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ABSTRACT 
 

The robustness of a design has a major influence on how much the product’s performance will vary and is 

of great concern to design, quality and production engineers. While variability is always central to the 

definition of robustness, the concept does contain ambiguity and although subtle, this ambiguity can have 

significant influence on the strategies used to combat variability, the way it is quantified and ultimately, 

the quality of the final design. In this contribution the literature for robustness metrics was systematically 

reviewed. From the 108 relevant publications found, 38 metrics were determined to be conceptually 

different from one another. The metrics were classified by their meaning and interpretation based on the 

types of information necessary to calculate the metrics. Four different classes were identified: 1) Sensitivity 

robustness metrics; 2) Size of feasible design space robustness metrics; 3) Functional expectancy and 

dispersion robustness metrics; and 4) Probability of compliance robustness metrics. The goal was to give a 

comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand 

the different types of robustness metrics and to remove the ambiguities of the term robustness. By 

applying an exemplar metric from each class to a case study, the differences between the classes were 

further highlighted. These classes form the basis for the definition of four specific sub-definitions of 

robustness, namely the ‘robust concept’, ‘robust design’, ‘robust function’ and ‘robust product’. 
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1. INTRODUCTION 
 

There is much need to clarify the term robustness. While robustness is a 

property of a design or product that is considered of great importance in many 

industries, the terms robustness will seldom appear in a requirement specification, 

partly due to its ambiguity, confusion and misrepresentation. The term has a completely 

different meaning in common parlance, where consumers will often consider it to be 

synonymous with strength or durability. In this article we seek to remove the ambiguity 

surrounding the technical interpretation of robustness, which is broadly considered by 

engineers as a property that reduces variability. ‘Robust Design’ [verb] is therefore a 

methodology for designing products, devices and production equipment to perform as 

intended despite variation in manufacturing, assembly, material properties, ambient 

conditions, loading scenarios or time related factors [1]–[3]. Unlike the majority of 

design and analysis techniques that are based on nominal values [1], Robust Design 

provides an economical approach to address product quality in complement to the 

control of manufacturing performance by means of production-focused quality 

initiatives, such as Total Quality Management (TQM), Lean Manufacturing or Six Sigma. 

While the basic paradigm and the fundamental benefits of Robust Design are 

widely accepted by scholars and practitioners, the implementation of a consistent 

Robust Design strategy is cumbersome for many organizations [4]–[6]. Robust Design is 

a very tool/method centric discipline with vaguely a defined robust design process [7], 

and as a consequence only experts know what to apply and when. Furthermore, the 

term Robustness is frequently used almost interchangeably with Sensitivity in a wide 
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range of related, but not clearly delimited research areas, such as sensitivity analysis, 

computational model building, optimization etc. [8]–[10]. 

A reason for the lack of coherence in terminology is perhaps due to the broad 

range of Robust Design activities, from systematic identification of key characteristics 

[11] through benchmark and comparison of products and processes [2], [12], [13] to the 

optimization of robustness and computer-aided tolerancing [8]. Such activities require 

metrics and indicators that typically differ to suit the activity and are frequently not 

straight forward to interpret. Previous reviews of robustness optimization techniques 

indirectly discuss different robustness metrics, however, without reflecting on the 

different implications of the choice of specific metrics for optimization [8], [14]–[16]. 

To foster a better understanding of the wide range of available approaches to 

quantify robustness, this research addresses the ambiguity surrounding the term 

robustness. The goal of this review is to classify robustness metrics based on their 

meaning and interpretation. 

The remainder of this article is organized as follows. The search criteria and 

review process for the systematic literature review is described in section 2. In order to 

organize the metrics uncovered, a theoretical framework is proposed underpinned by 

the information entities relevant to the basic Robust Design paradigm in Section 3. The 

unique robustness metrics are then classified and analyzed in Section 4 and exemplar 

metrics from each class are described and applied to a case example to illustrate the 

differences. In section 5, the verification and validity of the classification scheme as well 

as the interpretation of the different classes with respect to different facets of 
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robustness are discussed, before concluding the results and the potential of this 

research in section 6. 

 

2. SYSTEMATIC LITERATURE REVIEW PROCESS 
 

The quantification of parameter sensitivities plays a large role in almost all 

scientific fields that use models to describe, analyze and predict phenomena and 

synthesize products and systems. As a result, there exist a very large number of 

scientific manuscripts on sensitivity analysis and metrics with focus on special 

application scenarios. However, the concept of robustness is not entirely congruent with 

that of sensitivity. Since these terms of are often used as antonyms of one another, a 

thorough review of the related metrics may help with clarifying the distinction between 

the terms. 

For this purpose a systematic literature review [17] was conducted to create a 

comprehensive collection of robustness and sensitivity metrics that can be used in the 

realm of Robust Design. The objective of this extraction was to collect as many 

fundamentally different metrics as possible. Throughout this article the term metric will 

be used and is unless otherwise stated referring to a measure or quantification of the 

robustness of a design or product. A review protocol was established prior to the study 

to ensure a rigorous execution [17]. 

