

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Ten Simple Rules for Taking Advantage of Git and GitHub

Perez-Riverol, Yasset; Gatto, Laurent; Wang, Rui; Sachsenberg, Timo; Uszkoreit, Julian; Leprevost,
Felipe da Veiga; Fufezan, Christian; Ternent, Tobias; Eglen, Stephen J.; Katz, Daniel S.
Total number of authors:
15

Published in:
P L o S Computational Biology (Online)

Link to article, DOI:
10.1371/journal.pcbi.1004947

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., Leprevost, F. D. V., Fufezan, C., Ternent,
T., Eglen, S. J., Katz, D. S., Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., & Vizcaíno, J. A. (2016). Ten
Simple Rules for Taking Advantage of Git and GitHub. P L o S Computational Biology (Online), 12(7), Article
e1004947. https://doi.org/10.1371/journal.pcbi.1004947

https://doi.org/10.1371/journal.pcbi.1004947
https://orbit.dtu.dk/en/publications/75f2c16b-64b2-4cf3-9ce3-92f804ee590b
https://doi.org/10.1371/journal.pcbi.1004947

EDITORIAL

Ten Simple Rules for Taking Advantage of Git
and GitHub
Yasset Perez-Riverol1*, Laurent Gatto2, Rui Wang1, Timo Sachsenberg3,
Julian Uszkoreit4, Felipe da Veiga Leprevost5, Christian Fufezan6, Tobias Ternent1,
Stephen J. Eglen7, Daniel S. Katz8, Tom J. Pollard9, Alexander Konovalov10, Robert
M. Flight11, Kai Blin12, Juan Antonio Vizcaíno1*

1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust
Genome Campus, Hinxton, Cambridge, United Kingdom, 2 Computational Proteomics Unit, Cambridge
Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom, 3 Applied Bioinformatics
and Department of Computer Science, University of Tübingen, Tübingen, Germany, 4 Medizinisches
Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany, 5 Department of Pathology, University of
Michigan, Ann Arbor, Michigan, United States of America, 6 Institute of Plant Biology and Biotechnology,
University of Münster, Münster, Germany, 7 Centre for Mathematical Sciences, University of Cambridge,
Cambridge, United Kingdom, 8 National Center for Supercomputing Applications and Graduate School of
Library and Information Science, University of Illinois, Urbana, Illinois, United States of America, 9 MIT
Laboratory for Computational Physiology, Institute for Medical Engineering and Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of America, 10 Centre for Interdisciplinary
Research in Computational Algebra, University of St Andrews, St Andrews, United Kingdom, 11 Department
of Molecular Biology and Biochemistry, Markey Cancer Center, Resource Center for Stable Isotope-
Resolved Metabolomics, University of Kentucky, Lexington, Kentucky, United States of America, 12 The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark

* yperez@ebi.ac.uk (YPR); juan@ebi.ac.uk (JAV)

Introduction
Bioinformatics is a broad discipline in which one common denominator is the need to produce
and/or use software that can be applied to biological data in different contexts. To enable and
ensure the replicability and traceability of scientific claims, it is essential that the scientific pub-
lication, the corresponding datasets, and the data analysis are made publicly available [1,2]. All
software used for the analysis should be either carefully documented (e.g., for commercial soft-
ware) or, better yet, openly shared and directly accessible to others [3,4]. The rise of openly
available software and source code alongside concomitant collaborative development is facili-
tated by the existence of several code repository services such as SourceForge, Bitbucket,
GitLab, and GitHub, among others. These resources are also essential for collaborative software
projects because they enable the organization and sharing of programming tasks between dif-
ferent remote contributors. Here, we introduce the main features of GitHub, a popular web-
based platform that offers a free and integrated environment for hosting the source code, docu-
mentation, and project-related web content for open-source projects. GitHub also offers paid
plans for private repositories (see Box 1) for individuals and businesses as well as free plans
including private repositories for research and educational use.

GitHub relies, at its core, on the well-known and open-source version control system Git,
originally designed by Linus Torvalds for the development of the Linux kernel and now devel-
oped and maintained by the Git community. One reason for GitHub’s success is that it offers
more than a simple source code hosting service [5,6]. It provides developers and researchers
with a dynamic and collaborative environment, often referred to as a social coding platform,
that supports peer review, commenting, and discussion [7]. A diverse range of efforts, ranging
from individual to large bioinformatics projects, laboratory repositories, as well as global

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 1 / 11

a11111

OPEN ACCESS

Citation: Perez-Riverol Y, Gatto L, Wang R,
Sachsenberg T, Uszkoreit J, Leprevost FdV, et al.
(2016) Ten Simple Rules for Taking Advantage of Git
and GitHub. PLoS Comput Biol 12(7): e1004947.
doi:10.1371/journal.pcbi.1004947

