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laser pulses
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(Received 2 May 2016; accepted 10 June 2016; published online 28 June 2016)

The term dynamic Stark control (DSC) has been used to describe methods of quantum control
related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we
employ analytical models that present clear and concise interpretations of the principles behind
DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how
the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency
of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the
construction of optimal pulse envelopes — from a time-domain as well as a frequency-domain
perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model,
we show that a pulse envelope can be constructed such that a vibrational excitation into a specific
excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high
intensities are avoided in order to eliminate the process of ionization. Published by AIP Publish-
ing. [http://dx.doi.org/10.1063/1.4954663]

I. INTRODUCTION

Since the advent of the laser in the 1960’s, the possibility
of using coherent light sources to control molecules and
molecular reactions has been a hot topic in photochemistry.1–6

The ability to generate laser pulses on ever shorter time scales,
down to femto- and even atto-second durations, as well as the
development of optical techniques for actively controlling the
time-dependent features of these pulses, has driven the field
forward into new lines of theoretical and experimental inquiry.
In general, the attainment of tools that are controllable on the
same characteristic time scales as the molecular systems on
which they act has led to a deeper understanding of a variety
of time-dependent quantum phenomena.

Experimentally, capabilities have advanced in step with
developments in laser, computer, and optical technology.
In 1992 Judson and Rabitz7 described a novel method
of combining adjustable spectral pulse shapers8,9 with
evolutionary algorithms10 in closed-loop schemes that could
generate shaped laser pulses for driving molecular systems
into desired states. While this technique has been demonstrated
and employed successfully in a number of experimental
applications,5,11–16 the complexity of the systems, and of
the pulses that are generated via this kind of “black box”
optimization approach, makes it difficult to ascertain the
mechanisms behind the interaction dynamics.

At higher field strengths, polarization forces, i.e., the
distortion of electronic states leading to induced dipole mo-
ments related to the polarizability, can play an important role.
The application and control of these polarization forces (via
ultrashort optimized laser pulses) has been exploited exper-
imentally in order to control the rotational, vibrational, and
dissociation dynamics of molecules. The application of laser
pulses with a temporal duration shorter than a rotational period
leads to post-pulse time-dependent molecular alignment due to

the sudden switch-on/-off of an angular-dependent interaction
potential.17 Similarly, time-dependent modifications of the
interaction potential associated with vibrational/torsional mo-
tion in molecules have been reported.18–20 For non-adiabatic
motion in molecular photodissociation involving excited elec-
tronic states, similar effects have been used to modify the disso-
ciation dynamics.21–24 A key feature of the above phenomena
involving polarization forces is that control can be exerted
under non-resonant conditions.

The challenge for theorists is to develop models and
techniques that describe the interaction between an electro-
magnetic field and a molecule that are accurate enough to be
realistic, yet simple enough to be understood qualitatively.
A few theoretical studies have discussed the systematic
numerical treatment of polarization effects,25,26 and some
approaches have treated the interaction approximately;27–30

however, the majority of theoretical studies in laser control
of chemical dynamics have only included permanent dipole
moments in the laser-molecule interaction.

The motivation behind this paper is to enhance our
physical insight into time-dependent shifts in relevant
electronic energy levels that can arise due to polarization
forces. When a molecule interacts with a time-dependent
electric field, the distortion of the electronic states leads to
the so-called dynamic Stark effect,22,31 which as the name
suggests is the time-dependent counterpart to the static Stark
effect.32 The term dynamic Stark control (DSC) has been
used to describe methods of quantum control related to the
dynamic Stark effect (see, e.g., Refs. 18 and 21). At this point,
it is also pertinent to mention the related phenomenon of
Impulsive Stimulated Raman Scattering (ISRS).33–37 One of
our intentions here is to employ analytical models that present
clear and concise interpretations of the principles behind DSC,
so that we may develop our intuitive understanding of how
these effects operate.

0021-9606/2016/144(24)/244307/10/$30.00 144, 244307-1 Published by AIP Publishing.
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The structure and main results of this paper are
summarized in the following. For completeness, we start with
a derivation of the laser-molecule interaction within the Born-
Oppenheimer approximation, including the polarization term
described in a perturbative manner. Then, within a linearly
forced harmonic oscillator model of vibrational excitation,
we show analytically (in the non-resonant regime) how the
vibrational amplitude is related to the pulse envelope and
independent of the carrier frequency of the laser pulse.
Furthermore, we shed light on the DSC regarding the
construction of optimal pulse envelopes – from a time-domain
as well as a frequency-domain perspective.

Finally, in a numerical study beyond the linearly forced
harmonic oscillator model, we show that a pulse envelope
can be constructed such that a vibrational excitation into a
specific excited vibrational eigenstate is accomplished. The
pulse envelope is constructed such that high intensities are
avoided in order to eliminate the process of ionization. Since
control can be exerted under non-resonant conditions, we show
that ignoring the carrier frequency allows for a relaxation of
the criteria that an optimized pulse must fulfill, which in turn
may help facilitate experimental implementation of theoretical
results.