To establish a general understanding of robustness and sensitivity metrics, 6 

primary publications were reviewed covering sensitivity analysis in general terms [9], 

[10], [18] and focused on sampling-based methods [19] as well as sensitivity indices 
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particularly for the use in Robust Design [13], [20] . Based on this initial review the 

relevant keywords and search strings for the study were defined as follows: 

 Robust Design, Robust Engineering, Robustness to variation, Design for 

robustness, Robust product design, Taguchi, Sensitivity to variation, 

Insensitivity to variation, Sensitive to variation, Insensitive to variation, 

Functional Variation 

AND 

 Indicator, Indicator" OR "Quantifier" OR "Metric" OR "sensitivity 

measure" OR "Index" OR "Indices" OR "Sensitivity Information" OR 

"score” 

To include potential metrics outside of the field of robust design but yet 

applicable for this purpose a second search for reviews of sensitivity analysis methods in 

general has been conducted. As sources, the databases of Scopus and ISI Web of Science 

were selected due to their comprehensive collection of scientific articles relevant to this 

research. The search was limited to peer-reviewed journal articles to ensure a high level 

of quality. Furthermore, only publications in the English language and in the field of 

engineering were considered. The inclusion criteria were the proposal, application or 

review of robustness metrics to evaluate the robustness/sensitivity to variation. 

Excluded were studies on robustness optimization and process capabilities that did NOT 

specifically describe novel ways and ideas to describe robustness. 

For each of the different robustness metrics the mathematical description was 

taken from the article in order to gain a true understanding of the metric which was less 
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reliant on the authors’ terminology or explanation. Overall, the terminology used in the 

literature is very inconsistent. Every metric was only recorded once by discarding 

duplicates and minor variations of a metric. A minor variation of a metric would be one 

which only differs from another metric in the way the normalizing or averaging is 

conducted for example. Table 1 shows the extraction statistics of the systematic 

literature review. At the end of the selection process 90 relevant articles were 

identified. The list of references also includes 18 additional references that were 

identified during reading for extensions and clarification of metrics. The review revealed 

38 different metrics for robustness (Table 5 in the appendix). 

Table 1: Extraction statistic of the systematic literature review 
Database Scopus ISI Web of Science 

Search Strings 
Robust Design* 

+ Indicators* 

“Sensitivity 
Analysis 

methods” + 
Review 

Robust Design* 
+ Indicators* 

“Sensitivity 
Analysis 

methods” + 
Review 

Total hits 252 38 418 34 

Extracted 55 16 36 12 

  

Total unique 
references 

90 (Scopus/ISI WoS) + 18 (additional sources) 

 

 
3. THEORETICAL FRAMEWORK 

 

While robustness metrics have a very broad range of applications in all areas, in 

this article the review is conducted in the context of product development and 

engineering design. The classic categorization of Robust Design methods and metrics 

has been done differentiating between different types and sources of uncertainties. 
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Historically there is a distinction made between type I and type II Robust Design 

addressing variations in noise factors (uncontrollable) and design parameters 

(controllable) respectively [21]. A third type was introduced later by Allen et al. [22] to 

include variability and uncertainty in the system models. A fourth type was mentioned 

by Beyer and Sendhof [8] addressing the “uncertainties concerning the fulfillment of 

constraints the design variables must obey”. These uncertainties can further be 

categorized being deterministic, probabilistic (aleatory) or possibilistic (epistemic) in 

nature [8]. Aleatory uncertainty is the ‘stochastic intrinsic variability associated with a 

physical system or environment’. The epistemic uncertainty is related to incomplete 

knowledge [23]. 

In this study, the transfer function model (TFM), as described in Robust Design 

Methodology, was selected as a basis for the analysis of the metrics. The TFM is a means 

to relate design parameters (and noise factors) to the functional performance and is 

used effectively to promote good design practice in Axiomatic Design [24] and the 

Variation Management Framework [25]. 
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Figure 1: Robust Design framework 

Figure 1 shows the classical representation of describing the propagation of 

variation from the physical domain to the functional domain. The different entities are: 

1. A model or an experiment. When using a model, the relations within the 

process need to be understood in order to calculate the robustness, 

whereas using an experiment treats the process as a black box taking just 

inputs and output to calculate sensitivities. 

2. Functional specification limits or quality loss characteristics defined by 

the voice of the customer and the business unit’s profile for the product. 

3. Quantified ingoing variation or uncertainty, such as design parameter 

variation, capability data and variation in use case or noise described in 

the mission profile (deterministic or probabilistic). The incorporation of 

epistemic uncertainty bears further challenges to uncertainty modeling 
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utilizing for example fuzzy sets [26], [27] and is considered out of scope 

for this review. 

