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Abstract 

In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential 

life cycle assessment (LCA) evaluated the environmental impacts associated with the production of 

heat and electricity from one hectare of Danish arable land cultivated with three perennial crops:  

ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four 

conversion pathways were assessed against a fossil fuel reference: I) anaerobic co-digestion with 

manure, II) gasification, III) combustion in small-to-medium scale biomass combined heat and power 

(CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and 

indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the 

LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, 

namely willow and Miscanthus co-firing, allowed for an improvement as compared to the reference (-

82 and -45 t CO2-eq. ha-1, respectively). The indirect land use changes impact was quantified as 310 

±170 t CO2-eq. ha-1, representing a paramount average of 41% of the induced greenhouse gas 

emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land 

use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA 

results.  



3 
 

1. Introduction 

The ambition of the energy policy in Denmark is to reach a 100% renewable energy system by 2050 

(1). Several studies have been conducted to design and optimize such a system, and these all highlight 

the indispensability of a biomass potential of around 35%–50% of the overall energy consumption (2-

5). There are several reasons explaining why biomass is so attractive for energy systems entirely free of 

fossil energy (6). Its key advantage, however, lies in the fact that it is storable, entitling it to be used for 

balancing the fluctuating energy production from intermittent sources like wind and solar power (1, 2, 

6, 7).  

Though biomass is a renewable energy source, it is not unlimited in supply, and does involve 

considerable environmental costs. One of the most critical costs of bioenergy relates to its incidence on 

land use changes (LUC) (8-10), i.e. the conversion of land from one use (e.g. forest, grassland or 

food/feed crop cultivation) to another use (e.g. energy crop cultivation).  

One way to minimize these LUC impacts could be through favouring the cultivation of 

perennial energy crops (e.g. perennial ryegrass, willow and Miscanthus) instead of annual crops (e.g. 

maize, barley, wheat, sugar beet). In fact, it is acknowledged that perennial energy crops nowadays 

represent the most efficient and sustainable feedstock available for bioenergy production in temperate 

regions (11-13). Among others, perennial energy crops generally present a more efficient nutrient use 

than their annual counterpart, which involves lower requirements for annual inputs of fertilizers, and 

consequently lower environmental impacts related to fertilization (14). Moreover, in contrast to annual 

crops whose cultivation tends to accelerate the depletion of soil organic carbon (SOC), perennial 

energy crops allow for an accumulation of SOC (14). They generally also present higher yields, involve 

less soil disturbances due to their longer life cycle duration, and have a better incidence on biodiversity 

(12). For these reasons, this study focuses on bioenergy production from perennial energy crops only.  

The goal of this study is to assess the environmental impacts associated with the production of 

bioenergy (heat and electricity) from 1 hectare (ha) of Danish arable land cultivated with ryegrass, 

willow and Miscanthus, considering four different biomass-to-energy (BtE) conversion pathways: i) 

anaerobic co-digestion with manure, ii) gasification, iii) combustion in small-to-medium scale biomass 

combined heat and power (CHP) plants and iv) co-firing in large scale coal-fired CHP plants.  
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2. Material and methods 

2.1 Life cycle assessment model 

2.1.1 Scope and functional unit 

The environmental assessment presented in this study was performed using consequential life cycle 

assessment (LCA) (15, 16). The functional unit upon which all input and output flows were expressed 

was 1 ha of agricultural land used to grow the selected energy crops. The geographical scope 

considered for the LCA was Denmark, i.e. the data inventory for crops cultivation and BtE plants were 

specific for Danish conditions. Similarly, the legislative context of Denmark (e.g. fertilization) was 

considered. The temporal scope considered was 20 years, i.e. all assessed systems were operated for 

20y duration.  

2.1.2 Impact assessment 

The life cycle impact assessment was carried out according to the Danish EDIP 2003 method (17, 18) 

for the environmental impact categories global warming (aggregated emissions over a 100 years 

horizon) (GW) and aquatic eutrophication (distinguishing between nitrogen and phosphorus being the 

limiting nutrient for growth) (EP (N) and EP (P), respectively). To this, an impact category named 

“Phosphorous as resource” was added, in order to reflect the benefits associated with phosphorous (P) 

savings, based on the Impact 2002+ method (19). Background LCA data were based on the Ecoinvent 

v.2.2 database, and the assessment was facilitated by the LCA software SimaPro 7.3.3 (20). Foreground 

LCA data essentially included Danish-specific data for agricultural and energy conversion processes, 

and the impacts associated with capital goods (foreground data only) as well as those related to 

transportation of the residues (i.e. ash and digestate) have been excluded. 

2.2 Scenarios modeling and system boundary 

The systems assessed considered three perennial crops (ryegrass, willow and Miscanthus) and four BtE 

conversion technologies (anaerobic co-digestion, gasification, combustion in small-to-medium scale 

biomass CHP plants and co-firing in large scale coal-fired CHP plants). A total of 12 scenarios have 

therefore been assessed. The system boundary conditions are illustrated in Figure 1, for the case of 

ryegrass anaerobic co-digestion. The process flow diagrams for the other scenarios are similar, though 
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the pre-treatments and the flows differ, as shown in Table S2 and Figures S1-S11 of the Supporting 

Information (SI). 

For all BtE technologies, the energy produced was considered to be used for CHP production, 

thereby substituting the production of marginal heat and power. In the present study, the marginal 

electricity source was assumed to be from coal-fired power plants conformingly with (21, 22), and the 

marginal heat from natural gas-based domestic boiler, this being the fuel which is most likely to react 

to a marginal change in the heat demanded/supplied (23) (further detailed in SI). 

As illustrated in Figure 1, the digestate produced from anaerobic digestion was used as a 

fertilizer (for N, P and K), which avoided marginal mineral N, P and K fertilizers to be produced and 

used, based on the content of N, P and K of the digestate. The marginal N, P and K fertilizers 

considered were calcium ammonium nitrate, diammonium phosphate and potassium chloride, 

respectively, conformingly with (14, 24). Further, based on the model from (24), it was considered that 

the manure portion used for co-digestion would have otherwise been stored and applied on land, 

without digestion or other treatment. 

The three thermal bioenergy scenarios (i.e. gasification, combustion and co-firing) implied 

negligible residual unconverted carbon that is found in the bottom ashes, fly ashes and eventual waste 

water. The bottom ashes were assumed to be used for road construction, substituting for natural 

aggregates, while the fly ashes were assumed to be utilized for backfilling of old salt mines with 

negligible environmental impacts (25). Treatment of waste water was not included.    

All bioenergy scenarios involved the use of Danish agricultural land in order to grow the energy 

crops. In a country like Denmark, where 68% of the total land is used for cropland and where policies 

have been adopted in order to double the forested area (nowadays representing ca. 13% of the total 

land) (26), very limited conversion from forest or alike nature types is occurring. Most likely, the land 

needed to grow the energy crops will be taken from actual Danish cropland, involving that one crop 

cultivated today will be displaced. Such a displaced crop is, in consequential LCA, referred to as the 

marginal crop. In this study, the marginal crop was assumed to be spring barley, based on (22, 27, 28). 

Based on the consequential LCA logic, as well as on recent studies (9, 29, 30), this resulting drop in 

supply of Danish spring barley will cause a relative increase in agricultural prices, which then provide 

incentives to increase the production elsewhere. Such increased crop production may stem from both 

increased yield and land conversion to cropland, the latter being also referred to as indirect land use 
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change (iLUC) (9, 29, 30). As illustrated in Figure 1, and as in recent iLUC studies (10, 31, 32), this 

study included the environmental impacts of the latter only.  

 

*Figure 1* 

2.3 Life cycle inventory (LCI) 

2.3.1 Crops 

The LCI of all crops was based on a recent Danish consequential LCI (14), which comprises all 

processes involved during the cultivation stage, up to harvest. This included the tillage activities, 

liming, propagation (seed, rhizome and cutting production), plant protection, fertilization, 

sowing/planting, harvest and transport from farm to field. A sandy loam soil has been considered for all 

crops, as well as precipitations of 964 mm y-1. For Miscanthus and willow, the C turnover rate in the 

topsoil was considered to be reduced by 25% in response to the absence of tillage over many years. For 

all crops, the fertilization operations were performed in conformity with Danish regulations (33, 34), 

involving an upper limit for the amount of N to be applied on the field, both as mineral fertilizer and 

animal slurry.  

Based on (14), the life cycle considered for perennial ryegrass (short-term ley), willow and 

Miscanthus plantations were respectively 2y, 21y (6 cuts; 3 years harvest cycle, but first harvest after 4 

years; 1 year establishment; 1 year preparation before planting) and 20y (18 cuts; 1 year establishment: 

1 year preparation before planting). Given the 20y temporal scope of the LCA, this means that the life 

cycle of ryegrass, willow and Miscanthus is respectively occurring 10, 0.95 and 1 time. Further, it was 

considered that ryegrass was harvested in summer, willow in the vegetative rest period (in the period 

around November to February) and Miscanthus during the spring season. 

 

2.3.2 BtE conversion technologies and pre-treatments 

Anaerobic digestion was modelled as mesophilic co-digestion of the respective energy crops with raw 

pig manure. Manure represents one of the most abundant domestically available biomass resources in 

Denmark (ca. 23-34 PJ), which is nowadays significantly underexploited for energy production (5). 

The current management of raw manure consists to store it in an outdoor structure until it can be used 
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as an organic fertilizer on agricultural land, which leads to large impacts on most environmental 

compartments, mainly global warming and eutrophication (24). Hence, co-digestion of manure with 

carbon-rich biomass may represent a viable alternative to produce bioenergy and improve manure 

management. The modelled methane yields for ryegrass, willow, Miscanthus and raw pig manure were, 

respectively, 290, 240, 250 and 320 Nm3 t-1VS (see SI). Based on (24), the mixture of crop and raw pig 

manure was calculated in order to ensure a biomass mixture input having a dry matter (DM) content of 

10% after the first digestion step. The resulting ratio manure:crop (fresh weight basis) for co-digestion 

of ryegrass, willow and Miscanthus equaled 5.7, 6.4 and 6.7, yielding respectively 140, 160 and 130 

MJ CH4 ha-1 (Table S9). Consumption of electricity (2% of the energy in the biogas) and heat (to heat 

up the substrates from 8 to 37 ºC) was modelled according to (24). Fugitive CH4 emissions were taken 

as 1% of the produced CH4, based on recent studies (24, 35, 36). More details on the modelling of 

anaerobic digestion can be found in the SI. 

Gasification was modelled as fluidized bed gasification based on a number of reviewed studies 

(Table S5). The resulting cold gas and carbon conversion efficiency (CGE and CCE) was 70% (±15%) 

and 95% (±4%), respectively. Consumption of electricity (26 kWh Mg-1DM) was based on (36).  

Combustion was modelled as direct biomass combustion in small-to-medium scale biomass 

CHP plants, based on a thorough review of (mainly Danish) biomass CHP plants (Table S6). Average 

net electricity and heat efficiencies inventoried from this review were 27% (±2%) and 63% (±7%), 

respectively. Co-firing in large scale coal-fired CHP plants was likewise modelled, resulting to  net 

electricity and heat efficiencies of 38% (±3%) and 52% (±8%), respectively (SI).  

The air emissions from biogas and syngas combustion in gas engines as well as from biomass 

combustion in CHP plants were based on (37) (Table S7). Both biogas and syngas were assumed 

utilized in a gas engine with an average gross electricity and heat efficiency of 38% (±4%) and 52% 

(±8%) (of the LHV of the input-gas).   

Pre-treatments included on field drying (ryegrass, for all BtE conversion technologies) and 

natural drying (willow, for gasification and co-firing), size comminution (all crops, for all BtE 

conversion technologies except direct combustion) as well as steam pre-treatment for breaking the 

lignocellulosic structures of Miscanthus and willow undergoing anaerobic digestion. All these pre-

treatments are further detailed in the SI.  
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2.3.3 Other processes 

Additional processes modelled in the LCA were: crops and digestate storage, use on land (UOL) of the 

digestate, treatment of residues from thermal BtE technologies and transportation. A detailed 

description of these processes can be found in the SI. 

 

2.4 Carbon and nitrogen flow analysis 

Carbon and nitrogen flows are two of the most important flows responsible for the environmental 

impacts involved in bioenergy systems. Therefore, the C and N flows of all the scenarios assessed in 

this study have been disaggregated and calculated for all the major processes involved. This included 

the soil C changes resulting from the cultivation stage, which were calculated with the dynamic soil C 

model C-TOOL (38, 39), as detailed in (14) for all crop systems. The modeling of the other C and N 

flows was based on the equations listed in the SI. The carbon and nitrogen flow analysis was facilitated 

by the software STAN (40) allowing a quantification of the uncertainties for the most sensitive 

parameters (Table S17) and to reconcile the data when necessary. 

 

2.5 Direct and Indirect land use changes impacts 

As earlier explained, the LCA system established in this study considers that the land used for 

cultivating the energy crops would have otherwise been used for cultivating spring barley (with straw 

incorporation) for the food/feed market (Figure 1). The direct land use change (dLUC) consequence of 

this translates into the environmental impacts of cultivating the selected energy crops instead of spring 

barley (Figure 1). The environmental impacts from spring barley cultivation have been included on the 

basis of the data from (14).  

The iLUC consequence corresponds to the environmental impact of converting land nowadays 

not used for crop cultivation to cropland, as a result of the induced demand for the displaced spring 

barley. To quantify this impact, it is necessary to identify i) how much land is converted and where; 

and ii) which types of land are converted (biome types). So far, most studies attempting to quantify the 

magnitude of iLUC used econometric models to this end, e.g. (9, 10, 29, 31, 32), where the economic 

and biophysical/agricultural systems are combined into one single modeling framework. A 

comprehensive overview of partial and general equilibrium models that can be used to model iLUC is 

given in (41).  
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Most of available iLUC studies to date focused on biofuel mandates for a variety of shock sizes, 

and as such are difficult to be used directly for other applications. In (29), however, the iLUC 

consequences in terms of points i) and ii) above are identified, for a marginal increase in wheat 

consumption in 4 different countries, including Denmark. This was done using a modified version of 

the general equilibrium GTAP model (42). In the present study, the results of (29) for Denmark have 

been used as a proxy to estimate how much land is converted (due to the increased spring barley 

demand) and where. However, the CO2 impact of land conversion is not estimated in (29). In order to 

do so, the soil and vegetation C data from the Woods Hole Research Centre, as published in (9), have 

been used, and the CO2 emitted due to land conversion was calculated based on the methodology 

published in (43). Based on this methodology, it was considered that 25% of the C in the soil was 

converted to CO2 for all types of land use conversion, except when forests were converted to grassland, 

where 0% was converted. Further, it was considered that 100% of the C in vegetation was converted to 

CO2 for all forest types as well as for tropical grassland conversions, while 0% was converted for the 

remaining biome types (e.g. shrub land, non-tropical grassland, chaparral).  

 

 2.6 Sensitivity and uncertainty analysis 

Two types of uncertainties were addressed in this study (for the GW impact only), namely scenario and 

parameter uncertainties. While the former deals with the uncertainty due to the intrinsic modeling 

choices (in terms of system boundary and marginal technologies/products), the latter covers the 

uncertainty related to the quantification of the values used in the LCA model.  

Parameter uncertainties were addressed through a MonteCarlo analysis (number of simulations: 1000), 

whereas scenario uncertainties were addressed through sensitivity analyses. These included: a) 

variation (min-max) of the iLUC impacts with respect to CO2 emissions (vs. mean value assumed as 

baseline); b) winter wheat as the marginal crop for Denmark (vs. spring barley as baseline); c) coal-

based heat production as the marginal technology for heat generation (vs. natural gas-based as 

baseline); d) natural gas power plant as the marginal technology for electricity generation (vs. 

condensing coal power plant as baseline); e) mono-digestion of the crops (vs. co-digestion with manure 

as baseline); f) pre-treatment of pelletization before co-firing (vs. ‘no pelletization’ as baseline). Each 

of these changes was tested individually to assess the influence of the individual change on the overall 

LCA results.  
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A thorough description of the methodology used for sensitivity and uncertainty analysis can be 

found in the SI. 

 

3. Results and Discussion 

3.1 Carbon and nitrogen flows 

The induced C and N flows for ryegrass, willow and Miscanthus are presented in Figures S13-S18 (SI).  

 As illustrated in Figures S13-S15, more than 85% of the C input to the energy crop system (the 

most notable being the uptake from the atmosphere) ends up emitted as CO2, whether as a result of the 

cultivation stage or as a result of the final energy use. As indicated in (8, 44), many bioenergy studies 

report rather different results, as the biogenic CO2 emissions from the cultivation stage (releases from 

manure and residues not entering the soil C pool), which here represents 39%-45% (Table S8) of the C 

input fate, are not accounted for. This highlights the importance of the error made if a complete system-

based mass balance, such as the one performed in this study, is not considered. 

The C from atmospheric uptake was similar for all the three crops (about 11-12 t C ha-1y-1): for 

all crops, only about half of this C ended up in the harvested biomass, the other half ending up in the 

non-harvested above- and below-ground residues (Figures S13-S15). The biogenic CO2 emission 

related to crop cultivation (6.1 to 6.9 t CO2-C ha-1y-1) was also in the same order of magnitude for all 

crops (Figure S13-S15; Table S8). The biogenic carbon emission from the final energy use, however, 

varied significantly more (2.9 to 6.0 t CO2-C ha-1y-1), as detailed in Table S8. This reflects the 

importance of two main parameters: the crop yield and the BtE technology. In fact, the biogenic CO2 

emission from the final energy use was the greatest for thermal treatments (combustion and 

gasification), where 95%-100% of the carbon was emitted as CO2, whereas it was significantly lower 

for biological treatment (anaerobic co-digestion), where only ca. 41%-56% of the crop (and raw 

manure) carbon was gasified (Table S8). This unconverted C during anaerobic co-digestion is 

ultimately applied on land, through the digestate. However, this did not represent a significant carbon 

sink, as more than two thirds of this C was released as CO2, rather than sequestrated in the soil (Figure 

S13-S15). This is in accordance with previous findings (e.g. (24)). 