Editor: Scott Markel, Dassault Systemes BIOVIA,
UNITED STATES

Published: July 14, 2016

Copyright: © 2016 Perez-Riverol et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: This study was supported by Wellcome
Trust [grant number WT101477MA] (http://www.
wellcome.ac.uk/), BBSRC [grant numbers BB/
K01997X/1, BB/I00095X/1, BB/L024225/1 and BB/
L002817/1] (http://www.bbsrc.ac.uk/), BMBF grant de.
NBI - German Network for Bioinformatics
Infrastructure (FKZ031 A 534A) (https://www.denbi.
de/), NIH grant numbers R01-GM-094231 and R01-
EB-017205 (http://www.nih.gov/), EPSRC [reference
EP/M022641/1] (https://www.epsrc.ac.uk), NSF grant
number 1252893 (http://www.nsf.gov/), and Novo
Nordisk Foundation (http://www.novonordiskfonden.
dk/en). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://sourceforge.net/
https://bitbucket.org/
https://about.gitlab.com/
https://github.com/
https://github.com/git
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004947&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.wellcome.ac.uk/
http://www.wellcome.ac.uk/
http://www.bbsrc.ac.uk/
https://www.denbi.de/
https://www.denbi.de/
http://www.nih.gov/
https://www.epsrc.ac.uk
http://www.nsf.gov/
http://www.novonordiskfonden.dk/en
http://www.novonordiskfonden.dk/en

collaborations, have found GitHub to be a productive place to share code and ideas and to col-
laborate (see Table 1).

Some of the recommendations outlined below are broadly applicable to repository hosting
services. However, our main aim is to highlight specific GitHub features. We provide a set of
recommendations that we believe will help the reader to take full advantage of GitHub’s fea-
tures for managing and promoting projects in bioinformatics as well as in many other research
domains. The recommendations are ordered to reflect a typical development process: learning
Git and GitHub basics, collaboration, use of branches and pull requests, labeling and tagging of
code snapshots, tracking project bugs and enhancements using issues, and dissemination of the
final results.

Rule 1: Use GitHub to Track Your Projects
The backbone of GitHub is the distributed version control system Git. Every change, from fix-
ing a typo to a complete redesign of the software, is tracked and uniquely identified. Although

Box 1

By default, GitHub repositories are freely visible to all. Many projects decide to share
their work publicly and openly from the start of the project in order to attract visibility
and to benefit from contributions from the community early on. Some other groups pre-
fer to work privately on projects until they are ready to share their work. Private reposito-
ries ensure that work is hidden but also limit collaborations to just those users who are
given access to the repository. These repositories can then be made public at a later stage,
such as, for example, upon submission, acceptance, or publication of corresponding jour-
nal articles. In some cases, when the collaboration was exclusively meant to be private,
some repositories might never be made publicly accessible.

Table 1. Bioinformatics repository examples with good practices of using GitHub. The table contains the name of the repository, the type of example
(issue tracking, branch structure, unit tests), and the URL of the example. All URLs are prefixed with https://github.com/.

Name of the Repository Type URL

Adam Community Project, Multiple forks https://github.com/bigdatagenomics/adam

BioPython [18] Community Project, Multiple contributors https://github.com/biopython/biopython/graphs/
contributors

Computational Proteomics Unit Lab Repository https://github.com/ComputationalProteomicsUnit

Galaxy Project [19] Community Project, Bioinformatics Repository https://github.com/galaxyproject/galaxy

GitHub Paper Manuscript, Issue discussion, Community Project https://github.com/ypriverol/github-paper

MSnbase [20] Individual project repository https://github.com/lgatto/MSnbaseMSnbase

OpenMS [21] Bioinformatics Repository, Issue discussion,
branches

https://github.com/OpenMS/OpenMS/issues/1095

PRIDE Inspector Toolsuite [22] Project Organization, Multiple projects https://github.com/PRIDE-Toolsuite

Retinal wave data repository [23] Individual project, Manuscript, Binary Data
organized

https://github.com/sje30/waverepo

SAMtools [24] Bioinformatics Repository, Project Organization https://github.com/samtools

rOpenSci Community Project, Issue discussion https://github.com/ropensci

The Global Alliance For Genomics and
Health

Community Project https://github.com/ga4gh

doi:10.1371/journal.pcbi.1004947.t001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 2 / 11

Competing Interests: The authors have no affiliation
with GitHub, nor with any other commercial entity
mentioned in this article. The views described here
reflect their own views without input from any third
party organization.