II. MODELING THE FIELD/MOLECULE INTERACTION

The general Hamiltonian of a molecule can be written
as Ĥ = T̂nuc + Ĥe, where T̂nuc is the nuclear kinetic energy
and Ĥe is the electronic Hamiltonian. Invoking the adiabatic
approximation, and confining ourselves to the electronic
ground state ψ0, we can calculate the electronic energy as
a function of the nuclear position R by solving the equation

Ĥeψ0 (R; r) = E0 (R)ψ0 (R; r) , (1)

where R and r denote the respective nuclear and electronic
position vectors, R; r denotes fixed R coordinates, and
E0(R) is the electronic energy. Within the Born-Oppenheimer
approximation, the time-dependent Schrödinger equation for
the nuclear wave function χ0 (R, t) will take the form

i~
∂

∂t
χ0 (R, t) = �

T̂nuc + E0 (R)� χ0 (R, t) . (2)

When interacting with a molecule, a coherent laser pulse can
be approximated as a spatially homogenous, time-dependent
electric field ε (t), provided the carrier wavelength is large
compared to the molecular dimensions. In this limit, the
interaction of the field with the electrons and nuclei within the
electric-dipole approximation can be written as the following
contribution to the molecular Hamiltonian,

Ĥint = −µ · ε (t) , (3)

where µ is the electric dipole moment. When this term is
introduced into Eq. (1), the field-free potential energy surface
E0 (R) will become modified due to the interaction with ε (t).
This modified energy surface, which we will call Eint (we
will simplify the notation in the following steps by omitting
functional dependencies on R and r), can be expressed as

Eint =


ψε

0

�
Ĥe − µ · ε (t)�ψε

0

�
, (4)

where the ε superscript on ψε
0 indicates that the electronic

wave function has been modified by the external field, and
the integration is over the electronic coordinates r. As stated,
some treatments correct for the shift in charge distribution by
explicitly calculating the ψε

0 eigenfunctions in the presence
of external fields of varying strengths.25 While this yields
a solution that is in principle exact, the complexity of the
approach can obfuscate the dynamics behind the interaction.
We will instead utilize a simpler approach that treats the
influence of the field on the electronic wave functions as a
perturbation. We simplify the subsequent analysis by aligning
the polarization direction of the external field with the z
axis, i.e., ε (t) = ε (t) ẑ, and µ = µz. Assuming that ε (t) is
sufficiently small, we can express the modified potential
energy surface Eint (R) as a second-order Taylor expansion
around the unperturbed potential function E0 (R),

Eint ≈ E0 +

(
dEint

dε (t)
)

0
ε (t) + 1

2

(
d2Eint

dε2 (t)
)

0
ε2 (t) , (5)

where the 0 subscript indicates that the derivative is evaluated
at ε (t) = 0. Applying the Hellmann-Feynman theorem38 to
Eq. (4), it can be shown that differentiation of Eint with respect
to ε (t) yields

dEint

dε (t) = − ⟨µz⟩ . (6)

Combining Eqs. (5) and (6) leads to the relation

⟨µz⟩ = −
(

dEint

dε (t)
)

0
−

(
d2Eint

dε2 (t)
)

0
ε (t) . (7)

We can derive explicit functions for these two terms by
applying first-order perturbation theory to the electronic wave
functions and assuming that the envelope of ε (t) changes
slowly relative to the characteristic time scales of the system,
i.e., we disregard any transient oscillations in electronic
density that may arise due to the sudden application of a
perturbing field,27

⟨µz⟩ = ⟨ψ0| µz |ψ0⟩ + 2
~


n,0

ωn0|⟨ψn |µz | ψ0⟩|2
ω2

n0 − ω2
c

ε (t) , (8)

where ωn0 = (En − E0) /~ are the unperturbed electronic state
transition frequencies, ωc is the carrier frequency of ε (t), and
the n , 0 subscript indicates that the ground state is omitted
from the sum. In our analysis, we assume that ωc ≪ ωn0,
i.e., the field carrier frequency is much lower than the
electronic state transition frequencies of the molecule, which
is generally true as long as the nuclear motion is confined to
the electronic ground state. In this case Eq. (8) simplifies to

⟨µz⟩ = ⟨ψ0| µz |ψ0⟩ + 2
~


n,0

|⟨ψn |µz | ψ0⟩|2
ωn0

ε (t) . (9)

The first and second terms on the right hand side of Eq. (9)
are the permanent electric dipole (PED) and static molecular
polarizability (SMP) terms, respectively. The PED term is
merely the charge distribution of the field-free molecule. If
the field is relatively weak, the molecular electrons will not
be significantly perturbed and the PED term is sufficient
to accurately describe the dynamics of the system. If the
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molecule is subjected to more intense fields, the ψ0 electronic
wave functions will be significantly modified, leading to a
shift in the molecular charge distribution that the PED will
not be able to account for. The SMP term is the first order
correction to this field induced charge shift and is therefore
linearly proportional to the field amplitude ε (t).

It is possible to extend the aforementioned principle of
derivation to include higher orders of ε (t). Nevertheless, in this
paper it will be shown that even when only the PED and SMP
terms are included, it is possible to qualitatively reproduce
many of the behaviors observed in more complicated
models, the strength of the approach being that we are
afforded the clarity that comes from being able to derive
relatively simple analytical solutions for the time-dependent
dynamics.