To analyze the robustness metrics their mathematical descriptions were 

reviewed with respect to which of the information entities they process (Figure 1) and 

what meaning and interpretation of the metrics follow from the TFM. 

While the TFM, as seen in Figure 1, only relates one design parameter to one 

functional requirement, it was important to also consider complexity in the analysis, i.e. 

are single or multiple design parameters correlated to single or multiple functional 

requirements. However, it has to be noted that metrics that are used to take the 

average, maximum or minimum of other robustness metrics are not included in the 

review. The objective analysis of the mathematical descriptions ensured the reliability of 

the coding for the classification scheme avoiding any ambiguity in classifying the 

metrics. 

The generic scheme for the analysis of the robustness metrics is summarized in 

Table 2. The results of the analysis of the 38 different metrics identified in the literature 

review can be found in Table 5 in the appendix. The findings are complete with respect 

to the searched databases and generally comprehensive from the authors’ point of 

view. 
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Table 2: Analysis scheme for robustness metrics 

# Name 
Mathematical 

Expression 

Necessary information Entities Level of complexity 

Ref. Model / 
Experiment 

Functional 
Limits 

Expected 
/ 

measured 
variation 

Independent 
variables 

(DPs + NFs) 
single / 
multiple 

Dependent 
variables 

(Functional 
performance) 

single / 
multiple 

         

 

4. CATEGORIZATION OF ROBUSTNESS METRICS 

The aim of this study is NOT to review and describe each and every metric in 

depth, since full details of the metrics can be found in the individual references 

provided. The goal of this study is rather to take a step back to give a classification of a 

comprehensive collection of robustness metrics in order to address the overall 

ambiguities of the term robustness and the selection of appropriate metrics as 

described in the opening of this paper. 

Based on the analysis of the metrics (full table of results in the APPENDIX Table 

5), the following classification scheme was derived (Table 3). All of the 38 reviewed 

robustness metrics could be classified into one of four different classes. 

1. Sensitivity robustness metrics that quantify the influence of one or more 

design parameters or noise factors (independent factors) to the functional 

output (see section 4.1). 

2.  Metrics that describe the size of the feasible design space as measure for the 

robustness (see section 4.2). 



ASME Journal of Mechanical Design 
 

Corresponding author: Göhler, Simon Moritz    MD-16-1166 (Research paper)    12 of 42 

3. Metrics that evaluate different expectancy and dispersion measures of the 

functional output (see section 4.3). 

4. Metrics that evaluate the probability of functional compliance meaning that 

all functions are satisfactory fulfilled under the influence of ingoing variation 

(see section 4.4). 

 
Table 3: Classification scheme for robustness metrics 

Robustness Metric Class 

 
 

Sensitivity 
 

4.1 

 
Size of 

feasible 
design space

4.2 

Functional 
expectancy 

and 
dispersion 

4.3 

 
Probability 

of functional 
compliance 

4.4 

Meaning in the TFM 

  

Necessary 
information 

entities 

Model / 
Experiment 

    

Functional 
limits 

-  -  

Expected / 
measured 
variation 

- -   

Level of 
complexity 

(# of 
functions / # 

of 
independent 

variables) 

1 / 1     

1 / n ()    

n / n -    

 

Within each class, the metrics were further analyzed in terms of the level 

complexity they address: 

o Robustness of a single function to a single independent variable. 
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o Robustness of a single function to sets of independent variables with 

interactions 

o Robustness of a system of functions with coupling 

 

The different classes will be explained in the following including the application 

of one robustness metric of each class on the example of the Toyota gas pedal case. 

 

Example – Toyota Gas Pedal 

One of most extensive recalls in automotive history occurred in 2009/10 when 

the car manufacturer Toyota had to recall several million cars due to an overly sensitive 

gas pedal which in some instances failed to return after being pressed causing the 

vehicle to continually accelerate, resulting in numerous serious accidents and fatalities 

[28]. The mechanism of the gas pedal is supposed to limit the torque required by the 

driver to hold the pedal in a constant position. This function is realized by a rocker that 

creates a friction on the pedal head to damp the return moment driven by a spring 

mounted between the other side of the rocker and the pedal. A simplified description of 

the problem (Figure 2) will be used as an example to show the differences between the 

different classes of robustness metrics. 

