Tracking Electronic Pathways in Energy Materials by Low Voltage Scanning Electron Microscopy

Bentzen, Janet Jonna; Thydén, Karl Tor Sune

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tracking Electronic Pathways in Energy Materials by Low Voltage Scanning Electron Microscopy
Janet J. Bentzen*1 and Karl T. S. Thydén1

1Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde, Denmark

*E-mail: jabe@dtu.dk

Keywords: electronic pathways, surface potential contrast, low voltage SEM, solid oxide cells, energy materials.

Electrodes for energy conversion devices such as solid oxide fuel cells (SOFC) and electrolysis cells (SOEC) commonly consist of mixtures of electronically and ionically conducting ceramic and metallic materials in order to transport electrons and facilitate charge transfer to/from the electrolyte. For optimal performance it is paramount that the electronically conducting phases are well interconnected throughout the electrodes to create the required electronic connection from the electrolyte to the external circuit. Applying low voltage scanning electron microscopy and surface potential contrast [1] (Fig. 1a) the interconnected electronic pathways within the electrodes can be tracked (Fig. 1b) and evaluated. Examples of evaluation of microstructures resulting from different processing and performance degradation phenomena will be presented.

![Figure 1](image_url)

Figure 1: a) Secondary electron coefficient for Ni as a function of acceleration voltage illustrating the contrast mechanism; b) Example of tracking the electronic pathways in both electrodes of a solid oxide electrolyzer cell.