While Eq. (9) demonstrates how the PED and SMP terms
may be calculated provided the electronic eigenfunctions are
known, we will now disregard the exact form of these functions
and instead focus on their relation to ε (t). Equation (9) can
thus be recast in a simplified form

⟨µz⟩ = µ + αε (t) . (10)

Comparing Eqs. (10), (7), and (5), we see that

Eint = E0 − µε (t) − 1
2
αε2 (t) . (11)

Within the Born-Oppenheimer approximation, µ and α
will be functions of R as they contain the electronic
eigenfunctions ψn (R; r), where the electronic coordinates
have been integrated out in the matrix elements of Eq. (9).
Returning to Eq. (2), we can now update the expression
to include the second order correction to the energy that
arises due to coupling with the external field, reinstating the
functional dependencies on R for completeness,

i~
∂

∂t
χ0 (R, t) = �

T̂nuc + E0 (R) − Ĉint (R, t)� χ0 (R, t) , (12)

where

Ĉint (R, t) = µ (R) ε (t) + 1
2
α (R) ε2 (t) . (13)

III. A LINEARLY FORCED HARMONIC OSCILLATOR
MODEL OF DSC

In order to gain insight into the wave packet dynamics
described by Eqs. (12) and (13), we consider a one-
dimensional model of a simple diatomic molecule aligned
with the field polarization direction, with interatomic distance
coordinate R. If we assume that the variation in R is small,
we can approximate µ (R) and α (R) as linear expansions
around the molecular equilibrium distance Req. It can be
shown that the zeroth order terms of these expansions will not
impact the dynamics of the field/molecule interaction, and can
therefore be disregarded.39 Approximating the unperturbed
ground state energy surface as a harmonic expansion around
Req, the potential energy of the molecule takes the form of a

linearly forced harmonic oscillator with eigenfrequency ω0,

V (R, t) = 1
2

mω2
0R2

−


(
dµ (R)

dR

)
eq
ε (t) + 1

2

(
dα (R)

dR

)
eq
ε2 (t)


R, (14)

where we have set Req = 0 to simplify the notation, and the
eq subscript indicates that the derivative is taken at R = Req = 0.
We denote the expectation value of the wave packet position
at time t as ⟨R⟩ (t). Ehrenfest’s theorem can be used to show
that the expectation value in a harmonic potential will obey
classical dynamics.40 This allows us simplify the description
of the wave packet by letting ⟨R⟩ (t) ≡ R (t), where R (t)
denotes the position of a classical point particle. Assuming
R (t0) = 0, the position expectation value of the wave packet
at time t can be found by solving the integral,41

R (t) = 1
ω0m


sin (ω0t)

 t

t0

cos (ω0t) F (t) dt

− cos (ω0t)
 t

t0

sin (ω0t) F (t) dt

, (15)

where F(t) represents the time-dependent component of the
differential equation, which in our case can be found from
Eq. (14) to be

F(t) =

µ′ε (t) + 1

2
α′ε2 (t)


, (16)

where we recast α′ = (dα (R) /dR)eq and µ′ = (dµ (R) /dR)eq
to simplify the notation. Inserting F (t) into Equation (15),
we can split the resulting expression into two components
R (t) = Rµ (t) + Rα (t), where

Rµ (t) = µ′

ω0m


sin (ω0t)

 t

t0

cos (ω0t) ε (t) dt

− cos (ω0t)
 t

t0

sin (ω0t) ε (t) dt


(17)

and

Rα (t) = α′

2ω0m


sin (ω0t)

 t

t0

cos (ω0t) ε2 (t) dt

− cos (ω0t)
 t

t0

sin (ω0t) ε2 (t) dt

. (18)

Now, let ε (t) take the form of a transform limited Gaussian
pulse with amplitude A0, second moment pulse width σ and
(positive) angular carrier frequency ωc,

ε (t) = A0 cos (ωct) exp
(
− t2

2σ2

)
, (19)

where it is assumed that ωcσ ≫ 1, i.e., the pulse envelope
is wide enough to allow for multiple oscillations. When this
pulse interacts with the system, it may induce oscillations in
the position of the wave packet which will continue after the
pulse has died out. Combining Eqs. (17)–(19), and evaluating
the integrals in the limit where t0 → −∞ and t → ∞, the
parity of the integrand functions leads to the elimination of
the second terms in the brackets of Eqs. (17) and (18). The
amplitude of the wave packet oscillation in the t → ∞ limit,
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which will henceforth be denoted by Γ, can be written as

Γ (A0,ωc,σ) =
(
I2
µ (A0,ωc,σ) + I2

α (A0,ωc,σ)
)1/2

, (20)

where

Iµ (A0,ωc,σ) = µ′A0σ

ω0m


π

2


exp

(
−σ

2(ω0 − ωc)2
2

)
+ exp

(
−σ

2(ω0 + ωc)2
2

) 
(21)

and

Iα (A0,ωc,σ) =
α′A2

0σ
√
π

4ω0m


exp *

,
−
σ2ω2

0

4
+
-

+
1
2

exp
(
−σ

2(ω0 − 2ωc)2
4

)
+

1
2

exp
(
−σ

2(ω0 + 2ωc)2
4

) 
, (22)

where Γ (A0,ωc,σ) indicates that the wave packet amplitude is
dependent on the pulse amplitude, carrier frequency, and width
and Iµ (A0,ωc,σ) and Iα (A0,ωc,σ) are the contributions from
the dipole and polarizability terms, respectively. Inspecting
Eq. (21), it is clear that the contribution from the first bracketed
term becomes large when the carrier frequency ωc is close to
the harmonic eigenfrequency ω0. Likewise, the middle term
in Eq. (22) will become large when ωc ≈ 1