The variation in SOC due to dLUC was positive (i.e. the SOC content was increased) for all 

crop systems. This was expected, since spring barley, an annual crop with a much lower yield than any 
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of the perennial energy crops considered here, involves losses instead of gains in soil C, as illustrated in 

(14). The modeled ∆SOC was very similar for the three crops (about 0.7 t C ha-1y-1). The avoided CO2 

emissions resulting from the substitution of fossil carbon were proportional to the amount of bioenergy 

produced; this ranged from 3.9 (anaerobic digestion of Miscanthus) to 8.3 (co-firing of willow) t C ha-

1y-1 (Table S8). 

 As opposed to C, the outputs of N flows were more diversified among the individual flows. The 

most significant N flows occurred during the UOL of the digestate for the anaerobic co-digestion 

scenarios, and during the cultivation stage for the other scenarios (Figures S16-S18; Table S8). 

Ryegrass showed the highest emissions of N during the cultivation phase; these occurred as a 

consequence of the higher nitrogen fertilizer requirements of ryegrass (450 kg N ha-1y-1) compared to 

willow (170 kg N ha-1y-1) and Miscanthus (70 kg N ha-1y-1). These fertilization rates (and the related N-

based emissions) are based on today’s practices, but should be seen as reflecting the highest end of the 

interval. In fact, Miscanthus and willow are relatively new crops, and it can be expected that lower 

application rates will be required as insight is gained on the optimal management of these crops (45, 

46). Similarly, lower N application could be considered for ryegrass dedicated to bioenergy, where 

protein production is not the focus (as in the case of forage ryegrass). The N-related emissions at the 

UOL stage (anaerobic co-digestion scenarios) were similar for all the three crops, as a consequence of 

the Danish legislation for fertilization fixing the maximal amount of N to be applied in agricultural 

fields (33, 34). Overall, NO3
- and NH3 emissions were the most significant N-emissions. 

   

3.2 Indirect land use changes 

The iLUC impacts of the studied bioenergy systems were the same for all scenarios (Figure 2a), as they 

all had the same “point of origin”: the conversion of 1 ha of Danish land (cultivated with spring barley) 

to energy crops. As shown in Table 1 (and further detailed in the SI), these iLUC impacts were 

estimated to 310 t CO2-eq. ha-1 (± 170 t CO2-eq. ha-1). The impacts were annualized over a period of 20 

years in accordance with IPCC (47) and with prominent European legislation (48), corresponding to 

about 16 t CO2-eq. ha-1y-1 (or 70-130 g CO2-eq. MJ-1y-1).  

**Table 1**  
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Although currently debated and relatively uncertain (49), the iLUC impact quantified here can 

contribute with important learnings: i) it is not zero; and ii) it may cover a significant proportion of the 

overall global warming impact (Figure 2a) (between one third to half of the positive contributions, 

depending on the scenario), and cancels out the otherwise avoided GHG emissions in the scenarios. 

Moreover, it should be highlighted that the 310 t CO2-eq. ha-1 obtained here only covers the GHG 

related to the net expansion resulting from the modeling of (29) and does not include the GHG related 

to the intensification of crop production (which accounts, based on the results of (29), to about 30% of 

the displacement response). This suggests that the “real” impact may actually be higher. The only other 

LCA study (50) the authors were aware of attempting to quantify iLUC on the basis of an hectare of 

land displaced (and not a biofuel mandate shock) led to a considerably higher value, i.e. 440-560 t CO2-

eq. ha-1 (considering a 20 years period and only conversion of forest). Although it cannot be directly 

compared, our annualized iLUC value (70-130 g CO2-eq. MJ-1y-1, calculated dividing the annualized 

iLUC impact by the energy yielded by 1 hectare cultivated with the crops, dry basis) lies within the 

range of values found in (10) for marginal increases in the demand for biofuels. 

In this study, the assessment of global warming was based on the IPCC AR4 methodology (51), 

where GHG are summed up over a defined time horizon, which in LCA is commonly taken as 100y (as 

in this study). The use of this approach may however be seen as a limitation when emission releases 

occurring at different times (e.g. year 0 and year 13) are involved, as these releases are then summed 

together despite that their end points of analysis are different (e.g. year 100 and year 113). In recent 

years, a number of studies have proposed methodologies to address this flaw, where many emphasized 

the particular case of iLUC (e.g. (43, 52, 53)). As these methodologies are still in their early 

development stage, the global warming results presented in this study are based on the IPCC 

methodology. However, the importance of time-dependency was assessed for the cultivation of 

Miscanthus (including iLUC), based on the methodology described in (53) (SI). This specific 

simulation indicated that accounting for time-dependency would increase our GWP by ca. 40%. Such 

increase was also suggested by the results of (52), for a different bioenergy case. 

 

3.3 LCA results 

The environmental impacts related to the 12 bioenergy scenarios assessed are shown in Figure 2 for the 

selected impact categories. Impacts/savings for the individual bioenergy scenarios were obtained by 
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subtracting the avoided impacts (negative values in the figures) from the induced impacts (positive 

values). The zero axis represents the reference: any net value below the zero axis thus indicates an 

environmental improvement as compared with the fossil fuel reference (in which: electricity and heat 

are provided by coal and natural gas, the hectare of land is used for spring barley cultivation, and 

manure is not digested). 

On the selected impact categories, global warming appears critical as only two scenarios 

indicate overall savings for this category as compared with the fossil fuel reference. Only co-firing of 

willow and Miscanthus indicated net overall savings, i.e. these were the only two scenarios for which 

an environmental benefit, GHG-wise, was identified in relation to using 1 ha of land for bioenergy.  

However, the magnitude of the global warming impacts found in this study (between -82 and 270 t 

CO2-eq. ha-1 over 20 years) was much higher than previous results from literature. For instance, (54) 

calculated a saving between -18 and -35 t CO2-eq. ha-1y-1 (-360 to -700 t CO2-eq. ha-1 over 20 years) 

for bioenergy systems based on willow and Miscanthus plantations in Ireland; (55) quantified savings 

of -25 t CO2-eq. ha-1y-1 (about -500 t CO2-eq. ha-1 in 20 years) for bioenergy systems based on 

Miscanthus plantations in Italy; (56) estimated a saving between -10.4 and -11.1 t CO2-eq. ha-1y-1 (-210 

to -220 t CO2-eq. ha-1 in 20 years) for Miscanthus and willow plantations in the UK. The reason for 

these differences is that this study, as opposed to the previous, considered iLUC, which has tremendous 

significance on the overall GHG balance as earlier discussed.  

As illustrated in Figure 2a, the 35% GHG emission saving required in the EU Renewable 

Energy Directive (48) for biofuels and bioliquids (as compared with the same energy provided from 

fossil fuels) has been used as a comparative measure of the GHG reductions achieved in the individual 

scenarios (although the directive does not apply to these scenarios), see calculation details in the SI. As 

shown in Figure 2a, none of the assessed bioenergy scenarios would comply with a 35% GHG 

reduction target. This highlights the difficulties for bioenergy to compete with fossil fuels for 

producing heat and power. Though other renewable energy sources (e.g. wind, solar, hydro) should be 

prioritized, biomass (residual and energy crops) remains needed in a renewable energy system for its 

intrinsic versatility (2-5). In this perspective and in the light of Figure 2a, co-firing or efficient 

combustion of willow and Miscanthus can be highlighted as preferable options for producing bioenergy 

from perennial crops, both in relation to global warming but also to the other impact categories 

assessed (aquatic P and N eutrophication, P savings).  
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Co-firing and combustion provided the smallest global warming impacts for all crops. The 

environmental performance of co-firing was directly related to the higher electricity efficiency of these 

plants (about 38% of the LHV of the fuel, wet basis), and consequently to the larger amount of 

marginal coal electricity substituted. Co-firing of willow provided the largest savings, mostly because 

of the beneficial dLUC, higher yield and minimal pre-treatment required. Similarly, the environmental 

performance of combustion was due to the high overall energy recovery as heat and electricity (about 

90% of the LHV of the fuel, wet basis). As opposed to combustion and co-firing, anaerobic digestion 

and gasification involved a conversion to gas before energy generation, thereby inducing additional 

losses (Table S9). Therefore, less electricity and heat were produced and substituted, resulting in larger 

net GW impacts from these technologies. Further, UOL of the digestate contributed with a GW impact 

comparable to the one of iLUC, i.e. ranging between 280 (Miscanthus) and 370 (willow) t CO2-eq. ha-1, 

primarily connected to the release of biogenic carbon not entering the soil C pool (quantified in Figure 

S13-S15 of the SI). This cannot be directly visualized on Figure 2a, which presents the net impact of 

UOL (digestate minus raw manure). Co-digestion also resulted in GHG savings associated with 

avoiding raw manure management, which would otherwise be stored and applied on land without 

digestion (24). These savings depended on the amount of manure co-digested (per hectare), i.e. the 

more manure co-digested (to meet the 10% DM in the input-mixture), the larger the savings were. This 

also applied for aquatic N-eutrophication, where the impacts were much higher for ryegrass because of 

the higher N content of the crop.  

Figure 2 highlights the significance of dLUC for all scenarios and impact categories, where 

changing from spring barley to perennials generally resulted in environmental benefits. For global 

warming, this reflects two main points. First, that the perennial crops considered in this study have a 

much greater C uptake than spring barley. Second, that they are also more efficient systems for 

converting the C uptake to useful C (i.e. more C in the harvested biomass, less C in the residues, 

therefore less C lost as CO2 emissions during the cultivation stage). For the other impact categories, the 

dLUC results for ryegrass differed from those of Miscanthus and willow. Figure 2b for example 

reflects the high load of N fertilizers applied in the ryegrass system, which resulted in much higher N 

leaching than in the reference (barley cultivation), while willow and Miscanthus systems resulted in a 

dLUC improvement. On the other hand, as half of the N fertilizers used during cultivation came from 

animal slurries (14) (which also contain P), no mineral P fertilizers needed to be applied for ryegrass, 
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as opposed to all other crop systems, which explains the greater P savings for this crop in connection 

with dLUC (Figure 2d). It should however be kept in mind that the high N-leaching results for ryegrass 

should be seen as a maximum, as ryegrass-for-bioenergy likely requires less N than ryegrass-for-fodder 

in order to reach the same yields as considered in this study. 

 In Figure 2d, the category “others” reflects the net induced P fertilizers: since fertilization is by 

law based on crops N balance (33, 34), even though anaerobic co-digestion allows for nutrients 

recycling, the higher nutrients content of the produced digestate involves that relatively more P was 

applied in excess in the co-digestion scenarios compared to the reference (use on land of raw pig 

manure), thus decreasing the overall P-saving potential and increasing leaching (Figure 2c). P-leaching 

was less for willow as a consequence of the lower P content of the crop. 

 

**Figure 2** 

 

The results of the sensitivity analyses highlighted that the variation of the iLUC impacts played the 

most important role for GW; with minimum iLUC impacts (Table 1) all bioenergy scenarios for willow 

and Miscanthus as well as co-firing of ryegrass achieved environmental savings on GW (Figure S19). 

Co-firing and combustion of willow and Miscanthus even reached the 35% GHG reduction target. In 

all other analyses, the individual changes in assumptions did not alter the conclusions relative to the 

baseline. However, the different assumptions made regarding marginal energy and crop decreased or 

increased the magnitude of the impacts or savings in all scenarios (Figure S19). In the case of mono-

digestion, GW impacts were significantly increased as compared to their levels in the co-digestion 

scenarios (increase between 110 and 160 t CO2-eq. ha-1), reflecting the tremendous benefits obtained 

when avoiding conventional manure management. Co-digestion with manure shall therefore be favored 

in order to optimize the GW savings associated with anaerobic digestion. The sensitivity analysis also 

demonstrated that additional pelletization and milling of the biomass in the co-firing scenarios would 

decrease the GW performance of these scenarios to a level very close to direct biomass combustion. 

The results of the MonteCarlo simulation for GW (Table S18) supported the ranking of the bioenergy 

scenarios found with the baseline scenarios, demonstrating that despite the significant uncertainties, the 

results obtained were robust. For gasification, combustion and co-firing, it also highlighted that it was 

not clear whether the willow scenarios really yielded greater savings than the Miscanthus scenarios. 
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Overall, co-firing of Miscanthus and willow appeared to be the options with the best 

environmental performance. It should however be realized that a main driver for future utilization of 

biomass may be to balance electricity generation from fluctuating energy sources, such as wind and 

solar power. Not all biomass combustion technologies may be suited for this, especially when co-

generation of heat is important as such plants can have a fixed production ratio between electricity and 

heat. Anaerobic co-digestion as well as gasification of biomass, on the other hand, may be operated 

more flexible without similar constraints. Additionally, syngas or biogas offers the flexibility of 

storage. On this basis, improving the environmental performance of these BtE conversion technologies 

would be desirable. For anaerobic digestion, a solution may be to favor manure-based biogas together 

with co-substrates not involving iLUC (e.g. straw, organic municipal household waste, garden waste) 

as well as in boosting the digestion process by other means (e.g. digestion in series, addition of 

hydrogen, etc.). 

 

Supporting Information (SI) 

Additional information on: marginal energy technologies and fertilizers, LCA process flow diagrams, 

LCI of crops and BtE conversion technologies, carbon and nitrogen flow charts, energy balance, GWP 

time-dependency, iLUC and modelling equations as well as sensitivity and uncertainty analyses is 

available free of charge via the Internet at http://pubs.acs.org. 

 

Acknowledgements 

The work presented in this paper is a result of the research project Coherent Energy and Environmental 

System Analysis (CEESA), partly financed by The Danish Council for Strategic Research.

http://pubs.acs.org/


17 
 

Tables 



18 
 

Table 1 Estimation of the iLUC CO2 impact*. 

Biomes converted** Type of conversion† Region†‡ m2 t-1 
wheat†φ 

C in 
vegetation 
(t ha-1)β 

C in soil (t 
ha-1) β 

CO2-C lost (t C t-1 
wheat)∂ 

CO2 lost (t CO2 
t-1 wheat) 

CO2 lost (t CO2 ha-

1)λ 

Savanna (taken as shrub land) 
 

100% cropland xss 140 ± 86 4,6 30 0.11 ± 0.06 0.39 ± 0.24 2.2 ± 1.3 

African tropical evergreen forest (taken as tropical rain forest) 
 

100% cropland xss 140 ± 86 130 190 2.5 ± 1.5 9.1 ± 5.5 52 ± 31 

Open shrubland (taken as shrub land) 
 

100% grassland xss 81 ± 49 4,6 30 0.06 ± 0.04 0.22 ± 0.13 1.3 ± 0.8 

Temperate evergreen forest 
 

100% cropland xeu15 57 ± 34 160 130 1.1 ± 0.7 4.0 ± 2.4 23 ± 14 

Temperate deciduous forest 
 

100% cropland xeu15 57 ± 34 120 130 0.87 ± 0.52 3.2 ± 1.9 18± 11 

Dense shrub land (taken as temperate grassland) 
 

46% cropland; 54% 
grassland 

xeu15 250 ± 148 7,0 190 1.2 ± 0.7 4.3 ± 2.6 24 ± 15 

Tropical evergreen forest 
 

100% cropland bra 180 ± 70 200 98 4.0 ± 1.6 15 ± 6 83 ± 33 

Savanna (taken as grassland) 
 

100% grassland bra 41 ± 16 10 42 0.04 ± 0.02 0.16 ± 0.06 0.91 ± 0.36 

Grassland/steppe (taken as temperate grassland) 
 

100% cropland xsu 91 ± 55 10 190 0.43 ± 0.26 1.6 ± 0.9 9.0 ± 5.4 

Temperate evergreen forest 
 

100% grassland xsu 45 ± 27 160 130 0.88 ± 0.43 3.2 ± 1.6 18.3 ± 9.1 

Temperate deciduous forest 
 

100% grassland xsu 45 ± 27 140 130 0.76 ± 0.37 2.8 ± 1.3 16 ± 8 

Savanna (taken as tropical grassland) 
 

100% cropland aus 110 ± 64 18 42 0.31 ± 0.18 1.1 ± 0.7 6.4 ± 3.8 

Open shrubland + grassland/steppe (taken as tropical 
grassland) 
 

100% grassland aus 37 ± 22 18 42 0.11 ± 0.06 0.39 ± 0.23 2.2 ± 1.3 

Boreal deciduous forest (taken as temperate deciduous forest) 
 

100% cropland can 97 ± 58 140 130 1.6 ± 1.0 6.0 ± 3.6 34 ± 20 

Boreal evergreen forest (taken as temperate evergreen forest) 
 

100% grassland can 10 ± 6 160 130 0.16 ± 0.10 0.59 ± 0.35 3.3 ± 2.0 

Grassland/steppe (taken as grassland) 
 

100% cropland xla 35 ± 21 10 42 0.04 ± 0.02 0.14 ± 0.08 0.77 ± 0.46 

Tropical evergreen forest 
 

100% cropland xla 35 ± 21 200 98 0.79 ± 0.48 2.9 ± 1.7 17 ± 10 

Savanna + dense shrub land (taken as grassland) 
 

100% grassland xla 16 ± 10 10 42 0.02 ± 0.01 0.063 ± 0.038 0.36 ± 0.22 

Open shrub land (taken as chaparral) 
 

100% grassland usa 68 ± 41 40 80 0.14 ± 0.08 0.50 ± 0.30 2.8 ± 1.7 

TOTAL    -  - 1500 ± 880  -  - 15 ± 8 54 ± 30 310 ± 170 
* Eventual inconsistencies due to rounding (numbers are reported with 2 significant digits). 
** Indicated biomes are as in (29). When the biomes mentioned in (29) did not figure in the biomes from the Woods Hole Research Centre data (9), an 
equivalent was considered, which is indicated between parentheses, when it applies. 
† Based on the results from (29). 
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‡ With xss: Sub-Saharan Africa, excluding Botswana, Lesotho, Namibia, South Africa and Swaziland; xeu15: EU-15, excluding Denmark; bra: Brazil; 
xsu: Former Soviet Union, excluding the Baltic States; aus: Australia; can: Canada; xla: South America, excluding Brazil and Peru; usa: United States. 
As indicated in (29), this aggregation covers 92% of the total net expansion. 
β From the Woods Hole Research Centre, as published in (9). 
∂ Considering that 25% of the C in soil is converted, for all biomes, except when forest is converted to grassland, where 0% of soil C is converted; 
100% of the C in vegetation is converted for all forest biomes; 100% of the C in vegetation is converted for tropical grasslands; 0% of the C in 
vegetation is converted for all other biomes. 
λ The conversion per ha is made considering that it is 1 ha of spring barley that is initially displaced, with a yield of 4.9 t DM ha-1 and a DM content of 
85% of the crop fresh matter, based on (14). 
φ The maximal and minimal range are based on the qualitative description of the uncertainty related to the biomes conversion results made by (29). 
The levels identified as “very good”, “good” and “moderate” were considered as an uncertainty of ±20%, 40% and 60%, respectively. 