https://github.com/
https://github.com/bigdatagenomics/adam
https://github.com/biopython/biopython/graphs/contributors
https://github.com/biopython/biopython/graphs/contributors
https://github.com/ComputationalProteomicsUnit
https://github.com/galaxyproject/galaxy
https://github.com/ypriverol/github-paper
https://github.com/lgatto/MSnbaseMSnbase
https://github.com/OpenMS/OpenMS/issues/1095
https://github.com/PRIDE-Toolsuite
https://github.com/sje30/waverepo
https://github.com/samtools
https://github.com/ropensci
https://github.com/ga4gh

Git has a complex set of commands and can be used for rather complex operations, learning to
apply the basics requires only a handful of new concepts and commands and will provide a
solid ground to efficiently track code and related content for research projects. Many introduc-
tory and detailed tutorials are available (see Table 2 below for a few examples). In particular,
we recommend A Quick Introduction to Version Control with Git and GitHub by Blischak et al.
[5].

In a nutshell, initializing a (local) repository (often abbreviated as repo) marks a directory as
one to be tracked (Fig 1). All or parts of its content can be added explicitly to the list of files to
track.

cd project ## move into directory to be tracked
init ## initialize local repository
add individual files such as project description, reports,

source code
git add README project.md code.R
git commit -m "initial commit" ## saves the current local snapshot
Subsequently, every change to the tracked files, once committed, will be recorded as a new

revision, or snapshot, uniquely identifying the changes in all the modified files. Git is remark-
ably effective and efficient in archiving the complete history of a project by, among other
things, storing only the differences between files.

In addition to local copies of the repository, it is straightforward to create remote reposito-
ries on GitHub (called origin, with default branch master—see below) using the web interface,
and then synchronize local and remote repositories.

git push origin master ## push local changes to the remote
repository

git pull origin master ## pull remote changes into the local
repository

Following Tony Rossini’s advice in 2005 to “commit early, commit often, and commit in a
repository from which we can easily roll-back your mistakes,” one can organize one’s work in
small incremental changes. At any time, it is possible to go back to a previous version. In larger
projects, multiple users are able to work on the same remote repository, with all contributions
being recorded, restorable, and attributed to the author.

Users usually track source code, text files, images, and small data files inside their reposito-
ries and generally do not track derived files such as build logs or compiled binaries (read Box 2
to see how to handle large binary files in GitHub). And, although the majority of GitHub repos-
itories are used for software development, users can also keep text documents such as analysis

Table 2. Online courses, tutorials, and workshops about GitHub and Git for scientists.

Name of the Material URL

Git help and Git help -a Document, installed with Git

Karl Broman’s Git/Github Guide http://kbroman.org/github_tutorial/

Version Control with GitVersion Control
with Git

http://swcarpentry.github.io/git-novice/

Introduction to Git http://git-scm.com/book/ch1-3.html

Github Training https://training.github.com/

Github Guides https://guides.github.com/

Good Resources for Learning Git and
GitHub

https://help.github.com/articles/good-resources-for-learning-git-
and-github/

Software Carpentry: Version Control with
Git

http://swcarpentry.github.io/git-novice/

doi:10.1371/journal.pcbi.1004947.t002

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 3 / 11

http://kbroman.org/github_tutorial/
http://swcarpentry.github.io/git-novice/
http://git-scm.com/book/ch1-3.html
https://training.github.com/
https://guides.github.com/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
https://github.com/ypriverol/github-paper

reports and manuscripts (see, for example, the repository for this manuscript at https://github.
com/ypriverol/github-paper).

Due to its distributed design, each up-to-date local Git repository is an entire exact historical
copy of everything that was committed—file changes, commit message logs, etc. These copies
act as independent backups as well, present on each user’s storage device. Git can be considered
to be fault-tolerant because of this, which is a win over centralized version control systems. If
the remote GitHub server is unavailable, collaboration and work can continue between users,
as opposed to centralized alternatives.

The web interface offered by GitHub provides friendly tools to performmany basic opera-
tions and a gentle introduction to a more rich and complex set of functionalities. Various
graphical user-interface-driven clients for managing Git and GitHub repositories are also avail-
able (https://www.git-scm.com/downloads/guis). Many editors and development environments

Fig 1. The structure of a GitHub-based project illustrating project structure and interactions with the community.

doi:10.1371/journal.pcbi.1004947.g001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 4 / 11

https://github.com/ypriverol/github-paper
https://github.com/ypriverol/github-paper
https://www.git-scm.com/downloads/guis

such as, for example, the popular RStudio editor for the R programming language [8], directly
integrate with code versioning using Git and GitHub. In addition, for remote Git repositories,
GitHub provides its own features that will be described in subsequent rules (Fig 1).