The return moment  is a function of the dimensions a, b, c, d, s, the coefficient 

of friction μf, the spring constant k and can be derived using the balance of forces and 

moments. This gives following simplified expression for the return moment: 
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∙ ∙ ∙ ∙  (1) 

 always needs to be greater than zero to ensure a release of the throttle and 

below 500 Nmm to limit the effort for the driver to push the throttle. A second 

functional requirement shall be the integrity of the friction shoe (red part), where the 

bending stress  needs to be below the material’s yield stress  at all times to 

prevent a failure. A simplified analytical expression for the bending stress can be written 

as follows where w and h are the width and the height of the friction shoe respectively: 

6 ∙ ∙
∙

 (2) 

 

 

Figure 2: Schematic diagram of the Toyota gas pedal [28] 

Table 4 summarizes the nominal dimensions and the expected (manufacturing) 

variation. Note that while the model for the mechanism is an accurate description, the 

limits and dimensions have been fabricated for example purposes. 
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Table 4: Nominal dimensions and material properties and variation data for the Toyota gas pedal input 
parameters 

 Nominal Estimated 
Variation (+/-) 

Probability 
distribution 

a 10 mm 0.04 mm Normal 

b 16 mm 0.0483 mm Normal 

c 10 mm 0.04 mm Normal 

d 6 mm 0.035 mm Normal

k 4 N/mm 1 N/mm Uniform

s 16 mm 0.1 mm Normal

μf 0.7 0.5 Uniform

w 4 mm 0.03 mm Normal 

h 5 mm 0.032 mm Normal 

σmax 50 MPa 5 MPa Normal 

 

4.1. Sensitivity robustness metrics 

Sensitivity measures play an important role in model building and corroboration 

as well as parameter prioritization [9]. They also build the simplest form of robustness 

metric and are a well-established way to relate the change of an independent variable 

to the change of a dependent variable. In the context of engineering design this relates 

to the correlation between design parameters or noise factors as independent/input 

variables to the functional requirements (dependent/ output variables). The metrics are 

based on the evaluation of finite quotients of the form: 

∆
∆

 (3) 

For the limit of the interval ∆→ 0 the latter expression yields the formal 

definition of the derivative of a function f towards a variable x (Equ. 4). In the case of 

multiple independent variables it becomes the partial derivative (Equ. 5) 
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f x lim
∆→

∆
∆

 (4) 

lim
∆→

,… , ∆, … ,
∆

 (5) 

The robustness metrics in this class are either point or range based, which 

induces certain assumptions and limitations that shall not be further discussed here. 

There are numerous ways to normalize the metrics to make the measures comparable 

between different functions and variables. 

A simple example for this category is the Nominal-range sensitivity (NRS) metric. 

For the gas pedal example introduced earlier the metric yields 2.6 for the dimension d 

with a 5% variation interval (Equ. 6). 

NRS

∙ ∙ ∙ 1 0.05 ∙ ∙

M 1

0.05
2.6 

(6) 

The Nominal range sensitivity describes the amplifying or damping effect of a 

parameter towards a function. In this case, a variation in the dimension d leads to a 

relative change in the return moment that is ~2.6 times larger than the ingoing variation 

for d. 

Sensitivity robustness metrics are independent of accurate (realistic) information 

about variation in the independent variables (information entity 3 Figure 1). However, 

range based metrics require bounds for the evaluation which are in some cases taken 

from the expected variation but don’t have to be. Also, no information about 

requirements (functional limits) is necessary (information entity 2 Figure 1). 
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Sensitivity robustness metrics usually evaluate the robustness of one function 

with respect to one independent variable (DP or noise factor). The coefficients in linear 

regression modelling which belong to this class of robustness metrics can (in a limited 

fashion) however also be derived for interaction effects with multiple independent 

variables. There are no metrics in this category addressing multiple functions other than 

taking the minimum, maximum or any kind of average neglecting interaction effects. 

Summary: 

Necessary information entities 
Level of complexity (# of functions / # of 

independent Variables) 

Model/ 
Experiment 

Functional 
limits 

Expected / 
measured 
variation 

1 / 1  1 / n n / n 

 - -  () - 

 

4.2. Size of feasible design space robustness metrics 

This class of robustness metrics is based upon the evaluation of the size of the 

feasible design space. The metrics require in addition to information about the 

relationship between independent and dependent variables (information entity (1)), the 

functional limits (information entity (2)). They therefore put sensitivities into 

perspective to the requirements on the associated function. Functions can be extremely 

sensitive when evaluating robustness using the measures presented in 4.1 but yet could 

be robust in the sense that the requirements on the associated function are rather 

loose. 

Two principles are behind the robustness metrics in this class. The first addresses 

the question of how much variation (across all independent variables) can be allowed 
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ensuring that the function will always be within the limits, i.e. what is the closest 

‘distance’ to the most constraining limit? 

The second principle is measuring the entire feasible design space as a metric for 

robustness. This relates to a distance, area, volume and polyhedron volume in 1D, 2D, 

3D and nD respectively. The first principle is dependent on the nominal configuration 

and reflects a pessimistic approach; the latter is independent of the nominal and reflects 

an averaging approach to measure robustness. Size of feasible design space robustness 

measures are generally independent of information about the variation in the ingoing 

parameters. However, metrics like the Mahalanobis distance [29] use variance-

covariance matrices to also address the likelihood of violating a constraint. In that case 

the distance is scaled with the magnitude of the variance and covariance. 

