the uptake phase to be able to relate 
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silver in the test organisms to silver present in the test dispersion. A control without 

silver was also included and sampled at the end of the experiment. 

 

2.4.3 Chronic Daphnia Test 

 

The chronic Daphnia test was conducted according to the OECD guideline No. 211 

(Organisation for Economic Co-operation and Development, 1998). Feeding took 

place with every media exchange every two to three days. To overcome variance in 

exposure conditions due to differences in test dispersion preparation, a time-related 

protocol was used including all steps from test dispersion preparation to transfer of 

neonates. To minimize losses of AgNP from the test medium, two sets of the required 

number of beakers were pre-soaked with their corresponding test dispersion for 24 h. 

These beakers were used in turns throughout the test and cleaned manually after 

use to remove any loosely attached AgNP and surplus of algae fed. Five nominal 

concentrations (5, 10, 15, 30, and 60 µg Ag L-1) and a control were used for both 

AgNPs. Mortality and reproduction were controlled daily; number of molts was 

counted with every medium exchange. At the end of the test, animals were collected 

individually, and the size was measured using a camera-connected (Go-5, Q-Imaging 

Inc.) stereomicroscope (M7_6, Leica Microsystems), and picture analysis software (Q 

Capture Pro. 6.0, version 6.0.0.605 by Media Cybernetics Inc. and Q-Imaging Inc.). 

Afterwards, animals were carefully dried, weighed and acid-digested for ICP-MS 

analysis of their silver content (body burden). The analyzed endpoints were mortality, 

molting, size and silver content at the end of experiment, and reproduction 

(cumulative number of alive and aborted neonates, number of reproductions, mean 

number of alive neonates per reproduction, and onset of reproduction including the 
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number of alive and aborted neonates). All neonates without movement within 15 s 

and all unhatched eggs were counted as aborted neonates in this study. One sample 

of the actual silver concentration in the test medium was taken in the beginning and 

the end of every medium exchange (9 in number). Due to the large number of 

medium samples, only the highest AgNP concentration of each AgNP was measured 

by ICP-MS. The actual concentrations for these two data sets were calculated as 

time-weighted mean as described in the guideline (Annex 6, OECD No. 

211,Organisation for Economic Co-operation and Development, 1998). All other 

concentrations were calculated on the basis of the proportional reduction of the time-

weighted mean from the nominal concentration at the highest silver concentration for 

each AgNP. 

 

2.5 Data analysis 

 

The measured endpoints were related to either the nominal concentration (mass-

balance analysis), actual concentration (uptake and depuration experiment) or the 

time-weighted mean concentration (chronic test). In the mass balance analysis, 

results were corrected for background (control measurements), dilution, and origin in 

each compartment. In addition, resulting amounts were related to corresponding 

initial concentrations. A similar correction was used in the uptake and depuration 

experiment (background, number of neonates per sample, dilution) and resulting 

amounts per Daphnia were also related to the corresponding medium concentration 

during the uptake phase. Body burdens from the chronic test were also related to the 

corresponding calculated concentrations (2.4.3, Table 3). 



13 

 

All data were analyzed using R, version 3.1.2, (R Foundation for Statistical 

Computing, 2015). Data were checked for homogeneity of variance using Levene's 

test and normality of errors (Shapiro-Wilk test). If both criteria were met, linear 

models (lm) or analysis of variance (ANOVA) were used with nanoparticle type, time 

and concentration as independent variables. Transformations were used to meet 

these criteria in two cases: square-root transformation for results of silver body 

burden in the mass balance analysis and log-transformation for silver body burden in 

the chronic test. If conditions for those models were not met after transformation, 

general linear models or non-parametric tests (Kruskal-Wallis test for more than two 

factor levels or Wilcoxon tests) with suitable subsets of the data were used. Some 

endpoints of the chronic Daphnia test did not show a linear relation to silver 

concentration, and were analyzed by general additive models. In this case, factors 

were added stepwise to the model to be able to separate effects from concentration 

and AgNP. ANOVAs were used to test whether significant improvement was 

achieved by increased complexity. For NOEC/LOEC determination in the chronic 

Daphnia test, datasets of each AgNP were analyzed separately by ANOVA or 

Kruskal-Wallis test with corresponding post-hoc analysis. 