Rule 2: GitHub for Single Users, Teams, and Organizations
Public projects on GitHub are visible to everyone, but write permission, i.e., the ability to
directly modify the content of a repository, needs to be granted explicitly. As a repository
owner, you can grant this right to other GitHub users. In addition to being owned by users,
repositories can also be created and managed as part of teams and organizations.

Project managers can structure projects to manage permissions at different levels: users,
teams, and organizations. Users are the central element of GitHub as in any other social network.
Every user has a profile listing their GitHub projects and activities, which can optionally be popu-
lated with personal information including name, email address, image, and webpage. To stay up
to date with the activity of other users, one can follow their accounts (see also Rule 10). Collabo-
ration can be achieved by simply adding a trusted Collaborator, thereby granting write access.

However, development in large projects is usually done by teams of people within a larger
organization. GitHub organizations are a great way to manage team-based access permissions
for the individual projects of institutes, research labs, and large open-source projects that need
multiple owners and administrators (Fig 1). We recommend that you, as an individual
researcher, make your profile visible to other users and display all of the projects and organiza-
tions you are working in.

Rule 3: Developing and Collaborating on New Features: Branching
and Forking
Anyone with a GitHub account can fork any repository they have access to. This will create a
complete copy of the content of the repository, while retaining a link to the original “upstream”

version. One can then start working on the same code base in one’s own fork (https://help.
github.com/articles/fork-a-repo/) under their username (see, for example, https://github.com/
ypriverol/github-paper/network/members for this work) or organization (see Rule 2). Forking
a repository allows users to freely experiment with changes without affecting the original

Box 2

Using GitHub or any similar versioning/tracking system is not a replacement for good
project management; it is an extension, an improvement for good project and file manag-
ing (see for example [9]). One practical consideration when using GitHub, for example,
is dealing with large binary files. Binary files such as images, videos, executable files, or
many raw data used in bioinformatics, are stored as a single large entity in Git. As a
result, every change, even if minimal, leads to a complete new copy of the file in the
repository, producing large size increments and the inability to search (see https://help.
github.com/articles/searching-code/) and compare file content across revisions. Git
offers a Large File Storage (LFS) module that replaces such large files with pointers while
the large binary file can be stored remotely, which results in smaller and faster reposito-
ries. Git LFS is also supported by GitHub, albeit with a space quota or for a fee, to retain
your usual GitHub workflow (https://help.github.com/categories/managing-large-files/)
(S1 File, Section 1).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 5 / 11

https://www.rstudio.com/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://github.com/ypriverol/github-paper/network/members
https://github.com/ypriverol/github-paper/network/members
Undefined namespace prefix
Undefined namespace prefix
http://sourceforge.net/
https://bitbucket.org/

project and forms the basis of social coding. It allows anyone to develop and test novel features
with existing code and offers the possibility of contributing novel features, bug fixes, and
improvements to documentation back into the original upstream project (requested by open-
ing an pull request) repository and becoming a contributor. Forking a repository and providing
pull requests constitutes a simple method for collaboration inside loosely defined teams and
over more formal organizational boundaries, with the original repository owner(s) retaining
control over which external contributions are accepted. Once a pull request is opened for
review and discussion, it usually results in additional insights and increased code quality [7].

Many contributors can work on the same repository at the same time without running into
edit conflicts. There are multiple strategies for this, and the most common way is to use Git
branches to separate different lines of development. Active development is often performed on
a development branch and stable versions, i.e., those used for a software release, are kept in a
master or release branch (see for example https://github.com/OpenMS/OpenMS/branches). In
practice, developers often work concurrently on one or several features or improvements. To
keep commits of the different features logically separated, distinct branches are typically used.
Later, when development is complete and verified to work (i.e., none of the tests fail, see Rule
5), new features can be merged back into the development line or master branch. In addition,
one can always pull the currently up-to-date master branch into a feature branch to adapt the
feature to the changes in the master branch.

When developing different features in parallel, there is a risk of applying incompatible
changes in different branches/forks; these are said to become out of sync. Branches are just
short-term departures from master. If you pull frequently, you will keep your copy of the
repository up to date and you will have the opportunity to merge your changed code with oth-
ers’ contributors, ideally without requiring you to manually address conflicts to bring the
branches in sync again.