In the one-dimensional case that the size of the feasible design space is to be 

derived for one independent variable x towards one functional requirement f(x) with an 

upper and lower specification limit, the calculation reduces to the trivial expressions: 

1) Robustness radius: 

min	 | | |; | | |  (7)

2) Feasible space: 

| | | | (8)

Figure 3 visualizes the difference between the two concepts of robustness 

measures in this class. On the one hand the distance from the nominal to the closest 

constraint and the other hand the total feasible design space is shown. 
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Figure 3: Size of feasible design space robustness measure (1D) 

In the 1D case with the independent variable being a design parameter, this 

metric can directly be compared to the associated production capabilities to determine 

the expected yield. Interactions and additive effects are not considered. The metrics can 

be used to compare the influences of independent variables on the function. 

For the example of the Toyota gas pedal and its return moment the size of the 

feasible design space of the dimension d neglecting interaction and additive effects is: 

 

min | | |; | | |

|8.55 6 |; |4.375 6 | 1.625  
(9) 

| | | | 8.55 4.375

4.175  
(10)
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The dimension d is therefore allowed to vary by 1.625mm in the worst case. The 

total allowed variation is 4.175mm. The results have a direct influence on the setting of 

tolerances and the question whether those need to be symmetric. 

For the multi-dimensional and multi-functional requirement problem the 

robustness radius can be calculated analogously; for example using the definition of the 

Euclidean distance. 

|  (11)

 

The volume of the feasible space, which Suh calls design range [24], for n 

independent variables and n functional requirements is a metric that describes the 

entire solution space that fulfills the constraints imposed onto the design by the 

functional requirements. This volume can be empty if there is no solution or infinite if 

one or more independent variables are unbounded. In the latter case it makes sense to 

constrain the independent variables to reasonable values. Furthermore, the volume is 

dependent on the number and selection of DPs. Figure 4 shows an example in the case 

of 2 design parameters and 2 functional requirements. 
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Figure 4: Example for a feasible design space in 2D 

 

Frey et al. [30] discuss various methods to compute the volume of this polytope 

that forms the feasible design space. One of them is a method proposed by Lasserre [31] 

which evaluates a set of linear inequalities of the form . 

, ,
1

,
∙ 1, ,  (12)

The calculation is done recursively with  representing the system reduced 

by  where the indices m, n are the dimensions of the matrix A. Using Lasserre’s 

theorem for the Toyota gas pedal case with the two functional requirements of the 

return moment and the bending stress yields a feasible space of 

7500  (13)

This volume of the feasible space is independent of the nominal configuration of 

the design parameters which means that it cannot be used for parameter design 
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optimization. However, the metric can be used to determine the influence of a 

constraint and to compare designs with a similar composition of influencing DPs. 

Further, the value can be normalized with the system range to make it comparable 

between designs or to calculate the likelihood of fulfilling the requirements under the 

assumption of uniform distribution of the DPs [30]. 

The metrics based upon allowed variation give the possibilities to analyze the 

robustness of a function towards a single and sets of independent variables, but also the 

robustness of a product or system consisting of multiple functions that need to be 

fulfilled simultaneously. The information about couplings is implicitly included in the 

formulation of the constraints imposed by the functional requirements. 

Summary: 

Necessary information entities 
Level of complexity (# of functions / # of 

independent Variables) 

Model/ 
Experiment 

Functional 
limits 

Expected / 
measured 
variation 

1 / 1  1 / n n / n 

  -    

 

4.3. Functional expectancy and dispersion robustness metrics 

The robustness metrics of this class are based on the evaluation of the two 

statistical moment measures expectancy and dispersion (variance) to describe the 

robustness of a function. For example, Robust Design pioneer Taguchi proposed the 

Signal-to-Noise ratio as robustness metric which builds upon the related ideas of quality 

loss and the mean square deviation [1], [2], [12] which again refer to the expectancy and 

variance of the functional performance. As opposed to metrics based on the size of the 
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feasible design space as described in 4.2 these metrics do not require information about 

the functional requirements (limits). 

To evaluate the expected functional performance, variance and associated 

robustness metrics in this category, a model or experiment and probabilistic information 

(in the form of probability density functions) of the stochastic variation of the 

independent variables (design parameter and noise factors) is necessary (information 

entities (1) and (3)). However, ’calculating these measures [functional expectancy and 

variance] analytically is almost always impossible‘ [8]. An alternative way is therefore to 

use approximations usually using Taylor expansion [32]. In the case that measurement 

data is available for the performance of a function or can be generated by an 

experiment or an adequate surrogate model the expectancy and dispersion measures 

can be calculated from the data samples. The ingoing variation can either be natural 

(known or unknown from the observed process) or estimated. The mean, variance and 

standard deviation can be calculated as follows (Equ. 14 - 16 respectively): 

∙ X X (14) 

∙ X X (15) 

σ √V f X E y ∙ p X dX 16

In classical robustness optimization algorithms, the mean’s distance to the target 

and the variance of a function is optimized simultaneously, where weighting factors 

determine the prioritization between these two objectives. If the maximum and 
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minimum variation of the independent variables are known, for example, due to quality 

control and subsequent scrap, the probabilistic problem becomes a deterministic one 

and the maximum spread of the function performance can be calculated. 