An overview on the statistical analysis is given in the Supporting Information (SI, 

section S2, Table S1-S4). 
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3. Results 

 

3.1 Particle Characterization 

 

TEM analysis confirmed the spherical shape and similar core size for both AgNP 

stock dispersions (Figure 1). In the test medium, the hydrodynamic diameter (HDD) 

directly after dispersion preparation was larger for citAgNP (143 ± 13 nm) than for 

detAgNP (96 ± 1 nm) (Table 1).  

 

 

The HDD of citAgNP increased to 502 ± 311 nm during the 48 h of measurements, 

but results became increasingly uncertain, as the related polydispersity index 

increased to values around 1. The HDD of detAgNP was about 100 nm throughout, 

but some sedimented agglomerates were visible after about 24 h of exposure that 

were not included in the measurements (as indicated by the PDI in the stable range 

of 0.2 to 0.3). The surface potential was around -15 mV for citAgNP and -6 mV for 

detAgNP in all measurements whereas conductivity was similar for both AgNP types 

(Table 1). 

 

 

3.2 Mass balance analysis 

 

Ionic silver concentrations were below the detection limit of the AAS (1 µg Ag L-1) in 

all samples. Total silver in the test medium, on the test vessel, and in the test 

organism were always above the detection limit of the ICP-MS (0.5 µg Ag L-1). 
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At the beginning of the experiment, the amount of silver was higher for citAgNP (309 

± 9 ng Ag and 1123 ± 23 ng Ag) than for detAgNP (204 ± 3 ng Ag and 763 ± 7 ng Ag) 

at both nominal concentration levels, 10 and 30 µg Ag L-1.  

The amount of silver in the aqueous phase decreased significantly over time for both 

AgNP (p=0.004, Kruskal-Wallis test; Table 2, Figure S1). Medium amounts did not 

differ between the two types of AgNP, except for the direct comparison at 10 µg Ag L-

1 after 24 h (Table 2), but when related to the initially added amount of silver, medium 

concentrations were significantly higher for detAgNP (p=0.009, lm) at the higher 

concentration (Figure S1). Correspondingly, losses to the beaker increased over time 

with different slopes for both concentrations (concentration:time, p=0.005, linear 

model) (Figure S1). At both concentrations, citAgNP had significantly higher silver 

residuals at the beaker than detAgNP (10 µg Ag L-1: p=0.006, lm; 30 µg Ag L-1: 

p<0.001, lm) that were also reflected in the direct comparisons (Table 2).  When 

residuals at the beaker were expressed relative to initially added amounts of silver, 

AgNP did not affect the proportion on the beaker at the lower concentration (SI, 

Table S1), but were significantly higher for citAgNP at the higher concentration 

(p<0.001, lm) (Table 2, Figure S2, SI). 

The silver content measured in D. magna increased with increasing exposure time 

with different slopes for the used concentrations (concentration:time, p<0.001, lm 

with square-root transformation) and were significantly higher for citAgNP than 

detAgNP at the higher concentration level (p=0.008, lm) (Figure S1) that was most 

pronounced after 72 h (Table 2). Expressed as proportion of initially added silver, 

uptake of detAgNP at the lower concentration was significantly higher than for 

citAGNP with different uptake patterns over time (AgNP, p=0.033, AgNP:time, 

p=0.041, lm), but the differences were not significant in a direct comparison (Table 2) 
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3.3 Uptake and Depuration Experiment 

 

The body burden of silver in D. magna increased during 24 h for both AgNP (Figure 

2, Table S2). No difference in uptake between citAgNP and detAgNP was observed 

within 6 h of exposure, but after 24 h, the body burden of silver was significantly 

(p=0.049) higher for citAgNP (0.69 ± 0.09 ng Ag D. magna-1/ 0.046 ± 0.006 ng Ag µg 

DW-1) than for detAgNP (0.35 ± 0.08 ng Ag D. magna-1/ 0.023 ± 0.005 µg Ag ng DW-

1). The same pattern was detected when body burden was expressed in relation to 

the actual medium concentration for each sampling time. After transfer into Elendt M7 

without AgNP, the difference in body burden between the two types of AgNP was still 

detectable after 1 h of depuration (0.32 ± 0.06 ng Ag D. magna-1 for citAgNP 

compared to 0.15 ± 0.15 ng Ag D. magna-1 for detAgNP), but not significant anymore. 