20 
 

References  

1. Lund, H. and Mathiesen, B.V. Energy system analysis of 100% renewable energy systems: The case 
of Denmark in years 2030 and 2050. Energy 2009, 34, 524-531.  

2. CEESA 100% Renewable Energy Scenarios towards 2050. Aalborg University. Aalborg, Denmark, 
2011; http://www.ceesa.plan.aau.dk/digitalAssets/32/32603_ceesa_final_report_samlet_02112011.pdf 
(accessed April 30, 2012).  

3. The road to a Danish energy system without fossil fuels. Summary of the work, results and 
recommendations of the Danish Commission on Climate Change Policy: Copenhagen, Denmark 2010; 
http://www.ens.dk/en-US/policy/danish-climate-and-energy-
policy/danishclimatecommission/greenenergy/Documents/green%20energy%20GB%20screen%201pa
ge%20v2.pdf (accessed April 30, 2012). 

4. Energi 2050. Udviklingsspor for energisystemet. Energinet.dk: Fredericia, Denmark, 2010; 
http://www.e-pages.dk/energinet/255/fullpdf/full4f900f951a6bd.pdf (accessed April 30, 2012).  

5. Tonini, D. and Astrup, T. Life-cycle assessment of biomass-based energy systems: a case study for 
Denmark. Appl. Energy 2012, 99, 234-246. 

6. Breaking the Biomass Bottleneck of the Fossil Free Society; Concito, Copenhagen, Denmark, 2010; 
http://www.fuel.life.ku.dk/Moed-
os/~/media/Fuel/docs/pdf/Seminar_om_bioenergi_og_baeredygtighed/Breaking%20the%20biomass%2
0bottleneckof%20the%20fossil%20free%20society%20%20%20version%201_220910.ashx (accessed 
April 30, 2012). 

7. Mathiesen, B.V.; Lund, H.; Karlsson, K. 100% Renewable energy systems, climate mitigation and 
economic growth. Appl. Energy 2011, 88, 488-501.  

8. Searchinger, T.D. Biofuels and the need for additional carbon. Environmental Research Letters 
2010, 5, 024007-024007.  

9. Searchinger, T.D.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; 
Hayes, D.; Yu, T.H. Use of U.S. croplands for biofuels increases greenhouse gases through emissions 
from land-use change. Science 2008, 319, 1238-1240. 

10. Indirect land use change from increased biofuels demand. Comparison of models and results for 
marginal biofuels production from different feedstocks. European Commission Joint Research Centre, 
Ispra, Italy, 2010; 
http://ec.europa.eu/energy/renewables/studies/doc/land_use_change/study_4_iluc_modelling_comparis
on.pdf (accessed April 30, 2012); DOI 10.2788/54137. 

http://www.ceesa.plan.aau.dk/digitalAssets/32/32603_ceesa_final_report_samlet_02112011.pdf
http://ec.europa.eu/energy/renewables/studies/doc/land_use_change/study_4_iluc_modelling_comparison.pdf
http://ec.europa.eu/energy/renewables/studies/doc/land_use_change/study_4_iluc_modelling_comparison.pdf


21 
 

11. Bessou, C.; Ferchaud, F.; Gabrielle, B.; Mary, B. Biofuels, greenhouse gases and climate change. A 
review. Agron sustain dev 2011, 31, 1-79.   

12. Dauber, J.; Jones, M.C.; Stout, J.B. The impact of biomass crop cultivation on temperate 
biodiversity. GCB Bioenergy 2010, 2, 289-309. 

13. Valentine, J.; Clifton-Brown, J.; Hastings, A.; Robson, P.; Allison, G.; Smith, P. Food vs. fuel: the 
use of land for lignocellulosic 'next generation' energy crops that minimize competition with primary 
food production. GCB Bioenergy 2012, 4, 1-19.  

14. Hamelin, L.; Joergensen, U.; Petersen, B.M.; Olesen, J.E.; Wenzel, H. Modelling the carbon and 
nitrogen balances of direct land use changes from energy crops in Denmark: a consequential life cycle 
inventory. GCB Bioenergy 2012, 4(6), 889-907. 

15. Environmental Management-Life Cycle Assessment-Principles and Framework. 2006, 2nd ed. 2006; 
ISO 14040. 

16. Environmental Management-Life Cycle Assessment-Requirements and Guidelines. 2006, 1st ed. 
2006; ISO 14040. 

17. Spatial differentiation in Life Cycle impact assessment - The EDIP2003 methodology. 
Environmental News No. 80, Danish Ministry of the Environment, Environmental Protection Agency: 
Copenhagen, Denmark, 2005; http://www2.mst.dk/udgiv/publications/2005/87-7614-579-4/pdf/87-
7614-580-8.pdf (accessed April 30, 2012). 

18. Wenzel, H.; Hauschild, M.Z.; Alting, L. Environmental Assessment of Products - Volume 1: 
Methodology, Tools and Case Studies in Product Development; Kluwer Academic Publishers: Norwell, 
MA., 1997. 

19. Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 
2002+: A new life cycle impact assessment methodology. Int J Life Cycle Assess 2003, 8, 324-330. 

20. Pre' Consultants Simapro 7.2 Website; www.pre.nl (accessed April 30, 2012). 

21. Weidema, B.; Frees, N.; Nielsen, A.M. Marginal production technologies for Life Cycle 
Inventories. Int J Life Cycle Assess 1999, 4, 48-56.  

22. Market Information in Life Cycle Assessment, Environmental Project No. 863; Danish Ministry of 
the Environment, Environmental Protection Agency: Copenhagen, Denmark, 2003; 
www2.mst.dk/udgiv/publications/2003/87-7972-991-6/pdf/87-7972-992-4.pdf (accessed June 1, 2012). 

23. Forudsaetninger for samfundsoekonomiske analyser paa energiomraade; Energistyrelsen, Danish 
Energy Agency (DEA): Copenhagen, Denmark, 2010; http://www.ens.dk/da-
DK/Info/TalOgKort/Fremskrivninger/beregningsforudsatninger (accessed April 30, 2012). 



22 
 

24. Hamelin, L.; Wesnaes, M.; Wenzel, H.; Petersen, B.M. Environmental Consequences of Future 
Biogas Technologies Based on Separated Slurry. Environ. Sci. Technol. 2011, 45, 5869-5877.  

25. Fruergaard, T.; Hyks, J.; Astrup, T. Life-cycle assessment of selected management options for air 
pollution control residues from waste incineration. Sci. Total Environ. 2010, 408, 4672-4680. 

26. Denmark's National Inventory Report 2011 - Emission Inventories 1990-2009 - Submitted under 
the United Nations Framework Convention on Climate Change and the Kyoto Protocol. National 
Environmental Research Institute: Aarhus University, Aarhus, Denmark, 2011; 
http://www2.dmu.dk/pub/fr827.pdf (accessed April 30, 2012). 

27. Schmidt, J.H. System delimitation in agricultural consequential LCA - Outline of methodology and 
illustrative case study of wheat in Denmark. Int J Life Cycle Assess 2008, 13, 350-364.  

28. Dalgaard, R.; Schmidt, J.H.; Halberg, N.; Christensen, P.; Thrane, M.; Pengue, W.A. LCA of 
Soybean Meal. Int J Life Cycle Assess 2008, 13, 240-254.  

29. Kloeverpris, J.H. Consequential life cycle inventory modelling of land use induced by crop 
consumption. PhD thesis: Department of Management Engineering, Technical University of Denmark 
(DTU), Lyngby, Denmark, 2008, ISBN: 978-87-90855-69-7; 
http://orbit.dtu.dk/en/publications/consequential-life-cycle-inventory-modelling-of-land-use-induced-
by-crop-consumption%286457fc93-c53a-4beb-83ff-015c8047b682%29.html (accessed September 26, 
2012).  

30. Biofuels in the European context: facts and uncertainties. European Commission Joint Research 
Centre: Ispra, Italy, 2008; http://ec.europa.eu/dgs/jrc/downloads/jrc_biofuels_report.pdf (accessed 
April 30, 2012). 

31. Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A 
Comprehensive Analysis. Department of Agricultural Economics: Purdue University, Indiana, USA, 
2010; https://www.gtap.agecon.purdue.edu/resources/download/5200.pdf (accessed April 30, 2012). 

32. Assessing the Land Use Change Consequences of European Biofuel Policies. International Food 
Policy Institute (IFPRI): Washington, DC, USA, 2011; 
http://trade.ec.europa.eu/doclib/docs/2011/october/tradoc_148289.pdf (accessed April 30, 2012). 

33. Plantedirektoratets bekendtgoerelse nr. 786 af 22. juli 2008 om jordbrugets anvendelse af goedning 
og om plantedaekke i planteperiode 2008/2009. Public Law, 2008; 
https://www.retsinformation.dk/Forms/R0710.aspx?id=116486&exp=1 (accessed April 30, 2012). 

34. Bekendtgoerelse om husdyrbrug og dyrehold for mere end 3 dyreenheder, husdyrgoedning, 
ensilage m.v., BEK nr. 1695 af 19. december 2006. Public Law, 2006; 
https://www.retsinformation.dk/Forms/R0710.aspx?id=13063&exp=1 (accessed April 30, 2012). 

https://www.gtap.agecon.purdue.edu/resources/download/5200.pdf


23 
 

35. Boerjesson, P. and Berglund, M. Environmental systems analysis of biogas systems - Part I: Fuel-
cycle emissions. Biomass Bioenerg 2006, 30, 469-485. 

36. Life Cycle Inventories of Bioenergy; Data v 2.0 (2007), Ecoinvent report No. 17; Swiss Centre for 
Life Cycle Inventories, ESU-services: Uster, Switzerland, 2007. 

37. Emissions from decentralised CHP plants 2007. Environmental project no. 07/1882. Project report 
5–Emission factors and emission inventory for decentralised CHP production. National Environmental 
Research Institute: Aarhus University, Aahrus, Denmark, 2010; http://www.dmu.dk/Pub/FR786.pdf 
(accessed April 30, 2012). 

38. A model for the carbon dynamics in agricultural, mineral soils. Faculty of Agricultural Sciences, 
Aarhus University: Aarhus, Denmark, 2010; http://xwww.agrsci.dk/c-tool/NationalModelling.pdf 
(accessed April 30, 2012). 

39. Petersen, B.M.; Olesen, J.E.; Heidmann, T. A flexible tool for simulation of soil carbon turnover. 
Ecol. Model. 2002, 151, 1-14. 

40. Cencic, O. and Rechberger, H. Material Flow Analysis with Software STAN. Environ manage 
2008, 18(1), 3-7.  

41. Modelling of Energy-Crops in Agricultural Sector Models - A Review of Existing Methodologies. 
European Commission Joint Research Centre: Ispra, Italy, 2008; 
http://ftp.jrc.es/EURdoc/JRC42597.pdf (accessed September 26, 2012). 

42. GTAP Website; https://www.gtap.agecon.purdue.edu/default.asp#2 (Accessed September 26, 
2012).  

43. Müller-Wenk, R. and Brandao, M. Climatic impact of land use in LCA - carbon transfers between 
vegetation/soil and air. Int J Life Cycle Assess 2010, 15, 172-182.  

44. Cherubini, F.; Peters, G.P.; Berntsen, T.; Stromman, A.H.; Hertwich, E. CO2 emissions from 
biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB 
Bioenergy 2011, 3, 413-426. 

45. Drewer, J.; Finch, J.W.; Lloyd, C.R.; Baggs, E.M.; Skiba, U. How do soil emissions of N2O, CH4 
and CO2 from perennial bioenergy crops differ from arable annual crops? Global Change Biology 
Bioenergy 2012, 4, 408-419.  

46. Joergensen, U. Genotypic variation in dry matter accumulation and content of N, K and Cl in 
Miscanthus in Denmark. Biomass bioenerg 1997, 12, 155-169. 

47. 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: Agriculture, Forestry 
and Other Land Use. Chapter 2: Generic methodologies applicable to multiple land-use categories; 

https://www.gtap.agecon.purdue.edu/default.asp#2


24 
 

Intergovernmental panel on climate change: Hayama, Japan, 2006; 
www.ipccnggip.iges.or.jp/public/2006gl/index.html. 

48. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the 
promotion of the use of energy from renewable sources and amending and subsequently repealing 
Directives 2001/77/EC and 2003/30/EC. Official journal of the European Union 2009, 52, L 140/16-L 
140/16-L140/62; http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed April 30, 
2012). 

49. Plevin, R.J.; O'Hare, M.; Jones, A.D.; Torn, M.S.; Gibbs, H.K. Greenhouse Gas Emissions from 
Biofuels' Indirect Land Use Change Are Uncertain but May Be Much Greater than Previously 
Estimated RID G-6428-2010. Environ. Sci. Technol. 2010, 44, 8015-8021.  

50. Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef 
production systems in the EU. J. Clean. Prod. 2010, 18, 756-766. 

51. Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, 
J.; Lowe, D.C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M. and Van Dorland, R. Changes 
in Atmospheric Constituents and in Radiative Forcing, In: Climate Change 2007: The Physical Science 
Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change, Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; 
Tignor, M. and Miller H.L. Eds; Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA.51: 2007; pp. 130-234. 

52. O'Hare, M.; Plevin, R.J.; Martin, J.I.; Jones, A.D.; Kendall, A.; Hopson, E. Proper accounting for 
time increases crop-based biofuels' greenhouse gas deficit versus petroleum. Environ. Res. Lett. 2009, 
4, 024001. 

53. Kendall, A. Time-adjusted global warming potentials for LCA and carbon footprints. Int J Life 
Cycle Assess 2012, 17, 1042-1049.  

54. Styles, D. and Jones, M.B. Energy crops in Ireland: Quantifying the potential life-cycle greenhouse 
gas reductions of energy-crop electricity. Biomass Bioenerg 2007, 31, 759-772.  

55. Fazio, S. and Monti, A. Life cycle assessment of different bioenergy production systems including 
perennial and annual crops. Biomass Bioenerg 2011, 35, 4868-4878.  

56. Brandao, M.; Mila i Canals, L.; Clift, R. Soil organic carbon changes in the cultivation of energy 
crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 2010, 35(6), 
2323-2336.  



25 
 

 

  



26 
 

 



 

 

Supporting Information (SI) for: 

 

Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy 

scenarios including land use changes 

 

 

Tonini, Davide,*1 Hamelin, Lorie,2 Wenzel, Henrik2 and Astrup, Thomas1 

 

 

1 Technical University of Denmark, Department of Environmental Engineering, Miljoevej 115, 

2800 Kgs. Lyngby, Denmark 

2 University of Southern Denmark, Institute of Chemical Engineering, Biotechnology and 

Environmental Technology, Campusvej 55, 5230 Odense M., Denmark 

 

 

* Corresponding author email: dait@env.dtu.dk 

 

 

This SI document includes text, tables and figures with details on the process data for the 

inventory analysis of the LCA. 

mailto:dait@env.dtu.dk


S1 

 

Contents 

1. Scenarios modeling and system boundary ................................................................................ S3 

2. Identification of Marginals ....................................................................................................... S9 

2.1 Marginal energy technologies ............................................................................................. S9 

2.2 Marginal fertilizers ............................................................................................................ S10 

3. Life-cycle inventory (LCI) ...................................................................................................... S10 

3.1 Crops ................................................................................................................................. S10 

3.1.1 Ryegrass...................................................................................................................... S10 

3.1.2 Willow ........................................................................................................................ S10 

3.1.3 Miscanthus .................................................................................................................. S10 

3.2. Crop storage ..................................................................................................................... S13 

3.3 Pre-treatments.................................................................................................................... S14 

3.3.1 Pre-treatments: anaerobic digestion............................................................................ S14 

3.3.2 Pre-treatments: gasification ........................................................................................ S15 

3.3.3 Pre-treatments: combustion and co-firing .................................................................. S15 

3.4 Biomass-to-Energy conversion technologies .................................................................... S17 

3.4.1 Anaerobic digestion .................................................................................................... S17 

3.4.2 Gasification ................................................................................................................. S23 

3.4.3 Combustion and co-firing with fossil fuel .................................................................. S25 

3.5 Transportation ................................................................................................................... S28 

3.6 Treatment of thermal conversion residues ........................................................................ S28 

3.7 Digestate storage ............................................................................................................... S29 

3.8 Use on land of digestate .................................................................................................... S29 

4. Carbon and nitrogen flows ...................................................................................................... S31 



S2 

 

5. Energy balance of the bioenergy scenarios ............................................................................. S36 

6. Mineral fertilizer substitution for digestate use on land ......................................................... S37 

7. Indirect land use changes ........................................................................................................ S39 

8. Sensitivity and uncertainty analysis ........................................................................................ S43 

9. List of equations used in the modeling ................................................................................... S48 

10. GWP time-dependency ......................................................................................................... S55 

References ................................................................................................................................... S58 

 



S3 

 

1. Scenarios modeling and system boundary 
As thoroughly described in the main manuscript, the systems assessed considered three perennial 

crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus (giganteus) and four 

energy conversion technologies (anaerobic digestion, gasification, combustion in small-to-

medium scale biomass CHP plants and co-firing in large scale coal-fired CHP plants). A total of 

12 scenarios have therefore been assessed. For the case of anaerobic co-digestion of ryegrass 

with raw pig manure, the system modeled as well as the boundary conditions considered are 

illustrated in Figure 1 of the main manuscript. For the remaining bioenergy scenarios the 

boundary conditions considered are illustrated in Figure S1-S11 (functional unit: 1 hectare of 

Danish arable land). Notice that electricity and heat produced are net values (i.e., plants own 

consumptions have been subtracted). 