Functional expectancy and dispersion robustness metrics can be evaluated to 

describe the robustness of a function overall and to variation in single or sets of 

independent variables (DPs or noise factors). In those cases the conditional expectancy 

or variance is calculated. 

To illustrate these different levels consider again the case of the Toyota gas 

pedal case. To determine the influence of the dimension h on the bending stress of the 

friction shoe, or in other words to determine the robustness of the part integrity 

towards variation in the dimension h, the conditional variance can be calculated as the 

variation of the average of the bending stress for constant values of h: 

~ | 0.3  (17)

From the ANOVA HDMR decomposition follows that the sum of all conditional 

variances – of the main effects plus all existing interactions effects – gives the total 

variance of the function [9]. 

V y V V ⋯ V …  (18)

31.1  (19)

M 98434  (20)

The value of robustness metrics that are based on the expectancy measure 

indicate if a functional performance is on target and can be used to calculate the bias. 
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The variance on the other hand - as calculated in equations (19) + (20) for the bending 

stress and the return moment respectively - is difficult to put into perspective without 

knowledge about the functional requirements and their quality loss away from the 

target. However, valid comparisons of the robustness of two concepts or for different 

sets of variations in the independent variables are possible. 

Summary: 

Necessary information entities 
Level of complexity (# of functions / # of 

independent Variables) 

Model/ 
Experiment 

Functional 
limits 

Expected / 
measured 
variation 

1 / 1  1 / n n / n 

 -     

 

4.4. Probability of functional compliance robustness metrics 

Robustness metrics belonging to this class evaluate the probability that one or 

more functions fulfill their requirements under stochastic variation in the independent 

variables. For the assessment of the probabilities, detailed knowledge about the 

dependencies between independent variables and functions as well as information 

about the functional limits (LSL and USL) and the variation of the independent variables 

in the form of probability density functions is necessary (information entities (1), (2) and 

(3) respectively). 

Under the assumption that the functional output is normally distributed, the 

probability of functional compliance (or yield rate in a production setting) can directly 

be calculated from the mean and variance. With knowledge about conditional variances 

it is possible to derive the probability of compliance of a function j depending on the 

variation in single or sets of independent variables (Equ. 21 + 22). Further, in the case 
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that the coupling between functions is known the conditional probabilities can be 

derived to calculate the joint probability, i.e. the likelihood of functions being 

satisfactory fulfilled simultaneously (Equ. 23). In that way the robustness of multi-

functional systems can be evaluated. 

P Pr  (21)

P Pr  (22)

P Pr | | …  (23)

Taking the Toyota gas pedal with described dimensions and stochastic variations, 

the following probabilities and conditional probabilities can be calculated as examples 

to describe their implications and differences. 

Pr 0.99 (24)

Pr 0.94 (25)

Pr 0 0.71 (26)

Pr 0 | 0.68 (27)

The probabilities in equation 24 + 25 describe the likelihood of the bending 

stress being below σmax as functional requirement neglecting and considering the 

variation in the yield stress respectively. The difference of 5% relates to the increase in 

probability of functional compliance if the yield stress was not subject to variation. 

Equation 26 describes the likelihood that the return moment is within the limits. Both, 

the probability of functional compliance for the bending stress and the return moment, 

were evaluated independently without taking the coupling between them into 

consideration. The last probability (Equ. 27) is the conditional probability that both 
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requirements are fulfilled simultaneously, which is lower than the independent 

probabilities. This demonstrates the error for the assumption of functional 

independence. 

Summary: 

Necessary information entities 
Level of complexity (# of functions / # of 

independent Variables) 

Model/ 
Experiment 

Functional 
limits 

Expected / 
measured 
variation 

1 / 1  1 / n n / n 

      
 

5. DISCUSSION 

This section reflects on the verification and validation of the classification 

scheme offered. This is followed by a summary of the classes of robustness metrics in 

terms of their implications for defining robustness. 

 

5.1. Verification and Validation of Classification Scheme 

By assessing the different robustness metrics by their meaning in the TFM it was 

possible to place them into the four classes without ambiguity. The fact that the classes 

were mutually exclusive meaning that no metrics fit in more than one class is a sign of 

the strength of the classification scheme and can be considered as a form of verification 

[33]. The classification scheme was also deemed verified in terms of its ‘completeness’, 

in the sense that all metrics were able to be classified into one of the four classes. The 

fact that the classification scheme was derived from the TFM enables the metrics to be 

easily interpreted during the robust design process, thus ensuring the applicability of 

the scheme. 
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In extension to this theoretical verification, the validity of the classification 

scheme was furthermore evaluated based on the example of the Toyota gas pedal. Its 

robustness could be easily and clearly quantified using metrics from each of the four 

classes. It was found that the individual classes represent different interpretations and 

facets of robustness which have different fields of application within Robust Design. 