Body burden of silver decreased rapidly within the first 6 h of depuration and reached 

silver body burden similar to control levels for both AgNP after 24 h (Figure 2). 

 
 

3.4 Chronic Daphnia Test 

 

The time-weighted mean concentrations of silver differed strongly from the nominal 

values and between the used AgNP (Table 3), so time-weighted mean values were 

used for all data analysis and figures. 
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According to the OECD guideline 211 requirements, the control group matched the 

validity criterion for mortality (≤ 20%), but not for reproduction, as mean reproduction 

in controls was only about 36 ± 3 neonates D. magna-1 instead of the recommended 

60 neonates D. magna-1. 

 

No response to AgNP exposure was found for molting, size and wet weight (Table 4). 

Mortality increased at the highest AgNP concentrations (19.2 and 38.5 µg Ag L-1 for 

citAgNP and 27.5 for detAgNP) with significantly higher values above 19.2 µg Ag L-1 

for citAgNP compared to control (p=0.011, glm) and without significant differences 

between concentrations for detAgNP (Table 4; SI Table S5). Reproduction showed a 

hormesis-like response to increasing silver concentrations (Figure 3a) with higher 

number of neonates at concentrations up to 10 and 15 µg Ag L-1 for citAgNP and 

detAgNP, respectively. However, the positive effect was significant only for citAgNP 

at 6.4 µg Ag L-1 (p<0.05, Kruskal-Wallis post-hoc analysis; Table 4). The start of 

reproduction did not change with increasing AgNP concentration (Table 4) while the 

number of broods, the number of neonates per brood and consequently the total 

number of neonates varied. At low AgNP concentrations, the number of neonates per 

brood increased (Figure 3b), while the number of broods was similar to control levels 

(Figure 3c, Table 4). At the highest silver concentrations, the number of neonates 

decreased below control levels (Figure 3a, Table 4). In addition, the number of 

broods decreased signifcantly for citAgNP (p<0.001, ANOVA). The initial positive 

effect of AgNP on reproduction was supported by the reduction of the number of 

aborted neonates at low concentrations (Table 4). However, differences between 

single concentrations were not significant for detAgNP (Table 4), but silver 
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concentration significantly decreased the number of broods (p=0.046, Kruskal-Wallis 

rank sum test) and increased the number of neonates per brood at low 

concentrations (p=0.023, ANOVA). 

 

The body burden of silver at the end of the chronic test increased significantly with 

increasing concentration (p<0.001, lm with log-transformation) without significant 

difference between the AgNPs (p=0.75, lm with log-transformation) when expressed 

as silver content per wet weight of animal. In the proportional analysis, significantly 

(p=0.021, ANOVA) higher body burdens were measured for citAgNP (41 ± 3 %) than 

for detAgNP (33 ± 2 %) after 21 d of AgNP exposure (Table 5). 

 



19 

 

4. Discussion 

 

The observed increase in size of citAgNP over time is in line with literature on 

agglomeration behavior of citAgNP in the presence of divalent cations and in OECD 

Daphnia medium (Baalousha et al., 2013; Tejamaya et al., 2012) and with previous 

results for this type of AgNP in Elendt M7 medium (Mackevica et al., 2015). For 

detAgNP in the same medium, colloidal instability and increasing agglomerate size 

as well as relatively stable small aggregates of about 60 nm size have been reported 

(Baumann et al., 2014b; Cupi et al., 2015; unpublished data). In the present study, 

agglomerate sizes were constant, but a bit larger than reported for the stable 

dispersions. As the same medium was used in all studies, it is more likely that 

differences in colloidal stability in the test medium are linked to test dispersion 

preparation protocols or colloidal stability in the stock dispersion. The large 

differences between studies for detAgNP underline the high importance of particle 

characterization in the test media. 

The different agglomeration behavior between citAgNP and detAgNP meets our 

expectations on their behavior during the typical period of 48 h between medium 

exchanges as well as differences between charge- and sterically stabilized AgNPs in 

various media in other studies (reviewed in: Levard et al., 2012; Sharma et al., 2014). 