2ω0. We note in
passing that this result is similar to one obtained in a study in
which the excitation of a homonuclear diatomic molecule
was investigated using a complete quantum mechanical
treatment.25 The two aforementioned contributions to the
wave packet amplitude can be interpreted as one and two
photon absorption processes, respectively. These terms are
dependent on the pulse carrier frequency, and their behavior
differs qualitatively from the first term in the brackets on the
right side of Eq. (22), which dominates in the |ωc | ≫ ω0 limit,
in which Eq. (20) is reduced to the following form:

Γ(A0,σ)|ωc |≫ω0
=
α′A2

0σ
√
π

4ω0m
exp *

,
−
σ2ω2

0

4
+
-
. (23)

In this limit, we see the behavior that characterizes the
dynamic Stark effect, since the wave packet amplitude in this
regime is no longer influenced by the pulse carrier frequency.
To further illustrate this concept, a graphical representation
of Γ (A0,ωc,σ) for parameters selected to approximate the
HCl electronic ground state42,43 is shown in Fig. 1. Here,
the function is plotted for varying values of σ and ωc, at
a constant peak pulse intensity of 10 TW/cm2. The two
horizontal excitation “channels” visible in the top half of the
figure arise due to the one and two photon absorption terms.
The bottom half of the figure shows how the wave packet
response becomes independent of carrier frequency as the
system parameters move into the dynamic Stark regime.

Note also how the wave packet amplitude in Fig. 1 starts
to primarily respond to changes in the pulse width when
|ωc | ≫ ω0, as Eq. (23) indicates. Fig. 2 shows a 1D plot of
variations in Γ as a function of the pulse width in the region
under the red line in Fig. 1.

FIG. 1. The wave packet oscillation amplitude Γ(ωc,σ) (Eq. (20)) as a
function of pulse carrier frequency ωc and pulse width σ. For comparison,
the peak intensity is held constant at 10 TW/cm2. White regions represent
pulses that either produce negligible wave packet amplitude (<1×10−10a0)
or are comprised of envelopes that are too narrow to allow for one full
field oscillation. The dashed black line shows the location of the harmonic
eigenfrequency ω0 of the system, and the dotted black line shows the location
of ω0/2. Note how the peaks present at these frequencies become narrower
as the pulse width increases. The red line shows the location of the 1D cross
section plotted in Fig. 2.

The peak of this function indicates that there is a pulse
width that will produce maximum excitation. The location of
this peak can be found by differentiating Eq. (23) and can
be shown to be proportional to the system oscillation period
T = 2π/ω0,

σoptimum =
T

π
√

2
. (24)

FIG. 2. The wave packet amplitude when the central frequency of the driving
Gaussian pulse approaches the off-resonant Stark limit. As in Figure 1, the
peak intensity is held fixed at 10 TW/cm2. In this regime, the system ceases to
respond to the pulse frequency and instead the excitation becomes primarily
dependent on the shape of the pulse envelope. The blue curve indicates the full
solution from Eq. (20), the red curve shows the predicted behavior when the
dynamic Stark effect is the only contributing factor to wave packet amplitude
as per Equation (23), and the dashed line shows the location of optimal pulse
width given by the relation in Eq. (24).
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Note that in Figs. 1 and 2, pulse fluence is not held constant
since we vary the width and keep the peak intensity fixed. The
motivation behind this choice is traced to the fact that at the
frequencies we are considering, it can be shown that limiting
the peak intensity is of critical importance when it comes to
diminishing unwanted ionization effects, whereas changes in
the pulse fluence have been shown to be less impactful in
this respect.44–47 If we choose to change the parameters of
our analysis by instead keeping the pulse energy constant, it
would not be possible to calculate a non-trivial optimal pulse
width like the one in Eq. (24). The reason for this can easily
be understood considering that in order to keep the fluence
constant, the amplitude A0 must be inversely proportional to
the square root of the pulse width, i.e., A0 ∝ 1/

√
σ. Inserting

this relation into Eq. (23), we see that the exponential pre-
factor will become independent of σ, resulting in a monotonic
increase in the wave packet amplitude as σ → 0.

We will now demonstrate the impact of applying a pure
Gaussian envelope to our model in the dynamic Stark limit.
Defining the envelope function as

Eenv (t) = A0 exp
(
− t2

2σ2

)
, (25)

we see that setting ωc = 0 in Eq. (19) will result in the same
expression. We can use this relation to immediately find the
solutions to Eq. (15) when F (T) = Eenv (t) by simply setting
ωc = 0 in the results we have already derived. The amplitude
that arises due to coupling with the polarizability term can be
calculated in this way using Eq. (22), and is found to be

Iα(A0,ωc,σ)ωc=0 =
α′A2

0σ
√
π

2ω0m
exp *

,
−
σ2ω2

0

4
+
-
. (26)

Note that setting ωc = 0 is just a mathematical trick, and for
the purposes of this derivation, we can assume the system is
still operating in the dynamic Stark regime. This allows us to
disregard contributions from the permanent molecular dipole
term, meaning Eq. (26) is an expression for the total wave
packet amplitude in this limit, i.e.,

Γ(A0,σ)env = Iα(A0,ωc,σ)ωc=0. (27)

Comparing Eqs. (26), (27), and (23), we see that Γ(A0,σ)env
= 2 × Γ(A0,σ)|ωc |≫ω0

. This demonstrates how contributions
to the wave packet amplitude from the molecular polarizability
term will double when the carrier frequency is eliminated from
the pulse envelope. The reason for this is obvious when one
considers that as a potential surface is shifted by a field
oscillating in the |ωc | ≫ ω0 limit, the wave packet will only
“feel” the period averaged displacement since it cannot react
quickly enough to the rapidly changing field components.
Since the contribution from the molecular polarizability term
is proportional to the square of the driving pulse, this is
equivalent to multiplying the squared envelope function by a
factor of 1/2, the upshot of which is that in the dynamic Stark
limit, Eq. (14) can be simplified into the familiar form:31

V (R, t) = 1
2

mω2
0R2 − 1

4
α′E2

env (t) R, (28)

where the last term is equivalent to a time-dependent shift of
the potential following the squared pulse envelope.