 

5.2. Facets of Robustness 

The analysis of the different robustness metrics mentioned in literature revealed 

the 4 classes: Sensitivity, Size of the feasible design space, Functional expectancy and 

dispersion and Probability of functional compliance robustness metrics. 

Sensitivity robustness metrics address the general robustness of a concept 

independent of the specified functional requirements and expected variation. The 

metrics measure the general capability of a design to dampen or amplify variation. This 

view on robustness is favorable in earlier design stages when requirements as well as 

mission profiles and means of production are still unfixed and flexible. Especially in the 

concept selection phase, quantified knowledge about the inherent robustness of the 

different design solutions is of high value. 

Metrics from the class of size of feasible design space include information about 

the final requirements which the functions are evaluated against. They quantify the 

design feasibility taking all functional requirements into consideration and measure 

therefore the robustness of a design itself, independent of the variation it is exposed to. 
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Robustness metrics using functional expectancy and dispersion measures on the 

other hand address the spread of the performance of functions resulting from variation 

in the influencing factors and therefore the robustness of a function. 

Finally, robustness metrics using the probability of fulfilling the functional 

requirements under the influence of variation measure the robustness of the product 

itself and reflect the sum of the sensitivity, requirements and ingoing variation. 

 

6. CONCLUDING REMARKS AND OUTLOOK 

In this contribution we systematically reviewed the literature to extract all the 

different metrics to describe robustness in connection with product development and 

engineering design. 38 unique metrics were identified and their mathematical 

descriptions analyzed with respect to their required information and level of addressed 

complexity. The analysis revealed 4 distinct meanings of robustness metrics which 

describe 4 different facets of quantifying robustness: 

1. Sensitivity robustness metrics  robustness of a concept 

2. Size of the feasible design space robustness metrics  robustness of a 

design 

3. Functional expectancy and dispersion robustness metrics  robustness 

of a function 

4. Probability of functional compliance robustness metrics  robustness 

of a product 

 



ASME Journal of Mechanical Design 
 

Corresponding author: Göhler, Simon Moritz    MD-16-1166 (Research paper)    30 of 42 

The authors believe that this categorization removes the ambiguity of the term 

‘robustness’ ensuring an unambiguous communication allowing the formal introduction 

of robustness requirements to specification documents and design targets. 

Another important contribution of this research is the list of metrics and how 

they are calculated which gives a comprehensive overview for scholars and practitioners 

of how robustness can be quantified. The choice of adequate metrics is especially 

important for simulation-based and computer-aided design and design optimization to 

ensure viable solutions. Also, the derivation of new metrics can be guided and driven by 

the classification of metrics and the differentiation of facets of quantifying robustness 

presented in this paper. 

Further research is necessary to close the gap between these objective, 

quantifiable metrics to proxies (or leading indicators) that are based on good design 

practice [34], [35] such as the Variation risk Priority Number [36], [37], the number of 

over-constraints [3], [38] as well as the Contradiction Index [39]. These proxies play a 

particularly important role in early design phases where there are no mathematical 

descriptions of the functions available. The development of further proxies based on 

objective robustness metrics, as described in this article would be of high value for 

engineering designers for the quick estimation of robustness without the need of high 

fidelity models. 
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NOMENCLATURE 

 

A0 Maximum loss at variation Δ0 

ANOVA Analysis of variance 

D Diagonal matrix 

Δi Perturbation 

DP Design parameter 

E Expected value 

f Function 

FR Functional requirement 

HDMR High-dimensional model representation 

J Jacobian matrix 

λ Eigenvalue 

LRL Lower requirement Limit 

LSL Lower specification limit 

LTB Larger-the-better requirement 

m Functional target 

μ Mean 

NF Noise factor 
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NTB Nominal-the-best requirement 

p(.) Probability density function 

Pr Probability 

Σ Covariance matrix 

σ Standard deviation 

σa Adjusted standard deviation 

STB Smaller-the-better requirement 

TFM Transfer function model 

URL Upper requirement Limit 

USL Upper specification limit 

V Variation 

Vol Volume of n dimensional polyhedron 

w Weighting factor 

xi ith independent variable 

X Vector of i independent variables 

y Functional output, dependent variable 
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APPENDIX 
Table 5: List of robustness metrics 

# Name Mathematical Expression 

Necessary information entities Level of complexity

Robustness 
metric 
class 

Reference Model / 
Experiment 

Functional 
Limits 

Expected / 
measured 
variation 

Independent 
variables 
(single / 
multiple) 