The assumption that in the case of citAgNP, large aggregates sediment during the 

period between medium exchanges is supported by the link between reduced 

colloidal stability in the test medium and increased amounts of silver at the beaker in 

the mass balance analysis. In addition to agglomeration, attachment to the beaker 

may have been increased by electrostatic bonds between divalent cations and 
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charged AgNP. This additional sorption mechanism may have increased especially 

the loss of citAgNP from the test medium.  

The main difference between the AgNP behavior in the particle characterization and 

the short-term experiments are the results for body burden. Due to lower colloidal 

stability in Elendt M7, citAgNPs were expected to be lost from the medium and to be 

taken up to a lesser extent. However, body burdens were higher for citAgNP than for 

detAgNP in both short-term experiments, except for the low concentration in the 

mass balance analysis, indicating higher uptake of the more agglomerated citAgNP 

at least at high exposure concentrations. As these differences were also significant 

when body burdens were related to actual medium concentrations in the uptake and 

depuration experiment, the higher uptake cannot be explained only by higher  

medium concentrations of silver for citAgNP than for detAgNP at the same nominal 

concentration. This is supported by the results for body burden in the chronic test 

where body burdens for citAgNP were significantly higher than those for detAgNP 

when expressed as proportion of the calculated concentration. 

However, the reduced colloidal stability of citAgNP could have caused higher uptake 

directly in case of sedimentation: Daphnia are feeding on sedimented algae as well 

and in the case of higher citAgNP concentrations here, uptake of citAgNP may have 

taken place via ingestion of sedimented citAgNP agglomerates or attachments of 

those to sedimented algae. In this case, reduced colloidal stability would have 

increased internal exposure due to the feeding behavior of the test animal. Even 

though amounts of sedimented AgNP cannot be directly quantified, the amount of 

silver lost from the test system can serve as good approximation: as beakers were 

emptied after measuring silver in the medium and before measuring silver attached to 

the test vessel, sedimented AgNP would be lost from the measurement. The 
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comparison of 24 h and 72 h results of the mass-balance analysis can thus provide 

information on the degree of losses due to sedimentation. A comparison of both 

AgNPs revealed that only at 10 mg Ag L-1, losses of citAgNP from the test system 

were clearly higher than for detAgNP (about 46 % compared to a rather constant 

amount, respectively). The differences in body burdens, however, were more 

pronounced at higher concentrations. Even though the feeding from sedimented 

AgNP agglomerates remains a likely route of uptake, other reasons need to be 

responsible for differences in body burden between the used AgNPs. These reasons 

may be linked to: 1) attachment to algae, 2) the possibility to be actively filtered from 

the water column, and 3) attachment to the carapace of D. magna.  

Attachment of nanoparticles to algae has been shown for several NPs (Bouldin et al., 

2008; Röhder et al., 2014; Sadiq et al., 2011; Van Hoecke et al., 2008), but only one 

study has investigated whether surface charge affected attachment to algae (Ma and 

Lin, 2013).  

Studies investigating the uptake of NPs report higher levels for dietary than for 

waterborne uptake (Zhao and Wang, 2010), as well as reductions of uptake in the 

presence of algae (Skjolding et al., 2014). However, some studies on uptake in 

relation to colloidal stability in the test medium show that agglomerates are taken up 

in larger amounts than their smaller counterparts (Asghari et al., 2012; Kwon et al., 

2014) which may be explained by active filtration of these agglomerates as 

suggested in other studies (Rosenkranz et al., 2009; Zhao and Wang, 2010). In the 

present study, citAgNPs pass the active filtration limit for D. magna (of about 300-500 

nm; (Brendelberger, Heinz, 1991; Geller and Müller, 1981; Kwon et al., 2014) after 

about 24 h of characterization while detAgNP remain below the limit, so that active 

filtration would be an exclusive mechanism for citAgNP. 



22 

 

Attachment to the carapax has been reported for several NPs with different core 

materials and coatings (Asghari et al., 2012; Baumann et al., 2014a; Bozich et al., 

2014; Dabrunz et al., 2011; Zhao and Wang, 2012). In most cases, it caused 

reduction or even inhibition of molting (Baumann et al., 2014a; Bozich et al., 2014; 

Dabrunz et al., 2011) which was not the case in the present study indicating low 

levels of attachment of the AgNPs to the exoskeleton here.  