 

 

 
Figure S1. Process flow diagram for gasification of ryegrass. (*) Not all the converted land is to 
be cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. Fly ashes are considered used as back-filling material in old salt mines, and the 
environmental impacts from this are considered negligible (therefore the system boundary is not 
further extended). Values are rounded to 2 significant digits. 
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Figure S2. Process flow diagram for combustion of ryegrass. (*) Not all the converted land is to 
be cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. Fly ashes are considered used as back-filling material in old salt mines, and the 
environmental impacts from this are considered negligible (therefore the system boundary is not 
further extended). Values are rounded to 2 significant digits. 

 

 

Figure S3. Process flow diagram for co-firing of ryegrass. (*) Not all the converted land is to be 
cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. (†) Based on the data from co-firing Danish plants, the coal that is used here would 
have otherwise been used for CHP production, at similar conversion efficiency. Further, fly 
ashes are considered used as back-filling material in old salt mines, and the environmental 
impacts from this are considered negligible (therefore the system boundary is not further 
extended). Values are rounded to 2 significant digits. 
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Figure S4. Process flow diagram for anaerobic co-digestion of willow with raw pig manure. (*) 
Not all the converted land is to be cultivated in barley, and not all the Danish barley displaced is 
replaced, due to various market mechanisms. Values are rounded to 2 significant digits. 

 

 

Figure S5.  Process flow diagram for gasification of willow. (*) Not all the converted land is to 
be cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. (†) Fly ashes are considered used as back-filling material in old salt mines, and the 
environmental impacts from this are considered negligible (therefore the system boundary is not 
further extended). Values are rounded to 2 significant digits. 
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Figure S6. Process flow diagram for combustion of willow. (*) Not all the converted land is to be 
cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. Fly ashes are considered used as back-filling material in old salt mines, and the 
environmental impacts from this are considered negligible (therefore the system boundary is not 
further extended).Values are rounded to 2 significant digits. 

 

 

Figure S7. Process flow diagram for co-firing of willow. (*) Not all the converted land is to be 
cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. (†) Based on the data from co-firing Danish plants, the coal that is used here would 
have otherwise been used for CHP production, at similar conversion efficiency. Further, fly 
ashes are considered used as back-filling material in old salt mines, and the environmental 
impacts from this are considered negligible (therefore the system boundary is not further 
extended). Values are rounded to 2 significant digits. 
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Figure S8. Process flow diagram for anaerobic co-digestion of Miscanthus with raw pig manure. 
(*) Not all the converted land is to be cultivated in barley, and not all the Danish barley displaced 
is replaced, due to various market mechanisms. Values are rounded to 2 significant digits. 

 

 

Figure S9. Process flow diagram for gasification of Miscanthus. (*) Not all the converted land is 
to be cultivated in barley, and not all the Danish barley displaced is replaced, due to various 
market mechanisms. (†) Fly ashes are considered used as back-filling material in old salt mines, 
and the environmental impacts from this are considered negligible (therefore the system 
boundary is not further extended). Values are rounded to 2 significant digits. 
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Figure S10. Process flow diagram for combustion of Miscanthus. (*) Not all the converted land is 
to be cultivated in barley, and not all the Danish barley displaced is replaced, due to various 
market mechanisms. Values are rounded to 2 significant digits. 

 

 

Figure S11. Process flow diagram for co-firing of Miscanthus. (*) Not all the converted land is to 
be cultivated in barley, and not all the Danish barley displaced is replaced, due to various market 
mechanisms. (†) Based on the data from co-firing Danish plants, the coal that is used here would 
have otherwise been used for CHP production, at similar conversion efficiency. Further, fly 
ashes are considered used as back-filling material in old salt mines, and the environmental 
impacts from this are considered negligible (therefore the system boundary is not further 
extended). Values are rounded to 2 significant digits. 
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2. Identification of Marginals 

2.1 Marginal energy technologies 
Special attention was devoted to assumptions regarding the surrounding energy system as 

choices here may significantly affect the outcome of the LCA (1-6).  

The purpose of bioenergy production is the decommissioning of fossil based energy production 

capacities (both electricity and heat) as these technologies are generally intended to be phased 

out in order to comply with political CO2 reduction targets. Under this condition the electricity 

and heat produced from the selected bioenergy scenarios were assumed to substitute for the 

respective marginal fossil sources. The bioenergy scenarios were therefore credited with the 

environmental savings induced by substitution of fossil fuel-based energy production; such 

system boundary expansion to include the benefits deriving from replacement of fossil energy 

represents a typical approach in consequential LCA (e.g., (3-5) among the others). Of the fossil 

fuels, coal and natural gas represent the two ends of the range with respect to CO2 emissions per 

combustion unit of fuel energy. In the baseline of the LCA, substitution of electricity produced 

from coal-fired power plants was assumed. With respect to Danish conditions this choice is 

supported by a number of studies (5, 6). This assumption was tested in the sensitivity analysis by 

substituting electricity produced from natural gas-fired power plants. 

As opposed to electricity, the market for heat is rather local and substitution of district 

heating or heating fuels often depends on local conditions and production capacities connected to 

the district heating network in question (1). This means that when evaluating a system in a short 

term perspective involving existing production capacities, substitution of district heating should 

reflect local conditions. However, it is viable to assume that in the long term (with increasing 

bioenergy production) heat production from biomass will contribute to phasing out fossil fuels. 

With regard to the Danish market for heat, natural gas was identified as the fuel which is most 

likely to react to a marginal change in the heat demand/supply market. This choice is supported 

by (7). This assumption was tested in the sensitivity analysis by substituting heat produced from 

coal-fired power plants. 
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2.2 Marginal fertilizers 
As illustrated in Figure 1 (of the main manuscript) for ryegrass and in Figure S4 (for willow) and 

S8 (for Miscanthus), the digestate produced from anaerobic digestion was used as a fertilizer (for 

N, P and K), which avoided marginal mineral N, P and K fertilizers to be produced and used, 

based on the content of N, P and K of the digestate. The marginal N, P and K fertilizers 

considered were calcium ammonium nitrate, diammonium phosphate and potassium chloride, 

respectively, conformingly with (8, 9). 

 

3. Life-cycle inventory (LCI) 

3.1 Crops 

3.1.1 Ryegrass 
The life cycle considered for perennial ryegrass is two years, which is common practice in 

Danish agriculture; sowing here occurs every second year, but harvests take place annually. 

Ryegrass is harvested in summer, swath and baled. The DM content considered at harvest is 

20.5% (Table S1). The ryegrass is dried on field (to 85% DM content), stored indoor and further 

transported to the energy plant. The chemical composition and properties of the (today) Danish 

ryegrass are summarized in Table S1. For the storage and pre-treatments see section 3.2 and 3.3 

of this document. 

3.1.2 Willow 
A 21 years life cycle has been considered for willow cultivation (6 cuts; 3 years harvest cycle, 

but first harvest occurring after 4 years; 1 year establishment; 1 year preparation before 

planting). Willow is harvested in the vegetative rest period (in the period around November to 

February). The water content considered at harvest is 50% (Table S1). The willow is harvested 

as whole rods, stored indoor and dried (to 85% DM content) and further transported to the 

energy plant. The chemical composition and properties of the willow are summarized in Table 

S1. For the storage and pre-treatments see section 3.2 and 3.3 of this document. 

3.1.3 Miscanthus 
The life time considered for a Miscanthus plantation in this study is 20 years (18 cuts; 1 year 

establishment: 1 year preparation before planting). Two harvest seasons are typically 
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distinguished for Miscanthus, i.e., autumn and spring. Autumn harvesting is characterized by 

higher yield and higher concentration of water, nutrients and alkali. Delaying the harvest to 

spring lead to obtain a crop with better physical and chemical properties for thermal utilization, 

e.g., lower water content (below 20%), lower alkali content (e.g., Cl, K, N, S) as well as 

decreased ash content (10, 11). On the other hand, a delayed harvest lead to a decreased dry 

matter yield (i.e., 10 t DM ha-1 y-1 instead of about 15 t DM ha-1 y-1) conformingly with (9), due 

to the loss of leaves. In this study only spring harvesting was considered for the assessment of all 

BtE conversion pathways. The authors are aware that for the specific case of anaerobic digestion, 

autumn harvested Miscanthus might be prioritized over spring’s for its higher yield; however, 

spring harvest was assumed for all bioenergy scenarios in order to have the same assumptions 

regarding direct land use changes and storage across the Miscanthus scenarios. Furthermore, i) 

the data on Miscanthus pre-treatment and methane production were based on spring harvest; ii) 

scarce information was available on losses and type of storage of autumn harvested Miscanthus 

and unpublished studies reviewed by the authors showed DM losses up to 30% which would 

make the autumn harvest quantitatively comparable to the spring’s when considering the storage. 

It is considered that spring harvested Miscanthus is mowed and baled by a big baler. The 

harvested Miscanthus is then stored indoor and further transported to the energy plant. Spring 

harvested Miscanthus bales can be whether shredded (gasification and co-firing) or used directly 

(combustion). The chemical composition and properties of the Miscanthus (spring) are 

summarized in Table S1. For the storage and pre-treatments see section 3.2 and 3.3 of this 

document. 
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Table S1. Selected properties of the perennial energy crops evaluated in this study. In brackets 
the uncertainty range corresponding to the 95% confidence interval (i.e., the interval of length 
equal to four times the standard deviation around the mean) is reported. LHVdb: lower heating 
value (dry basis); LHVwb: lower heating value (wet basis); LHVar: lower heating value as 
received (i.e., energy of the crop as fed into the energy plant after pre-treatment); CH4 pot: 
methane potential; n.a.: not available. 
Parameter unit Ryegrass Willow Miscanthus 

Yield t DM ha-1 13.6 (±4.5) 12.7 (±4) 10 (±3.3) 

DM (at harvest) % FM 20.5 (±1.7) † 50 (±5)γ 90 (±6) β 

VS % DM 92.3 (±1) † 98.1 (±1.8)* n.a. 

Ash % DM 7.7 (±1) † 1.9 (±0.9)* 2.7‡ 

C % DM 46.4 (±2.2)* 48.9 (±1)* 47.7 (±1)* 

H % DM 5.7 (±0.3)* 6.0 (±0.2)* 5.5 (±0.3)* 

N % DM 2.9 (±0.6) † 0.6 (±0.3)* 0.44 (±0.13) α 

P % DM 0.40 (±0.08) † 0.07* 0.49 (±0.08) α 

K % DM 0.33 (±0.06) † 0.3* 0.69 (±0.2) α  

HHV MJ kg-1 DM 18.0 (±2.5)* 19.4 (±0.8)* 19.0 (±0.6)* 

LHVdb MJ kg-1 DM 16.8 (±2.4)* 18.1 (±0.8)* 17.8 (±0.6)* 

LHVwb MJ kg-1 DM 1.5 (±1) 7.9 (±0.6) 16 (±0.5) 

LHVar MJ kg-1 FM 14 (±2) 15 (±0.6) 16 (±0.5) 

CH4 pot Nm3CH4 t-1 VS 410ε 350ε 360ε 
* Based on (12). 
† Based on (13). After on field drying, the DM content is assumed 85% FM. 
‡ Based on (14). 
α Based on (15). 
β Based on (9, 16) 
γ Based on (17). 
ε See section 3.4.1. 
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3.2. Crop storage 
Storage is needed within the bioenergy chain as biomasses accumulate seasonally and the energy 

plants have, instead, to be fed and run continuously. Furthermore, biomass prices will be market-

driven and the producers will sell the crops whenever the prices will be convenient, therefore 

storage will be applied. Storage conditions have been modeled according to available literature 

on biomass dedicated to energy and feed; the main environmental issue of the storage is the dry 

matter losses which cause (primarily) a decrease of the available biomass and emissions of CO2, 

CH4, NH3, and N2O due to carbon and nitrogen degradation.  

For dry herbaceous species, i.e., ryegrass (after on field drying to achieve DM content of 

85%) and spring harvested Miscanthus (DM 90%) dry matter losses of 5.5% (±4.5%) were 

considered based on (18). These values are in accordance with other studies focusing on grass 

storage for feed production (19, 20). For willow, the storage was modeled as ‘whole rods 

storage’ which also represents a method typically applied to dry the harvested willow stems over 

summer (17, 21-27); this way, the storage also functions as a drying pre-treatment. This choice 

of storage condition was supported by the fact that other conditions were less beneficial, e.g., 

storage of wet willow chips was proved to determine higher dry matter losses as a consequence 

of increased microbial activity and degradation (17, 26, 28) and thermal drying is associated with 

significant economical and energy costs which make it less attractive (29). The dry matter losses 

reported by a number of experimental studies (17, 21, 26) for storage-drying of willow rods 

ranged between 3.5%-6.1% (average value assumed 4.8%). 

In this study only the emissions of CH4 and CO2 caused by dry matter degradation and 

losses within the storage period were modeled based on the assumed dry matter losses. The CO2 

emission was calculated proportional to the total dry matter loss based on the concentration of 

carbon in the dry matter, assuming aerobic conditions. The CH4 emissions associated with crop 

and digestate storage were estimated based on the tier 2 IPCC approach for manure management 

(30), considering a methane conversion factor (MCF) of 0.5% and 1%, respectively. The 

emissions of N2O, NH3 and NO3 (to surface water) were not included as the research on these is 

still at an early stage (18). However, the overall nitrogen mass losses were estimated based on 

the C to N ratio (i.e., the loss of nitrogen was proportional to the carbon loss based on the ratio 
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C/N in the crop). The C and N losses are shown in Figure S13-S18. Indoor storage of the crops 

was assumed (duration longer than 4 months).  

The authors are aware of that other storage techniques exist, e.g., ensiling for anaerobic 

digestion. However, dry storage was assumed for all bioenergy scenarios in order to have 

consistency regarding storage assumptions across the assessed bioenergy scenarios. Furthermore, 

with respect to co-digestion crop-manure, the energy production per unit-input increases with the 

dry matter content of the co-substrate (i.e., crop) (see 3.4.1). Therefore, if the idea is to use the 

crops for boosting manure digestion dry biomass will be preferred over wet substrates. 

Furthermore, handling and storage of dry biomass is easier and associated with less dry matter 

losses and emissions (18). The influence of the variation of the parameters used to model the 

storage on the final LCA results has been assessed in the uncertainty analysis. 

3.3 Pre-treatments 
An overview is presented in Table S2. Follows a detailed description of the pre-treatments 

modelled in the LCI. 

3.3.1 Pre-treatments: anaerobic digestion 
Ryegrass has a particularly high water content (ca. 80% of FM) at harvest. Therefore, a drying 

process is needed for ryegrass when undergoing a thermal energy conversion. On field drying 

was thus considered and modelled based on the on field drying process traditionally used for 

hay: the ryegrass is left on field for a few weeks, where it is mowed and turned in order to 

facilitate the drying to DM content of 85%. The dry matter losses caused by microbial respiration 

as well as by the different operations was estimated to 20% (±10%) of the initial DM content 

(20, 31). Biomasses undergoing anaerobic digestion require size comminution (assumed 10-50 

mm); this was considered by including an electricity consumption of 7.5 kWh t-1 DM (32). Given 

their high lignin content, Miscanthus and willow are rather resistant to microbial degradation. A 

pre-treatment is therefore necessary in order to break the lignocellulosic structures of these 

energy crops and render a maximum of their C content bioavailable. For both crops, a thermal 

treatment has thus been considered (33, 34), and this was accounted for in the LCA as decreased 

heat production (hence decreased substitution of heat from natural gas).  Based on (33), the heat 

required for the pre-treatment corresponded to about 1.3 GJ t-1 DM.  
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3.3.2 Pre-treatments: gasification 
The gasification process in fluidized bed typically requires biomass with water content below 

20% (35). For ryegrass the on field drying was assumed as described in 3.3.1. Before energy 

conversion, size comminution (10-50 mm) was assumed, as for anaerobic digestion. This way, 

the biomass bales (i.e., ryegrass and Miscanthus) or rods (i.e., willow) are loosened/comminuted 

and homogeneous process conditions are facilitated. For willow, natural drying (down to water 

content of 15%) was assumed to occur during indoor storage of ‘whole rods’ based on 

experimental studies (17, 21, 26). Size comminution (10-50 mm) was assumed before energy 

conversion, as for ryegrass. No drying was taken into account for the gasification of spring 

harvested Miscanthus, due to its low water content (10%) at harvest. Size comminution (10-50 

mm) was assumed required as for ryegrass and willow. 