Rule 4: Naming Branches and Commits: Tags and Semantic
Versions
Tags can be used to label versions during the development process. Version numbering should
follow “semantic versioning” practice, with the format X.Y.Z., with X being the major, Y the
minor, and Z the patch version of the release, including possible meta information, as described
in http://semver.org/. This semantic versioning scheme provides users with coherent version
numbers that document the extent (bug fixes or new functionality) and backwards compatibil-
ity of new releases. Correct labeling allows developers and users to easily recover older versions,
compare them, or simply use them to reproduce results described in publications (see Rule 8).
This approach also help to define a coherent software publication strategy.

Rule 5: Let GitHub Do Some Tasks for You: Integrate
The first rule of software development is that the code needs to be ready to use as soon as possi-
ble [10], to remain so during development, and that it should be well-documented and tested.
In 2005, Martin Fowler defined the basic principles for continuous integration in software
development [11]. These principles have become the main reference for best practices in con-
tinuous integration, providing the framework needed to deploy software and, in some way,
also data. In addition to mere error-free execution, dedicated code testing is aimed at detecting
possible bugs introduced by new features or changes in the code or dependencies, as well as
detecting wrong results, often known as logic errors, in which the source code produces a differ-
ent result than what was intended. Continuous integration provides a way to automatically and

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 6 / 11

https://github.com/OpenMS/OpenMS/branches
http://semver.org/

systematically run a series of tests to check integrity and performance of code, a task that can
be automated through GitHub.

GitHub offers a set of hooks (automatically executed scripts) that are run after each push to
a repository, making it easier to follow the basic principles of continuous integration. The
GitHub web hooks allow third-party platforms to access and interact with a GitHub repository
and thus to automate post-processing tasks. Continuous integration can be achieved by Travis
CI, a hosted continued integration platform that is free for all open-source projects. Travis CI
builds and tests the source code using a plethora of options such as different platforms and
interpreter versions (S1 File, Section 2). In addition, it offers notifications that allow your team
and contributors to know if the new changes work and to prevent the introduction of errors in
the code (for instance, when merging pull requests), making the repository always ready to use.

Rule 6: Let GitHub Do More Tasks for You: Automate
More than just code compilation and testing can be integrated into your software project:
GitHub hooks can be used to automate numerous tasks to help improve the overall quality of
your project. An important complement to successful test completion is to demonstrate that
the tests sufficiently cover the existing code base. For this, the integration of Codecov is recom-
mended. This service will report how much of the code base and which lines of code are being
executed as part of your code tests. The Bioconductor project, for example, highly recommends
that packages implement unit testing (S1 File, Section 2) to support developers in their package
development and maintenance (http://bioconductor.org/developers/unitTesting-guidelines/)
and systematically tests the coverage of all of its packages (https://codecov.io/github/
Bioconductor-mirror/). One might also consider generating the documentation upon code/
documentation modification (S1 File, Section 3). This implies that your projects provide com-
prehensive documentation so others can understand and contribute back to them. For Python
or C/C++ code, automatic documentation generation can be done using sphinx and subse-
quently integrated into GitHub using “Read the Docs.” All of these platforms will create reports
and badges (sometimes called shields) that can be included on your GitHub project page, help-
ing to demonstrate that the content is of high quality and well-maintained.

Rule 7: Use GitHub to Openly and Collaboratively Discuss,
Address, and Close Issues
GitHub issues are a great way to keep track of bugs, tasks, feature requests, and enhancements.
While classical issue trackers are primarily intended to be used as bug trackers, in contrast,
GitHub issue trackers follow a different philosophy: each tracker has its own section in every
repository and can be used to trace bugs, new ideas, and enhancements by using a powerful
tagging system. The main objective of issues in GitHub is promoting collaboration and provid-
ing context by using cross-references.

Raising an issue does not require lengthy forms to be completed. It only requires a title and,
preferably, at least a short description. Issues have very clear formatting and provide space for
optional comments, which allow anyone with a Github account to provide feedback. For exam-
ple, if the developer needs more information to be able to reproduce a bug, he or she can simply
request it in a comment.

Additional elements of issues are (i) color-coded labels that help to categorize and filter
issues, (ii) milestones, and (iii) one assignee responsible for working on the issue. They help
developers to filter and prioritize tasks and turn an issue tracker into a planning tool for their
project.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 7 / 11

https://travis-ci.org/
https://travis-ci.org/
https://codecov.io/
http://bioconductor.org/developers/unitTesting-guidelines/
https://codecov.io/github/Bioconductor-mirror/
https://codecov.io/github/Bioconductor-mirror/
http://sphinx-doc.org/
https://readthedocs.org/

It is also possible for repository administrators to create issue and pull request templates
(https://help.github.com/articles/helping-people-contribute-to-your-project/) (see Rule 3) to
customize and standardize the information to be included when contributors open issues.
GitHub issues are thus dynamic, and they pose a low entry barrier for users to report bugs and
request features. A well-organized and tagged issue tracker helps new contributors and users to
understand a project more deeply. As an example, one issue in the OpenMS repository
(https://github.com/OpenMS/OpenMS/issues/1095) allowed the interaction of eight develop-
ers and attracted more than one hundred comments. Contributors can add figures, comments,
and references to other issues and pull requests in the repository, as well as direct references to
code.