Even though additional experiments, e.g. with radioactive isotopes of silver as 

described elsewhere (Coutris et al., 2012; Sekine et al., 2015), would be necessary 

to prove the reasons for higher body burden of citAgNP than detAgNP, a higher 

uptake due to ingestion seems most likely at the moment. Overall, the results of the 

short-term experiments illustrate that the organisms added to the test system (algae 

and/or Daphnids) affected the behavior of both AgNPs causing results contradictory 

to the conclusion from the particle characterization. 

 

The reduced reproduction in the chronic test can be explained by a deviating feeding 

regime, as amount of food is one of the main factors driving the reproduction 

(Enserink et al., 1993): the actual carbon content of the used algae (SI, section S1) 

was about 0.5 times lower than the carbon content based on the used equation.  

However, previous results with citAgNP (Mackevica et al., 2015) showed that 

differences in feeding regime resulted in a similar toxicity pattern, with lower toxicity 

at higher food concentrations. As we were mainly interested to compare the two 

differently stabilized AgNP, we consider the current study to still reflect the toxicity of 

the used AgNP in an adequate manner. 

Toxic effects of both AgNP on survival and reproduction were detected, but not on 

the time to first offspring (Table 4). In contrast to previous results with citAgNP 
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(Mackevica et al., 2015), animal size was not affected in the present study. However, 

the behavior of citAgNP differed between the studies, probably causing this 

difference in toxicity pattern. PVP- and collargol-coated AgNP have also been 

reported to not affect size during chronic exposure (Blinova et al., 2013), while size 

was the most sensitive endpoint in case of carbonate-coated AgNP (Zhao and Wang, 

2011). Still, effects on reproduction and survival were noted in all studies.  

This is similar to results for ionic silver which strongly affects survival and 

reproduction (Bianchini and Wood, 2003) but not growth or molting (Naddy et al., 

2007). However, in the present study, dissolved silver levels were below the 

detection limit (< 1 µg Ag L-1) indicating that observed effects were most likely caused 

by the used AgNP themselves, not by released ions. 

The NOEC values for reproduction in the present study were higher than the highest 

concentration tested, except for the effect of citAgNP on the number of broods 

(NOEC: 9.6 µg Ag L-1; LOEC: 19.2 µg Ag L-1). For citAgNP, mortality was 100% at 

the highest concentration (38.5 µg Ag L-1) and the LOEC was the same as for 

number of broods, indicating mortality to be equally sensitive as reproduction. As 

mortality was 60 % at the highest concentration of detAgNP, it is likely that a similar 

picture can be detected for detAgNP when higher concentrations are tested. In our 

previous study, the LOEC for reproduction was at a nominal concentration of 40 µg 

Ag L-1, which is in good agreement with the present results, but the LOEC for 

mortality was lower (nominal: 20 µg Ag L-1) indicating higher sensitivity of mortality 

than reproduction. Higher sensitivity for mortality than for reproduction has also been 

reported for collargol- and PVP-coated AgNP (Blinova et al., 2013), while growth was 

the most sensitive endpoint in case of carbonate-coated AgNP (Zhao and Wang, 

2011). The endpoints affected by 21 d AgNP exposure were similar for both AgNP in 
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the present study, which is in line with Blinova et al. (2013) where PVP- and collargol-

coated AgNP varied in toxicity, but not in affected endpoints. Systematic 

investigations on stabilizer effects on AgNP toxicity are needed to identify whether 

this is a general pattern in AgNP toxicity. 

Besides comparing the toxicity of the used AgNP, one aim of the present study was 

to link AgNP behavior and toxicity by using the results of particle characterization, 

short-term experiments and chronic exposure. The short-term experiments as well as 

the results for body burden in the chronic test show higher uptake of citAgNP than of 

detAgNP, which is in line with the higher toxicity observed for this kind of AgNP and 

may be caused by negative effects of AgNP after ingestion. Several studies 

addressed the uptake and the resulting effect of various NP on the midgut epithelium 

of Daphnia (Asghari et al., 2012; Feswick et al., 2013; Heinlaan et al., 2011; Khan et 

al., 2014; Kwon et al., 2014; Lovern et al., 2008; Rosenkranz et al., 2009; L. M. 