3.3.3 Pre-treatments: combustion and co-firing 
For combustion and co-firing the approach for the drying process was the same as for 

gasification. For combustion in small-to-medium scale biomass CHP plants no other pre-

treatment was included. In fact, ryegrass and Miscanthus bales as well as willow ‘whole rods’ 

can be fed directly when combusted in these plants which have been optimized in the last 

decades to burn locally available biomasses without the need for expensive pre-treatments such 

as pelletization, shredding and pulverization. On the other hand, the electricity recovery 

decreases as a consequence of the lower plant size and fuel quality. Nevertheless, small-to-

medium scale biomass CHP plants have been optimized (in some cases with flue gas 

condensation) to recover as much as 90% of the initial energy of the fuel in form of heat for 

district heating purposes. This is already done for biomasses with similar characteristics to 

Miscanthus and willow such as straw and wood chips. For co-firing instead, size comminution 

(10-50 mm) was included in the model. Pelletization and milling of the pellets were not included 

in the baseline calculation (as parallel co-firing was assumed). However, this assumption was 

tested in the sensitivity analysis by including pelletization and milling prior to direct co-firing. 
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Table S2. Overview of pre-treatments and energy efficiency of the BtE conversion technologies 
considered in this study (rounded values). In brackets the uncertainty range corresponding to the 
95% confidence interval (i.e., the interval of length equal to four times the standard deviation 
around the mean) is reported. AD: anaerobic co-digestion of energy crops with raw pig manure; 
GA: thermal gasification; CO: direct biomass combustion in small-to-medium scale CHP plants; 
CF: co-firing in large scale coal-fired CHP plants. 

  Pre-treatment Energy conversion 

BtE  Steam Drying Comminution Pelletizing Milling BtE 
Technology ηel (%) ηth (%) ηtot (%) 

R
ye

gr
as

s 

AD  X X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

GA  X X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

CO  X    Steam 
cycle 27 (±2) 63 (±7) 90 (±5) 

CF  X X X* X* Steam 
cycle 38 (±3) 52 (±8) 90 (±5) 

W
ill

ow
 

AD X  X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

GA  X X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

CO      Steam 
cycle 27 (±2) 63 (±7) 90 (±5) 

CF  X X X* X* Steam 
cycle 38 (±3) 52 (±8) 90 (±5) 

M
is

ca
nt

hu
s 

AD X  X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

GA   X   Gas engine 38 (±4) 52 (±8) 90 (±5) 

CO      Steam 
cycle 27 (±2) 63 (±7) 90 (±5) 

CF   X X* X* Steam 
cycle 38 (±3) 52 (±8) 90 (±5) 

* Pelletizing and milling may be required when applying direct biomass co-firing with pulverized coal. This 
scenario was included in the sensitivity analysis only. 



S17 

 

3.4 Biomass-to-Energy conversion technologies  

3.4.1 Anaerobic digestion 
Digestion of carbohydrate-rich energy crops alone (e.g., willow and Miscanthus) has the primary 

advantage of requiring significantly low digestion volumes because of the high dry matter 

content of the feedstock; this makes anaerobic digestion of such crops economically attractive. 

However, mono-digestion of energy crops may encounter a number of technical problems (and 

eventually failures) related to the sub-optimal content of micro-nutrients (e.g., nickel, cobalt, 

etc.) and macro-nutrients (high C to N ratio); recent studies have indicated the optimal C to N 

ratio to be between 16-20 (36-38) and have demonstrated how a sub-optimal concentration of 

selected micro-nutrients may lead to process failure (36). Co-digestion with nutrients-rich 

substrates such as the organic fraction of municipal solid waste or manure may solve these 

problems (36, 37). In addition, manure represents one of the most abundant domestically 

available biomass resources for Denmark (about 23-34 PJ) which is only to a minor extent (6% 

of the potential) exploited for energy production (39). The scarce economical and technical 

attractiveness of manure mono-digestion is primarily due to the low energy production per unit 

of reactor volume as a consequence of the extremely low dry matter content of the feedstock 

(between 2% and 10% depending of the type of animal manure). The current management in 

Denmark is by far (94% of the potential) represented by spreading on land of raw manure. This 

practice leads today to large environmental impacts on most environmental compartments, 

mainly global warming and eutrophication (8). Hence, co-digestion of manure and energy crops 

may represent a viable alternative to produce bioenergy and improve manure management.  

In this study, a generic two-stage mesophilic anaerobic digestion plant was modeled, 

where the energy crops were co-digested with manure. The principal parameters modeled were: 

i) methane potential and yield, ii) ratio manure:crop in the mix fed, and iii) energy consumption 

for plant operation.  

Based on (8), the i) methane potential of raw pig manure was 450 Nm3 t-1 VS. The yield 

was set to 70%, i.e., generating 320 Nm3 t-1 VS (8). The methane potential of the crops was 

calculated from the Buswell’s equation based on the content of lipids, carbohydrates, proteins 

and lignin (Table S3). The methane potential was calculated to 410, 350 and 360 Nm3 CH4 t-1 VS 

for ryegrass, willow and Miscanthus, respectively. The methane potential for willow and 

Miscanthus was calculated from the composition of the crops as after steam pre-treatment based 
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on the results of (33). The pre-treatment determined a partial decomposition of the lignin 

structure so that more sugars were bioavailable for microbial degradation. This explained the 

difference between pre-treated and raw substrates. For all crops (as for manure) the methane 

yield in the digester (including post-digestion tank) was set to 70% of the methane potential 

based on literature (40). The corresponding methane production was therefore 290, 240 and 250 

Nm3 CH4 t-1 VS. It was assumed that 90% of the total production occurred in the first digestion 

stage. Notice that the estimated methane yield for ryegrass was consistent with the values found 

in literature (198-510 Nm3 CH4 t-1 VS, see Table S4). 

 
Table S3. Composition of ryegrass, willow and Miscanthus in terms of lipids, carbohydrates, 
proteins, lignin and relative calculated methane potential. CH4 pot: methane potential (Nm3 t-1 

VS); %VS (concentration of the parameter (e.g., lipids) as % of VS); Draw: degradability of the 
raw substrate (% CH4 pot); DPT: degradability of the pre-treated substrate (% CH4 pot). The 
values of DPT for willow and Miscanthus are based on laboratory batch-tests (33). 

 Parameter CH4 pot 
Ryegrass Willow Miscanthus 

 %VS  Draw  DPT %VS  Draw  DPT %VS  Draw  DPT 

Lipids 1014 4.3 100 - 0.0 - - 0.0 - - 

Cellulose 415 47.6 100 - 41.2 60 100 47.6 60 100 

Hemicellulose 415 15.5 100 - 14.9 70 100 18.5 70 100 

Proteins 496 20.2 100 - 0.0 - - 0.0 - - 

Lignin 200† 10.4 0 - 31.6 0 100 25.2 0 100 

Residue 415 0.0 100 - 12.2 0 100 8.8 0 100 

CO2/CH4  2.6 2.7 2.8 

CH4 pot (crop)  410 350 360 
† Based on (33). 

 

In order to ii) calculate the ratio manure:crop (and so the amount of manure utilized and digested 

per hectare of the crop-system) a mass balance based on (8) was established (Eq. S1-S6). This 

allowed calculating the ratio manure:crop for different values of dry matter of the digestate 

obtained after the first digestion stage. A DM content of 10% in the digestate represents an upper 

constraint in order to assure the pumpability of the digestate in wet digestion systems (8). This 

constraint determines the maximum amount of co-substrate (e.g., crop) that could be mixed with 

the manure. 
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cropman WW1000 +=         Eq S2. 

1000)%ρ/(CHyieldWVSW 4manmanmanmanbiogas, ⋅⋅⋅⋅=     Eq S3. 

1000)%ρ/(CHyieldWVSW 4cropmanmancropbiogas, ⋅⋅⋅⋅=     Eq S4. 

manmanmanmanmanmandeg, DR/DMVSDMWVS ⋅⋅⋅=     Eq S5. 

cropcropcropcropcropcropdeg, DR/DMVSDMWVS ⋅⋅⋅=     Eq S6.  

 

Where: 

DMdigest: DM of the digestate after the first digestion stage (% FM) 

Wman: weight of the manure input (kg) 

DMman: DM of the manure input (% FM) 

VSdeg,man: VS degraded from the raw manure after the first digestion stage (kg) 

Wcrop: weight of the crop input (kg) 

DMcrop: DM of the crop input (% FM) 

VSdeg,crop: VS degraded from the crop after the first digestion stage (kg) 

Yieldman: methane yield of the manure after the first digestion stage (Nm3 t-1 VS) 

Yieldcrop: methane yield of the crop after the first digestion stage (Nm3 t-1 VS) 

ρ: biogas density (kg Nm-3) 

DRman: degradation rate of the manure after the first digestion stage (% VS) 

DRcrop: degradation rate of the crop after the first digestion stage (% VS) 

 

The DM (as % FM) and VS (as % DM) content of the manure was 6.97% and 80%, based on (8). 

The DM content of the crops ex-storage was assumed equaled to the DM content prior to 

storage. The degradation rate of the manure after the first stage was 60% based on (8). For the 

crops, it was calculated based on Eq. S7, and equaled 54%, 46% and 47% for ryegrass, willow 

and Miscanthus, respectively. The yield of methane in the first digestion step was assumed 90% 

of the total. The remaining 10% was assumed produced and collected in the post-digestion tank. 

The density ρ of the biogas was 1.158 kg Nm-3 based on CH4 content in the biogas of 65%. 
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cropcroppot4

crop

manmanpot4
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YieldTotCH
DR

YieldTotCH
DR

⋅
=

⋅
    Eq. S7. 

Where: 

DRman: degradation rate of the manure after the first digestion stage (% VS) 

DRcrop: degradation rate of the crop after the first digestion stage (% VS) 

CH4 pot man: methane potential of the manure (Nm3 CH4 t-1 VS) 

CH4 pot crop: methane potential of the crop (Nm3 CH4 t-1 VS) 

Tot Yieldman: total methane yield of the manure (% CH4 pot man) 

Tot Yieldcrop: total methane yield of the crop (% CH4 pot crop) 

 

The results are presented in Figure S12 with respect to different dry matter of the digestate (5% 

to 10%) obtained after the first digestion stage. It is evident that the biogas plant operators will 

utilize as much crop as possible to boost the energy production per unit of feed input. The energy 

production will be maximized for a digestate at DM equal to 10% corresponding to a ratio (fresh 

matter basis) manure:crop of 5.7, 6.4 and 6.7 for ryegrass, willow and Miscanthus, respectively. 

The amount of manure utilized for co-digestion was therefore 69, 92 and 72 t FM ha-1 for 

ryegrass, willow and Miscanthus, respectively.  

With respect to iii) electricity and heat consumption for the plant operation the data were 

based on (8): the electricity consumption was set to 2% of the overall energy in the produced 

biogas (corresponding to about 5% of the net electricity production) and the heat consumption 

was calculated based on the thermal energy required to heat up manure and crops from 8 ºC to 37 

ºC. The fugitive emission of methane was estimated to 1% of the methane produced, based on 

recent LCA studies (8, 32, 41). Emissions of biogenic CO2 were estimated as a function of the 

biogenic CH4 releases, based on the methodology described by (8). Based on this, the ratio CO2 

to CH4 was found to correspond to 2.6 for ryegrass, 2.7 for willow and 2.8 for Miscanthus 

(Table S3). 

The biogas generated from anaerobic digestion was assumed to be used in a gas engine 

with an average electricity efficiency of 38% (±4%), based on a review of different gas engine 

technologies (42). The total energy efficiency was set to 90%, thus raising heat recovery 
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efficiency to 52% (Table S2). The total energy efficiency was based on a review of a number of 

small-to-medium scale biomass CHP plants (section 3.4.3). Similar values are reported by (43). 

The emissions associated with the biogas combustion in gas engines were based on (44) (Table 

S7). The environmental savings and impacts associated with the management (i.e., storage, 

digestion and use on land) of the manure were accounted for based on previous results (8) (the 

LCA system boundary was therefore expanded accounting for the amount of manure utilized and 

digested in each crop-system). 

 

 
Figure S12. Illustration of I) share of manure (kg t-1 FM input) in the mix manure-crop fed into 
the digestion plant, II) C to N ratio of the mix manure-crop fed into the digestion plant, III) share 
of the total energy produced from manure (MJ t-1 FM input), IV) share of the total energy 
produced from the crop (MJ t-1 FM input) and V) total energy produced (MJ t-1 FM input) as a 
function of the dry matter content of the digestate obtained after the first digestion stage; a) 
ryegrass; b) willow; c) Miscanthus. 
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Table S4. Overview of methane yield (or potential) reported in the reviewed literature studies. 

Biomass CH4 yield (Nm3CH4 t-1 VS) Note Source This study 

Ryegrass 

198-360 Lab batch test 38 ºC, 35-40 days (45)* 

290  
 

233-327 Lab batch test 35 ºC, 28 days (46)* 
300-320 Lab/semi-continuous/35 ºC/28 days (47)* 

320-510† Lab batch tests/70-80 days (48)* 
310-360 Lab batch tests/35 ºC/28 days (49)* 

410† Lab and pilot scale tests (50) 
390 Pilot scale (51) 

361† Lab batch test  (52) 
Other 
grasses 

197-470 Review of different grass species (53)  
- 

305 Modeling (54) 

Willow 300 With pretreatment (33) 240 
90 No pretreatment (51)  

Miscanthus 300 With pretreatment (33) 250 
*Tabulated in (31). 
† Methane potential. 
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3.4.2 Gasification 
A generic fluidized bed reactor was modeled based on existing pilot plants (32, 55-57). The main 

parameters modeled were: cold gas and carbon conversion efficiency (CGE and CCE), energy 

content of the syngas and energy consumption of the plants. The CGE defines the fraction of the 

feedstock chemical energy (as LHV, dry basis) remaining in the syngas (and not lost as, e.g., 

heat or in the residue). It is expressed as the ratio between the amount of energy in the syngas 

(after gas cleaning) and the amount of energy in the biomass (as LHV, dry basis). The CCE 

defines the proportion of the feedstock C that is transferred to the syngas (as CH4, CO and CO2 

and then to CO2 after further syngas combustion). 

The data for CGE and CCE were based on a number of literature studies focusing on 

woody and herbaceous biomass (Table S5). In general, the energy conversion efficiency for high 

quality woody biomass (e.g., high quality wood pellets from forest trees) was higher than for low 

grade wood (e.g., waste wood), fast-growing trees (e.g., willow) and herbaceous crops (e.g., 

grasses and Miscanthus). The energy conversion efficiency for herbaceous biomass (e.g., grass 

and Miscanthus), willow and waste wood was the lowest. However, other studies based on 

modeling of gasification processes (58, 59) indicated higher efficiencies (about 85%) for 

gasification of lignocellulosic and herbaceous energy crops. The difference between modeling 

and pilot-scale experimental results is associated with the high heat losses typically occurring in 

small-scale pilot plants (up to 10-20%); this is often the reason why these facilities do not reach 

high CGE efficiencies. Therefore, based on the data reported in Table S5, the CGE (for all 3 

crops) was equaled to the mid value of the large range 55%-85%. (i.e., 70% ±15%). Also from 

the above-mentioned literature review, the CCE was equaled to the mid value of the range 91-

99% (i.e., 95% ±4%). The influence of the variability of both the CGE and the CCE on the final 

LCA results was assessed in the uncertainty analysis.  

The consumption of electricity to operate the plant ranged between 26 (without biomass 

comminution) and 30 (with biomass comminution) kWh t-1 DM (32). The syngas was assumed to 

be used in a gas engine yielding the same efficiency as when burning the biogas (Table S2). The 

consumption of bed materials and chemicals to run the plant was based on (32). The emissions 

associated with the combustion of syngas in gas engines (Table S7) were based on (44). 
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Table S5. Overview of CGE and CCE reported in the reviewed studies on gasification of 
different woody and herbaceous biomasses; CFB: circulating fluidized bed; FB: fluidized bed; 
BFB: bubbling fluidized bed; n.a.: not available. 