As another illustration of issues and their generic and wide application, we (https://github.
com/ypriverol/github-paper/issues) and others (https://github.com/ropensci/RNeXML/issues/
121) used GitHub issues to discuss and comment on changes in manuscripts and address
reviewers’ comments.

Rule 8: Make Your Code Easily Citable, and Cite Source Code!
It is a good research practice to ensure permanent and unambiguous identifiers for citable
items like articles, datasets, or biological entities such as proteins, genes, and metabolites (see
also Box 3). Digital Object Identifiers (DOIs) have been used for many years as unique and
unambiguous identifiers for enabling the citation of scientific publications. More recently, a
trend has started to mint DOIs for other types of scientific products such as datasets [12] and
training materials (for example [13]). A key motivation for this is to build a framework for giv-
ing scientists broader credit for their work [14,15] while simultaneously supporting clearer,
more persistent ways to cite and track it. Helping to drive this change are funding agencies
such as the National Institutes of Health (NIH) and National Science Foundation (NSF) in the
United States and Research Councils in the United Kingdom, which are increasingly recogniz-
ing the importance of research products such as publicly available datasets and software.

A common issue with software is that it normally evolves at a different speed than text pub-
lished in the scientific literature. In fact, it is common to find software having novel features
and functionality that were not described in the original publication. GitHub now integrates
with archiving services such as Zenodo and Figshare, enabling DOIs to be assigned to code
repositories. The procedure is relatively straightforward (see https://guides.github.com/
activities/citable-code/), requiring only the provision of metadata and a series of administrative
steps. By default, Zenodo creates an archive of a repository each time a new release is created in

Box 3

Every repository should ideally have the following three files. The first and arguably most
important file in a repository is a LICENCE file (see also Rule 8) that clearly defines the
permissions and restrictions attached to the code and other files in your repository. The
second important file is a README file, which provides, for example, a short description
of the project, a quick start guide, information on how to contribute, a TODO list, and
links to additional documentation. Such README files are typically written in mark-
down, a simple markup language that is automatically rendered on GitHub. Finally, a
CITATION file to the repository informs your users how to cite and credit your project.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 8 / 11

https://help.github.com/articles/helping-people-contribute-to-your-project/
https://github.com/OpenMS/OpenMS/issues/1095
https://github.com/ypriverol/github-paper/issues
https://github.com/ypriverol/github-paper/issues
https://github.com/ropensci/RNeXML/issues/121
https://github.com/ropensci/RNeXML/issues/121
https://zenodo.org/
https://figshare.com/
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/

GitHub, ensuring the cited code remains up to date. Once the DOI has been assigned, it can be
added to literature information resources such as Europe PubMed Central [16].

As already mentioned in the introduction, reproducibility of scientific claims should be
enabled by providing the software, the datasets, and the process leading to interpretable results
that were used in a particular study. As much as possible, publications should highlight that
the code is freely available in, for example, GitHub, together with any other relevant outputs
that may have been deposited. In our experience, this openness substantially increases the
chances of getting the paper accepted for publication. Journal editors and reviewers receive the
opportunity to reproduce findings during the manuscript review process, increasing confi-
dence in the reported results. In addition, once the paper is published, your work can be repro-
duced by other members of the scientific community, which can increase citations and foster
opportunities for further discussion and collaboration.

The availability of a public repository containing the source code does not make the soft-
ware open-source per se. You should use an Open Source Initiative (OSI)-approved license
that defines how the software can be freely used, modified, and shared. Common licenses such
as those listed on http://choosealicense.com are preferred. Note that the LICENSE file in the
repository should be a plain-text file containing the contents of an OSI-approved license, not
just a reference to the license.

Rule 9: Promote and Discuss Your Projects: Web Page and More
The traditional way to promote scientific software is by publishing an associated paper in the
peer-reviewed scientific literature, though, as pointed out by Buckheir and Donoho, this is just
advertising [17]. Additional steps can boost the visibility of an organization. For example,
GitHub Pages are simple websites freely hosted by GitHub. Users can create and host blog web-
sites, help pages, manuals, tutorials, and websites related to specific projects. Pages comes with
a powerful static site generator called Jekyll that can be integrated with other frameworks such
as Bootstrap or platforms such as Disqus to support and moderate comments.