Skjolding et al., 2014; L.M. Skjolding et al., 2014) with different results related to the 

colloidal stability of NP: in some studies, mainly single NPs were found in the gut 

(Heinlaan et al., 2011; Khan et al., 2014; Lovern et al., 2008), while another study 

showed that more agglomerated NP caused higher damage in to the midgut 

epithelium (Kwon et al., 2014). However, the midgut epithelium is protected by the 

peritrophic membrane (PTM) and citAgNP were mainly larger than the PTM 

permeability of 130 nm (Avtsyn and Petrova, 1986; Hansen and Peters, 1997) while 

detAgNP remained below. According to this size limit, detAgNP should have caused 

higher toxicity to the midgut epithelium despite the lower body burden. 

A possible explanation may be that the sterical stabilization hindered direct contact 

between the AgNP core and the midgut epithelium, while the charged stabilization of 

citAgNP may have even enabled interactions between citAgNP and the midgut cells. 
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The presence/absence of certain chemical groups in the stabilizer or the stabilizer 

identity has been shown to cause differences in toxicity also in other studies 

(Baumann et al., 2014a; Kim et al., 2013; Moyano and Rotello, 2011). However, it is 

also possible that ingested citAgNPs were more toxic than detAgNPs due to their 

higher dissolution rates. Even though the pH in the midgut is in the neutral to basic 

range (Hasler, 1935; von Elert et al., 2004), a dissolution of AgNP after ingestion 

cannot be excluded and due to their internalization, also very low levels of silver ions 

would cause severe effects on the test organism. The body burden at the lowest 

concentration causing a negative effect on reproduction and survival was 8.2 µg g 

wet weight -1. The chronic NOEC for ionic silver has been reported being below 3.0 to 

5.0 µg Ag L-1 (Bianchini and Wood, 2003; Naddy et al., 2007) which is clearly lower 

than the body burden reported in the present study. Measurements of fate inside the 

digestive tract and cell toxicity studies assessing the toxic mechanism of the used 

AgNP are required to identify the exact reason for the observed difference in toxicity. 

However, we were able to link the difference in toxicity to differences in body burden 

which were related to the effect of the test organisms on the AgNP behavior and also 

to differences colloidal stability.  
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Conclusion 

 

In the present study, charge-stabilized AgNP (citAgNP) were more toxic than 

sterically stabilized AgNP (detAgNP) which related well to their body burden 

measured in all experiments (citAgNP > detAgNP), and can be explained by 

differences in the direct contact between AgNP, algae used as feed and D. magna: 

even if differences in silver concentrations in the medium are considered, body 

burden as well as toxicity of citAgNP remained higher. These results illustrate the 

importance of stabilizer-mediated interactions between test organisms and 

nanoparticles.  

These differences in body burden at the end of the chronic test were already 

detectable in the used short-term experiments (uptake and depuration and mass-

balance analysis) making them a helpful tool for systematic investigation of the effect 

of the stabilizer on (Ag)NP behavior under conditions more similar to environmental 

and test conditions than characterization in test medium. Measuring the behavior of 

(Ag)NP in the presence of food is of special interest for all consumers, like the D. 

magna in the present study, to interpret results of long-term experiments and the role 

of the food, like the algae, in uptake of nanoparticles. 
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Figure 1: TEM image of citAgNP (a) and of detAgNP (b) in the corresponding stock 
dispersions. 



32 

 

 

 

Figure 2: Actual silver concentration in the test dispersion during the uptake phase and silver 
body burden of D. magna during the uptake and depuration phases for both AgNPs. All 
values are given as mean values with standard errors (n=3). Pluses indicate sampling during 
the uptake phase, minuses indicate sampling during the depuration phase. Asterisks mark 
significant differences between body burden of citAgNP and detAgNP. a) silver concentration 
during the uptake phase, b) amount of silver per Daphnia during the uptake phase, and c) 
during the depuration phase. 
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Figure 3: Relationship between concentration of silver in the test dispersion and reproduction 
for both AgNPs. All values are given as mean values for all surviving adults (SI, Table S5) 
with standard errors. * marks significant differences to the control for citAgNP (p<0.005). No 
significant differences were observed in the case of detAgNP. a) cumulative number of 
neonates, b) number of neonates per reproduction, c) number of reproductive events. 
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Table 1: Hydrodynamic diameter as z-average, and corresponding polydispersity index; zeta-
potential and conductivity at different times after mixing in OECD M7 medium. All values are 
given as mean values with standard errors (n=3). 
 