Biomass H2O (% FM);  
ash (% DM) CGE (%) CCE (%) Technology Source 

Grass pellets 
(verge) 7.3; 17.6 58-64 92.7-94.7 CFB; air gasification (57) 

Grass pellets 
(switchgrass) 8.38; 8 62 n.a. FB; steam gasification (60) 

Miscanthus 
pellets 6.78; 1.2 73 n.a. Fixed bed; steam gasification (Lab -

scale) (61) 

Willow chips 17; 2.1 66 91.7-97 CFB; air gasification (57) 

Willow pellets 8; 2.52 55.2-62 86.9-92 CFB; steam-O2 blown gasification (62) 

Wood pellets 
(larch) 8.16; 0.12 79.6 96.9 BFB; air gasification (63) 

Wood pellets 
(cedar) 10; 0.3 82 99 FB; air gasification (64, 65) 

Wood pellets 6.3; 0.5 68 97 BFB; air-steam gasification (66) 

Wood pellets 4.56; 0.4 60 n.a. FB; steam gasification (60) 

Wood pellets 6.7; 1 70-84 n.a. BFB; air gasification (67) 

Wood pellets 8; 0.3 69 92 BFB; air gasification (68) 

Waste wood 16; 8  62-70 87-99 BFB; air gasification (68) 

Waste wood 7-11; 1.2-3.3 49-66 n.a. BFB; air gasification (mainly) (67) 

Wood chips 
(oak, beech) 32.2; 0.9 93 99.4 Two-stage gasifier with pre-heating 

and pyrolisis of the wood chips (69) 

Grass, straw, 
wood n.a. 80-85 n.a. Modeling (58) 

Grass n.a. 79.8 n.a. Modeling (59) 
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3.4.3 Combustion and co-firing with fossil fuel 
For direct biomass combustion, a generic small-to-medium scale (1-100 MW of net power 

output) biomass CHP plant was modeled based on a number of reviewed centralized and 

decentralized biomass CHP plants established essentially in Denmark (Table S6). The 

decentralized biomass CHP plants ranged from small-to-medium scale (1-100 MW of net power 

output in full-load). The centralized (large scale) CHP power plants were Avedoerevaerket and 

Oestkraft; in particular, Avedoerevaerket is considered as one of the most efficient existing co-

firing CHP plants; the net power output in full-load is 355 MW (without gas turbine) – 495 MW 

(with gas turbine) in CHP mode and 425 MW (without gas turbine) - 575 MW (with gas turbine) 

in condensing mode. The reported efficiencies (Table S6) refer to the net full-load electricity and 

heat efficiency (i.e., own plant consumption for biomass handling, shredding, milling etc. has 

been subtracted), if not otherwise specified. In the LCA model, the direct combustion of 

ryegrass/Miscanthus (bales) and willow (chips) was modeled similarly to, respectively, straw and 

wood chips combustion (for the following processes: handling, feeding and air emissions). This 

is supported by the fact that the composition as well as the water content of herbaceous biomass 

and willow chips is similar to straw and wood chips, respectively, and by the fact that previous 

tests realized in Danish power plants have shown similar combustion efficiencies and behaviors 

(11, 70). Secondly, it is envisioned to be likely that biomass producers and energy operators will 

use established harvesting/baling machines (already in use for straw and wood chips) as well as 

power plant technologies (already developed for straw and wood chips) for handling the “new” 

biomasses with as little as possible technical adaptations, thus avoiding expensive investments in 

new technologies. The net electricity efficiency (full-load) in the reviewed biomass plants ranged 

from 13% (for old plants and plants co-firing waste and natural biomass) to 29% (best available 

technologies such as Maribo-Sakskoebing and Herning). The total efficiency (full-load) ranged 

from 76% to 96%. However, for the recently commissioned plants and the installations 

combusting only biomass (e.g., straw and wood chips), the electricity efficiency was typically 

found in the range 25% (Assens)-29% (Maribo/Sakskoebing).  In this study the net electricity 

efficiency was therefore assumed equal to the mid value of this range (27% ±2%). The 

associated total efficiency was between 85% and 95% with average 90% (±5%). In the 
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uncertainty analysis the influence of the variation of the energy efficiency on the LCA results 

was assessed. At this stage of the research, the information and the literature regarding the air 

emissions (other than CO2) from combustion of ryegrass, willow and Miscanthus in biomass 

CHP plants is scarce. Therefore, based on the chemical composition, the air emissions from 

combustion of straw (44) were used as proxy for ryegrass and Miscanthus, whereas the air 

emissions from wood chips (44) were used as proxy for willow (Table S7). The consumption of 

resources and material to operate the plant was based on (71). 

With respect to co-firing of the biomasses with fossil fuel, three main configurations 

exist: direct co-firing (the biomass, typically as pellets, is milled/pulverized together with coal 

and fired in the same system), indirect co-firing (the biomass is gasified and then the syngas is 

fired along with fossil fuel in the same system) and parallel co-firing (the biomass is combusted 

in separate boiler; the steam generated is used in the same steam turbine as for the steam derived 

from fossil fuel combustion, with high efficiency). An example of world-wide best available 

technology for parallel as well as direct co-firing is Avedoerevaerket power plant where parallel 

co-firing of straw and direct co-firing of wood pellets (milled/pulverized and fired along with 

coal) is operated. Wood chips can also be used as fuel for parallel co-firing. This is demonstrated 

by the fact that in periods where straw was not harvested (too humid because of wet summers), 

wood chips were used instead. With respect to crops storage, handling and feeding, the co-firing 

technology was modeled based on this specific power plant. The (full-load) electricity efficiency 

of the reviewed co-firing CHP plants was in the range 35% (Oestkraft) - 41% (Avedoerevaerket). 

The mean value (38%) was assumed for the baseline modeling (uncertainty ±3%). This was also 

the average annual net electricity efficiency of Avedoerevaerket. The related total efficiency was 

set to 90% (±5%) as for direct biomass combustion. In the uncertainty analysis the influence of 

the variation of the energy efficiency on the LCA results was assessed. The consumption of 

resources and material to run the plant was modeled based on (72). The air emissions were 

assumed the same as for direct biomass combustion. 
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Table S6. Overview of the (full-load) energy efficiencies of the reviewed biomass CHP plants. 
CP: condensing plant; CHP: combined heat and power plant; ηel: electricity efficiency; ηtot: total 
efficiency (heat plus electricity). 

Type Name Fuel Technology ηel  ηtot 

CP NEPCO plant (-) Wood (unspecified) Travelling grate 29 - 

CP Delano I plant 
(1991) Agricultural waste Bubbling fluidised bed 29 - 

CP McNeil Plant (1984) Wood (unspecified) Travelling grate 30 - 

CP Enstedvaerket 
(1998) 

Straw, wood chips (0-
20%) 

Shredded straw/stoker; wood chips are burned in a 
separate boiler to super-heat the steam from straw 41* - 

CHP Handelovaerket 
(1994) 

MSW, industrial waste, 
waste wood, sludge Circulating fluidised bed 13 77 

CHP  Masnedoe (1996) Straw, wood chips  oscillating grate; Shredded straw/stoker 26 91 

CHP Vejen (-) Waste, straw, wood 
chips 

Sectional step grate for waste and wood chips; cigar 
burner for straw 21* 83 

CHP Maabjerg (1993) Waste, straw, nat. gas, 
wood chips 

Vibrating grate for waste; cigar burner for straw and 
wood chips 27 92 

CHP Oestkraft (1995) Wood chips (20%), 
coal (80%), oil 

Travelling grate; Woodchips are substituted with oil 
when the boiler loads > 65% of the boiler nominal 

 
35 88 

CHP Hjordkær (1997) Wood chips, biowaste Step grate; pre-combustor; initially used as pilot 
plant 16* 86α 

CHP Assens (1999) Wood chips, mix (wood 
waste, residues) Pneumatic feeders; oscillating grate 25 85β 

CHP Rudkoebing (1990) Straw Shredded straw/stoker 21 85 

CHP Haslev (1989) Straw Cigar burner 23 83 

CHP Slagelse (1990) Straw Shredded straw/stoker 27 92 

CHP Grenaa (1992) Straw Circulating fluidized bed; Shredded straw/pneumatic 
feeder 18γ 76 

CHP Maribo/Sakskoebing 
(2000) Straw Shredded straw/stoker 29 94 

CHP Alholmens Kraft (-) Waste wood, forest 
residues, coal, oil, peat Circulating fluidized bed  37 57 

CHP Herning (2009) Wood chips (70%), 
wood pellets (30%),  water-cooled vibration grate; pneumatic spreaders 28 87 

CHP  Avedoerevaerket 
(Block 2) (2001) 

Straw, wood pellets, 
fossil fuel 

Separate straw (ultrasupercritical) boiler; wood 
pellets are milled and fed together with coal; one 
common steam turbine 

41†  93† 

*Gross efficiency. 
α Designed to supply primarily district heating. 
β Without flue-gas condensation. The ηtot is between 93%-97% including flue-gas condensation. 
γ Low electricity production as the plant was designed to supply primarily process steam to industry. 
†Full-load efficiency (CHP mode). The annual average electricity (as well as heat) efficiency is 38%. In condensing mode 
the electricity efficiency can be up to 49%. 
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Table S7. Air emissions (only main chemicals) from biomass and bio/syngas combustion (44). 
Values are expressed per GJ of primary energy (LHVwb, i.e., LHV wet basis) of the fuel 
combusted. PCDD/F-: dioxins and furans (as Polychlorinated Dibenzo-p-dioxins, i.e., PCDDs); 
TSP: total suspended particulate; UHC: unburned hydrocarbons. 

Air emission Unit Biogas fuelled 
engines 

Syngas fuelled 
engines 

Straw 
combustion 

Wood 
combustion 

CO g GJ-1 310 586 67 90 
CH4 g GJ-1 434 13 <0.47 <3.1 
N2O g GJ-1 1.6 2.7 1.1 0.83 
NOx g GJ-1 202 173 125 81 
PCDD/F- ng GJ-1 <0.96 <1.7 <19 <14 
HCl g GJ-1 - - 56 - 
Naphthalene μg GJ-1 4577 8492 12088 2314 
NMVOC g GJ-1 10 2.3 <0.78 <5.1 
∑PAH μg GJ-1 <606 <181 <5946 <664 
SO2 g GJ-1 - - 49 <1.9 
TSP g GJ-1 - - <2.3 10 
UHC g GJ-1 333 12 <0.94 <6.1 

 

3.5 Transportation 
Transportation of the harvested biomass from the farm to the energy plant was included in the 

model. A transportation distance of 50 km was assumed. Since the three crops were assumed to 

have similar water content after drying and storage, the fuel consumption for  transport was 

based on the data provided by (32) for on field dried straw bales (similar water content). 

Transportation of the digestate from the anaerobic digestion plant to the field of application was 

not included in the modeling. 

3.6 Treatment of thermal conversion residues 
Bottom ash from gasification, combustion and co-firing scenarios was assumed to be used for 

road construction substituting for extraction and production of gravel, following the approach of 

(73). Recovery of phosphorous from the bottom ashes was not included; although this might be 

an option in the future, at this stage of the research the authors are not aware of established and 

available technologies for P extraction from the bottom ashes. The fly ashes were assumed to be 

http://oehha.ca.gov/air/toxic_contaminants/pdf_zip/dioxin_Final.pdf
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disposed of in an old salt mine with negligible environmental impacts. Treatment of waste water 

was not included either in the LCA model. 

3.7 Digestate storage 
The emission of CH4 from digestate storage was calculated using the same approach as for crop 

storage (section 3.2). The emission of biogenic CO2 was estimated as for the biogas, i.e., as a 

function of the biogenic CH4 releases, based on the methodology described by (8). The N losses 

during the storage of the digestate were estimated using the same approach as for the N losses 

from crop storage. The losses flows are illustrated in Figure S13-S18. 

3.8 Use on land of digestate 
The amount and composition of the digestate derived from anaerobic digestion of the crops was 

calculated based on a mass balance approach, i.e., as the difference between the initial nutrients 

and dry matter fed to the digestion process and the amount transferred to the biogas, considering 

the subsequent losses occurring during the digestate storage. The digestate from anaerobic 

digestion was assumed to substitute for N, P and K mineral fertilizers, considering the digestate 

is fertilizing the 6 years rotation of winter barley, winter rape, winter wheat (twice) and spring 

barley (twice) described in (8), for a pig farm. Fertilizer substitution is further detailed in section 

6 of this SI. 

The emission and leaching of nutrients were quantified as follows: direct N2O emissions 

were calculated equal to 1.5% of the N applied with the digestate based the mean value of the 

range provided by the IPCC approach (74) for application on land of digestate. The emission of 

NH3-N was calculated equal to 11% which is the average of a range of values (Table S17) 

suggested by (75-78) (results in Table S8). The influence of the uncertainty associated with these 

values on the LCA results was assessed in the uncertainty analysis. The leaching of N (as 

nitrates) was calculated equal to 45% of the digestate N content based on (8). The indirect N2O 

emission (i.e., N2O produced from secondary reactions involving NH3, NOx and leached N) 

were quantified based on IPCC (74). With respect to this, the N2O flows associated with use on 

land shown in Figure S16-S18 only refer to the direct N2O emissions. Losses of P to soil and 

water were considered to correspond to 5% of the P applied in excess, based on (9). The K losses 

to soil and water were not further considered, as not affecting the environmental categories 

considered, based on the impact assessment methodology selected.  
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The share of the applied C that enters the soil C pool and that is emitted as CO2 was 

determined based on the findings of (78). Based on this, it was considered that 66% of the initial 

C applied is emitted as CO2 after 1 year, and 74% after 20 year (Figure S13-S15 and Table S8).  
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4. Carbon and nitrogen flows 
As described in the main manuscript (section 2.4) the C and N flows of all the scenarios assessed 

in this study have been disaggregated and calculated for all the major processes involved. This 

included the soil C changes resulting from the cultivation stage, which were calculated with the 

dynamic soil C model C-TOOL (79, 80), as detailed in (9) for all crop systems. The modeling of 

the other C and N flows was based on the equations listed in section 9 of this document. The 

carbon and nitrogen flow analysis was facilitated with the software STAN (81). The values 

reported in the sankey-flows refer to calculated mean value (eventually reconciliated by STAN) 

with relative standard deviation. The C and N flows for ryegrass, willow and Miscanthus are 

reported in Figure S13-S18. 

Table S8 summarizes the major C and N flows for all the 12 bioenergy scenarios assessed. The 

discussion of the results can be found in the main manuscript (section 3.1). 

 
Table S8. Overview of (selected) carbon (t C ha-1 y-1) and nitrogen (kg N ha-1 y-1) flows in the 
bioenergy scenarios (rounded average values); C atm: carbon uptake from atmosphere; CO2-C: 
carbon released during field (including C uptaken from atmosphere and agronomic inputs, and 
not embedded in the harvestable products and residues) and energy processes; ∆SOC: change in 
soil organic carbon; CO2-Cavoided: avoided carbon emission due to (fossil) energy substitution. 
Negative values represent inflows, sinks and avoided emissions (e.g., uptake, ∆SOC, etc.). 

  Ryegrass Willow Miscanthus 
Phase Emission AD GA CO CF AD GA CO CF AD GA CO CF 

C
ul

tiv
at

io
n 

C atm -12 
 
 
 

-11 
 
 
 

-11 
 
 
 

CO2-C 6.9 
 
 
 

6.1 
 
 
 

6.4 
 
 
 

∆SOC -0.51 
 
 
 

-0.53 
 
 
 

-0.48 
 
 
 

N leached 74 
 
 
 

10 
 
 
 

10 
 
 
 

N2-N 58 
 
 
 

23 
 
 
 

20 
 
 
 

NH3-N 47 
 
 
 

24 
 
 
 

6.6 
 
 
 

N2O-N 5.8 
 
 
 

2.3 
 
 
 

2.0 
 
 
 

NOx-N 6.8 
 
 
 

2.3 
 
 
 

1.7 
 
 
 En

er
gy

 
us

e 

CO2-C 3.2 4.5 4.7 4.7 3.6 5.6 6.0 6.0 2.9 4.2 4.5 4.5 
CH4-C 0.049 0.002 - - 0.053 0.002 - - 0.041 0.002 - - 
CO2-Cavoided -4.6 -4.6 -5.7 -6.6 -4.9 -5.9 -7.1 -8.3 -3.9 -4.5 -5.9 -6.9 

D
ig

es
ta

te
 u

se
 o

n 
la

nd
 

CO2-C 2.4 - - - 3.5 - - - 2.5 - - - 
C in soil -1.2 - - - -1.7 - - - -1.3 - - - 
NH3-N 71 - - - 58 - - - 43 - - - 
N2O-N(dir.) 9.7 - - - 7.9 - - - 5.9 - - - 
N2O-

 
3.3 - - - 2.4 - - - 1.8 - - - 

NO3
--N 290 - - - 240 - - - 180 - - - 

N in soil 270 - - - 220 - - - 160 - - - 
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Figure S13. Illustration of the C flows breakdown (t C ha-1 y-1) for anaerobic co-digestion of 
ryegrass with raw pig manure (values rounded to 2 significant digits). AG stands for above-
ground residues and BG stands for below-ground residues. Carbon fossil emissions associated 
with machinery used in the cultivation, transport, storage and energy use phase are not reported 
to simplify the diagram; however, these were accounted for in the LCA model. 

 
Figure S14. Illustration of the C flows breakdown (t C ha-1 y-1) for anaerobic co-digestion of 
willow with raw pig manure (values rounded to 2 significant digits). 
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Figure S15. Illustration of the C flows breakdown (t C ha-1 y-1) for anaerobic co-digestion of 
Miscanthus with raw pig manure (values rounded to 2 significant digits). 
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Figure S16. Illustration of the N flows breakdown (kg N ha-1 y-1) for anaerobic co-digestion of 
ryegrass with raw pig manure (values are rounded to 2 significant digits). AG and BG stands for 
above- and below- ground residues; N* stands for total unspecified N losses during crop storage; 
indirect N2O emissions are not illustrated; N in soil also includes eventual N2 losses. 

 

Figure S17. Illustration of the N flows breakdown (kg N ha-1 y-1) for anaerobic co-digestion of 
willow with raw pig manure (values rounded to 2 significant digits). 



 

S35 

 

Figure S18. Illustration of the N flows breakdown (kg N ha-1 y-1) for anaerobic co-digestion of 
Miscanthus with raw pig manure (values rounded to 2 significant digits). 
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5. Energy balance of the bioenergy scenarios 
The energy balance of the 12 bioenergy scenarios assessed is presented in Table S9. 

 
Table S9. Overview of the energy balance of the 12 bioenergy scenarios (rounded average 
values); db: dry basis (i.e., the value is based on the LHVdb); wb: wet basis (i.e., the value is 
based on the LHVwb); ηel: electricity efficiency; ηht: heat efficiency; ηtot: total efficiency crop to 
energy, calculated by dividing the final net electricity and heat produced by the initial energy 
yield (dry basis). For combustion (CO) and co-firing (CF) the efficiency reported (ηel) is a net 
efficiency (i.e., plant own consumption is subtracted). 