A. Pulse trains

We now investigate the impact of splitting the Gaussian
pulse described by Eq. (19) into a train of N identical copies of
itself separated by time interval τ, making use of the linearly
forced harmonic oscillator model to derive analytical solutions
to the time-dependent dynamics. We assume the pulses interact
with the molecule in the dynamic Stark limit, and all share the
same phase (i.e., they constructively interfere). The envelope
of the pulse train function can therefore be expressed as

Eenv (t) = A0√
N

N−1
n=0

exp
(
− (t − nτ)2

2σ2

)
. (29)

Note that the peak amplitude of each pulse in the series is set
to A0/

√
N , which ensures that the total fluence of the pulse

train will be equivalent to that of the original pulse. Inserting
(29) into Eq. (15) and solving in the dynamic Stark limit, the
general solution for the wave packet amplitude is found to be

Γ (A0,σ, τ,N) = α′A2
0σ
√
π

4ω0m
exp *

,
−
σ2ω2

0

4
+
-

× 1
N


N +

N−1
n,m

cos (ω0τ [n − m])


1/2

. (30)

If τ = 2πk/ω0 = kT , where k ∈ N and T is the length of one
wave packet oscillation period, the sum in the brackets of
Eq. (30) can be rewritten as

N−1
n,m

cos (2πk [n − m]) = N (N − 1) . (31)

Combining relations (30) and (31), we see that the second
line of Eq. (30) becomes unity and the functional dependency
on N and τ drops out, leaving a result that is identical to
Eq. (23). This means that when the pulse spacing τ is an
integer multiple of the system oscillation period T , the wave
packet amplitude induced by the pulse train is equivalent to
the amplitude produced by a single pulse of equivalent energy.
This indicates that when they are spaced in this manner, the
effect of each sub-pulse on the total amplitude will be additive.
It is interesting to note that these results will also hold when
the pulses in the train significantly overlap.

If we instead consider a pulse train containing only two
pulses, and let τ = T (k + 1/2), i.e., the spacing between the
pulses is an integer number of wave packet oscillation periods
plus 1/2, we find that the bracketed term in Eq. (30) disappears,
since

N−1
n,m

cos (2π (k + 1/2) [n − m]) = −2, (32)

when N = 2 and k ∈ N. This result demonstrates that spacing
two pulses in this manner will lead to no net excitation of the
system, since effectively the oscillations set in motion by the
first pulse are exactly canceled by the second pulse. In this
way, we can see that the effect of multiple pulses on the wave
packet amplitude may also be subtractive, depending on how
we time their arrival to the system. Here, one may consider
the analogy of pushing a child on a swing, since it is clear that
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the change in the swing amplitude depends largely on when
we apply our push.

If τ , kT and N is very large, it can be shown that the sum
term in Eq. (30) will be ≪ N , since the negative and positive
contributions to the sum will on average cancel each other out.
In this limit, the resulting amplitude will be negligible since
the solution given by Eq. (30) will be proportional to 1/

√
N .

In this way it is shown how the ability to control the spacing in
a train of pulse envelopes can effectively be used to highlight
certain system transitions by dampening others. Note, also,
that using a pulse train in place of a single pulse allows us
to limit the peak intensity while still exerting control over the
molecule, an important factor when it comes to minimizing
unwanted ionization.

In 1991, it was demonstrated how individual phonon
modes in an α-perylene molecular crystal sample were excited
by trains of pulses with non-resonant carrier frequencies
when the inter-pulse spacing was equivalent to a modal
oscillation period.33 It was also found that applying a single
pulse of equivalent energy to the same system resulted in
the excitation of a large number of different modes, i.e., the
ability to selectively excite an individual mode was lost. These
experimental results are in accordance with our theoretical
predictions that controlling the pulse train spacing leads to
modal selectivity.

More recently, it has been shown that the amplitude of
the induced dihedral oscillations in a molecule approximately
doubled when the system was hit with two Gaussian kick
pulses instead of one, provided the temporal separation
between the pulses was equivalent to the system oscillation
period. It was also shown that the dihedral oscillations became
very small when the spacing between the pulses was reduced
to roughly half a system oscillation period.20 This backs up
our result showing that the effect of multiple pulses on the
wave packet oscillation amplitude can be additive or subtrac-
tive, depending on how we adjust the timing between each
pulse.