Nanoparticle Time Hydro-

dynamic 
Diameter 
[nm] 

Polydispersity 
Index 

Zeta-Potential 
[mV] 

Conductivity 
[mV] 

 

citAgNP 0h 143 ± 13 0.27 ± 0.01 NA   NA   

 1h 200 ± 2 0.37 ± 0.004 -14.6 ± 0.03 0.732 ± 0 

 2h 241 ± 9 0.45 ± 0.02 -15.2 ± 0.05 0.737 ± 0.001 

 4h 277 ± 12 0.60 ± 0.06 -15.1 ± 0.39 0.719 ± 0.026 

 6h 293 ± 11 0.70 ± 0.06 -15.7 ± 0.30 0.728 ± 0.009 

 24h 345 ± 74 0.91 ± 0.09 -14.4 ± 0.18 0.709 ± 0.003 

 48h 502 ± 311 0.81 ± 0.19 -14.4 ± 0.33 0.716 ± 0.014 

detAgNP 0h 96 ± 1 0.25 ± 0.01 -5.98 ± 0.18 0.703 ± 0.004 

 1h 98 ± 6 0.24 ± 0.02 -6.28 ± 0.01 0.766 ± 0.004 

 2h 101 ± 2 0.23 ± 0.01 -6.18 ± 0.32 0.750 ± 0.020 

 4h 101 ± 3 0.27 ± 0.03 -3.15 ± 1.71 0.505 ± 0.253 

 6h 108 ± 5 0.26 ± 0.03 -6.36 ± 0.11 0.772 ± 0.006 

 24h 104 ± 1 0.29 ± 0.01 -6.59 ± 0.08 0.748 ± 0.008 

 48h 99 ± 3 0.28 ± 0.01 -6.43 ± 0.19 0.703 ± 0.039 

NA: Not analyzed 
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Table 2: Total and relative amounts of silver in the different compartments of the test system 
over time. Relative amounts are expressed in percent relative to the initially added amount of 
silver for the two different types of AgNP1.  

nominal 
concentration  
[µg Ag L-1] 

AgNP Time  
 
[h] 

Compartment Total amount of 
silver 
 
[ng Ag] 

Relative amount of 
silver  
 
[%] 

10 citAgNP 24 Medium 159 ± 9 a  51.1 ± 2.9 

   Beaker 148 ± 92  47.9 ± 29.9 

   Daphnia 0.43 ± 0.06  0.138 ± 0.018 

  72 Medium 46 ± 4   14.9 ± 1.1 

   Beaker 116 ± 13 b 37.6 ± 4.2 

   Daphnia 0.62 ± 0.09  0.199 ± 0.028  

      

 detAgNP 24 Medium 101 ± 14 a  49.3 ± 6.6 

   Beaker 29 ± 4  14.4 ± 2.0 

   Daphnia 0.30 ± 0.07  0.144 ± 0.032 

  72 Medium 67 ± 25 32.8 ± 12.0 

   Beaker 69 ± 9 b 33.7 ± 4.3 

   Daphnia 0.84 ± 0.14  0.408 ± 0.069  

      

30 citAgNP 24 Medium 498 ± 53 44.4 ± 4.8 a 

   Beaker 309 ± 19 c 27.5 ± 1.2 b 

   Daphnia 1.00 ± 0.32 0.089 ± 0.039 

  72 Medium 134 ± 4 11.9 ± 0.3  

   Beaker 412 ± 8 d 36.7 ± 0.7 c 

   Daphnia 3.49 ± 0.24 e 0.311 ± 0.021 

      

 detAgNP 24 Medium 482 ± 24 63.2 ± 3.2 a 

   Beaker 88 ± 5 c 11.5 ± 0.6 b 

   Daphnia 0.49 ± 0.05 0.064 ± 0.006 

  72 Medium 144 ± 33 18.9 ± 4.3  

   Beaker 183 ± 13 d 24.0 ± 1.6 c 

   Daphnia 2.08 ± 0.32 e 0.272 ± 0.042 
1Total and relative amounts were corrected for background, dilution, and sampling 
procedure. The relative amounts were calculated in relation to the initially added amount of 
silver in the corresponding treatment. All values are given as mean values with standard 
errors (n=3). 
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Letters (a-e) indicate significant differences between citAgNP and detAgNP in the 
corresponding compartments of the same sampling (p<0.05).  
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Table 3: Nominal and calculated silver concentrations in the test dispersions of the chronic 
Daphnia test. 