 Ryegrass Willow Miscanthus 

 AD GA CO CF AD GA CO CF AD GA CO CF 

Cultivation 

Yield (t DM ha-1 y-1) 14 (13.6) 13 (12.7) 10 

Yield (t FM ha-1 y-1) 77 25 11 

Energydb (GJ ha-1 y-1) 230 230 180 

Energywb (GJ ha-1 y-1) 77 200 180 

Pretreatment 

El. (MWh ha-1 y-1) 0.1 0.1 - 0.1 0.1 0.1 - 0.1 0.1 0.1 - 0.1 

Heat (GJ ha-1 y-1) - - - - 16 - - - 12 - - - 

DM loss (t DM ha-1 y-1) 3.3 0.6 0.6 

Operation 
El. (MWh ha-1 y-1) 0.78 0.3 4.6† 4.6† 0.9 0.3 5.1† 5.1† 0.7 0.7 6.1† 6.1† 

Heat (GJ ha-1 y-1) 9.3 - - - 12 - - - 9.4 - - - 

Crop fed  

Crop fed (t DM ha-1 y-1) 10 12 9.4 

Crop fed (t FM ha-1 y-1) 12 14 11 

Energydb (GJ ha-1 y-1) 170 220 170 

Energywb (GJ ha-1 y-1) 170 210 170 

Raw pig 
manure 

Amount (t DM ha-1 y-1) 4.7 - - - 6.3 - - - 5.0 - - - 

Amount (t FM ha-1 y-1) 69 - - - 92 - - - 72 - - - 

Gas 
conversion Energygas (GJ ha-1 y-1) 140 120 - - 160 150 - - 130 120 - - 

Energy 
efficiency 

ηel (%) 38 38 27 38 38 38 27 38 38 38 27 38 

ηht (%) 52 52 63 52 52 52 63 52 52 52 63 52 

Net energy 
output 

El. (MWh ha-1 y-1) 14 13 13 18 16 16 16 23 13 12 13 19 

Heat (GJ ha-1 y-1) 65 64 110 88 56 80 140 110 45 62 110 92 

ηtot 
(crop-energy)  

ηtot  el (%) 22 20 20 28 26 25 25 36 26 25 27 38 

ηtot  ht (%) 28 28 47 38 24 35 59 48 25 35 62 52 

†The electricity consumption is reported although this is already accounted for in the net efficiency 
reported in the line ‘Energy efficiency’.  
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6. Mineral fertilizer substitution for digestate use on land 
As described in the main manuscript, it was considered that the digestate was applied to the 6-

year crop rotation described in (8), for a representative Danish pig farm. The P and K 

requirements of this crop rotation are presented in Table S10. The amount of P and K in all 

produced digestates is shown in Table S11 (N content is also reported). This was calculated 

based on the P and K content of each energy crop (Table S1), and on the dry matter (DM) of the 

digestate which was applied on land (Table S11).  

The calculation of the amount of mineral fertilizers substituted from using the digestates 

as organic fertilizers was based on the Danish law (82). Based on this, the amount of N that can 

be brought into the field is limited, so the N cannot be applied in excess. However, not all the N 

applied translates into mineral fertilizer avoided, as the law considers an efficiency of 75% for 

pig slurry (i.e., 100 kg N from organic fertilizer substitutes 75 kg of mineral fertilizer). 

On the other hand, the P and K may be applied in excess, as they are not limited as in the case of 

N. In cases where these are applied in excess, the amount of mineral P and K fertilizers that are 

avoided should not include the amount of P and K contributing to the excess (8), the rationale 

being that without the digestate, farmers would only apply minerals P and K up to the crop 

requirements, in order to save on costs. The proportion of P and K from the applied digestate that 

are really avoided is therefore calculated as the ratio between the average annual needs in P and 

K from the crop rotation considered (Table S10), and the content in P and K in the digestate 

applied (Table S11). As a result, only 18%, 21% and 18% of the P applied respectively with the 

digestate derived from co-digestion of manure with ryegrass, willow and Miscanthus does 

correspond to avoided mineral P fertilizers, the rest being an excess that would not have been 

applied otherwise. Similarly, only 25%, 21% and 23% of the K applied does replace mineral K 

fertilizers. These figures indicate that for all digestates, the nutrients are applied in excess 

compared with the average annual crop needs (23 kg P ha-1 y-1 and 61 kg K ha-1 y-1). 

The same methodology was applied to calculate the amount of mineral fertilizer that 

would have been substituted in the case of that the manure was applied on land (reference 

scenario). Table S12 shows the N, P, K content of the raw pig manure used for co-digestion 

(instead of directly on land) in the individual bioenergy scenarios, the crops uptake rate and the 

consequent induced N, P and K fertilizers production. 
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Table S10. P and K requirements of the 6-year crop rotation on which the digestate is applied. 
Year Crop P (kg ha-1)* K (kg ha-1)* 
1 Winter barley 21 54 
2 Winter rape 30 89 
3 Winter wheat 22 66 
4 Winter wheat 22 66 
5 Spring barley 22 45 
6 Spring barley 22 45 
Annual average  23 61 
* Data for P and K requirements are from (83). 

 

Table S11.  Amount of N, P, K applied and avoided with/from the digestates produced in the 
individual anaerobic digestion scenarios (values rounded to 2 significant digits). 

Bioenergy 
scenario 

Digestate’ nutrients (kg  ha-1) Uptake (%) Avoided fertilizers production (kg ha-1) 

DM N P K N P K N P K 

AD RG 8900 640 130 240 75 18 25 480 23 61 

AD WI 12000 530 110 300 75 21 21 400 23 61 

AD MI 7300 390 130 280 75 18 23 290 23 61 

 
 
Table S12. Amount of N, P, K in the total raw manure used for each individual anaerobic co-
digestion scenario and amount of mineral N, P, K fertilizers induced from not applying the raw 
manure directly on land anymore (values rounded to 2 significant digits). N, P, K content is 
according to reference values suggested by the Danish legislation for ex-storage raw pig manure 
(8). 

Bioenergy 
scenario 

Nutrients in the total raw  
manure ab-housing used for AD 

(kg ha-1) 
Uptake (%) Induced fertilizers production (kg ha-1) 

DM N P K N P K N P K 

AD RG 4700 330 72 180 75 32 34 280 25 66 

AD WI 6300 440 96 240 75 24 26 370 25 66 

AD MI 5000 350 75 190 75 32 33 290 25 66 
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7. Indirect land use changes 
In order to evaluate the amount of land expanded per hectare of spring barley displaced from 

Denmark, the results of (84) have been used, as shown in Table S13. The result of Table S13 

corresponded to a total of 0.17 ha expanded per tonne of wheat extra demand (1 ha=10,000 m2).  

In this study, these results were used as a rough approximation for the land expansion due 

to displacing 1 hectare of spring barley. For this, a yield of 4.9 t DM ha-1 was considered for 

spring barley, based on (9) as well as a DM content of 85%. As a result, 0.95 ha are expanded 

per ha displaced (0.17 ha expanded t-1 wheat (taken as a proxy for barley) × 4.9 t DM t-1 barley 

(fresh) / 0.85 t DM t-1 fresh barley). Table S13 shows how the 0.17 ha expanded (per tonne of 

wheat extra demand) calculated by (84) is distributed among the different regions of the world. 

The same author also presented these results over an aggregation of 8 regions only, as shown in 

Table S14. In (84), the results of Table S14 are further translated into affected biomes. This is 

presented in Table S15. In order to relate the results of Table S14 and S15, Table S16 has been 

used (taken directly from (84)). Based on the results of Tables S13-S16, Table 1 of the main 

manuscript could be drawn (i.e., the results from its first fourth columns). 
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Table S13. Results for 1 t of wheat demand increase from Denmark (values as reported in (84)). 
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DK-core 
Cult. Land 107.1 11.3 0.0 7.5 1.5 0.0 4.6 33.9 96.9 0.0 15.7 6.1 70.6 9.4 176.2 227.7 0.0 0.0 10.1 91.1 0.0 285.1   

Graz. Land 37.0 3.3 0.0 6.1 0.0 1.8 1.1 0.0 10.0 67.9 0.0 2.9 16.5 0.3 41.2 133.4 13.7 -8.2 3.9 90.6 0.0 81.4   

 

Total 144.1 14.5 0.0 13.6 1.5 1.8 5.7 33.9 106.9 67.9 15.7 9.0 87.0 9.7 217.5 361.1 13.7 -8.2 14.1 181.7 0.0 366.5   

Total - verification 144.1 14.5 0.0 13.6 1.5 1.8 5.7 33.9 106.9 67.9 15.7 9.0 87.0 9.7 217.5 361.1 13.7 -8.2 14.1 181.7 0.0 366.5 1658 
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Table S14. Results for Denmark aggregated over 8 regions only (from (84)). 

Net expansion (m2 t-1 
wheat extra demand) 
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xss xeu15 bra xsu aus can xla usa row 
Cultivable land 
  1,155 285 228 176 91 107 97 71 0 100 

Grazable land 
  503 81 133 41 91 37 10 16 68 25 

Total 
  1658 367 361 217 182 144 107 87 68 125 

* SACU: South African Customs Union: Botswana, Lesotho, Namibia, South Africa, Swaziland. 

 

Table S15. Results for Denmark, translated into affected biomes (after (84), values rounded to 

two significant digits). 

Biomes Area converted (per 1 t wheat extra demand) 

Savanna 300 m2 

Tropical evergreen forest 350 m2 

Boreal deciduous forest 97 m2 

Evergreen/deciduous mixed forest 200 m2 

Dense shrubland 260 m2 

Grassland/steppe 150 m2 

Open shrubland 170 m2 

Boreal evergreen forest 10 m2 

Rest (biomes unknown) 130 m2 

Total 1700 m2 
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Table S16. Correspondence between the region and biomes affected (from (84)). 

Region Biomes affected on cultivable land Biomes affected on grazable land 

Aus Savanna Open shrubland & 
grassland/steppe 

Bra Tropical evergreen forest savanna 

Can Boreal deciduous forest  Boreal evergreen forest 

Xeu15 Evergreen/deciduous mixed forest & 
dense shrubland 

Dense shrubland 

Xsu Grassland/steppe Evergreen/deciduous mixed forest 

Xla Grassland/steppe & tropical evergreen 
forest 

Savanna & dense shrubland 

Xss Tropical evergreen forest & savanna Open shrubland 

usa (full utilization of cultivable land) Open shrubland 
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8. Sensitivity and uncertainty analysis  
As illustrated by (85), uncertainties in LCA studies can generally be distinguished as: I) model 

uncertainties, II) scenario uncertainties and III) parameter uncertainties. The first is associated 

with the models and equations used to quantify the different substance flows and with the impact 

assessment methodology selected which provides the characterization factors for relating the 

inventoried substances to environmental impacts. Scenario uncertainties is related to 

uncertainties associated with the choice of technologies and processes and to the fundamental 

assumptions intrinsically connected to the consequential LCA approach, that is, the choice of the 

marginal crop and energy production technologies replaced in the market by the modeled 

cascading effects. Finally, parameter uncertainties reflect the uncertainty intrinsically associated 

with life cycle inventory data (e.g., in this study: crop yield, crop properties, energy efficiency of 

the BtE technologies, etc.).  

The approach used in this study was as follows: I) model and equation uncertainties were not 

addressed as these were basic mathematical equations and mass/energy balances (see section 9). 

The uncertainty of the characterization factors was also not assessed as this was out of the scope 

of the paper and as the uncertainty of the methodology equally applies to all the selected 

bioenergy scenarios. II) Scenario uncertainty was tested for the most influencing assumptions; a) 

variation (min-max) of the iLUC impacts with respect to CO2 emissions (vs. mean value 

assumed for the baseline); b) winter wheat as the marginal crop for Denmark (vs. spring barley 

as for the baseline); c) coal-based heat production as the marginal energy technology for heat 

generation (vs. natural gas-based as for the baseline); d) natural gas power plant as the marginal 

technology for electricity generation (vs. condensing coal power plant as for the baseline); e) 

mono-digestion of the crops (vs. baseline which was based on co-digestion with manure). This 

scenario illustrates the environmental performance of mono-digestion, that is, excluding the 

savings associated with raw manure management; f) pre-treatment of pelletization before co-

firing (vs. ‘no pelletization’ as for the baseline). Each of these changes was individually tested to 

assess the influence of each single change on the overall LCA results. The results of the 

sensitivity analyses (‘a’ to ‘f’) are presented in Figure S19. III) The influence of the parameters 

uncertainty on the LCA results was tested with a MonteCarlo analysis (number of simulations: 

1000; normal distribution assumed). This was done by collecting a set of uncertainties for the 

most relevant parameters adopted in the model (Table S17). These were the parameters which 
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variation affected the overall energy production of a given bioenergy scenarios (e.g., crop yield, 

crop properties, energy efficiency, etc.). The approach used to define the uncertainty was as 

follows: I) the mean and standard deviation was provided for the parameter of interest by the 

referenced source: in this case the standard deviation was used as such in the model; this was the 

case for the crops properties (e.g., DM, C, N, K, P and LHV). II) The standard deviation was not 

directly provided by the referenced source but could, however, be recalculated based on the 

published values: in this case the standard deviation was quantified based on the available set of 

values. III) A mean value was reported, whereas the standard deviation for the parameter of 

interest was not provided; however, a range (max-min) was reported: in this case a normal 

distribution around the mean value was assumed and the range max-min was assumed equal to 

the 95% confidence interval; the standard deviation was consequently estimated (i.e., range 

divided by 4). Table S17 provides an overview of the type of approach (I, II or III) used for the 

calculation of the mean and relative standard deviation for the parameters selected for the 

MonteCarlo analysis. The MonteCarlo analysis compared the individual bioenergy scenarios 

across each other (e.g., ‘A’: combustion of willow vs. ‘B’: combustion of Miscanthus). The 

result of the analysis provided the number of occurrences where the bioenergy scenario ‘A’ 

allowed for more environmental benefits than ‘B’ on the selected impact category. The results 

are presented in Table S18 with respect to the environmental category global warming (the 

analysis was performed only for the relevant combinations of bioenergy scenarios). 
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Table S17. Overview of normal probability distributions of the selected parameters (rounded 
values) used in the MonteCarlo analysis to compare the 12 bioenergy scenarios across each 
other. In brackets the uncertainty range corresponding to the 95% confidence interval (i.e., the 
interval of length equal to four times the standard deviation around the mean) is reported. CO2-C 
atm: carbon uptake from atmosphere; CO2-C: carbon released during field processes (i.e., not 
entering the soil C pool); drying loss: dry matter losses from drying on field; CGE: cold gas 
efficiency; CCE: carbon conversion efficiency; ηel: electricity efficiency; ηht: heat efficiency; 
GE: gas engine; CO: combustion; CF: co-firing; CO2-C dig: C released after digestate 
application on land; NH3-N, N2O-N: N-emissions in use on land; Energywb: energy of the crop 
(wet basis) as fed into the energy plant. 
Parameter Unit RG WI MI Approach Reference† 

Yield t DM ha-1 13.6 (±4.5) 12.7 (±4) 10 (±3.3) II (RG)/III 3.1 

C atm t CO2-C ha-1 12 (±3) 11 (±2.9) 11 (±2.9) I 4 

CO2-C t CO2-C ha-1 6.9 (±7) 6.1 (±3.6) 6.4 (±3.7)  I 4 

C content % DM 46.4 (±2.2) 48.9 (±1) 47.7 (±1) I 3.1 

N content % DM 2.9 (±0.3) 0.6 (±0.3) 0.44 (±0.13) I 3.1 

LHV MJ kg-1 DM 16.8 (±2.4) 18.1 (±0.8) 17.8 (±0.6) I 3.1 

CH4 yield % CH4 pot 70 (±20) 70 (±20) 70 (±20) III 3.4.1 

Drying loss % DM 20 (±10) - - III 3.3 

Storage lossα % DM 5 (±2.5) 4.8 (±1.3) 5 (±2.5) III 3.2  

CGE % 70 (±15) 70 (±15) 70 (±15) III 3.4.2 

CCE % 95 (±4)  95 (±4) 95 (±4) III 3.4.2 

ηel (GE) % Energygas 38 (±4) 38 (±4) 38 (±4) III 3.4.1-3.4.2 

ηel (CO) % Energywb  27 (±2) 27 (±2) 27 (±2) III 3.4.3 

ηel (CF) % Energywb 38 (±3) 38 (±3) 38 (±3) III 3.4.3 

ηht (GE) % Energygas 52 (±8) 52 (±8) 52 (±8) III 3.4.1-3.4.2 

ηht (CO) % Energywb  63 (±7) 63 (±7) 63 (±7) III 3.4.3 

ηht (CF) % Energywb 52 (±8) 52 (±8) 52 (±8) III 3.4.3 

CO2-C dig % C applied 74 (±9) 74 (±9) 74 (±9) III 3.8 

NH3-N  % N applied 11 (±4) 11 (±4) 11 (±4) III 3.8 

N2O-N % N applied 1.5 (±1.5) 1.5 (±1.5) 1.5 (±1.5) III 3.8 

† Reference section in the text where the data are presented and discussed. 
α Indoor storage of dried biomass. 
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Figure S19. Sensitivity analysis: the error bars illustrate the variation in the LCA results for GW 
compared with the baseline LCA results. The ‘circle’ indicates the GW saving corresponding to 
a 35% GHG reduction compared with the reference (used as comparative measure-stick). The 
following are displayed: a) variation (min-max) of the iLUC impacts with respect to CO2 
emissions (vs. mean value as assumed for the baseline); b) winter wheat as the marginal crop for 
Denmark (vs. spring barley as for the baseline); c) coal-based heat production as the marginal 
energy technology for heat generation (vs. natural gas-based as for the baseline); d) natural gas 
power plant as the marginal technology for electricity generation (vs. condensing coal power 
plant as for the baseline); e) pre-treatment of pelletization prior to thermal energy conversion (vs. 
‘no pelletization’ as for the baseline); f) mono-digestion instead of co-digestion with manure 
(only applies to the anaerobic digestion scenarios). 
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Table S18. Uncertainty analysis for global warming based on MonteCarlo analysis: the values 
indicate the number of occurrences (%) in which the bioenergy scenario ‘A’ resulted in less 
environmental impacts than ‘B’ (e.g., 100 means that ‘A’ resulted in less impacts than ‘B’ in 
100% of the occurrences). 
A<B B Ryegrass Willow Miscanthus 
A   AD GA CO CF AD GA CO CF AD GA CO CF 

R
ye

gr
as

s AD                         
GA 60                       
CO 100 66                     
CF 100 81 59                   

W
ill

ow
 AD 98                       

GA   90     100               
CO     86   100 77             
CF       97 100 78 61           

M
is

ca
nt

hu
s AD 90       82               

GA   60       45     100       
CO     86       43   100 68     
CF       83       48 100 80 67   
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9. List of equations used in the modeling 
In this chapter the main equations used for the modeling are listed in order to facilitate the 

understanding of the carbon and nitrogen flow charts and of the LCA model as well as for sake 

of transparency. 