B. Frequency-space interpretation

Assuming conditions where the dynamic Stark effect
dominates and the system response is independent of the pulse
frequency, and given a generalized pulse envelope function
Eenv (t), we can use Eqs. (15), (18), and (20) to show that the
wave packet amplitude when t → ∞ can be written as

Γ (A0,σ) = α′

4ω0m
*
,

 ∞

−∞
cos (ω0t) E2

env (t) dt
2

+

 ∞

−∞
sin (ω0t) E2

env (t) dt
2
+
-

1/2

. (33)

If Eenv (t) is a square integrable function, Parseval’s theorem48

allows us to recast Eq. (33) in the spectral domain

Γ (A0,σ) = α′

8πω0m

(  ∞

−∞
Ẽenv (ω) Ẽ∗env (ω − ω0) dω



×
 ∞

−∞
Ẽenv (ω) Ẽ∗env (ω + ω0) dω

)1/2

, (34)

where Ẽenv (ω) is the Fourier transform of Eenv (t) and the
∗ superscript denotes complex conjugation. Inspecting the two
integrals on the right side of Eq. (34) shows that the width
of the spectral distribution must be broader than ω0 in order
to lead to appreciable vibrational amplitude. Additionally, the
form of Eq. (34) can generate insight as to how the underlying
mechanism of the dynamic Stark effect can be interpreted as
impulsive stimulated Raman scattering. To understand why
this is, consider first the schematic shown in Fig. 3(a) of a
Stokes-Raman scattering event, in which the ground state of
a harmonic oscillator is excited up one level via a two step
process consisting of transitions to and from a higher lying
virtual state by two non-resonant frequencies.

This type of transition may occur provided that the
spectral distribution of the laser pulse contains at least two
frequencies where the difference between these frequencies
is an eigenfrequency of the system. To further illustrate the

FIG. 3. (a) A pictorial representation of a Stokes-Raman scattering event in the quantum harmonic oscillator. Starting in the ground state, a photon with energy
~(ω+ω0) is absorbed, resulting in a transition to a higher virtual state. Strictly speaking, this is a forbidden transition; however, emission of a photon with energy
~ω directly afterwards results in a net absorption of ~ω0. (b) Spectral amplitude of a temporal Gaussian pulse. The arrows indicate the location of one possible
Stokes-Raman scattering event. To find the total probability of a certain transition taking place, we must integrate the probability of all possible scattering events
of a specific frequency, as indicated by Eq. (34).
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point, assume that the transitions illustrated in Figure 3(a)
are caused by a flat phase spectral distribution of a Gaussian
pulse like the one from Eq. (19), as shown in Fig. 3(b). Here
we see that if the pulse contains frequencies separated by
the harmonic eigenfrequency ω0, it may generate transitions
to and from higher lying virtual states and thereby produce
non-resonant transitions in our model system.

To show how this picture relates to Eq. (34), we put
forth the naive argument that the probability of the transition
in Fig. 3(b) taking place must somehow be proportional to
the product of the spectral amplitudes of the two frequency
components Ã (ω) and Ã (ω + ω0),

P↑ω↓ω+ω0 ∝ Ã (ω) Ã (ω + ω0) . (35)

Building on this notion, the total probability of a Raman
transition of a specific frequency taking place must be
proportional to the sum of all possible two step transitions
that the frequency content of the pulse will allow, which can
be expressed in integral form as

Ptot ∝
 ∞

−∞
Ã (ω) Ã (ω + ω0) dω. (36)

Comparing Eqs. (36) and (34) we see that they are qualita-
tively similar. Indeed, for a flat phase spectral distribution,
i.e., given Ẽenv (ω) = �

Ẽenv (ω)� exp (iφ (ω)) and φ (ω) = const.,
it can easily be shown that

 ∞
−∞ Ẽenv (ω) Ẽ∗env (ω + ω0) dω

=
 ∞
−∞ Ẽenv (ω) Ẽ∗env (ω − ω0) dω, in which case the two expres-

sions are identical save for the fact that in the exact solution
given by Eq. (34) we have been able to determine the pre-factor
as well.

These results, particularly the form of Eq. (36), are quite
similar to results obtained by Meshulach and Silberberg.36 The
key difference is that in our paper, Eq. (34) is in principle exact,
although our model of vibrational excitation is a simplified
one. Qualitatively, the work done by Meshulach and Silberberg
takes the opposite approach by invoking an approximate
solution to a fully described system, it is therefore noteworthy
that they arrive at an expression similar to Eq. (36).

We can exploit our understanding of the mechanics behind
the dynamic Stark effect to construct so-called dark pulses,36

i.e., pulses with envelope shapes designed to make Raman
transitions impossible within our model system of the linearly
forced harmonic oscillator. We have already considered one
example of a dark pulse envelope in this paper, namely, the
case where a system with oscillation period T is driven by two
sub-pulses with a temporal separation of T (k + 1/2) , k ∈ N.
While we demonstrated it analytically for completeness, from
a temporal perspective it is perhaps fairly intuitive why this
kind of pulse will produce no excitation.

A less trivial way we can construct a dark pulse is by
using our knowledge of the relationship between the spectral
distribution of the pulse envelope and the Raman transition
rate. Equation (34) indicates that the integrand functions are
effectively multiplied by −1 any time the phases of Ẽenv (ω)
and Ẽenv (ω ± ω0) differ by nπ (where n ∈ Z). Therefore,
phase-chirping Ẽenv (ω) with a π step function over certain
intervals can be shown to either limit or fully extinguish the
rate of Raman transitions.

FIG. 4. This plot shows how the wave packet amplitude Γ changes as the
width of the π step boxcar phase function increases. Insets 1 and 3 show
sketches of the spectral pulse amplitude (blue) and the π step phase functions
(red) when Γ= 0, while insets 2 and 4 show the corresponding temporal dark
pulse envelope intensities ∝ |Eenv(t)|2.