In addition, several real-time communication platforms have been integrated with GitHub
such as Gitter and Slack. Real-time communication systems allow the user community, devel-
opers, and project collaborators to exchange ideas and issues and to report bugs or get support.
For example, Gitter is a GitHub-based chat tool that enables developers and users to share
aspects of their work. Gitter inherits the network of social groups operating around GitHub
repositories, organizations, and issues. It relies on identities within GitHub creating Internet
Relay Chat (IRC)-like chat rooms for public and private projects. Within a Gitter chat, mem-
bers can reference issues, comments, and pull requests. GitHub also supports wikis (which are
version-controlled repositories themselves) for each repository, in which users can create and
edit pages for documentation, examples, or general support.

A different service is Gist, which represents a unique way to share code snippets, single files,
parts of files, or full applications. Gists can be generated in two different ways: public gists that
can be browsed and searched through Discover and secret gists that are hidden from search
engines. One of the main features of Gist is the possibility of embedding code snippets in other
applications, enabling users to embed gists in any text field that supports JavaScript.

Rule 10: Use GitHub to Be Social: Follow andWatch
In the same way researchers are following developments in their field, scientific programmers
could follow publicly available projects that might benefit their research. GitHub enables this
functionality by following other GitHub users (see also Rule 2) or watching the activity of

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 9 / 11

https://opensource.org/licenses/alphabetical
http://choosealicense.com
https://jekyllrb.com/
http://getbootstrap.com/
https://disqus.com/
http://gitter.im/
https://slack.com/
https://gist.github.com/
https://gist.github.com/discover

projects, which is a common feature in many social media platforms. Take advantage of it as
much as possible!

Conclusions
If you are involved in scientific research and have not used Git and GitHub before, we recom-
mend that you explore its potential as soon as possible. As with many tools, a learning curve
lays ahead, but several basic yet powerful features are accessible even to the beginner and may
be applied to many different use-cases [6]. We anticipate the reward will be worth your effort.
To conclude, we would like to recommend some examples of bioinformatics repositories in
GitHub (Table 1) and some useful training materials, including workshops, online courses, and
manuscripts (Table 2).

Supporting Information
S1 File. Supplementary Information including three sections: Git Large File Storage (LFS),
Testing Levels of the Source Code and Continuous integration, and Source code documen-
tation.
(PDF)

Acknowledgments
The authors would like to thank C. Titus Brown for mentioning the manuscript on social
media, leading to additional contributions and further improvements. We also thank Peter
Cock (peterjc) for helpful suggestions contributed directly through GitHub.

References
1. Goodman A, Pepe A, Blocker AW, Borgman CL, Cranmer K, Crosas M, et al. Ten simple rules for the

care and feeding of scientific data. PLoS Comput Biol. 2014; 10(4):e1003542. doi: 10.1371/journal.
pcbi.1003542 PMID: 24763340

2. Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaíno JA. Making proteomics data accessible and
reusable: current state of proteomics databases and repositories. Proteomics. 2015; 15(5–6):930–49.
doi: 10.1002/pmic.201400302 PMID: 25158685

3. Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N, et al. Ten simple rules for
effective computational research. PLoS Comput Biol. 2014; 10(3):e1003506. doi: 10.1371/journal.pcbi.
1003506 PMID: 24675742

4. Vihinen M. No more hidden solutions in bioinformatics. Nature. 2015; 521(7552):261. doi: 10.1038/
521261a PMID: 25993922

5. Blischak J, Davenport E, Wilson G. A Quick Introduction to Version Control with Git and GitHub. PLoS
Comput Biol. 2016; 12(1):e1004668. doi: 10.1371/journal.pcbi.1004668 PMID: 26785377

6. Ram K. Git can facilitate greater reproducibility and increased transparency in science. Source code for
biology and medicine. 2013; 8(1):1.

7. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social Coding in GitHub: Transparency and Collaboration in
an Open Software Repository. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work. CSCW ‘12. New York, NY, USA: ACM; 2012. p. 1277–1286. Available from: http://
doi.acm.org/10.1145/2145204.2145396.