AgNP Nominal Concentration 
  
[µg Ag L-1] 

Time-weighted mean (*) and 
calculated concentrations 
[µg Ag L-1] 

citAgNP 5   3.2  

 10   6.4  

 15   9.6 

 30   19.2  

 60  38.5* 

detAgNP 5   2.3  

 10   4.6  

 15   6.9  

 30   13.8 

 60  27.5* 

* indicate the time-weighted mean based on silver concentration measurements (n=9). 
Calculations of the time-weighted mean were done according to the description in the 
guideline (OECD No.211, Annex 6). The proportional relation between time-weighted mean 
and nominal concentration in the measured concentration of each AgNP was used to 
calculate all other actual concentrations (citAgNP: 64%, detAgNP 46%). 
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Table 4: Overview on all investigated biological endpoints and their response to AgNP 
exposure in terms of statistically significant relationships (p<0.05). Significant differences to 
control values are given for citAgNP only, as no significant differences to control values were 
found for detAgNP. 

Endpoint: Significant influence by: Significant differences 
to control values at:  
[µg Ag L-1] 

 Concen-
tration 

Nano-
particle 

Inter-
action 

 
p-value 

Increase decrease 

       

Reproduction related: 

Offspring at 1st 
reproduction 

Yes Yes No 0.0285 None None 

Aborted 
offspring1 at 1st 
reproduction 

No No No >0.005 -- -- 

Cumulative 
number of 
offspring 

Yes Yes No <0.001 6.4  19.2  

Cumulative 
number of 
aborted offspring1 

Yes No NA 0.004 6.4; 9.1  None 

Offspring per 
reproduction 

Yes Yes No <0.001 6.4  None 

Number of 
reproductions 

Yes Yes Yes <0.001 None 19.2  

Time to 1st 
offspring 

No No No >0.005 -- -- 

       

Growth related:  

Molting No No No >0.005 -- -- 

Size No No No >0.005 -- -- 

Wet weight No No No >0.005 -- -- 

       

Survival related:  

Mortality NA NA NA NA None 19.2  

NA: The data did not meet the criteria for statistical analysis. --: A comparison to control was 
not made due to missing responses to AgNP exposure. None: despite a significant effect of 
AgNP exposure, differences to control values were not significant. 
1 all offspring without visible movement within 15 s and unhatched eggs were 
considered as aborted 
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Table 5: Mean silver body burden of D. magna in relation to silver concentration and AgNP 
expressed as amount per animal and proportion of actual concentration per animal. 

Nanoparticle Silver 
Concentration  
[µg Ag L-1] 

Body burden as 
amount  
[µg Ag Daphnia-1] 

Body burden as 
proportion of the actual 
silver concentration [ 
% Daphnia-1] 

citAgNP 0 Not detectable Not detectable 

 3.21 1.25 ± 0.20  0.39 ± 0.06  

 6.41 2.81 ± 0.36  0.44 ± 0.06  

 9.61 3.75 ± 0.50 0.39 ± 0.05  

 19.23 1.37 ± 0.69 0.43 ± 0.04  

 38.45 NA NA 

detAgNP 0 Not detectable Not detectable 

 2.29 0.77 ± 0.08  0.34 ± 0.04  

 4.59 1.67 ± 0.20  0.36 ± 0.05   

 6.88 2.04 ± 0.32  0.30 ± 0.05  

 13.76 4.56 ± 0.43 0.33 ± 0.03 

 27.52 4.04 ± 2.33 0.31 ± 0.08 

All values are given as mean with standard errors (n according to SI, Table S5). NA 
indicates treatments without surviving adult Daphnia at the end of the test. 
 

 