To exemplify this idea, we choose Ẽenv (ω) to be the
spectral distribution of a Gaussian pulse with σ = σoptimum as
per Eq. (24). Figure 4 shows the analytic solution to Eq. (34)
when Ẽenv (ω) is phase chirped by a variable width π step
“boxcar” function centered at the spectral intensity peak.

As we would expect, when the chirped region becomes
very wide, Γ approaches the same value as that of the
un-chirped pulse. The two minima where the wave packet
amplitude becomes 0 occur when the width of the π chirped
region is such that the positive and negative contributions to
the integrals in Eq. (34) cancel each other out. The envelope
intensities of these two dark pulses are sketched in insets 2
and 4 of Fig. 4, and their corresponding spectral amplitudes
and phase functions are shown in insets 1 and 3. From a
purely temporal perspective, it is not at all obvious that these
envelope shapes should both be dark pulses, illustrating how
knowledge of the spectral mechanism behind the dynamic
Stark effect can be a useful tool when it comes to predicting
and/or analyzing how a pulse will interact with a molecular
system.

IV. STATE-TO-STATE VIBRATIONAL EXCITATION
VIA DSC—A NUMERICAL EXAMPLE

While the analysis of simple pulse trains interacting with
a harmonic potential allowed us to obtain analytic solutions
to the time-dependent dynamics, so far we have only been
able to affect the wave packet amplitude, due to the Ehrenfest
(classical) dynamics of our simplified harmonic model.

We will now consider a more realistic system which will
allow us to capture more complex behavior. The purpose of
this investigation is twofold: One goal is to examine how
well the principles discussed in Sec. III will generalize when
we move beyond the harmonic approximation. Additionally,
we feel it may be informative to demonstrate, as a proof of
principle, that DSC can be employed to control dynamics that
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are more sophisticated than simply increasing or decreasing
the wave packet amplitude.

To this end, we expand the model of the HCl molecule
to a Morse potential. As in the harmonic approximation,
we retain the 1D description by once again assuming that
the molecule is aligned with the field polarization direction
along the z axis. The polarizability function will now be
a semi-empirical function,42 instead of the linear expansion
we have been using thus far. Once again we assume the
pulse carrier frequency is non-resonant and disregard any
contributions to the molecular energy from the permanent
electric dipole function. The pulse is simulated interacting
with the HCl molecule using the split-operator method49 to
solve the time-dependent Schrödinger equation, where the
time-dependent part of Eq. (12) is modeled by the simplified
expression that holds in the dynamic Stark limit,

Ĉint (R, t) = 1
4
α (R) E2

env (t) . (37)

With respect to our stated intentions, the objective of
achieving a state-to-state transition within this model was
determined to be a suitable goal, as modifying the shape of
the wave packet to overlap a target eigenstate calls for a
more refined approach to the distribution of pulse energy over
time than we have considered thus far. For this purpose, a
genetic algorithm10 was used to optimize the envelope shape
of a 1 ps pulse, with the goal of maximizing the population
transfer from the ground to the second vibrational state of the
HCl molecule. The temporal pulse envelope is parameterized
using a series of discrete, equally spaced regions or “bins.”
Each bin is assigned a constant value between 0 and some
user-defined maximum that serves as the intensity cutoff
limit. Construction of the actual pulse envelope for use in the
simulation is accomplished by smoothing the entire series of
bins using a Gaussian low pass filter, as shown in Fig. 5.

FIG. 5. The first 80 fs of the optimized pulse envelope shown in Fig. 6 (blue
curve). The black line shows the pre-filtered distribution of the 2.5 fs discrete
regions, where the genetic algorithm treats the height of each region as a
free parameter. For comparison, the intensity-limited Gaussian pulse envelope
calculated to maximize the wave packet amplitude within the harmonic ap-
proximation of the HCl model, in the dynamic Stark regime (as per Eq. (24)),
is sketched on the same time scale in the gray box to the right.

FIG. 6. The temporal intensity profile of the optimized pulse envelope. Note
that the pulse carrier frequency (not pictured) is assumed to be oscillating
much faster than the temporal evolution of the envelope shape.

The width of each bin was set to 2.5 fs, leading to a
total of 400 free parameters distributed over the 1 ps time
window. The temporal standard deviation of the Gaussian
smoothing kernel was set to 1 fs, and the intensity limit of the
pulse envelope was set to 30 TW/cm2, which was estimated
to be low enough as to not cause any appreciable system
ionization using the FC-ADK tunneling ionization model.47

Using these parameters, the genetic algorithm was able to
achieve ∼99% population transfer from the ground to second
vibrational state of the HCl molecule after 346 generations
with a population size of 2000 individuals. The full intensity
profile of the optimized pulse envelope is shown in Fig. 6,
and the occupancies of the first four vibrational states as a
function of time are shown in Fig. 7.

The absolute value of the pulse envelope Fourier
transform is shown in Fig. 8. For reference, we include
the 0–1 and 1–2 transition frequencies here. The spectral
interpretation of Stokes-Raman scattering events which we

FIG. 7. Population of the ground, first, second, and third vibrational states of
the HCl molecule when driven by the optimized pulse shown in Fig. 6, as a
function of time. The final population of the second excited state is >99%.
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FIG. 8. Fourier transform of the optimized pulse envelope shown in Figure 6.
Note that the pulse carrier frequency is disregarded here as well. Including the
carrier frequency would merely shift the spectral distribution, but would not
change its overall shape.

outlined in Eqs. (34) and (36) indicates that the optimized
pulse should generate non-resonant transitions at the first
two eigenfrequencies of the HCl molecule, since the spacing
between the first and third peaks is very close to the 0–1
transition frequency, and likewise the spacing between the
first and second peaks is close to the 1–2 transition.