8. R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from: https://
www.R-project.org/.

9. Noble WS. A quick guide to organizing computational biology projects. PLoS Comput Biol. 2009; 5(7):
e1000424. doi: 10.1371/journal.pcbi.1000424 PMID: 19649301

10. Leprevost FV, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC. On best practices in the
development of bioinformatics software. Front Genet. 2014; 5:199. doi: 10.3389/fgene.2014.00199
PMID: 25071829

11. Fowler M. Continuous Integration; 2006. http://www.martinfowler.com/articles/continuousIntegration.html.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 10 / 11

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004947.s001
http://dx.doi.org/10.1371/journal.pcbi.1003542
http://dx.doi.org/10.1371/journal.pcbi.1003542
http://www.ncbi.nlm.nih.gov/pubmed/24763340
http://dx.doi.org/10.1002/pmic.201400302
http://www.ncbi.nlm.nih.gov/pubmed/25158685
http://dx.doi.org/10.1371/journal.pcbi.1003506
http://dx.doi.org/10.1371/journal.pcbi.1003506
http://www.ncbi.nlm.nih.gov/pubmed/24675742
http://dx.doi.org/10.1038/521261a
http://dx.doi.org/10.1038/521261a
http://www.ncbi.nlm.nih.gov/pubmed/25993922
http://dx.doi.org/10.1371/journal.pcbi.1004668
http://www.ncbi.nlm.nih.gov/pubmed/26785377
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1371/journal.pcbi.1000424
http://www.ncbi.nlm.nih.gov/pubmed/19649301
http://dx.doi.org/10.3389/fgene.2014.00199
http://www.ncbi.nlm.nih.gov/pubmed/25071829
http://www.martinfowler.com/articles/continuousIntegration.html

12. Vizcaíno JA, Deutsch EW,Wang R, Csordas A, Reisinger F, Ríos D, et al. ProteomeXchange provides
globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014; 32(3):223–
6. doi: 10.1038/nbt.2839 PMID: 24727771

13. Ahmadia A, Aiello-Lammens M, Ainsley J, Allen J, Alsheikh-Hussain A, Banaszkiewicz P, et al. Soft-
ware Carpentry: Programming with R; 2015. http://dx.doi.org/10.5281/zenodo.27353.

14. Credit where credit is overdue. Nat Biotechnol. 2009; 27(7):579. doi: 10.1038/nbt0709-579 PMID:
19587644

15. FORCE11 Software Citation Working Group. https://www.force11.org/group/software-citation-working-
group.

16. Europe PMC Consortium. Europe PMC: a full-text literature database for the life sciences and platform
for innovation. Nucleic Acids Res. 2015; 43(Database issue):D1042–8. doi: 10.1093/nar/gku1061
PMID: 25378340

17. Buckheit J, Donoho D. WaveLab and Reproducible Research. Springer-Verlag; 1995. p. 55–81.

18. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python
tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11):1422–3. doi:
10.1093/bioinformatics/btp163 PMID: 19304878

19. Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome Biol.
2010; 11(8):R86. doi: 10.1186/gb-2010-11-8-r86 PMID: 20738864

20. Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data
visualization, processing and quantitation. Bioinformatics. 2012; 28(2):288–289. doi: 10.1093/
bioinformatics/btr645 PMID: 22113085

21. Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, et al. OpenMS—an open-source
software framework for mass spectrometry. BMC bioinformatics. 2008; 9(1):163.

22. Perez-Riverol Y, Xu QW,Wang R, Uszkoreit J, Griss J, Sanchez A, et al. PRIDE Inspector Toolsuite:
Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality
Assessment of ProteomeXchange Datasets. Molecular & Cellular Proteomics. 2016; 15(1):305–317.
doi: 10.1074/mcp.O115.050229

23. Eglen SJ, Weeks M, Jessop M, Simonotto J, Jackson T, Sernagor E. A data repository and analysis
framework for spontaneous neural activity recordings in developing retina. Gigascience. 2014; 3(1):3.
doi: 10.1186/2047-217X-3-3 PMID: 24666584

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004947 July 14, 2016 11 / 11

http://dx.doi.org/10.1038/nbt.2839
http://www.ncbi.nlm.nih.gov/pubmed/24727771
http://dx.doi.org/10.5281/zenodo.27353
http://dx.doi.org/10.1038/nbt0709-579
http://www.ncbi.nlm.nih.gov/pubmed/19587644
https://www.force11.org/group/software-citation-working-group
https://www.force11.org/group/software-citation-working-group
http://dx.doi.org/10.1093/nar/gku1061
http://www.ncbi.nlm.nih.gov/pubmed/25378340
http://dx.doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pubmed/20738864
http://dx.doi.org/10.1093/bioinformatics/btr645
http://dx.doi.org/10.1093/bioinformatics/btr645
http://www.ncbi.nlm.nih.gov/pubmed/22113085
http://dx.doi.org/10.1074/mcp.O115.050229
http://dx.doi.org/10.1186/2047-217X-3-3
http://www.ncbi.nlm.nih.gov/pubmed/24666584
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943