 

Emissions during cultivation 

Thoroughly detailed in (9). 

 

Emissions from biomass drying 

DKYieldDL ⋅=        Eq. S8. 
CDLdrying loss C ⋅=       Eq. S9. 

NDLdrying loss N ⋅=       Eq. S10. 

C)elddrying/(yi loss CLCdr ⋅=      Eq. S11. 

N)elddrying/(yi loss NLNdr ⋅=      Eq. S12. 

 

Where: 

DL: drying loss       (t DM ha-1 y-1) 

C loss drying: C loss during drying     (t C ha-1 y-1) 

N loss drying: N loss during drying     (t N ha-1 y-1) 

LCdr: C emitted during crop drying as share of initial C  (% C) 

LNdr: N emitted during crop drying as share of initial N  (% N) 

 

C: initial carbon content of the crop (at harvest)   (% DM) 

N: initial nitrogen content of the crop  (at harvest)   (% DM) 

Yield: crop yield        (t DM ha-1 y-1) 

KD: DM loss as share of initial DM     (% DM) 

 

Emissions from biomass storage 

LKDL)(YieldSL ⋅−=       Eq. S13. 
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CSLst loss C ⋅=        Eq. S14. 

NSLst loss N ⋅=        Eq. S15. 

MCF0.67CHYieldCH pot44 ⋅⋅⋅=      Eq. S16. 

44/1212/16)(CH-st loss CCO 42 ⋅⋅=     Eq. S17. 

C)st/(yield loss CLCst ⋅=       Eq. S18. 

N)st/(yield loss NLNst ⋅=       Eq. S19. 

     

Where: 

SL: storage loss       (t DM ha-1 y-1) 

C loss st: C loss in storage      (t C ha-1 y-1) 

N loss st: N loss in storage      (t N ha-1 y-1) 

CH4: emission of methane during storage    (t CH4 ha-1 y-1) 

CO2: emission of carbon dioxide during storage   (t CO2 ha-1 y-1) 

LCst: C emitted during crop storage as share of initial C  (% C) 

LNst: N emitted during crop storage as share of initial N  (% N)  

 

DL: drying loss       (t DM ha-1 y-1) 

Yield: crop yield        (t DM ha-1 y-1) 

KL: loss as share of initial DM     (% DM) 

CH4pot: methane potential       (Nm3 CH4 t-1 DM) 

MCF: methane conversion factor     (% CH4pot) 

K: ratio CO2/CH4 in biogas emitted     (without unit) 

C: initial carbon content of the crop     (% DM) 

N: initial nitrogen content of the crop     (% DM) 

 

The methane conversion factor MCF was estimated equal to 0.5% for biomass storage and 1% 

for digestate storage. The value 0.5% was based on the MCF suggested for compost storage and 

the value 1% was based on the MCF for liquid digestate suggested by (30). The coefficient 0.67 

is the conversion factor of m3 CH4 to kg CH4 (CH4 density at 20°C). The ratio 12/16 is the 

conversion factor between methane and carbon emissions (i.e., kg C kg-1 CH4). The coefficient 
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K was based on the content of protein, lipid, cellulose, hemicellulose and lignin of the crops and 

was calculated equal to 2.6 for ryegrass, 2.7 for willow and 2.8 for Miscanthus. 

 

Electricity and heat production  

Anaerobic digestion: 

/3.6ηLHVCHCHVSfedCropEl elCHyield 4pot4 4
⋅⋅⋅⋅⋅=   Eq. S20. 

thCHyield 4pot 4 ηLHVCHCHVSfedCropHt
4
⋅⋅⋅⋅⋅=    Eq. S21. 

SLDLyieldfedCrop −−=       Eq. S22. 

Gasification: 

/3.6ηCGEfedCropEl el⋅⋅=       Eq. S23. 

thηCGEfedCropHt ⋅⋅=       Eq. S24. 

SLDLyieldfedCrop −−=       Eq. S25. 

Combustion and co-firing: 

/3.6ηLHVfedCropEl elwb ⋅⋅=      Eq. S26. 

thwb ηLHVfedCropEl ⋅⋅=       Eq. S27. 

SLDLyieldfedCrop −−=       Eq. S28. 

 

Where: 

El: electricity produced       (MWh ha-1 y-1) 

Ht: heat produced       (GJ ha-1 y-1) 

Crop fed: crop fed to the energy plant    (t DM ha-1 y-1) 
 

Yield: crop yield        (t DM ha-1 y-1) 

SL: storage loss       (t DM ha-1 y-1) 

DL: drying loss       (t DM ha-1 y-1)  

VS: volatile solids       (% DM)  

CH4 pot: methane potential       (Nm3 CH4 t-1 DM) 

CH4 pot: methane yield       (% CH4 pot) 

LHVCH4: lower heating value of methane (STP)   (35.2 MJ Nm-1 CH4) 
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LHVwb: Lower heating value of the crop (wet basis)   (GJ t-1 FM) 

ηel: net electricity efficiency      (%) 

ηth: net heat efficiency       (%) 

 

Carbon dioxide emissions from BtE conversion 

Anaerobic digestion: 

[ ] 44/12EE-CC)LC-LC(1CYieldCO CCH4fC,stdr2 ⋅-⋅-⋅⋅=  Eq. S29. 

C
C

10
1

)V(%CH
CHCHVS

CC m
3

m4

yield4pot4 ⋅⋅
⋅

⋅⋅
=     Eq. S30. 

Gasification: 

[ ] 44/12E-CCE)LCLC(1CYieldCO CCH4stdr2 ⋅⋅--⋅⋅=   Eq. S31. 

Combustion and co-firing: 

[ ] 44/12E-)LC-LC(1CYieldCO CCH4stdr2 ⋅-⋅⋅=    Eq. S32. 

 

Where: 

CO2: carbon dioxide produced     (t CO2 ha-1 y-1) 

CC: fraction of carbon biogasified     (% C) 

 

LCst: C emitted during biomass storage as share of initial C  (% C) 

LCdr: C emitted during biomass drying as share of initial C  (% C) 

Yield: crop yield        (t DM ha-1 y-1) 

C: initial carbon content of the crop     (% DM) 

CH4 pot: methane potential       (Nm3 CH4 t-1 VS) 

CH4 yield: methane yield       (% CH4 pot) 

%CH4: share of methane in the biogas    (65%) 

Vm: molar volume of gases      (22.414 NL mol-1) 

Cm: molar weight of carbon      (kg mol-1) 

VS: volatile solids content      (% DM) 

CCE: carbon conversion efficiency (fraction of C gasified)  (% C) 

EC,f : fugitive emission of biogas     (t C ha-1 y-1) 
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ECCH4: emission of unburned methane    (t C ha-1 y-1) 

 

The ratio 44/12 is the conversion factor between CO2 and C emissions (i.e., kg CO2 kg-1 C). The 

fugitive emission of methane from the digestion plant was set equal to 1% of the methane 

produced. The emission of unburned methane (ECCH4) can be recalculated from Table S8. 

 

Emissions from digestate storage 

MCF0.67CHYieldCH pot4dig4 ⋅⋅⋅=      Eq. S33.  

KCHCO 42 ⋅=        Eq. S34. 

12/44)CO16/12CH(dig lossC 24 ⋅+⋅=     Eq. S35.  

C)dig/(yield lossCLC stdig ⋅=      Eq. S36.  

Ndig/C loss Cdig loss N ⋅=       Eq. S37.  

N)dig/(yield lossNLN stdig ⋅=      Eq. S38.    

 

Where: 

CH4: emission of methane      (t CH4 ha-1 y-1) 

CO2: emission of carbon dioxide     (t CO2 ha-1 y-1) 

C loss dig: C loss in digestate storage     (t C ha-1 y-1) 

LCdig st : C emitted during digestate storage  as share of initial C (% C) 

N loss dig: N loss in digestate storage     (t N ha-1 y-1) 

LNdig st : N emitted during digestate storage  as share of initial N (% N) 

 

Yielddig: amount of digestate      (t DM ha-1 y-1) 

CH4pot: methane potential       (Nm3 CH4 t-1 DM) 

MCF: methane conversion factor     (% CH4 pot) 

K: ratio CO2/CH4 in biogas emitted     (without unit) 

Yield: crop yield        (t DM ha-1 y-1) 

C: initial carbon content of the crop     (% DM) 

N:  initial nitrogen content of the crop    (% DM) 
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A methane conversion factor (MCF) of 1% is used for digestate storage, based on the MCF for 

liquid digestate suggested by IPCC. With respect to the coefficient 0.67 and K, see earlier 

explanations. 

 

Emissions from use on land of the digestate from anaerobic digestion 

44/1274.0)LC-LC-LC-CC1(CYieldCO digststdr2 ⋅⋅-⋅⋅=  Eq. S39.  

0.11)LNLNLNNC(1NYieldNH digststdr3 ⋅−−−−⋅⋅=   Eq. S40. 

45.0)LNLNLNNC(1NYieldNO digststdr3 ⋅−−−−⋅⋅=   Eq. S41. 

015.0)LNLNLNNC(1NYielddirectON digststdr2 ⋅−−−−⋅⋅=  Eq. S42. 

0.1directONNO 2x ⋅=       Eq. S43.  

0.01)NONH(0.0075leachedNindirectON x32 ⋅++⋅=   Eq. S44.  
 

Where: 

CO2: carbon dioxide produced     (t CO2 ha-1 in 20y) 

NH3: ammonia emission      (t N ha-1 y-1)   

NO3: nitrates leaching       (t N ha-1 y-1) 

NOx: NOx emission       (t N ha-1 y-1) 

N2O: direct: nitrous oxide emission (direct)    (t N ha-1 y-1) 

N2O: indirect: nitrous oxide emission (indirect)   (t N ha-1 y-1) 

 

LCdr:  C emitted during crop drying as share of initial C  (% C) 

LCst:  C emitted during crop storage as share of initial C  (% C) 

LCst dig: C emitted during digestate storage as share of initial C (% C) 

CC: fraction of carbon biogasified     (% C) 

LNdr:  N emitted during crop drying as share of initial N  (% N) 

LNst: N emitted during crop storage as share of initial N  (% N)  

LNst dig: N emitted during digestate storage as share of initial N (% N) 

NC: nitrogen converted into N in biogas    (% N) 
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Yield: crop yield        (t DM ha-1 y-1) 

C: initial carbon content of the crop     (% DM) 

N: initial nitrogen content of the crop     (% DM) 

 

The coefficient NC was estimated to 7% of the N content based on (31). The coefficient CC was 

calculated according to Eq. S30. The emission of carbon from digestate application on land (74% 

of the initial carbon applied after a 20 year period) was recalculated to 66% after 1 year period 

(see Figure S13-S15). 

 

Other equations 

Calculation of the reference EU 35% GHGs emission reduction target 

%)35%100(GHGs GHGs ref fossil35% EU −⋅=     Eq. S45.  

ref fossil35% EUrelative35% EU GHGs- GHGs GHGs =    Eq. S46.  

 

Where: 

GHGs EU 35%:  GHGs emission (of the individual bioenergy scenario under assessment) that 

should be achieved to fulfill the EU directive target (t CO2-eq. ha-1) 

GHGs EU 35% relative:  GHGs emission (of the individual bioenergy scenario) that should be 

achieved to fulfill the EU directive target ‘minus’ the GHGs emission of 

the reference fossil fuel system where the hectare of land is used for 

spring barley cultivation (t CO2-eq.  ha-1) 

GHGs fossil ref:  GHGs emission of the reference fossil fuel system where the hectare of land is 

used for spring barley cultivation (t CO2-eq. ha-1). This corresponds to the 

GHGs emission associated with the provision of the same amount of electricity 

and heat produced in the individual bioenergy scenario under assessment 
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10. GWP time-dependency 
Over its 20y time scope, this study involves the release of GHG emissions at different periods. 

For example, the amount of CO2 emitted from the cultivation stage (i.e., C from the manure as 

well as from above- and below-ground residues not entering the soil C pool) varies every year as 

a new equilibrium is reached in the soil. The N2O emissions related to fertilization occur every 

year where there is a fertilization event (years 1 to 19, in the Miscanthus case, considering the 

first year as “year 0”, in conformity with (86)). The iLUC occur at the very moment energy crops 

are cultivated in Denmark (year 0). This is further detailed in Table S19.   

As detailed in the main manuscript, the impact of GHG time-dependency was tested for 

the cultivation of Miscanthus (including iLUC), based on the methodology described in (86). 

Table S19 presents the emissions occurring over the 20y time scope of the study, for two 

selected processes only: cultivation of Miscanthus and iLUC. Based on Table S19, as well as on 

the GWP factors found in the IPCC methodology for a time horizon of 100y, a total of 54705 kg 

CO2 eq. ha-1 can be calculated for this 20y time period (Table S20). However, using the 

methodology as well as the calculator provided by (86), a total of 76433 kg CO2 eq. ha-1 is 

calculated, for this same 20y period, which is ca. 40% higher than the value calculated with the 

IPCC methodology (Table S20). The reason for this is that the iLUC release, which occurs at 

year zero, is the most significant CO2 emission (310 000 kg CO2eq. ha-1), and also the only one 

which has the same GWP value with both methods (since it occurs at year 0). After year 0, 

according to the time-dependency methodology of (86), the later the GHG emissions occur, the 

smaller their GWP become. In the present case, emissions occurring from year 1 to year 19 

correspond to an overall GHG saving (i.e., a negative value). Using the IPCC methodology, this 

saving would thus be relatively more important than with the method of (86), which explains 

why the IPCC methodology yields an overall lower GWP result. 
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Table S19. Annual GHG emissions for the cultivation of Miscanthus and iLUC processes. 

Year 

Cultivation (Miscanthus, spring harvest) (sandy loam soil) iLUC 

soil C 
Yearly 

delta soil 
C 

C 
manureb 

C 
residuesb 

CO2 manure & 
residuesc 

CO2 
uptakeb 

CO2 
limeb 

N2O 
(direct)b 

N2O 
(indirect)b CO2 

(C-
TOOL 

model)a 
(A) (B) (C) (D) = (B+C-

A)*(44/12) (E) (F) (G) (H) (I) 

t C ha-1 kg C ha-1 kg C ha-1 kg C ha-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 t ha-1 

0 144.71 
       

  310 
1 146.23 1520 144.75 5967 16838 -26499 

 
2.46 0.96   

2 147.32 1090 289.50 6111 19473 -30327 
 

3.04 0.36   
3 148.16 840 289.50 6399 21446 -37983 

 
3.09 0.24   

4 148.70 540 289.50 6399 22546 -37983 
 

3.09 0.24   
5 149.13 430 289.50 6399 22949 -37983 

 
3.09 0.24   

6 149.52 390 289.50 6399 23096 -37983 
 

3.09 0.24   
7 149.89 370 289.50 6399 23169 -37983 

 
3.09 0.24   

8 150.24 350 289.50 6399 23242 -37983 
 

3.09 0.24   
9 150.60 360 289.50 6399 23206 -37983 367.7 3.09 0.24   

10 150.94 340 289.50 6399 23279 -37983 
 

3.09 0.24   
11 151.29 350 289.50 6399 23242 -37983 

 
3.09 0.24   

12 151.63 340 289.50 6399 23279 -37983 
 

3.09 0.24   
13 151.96 330 289.50 6399 23316 -37983 

 
3.09 0.24   

14 152.30 340 289.50 6399 23279 -37983 
 

3.09 0.24   
15 152.63 330 289.50 6399 23316 -37983 

 
3.09 0.24   

16 152.95 320 289.50 6399 23352 -37983 
 

3.09 0.24   
17 153.27 320 289.50 6399 23352 -37983 

 
3.09 0.24   

18 153.59 320 289.50 6399 23352 -37983 
 

3.09 0.24   
19 153.91 320 289.50 6399 23352 -37983 

 
3.09 0.24   

20-99d                     
 a The numbers presented in this column are the output from the C-TOOL model, which is detailed in (81) and (82). 
b Values from (8). 
c In this study, this emission was considered as 19796 kg ha-1 (y1), 20856 kg ha-1 (y2), and 22781 kg ha-1 (y3-19), as 
soil C changes were annualized over a 20y period instead of being calculated precisely for each year as in this Table. 
d Releases from this point are not included as they fall beyond the time scope of the study (20 years). 
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Table S20. GWP results for the Miscanthus cultivation and iLUC processes over the 20 years 
time scope of the study, with and without accounting for time-dependency (for a time horizon of 
100 years). 

Total GWP calculated in this study (IPCC AR4 methodology, 
for 100 years)  (kg CO2 eq. ha-1) 54 705 

Total GWP calculated accounting for time-dependency ((86) 
methodology, for 100 years) (kg CO2 eq. ha-1) 76 433a 

Relative difference  40% 
a This result was obtained from the Excel-based calculator provided as a supporting information by (86). 

 

As shown in Table S20, the global warming results presented in this study could have been 

relatively higher (ca. 40% for the Miscanthus case) if the time-dependency would have been 

accounted for. This would likely not have changed the ranking observed between the different 

scenarios, but perhaps the conclusions (i.e., the net overall results in terms of GHG savings or net 

emission). This emphasizes the research need towards the development of recognized 

methodologies for reflecting the different GWP of releases occurring at different time periods 

over the time scope of bioenergy studies.  
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