As Figs. 5 and 6 indicate, the pulse envelope required
to achieve the population transfer exhibits a complicated
pulse-train structure, containing a large number of sub-pulses
that evolve on ∼5–7 fs time scales. The sketch on the right side
of Fig. 5 demonstrates how the sub-pulses present within the
initial 80 fs of the optimized envelope evolve on comparable
time scales to that of the optimal Gaussian pulse envelope
calculated using the harmonic model of HCl as discussed
in Section III, and in particular, as expressed by Eq. (24).
While the comparison is rough, it does make sense from
a controllability perspective that the numerically optimized
pulse would generally contain subfeatures with shapes similar
to the analytically calculated result from Eq. (24).

The narrow temporal widths of the sub-pulses, which
are a reflection of the high vibrational frequency of the HCl
molecule, may be challenging to implement experimentally.
Heavier molecules are attractive in this respect, since they
generally vibrate on slower time scales. The degree of
influence each sub-pulse has on the system is related to the
magnitude of the first derivative of the polarizability function
α (R). This means that systems where the polarizability
changes significantly as a function of the relative atomic
displacement(s) are particularly well suited for the application
of DSC.

Generally, the production of non-trivial shaped laser
pulses on ultra-fast time scales is accomplished by
manipulating the spectral components of an unshaped laser
pulse using a spectral pulse shaper. Using such a device, the
frequency components of the unshaped pulse may be acted
on by attenuating their intensity and/or modifying their phase.
The ability to change the phase and intensity distributions

of the unshaped spectral pulse allows for a large degree
of controllability with respect to achieving a desired target
pulse, however the cost of this approach is often a significant
loss of energy due to the attenuation of the spectral comp-
onents.

Phase-only pulse shaping is an attractive alternative in this
respect, as energy losses are kept to a minimum. The sacrifice
of a phase-only approach is that it becomes much harder,
and in many cases impossible, to achieve an arbitrary target
pulse envelope and carrier frequency distribution. Working
with pulses that interact with molecules in the dynamic Stark
limit allows us to disregard the carrier frequency and focus
only on the pulse envelope. This relaxes the requirements
on the target pulse and might open up the possibilities of
generating arbitrary envelope shapes using phase-only spectral
manipulation. While the task of determining the spectral phase
function that will produce a desired envelope shape is still not
trivial, there are a variety of iterative optimization methods
which have been shown to be well suited for this task.50–52

As stated in the article outset, applying tailored laser
pulses to control molecular transitions has been the subject
of numerous studies. In particular, analytical insights have
been developed for generating pulse shapes tuned to produce
specific state-to-state vibrational transitions via coupling to
the permanent molecular dipole moment.53,54 The observant
reader may therefore wonder what the advantage of a pure
DSC approach may be, when compared to these more
established methods.

The answer comes down to the unique dynamics that
apply in the regime of pure DSC. The fact that the dynamic
Stark effect dominates under non-resonant conditions means
that we can effectively disregard the carrier frequency
of the laser, which is attractive from the standpoint of
experimental implementation. Another obvious advantage of
DSC compared to resonant approaches is that it can applied
to molecules where there is no coupling to the permanent
electric dipole moment.

DSC may be accomplished using “pseudo-frequencies,”
generated via pulse trains with spacings tuned to specific
molecular modes. This approach is particularly interesting
with respect to heavy molecules with long vibrational
periods, as their low frequencies will typically lie outside
the operational bandwidths of conventional laser and pulse
shaping technologies.

One major drawback of a pure DSC approach is that
the required intensities are typically much higher than those
needed for resonant control. As discussed in this article, this
problem may be mitigated by splitting high intensity pulses
into trains of smaller sub-pulses; however this typically results
in an increase of the overall temporal duration of the pulse
envelope, which may in turn lead to issues with dissipation or
other unwanted coupling effects.

V. CONCLUDING REMARKS

We have used the linearly forced harmonic oscillator to
model the interaction of a laser pulse with a diatomic molecule
which allows for analytic solutions to the time-dependent
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evolution of the quantum wave packet. Using these solutions,
we have been able to show how the dynamic Stark effect arises
from the interaction with the electric field envelope of a laser
pulse, and an optimal pulse width has been determined.

The impact of driving our model with multiple evenly
spaced pulses demonstrates how modal selectivity can be
achieved. Additionally, we show that the effect of multiple
pulses can contribute both additively and subtractively to the
wave packet amplitude in our harmonic model.

Using Parseval’s theorem, we describe and predict how a
pulse interacts with our model system in the DSC limit using
the spectral phase and amplitude of the pulse envelope. The
spectral interpretation of DSC can generate insight that would
not be available from a purely temporal perspective, which
we demonstrate via phase-only manipulation of a flat-phase
Gaussian to generate non-trivial dark pulse envelopes that
produce no net excitation.

Finally, we demonstrate how quantum control may
be achieved via the dynamic Stark effect by shaping
a parameterized pulse envelope function, allowing us to
produce state-to-state vibrational excitation in an anharmonic
oscillator. The fact that the carrier frequency of the optimized
envelope can be disregarded opens the door for arbitrary
waveform generation by optical pulse shapers. We expect
that careful pulse optimization will allow for dynamic Stark
control of various more complicated competing processes
which are currently being studied.
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