Dependent 
variables 
(single / 
multiple) 

1 
Nominal range sensitivity 
(NRS) relative to 
perturbation 

, … , ∙ 1 ∆ ,… ,
1

∆
 

 - - single single Sensitivity [10] 

2 
Nominal range sensitivity 
(NRS) absolute 

, … , ∙ 1 ∆ ,… ,
1 ∙ 100%  - - single single Sensitivity [10] 

3 
Elementary effects / 
Nominal influence 

1 ,… , ∙ 1 ∆ ,… ,
∙ ∆

  - - single single Sensitivity [9], [40] 

4 Partial derivative   - - single single Sensitivity 
[9], [13], 
[20], [41] 

5 
Normalized partial 
derivative / Sensitivity 
coefficient 

∙   - - single single Sensitivity 
[10], 

[40],[20] 

∙   - () single single Sensitivity 
[10], [13], 

[40] 

6 Importance Factor 

∑

  - - single single Sensitivity [42] 

7 FAST Index 
∑ | | | |

∑ | | | |
  - - multiple single Sensitivity 

[9], [43], 
[44] 

8 Regression coefficients 
∑ ∙

∑
  - () 

single/ 
(multiple) 

single Sensitivity 
[13], [19], 

[32] 

9 
Standardized regression 
coefficients 

,   - () single single Sensitivity [45] 

10 
Spearman Robustness 
Index 

1
∙ ∙

  - () single single Sensitivity [19], [46] 

11 
Spearman Robustness 
Index 2 

1

∙
  - () single single Sensitivity [46] 
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12 Robustness Index 
1 ‖ ,… , ∙ 1 ∆ ,… , ‖

‖ ‖
  - - single single Sensitivity [47] 

13 
Euclidean norm of 
Jacobian 

‖ ‖   - - multiple single Sensitivity [48], [49] 

14 
Frobenius norm of 
Jacobian ‖ ‖

,

  - - multiple single Sensitivity [48] 

15 Condition Number ‖ ‖ ‖ ‖   - - multiple single Sensitivity [48]–[50] 

16 
Objective Robustness 
Index max Δ

Δ
Δ ,

  - - single single Sensitivity [51] 

17 
Euclidean distance 
(Robustness radius) 

min
: ⋁

   - multiple multiple 
Feasible 
design 
space  

[52], [53], 
[54] 

18 Mahalanobis distance min
: ⋁

Σ    - multiple multiple 
Feasible 
design 
space  

[29], [52], 
[55] 

19 Feasible volume , ,
1

,
∙ 1, ,    - multiple multiple 

Feasible 
design 
space  

[30], [53], 
[56] 

20 Min-Max Interval   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[8], [57] 

21 Sensitivity Index (2)   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[32] 

22 Percentile difference Δ %
% % %  -  multiple single 

Functional 
expectancy 

and 
dispersion 

[58] 

23 Variance 

∙  

, 	 	  

⋯ …  

 -  multiple single 

Functional 
expectancy 

and 
dispersion 

[8], [9], 
[19],[13], 

[59] 
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24 Standard deviation √ ∙   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[9] 

25 Conditional variance … … ~ …
| …   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[9], [43], 
[44] 

26 
Sensitivity Index / Sobol 
Index …

…
  -  multiple single 

Functional 
expectancy 

and 
dispersion 

[9], [43] 

27 Uncertainty Importance |   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[9] 

28 Design Preference Index   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[60] 

29 Function robustness 
1

  -  multiple single 

Functional 
expectancy 

and 
dispersion 

[61] 

30 Importance Index   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[32], [62] 

31 Expectancy measure ∙ X   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[8], [63] 

32 Quality loss function 

∆
 

∆
 

∆
1

 

 -  multiple single 

Functional 
expectancy 

and 
dispersion 

[1], [2], 
[12] 

33 Mean square deviation 
 

1 1
 

 -  multiple single 

Functional 
expectancy 

and 
dispersion 

[1], [2], 
[12] 



ASME Journal of Mechanical Design 
 

Corresponding author: Göhler, Simon Moritz    MD-16-1166 (Research paper)    36 of 42 

34 Signal-to-Noise Ratio 

10  

10  

10
1 1

 

 -  multiple single 

Functional 
expectancy 

and 
dispersion 

[1], [2], 
[12] 

35 Weighted sum robustness ∙ ∙   -  multiple single 

Functional 
expectancy 

and 
dispersion 

[64] 

36 
Probabilistic robustness 
threshold  

    multiple multiple 

Probability 
of 

functional 
compliance 

[8], [58] 

37 
Design capability Indices / 
Error margin index 3

;
3

; ,     multiple single 

Probability 
of 

functional 
compliance 

[65], [66] 

38 Information content log
1

    multiple multiple 

Probability 
of 

functional 
compliance 

[24] 
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